Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G
2016-10-01
Aedes aegypti and A. albopictus mosquitoes are vectors of important human disease viruses, including dengue, yellow fever, chikungunya and Zika. Pyrethroid insecticides are widely used to control adult Aedes mosquitoes, especially during disease outbreaks. Herein, we review the status of pyrethroid resistance in A. aegypti and A. albopictus, mechanisms of resistance, fitness costs associated with resistance alleles and provide suggestions for future research. The widespread use of pyrethroids has given rise to many populations with varying levels of resistance worldwide, albeit with substantial geographical variation. In adult A. aegypti and A. albopictus, resistance levels are generally lower in Asia, Africa and the USA, and higher in Latin America, although there are exceptions. Susceptible populations still exist in several areas of the world, particularly in Asia and South America. Resistance to pyrethroids in larvae is also geographically widespread. The two major mechanisms of pyrethroid resistance are increased detoxification due to P450-monooxygenases, and mutations in the voltage sensitive sodium channel (Vssc) gene. Several P450s have been putatively associated with insecticide resistance, but the specific P450s involved are not fully elucidated. Pyrethroid resistance can be due to single mutations or combinations of mutations in Vssc. The presence of multiple Vssc mutations can lead to extremely high levels of resistance. Suggestions for future research needs are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Kwiatkowska, Rachel M.; Platt, Naomi; Poupardin, Rodolphe; Irving, Helen; Dabire, Roch K.; Mitchell, Sara; Jones, Christopher M.; Diabaté, Abdoulaye; Ranson, Hilary; Wondji, Charles S.
2013-01-01
With the exception of target site mutations, insecticide resistance mechanisms in the principle malaria vector Anopheles gambiae, remains largely uncharacterized in Burkina Faso. Here we detected high prevalence of resistance in Vallée du Kou (VK) to pyrethroids, DDT and dieldrin, moderate level for carbamates and full susceptibility to organophosphates. High frequencies of L1014F kdr (75%) and Rdl (87%) mutations were observed showing strong correlation with pyrethroids/DDT and dieldrin resistance. The frequency of ace1R mutation was low even in carbamate resistant mosquitoes. Microarray analysis identified genes significantly over-transcribed in VK. These include the cytochrome P450 genes, CYP6P3 and CYP6Z2, previously associated with pyrethroid resistance. Gene Ontology (GO) enrichment analysis suggested that elevated neurotransmitter activity is associated with resistance, with the over-transcription of target site resistance genes such as acetylcholinesterase and the GABA receptor. A rhodopsin receptor gene previously associated with pyrethroid resistance in Culex pipiens pallens was also over-transcribed in VK. This study highlights the complex network of mechanisms conferring multiple resistance in malaria vectors and such information should be taken into account when designing and implementing resistance control strategies. PMID:23380570
Country-level operational implementation of the Global Plan for Insecticide Resistance Management
Hemingway, Janet; Vontas, John; Poupardin, Rodolphe; Raman, Jaishree; Lines, Jo; Schwabe, Chris; Matias, Abrahan; Kleinschmidt, Immo
2013-01-01
Malaria control is reliant on the use of long-lasting pyrethroid-impregnated nets and/or indoor residual spraying (IRS) of insecticide. The rapid selection and spread of operationally significant pyrethroid resistance in African malaria vectors threatens our ability to sustain malaria control. Establishing whether resistance is operationally significant is technically challenging. Routine monitoring by bioassay is inadequate, and there are limited data linking resistance selection with changes in disease transmission. The default is to switch insecticides when resistance is detected, but limited insecticide options and resistance to multiple insecticides in numerous locations make this approach unsustainable. Detailed analysis of the resistance situation in Anopheles gambiae on Bioko Island after pyrethroid resistance was detected in this species in 2004, and the IRS program switched to carbamate bendiocarb, has now been undertaken. The pyrethroid resistance selected is a target-site knock-down resistance kdr-form, on a background of generally elevated metabolic activity, compared with insecticide-susceptible A. gambiae, but the major cytochrome P450-based metabolic pyrethroid resistance mechanisms are not present. The available evidence from bioassays and infection data suggests that the pyrethroid resistance mechanisms in Bioko malaria vectors are not operationally significant, and on this basis, a different, long-lasting pyrethroid formulation is now being reintroduced for IRS in a rotational insecticide resistance management program. This will allow control efforts to be sustained in a cost-effective manner while reducing the selection pressure for resistance to nonpyrethroid insecticides. The methods used provide a template for evidence-based insecticide resistance management by malaria control programs. PMID:23696658
Country-level operational implementation of the Global Plan for Insecticide Resistance Management.
Hemingway, Janet; Vontas, John; Poupardin, Rodolphe; Raman, Jaishree; Lines, Jo; Schwabe, Chris; Matias, Abrahan; Kleinschmidt, Immo
2013-06-04
Malaria control is reliant on the use of long-lasting pyrethroid-impregnated nets and/or indoor residual spraying (IRS) of insecticide. The rapid selection and spread of operationally significant pyrethroid resistance in African malaria vectors threatens our ability to sustain malaria control. Establishing whether resistance is operationally significant is technically challenging. Routine monitoring by bioassay is inadequate, and there are limited data linking resistance selection with changes in disease transmission. The default is to switch insecticides when resistance is detected, but limited insecticide options and resistance to multiple insecticides in numerous locations make this approach unsustainable. Detailed analysis of the resistance situation in Anopheles gambiae on Bioko Island after pyrethroid resistance was detected in this species in 2004, and the IRS program switched to carbamate bendiocarb, has now been undertaken. The pyrethroid resistance selected is a target-site knock-down resistance kdr-form, on a background of generally elevated metabolic activity, compared with insecticide-susceptible A. gambiae, but the major cytochrome P450-based metabolic pyrethroid resistance mechanisms are not present. The available evidence from bioassays and infection data suggests that the pyrethroid resistance mechanisms in Bioko malaria vectors are not operationally significant, and on this basis, a different, long-lasting pyrethroid formulation is now being reintroduced for IRS in a rotational insecticide resistance management program. This will allow control efforts to be sustained in a cost-effective manner while reducing the selection pressure for resistance to nonpyrethroid insecticides. The methods used provide a template for evidence-based insecticide resistance management by malaria control programs.
Ibrahim, Sulaiman S; Ndula, Miranda; Riveron, Jacob M; Irving, Helen; Wondji, Charles S
2016-07-01
Carbamates are increasingly used for vector control notably in areas with pyrethroid resistance. However, a cross-resistance between these insecticides in major malaria vectors such as Anopheles funestus could severely limit available resistance management options. Unfortunately, the molecular basis of such cross-resistance remains uncharacterized in An. funestus, preventing effective resistance management. Here, using a genomewide transcription profiling, we revealed that metabolic resistance through upregulation of cytochrome P450 genes is driving carbamate resistance. The P450s CYP6P9a, CYP6P9b and CYP6Z1 were the most upregulated detoxification genes in the multiple resistant mosquitoes. However, in silico docking simulations predicted CYP6Z1 to metabolize both pyrethroids and carbamates, whereas CYP6P9a and CYP6P9b were predicted to metabolize only the pyrethroids. Using recombinant enzyme metabolism and inhibition assays, we demonstrated that CYP6Z1 metabolizes bendiocarb and pyrethroids, whereas CYP6P9a and CYP6P9b metabolize only the pyrethroids. Other upregulated gene families in resistant mosquitoes included several cuticular protein genes suggesting a possible reduced penetration resistance mechanism. Investigation of the target-site resistance in acetylcholinesterase 1 (ace-1) gene detected and established the association between the new N485I mutation and bendiocarb resistance (odds ratio 7.3; P < 0.0001). The detection of multiple haplotypes in single mosquitoes after cloning suggested the duplication of ace-1. A TaqMan genotyping of the N485I in nine countries revealed that the mutation is located only in southern Africa with frequency of 10-15% suggesting its recent occurrence. These findings will help in monitoring the spread and evolution of carbamate resistance and improve the design of effective resistance management strategies to control this malaria vector. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Kasai, S; Sun, H; Scott, J G
2017-02-01
Insecticide use exerts a tremendous selection force on house fly populations, but the frequencies of the initial resistance mutations may not reach high levels if they have a significant fitness cost in the absence of insecticides. However, with the continued use of the same (or similar) insecticides, it is expected that new mutations (conferring equal or greater resistance, but less of a fitness cost) will evolve. Pyrethroid insecticides target the insect voltage sensitive sodium channel (VSSC) and have been widely used for control of house flies at animal production facilities for more than three decades. There are three Vssc mutations known that cause resistance to pyrethroids in house flies: knockdown resistance (kdr, L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Whether or not there are any new mutations in house fly populations has not been examined for decades. We collected house flies from a dairy in Kansas (USA) and selected this population for three generations. We discovered multiple new Vssc alleles, including two that give very high levels of resistance to most pyrethroids. The importance of these findings to understanding the evolution of insecticide resistance, designing appropriate resistance monitoring and management schemes, and the future of pyrethroids for house fly control are discussed. © 2016 The Royal Entomological Society.
Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John; Sousa, Carla Alexandra
2017-07-01
Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control.
Seixas, Gonçalo; Grigoraki, Linda; Weetman, David; Vicente, José Luís; Silva, Ana Clara; Pinto, João; Vontas, John
2017-01-01
Background Aedes aegypti is a major mosquito vector of arboviruses, including dengue, chikungunya and Zika. In 2005, Ae. aegypti was identified for the first time in Madeira Island. Despite an initial insecticide-based vector control program, the species expanded throughout the Southern coast of the island, suggesting the presence of insecticide resistance. Here, we characterized the insecticide resistance status and the underlying mechanisms of two populations of Ae. aegypti from Madeira Island, Funchal and Paúl do Mar. Methodology/Principal findings WHO susceptibility bioassays indicated resistance to cyfluthrin, permethrin, fenitrothion and bendiocarb. Use of synergists significantly increased mortality rates, and biochemical assays indicated elevated activities of detoxification enzymes, suggesting the importance of metabolic resistance. Microarray-based transcriptome analysis detected significant upregulation in both populations of nine cytochrome P450 oxidase genes (including four known pyrethroid metabolizing enzymes), the organophosphate metabolizer CCEae3a, Glutathione-S-transferases, and multiple putative cuticle proteins. Genotyping of knockdown resistance loci linked to pyrethroid resistance revealed fixation of the 1534C mutation, and presence with moderate frequencies of the V1016I mutation in each population. Conclusions/Significance Significant resistance to three major insecticide classes (pyrethroid, carbamate and organophosphate) is present in Ae. aegypti from Madeira Island, and appears to be mediated by multiple mechanisms. Implementation of appropriate resistance management strategies including rotation of insecticides with alternative modes of action, and methods other than chemical-based vector control are strongly advised to delay or reverse the spread of resistance and achieve efficient control. PMID:28742096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauron, D.; Barhanin, J.; Amichot, M.
1989-02-21
Resistance to insecticides is a major problem in agriculture. ({sup 3}H)Saxitoxin binding experiments have shown that pyrethroid-sensitive and pyrethroid-resistant flies have the same amount of Na{sup +} channel protein in their brain membranes. Also, although flies are resistant to pyrethroids, they remain as sensitive to batrachotoxin, which is another type of Na{sup +} channel activators, as pyrethroid-sensitive flies. Pyrethroid binding sites have been characterized by use of the properties of pyrethroids to increase the specific ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding component. K{sub 0.5} values for association of pyrethroids at the Na{sup +} channel of pyrethroid-sensitive flies are in the rangemore » of 0.15-0.25 {mu}M. Conversely, pyrethroids do not produce a significant increase of ({sup 3}H)batrachotoxinin A 20{alpha}-benzoate binding in pyrethroid-resistant flies even at high concentrations of the insecticide. It is concluded that linkage between pyrethroid and batrachotoxin binding sites is altered in the pyrethroid-resistant fly strains. This alteration is probably due to a drastically decreased affinity of the Na{sup +} channel for pyrethroids.« less
Souza, Dariane; Zukoff, Sarah N.; Meinke, Lance J.; Siegfried, Blair D.
2017-01-01
Recently, resistance to the pyrethroid bifenthrin was detected and confirmed in field populations of western corn rootworm, Diabrotica virgifera virgifera LeConte from southwestern areas of Nebraska and Kansas. As a first step to understand potential mechanisms of resistance, the objectives of this study were i) to assess adult mortality at diagnostic concentration-LC99 to the pyrethroids bifenthrin and tefluthrin as well as DDT, ii) estimate adult and larval susceptibility to the same compounds as well as the organophosphate methyl-parathion, and iii) perform synergism experiments with piperonyl butoxide (PBO) (P450 inhibitor) and S,S,S-tributyl-phosphorotrithioate (DEF) (esterase inhibitor) in field populations. Most of the adult field populations exhibiting some level of bifenthrin resistance exhibited significantly lower mortality to both pyrethroids and DDT than susceptible control populations at the estimated LC99 of susceptible populations. Results of adult dose-mortality bioassays also revealed elevated LC50 values for bifenthrin resistant populations compared to the susceptible control population with resistance ratios ranging from 2.5 to 5.5-fold for bifenthrin, 28 to 54.8-fold for tefluthrin, and 16.3 to 33.0 for DDT. These bioassay results collectively suggest some level of cross-resistance between the pyrethroids and DDT. In addition, both PBO and DEF reduced the resistance ratios for resistant populations although there was a higher reduction in susceptibility of adults exposed to PBO versus DEF. Susceptibility in larvae varied among insecticides and did not correlate with adult susceptibility to tefluthrin and DDT, as most resistance ratios were < 5-fold when compared to the susceptible population. These results suggest that both detoxifying enzymes and target site insensitivity might be involved as resistance mechanisms. PMID:28628635
Müller, Pie; Donnelly, Martin J; Ranson, Hilary
2007-01-01
Background Mosquito resistance to the pyrethroid insecticides used to treat bednets threatens the sustainability of malaria control in sub-Saharan Africa. While the impact of target site insensitivity alleles is being widely discussed the implications of insecticide detoxification – though equally important – remains elusive. The successful development of new tools for malaria intervention and management requires a comprehensive understanding of insecticide resistance, including metabolic resistance mechanisms. Although three enzyme families (cytochrome P450s, glutathione S-transferases and carboxylesterases) have been widely associated with insecticide detoxification the role of individual enzymes is largely unknown. Results Here, constitutive expression patterns of genes putatively involved in conferring pyrethroid resistance was investigated in a recently colonised pyrethroid resistant Anopheles gambiae strain from Odumasy, Southern Ghana. RNA from the resistant strain and a standard laboratory susceptible strain, of both sexes was extracted, reverse transcribed and labelled with either Cy3- or Cy5-dye. Labelled cDNA was co-hybridised to the detox chip, a custom-made microarray containing over 230 A. gambiae gene fragments predominantly from enzyme families associated with insecticide resistance. After hybridisation, Cy3- and Cy5-signal intensities were measured and compared gene by gene. In both females and males of the resistant strain the cytochrome P450s CYP6Z2 and CYP6M2 are highly over-expressed along with a member of the superoxide dismutase (SOD) gene family. Conclusion These genes differ from those found up-regulated in East African strains of pyrethroid resistant A. gambiae and constitute a novel set of candidate genes implicated in insecticide detoxification. These data suggest that metabolic resistance may have multiple origins in A. gambiae, which has strong implications for the management of resistance. PMID:17261191
Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David
2014-03-01
Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with heightened CYP6 P450 expression, which also provides resistance across contrasting insecticides. Mosquito populations displaying such a diverse basis of extreme and cross-resistance are likely to be unresponsive to standard insecticide resistance management practices.
Vontas, J G; Small, G J; Hemingway, J
2001-01-01
Selection of a laboratory colony of the brown planthopper Nilaparvata lugens with the pyrethroids permethrin and lambda-cyhalothrin increased its resistance to both insecticides. Biochemical analysis and synergistic studies with metabolic inhibitors indicated that elevated glutathione S-transferases (GSTs) with a predominant peroxidase activity conferred resistance to both pyrethroids, whereas esterases conferred part of the resistance to permethrin. Purified esterases hydrolysed permethrin at a slow rate, but incubation of either pyrethroid or their primary metabolites with partially purified GSTs had no effect on the metabolic profile. Although GSTs were sensitive to inhibition by both pyrethroids, they did not serve as binding proteins, as previously hypothesized [Grant and Matsumura (1988) Insect Biochem. 18, 615-622]. We demonstrate that pyrethroids, in addition to their neurotoxic effect, induce oxidative stress and lipid peroxidation in insects. Pyrethroid exposure induced lipid peroxides, protein oxidation and depleted reduced glutathione. Elevated GSTs in the resistant strains attenuated the pyrethroid-induced lipid peroxidation and reduced mortality, whereas their in vivo inhibition eliminated their protective role. We therefore hypothesize that the main role of elevated GSTs in conferring resistance in N. lugens is through protecting tissues from oxidative damage. Our study extends the GSTs' range of efficacy to pyrethroid insecticides and possibly explains the role of elevated GSTs in other pyrethroid-resistant insects. PMID:11415437
Adelman, Zach N.; Kilcullen, Kathleen A.; Koganemaru, Reina; Anderson, Michelle A. E.; Anderson, Troy D.; Miller, Dini M.
2011-01-01
A frightening resurgence of bed bug infestations has occurred over the last 10 years in the U.S. and current chemical methods have been inadequate for controlling this pest due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in U.S. bed bug populations, making it extremely difficult to develop intelligent strategies for their control. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I) and metabolic resistance to pyrethroid insecticides. Using LD50 bioassays, we determined that resistance ratios for Richmond strain bed bugs were ∼5200-fold to the insecticide deltamethrin. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible) and Richmond (resistant) bed bugs revealed several candidate cytochrome P450 and carboxylesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance. PMID:22039447
Stone, Nathan E; Olafson, Pia U; Davey, Ronald B; Buckmeier, Greta; Bodine, Deanna; Sidak-Loftis, Lindsay C; Giles, John R; Duhaime, Roberta; Miller, Robert J; Mosqueda, Juan; Scoles, Glen A; Wagner, David M; Busch, Joseph D
2014-10-01
Acaricide resistant Rhipicephalus microplus populations have become a major problem for many cattle producing areas of the world. Pyrethroid resistance in arthropods is typically associated with mutations in domains I, II, III, and IV of voltage-gated sodium channel genes. In R. microplus, known resistance mutations include a domain II change (C190A) in populations from Australia, Africa, and South America and a domain III mutation (T2134A) that only occurs in Mexico and the U.S. We investigated pyrethroid resistance in cattle fever ticks from Texas and Mexico by estimating resistance levels in field-collected ticks using larval packet discriminating dose (DD) assays and identifying single nucleotide polymorphisms (SNPs) in the para-sodium channel gene that associated with resistance. We then developed qPCR assays for three SNPs and screened a larger set of 1,488 R. microplus ticks, representing 77 field collections and four laboratory strains, for SNP frequency. We detected resistance SNPs in 21 of 68 U.S. field collections and six of nine Mexico field collections. We expected to identify the domain III SNP (T2134A) at a high frequency; however, we only found it in three U.S. collections. A much more common SNP in the U.S. (detected in 19 of 21 field collections) was the C190A domain II mutation, which has never before been reported from North America. We also discovered a novel domain II SNP (T170C) in ten U.S. and two Mexico field collections. The T170C transition mutation has previously been associated with extreme levels of resistance (super-knockdown resistance) in insects. We found a significant correlation (r = 0.81) between the proportion of individuals in field collections that carried any two resistance SNPs and the percent survivorship of F1 larvae from these collections in DD assays. This relationship is accurately predicted by a simple linear regression model (R2 = 0.6635). These findings demonstrate that multiple mutations in the para-sodium channel gene independently associate with pyrethroid resistance in R. microplus ticks, which is likely a consequence of human-induced selection.
Bowman, Natalie M; Akialis, Kristin; Cave, Grayson; Barrera, Roberto; Apperson, Charles S; Meshnick, Steven R
2018-01-01
Pyrethroid-treated clothing is commonly worn for protection against mosquitoes; pyrethroids are both insecticides and repellents. Pyrethroid resistance has become increasingly common in Aedes aegypti, the vector of dengue, Zika, and other arboviruses, but it is not clear whether resistance is associated with reductions in repellency. In order to determine whether long-lasting permethrin impregnated (LLPI) clothing is protective, we used Aedes aegypti from New Orleans, LA (pyrethroid-sensitive) and San Juan, PR (resistant) to measure both lethality and repellency. PCR and Sanger sequencing were used to confirm resistance status by detecting mutations in the kdr gene at positions 1016 and 1534. Arm-in-cage trials of 100 Aedes aegypti females from both populations were performed for 10 minutes to bare arm or an arm clothed in untreated military camouflage or military camouflage impregnated with deltamethrin, permethrin, or etofenprox. Trials were repeated 4-5 times on different days. Number of landings, number of blood meals, and immediate and 24-hour mortality were recorded. Mortality was extremely low in all trials. Compared to untreated cloth, mosquitoes demonstrated a trend towards a 2%-63% reduction in landings and a statistically significant 78-100% reduction in blood feeding on pyrethroid-treated cloth for most insecticides. Effects were observed in both pyrethroid-sensitive and pyrethroid-resistant mosquito populations. Our data show that kdr mutations are associated with pyrethroid resistance but are likely not the only contributors. Pyrethroids appear to maintain repellent effect against resistant mosquitoes. This finding suggests that even in places where pyrethroid resistance is widespread, permethrin still has a role for use as a repellent on clothing to protect against mosquito bites.
Bloomquist, Jeffrey R.; Bernier, Ulrich R.
2017-01-01
Emerging insecticide resistance is a major issue for vector control. It decreases the effectiveness of insecticides, thereby requiring greater quantities for comparable control with a net increase in risk of disease resurgence, product cost, and damage risk to the ecosystem. Pyrethroid resistance has been documented in Puerto Rican populations of Aedes aegypti (L.) mosquitoes. In this study, topical toxicity of five insecticides (permethrin, etofenprox, deltamethrin, DDT, transfluthrin) was determined for susceptible (Orlando—ORL) and resistant (Puerto Rico—PR) strains of Ae. aegypti. Resistance ratios were calculated using LD50 values, and high resistance ratios for permethrin (112) and etofenprox (228) were observed for the Puerto Rico strain. Behavioral differences in blood-feeding activity for pyrethroid-resistant and pyrethroid-susceptible strains of Ae. aegypti when exposed to pyrethroid-treated cloth were also explored. Strains were exposed for 15 min to a range of concentrations of pyrethroid-treated uniform fabric in a cage that contained 60 female Ae. aegypti mosquitoes. Interestingly, the resistance ratios for blood-feeding were similar for permethrin (61) and etofenprox (70), but were lower than their respective resistance ratios for topical toxicity, suggesting that knockdown resistance was the primary mechanism of resistance in the blood feeding assays. Results showed a rightward shift in the dose-response curves for blood-feeding that indicated higher concentrations of pyrethroids were necessary to deter blood-feeding behavior in the pyrethroid-resistant Puerto Rican strain of Ae. aegypti. PMID:28931018
Chen, Mengli; Du, Yuzhe; Nomura, Yoshiko; Zhu, Guonian; Zhorov, Boris S; Dong, Ke
2017-05-01
Pyrethroid insecticides exert toxic effects by prolonging the opening of voltage-gated sodium channels. More than 20 sodium channel mutations from arthropod pests and disease vectors have been confirmed to confer pyrethroid resistance. These mutations have been valuable in elucidating the molecular interaction between pyrethroids and sodium channels, including identification of two pyrethroid receptor sites. Previously, two alanine to valine substitutions, one in the pore helix IIIP1 and the other in the linker-helix connecting S4 and S5 in domain III (IIIL45), were found in Drosophila melanogaster mutants that are resistant to DDT and deltamethrin (a type II pyrethroid with an α-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids), but their role in target-site-mediated insecticide resistance has not been functionally confirmed. In this study, we functionally examined the two mutations in cockroach sodium channels expressed in Xenopus laevis oocytes. Both mutations caused depolarizing shifts in the voltage dependence of activation, conferred DDT resistance and also resistance to two Type I pyrethroids by almost abolishing the tail currents induced by Type I pyrethroids. In contrast, neither mutation reduced the amplitude of tail currents induced by the Type II pyrethroids, deltamethrin or cypermethrin. However, both mutations accelerated the decay of Type II pyrethroid-induced tail currents, which normally decay extremely slowly. These results provided new insight into the molecular basis of different actions of Type I and Type II pyrethroids on sodium channels. Computer modeling predicts that both mutations may allosterically affect pyrethroid binding. Copyright © 2016 Elsevier B.V. All rights reserved.
Ngufor, Corine; N’Guessan, Raphael; Fagbohoun, Josias; Odjo, Abibatou; Malone, David; Akogbeto, Martin; Rowland, Mark
2014-01-01
Background Alternative compounds which can complement pyrethroids on long-lasting insecticidal nets (LN) in the control of pyrethroid resistant malaria vectors are urgently needed. Pyriproxyfen (PPF), an insect growth regulator, reduces the fecundity and fertility of adult female mosquitoes. LNs containing a mixture of pyriproxyfen and pyrethroid could provide personal protection through the pyrethroid component and reduce vector abundance in the next generation through the sterilizing effect of pyriproxyfen. Method The efficacy of Olyset Duo, a newly developed mixture LN containing pyriproxyfen and permethrin, was evaluated in experimental huts in southern Benin against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus. Comparison was made with Olyset Net® (permethrin alone) and a LN with pyriproxyfen alone (PPF LN). Laboratory tunnel tests were performed to substantiate the findings in the experimental huts. Results Overall mortality of wild pyrethroid resistant An. gambiae s.s. was significantly higher with Olyset Duo than with Olyset Net (50% vs. 27%, P = 0.01). Olyset DUO was more protective than Olyset Net (71% vs. 3%, P<0.001). The oviposition rate of surviving blood-fed An. gambiae from the control hut was 37% whereas none of those from Olyset Duo and PPF LN huts laid eggs. The tunnel test results were consistent with the experimental hut results. Olyset Duo was more protective than Olyset Net in the huts against wild pyrethroid resistant Cx. quinquefasciatus although mortality rates of this species did not differ significantly between Olyset Net and Olyset Duo. There was no sterilizing effect on surviving blood-fed Cx. quinquefasciatus with the PPF-treated nets. Conclusion Olyset Duo was superior to Olyset Net in terms of personal protection and killing of pyrethroid resistant An. gambiae, and sterilized surviving blood-fed mosquitoes. Mixing pyrethroid and pyriproxyfen on a LN shows potential for malaria control and management of pyrethroid resistant vectors by preventing further selection of pyrethroid resistant phenotypes. PMID:24699827
Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Subramaniam, Krishanthi; Odjo, Abibatou; Fongnikin, Augustin; Akogbeto, Martin; Weetman, David; Rowland, Mark
2015-11-18
Novel indoor residual spraying (IRS) and long-lasting insecticidal net (LLIN) products aimed at improving the control of pyrethroid-resistant malaria vectors have to be evaluated in Phase II semi-field experimental studies against highly pyrethroid-resistant mosquitoes. To better understand their performance it is necessary to fully characterize the species composition, resistance status and resistance mechanisms of the vector populations in the experimental hut sites. Bioassays were performed to assess phenotypic insecticide resistance in the malaria vector population at a newly constructed experimental hut site in Cové, a rice growing area in southern Benin, being used for WHOPES Phase II evaluation of newly developed LLIN and IRS products. The efficacy of standard WHOPES-approved pyrethroid LLIN and IRS products was also assessed in the experimental huts. Diagnostic genotyping techniques and microarray studies were performed to investigate the genetic basis of pyrethroid resistance in the Cové Anopheles gambiae population. The vector population at the Cové experimental hut site consisted of a mixture of Anopheles coluzzii and An. gambiae s.s. with the latter occurring at lower frequencies (23 %) and only in samples collected in the dry season. There was a high prevalence of resistance to pyrethroids and DDT (>90 % bioassay survival) with pyrethroid resistance intensity reaching 200-fold compared to the laboratory susceptible An. gambiae Kisumu strain. Standard WHOPES-approved pyrethroid IRS and LLIN products were ineffective in the experimental huts against this vector population (8-29 % mortality). The L1014F allele frequency was 89 %. CYP6P3, a cytochrome P450 validated as an efficient metabolizer of pyrethroids, was over-expressed. Characterizing pyrethroid resistance at Phase II field sites is crucial to the accurate interpretation of the performance of novel vector control products. The strong levels of pyrethroid resistance at the Cové experimental hut station make it a suitable site for Phase II experimental hut evaluations of novel vector control products, which aim for improved efficacy against pyrethroid-resistant malaria vectors to WHOPES standards. The resistance genes identified can be used as markers for further studies investigating the resistance management potential of novel mixture LLIN and IRS products tested at the site.
Lilly, David G.; Latham, Sharissa L.; Webb, Cameron E.; Doggett, Stephen L.
2016-01-01
Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest’s resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects. PMID:27073871
Lilly, David G; Latham, Sharissa L; Webb, Cameron E; Doggett, Stephen L
2016-01-01
Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest's resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects.
Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S
2016-04-20
Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus.
Levot, Garry
2012-04-30
A retrospective study in which the 18 years treatment history of a mob of sheep hosting a pyrethroid resistant strain of sheep body lice was compared with the coincidental changes in that strain's response to cypermethrin, provided a unique opportunity to investigate the stability of pyrethroid resistance in this species. Resistance levels remained very high (resistance factors (RF)=75-145) for at least five years following the cessation of pyrethroid treatments but within ten years had dropped to only 5, a level similar to many normal field strains and certainly not indicative of high-level resistance. Resumption of pyrethroid treatment of sheep infested with these lice caused a coincidental increase in resistance to an extreme level (RF=321) within two years. Wool producers considering a return to pyrethroid use to control louse infestations should be aware that such a strategy may not be sustainable in the long term and that in Australia effective registered alternative treatments are available. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Wyk, Roelof Dj van; Baron, Samantha; Maritz-Olivier, Christine
2016-06-01
Rhipicephalus microplus and Rhipicephalus decoloratus species occur in regions with savannah and temperate climates, typically in grassland and wooded areas used as cattle pasture. Both species are associated with the transmission of Anaplasma and Babesia spp., impacting livestock health and quality of livestock-associated products. In Africa, tick control is predominantly mediated with the use of acaricides, such as synthetic pyrethroids. After several years on the market, reports of resistance to synthetic pyrethroids escalated but limited field data and validation studies have been conducted to determine the extent of acaricide resistance in Africa. Without this data, knowledge-based tick control will remain problematic and selection pressure will remain high increasing the rate of resistance acquisition. To date, several pyrethroid resistance associated single nucleotide polymorphisms (SNPs) have been reported for arthropods within the voltage-gated sodium channel. Three SNPs have been identified within this channel in pyrethroid resistant R. microplus ticks, but none has been reported for R. decoloratus. This study is the first to report the presence of a shared SNP within the voltage-gated sodium channel in both R. microplus and R. decoloratus, which is directly linked to pyrethroid resistance in R. microplus. As the mode of action by which these SNPs mediate pyrethroid resistance remains unknown, this study aims to set hypotheses by means of predictive structural modelling. This not only paves the way forward to elucidating the underlying biological mechanisms involved in pyrethroid resistance, but also improvement of existing acaricides and ultimately sustainable tick control management. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ibrahim, Sulaiman S; Riveron, Jacob M; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J I; Wondji, Charles S
2015-10-01
Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.
Ibrahim, Sulaiman S.; Riveron, Jacob M.; Bibby, Jaclyn; Irving, Helen; Yunta, Cristina; Paine, Mark J. I.; Wondji, Charles S.
2015-01-01
Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies. PMID:26517127
USDA-ARS?s Scientific Manuscript database
The tarnished plant bug (TPB) has increasingly become an economically important pest of cotton. Heavy dependence on insecticides, particularly organophosphates and pyrethroids, for TPB control facilitated resistance development to multiple classes of insecticides. To better understand resistance and...
Hopkins, B W; Pietrantonio, P V
2010-05-01
Helicoverpa zea is one of the most costly insect pests of food and fiber crops throughout the Americas. Pyrethroid insecticides are widely applied for its control as they are effective and relatively inexpensive; however, resistance to pyrethroids threatens agricultural systems sustainability because alternative insecticides are often more expensive or less effective. Although pyrethroid resistance has been identified in this pest since 1990, the mechanisms of resistance have not yet been elucidated at the molecular level. Pyrethroids exert their toxicity by prolonging the open state of the voltage-gated sodium channel. Here we report the cDNA sequence of the H. zea sodium channel alpha-subunit homologous to the para gene from Drosophila melanogaster. In field-collected males which were resistant to cypermethrin as determined by the adult vial test, we identify known resistance-conferring mutations L1029H and V421M, along with two novel mutations at the V421 residue, V421A and V421G. An additional mutation, I951V, may be the first example of a pyrethroid resistance mutation caused by RNA editing. Identification of the sodium channel cDNA sequence will allow for testing hypotheses on target-site resistance for insecticides acting on this channel through modeling and expression studies. Understanding the mechanisms responsible for resistance will greatly improve our ability to identify and predict resistance, as well as preserve susceptibility to pyrethroid insecticides. Copyright 2010 Elsevier Ltd. All rights reserved.
Tangena, Julie-Anne A; Adiamoh, Majidah; D'Alessandro, Umberto; Jarju, Lamin; Jawara, Musa; Jeffries, David; Malik, Naiela; Nwakanma, Davis; Kaur, Harparkash; Takken, Willem; Lindsay, Steve W; Pinder, Margaret
2013-01-01
Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confers resistance to DDT. Therefore, alternative insecticides are urgently needed. Insecticide resistance and the efficacy of indoor residual spraying with different insecticides was determined in a Gambian village. Resistance of local vectors to pyrethroids and DDT was high (31% and 46% mortality, respectively) while resistance to bendiocarb and pirimiphos methyl was low (88% and 100% mortality, respectively). The vectors were predominantly Anopheles gambiae s.s. with 94% of them having the putative resistant genotype kdr 1014F. Four groups of eight residential compounds were each sprayed with either (1) bendiocarb, a carbamate, (2) DDT, an organochlorine, (3) microencapsulated pirimiphos methyl, an organophosphate, or (4) left unsprayed. All insecticides tested showed high residual activity up to five months after application. Mosquito house entry, estimated by light traps, was similar in all houses with metal roofs, but was significantly less in IRS houses with thatched roofs (p=0.02). Residents participating in focus group discussions indicated that IRS was considered a necessary nuisance and also may decrease the use of long-lasting insecticidal nets. Bendiocarb and microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance.
Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G
2018-03-01
Aedes aegypti is a vector of several important human pathogens. Control efforts rely primarily on pyrethroid insecticides for adult mosquito control, especially during disease outbreaks. A. aegypti has developed resistance nearly everywhere it occurs and insecticides are used. An important mechanism of resistance is due to mutations in the voltage-sensitive sodium channel (Vssc) gene. Two mutations, in particular, S989P + V1016G, commonly occur together in parts of Asia. We have created a strain (KDR:ROCK) that contains the Vssc mutations S989P + V1016G as the only mechanism of pyrethroid resistance within the genetic background of Rockefeller (ROCK), a susceptible lab strain. We created KDR:ROCK by crossing the pyrethroid-resistant strain Singapore with ROCK followed by four backcrosses with ROCK and Vssc S989P + V1016G genotype selections. We determined the levels of resistance conferred to 17 structurally diverse pyrethroids, the organochloride DDT, and oxadiazines (VSSC blockers) indoxacarb (proinsecticide) and DCJW (the active metabolite of indoxacarb). Levels of resistance to the pyrethroids were variable, ranging from 21- to 107-fold, but no clear pattern between resistance and chemical structure was observed. Resistance is inherited as an incompletely recessive trait. KDR:ROCK had a > 2000-fold resistance to DDT, 37.5-fold cross-resistance to indoxacarb and 13.4-fold cross-resistance to DCJW. Etofenprox (and DDT) should be avoided in areas where Vssc mutations S989P + V1016G exist at high frequencies. We found that pyrethroid structure cannot be used to predict the level of resistance conferred by kdr. These results provide useful information for resistance management and for better understanding pyrethroid interactions with VSSC. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Martins, Ademir Jesus; Lins, Rachel Mazzei Moura de Andrade; Linss, Jutta Gerlinde Birgitt; Peixoto, Alexandre Afranio; Valle, Denise
2009-07-01
The nature of pyrethroid resistance in Aedes aegypti Brazilian populations was investigated. Quantification of enzymes related to metabolic resistance in two distinct populations, located in the Northeast and Southeast regions, revealed increases in Glutathione-S-transferase (GST) and Esterase levels. Additionally, polymorphism was found in the IIS6 region of Ae. aegypti voltage-gated sodium channel (AaNa(V)), the pyrethroid target site. Sequences were classified in two haplotype groups, A and B, according to the size of the intron in that region. Rockefeller, a susceptible control lineage, contains only B sequences. In field populations, some A sequences present a substitution in the 1011 site (Ile/Met). When resistant and susceptible individuals were compared, the frequency of both A (with the Met mutation) and B sequences were slightly increased in resistant specimens. The involvement of the AaNa(V) polymorphism in pyrethroid resistance and the metabolic mechanisms that lead to potential cross-resistance between organophosphate and pyrethroids are discussed.
Status of pyrethroid resistance in Anopheles gambiae sensu lato.
Chandre, F.; Darrier, F.; Manga, L.; Akogbeto, M.; Faye, O.; Mouchet, J.; Guillet, P.
1999-01-01
The present study confirms the presence of pyrethroid resistance among Anopheles gambiae s.l mosquitos in Côte d'Ivoire and reports the observation of such resistance in two other countries in West Africa (Benin and Burkina Faso). Malaria vector populations from Cameroon (Central Africa), Senegal (West Africa) and Botswana (southern Africa) were found to be susceptible to pyrethroids. In the most resistant mosquito populations, resistance to permethrin was associated with reduced mortality, not only with respect to this compound but also towards deltamethrin. Moreover, a significant increase in knockdown time was observed in some mosquito populations before any decrease in mortality, suggesting that knockdown time could be a good indicator for the early detection of pyrethroid resistance. In view of the current extension of such resistance, there is an urgent need to set up a network in Africa to evaluate its development. It is also vital that the impact of this resistance on pyrethroid-impregnated bednets be assessed. PMID:10212513
Distinct Roles of the DmNav and DSC1 Channels in the Action of DDT and Pyrethroids
Rinkevich, Frank D.; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S.; Dong, Ke
2015-01-01
Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (parats) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a parats1 allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in parats1 mutant flies was almost completely abolished in parats1;DSC1−/− double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w1118A), and the parats1;DSC1−/− double mutant flies were even more resistant to DDT compared to the DSC1 knockout or parats1 mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. PMID:25687544
Ibrahim, Sulaiman S; Riveron, Jacob M; Stott, Robert; Irving, Helen; Wondji, Charles S
2016-01-01
Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ibrahim, Sulaiman S.; Riveron, Jacob M.; Stott, Robert; Irving, Helen; Wondji, Charles S.
2016-01-01
Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. PMID:26548743
Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities.
Vontas, John; Grigoraki, Linda; Morgan, John; Tsakireli, Dimitra; Fuseini, Godwin; Segura, Luis; Niemczura de Carvalho, Julie; Nguema, Raul; Weetman, David; Slotman, Michel A; Hemingway, Janet
2018-05-01
Since 2004, indoor residual spraying (IRS) and long-lasting insecticide-impregnated bednets (LLINs) have reduced the malaria parasite prevalence in children on Bioko Island, Equatorial Guinea, from 45% to 12%. After target site-based (knockdown resistance; kdr ) pyrethroid resistance was detected in 2004 in Anopheles coluzzii (formerly known as the M form of the Anopheles gambiae complex), the carbamate bendiocarb was introduced. Subsequent analysis showed that kdr alone was not operationally significant, so pyrethroid-based IRS was successfully reintroduced in 2012. In 2007 and 2014-2015, mass distribution of new pyrethroid LLINs was undertaken to increase the net coverage levels. The combined selection pressure of IRS and LLINs resulted in an increase in the frequency of pyrethroid resistance in 2015. In addition to a significant increase in kd r frequency, an additional metabolic pyrethroid resistance mechanism had been selected. Increased metabolism of the pyrethroid deltamethrin was linked with up-regulation of the cytochrome P450 CYP9K1. The increase in resistance prompted a reversion to bendiocarb IRS in 2016 to avoid a resurgence of malaria, in line with the national Malaria Control Program plan. Copyright © 2018 the Author(s). Published by PNAS.
Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities
Vontas, John; Grigoraki, Linda; Morgan, John; Tsakireli, Dimitra; Fuseini, Godwin; Segura, Luis; Niemczura de Carvalho, Julie; Nguema, Raul; Weetman, David; Slotman, Michel A.; Hemingway, Janet
2018-01-01
Since 2004, indoor residual spraying (IRS) and long-lasting insecticide-impregnated bednets (LLINs) have reduced the malaria parasite prevalence in children on Bioko Island, Equatorial Guinea, from 45% to 12%. After target site-based (knockdown resistance; kdr) pyrethroid resistance was detected in 2004 in Anopheles coluzzii (formerly known as the M form of the Anopheles gambiae complex), the carbamate bendiocarb was introduced. Subsequent analysis showed that kdr alone was not operationally significant, so pyrethroid-based IRS was successfully reintroduced in 2012. In 2007 and 2014–2015, mass distribution of new pyrethroid LLINs was undertaken to increase the net coverage levels. The combined selection pressure of IRS and LLINs resulted in an increase in the frequency of pyrethroid resistance in 2015. In addition to a significant increase in kdr frequency, an additional metabolic pyrethroid resistance mechanism had been selected. Increased metabolism of the pyrethroid deltamethrin was linked with up-regulation of the cytochrome P450 CYP9K1. The increase in resistance prompted a reversion to bendiocarb IRS in 2016 to avoid a resurgence of malaria, in line with the national Malaria Control Program plan. PMID:29674455
Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance
Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.
2015-01-01
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279
Tangena, Julie-Anne A.; Adiamoh, Majidah; D’Alessandro, Umberto; Jarju, Lamin; Jawara, Musa; Jeffries, David; Malik, Naiela; Nwakanma, Davis; Kaur, Harparkash; Takken, Willem; Lindsay, Steve W.; Pinder, Margaret
2013-01-01
Background Malaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confers resistance to DDT. Therefore, alternative insecticides are urgently needed. Methodology/Principal Findings Insecticide resistance and the efficacy of indoor residual spraying with different insecticides was determined in a Gambian village. Resistance of local vectors to pyrethroids and DDT was high (31% and 46% mortality, respectively) while resistance to bendiocarb and pirimiphos methyl was low (88% and 100% mortality, respectively). The vectors were predominantly Anopheles gambiae s.s. with 94% of them having the putative resistant genotype kdr 1014F. Four groups of eight residential compounds were each sprayed with either (1) bendiocarb, a carbamate, (2) DDT, an organochlorine, (3) microencapsulated pirimiphos methyl, an organophosphate, or (4) left unsprayed. All insecticides tested showed high residual activity up to five months after application. Mosquito house entry, estimated by light traps, was similar in all houses with metal roofs, but was significantly less in IRS houses with thatched roofs (p=0.02). Residents participating in focus group discussions indicated that IRS was considered a necessary nuisance and also may decrease the use of long-lasting insecticidal nets. Conclusion/Significance Bendiocarb and microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance. PMID:24058551
USDA-ARS?s Scientific Manuscript database
Rhipicephalus microplus is an invasive tick vector that transmits the protozoan parasites Babesia bovis and B. bigemina, the causative agents of bovine babesiosis (cattle fever). Acaricide resistant R. microplus populations have become a major problem for many cattle producing areas of the world. Py...
[Current approaches to overcoming permethrin resistance in lice].
Lopatina, Iu V
2013-01-01
The paper gives information on pediculosis morbidity worldwide. It summarizes the data available in the literature on the resistance of head and clothes lice to pyrethroids and on the mechanisms of this resistance. The formation of head and clothes louse populations resistant to pyrethroids is shown to be a global problem. New groups of chemical substances that are alternatives to pyrethroids and the mechanisms of their action on lice are considered.
Khan, Hafiz Azhar Ali; Akram, Waseem; Fatima, Ammara
2017-12-01
House flies are one of the major public health pests in urban settings. People usually use insecticides containing pyrethroids for the management of house flies; however, there is a lack of information on pyrethroid resistance in house flies from urban areas. In the present study, resistance to four pyrethroids (beta-cyfluthrin, deltamethrin, permethrin, transfluthrin) was assessed in house flies collected from urban areas of Punjab, Pakistan. Significant levels of resistance to all the pyrethroids were found in different strains of house flies. The resistance ratios (RRs) at the median lethal dose (LD 50 ) level were in the range of 5.25- to 11.02-fold for beta-cyfluthrin, 7.22- to 19.31-fold for deltamethrin, 5.36- to 16.04-fold for permethrin, and 9.05- to 35.50-fold for transfluthrin. Pairwise comparison of the log LD 50 s revealed a highly significant correlation (p < 0.01) between deltamethrin and permethrin, suggesting the possibility of a cross-resistance mechanism. The results revealed the occurrence of pyrethroid resistance in house flies from urban areas of Punjab. Regular resistance monitoring surveys and integrated approaches for the management of house flies are needed to retain the efficacy of these insecticides for a longer period of time.
Poda, Serge B; Soma, Dieudonné D; Hien, Aristide; Namountougou, Moussa; Gnankiné, Olivier; Diabaté, Abdoulaye; Fournet, Florence; Baldet, Thierry; Mas-Coma, Santiago; Mosqueira, Beatriz; Dabiré, Roch K
2018-04-02
A novel strategy applying an organophosphate-based insecticide paint on doors and windows in combination with long-lasting insecticide-treated nets (LLINs) was tested for the control of pyrethroid-resistant malaria vectors in a village setting in Vallée du Kou, a rice-growing area west of Burkina Faso. Insecticide Paint Inesfly 5A IGR™, comprised of two organophosphates and an insect growth regulator, was applied to doors and windows and tested in combination with pyrethroid-treated LLINs. The killing effect was monitored for 5 months by early morning collections of anophelines and other culicids. The residual efficacy was evaluated monthly by WHO bioassays using Anopheles gambiae 'Kisumu' and local populations of Anopheles coluzzii resistant to pyrethroids. The spatial mortality efficacy (SME) at distances of 1 m was also assessed against pyrethroid-susceptible and -resistant malaria vectors. The frequency of L1014F kdr and Ace-1 R G119S mutations was, respectively, reported throughout the study. The Insecticide Paint Inesfly 5A IGR had been tested in past studies yielding a long-term mortality rate of 80% over 12 months against An. coluzzii, the local pyrethroid-resistant malaria vector. The purpose of the present study is to test if treating smaller, targeted surfaces (e.g. doors and windows) was also efficient in killing malaria vectors. Treating windows and doors alone yielded a killing efficacy of 100% for 1 month against An. coluzzii resistant to pyrethroids, but efficacy reduced quickly afterwards. Likewise, WHO cone bioassays yielded mortalities of 80-100% for 2 months but declined to 90 and 40% 2 and 3 months after treatment, respectively. Mosquitoes exposed to insecticide paint-treated surfaces at distances of 1 m, yielded mortality rates of about 90-80% against local pyrethroids-resistant An. coluzzii during the first 2 months, but decreased to 30% afterwards. Anopheles coluzzii was reported to be exclusively the local malaria vector and resistant to pyrethroids with high L1014 kdr frequency. The combination of insecticide paint on doors and windows with LLINs yielded high mortality rates in the short term against wild pyrethroid-resistant malaria vector populations. A high SME was observed against laboratory strains of pyrethroid-resistant malaria vectors placed for 30 min at 1 m from the treated/control walls. The application of the insecticide paint on doors and windows led to high but short-lasting mortality rates. The strategy may be an option in a context where low cost, rapid responses need to be implemented in areas where malaria vectors are resistant to pyrethroids.
Klafke, G M; Miller, R J; Tidwell, J; Barreto, R; Guerrero, F D; Kaufman, P E; Pérez de León, A A
2017-11-07
The brown dog tick, Rhipicephalus sanguineus sensu lato (Latreille), is a cosmopolitan ectoparasite and vector of pathogens that kill humans and animals. Pyrethroids represent a class of synthetic acaricides that have been used intensely to try to control the brown dog tick and mitigate the risk of tick-borne disease transmission. However, acaricide resistance is an emerging problem in the management of the brown dog tick. Understanding the mechanism of resistance to acaricides, including pyrethroids, is important to adapt brown dog tick control strategies. The main objective of this study was to determine if target-site mutations associated with pyrethroid resistance in other pests could be associated with phenotypic resistance detected in a brown dog tick population from Florida. We amplified segment 6 of the domain III of the voltage-sensitive sodium channel protein, using cDNAs synthesized from pyrethroid-susceptible and pyrethroid-resistant tick strains. A single nucleotide point mutation (SNP) identified in a highly conserved region of domain III S6 in the resistant ticks resulted in an amino acid change from phenylalanine to leucine. This mutation is characteristic of resistance phenotypes in other tick species, and is the first report of this mutation in R. sanguineus. Molecular assays based on this knowledge could be developed to diagnose the risk for pyrethroid resistance, and to inform decisions on integrated brown dog tick management practices. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Control of Pyrethroid-Resistant Chagas Disease Vectors with Entomopathogenic Fungi
Pedrini, Nicolás; Mijailovsky, Sergio J.; Girotti, Juan R.; Stariolo, Raúl; Cardozo, Rubén M.; Gentile, Alberto; Juárez, M. Patricia
2009-01-01
Background Triatoma infestans-mediated transmission of Tripanosoma cruzi, the causative agent of Chagas disease, remains as a major health issue in southern South America. Key factors of T. infestans prevalence in specific areas of the geographic Gran Chaco region—which extends through northern Argentina, Bolivia, and Paraguay—are both recurrent reinfestations after insecticide spraying and emerging pyrethroid-resistance over the past ten years. Among alternative control tools, the pathogenicity of entomopathogenic fungi against triatomines is already known; furthermore, these fungi have the ability to fully degrade hydrocarbons from T. infestans cuticle and to utilize them as fuel and for incorporation into cellular components. Methodology and Findings Here we provide evidence of resistance-related cuticle differences; capillary gas chromatography coupled to mass spectrometry analyses revealed that pyrethroid-resistant bugs have significantly larger amounts of surface hydrocarbons, peaking 56.2±6.4% higher than susceptible specimens. Also, a thicker cuticle was detected by scanning electron microscopy (32.1±5.9 µm and 17.8±5.4 µm for pyrethroid-resistant and pyrethroid-susceptible, respectively). In laboratory bioassays, we showed that the virulence of the entomopathogenic fungi Beauveria bassiana against T. infestans was significantly enhanced after fungal adaptation to grow on a medium containing insect-like hydrocarbons as the carbon source, regardless of bug susceptibility to pyrethroids. We designed an attraction-infection trap based on manipulating T. infestans behavior in order to facilitate close contact with B. bassiana. Field assays performed in rural village houses infested with pyrethroid-resistant insects showed 52.4% bug mortality. Using available mathematical models, we predicted that further fungal applications could eventually halt infection transmission. Conclusions This low cost, low tech, ecologically friendly methodology could help in controlling the spread of pyrethroid-resistant bugs. PMID:19434231
Toloza, Ariel Ceferino; Ascunce, Marina S; Reed, David; Picollo, María Inés
2014-01-01
The human head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is an obligate ectoparasite that causes pediculosis capitis and has parasitized humans since the beginning of humankind. Head louse infestations are widespread throughout the world and have been increasing since the early 1990s partially because of ineffective pediculicides. In Argentina, the overuse of products containing pyrethroids has led to the development of resistant louse populations. Pyrethroid insecticides act on the nervous system affecting voltage-sensitive sodium channels. Three point mutations at the corresponding amino acid sequence positions M815I, T917I, and L920F in the voltage-gated sodium channel gene are responsible for contributing to knockdown resistance (kdr). The management of pyrethroid resistance requires either early detection or the characterization of the mechanisms involved in head louse populations. In the current study, we estimated the distribution of kdr alleles in 154 head lice from six geographical regions of Argentina. Pyrethroid resistance kdr alleles were found in high frequencies ranging from 67 to 100%. Of these, 131 (85.1%) were homozygous resistant, 13 (8.4%) were homozygous susceptible, and 10 (6.5%) were heterozygous. Exact tests for the Hardy-Weinberg equilibrium for each location showed that genotype frequencies differed significantly from expectation in four of the six sites studied. These results show that pyrethroid resistance is well established reaching an overall frequency of 88%, thus close to fixation. With 30 yr of pyrethroid-based pediculicides use in Argentina, kdr resistance has evolved rapidly among these head louse populations.
Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.
Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke
2015-03-01
Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.
Molecular biology of insect sodium channels and pyrethroid resistance.
Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S
2014-07-01
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution of resistance to pyrethroid insecticides in Musca domestica.
Scott, Jeffrey G
2017-04-01
Houseflies, Musca domestica L., are a significant pest because of the numerous diseases they transmit. Control of housefly populations, particularly at animal production facilities, is frequently done using pyrethroid insecticides which kill insects by prolonging the open time of the voltage-sensitive sodium channel (VSSC). Houseflies have evolved resistance to pyrethroids owing to mutations in Vssc and by cytochrome-P450-mediated detoxification. Three Vssc mutations are known: kdr (L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Generally, the levels of resistance conferred by these mutations are kdr-his < kdr < super-kdr, but this pattern does not hold for multihalogenated benzyl pyrethroids, for which super-kdr confers less resistance than kdr. P450-mediated resistance can result from overexpression of CYP6D1 or another P450 (unidentified) whose overexpression is linked to autosomes II or V. The initial use of field-stable pyrethroids resulted in different patterns of evolution across the globe, but with time these mutations have become more widespread in their distribution. What is known about the fitness costs of the resistance alleles in the absence of insecticide is discussed, particularly with respect to the current and future utility of pyrethroid insecticides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Yan, Zheng-Wen; He, Zheng-Bo; Yan, Zhen-Tian; Si, Feng-Ling; Zhou, Yong; Chen, Bin
2018-02-02
Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Wrzesińska, B; Czerwoniec, A; Wieczorek, P; Węgorek, P; Zamojska, J; Obrępalska-Stęplowska, A
2014-10-01
The pollen beetle (Meligethes aeneus F.) is the most devastating pest of oilseed rape (Brassica napus) and is controlled by pyrethroid insecticides. However, resistance to pyrethroids in Europe is becoming widespread and predominant. Pyrethroids target the voltage-sensitive sodium channel (VSSC), and mutations in VSSC may be responsible for pyrethroid insensitivity. Here, we analysed individual beetles that were resistant to esfenvalerate, a pyrethroid, from 14 populations that were collected from oilseed rape fields in Poland. We screened the VSSC domains that were presumed to directly interact with pyrethroids. We identified 18 heterozygous nucleic acid substitutions, amongst which six caused an amino acid change: N912S, G926S, I936V, R957G, F1538L and E1553G. Our analysis of the three-dimensional structure of these domains in VSSC revealed that some of these changes may slightly influence the protein structure and hence the docking efficiency of esfenvalerate. Therefore, these mutations may impact the susceptibility of the sodium channel to the action of this insecticide. © 2014 The Royal Entomological Society.
Bona, Ana Caroline Dalla; Chitolina, Rodrigo Faitta; Fermino, Marise Lopes; de Castro Poncio, Lisiane; Weiss, Avital; Lima, José Bento Pereira; Paldi, Nitzan; Bernardes, Emerson Soares; Henen, Jonathan; Maori, Eyal
2016-07-14
Mosquitoes host and pass on to humans a variety of disease-causing pathogens such as infectious viruses and other parasitic microorganisms. The emergence and spread of insecticide resistance is threatening the effectiveness of current control measures for common mosquito vector borne diseases, such as malaria, dengue and Zika. Therefore, the emerging resistance to the widely used pyrethroid insecticides is an alarming problem for public health. Herein we demonstrated the use of RNA interference (RNAi) to increase susceptibility of adult mosquitoes to a widely used pyrethroid insecticide. Experiments were performed on a field-collected pyrethroid resistant strain of Ae. aegypti (Rio de Janeiro; RJ). Larvae from the resistant Ae. aegypti population were soaked with double-stranded RNAs (dsRNAs) that correspond either to voltage-gate sodium channel (VGSC), P-glycoprotein, or P450 detoxification genes and reared to adulthood. Adult mortality rates in the presence of various Deltamethrin pyrethroid concentrations were used to assess mosquito insecticide susceptibility. We characterized the RJ Ae. aegypti strain with regard to its level of resistance to a pyrethroid insecticide and found that it was approximately 6 times more resistant to Deltamethrin compared to the laboratory Rockefeller strain. The RJ strain displayed a higher frequency of Val1016Ile and Phe1534Cys substitutions of the VGSC gene. The resistant strain also displayed a higher basal expression level of VGSC compared to the Rockefeller strain. When dsRNA-treated mosquitoes were subjected to a standard pyrethroid contact bioassay, only dsRNA targeting VGSC increased the adult mortality of the pyrethroid resistant strain. The dsRNA treatment proved effective in increasing adult mosquito susceptibility over a range of pyrethroid concentrations and these results were associated with dsRNA-specific small interfering RNAs in treated adults, and the corresponding specific down regulation of VGSC gene expression level. Finally, we demonstrated that the efficiency of our approach was further improved by 'tiling' along the VGSC gene in order to identify the most potent dsRNA sequences. These results demonstrate that dsRNA applied to mosquito larvae retains its biological activity into adulthood. Thus, the RNAi system reported here could be a useful approach to control the widespread insecticide resistance in mosquitoes and other insect vectors of human diseases.
2013-01-01
Background The emergence of pyrethroid resistance in the malaria vector, Anopheles arabiensis, threatens to undermine the considerable gains made towards eliminating malaria on Zanzibar. Previously, resistance was restricted to the island of Pemba while mosquitoes from Unguja, the larger of the two islands of Zanzibar, were susceptible. Here, we characterised the mechanism(s) responsible for resistance on Zanzibar using a combination of gene expression and target-site mutation assays. Methods WHO resistance bioassays were conducted using 1-5d old adult Anopheles gambiae s.l. collected between 2011 and 2013 across the archipelago. Synergist assays with the P450 inhibitor piperonyl-butoxide were performed in 2013. Members of the An. gambiae complex were PCR-identified and screened for target-site mutations (kdr and Ace-1). Gene expression in pyrethroid resistant An. arabiensis from Pemba was analysed using whole-genome microarrays. Results Pyrethroid resistance is now present across the entire Zanzibar archipelago. Survival to the pyrethroid lambda-cyhalothrin in bioassays conducted in 2013 was 23.5-54.3% on Unguja and 32.9-81.7% on Pemba. We present evidence that resistance is mediated, in part at least, by elevated P450 monoxygenases. Whole-genome microarray scans showed that the most enriched gene terms in resistant An. arabiensis from Pemba were associated with P450 activity and synergist assays with PBO completely restored susceptibility to pyrethroids in both islands. CYP4G16 was the most consistently over-expressed gene in resistant mosquitoes compared with two susceptible strains from Unguja and Dar es Salaam. Expression of this P450 is enriched in the abdomen and it is thought to play a role in hydrocarbon synthesis. Microarray and qPCR detected several additional genes putatively involved in this pathway enriched in the Pemba pyrethroid resistant population and we hypothesise that resistance may be, in part, related to alterations in the structure of the mosquito cuticle. None of the kdr target-site mutations, associated with pyrethroid/DDT resistance in An. gambiae elsewhere in Africa, were found on the islands. Conclusion The consequences of this resistance phenotype are discussed in relation to future vector control strategies on Zanzibar to support the ongoing malaria elimination efforts on the islands. PMID:24314005
Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din
2016-01-01
The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.
Barnes, Kayla G; Weedall, Gareth D; Ndula, Miranda; Irving, Helen; Mzihalowa, Themba; Hemingway, Janet; Wondji, Charles S
2017-02-01
Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the 'resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
Helgesen, K O; Bravo, S; Sevatdal, S; Mendoza, J; Horsberg, T E
2014-10-01
The sea louse Caligus rogercresseyi is a major threat to Chilean salmonid farming. Pyrethroids have been used for anticaligus treatments since 2007, but have shown reduced effect, most likely due to resistance development. Pyrethroid resistance is also a known problem in Lepeophtheirus salmonis in the Northern Hemisphere. This study describes the development of deltamethrin resistance in C. rogercresseyi based on bioassays and usage data for pyrethroids in Chilean aquaculture. These results were compared to bioassays from L. salmonis from Norway and to Norwegian usage data. Available deltamethrin bioassay results from 2007 and 2008, as well as bioassays from Norway, were collected and remodelled. Bioassays were performed on field-collected sea lice in region X in Chile in 2012 and 2013. Bioassays from 2007 were performed prior to the introduction of pyrethroids to the Chilean market. Both the results from 2008 and 2012 showed an increased resistance. Increased pyrethroid resistance was also indicated by the increased use of pyrethroids in Chilean aquaculture compared with the production of salmonids. A similar trend was seen in the Norwegian usage data. The bioassay results from Chile from 2012 and 2013 also indicated a difference in the susceptibility to deltamethrin between male and female caligus. © 2014 John Wiley & Sons Ltd.
Capriotti, Natalia; Mougabure-Cueto, Gastón; Rivera-Pomar, Rolando; Ons, Sheila
2014-01-01
Chagas' disease is an important public health concern in Latin America. Despite intensive vector control efforts using pyrethroid insecticides, the elimination of Triatoma infestans has failed in the Gran Chaco, an ecoregion that extends over Argentina, Paraguay, Bolivia and Brazil. The voltage-gated sodium channel is the target site of pyrethroid insecticides. Point mutations in domain II region of the channel have been implicated in pyrethroid resistance of several insect species. In the present paper, we identify L925I, a new pyrethroid resistance-conferring mutation in T. infestans. This mutation has been found only in hemipterans. In T. infestans, L925I mutation occurs in a resistant population from the Gran Chaco region and is associated with inefficiency in the control campaigns. We also describe a method to detect L925I mutation in individuals from the field. The findings have important implications in the implementation of strategies for resistance management and in the rational design of campaigns for the control of Chagas' disease transmission.
Capriotti, Natalia; Mougabure-Cueto, Gastón; Rivera-Pomar, Rolando; Ons, Sheila
2014-01-01
Background Chagas' disease is an important public health concern in Latin America. Despite intensive vector control efforts using pyrethroid insecticides, the elimination of Triatoma infestans has failed in the Gran Chaco, an ecoregion that extends over Argentina, Paraguay, Bolivia and Brazil. The voltage-gated sodium channel is the target site of pyrethroid insecticides. Point mutations in domain II region of the channel have been implicated in pyrethroid resistance of several insect species. Methods and Findings In the present paper, we identify L925I, a new pyrethroid resistance-conferring mutation in T. infestans. This mutation has been found only in hemipterans. In T. infestans, L925I mutation occurs in a resistant population from the Gran Chaco region and is associated with inefficiency in the control campaigns. We also describe a method to detect L925I mutation in individuals from the field. Conclusions and Significance The findings have important implications in the implementation of strategies for resistance management and in the rational design of campaigns for the control of Chagas' disease transmission. PMID:24466362
Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects.
Lawler, Sharon P; Dritz, Deborah A; Christiansen, Julie A; Cornel, Anthony J
2007-03-01
Agricultural insecticides can affect mosquito production in rice fields by controlling mosquitoes, disrupting biological control or contributing to selection of insecticide resistance. The duration of insecticidal activity of the pyrethroid lambda-cyhalothrin was quantified on predatory insects in rice fields and on three kinds of mosquito larva: a pyrethroid-susceptible strain of Culex tarsalis Coquillet, a pyrethroid-resistant strain of Cx pipiens L. (sensu lato) and non-resistant Cx pipiens s.l. Lambda-cyhalothrin killed most caged, susceptible mosquitoes for up to 21 days. It killed fewer resistant Cx pipiens s.l., but suppressed their survival for over a week. Lambda-cyhalothrin suppressed field populations of predatory insects through day 29. Agricultural use of lambda-cyhalothrin can provide incidental mosquito control. However, the pyrethroid persisted in sediment and gradually decreased in activity, which could contribute to selection of pyrethroid-resistant mosquitoes. Because caged mosquitoes showed good survival before predators recovered, disruption of biological control is possible. It is therefore advisable for growers and mosquito control agencies to communicate about pesticide use. Copyright 2006 Society of Chemical Industry.
Use of pyrethroids has increased in the last decade, and co-exposure to multiple pyrethroids has been reported in humans. Pyrethroids produce neurotoxicity in mammals at dosages far below those producing lethality. The Food Quality Protection Act requires the EPA to consider cumu...
Churcher, Thomas S; Lissenden, Natalie; Griffin, Jamie T; Worrall, Eve; Ranson, Hilary
2016-01-01
Long lasting pyrethroid treated bednets are the most important tool for preventing malaria. Pyrethroid resistant Anopheline mosquitoes are now ubiquitous in Africa, though the public health impact remains unclear, impeding the deployment of more expensive nets. Meta-analyses of bioassay studies and experimental hut trials are used to characterise how pyrethroid resistance changes the efficacy of standard bednets, and those containing the synergist piperonyl butoxide (PBO), and assess its impact on malaria control. New bednets provide substantial personal protection until high levels of resistance, though protection may wane faster against more resistant mosquito populations as nets age. Transmission dynamics models indicate that even low levels of resistance would increase the incidence of malaria due to reduced mosquito mortality and lower overall community protection over the life-time of the net. Switching to PBO bednets could avert up to 0.5 clinical cases per person per year in some resistance scenarios. DOI: http://dx.doi.org/10.7554/eLife.16090.001 PMID:27547988
Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L).
Wei, Y; Appel, A G; Moar, W J; Liu, N
2001-11-01
A German cockroach (Blatella germanica (L)) strain, Apyr-R, was collected from Opelika, Alabama after control failures with pyrethroid insecticides. Levels of resistance to permethrin and deltamethrin in Apyr-R (97- and 480-fold, respectively, compared with a susceptible strain, ACY) were partially or mostly suppressed by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenases and hydrolases are involved in resistance to these two pyrethroids in Apyr-R. However, incomplete suppression of pyrethroid resistance with PBO and DEF implies that one or more additional mechanisms are involved in resistance. Injection, compared with topical application, resulted in 43- and 48-fold increases in toxicity of permethrin in ACY and Apyr-R, respectively. Similarly, injection increased the toxicity of deltamethrin 27-fold in ACY and 28-fold in Apyr-R. These data indicate that cuticular penetration is one of the obstacles for the effectiveness of pyrethroids against German cockroaches. However, injection did not change the levels of resistance to either permethrin or deltamethrin, suggesting that a decrease in the rate of cuticular penetration may not play an important role in pyrethroid resistance in Apyr-R. Apyr-R showed cross-resistance to imidacloprid, with a resistance ratio of 10. PBO treatment resulted in no significant change in the toxicity of imidacloprid, implying that P450 monooxygenase-mediated detoxication is not the mechanism responsible for cross-resistance. Apyr-R showed no cross-resistance to spinosad, although spinosad had relatively low toxicity to German cockroaches compared with other insecticides tested in this study. This result further confirmed that the mode of action of spinosad to insects is unique. Fipronil, a relatively new insecticide, was highly toxic to German cockroaches, and the multi-resistance mechanisms in Apyr-R did not confer significant cross-resistance to this compound. Thus, we propose that fipronil could be a valuable tool in integrated resistance management of German cockroaches.
Kweka, Eliningaya J; Lyaruu, Lucile J; Mahande, Aneth M
2017-01-18
Mosquitoes have developed resistance against pyrethroids, the only class of insecticides approved for use on long-lasting insecticidal nets (LLINs). The present study sought to evaluate the efficacy of the pyrethroid synergist PermaNet® 3.0 LLIN versus the pyrethroid-only PermaNet® 2.0 LLIN, in an East African hut design in Lower Moshi, northern Tanzania. In this setting, resistance to pyrethroid insecticides has been identified in Anopheles gambiae mosquitoes. Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area where there was presence of a population of highly pyrethroid-resistant An. arabiensis mosquitoes. All nets used were subjected to cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition and personal protection rate were compared between untreated nets, unwashed LLINs and LLINs that were washed 20 times. Both washed and unwashed PermaNet® 2.0 and PermaNet® 3.0 LLINs had knockdown and mortality rates of 100% against a susceptible strain of An. gambiae sensu stricto. The adjusted mortality rate of the wild mosquito population after use of the unwashed PermaNet® 3.0 and PermaNet® 2.0 nets was found to be higher than after use of the washed PermaNet® 2.0 and PermaNet® 3.0 nets. Given the increasing incidence of pyrethroid resistance in An. gambiae mosquitoes in Tanzania, we recommend that consideration is given to its distribution in areas with pyrethroid-resistant malaria vectors within the framework of a national insecticide-resistance management plan.
Germano, M D; Santo-Orihuela, P; Roca-Acevedo, G; Toloza, A C; Vassena, C; Picollo, M I; Mougabure-Cueto, G
2012-11-01
Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae) is the main vector of Chagas disease in the southern cone South America. Chemical control to the vectors appears to be the best option to reduce the incidence of the disease. However, since 2002, high resistance to insecticides that correlated with field control failures was detected in T. infestans from Argentina and Bolivia. In this paper, we analyzed three T. infestans populations whose pyrethroid-resistance had been recently detected, and we defined at least three resistant profiles according to the toxicological and biochemical characteristics of the studied resistant populations. The resistance profiles were identified as Ti-R1, Ti-R2, and Ti-R3, corresponding to the Argentinean Acambuco, and the Bolivians Entre Ríos and Mataral. Ti-R1 exhibited nymphs and eggs with medium resistance level to deltamethrin (RR = 32.5 and 28.6; respectively). Pyrethroid-esterases played a relevant role in deltamethrin resistance. Ti-R2 exhibited nymphs with high resistance to deltamethrin (RR = 173.8) and low resistance to fipronil (RR = 12.4). Pyrethroid-esterases were involved in resistance. Moreover, eggs showed medium resistance level to deltamethrin (RR = 39.1). Ti-R3 had nymphs with low resistance to deltamethrin (RR = 17.4), and medium resistance to fipronil (RR = 66.8). Pyrethroid-esterases showed increased activity, and eggs possessed low resistance to deltamethrin (RR = 8.4). The characterization of the resistance to pyrethroid in these T. infestans populations from Argentina and Bolivia do not permit the generalization of three forms of resistance profile. So far as we appear to know, the forms of mechanisms and their frequencies reported here are selected independently, so additional sites might well show additional combinations of resistance mechanisms and their frequencies.
Khambay, B P; Denholm, I; Carlson, G R; Jacobson, R M; Dhadialla, T S
2001-09-01
A series of insecticidal dihydropyrazoles and related compounds have been shown to exhibit negative cross-resistance to a resistant (super-kdr) strain of houseflies with site-insensitivity to pyrethroids. The level of cross-resistance is similar to that observed previously for a range of N-alkylamides against the same strain.
Nwane, Philippe; Etang, Josiane; Chouaїbou, Mouhamadou; Toto, Jean Claude; Koffi, Alphonsine; Mimpfoundi, Rémy; Simard, Frédéric
2013-02-22
Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95) were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S) using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates>98%) and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. In Cameroon, multiple resistance mechanisms segregate in the S form of An. gambiae resulting in heterogeneous resistance profiles, whereas in the M form and An. arabiensis insecticide tolerance seems to be essentially mediated by enzyme-based detoxification. Synergists partially restored susceptibility to pyrethroid insecticides, and might help mitigate the impact of vector resistance in the field. However, additional vector control tools are needed to further impact on malaria transmission in such settings.
Højland, Dorte H.; Nauen, Ralf; Foster, Stephen P.; Williamson, Martin S.; Kristensen, Michael
2015-01-01
Background Cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is a major early season pest of oilseed rape throughout Europe. Pyrethroids have been used for controlling this pest by foliar application, but in recent years control failures have occurred, particularly in Germany due to the evolution of knock-down resistance (kdr). The purpose of this study was to investigate the incidence and spread of pyrethroid resistance in CSFB collected in Germany, Denmark and the United Kingdom during 2014. The level of pyrethroid resistance was measured in adult vial tests and linked to the presence of kdr genotypes. Results Although kdr (L1014F) genotypes are present in all three countries, marked differences in pyrethroid efficacy were found in adult vial tests. Whereas Danish CSFB samples were in general susceptible to recommended label rates, those collected in the UK mostly resist such rates to some extent. Moderately resistant and susceptible samples were found in Germany. Interestingly, some of the resistant samples from the UK did not carry the kdr allele, which is in contrast to German CSFB. Pre-treatment with PBO, prior to exposure to λ-cyhalothrin suggested involvement of metabolic resistance in UK samples. Conclusion Danish samples were mostly susceptible with very low resistance ratios, while most other samples showed reduced sensitivity in varying degrees. Likewise, there was a clear difference in the presence of the kdr mutation between the three countries. In the UK, the presence of kdr genotypes did not always correlate well with resistant phenotypes. This appears to be primarily conferred by a yet undisclosed, metabolic-based mechanism. Nevertheless our survey disclosed an alarming trend concerning the incidence and spread of CSFB resistance to pyrethroids, which is likely to have negative impacts on oilseed production in affected regions due to the lack of alternative modes of action for resistance management purposes. PMID:26717570
Højland, Dorte H; Nauen, Ralf; Foster, Stephen P; Williamson, Martin S; Kristensen, Michael
2015-01-01
Cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is a major early season pest of oilseed rape throughout Europe. Pyrethroids have been used for controlling this pest by foliar application, but in recent years control failures have occurred, particularly in Germany due to the evolution of knock-down resistance (kdr). The purpose of this study was to investigate the incidence and spread of pyrethroid resistance in CSFB collected in Germany, Denmark and the United Kingdom during 2014. The level of pyrethroid resistance was measured in adult vial tests and linked to the presence of kdr genotypes. Although kdr (L1014F) genotypes are present in all three countries, marked differences in pyrethroid efficacy were found in adult vial tests. Whereas Danish CSFB samples were in general susceptible to recommended label rates, those collected in the UK mostly resist such rates to some extent. Moderately resistant and susceptible samples were found in Germany. Interestingly, some of the resistant samples from the UK did not carry the kdr allele, which is in contrast to German CSFB. Pre-treatment with PBO, prior to exposure to λ-cyhalothrin suggested involvement of metabolic resistance in UK samples. Danish samples were mostly susceptible with very low resistance ratios, while most other samples showed reduced sensitivity in varying degrees. Likewise, there was a clear difference in the presence of the kdr mutation between the three countries. In the UK, the presence of kdr genotypes did not always correlate well with resistant phenotypes. This appears to be primarily conferred by a yet undisclosed, metabolic-based mechanism. Nevertheless our survey disclosed an alarming trend concerning the incidence and spread of CSFB resistance to pyrethroids, which is likely to have negative impacts on oilseed production in affected regions due to the lack of alternative modes of action for resistance management purposes.
Faucon, Frederic; Gaude, Thierry; Dusfour, Isabelle; Navratil, Vincent; Corbel, Vincent; Juntarajumnong, Waraporn; Girod, Romain; Poupardin, Rodolphe; Boyer, Frederic; Reynaud, Stephane; David, Jean-Philippe
2017-04-01
The capacity of Aedes mosquitoes to resist chemical insecticides threatens the control of major arbovirus diseases worldwide. Until alternative control tools are widely deployed, monitoring insecticide resistance levels and identifying resistance mechanisms in field mosquito populations is crucial for implementing appropriate management strategies. Metabolic resistance to pyrethroids is common in Aedes aegypti but the monitoring of the dynamics of resistant alleles is impeded by the lack of robust genomic markers. In an attempt to identify the genomic bases of metabolic resistance to deltamethrin, multiple resistant and susceptible populations originating from various continents were compared using both RNA-seq and a targeted DNA-seq approach focused on the upstream regions of detoxification genes. Multiple detoxification enzymes were over transcribed in resistant populations, frequently associated with an increase in their gene copy number. Targeted sequencing identified potential promoter variations associated with their over transcription. Non-synonymous variations affecting detoxification enzymes were also identified in resistant populations. This study not only confirmed the role of gene copy number variations as a frequent cause of the over expression of detoxification enzymes associated with insecticide resistance in Aedes aegypti but also identified novel genomic resistance markers potentially associated with their cis-regulation and modifications of their protein structure conformation. As for gene transcription data, polymorphism patterns were frequently conserved within regions but differed among continents confirming the selection of different resistance factors worldwide. Overall, this study paves the way of the identification of a comprehensive set of genomic markers for monitoring the spatio-temporal dynamics of the variety of insecticide resistance mechanisms in Aedes aegypti.
Xu, Lu; Wu, Min; Han, Zhaojun
2013-01-01
Background The small brown planthopper (SBPH), Laodelphax striatellus (Fallén), is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. Methodology/Principal Findings Deltamethrin resistant strains of SBPH (JH-del) were derived from a field population by continuously selections (up to 30 generations) in the laboratory, while a susceptible strain (JHS) was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold) in JH-del strains (G4 and G30) when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3–IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. Conclusion/Significance As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to enhanced detoxification rather than target insensitivity. The findings lay a solid ground for further resistance mechanism elucidation studies. PMID:24324548
Zimmer, Christoph T; Müller, Andreas; Heimbach, Udo; Nauen, Ralf
2014-01-01
Cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is a major pest of winter oilseed rape in several European countries particularly attacking young emerging plants in autumn. Over the last several decades, pyrethroid insecticides have been foliarly applied to control flea beetle outbreaks. Recent control failures in northern Germany suggested pyrethroid resistance development in cabbage stem flea beetles, which were confirmed by resistance monitoring bioassays using lambda-cyhalothrin in an adult vial test. The purpose of this study was to investigate the presence of polymorphisms in the para-type voltage-gated sodium channel gene of P. chrysocephala known to be involved in knock-down resistance (kdr). By using a degenerate primer approach we PCR amplified part of the para-type sodium channel gene and identified in resistant flea beetles a single nucleotide polymorphism resulting in an L1014F (kdr) mutation within domain IIS6 of the channel protein, known as one of the chief pyrethroid target-site resistance mechanisms in several other pest insects. Twenty populations including four archived museum samples collected between 1945 and 1958 were analyzed using a newly developed pyrosequencing diagnostic assay. The assay revealed a kdr allele frequency of 90-100% in those flea beetle populations expressing high-level cross-resistance in discriminating dose bioassays against different pyrethroids such as lambda-cyhalothrin, tau-fluvalinate, etofenprox and bifenthrin. The presence of target-site resistance to pyrethroids in cabbage stem flea beetle is extremely worrying considering the lack of effective alternative modes of action to control this pest in Germany and other European countries, and is likely to result in major control problems once it expands to other geographies. The striking fact that cabbage stem flea beetle is next to pollen beetle, Meligethes aeneus the second coleopteran pest in European winter oilseed rape resisting pyrethroid treatments by expressing a target-site mutation, underpins the importance of diversity in available chemistry for resistance management tactics based on mode of action rotation in order to guarantee sustainable winter oilseed rape cultivation in Europe. Copyright © 2013 Elsevier Inc. All rights reserved.
Foster, Stephen P; Paul, Verity L; Slater, Russell; Warren, Anne; Denholm, Ian; Field, Linda M; Williamson, Martin S
2014-08-01
The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry.
Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S
2017-01-01
Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia.
Rodríguez-Vivas, Róger Iván; Pérez-Cogollo, Luis Carlos; Rosado-Aguilar, José Alberto; Ojeda-Chi, Melina Maribel; Trinidad-Martinez, Iris; Miller, Robert John; Li, Andrew Yongsheng; de León, Adalberto Pérez; Guerrero, Félix; Klafke, Guilherme
2014-01-01
Ticks and the diseases they transmit cause great economic losses to livestock in tropical countries. Non-chemical control alternatives include the use of resistant cattle breeds, biological control and vaccines. However, the most widely used method is the application of different chemical classes of acaricides and macrocyclic lactones. Populations of the cattle tick, Rhipicephalus (Boophilus) microplus, resistant to organophosphates (OP), synthetic pyrethroids (SP), amitraz and fipronil have been reported in Mexico. Macrocyclic lactones are the most sold antiparasitic drug in the Mexican veterinary market. Ivermectin-resistant populations of R. (B.) microplus have been reported in Brazil, Uruguay and especially in Mexico (Veracruz and Yucatan). Although ivermectin resistance levels in R. (B.) microplus from Mexico were generally low in most cases, some field populations of R. (B.) microplus exhibited high levels of ivermectin resistance. The CHPAT population showed a resistance ratio of 10.23 and 79.6 at lethal concentration of 50% and 99%, respectively. Many field populations of R. (B.) microplus are resistant to multiple classes of antiparasitic drugs, including organophosphates (chlorpyrifos, coumaphos and diazinon), pyrethroids (flumethrin, deltamethrin and cypermethrin), amitraz and ivermectin. This paper reports the current status of the resistance of R. (B.) microplus to acaricides, especially ivermectin, in Mexican cattle.
Kawada, Hitoshi; Higa, Yukiko; Nguyen, Yen T.; Tran, Son H.; Nguyen, Hoa T.; Takagi, Masahiro
2009-01-01
Pyrethroid resistance is envisioned to be a major problem for the vector control program since, at present, there are no suitable chemical substitutes for pyrethroids. Cross-resistance to knockdown agents, which are mainly used in mosquito coils and related products as spatial repellents, is the most serious concern. Since cross-resistance is a global phenomenon, we have started to monitor the distribution of mosquito resistance to pyrethroids. The first pilot study was carried out in Vietnam. We periodically drove along the national road from the north end to the Mekong Delta in Vietnam and collected mosquito larvae from used tires. Simplified susceptibility tests were performed using the fourth instar larvae of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Compared with the other species, Ae. aegypti demonstrated the most prominent reduction in susceptibility. For Ae. aegypti, significant increases in the susceptibility indices with a decrease in the latitude of collection points were observed, indicating that the susceptibility of Ae. aegypti against d-allethrin was lower in the southern part, including mountainous areas, as compared to that in the northern part of Vietnam. There was a significant correlation between the susceptibility indices in Ae. aegypti and the sum of annual pyrethroid use for malaria control (1998–2002). This might explain that the use of pyrethroids as residual treatment inside houses and pyrethroid-impregnated bed nets for malaria control is attributable to low pyrethroid susceptibility in Ae. aegypti. Such insecticide treatment appeared to have been intensively administered in the interior and along the periphery of human habitation areas where, incidentally, the breeding and resting sites of Ae. aegypti are located. This might account for the strong selection pressure toward Ae. aegypti and not Ae. albopictus. PMID:19274072
Wide spread cross resistance to pyrethroids in Aedes aegypti (L.) from Veracruz State Mexico
Flores, Adriana E.; Ponce, Gustavo; Silva, Brenda G.; Gutierrez, Selene M.; Bobadilla, Cristina; Lopez, Beatriz; Mercado, Roberto; Black, William C.
2014-01-01
Seven F1 strains of Aedes aegypti (L.) were evaluated by bottle bioassay for resistance to the pyrethroids d-phenothrin, permethrin, deltamethrin, λ-cyalothrin, bifenthrin, cypermethrin, α-cypermethrin and z-cypermethrin. The New Orleans strain was used as a susceptible control. Mortality rates after a 1h exposure and following a 24h recovery period were determined. The resistance ratio between the 50% knockdown values (RRKC50) of the F1 and New Orleans strains indicated high levels of knockdown resistance (kdr). The RRKC50 with α-cypermethrin varied from 10–100 among strains indicating high levels of kdr. Most of the strains had moderate resistance to d-phenothrin. Significant but much lower levels of resistance were detected for λ–cyalothrin, permethrin and cypermethrin. For z-cypermethrin and bifenthrin, only one strain exhibited resistance with RRKC50 values of 10- and 21-fold, respectively. None of the strains showed RRKC50 >10 with deltamethrin, and moderate resistance was seen in three strains, while the rest were susceptible. Mosquitoes from all strains exhibited some recovery from all pyrethroids except d-phenothrin. Regression analysis was used to analyze the relationship between RRLC50 and RRKC50. Both were highly correlated (R2 = 0.84 – 0.97) so that the slope could be used to determine how much additional pyrethroid was needed to insure lethality. Slopes ranged from 0.875 for d-phenothrin (RRLC50 ≃ RRKC50) to 8.67 for λ–cyalothrin (~8.5 fold more insecticide needed to kill). Both RRLC50 and RRKC50 values were highly correlated for all pyrethroids except bifenthrin indicating strong cross resistance. Bifenthrin appears to be an alternative pyrethroid without strong cross resistance that could be used as an alternative to the current widespread use of permethrin in Mexico. PMID:23786088
USDA-ARS?s Scientific Manuscript database
Emerging insecticide resistance is a major issue for vector control; it decreases effectiveness of insecticides, thereby requiring greater quantities for comparable control with a net increase in risk of disease resurgence, product cost, and damage risk to the ecosystem. Pyrethroid resistance has b...
Mosqueira, Beatriz; Soma, Dieudonné D; Namountougou, Moussa; Poda, Serge; Diabaté, Abdoulaye; Ali, Ouari; Fournet, Florence; Baldet, Thierry; Carnevale, Pierre; Dabiré, Roch K; Mas-Coma, Santiago
2015-08-01
A pilot study to test the efficacy of combining an organophosphate-based insecticide paint and pyrethroid-treated Long Lasting Insecticide Treated Nets (LLINs) against pyrethroid-resistant malaria vector mosquitoes was performed in a real village setting in Burkina Faso. Paint Inesfly 5A IGR™, comprised of two organophosphates (OPs) and an Insect Growth Regulator (IGR), was tested in combination with pyrethroid-treated LLINs. Efficacy was assessed in terms of mortality for 12 months using Early Morning Collections of malaria vectors and 30-minute WHO bioassays. Resistance to pyrethroids and OPs was assessed by detecting the frequency of L1014F and L1014S kdr mutations and Ace-1(R)G119S mutation, respectively. Blood meal origin was identified using a direct enzyme-linked immunosorbent assay (ELISA). The combination of Inesfly 5A IGR™ and LLINs was effective in killing 99.9-100% of malaria vector populations for 6 months regardless of the dose and volume treated. After 12 months, mortality rates decreased to 69.5-82.2%. The highest mortality rates observed in houses treated with 2 layers of insecticide paint and a larger volume. WHO bioassays supported these results: mortalities were 98.8-100% for 6 months and decreased after 12 months to 81.7-97.0%. Mortality rates in control houses with LLINs were low. Collected malaria vectors consisted exclusively of Anopheles coluzzii and were resistant to pyrethroids, with a L1014 kdr mutation frequency ranging from 60 to 98% through the study. About 58% of An. coluzzii collected inside houses had bloodfed on non-human animals. Combining Inesfly 5A IGR™ and LLINs yielded a one year killing efficacy against An. coluzzii highly resistant to pyrethroids but susceptible to OPs that exhibited an anthropo-zoophilic behaviour in the study area. The results obtained in a real setting supported previous work performed in experimental huts and underscore the need to study the impact that this novel strategy may have on clinical malaria and malaria exposure in children in a similar area of high pyrethroid resistance in South-Western Burkina Faso. Copyright © 2015 Elsevier B.V. All rights reserved.
Hirata, Koichi; Komagata, Osamu; Itokawa, Kentaro; Yamamoto, Atsushi; Tomita, Takashi; Kasai, Shinji
2014-01-01
The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti. PMID:25166902
Macoris, Maria de Lourdes; Martins, Ademir Jesus; Andrighetti, Maria Teresa Macoris; Lima, José Bento Pereira; Valle, Denise
2018-03-01
Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is found at high densities in tropical urban areas. The dissemination of this vector is partially the consequence of failures in current vector control methods, still mainly relying upon insecticides. In the State of São Paulo (SP), Brazil, public health managers employed pyrethroids against Ae. aegypti adults from 1989 to 2000, when a robust insecticide resistance monitoring system detected resistance to pyrethroids in several Ae. aegypti populations. However, pyrethroids are also the preferred compounds engaged in household applications due to their rapid knockdown effect, lower toxicity to mammals and less irritating smell. We evaluated pyrethroid resistance in Ae. aegypti populations over the course of a decade, from 2004 to 2015, after interruption of pyrethroid public applications in SP. Qualitative bioassays with papers impregnated with a deltamethrin diagnostic dose (DD) performed with insects from seven SP municipalities and evaluated yearly from 2006 to 2014, detected resistance in most of the cases. Quantitative bioassays were also carried out with four populations in 2011, suggesting a positive correlation between resistance level and survivorship in the DD bioassays. Biochemical tests conducted with seven insect populations in 2006 and 2015, detected increasing metabolic alterations of all major classes of detoxifying enzymes, mostly of mixed function oxidases. Genotyping of the voltage-gated sodium channel (AaNaV, the pyrethroid target-site) with a TaqMan real time PCR based technique was performed from 2004 to 2014 in all seven localities. The two kdr mutations, Val1016Ile and Phe1534Cys, known to be spread throughout Brazil, were always present with a severe decrease of the susceptible allele over time. These results are discussed in the context of public and domestic insecticide use, the necessity of implementation of a strong integrated vector control strategy and the conceptual misunderstanding between 'vector control' and 'chemical control of vectors'.
Andrighetti, Maria Teresa Macoris; Lima, José Bento Pereira; Valle, Denise
2018-01-01
Background Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is found at high densities in tropical urban areas. The dissemination of this vector is partially the consequence of failures in current vector control methods, still mainly relying upon insecticides. In the State of São Paulo (SP), Brazil, public health managers employed pyrethroids against Ae. aegypti adults from 1989 to 2000, when a robust insecticide resistance monitoring system detected resistance to pyrethroids in several Ae. aegypti populations. However, pyrethroids are also the preferred compounds engaged in household applications due to their rapid knockdown effect, lower toxicity to mammals and less irritating smell. Methodology/Principal findings We evaluated pyrethroid resistance in Ae. aegypti populations over the course of a decade, from 2004 to 2015, after interruption of pyrethroid public applications in SP. Qualitative bioassays with papers impregnated with a deltamethrin diagnostic dose (DD) performed with insects from seven SP municipalities and evaluated yearly from 2006 to 2014, detected resistance in most of the cases. Quantitative bioassays were also carried out with four populations in 2011, suggesting a positive correlation between resistance level and survivorship in the DD bioassays. Biochemical tests conducted with seven insect populations in 2006 and 2015, detected increasing metabolic alterations of all major classes of detoxifying enzymes, mostly of mixed function oxidases. Genotyping of the voltage-gated sodium channel (AaNaV, the pyrethroid target-site) with a TaqMan real time PCR based technique was performed from 2004 to 2014 in all seven localities. The two kdr mutations, Val1016Ile and Phe1534Cys, known to be spread throughout Brazil, were always present with a severe decrease of the susceptible allele over time. Conclusions/Significance These results are discussed in the context of public and domestic insecticide use, the necessity of implementation of a strong integrated vector control strategy and the conceptual misunderstanding between 'vector control' and 'chemical control of vectors'. PMID:29601580
Barnes, Kayla G.; Irving, Helen; Chiumia, Martin; Mzilahowa, Themba; Coleman, Michael; Hemingway, Janet; Wondji, Charles S.
2017-01-01
Resistance to pyrethroids, the sole insecticide class recommended for treating bed nets, threatens the control of major malaria vectors, including Anopheles funestus. Effective management of resistance requires an understanding of the dynamics and mechanisms driving resistance. Here, using genome-wide transcription and genetic diversity analyses, we show that a shift in the molecular basis of pyrethroid resistance in southern African populations of this species is associated with a restricted gene flow. Across the most highly endemic and densely populated regions in Malawi, An. funestus is resistant to pyrethroids, carbamates, and organochlorides. Genome-wide microarray-based transcription analysis identified overexpression of cytochrome P450 genes as the main mechanism driving this resistance. The most up-regulated genes include cytochrome P450s (CYP) CYP6P9a, CYP6P9b and CYP6M7. However, a significant shift in the overexpression profile of these genes was detected across a south/north transect, with CYP6P9a and CYP6P9b more highly overexpressed in the southern resistance front and CYP6M7 predominant in the northern front. A genome-wide genetic structure analysis of southern African populations of An. funestus from Zambia, Malawi, and Mozambique revealed a restriction of gene flow between populations, in line with the geographical variation observed in the transcriptomic analysis. Genetic polymorphism analysis of the three key resistance genes, CYP6P9a, CYP6P9b, and CYP6M7, support barriers to gene flow that are shaping the underlying molecular basis of pyrethroid resistance across southern Africa. This barrier to gene flow is likely to impact the design and implementation of resistance management strategies in the region. PMID:28003461
Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C
2015-01-01
The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. © The American Society of Tropical Medicine and Hygiene.
de Little, Siobhan C; Umina, Paul A
2017-08-01
The green peach aphid, Myzus persicae (Sulzer), is a significant agricultural pest that has developed resistance to a large number of insecticides globally. Within Australia, resistance has previously been confirmed for multiple chemical groups, including pyrethroids, carbamates, organophosphates, and neonicotinoids. In this study, we use leaf-dip and topical bioassays to investigate susceptibility and potential cross-resistance of 12 field-collected populations of Australian M. persicae to three recently registered insecticides: sulfoxaflor, spirotetramat, and cyantraniliprole. Despite all 12 populations carrying known resistance mechanisms to carbamates, organophosphates, and pyrethroids, and two populations also exhibiting low-level metabolic resistance to neonicotinoids, we found little evidence of variation in susceptibility to sulfoxafor, spirotetramat, or cyantraniliprole. This provides further evidence that cross-resistance to spirotetramat, cyantraniliprole, and sulfoxaflor in M. persicae is not conferred by the commonly occurring resistance mechanisms MACE, super-kdr, amplification of the E4 esterase gene, or enhanced expression and copy number of the P450 gene, CYP6CY3. Importantly, this study also established toxicity baseline data that will be important for future monitoring of insecticide responses of M. persicae from both broadacre and horticultural crops. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pan, Jing; Yang, Chan; Liu, Yan; Gao, Qi; Li, Mei; Qiu, Xinghui
2018-04-01
The house fly Musca domestica is an important disease vector. Point mutation-mediated target-site insensitivity of the voltage sensitive sodium channel (VSSC) and increased detoxification mediated by cytochrome P450 (CYP6D1) overexpression have been characterized as two major mechanisms of pyrethroid resistance. In this study, genetic mutations in the Vssc and CYP6D1 genes and their contribution to pyrethroid resistance were investigated. Twelve lines of house flies homozygous for four genotypes were established. House flies carrying the VSSC 1014F mutation and overexpressing CYP6D1 had higher resistance to pyrethroids than those carrying 1014F alone. The presence of the 15-bp insert in the promoter region of the CYP6D1 gene did not necessarily result in a significant increase in CYP6D1 mRNA and pyrethroid resistance levels. A novel Vssc allele carrying two mutations (G1924D and G2004S) in combination with the classic 1014F and a novel CYP6D1 allele that is very similar to CYP6D1v1 were identified in Chinese house flies. This work demonstrates the effect of genetic mutations in CYP6D1 and Vssc on the susceptibility of house flies to pyrethroids, and verifies that 15-bp insert-containing CYP6D1 alleles have a single origin. These findings offer insights into the evolution of insecticide resistance and have implications for house fly control. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Mulamba, Charles; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Irving, Helen; Barnes, Kayla G.; Mukwaya, Louis G.; Birungi, Josephine; Wondji, Charles S.
2014-01-01
Background Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms. Methodology/Principal Findings Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance. Conclusion The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management. PMID:25333491
Zimmer, Christoph T; Bass, Chris; Williamson, Martin S; Kaussmann, Martin; Wölfel, Katharina; Gutbrod, Oliver; Nauen, Ralf
2014-02-01
The pollen beetle (Meligethes aeneus F.) is widespread throughout much of Europe where it is a major coleopteran pest of oilseed rape (Brassica napus). The reliance on synthetic insecticides for control, particularly the pyrethroid class, has led to the development of populations with high levels of resistance. Resistance to pyrethroids is now widespread throughout Europe and is thought to be mediated by enhanced detoxification by cytochrome P450ś and/or mutation of the pyrethroid target-site, the voltage-gated sodium channel. However, in the case of cytochrome P450 mediated detoxification, the specific enzyme(s) involved has (have) not yet been identified. In this study a degenerate PCR approach was used to identify ten partial P450 gene sequences from pollen beetle. Quantitative PCR was then used to examine the level of expression of these genes in a range of pollen beetle populations that showed differing levels of resistance to pyrethroids in bioassays. The study revealed a single P450 gene, CYP6BQ23, which is significantly and highly overexpressed (up to ∼900-fold) in adults and larvae of pyrethroid resistant strains compared to susceptible strains. CYP6BQ23 overexpression is significantly correlated with both the level of resistance and with the rate of deltamethrin metabolism in microsomal preparations of these populations. Functional recombinant expression of full length CYP6BQ23 along with cytochrome P450 reductase in an insect (Sf9) cell line showed that it is able to efficiently metabolise deltamethrin to 4-hydroxy deltamethrin. Furthermore we demonstrated by detection of 4-hydroxy tau-fluvalinate using ESI-TOF MS/MS that functionally expressed CYP6BQ23 also metabolizes tau-fluvalinate. A protein model was generated and subsequent docking simulations revealed the predicted substrate-binding mode of both deltamethrin and tau-fluvalinate to CYP6BQ23. Taken together these results strongly suggest that the overexpression of CYP6BQ23 is the primary mechanism conferring pyrethroid resistance in pollen beetle populations throughout much of Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.
Carvajal, Guillermo; Picollo, María Inés; Toloza, Ariel Ceferino
2014-09-01
The prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug) using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides. We studied the delayed toxicity of imidacloprid and the influence of the blood feeding condition of the insect on the toxicity of this insecticide; we also studied the effectiveness of various commercial imidacloprid formulations against a pyrethroid-resistant T. infestans population from the Gran Chaco ecoregion. Variations in the toxic effects of imidacloprid were not observed up to 72 h after exposure and were not found to depend on the blood feeding condition of susceptible and resistant individuals. Of the three different studied formulations of imidacloprid on glass and filter paper, only the spot-on formulation was effective. This formulation was applied to pigeons at doses of 1, 5, 20 and 40 mg/bird. The nymphs that fed on pigeons treated with 20 mg or 40 mg of the formulation showed a higher mortality rate than the control group one day and seven days post-treatment (p < 0.01). A spot-on formulation of imidacloprid was effective against pyrethroid-resistant T. infestans populations at the laboratory level.
Carvajal, Guillermo; Picollo, María Inés; Toloza, Ariel Ceferino
2014-01-01
The prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug) using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides. We studied the delayed toxicity of imidacloprid and the influence of the blood feeding condition of the insect on the toxicity of this insecticide; we also studied the effectiveness of various commercial imidacloprid formulations against a pyrethroid-resistant T. infestans population from the Gran Chaco ecoregion. Variations in the toxic effects of imidacloprid were not observed up to 72 h after exposure and were not found to depend on the blood feeding condition of susceptible and resistant individuals. Of the three different studied formulations of imidacloprid on glass and filter paper, only the spot-on formulation was effective. This formulation was applied to pigeons at doses of 1, 5, 20 and 40 mg/bird. The nymphs that fed on pigeons treated with 20 mg or 40 mg of the formulation showed a higher mortality rate than the control group one day and seven days post-treatment (p < 0.01). A spot-on formulation of imidacloprid was effective against pyrethroid-resistant T. infestans populations at the laboratory level. PMID:25141281
Corbel, Vincent; Raymond, Michel; Chandre, Fabrice; Darriet, Frédéric; Hougard, Jean-Marc
2004-04-01
The efficacy of insecticide mixtures of permethrin (pyrethroid) and propoxur (carbamate) was tested by larval bioassays on two strains of Culex quinquefasciatus (Say), one resistant to pyrethroids and the other resistant to carbamates. The method consisted in combining one insecticide at the highest concentration causing no mortality (LC0) with increasing concentrations of the second one. The concentration-mortality regression lines were determined for permethrin and propoxur alone and in combination, and synergism ratios (SR) were calculated in order to determine the magnitude of an increase or decrease in efficacy with use of the mixtures. With the pyrethroid-resistant strain (BK-PER), the results showed that propoxur at LC0 significantly enhanced the insecticidal activity of permethrin (SR50 = 1.54), especially on the upper range of the concentration-mortality regression. Conversely, when permethrin at LC0 was tested with propoxur against the carbamate resistant strain (R-LAB), an antagonistic effect was observed (SR50 = 0.67). With the BK-PER strain, an increased oxidative detoxification (MFO) appeared to be the main mechanism responsible for the synergistic interaction. Nevertheless, antagonism in the R-LAB strain is probably due to a physiological perturbation implying different target sites for pyrethroid (ie sodium channel) and carbamate insecticides [ie acetylcholinesterase (EC 3.3.3.7) and choline acetyltransferase (EC 2.3.1.6)].
González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T G Emyr; Field, Linda M; Schmehl, Daniel; Ellis, James D; Krieger, Klemens; Williamson, Martin S
2016-01-01
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.
Endersby-Harshman, Nancy M; Wuliandari, Juli Rochmijati; Harshman, Lawrence G; Frohn, Verena; Johnson, Brian J; Ritchie, Scott A; Hoffmann, Ary A
2017-11-07
Although pesticide resistance is common in insect vectors of human diseases, the evolution of resistance might be delayed if management practices are adopted that limit selection of resistance alleles. Outbreaks of dengue fever have occurred in Queensland, Australia, since the late 1800s, leading to ongoing attempts to control the mosquito vector, Aedes aegypti (L.). Since the 1990s, pyrethroid insecticides have been used for this purpose, but have been applied in a strategic manner with a variety of delivery methods including indoor residual spraying, lethal ovitraps, and use of insect growth regulators as larvicides. Separate selection experiments on mosquitoes from Queensland using Type I and Type II pyrethroids did not produce resistant lines of Ae. aegypti, and bioassays of field material from Queensland showed only weak tolerance in comparison with a susceptible line. There was no evidence of knockdown resistance (kdr) mutations in Ae. aegypti from Queensland, in stark contrast to the situation in nearby southeast Asia. We suspect that careful management of pyrethroid insecticide use combined with surveillance and interception of exotic incursions has helped to maintain pyrethroid (and particularly kdr-based) susceptibility in Ae. aegypti in Australia. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi
2014-06-01
Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4'-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains.
Kasai, Shinji; Komagata, Osamu; Itokawa, Kentaro; Shono, Toshio; Ng, Lee Ching; Kobayashi, Mutsuo; Tomita, Takashi
2014-01-01
Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1534C mutations in domains II and III, respectively, of voltage-sensitive sodium channel (Vssc, the target site of pyrethroid insecticide) were 0.44 and 0.56, respectively. In contrast, only G1016 alleles were present after two permethrin selections, indicating that G1016 can more contribute to the insensitivity of Vssc than C1534. In vivo metabolism studies showed that the SP strain excreted permethrin metabolites more rapidly than a susceptible SMK strain. Pretreatment with piperonyl butoxide caused strong inhibition of excretion of permethrin metabolites, suggesting that cytochrome P450 monooxygenases (P450s) play an important role in resistance development. In vitro metabolism studies also indicated an association of P450s with resistance. Microarray analysis showed that multiple P450 genes were over expressed during the larval and adult stages in the SP strain. Following quantitative real time PCR, we focused on two P450 isoforms, CYP9M6 and CYP6BB2. Transcription levels of these P450s were well correlated with the rate of permethrin excretion and they were certainly capable of detoxifying permethrin to 4′-HO-permethrin. Over expression of CYP9M6 was partially due to gene amplification. There was no significant difference in the rate of permethrin reduction from cuticle between SP and SMK strains. PMID:24945250
Carbamate resistance in Anopheles albimanus
Ariaratnam, Veluppillai; Georghiou, George P.
1974-01-01
Carbamate resistance induced in a field strain of A. albimanus from El Salvador by laboratory selection with propoxur remained fairly stable on relaxation of selection pressure for 12 generations. Studies on cross and multiple resistance showed that this strain was not resistant to the pyrethroids bioresmethrin, bioallethrin, and CRC 11451, although resistance to cismethrin was 2.3-fold. Resistance to 10 carbamates of various structural configurations covered a broad spectrum, being for example >100× to Bay 38799, Ciba 17474, and Ciba 18107, 74.8× to carbaryl, 20.57× to carbanolate, and 2.27× to Stauffer R 15396. The possible causes of the presence or absence of cross resistance and the implications of stability of resistance and cross resistance are discussed. PMID:4549614
Riveron, Jacob M.; Ibrahim, Sulaiman S.; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J.; Ishak, Intan H.; Wondji, Charles S.
2017-01-01
Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. PMID:28428243
Rochmijati Wuliandari, Juli; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret
2015-01-01
Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations. PMID:26463408
Riveron, Jacob M; Ibrahim, Sulaiman S; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J; Ishak, Intan H; Wondji, Charles S
2017-06-07
Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes ( CYP6P9a and CYP6P9b ) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. Copyright © 2017 Riveron et al.
Djouaka, Rousseau F; Bakare, Adekunle A; Bankole, Honore S; Doannio, Julien MC; Coulibaly, Ousmane N; Kossou, Hortense; Tamo, Manuele; Basene, Harcourt I; Popoola, OK; Akogbeto, Martin C
2007-01-01
Background The emergence of Anopheles populations capable of withstanding lethal doses of insecticides has weakened the efficacy of most insecticide based strategies of vector control and, has highlighted the need for further studies on the mechanisms of insecticide resistance and the various factors selecting resistant populations of mosquitoes. This research targeted the analysis of breeding sites and the oviposition behaviour of susceptible and resistant populations of Anopheles in localities of spilled petroleum products. The aim was to establish the possible contribution of oil spillage in the selection of pyrethroid resistance in malaria vectors. Methods Anopheles breeding sites were identified and the insecticide susceptibility of the Anopheles gambiae populations mapped in 15 localities of South Western Nigeria. The presence of oil particles as well as the turbidity, the dissolved oxygen and the pH of each identified breeding site was recorded. Data were cross-analysed to correlate the habitat types and the insecticide susceptibility status of emerging mosquitoes. The second phase of this study was basically a laboratory model to provide more information on the implication of the spillage of petroleum on the selection of pyrethroid resistance in An. gambiae. Results Moderate levels of resistance following exposure to permethrin-impregnated papers were recorded with the majority of An. gambiae samples collected in the South Western Nigeria. Data from this study established a link between the constituency of the breeding sites and the resistance status of the emerging Anopheles. Conclusion This study has revealed the segregational occupation of breeding habitats by pyrethroid resistant and susceptible strains of An. gambiae in south-western Nigeria. Compiled results from field and laboratory research point out clear relationships between oil spillage and pyrethroid resistance in malaria vectors. The identification of this factor of resistance could serve as strong information in the management of insecticide resistance in some West African settings. PMID:18053173
Wuliandari, Juli Rochmijati; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret
2015-07-23
Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations.
Silva, Ana Paula B; Santos, Joselita Maria M; Martins, Ademir J
2014-10-07
Constant and extensive use of chemical insecticides has created a selection pressure and favored resistance development in many insect species worldwide. One of the most important pyrethroid resistance mechanisms is classified as target site insensitivity, due to conformational changes in the target site that impair a proper binding of the insecticide molecule. The voltage-gated sodium channel (NaV) is the target of pyrethroids and DDT insecticides, used to control insects of medical, agricultural and veterinary importance, such as anophelines. It has been reported that the presence of a few non-silent point mutations in the NaV gene are associated with pyrethroid resistance, termed as 'kdr' (knockdown resistance) for preventing the knockdown effect of these insecticides. The presence of these mutations, as well as their effects, has been thoroughly studied in Anopheles mosquitoes. So far, kdr mutations have already been detected in at least 13 species (Anopheles gambiae, Anopheles arabiensis, Anopheles sinensis, Anopheles stephensi, Anopheles subpictus, Anopheles sacharovi, Anopheles culicifacies, Anopheles sundaicus, Anopheles aconitus, Anopheles vagus, Anopheles paraliae, Anopheles peditaeniatus and Anopheles albimanus) from populations of African, Asian and, more recently, American continents. Seven mutational variants (L1014F, L1014S, L1014C, L1014W, N1013S, N1575Y and V1010L) were described, with the highest prevalence of L1014F, which occurs at the 1014 site in NaV IIS6 domain. The increase of frequency and distribution of kdr mutations clearly shows the importance of this mechanism in the process of pyrethroid resistance. In this sense, several species-specific and highly sensitive methods have been designed in order to genotype individual mosquitoes for kdr in large scale, which may serve as important tolls for monitoring the dynamics of pyrethroid resistance in natural populations. We also briefly discuss investigations concerning the course of Plasmodium infection in kdr individuals. Considering the limitation of insecticides available for employment in public health campaigns and the absence of a vaccine able to brake the life cycle of the malaria parasites, the use of pyrethroids is likely to remain as the main strategy against mosquitoes by either indoor residual spraying (IR) and insecticide treated nets (ITN). Therefore, monitoring insecticide resistance programs is a crucial need in malaria endemic countries.
D'Ávila, V A; Reis, L C; Barbosa, W F; Cutler, G C; Torres, J B; Guedes, R N C
2018-05-28
Sublethal insecticide exposure may affect foraging of insects, including natural enemies, although the subject is usually neglected. The lady beetle Eriopis connexa (Germar, 1824) (Coleoptera: Coccinelidae) is an important predator of aphids with existing pyrethroid-resistant populations that are undergoing scrutiny for potential use in pest management systems characterized by frequent insecticide use. However, the potential effect of sublethal pyrethroid exposure on this predator's foraging activity has not yet been assessed and may compromise its use in biological control. Therefore, our objective was to assess the effect of sublethal lambda-cyhalothrin exposure on three components of the prey foraging activity (i.e., walking, and prey searching and handling), in both pyrethroid-susceptible and -resistant adults of E. connexa. Both lady beetle populations exhibited similar walking patterns without insecticide exposure in noncontaminated arenas, but in partially contaminated arenas walking differed between strains, such that the resistant insects exhibited greater walking activity. Behavioral avoidance expressed as repellence to lambda-cyhalothrin was not observed for either the susceptible or resistant populations of E. connexa, but the insecticide caused avoidance by means of inducing irritability in 40% of the individuals, irrespective of the strain. Insects remained in the insecticide-contaminated portion of the arena for extended periods resulting in greater exposure. Although lambda-cyhalothrin exposure did not affect prey searching by susceptible lady beetles, prey searching was extended for exposed resistant predators. In contrast, prey handling was not affected by population or by lambda-cyhalothrin exposure. Thus, sublethal exposure to the insecticide in conjunction with the insect resistance profile can affect prey foraging with pyrethroid-exposed resistant predators exhibiting longer prey searching time associated with higher walking activity reducing its predatory performance.
Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen
2017-01-01
Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. Conclusion/significance The predominant over-expression of cytochrome P450s suggests that synergist-based (PBO) control tools could be utilised to improve control of this major dengue vector across Malaysia. PMID:28114328
Oliver, Shüné V; Brooke, Basil D
2016-01-01
Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance phenotype in malaria vectors.
Irving, Helen; Wondji, Charles S
2017-08-09
Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other vectors.
Impact of pyrethroid resistance on operational malaria control in Malawi
Wondji, Charles S.; Coleman, Michael; Kleinschmidt, Immo; Mzilahowa, Themba; Irving, Helen; Ndula, Miranda; Rehman, Andrea; Morgan, John; Barnes, Kayla G.; Hemingway, Janet
2012-01-01
The impact of insecticide resistance on insect-borne disease programs is difficult to quantify. The possibility of eliminating malaria in high-transmission settings is heavily dependent on effective vector control reducing disease transmission rates. Pyrethroids are the dominant insecticides used for malaria control, with few options for their replacement. Their failure will adversely affect our ability to control malaria. Pyrethroid resistance has been selected in Malawi over the last 3 y in the two major malaria vectors Anopheles gambiae and Anopheles funestus, with a higher frequency of resistance in the latter. The resistance in An. funestus is metabolically based and involves the up-regulation of two duplicated P450s. The same genes confer resistance in Mozambican An. funestus, although the levels of up-regulation differ. The selection of resistance over 3 y has not increased malaria transmission, as judged by annual point prevalence surveys in 1- to 4-y-old children. This is true in areas with long-lasting insecticide-treated nets (LLINs) alone or LLINs plus pyrethroid-based insecticide residual spraying (IRS). However, in districts where IRS was scaled up, it did not produce the expected decrease in malaria prevalence. As resistance increases in frequency from this low initial level, there is the potential for vector population numbers to increase with a concomitant negative impact on control efficacy. This should be monitored carefully as part of the operational activities in country. PMID:23118337
Characterization of the voltage-gated sodium channel of the Asian citrus psyllid, Diaphorina citri.
Liu, Bin; Coy, Monique R; Wang, Jin-Jun; Stelinski, Lukasz L
2017-02-01
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of citrus. It is the vector of 'Candidatus' Liberibacter asiaticus, a phloem-limited bacterium that infects citrus, resulting in the disease Huanglongbing (HLB). Disease management relies heavily on suppression of D. citri populations with insecticides, including pyrethroids. In recent annual surveys to monitor insecticide resistance, reduced susceptibility to fenpropathrin was identified in several field populations of D. citri. The primary target of pyrethroids is the voltage-gated sodium channel (VGSC). The VGSC is prone to target-site insensitivity because of mutations that either reduce pyrethroid binding and/or alter gating kinetics. These mutations, known as knockdown resistance or kdr, have been reported in a wide diversity of arthropod species. Alternative splicing, in combination with kdr mutations, has been also associated with reduced pyrethroid efficacy. Here we report the molecular characterization of the VGSC in D. citri along with a survey of alternative splicing across developmental stages of this species. Previous studies demonstrated that D. citri has an exquisite enzymatic arsenal to detoxify insecticides resulting in reduced efficacy. The results from the current investigation demonstrate that target-site insensitivity is also a potential basis for insecticide resistance to pyrethroids in D. citri. The VGSC sequence and its molecular characterization should facilitate early elucidation of the underlying cause of an established case of resistance to pyrethroids. This is the first characterization of a VGSC from a hemipteran to this level of detail, with the majority of the previous studies on dipterans and lepidopterans. © 2015 Institute of Zoology, Chinese Academy of Sciences.
González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T. G. Emyr; Field, Linda M.; Schmehl, Daniel; Ellis, James D.; Krieger, Klemens; Williamson, Martin S.
2016-01-01
The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes. PMID:27191597
2012-01-01
Background The growing development of pyrethroid resistance constitutes a serious threat to malaria control programmes and if measures are not taken in time, resistance may compromise control efforts in the foreseeable future. Prior to Long Lasting Insecticidal Nets (LLINs) distribution in Eastern Cote d’Ivoire, we conducted bioassays to inform the National Malaria Control Programme of the resistance status of the main malaria vector, Anopheles gambiae s. s. and the need for close surveillance of resistance. Methods Larvae of An. gambiae s. s. were collected in two areas of Adzopé (Port-Bouët and Tsassodji) and reared to adults. WHO susceptibility tests with impregnated filter papers were carried out to detect resistance to three pyrethroids commonly used to develop LLINs: permethrin 1%, deltamethrin 0.05% and lambda-cyhalothrin 0.05%. Molecular assays were conducted to detect M and S forms and the L1014F kdr allele in individual mosquitoes. Results Resistance, at various degrees was detected in both areas of Adzopé. Overall, populations of An. gambiae at both sites surveyed showed equivalent frequency of the L1014F kdr allele (0.67) but for all tested pyrethroids, there were significantly higher survival rates for mosquitoes from Tsassodji (32–58%) than those from Port-Bouët (3–32%) (p < 0.001), indicating the implication of resistance mechanisms other than kdr alone. During the survey period (May–June) in this forested area of Côte d’Ivoire, An. gambiae s. s. found were exclusively of the M form and were apparently selected for pyrethroid resistance through agricultural and household usage of insecticides. Conclusion Prior to LLINs scaling up in Eastern Côte d’Ivoire, resistance was largely present at various levels in An. gambiae. Underlying mechanisms included the high frequency of the L1014F kdr mutation and other unidentified components, probably metabolic detoxifiers. Their impact on the efficacy of the planned strategy (LLINs) in the area should be investigated alongside careful monitoring of the trend in that resistance over time. The need for alternative insecticides to supplement or replace pyrethroids on nets must be stressed. PMID:23232083
Ngufor, Corine; Critchley, Jessica; Fagbohoun, Josias; N’Guessan, Raphael; Todjinou, Damien; Rowland, Mark
2016-01-01
Background Indoor spraying of walls and ceilings with residual insecticide remains a primary method of malaria control. Insecticide resistance in malaria vectors is a growing problem. Novel insecticides for indoor residual spraying (IRS) which can improve the control of pyrethroid resistant malaria vectors are urgently needed. Insecticide mixtures have the potential to improve efficacy or even to manage resistance in some situations but this possibility remains underexplored experimentally. Chlorfenapyr is a novel pyrrole insecticide which has shown potential to improve the control of mosquitoes which are resistant to current WHO-approved insecticides. Method The efficacy of IRS with chlorfenapyr applied alone or as a mixture with alpha-cypermeththrin (a pyrethroid) was evaluated in experimental huts in Cove, Southern Benin against wild free flying pyrethroid resistant Anopheles gambiae sl. Comparison was made with IRS with alpha-cypermethrin alone. Fortnightly 30-minute in situ cone bioassays were performed to assess the residual efficacy of the insecticides on the treated hut walls. Results Survival rates of wild An gambiae from the Cove hut site in WHO resistance bioassays performed during the trial were >90% with permethrin and deltamethrin treated papers. Mortality of free-flying mosquitoes entering the experimental huts was 4% in the control hut. Mortality with alpha-cypermethrin IRS did not differ from the control (5%, P>0.656). The highest mortality was achieved with chlorfenapyr alone (63%). The alpha-cypermethrin + chlorfenapyr mixture killed fewer mosquitoes than chlorfenapyr alone (43% vs. 63%, P<0.001). While the cone bioassays showed a more rapid decline in residual mortality with chlorfenapyr IRS to <30% after only 2 weeks, fortnightly mortality rates of wild free-flying An gambiae entering the chlorfenapyr IRS huts were consistently high (50–70%) and prolonged, lasting over 4 months. Conclusion IRS with chlorfenapyr shows potential to significantly improve the control of malaria transmission in pyrethroid resistant areas compared to pyrethroid IRS or the mixture. Thirty minute in situ cone bioassays are not predictive of the performance of chlorfenapyr IRS under field conditions. PMID:27588945
2010-01-01
Background Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN), i.e. PermaNet® 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa. Methods A multi centre experimental hut trial was conducted in Malanville (Benin), Vallée du Kou (Burkina Faso) and Pitoa (Cameroon) to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet® 3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof) comparatively to the WHO recommended PermaNet® 2.0 (unwashed and washed 20-times) and a conventionally deltamethrin-treated net (CTN). Results The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet® 2.0 were excellent (>80%) in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance) and Vallée du Kou (presence of the L1014F kdr mutation), PermaNet® 3.0 showed equal or better performances than PermaNet® 2.0. It should be noted however that the deltamethrin content on PermaNet® 3.0 was up to twice higher than that of PermaNet® 2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet® 3.0 still fulfilled the WHO requirement for LLIN. Conclusion The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet® 3.0 for the control of pyrethroid resistant mosquito populations in Africa. PMID:20423479
Due to extensive use, human exposure to multiple pyrethroid insecticides occurs frequently. Studies of pyrethroid neurotoxicity suggest a common mode of toxicity and that pyrethroids should be considered cumulatively to model risk. The objective of this work was to use a pyrethro...
Pietrantonio, P V; Junek, T A; Parker, R; Mott, D; Siders, K; Troxclair, N; Vargas-Camplis, J; Westbrook, J K; Vassiliou, V A
2007-10-01
The bollworm, Helicoverpa zea (Boddie), is a key pest of cotton in Texas. Bollworm populations are widely controlled with pyrethroid insecticides in cotton and exposed to pyrethroids in other major crops such as grain sorghum, corn, and soybeans. A statewide program that evaluated cypermethrin resistance in male bollworm populations using an adult vial test was conducted from 2003 to 2006 in the major cotton production regions of Texas. Estimated parameters from the most susceptible field population currently available (Burleson County, September 2005) were used to calculate resistance ratios and their statistical significance. Populations from several counties had statistically significant (P < or = 0.05) resistance ratios for the LC(50), indicating that bollworm-resistant populations are widespread in Texas. The highest resistance ratios for the LC(50) were observed for populations in Burleson County in 2000 and 2003, Nueces County in 2004, and Williamson and Uvalde Counties in 2005. These findings explain the observed pyrethroid control failures in various counties in Texas. Based on the assumption that resistance is caused by a single gene, the Hardy-Weinberg equilibrium formula was used for estimation of frequencies for the putative resistant allele (q) using 3 and 10 microg/vial as discriminatory dosages for susceptible and heterozygote resistant insects, respectively. The influence of migration on local levels of resistance was estimated by analysis of wind trajectories, which partially clarifies the rapid evolution of resistance to cypermethrin in bollworm populations. This approach could be used in evaluating resistance evolution in other migratory pests.
Zimmer, C T; Maiwald, F; Schorn, C; Bass, C; Ott, M-C; Nauen, R
2014-08-01
The pollen beetle Meligethes aeneus is the most important coleopteran pest in European oilseed rape cultivation, annually infesting millions of hectares and responsible for substantial yield losses if not kept under economic damage thresholds. This species is primarily controlled with insecticides but has recently developed high levels of resistance to the pyrethroid class. The aim of the present study was to provide a transcriptomic resource to investigate mechanisms of resistance. cDNA was sequenced on both Roche (Indianapolis, IN, USA) and Illumina (LGC Genomics, Berlin, Germany) platforms, resulting in a total of ∼53 m reads which assembled into 43 396 expressed sequence tags (ESTs). Manual annotation revealed good coverage of genes encoding insecticide target sites and detoxification enzymes. A total of 77 nonredundant cytochrome P450 genes were identified. Mapping of Illumina RNAseq sequences (from susceptible and pyrethroid-resistant strains) against the reference transcriptome identified a cytochrome P450 (CYP6BQ23) as highly overexpressed in pyrethroid resistance strains. Single-nucleotide polymorphism analysis confirmed the presence of a target-site resistance mutation (L1014F) in the voltage-gated sodium channel of one resistant strain. Our results provide new insights into the important genes associated with pyrethroid resistance in M. aeneus. Furthermore, a comprehensive EST resource is provided for future studies on insecticide modes of action and resistance mechanisms in pollen beetle. © 2014 The Royal Entomological Society.
Fang, Qiang; Hartsel, Joshua; Zhou, Guofa; Shi, Linna; Fang, Fujin; Zhu, Changliang; Yan, Guiyun
2014-01-01
Malaria, dengue fever, and filariasis are three of the most common mosquito-borne diseases worldwide. Malaria and lymphatic filariasis can occur as concomitant human infections while also sharing common mosquito vectors. The overall prevalence and health significance of malaria and filariasis have made them top priorities for global elimination and control programmes. Pyrethroid resistance in anopheline mosquito vectors represents a highly significant problem to malaria control worldwide. Several methods have been proposed to mitigate insecticide resistance, including rotational use of insecticides with different modes of action. Anopheles sinensis, an important malaria and filariasis vector in Southeast Asia, represents an interesting mosquito species for examining the consequences of long-term insecticide rotation use on resistance. We examined insecticide resistance in two An. Sinensis populations from central and southern China against pyrethroids, organochlorines, organophosphates, and carbamates, which are the major classes of insecticides recommended for indoor residual spray. We found that the mosquito populations were highly resistant to the four classes of insecticides. High frequency of kdr mutation was revealed in the central population, whereas no kdr mutation was detected in the southern population. The frequency of G119S mutation in the ace-1 gene was moderate in both populations. The classification and regression trees (CART) statistical analysis found that metabolic detoxification was the most important resistance mechanism, whereas target site insensitivity of L1014 kdr mutation played a less important role. Our results indicate that metabolic detoxification was the dominant mechanism of resistance compared to target site insensitivity, and suggests that long-term rotational use of various insecticides has led An. sinensis to evolve a high insecticide resistance. This study highlights the complex network of mechanisms conferring multiple resistances to chemical insecticides in mosquito vectors and it has important implication for designing and implementing vector resistance management strategies. PMID:24852174
Pyrethroid resistance in Iranian field populations of Rhipicephalus (Boophilus) annulatus.
Ziapour, Seyyed Payman; Kheiri, Sadegh; Fazeli-Dinan, Mahmoud; Sahraei-Rostami, Farzaneh; Mohammadpour, Reza Ali; Aarabi, Mohsen; Nikookar, Seyed Hassan; Sarafrazi, Mohammad; Asgarian, Fatemeh; Enayati, Ahmadali; Hemingway, Janet
2017-03-01
Resistance to acaricides in ticks is becoming increasingly widespread throughout the world; therefore, tick control requires resistance monitoring for each tick species. The aims of this study were to monitor the susceptibility status of the cattle tick, Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae), against pyrethroid acaricides from Mazandaran Province, northern Iran, and where resistance was evident, and establish the possible underlying mechanisms. Fully engorged adult R. (B.) annulatus females collected on cattle from Mazandaran Province. Twenty-nine tick populations produced 10-18days old larvae and bioassayed with cypermethrin and λ-cyhalothrin by larval packet test and the levels of detoxification enzymes were measured. Population AM-29 had a maximum resistance ratio (RR 99 ) of 20.21 to cypermethrin and 53.57% of the tick populations were resistant at LC 99 level. With λ-cyhalothrin, 17.86% of the tick populations were resistant and AM-29 was the most resistant population with RR 99 =4.54. AM-29 also showed significant elevation of cytochrome P450 monooxygenase (P450) and glutathione S-transferase (GST) (2.76- and 2.39-fold, respectively) (P<0.001). Rhipicephalus (Boophilus) annulatus showed resistance to pyrethroid insecticides with elevated levels of P450, GST and para-nitrophenyl acetate (p-NPA) in resistant populations. Operational failure was noted in controlling R. (B.) annulatus by pyrethroid insecticides, therefore alternative pest management measures should be adopted in Iran. For the first time, a new estimate of insecticide resistance based on effective dose recommended by the pesticide manufacturer termed Operational Dose Ratio (ODR) is defined and discussed. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Populations of tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)) from the Lower Mississippi Delta regions of Arkansas, Louisiana and Mississippi were evaluated from 2008 through 2015 for susceptibility to pyrethroid insecticides using a diagnostic-dose assay with permethrin developed by S...
Roca-Acevedo, G; Picollo, M I; Capriotti, N; Sierra, I; Santo-Orihuela, P L
2015-09-01
Chagas disease is a zoonosis transmitted to man by blood-sucking triatomine bugs found in the Americas. Triatoma infestans (Klug, 1834) is the main vector of Chagas' disease in Argentina. The control of this illness relies heavily on vector control through the use of insecticide. However, resistance to pyrethroid insecticides associated with ineffective field treatments has been increasingly reported in T. infestans from Argentina and Bolivia. There are few reports on the expression and causes of resistance in eggs of resistant populations, and even fewer studies on insecticide resistance throughout embryonic development. In this study, we explore the biochemical and molecular mechanisms potentially associated with the deltamethrin resistance assessed in the developing eggs of the Argentinean (Campo Largo) and Bolivian (Entre Ríos) T. infestans populations.We found measurable activity of monooxigenases and pyrethroid esterases throughout embryonic development. The pyrethroid esterase activity grew steadily throughout development in all the studied populations and was highest in eggs 12 d old. Mean enzyme activity increased from 13.6 to 16.3 and 22.2 picomol 7-hydroxycoumarin/min (7-OHC) in eggs of 4-, 7-, and 12 d old from the susceptible reference bug colony. Mean activity of resistant populations increased from 16.0 to 25.9 picomol 7-OHC/min in eggs of 4- to 12 d old in Entre Ríos population, and from 15.9 to 28.9 picomol 7-OHC/min in Campo Largo population. Molecular analysis of susceptible and resistant developing eggs detected L1014F mutation in both resistant populations, but no L925I mutation was found in any of the studied populations.Higher esterase activity and L1014F presence justify the resistance to pyrethroid throughout developing eggs of both studied T. infestans populations. The description of resistance profiles including resistance mechanisms involved will allow a rational design of campaigns for the control of Chagas disease transmission. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe
2013-10-01
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.
Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe
2013-01-01
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450–CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate–enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies. PMID:23844938
USDA-ARS?s Scientific Manuscript database
Resistance to synthetic pyrethroids (SP) in the cattle tick Rhipicephalus (Boophilus) microplus is widespread throughout its distribution area. Three single nucleotide substitutions identified in the Domains II and III of the sodium channel gene of R. (B.) microplus are known to be associated with t...
Toxicity of non-pyrethroid insecticides against Triatoma infestans (Hemiptera: Reduviidae).
Carvajal, Guillermo; Mougabure-Cueto, Gastón; Toloza, Ariel Ceferino
2012-08-01
Triatoma infestans (Klug) is the main vector of Chagas disease, which is a public health concern in most Latin American countries. The prevention of Chagas disease is based on the chemical control of the vector using pyrethroid insecticides. In the last decade, different levels of deltamethrin resistance have been detected in certain areas of Argentina and Bolivia. Because of this, alternative non-pyrethroid insecticides from different chemical groups were evaluated against two T. infestans populations, NFS and El Malá, with the objective of finding new insecticides to control resistant insect populations. Toxicity to different insecticides was evaluated in a deltamethrin-susceptible and a deltamethrin-resistant population. Topical application of the insecticides fenitrothion and imidacloprid to first nymphs had lethal effects on both populations, producing 50% lethal dose (LD50) values that ranged from 5.2-28 ng/insect. However, amitraz, flubendiamide, ivermectin, indoxacarb and spinosad showed no insecticidal activity in first instars at the applied doses (LD50 > 200 ng/insect). Fenitrothion and imidacloprid were effective against both deltamethrin-susceptible and deltamethrin-resistant populations of T. infestans. Therefore, they may be considered alternative non-pyrethroid insecticides for the control of Chagas disease.
Silva, Indira Ma; Martins, Gustavo F; Melo, Carlisson R; Santana, Alisson S; Faro, Ruan Rn; Blank, Arie F; Alves, Péricles B; Picanço, Marcelo C; Cristaldo, Paulo F; Araújo, Ana Paula A; Bacci, Leandro
2018-04-01
The mosquito Aedes aegypti is intensively controlled because it is a vector of viruses that cause numerous diseases, especially in tropical regions. As a consequence of the indiscriminate use of insecticides, populations from different regions have become resistant to pyrethroids. Here, we analyzed the lethal and sublethal effects of essential oil of Aristolochia trilobata and its major compounds on A. aegypti from susceptible and pyrethroid-resistant populations. Our results showed that the toxicity of the different compounds and behavioral changes in response to them are dependent on the stage of the insect life cycle. The monoterpene ρ-cymene caused high mortality in both larvae and adult females of A. aegypti, including those from the pyrethroid-resistant population. The monoterpenes limonene and linalool caused a sublethal effect in the larvae, triggering changes in the swimming pattern. This study highlights the potential of the essential oil of A. trilobata and its major compounds ρ-cymene and limonene for the control of A. aegypti and reveals the importance of analyzing sublethal effects on the population dynamics of the A. aegypti mosquito. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Xu, Li; Li, Dongzhi; Qin, Jianying; Zhao, Weisong; Qiu, Lihong
2016-09-01
Pyrethroid resistance was one of the main reasons for control failure of cotton bollworm Helicoverpa armigera (Hübner) in China. The promotion of Bt crops decreased the application of chemical insecticides in controlling H.armigera. However, the cotton bollworm still kept high levels of resistance to fenvalerate. In this study, the resistance levels of 8 field-collected strains of H. armigera from north of China to 4 insecticides, as well as the expression levels of related P450 genes were investigated. The results of bioassay indicated that the resistance levels to fenvalerate in the field strains varied from 5.4- to 114.7-fold, while the resistance levels to lambda-cyhalothrin, phoxim and methomyl were low, which were ranged from 1.5- to 5.2-, 0.2- to 1.6-, and 2.9- to 8.3- fold, respectively, compared to a susceptible strain. Synergistic experiment showed that PBO was the most effective synergist in increasing the sensitivity of H. armigera to fenvalerate, suggesting that P450 enzymes were involved in the pyrethroid resistance in the field strains. The results of quantitative RT-PCR indicated that eight P450 genes (CYP332A1, CYP4L11, CYP4L5, CYP4M6, CYP4M7, CYP6B7, CYP9A12, CYP9A14) were all significantly overexpressed in Hejian1 and Xiajin1 strains of H. armigera collected in 2013, and CYP4L5 was significantly overexpressed in all the 6 field strains collected in 2014. CYP332A1, CYP6B7 and CYP9A12 had very high overexpression levels in all the field strains, indicating their important roles in fenvalerate resistance. The results suggested that multiple P450 genes were involved in the high-level fenvalerate-resistance in different field strains of H. armigera collected from north of China. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Jiabao; Bonizzoni, Mariangela; Zhong, Daibin; Zhou, Guofa; Cai, Songwu; Li, Yiji; Wang, Xiaoming; Lo, Eugenia; Lee, Rebecca; Sheen, Roger; Duan, Jinhua; Yan, Guiyun; Chen, Xiao-Guang
2016-05-01
Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). Previous studies reported various mutations in the voltage-gated sodium channel (VGSC) gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established. A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested. A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T) was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S) was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations. Two novel kdr mutations, I1532T and F1534S were found in Ae. albopictus. This is the first report of I1532T mutations in Italy and F1534S mutation in China and US. Significant association between kdr mutation and protection from deltamethrin raised the possibility that kdr mutation may be a viable biomarker for pyrethroid resistance surveillance in Ae. albopictus. The patchy distribution of kdr mutations in Ae. albopictus mosquitoes calls for developing global surveillance plan for pyrethroid resistance and developing countermeasures to mitigate the spread of resistance.
Sierra, Ivana; Capriotti, Natalia; Fronza, Georgina; Mougabure-Cueto, Gastón; Ons, Sheila
2016-06-01
Point mutations in the voltage-gated sodium channel, the primary target of pyrethroid insecticides, have been associated with the resistance in Triatoma infestans, an important vector of Chagas' disease. Hence, the sustainability of vector control programs requires the implementation of resistance management strategies. We determined the sensitivity of the molecular assays previously designed for early resistance detection to be used in pooled samples from a wide area of the endemic region, and validated them for their routine use in control campaigns for the monitoring of insecticide resistance in T. infestans. Consequently, we used these methods to examine the distribution of resistance-associated mutations in the sodium channel gene in populations of T. infestans from the Argentinean and Bolivian Gran Chaco. The PASA and REA assays tested proved sensitive enough to detect kdr SNPs in pooled samples, indicating these assays are suitable for routine screening in insecticide resistance surveillance. Two geographically differentiated foci were detected in T. infestans populations from the Argentinean and Bolivian Gran Chaco, with populations on the Bolivian-Argentinean border carrying L1014F mutation, and those from the Argentinean Chaco carrying L925I mutation. In all highly resistant populations analyzed, one of both kdr mutations was present, and toxicological assays determined that all pyrethroid resistant populations analyzed herein were sensitive to fenitrothion. The principal cause of pyrethroid resistance in T. infestans from the Gran Chaco ecoregion is kdr mutations in the sodium channel. Different levels of resistance occur in different populations carrying identical mutation, suggesting the existence of contributory mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
National surveys of United States households and child care centers have demonstrated that pyrethroids are widely distributed in indoor habited dwellings and this suggests that co-exposure to multiple pyrethroids occurs in nonoccupational settings. The purpose of this research wa...
Mironidis, George K; Kapantaidaki, Despina; Bentila, Maria; Morou, Evangelia; Savopoulou-Soultani, M; Vontas, John
2013-08-01
Helicoverpa armigera has been controlled effectively with chemical insecticides in the major cotton crop production areas of northern Greece for many years. However, a resurgence of the pest was observed in 2010, which significantly affected crop production. During a 4-year survey (2007-2010), we examined the insecticide resistance status of H. armigera populations from two major and representative cotton production areas in northern Greece against seven insecticides (chlorpyrifos, diazinon, methomyl, alpha-cypermethrin, cypermethrin, gamma-cyhalothrin and endosulfan). Full dose-response bioassays on third instar larvae were performed by topical application. Lethal doses at 50% were estimated by probit analysis and resistance factors (RF) were calculated, compared to a susceptible laboratory reference strain. Resistance levels were relatively moderate until 2009, with resistance ratios below 10-fold for organophosphates and carbamates and up to 16-fold for the pyrethroid alpha-cypermethrin. However, resistance rose to 46- and 81-fold for chlorpyrifos and alpha-cypermethrin, respectively in 2010, when the resurgence of the pest was observed. None of the known pyrethroid resistance mutations were found in the pyrethroid-resistant insects. The possible association between resistance and H. armigera resurgence in Greece is discussed. © 2012 Institute of Zoology, Chinese Academy of Sciences.
Voltage-gated sodium channels as targets for pyrethroid insecticides.
Field, Linda M; Emyr Davies, T G; O'Reilly, Andrias O; Williamson, Martin S; Wallace, B A
2017-10-01
The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.
Oliver, Shüné V; Brooke, Basil D
2017-02-14
Temperature plays a crucial role in the life history of insects. Recent climate change research has highlighted the importance of elevated temperature on malaria vector distribution. This study aims to examine the role of elevated temperatures on epidemiologically important life-history traits in the major malaria vector, Anopheles arabiensis. Specifically, the differential effects of temperature on insecticide-resistant and susceptible strains were examined. Two laboratory strains of A. arabiensis, the insecticide-susceptible SENN and the insecticide-resistant SENN DDT strains, were used to examine the effect of elevated temperatures on larval development and adult longevity. The effects of various elevated temperatures on insecticide resistance phenotypes were also examined and the biochemical basis of the changes in insecticide resistance phenotype was assessed. SENN and SENN DDT larvae developed at similar rates at elevated temperatures. SENN DDT adult survivorship did not vary between control and elevated temperatures, while the longevity of SENN adults at constantly elevated temperatures was significantly reduced. SENN DDT adults lived significantly longer than SENN at constantly elevated temperatures. Elevated rearing temperatures, as well as a short-term exposure to 37 and 39 °C as adults, augmented pyrethroid resistance in adult SENN DDT, and increased pyrethroid tolerance in SENN. Detoxification enzyme activity was not implicated in this phenotypic effect. Quercertin-induced synergism of inducible heat shock proteins negated this temperature-mediated augmentation of pyrethroid resistance. Insecticide-resistant A. arabiensis live longer than their susceptible counterparts at elevated temperatures. Exposure to heat shock augments pyrethroid resistance in both resistant and susceptible strains. This response is potentially mediated by inducible heat shock proteins.
The role of vector control in stopping the transmission of malaria: threats and opportunities.
Hemingway, Janet
2014-01-01
Malaria control, and that of other insect borne diseases such as dengue, is heavily dependent on our ability to control the mosquito populations that transmit these diseases. The major push over the last decade to reduce the global burden of malaria has been driven by the distribution of pyrethroid insecticide-treated bednets and an increase in coverage of indoor residual spraying (IRS). This has reduced malaria deaths by a third. Progress towards the goal of reducing this further is threatened by lack of funding and the selection of drug and insecticide resistance. When malaria control was initially scaled up, there was little pyrethroid resistance in the major vectors, today there is no country in Africa where the vectors remain fully susceptible to pyrethroids. The first pyrethroid resistance mechanisms to be selected produced low-level resistance which had little or no operational significance. More recently, metabolically based resistance has been selected, primarily in West Africa, which in some mosquito populations produces more than 1000-fold resistance. As this spreads the effectiveness of pyrethroid-based bednets and IRS will be compromised. New public health insecticides are not readily available. The pipeline of agrochemical insecticides that can be re-purposed for public health dried up 30 years ago when the target product profile for agricultural insecticides shifted from broad spectrum, stable, contact-acting insecticides to narrow spectrum stomach poisons that could be delivered through the plant. A public-private partnership, the Innovative Vector Control Consortium, was established in 2005 to stimulate the development of new public health pesticides. Nine potential new classes of chemistry are in the pipeline, with the intention of developing three into new insecticides. While this has been successfully achieved, it will still take 6-9 years for new insecticides to reach the market. Careful management of the resistance situation in the interim will be needed if current gains in malaria control are not to be reversed.
The role of vector control in stopping the transmission of malaria: threats and opportunities
Hemingway, Janet
2014-01-01
Malaria control, and that of other insect borne diseases such as dengue, is heavily dependent on our ability to control the mosquito populations that transmit these diseases. The major push over the last decade to reduce the global burden of malaria has been driven by the distribution of pyrethroid insecticide-treated bednets and an increase in coverage of indoor residual spraying (IRS). This has reduced malaria deaths by a third. Progress towards the goal of reducing this further is threatened by lack of funding and the selection of drug and insecticide resistance. When malaria control was initially scaled up, there was little pyrethroid resistance in the major vectors, today there is no country in Africa where the vectors remain fully susceptible to pyrethroids. The first pyrethroid resistance mechanisms to be selected produced low-level resistance which had little or no operational significance. More recently, metabolically based resistance has been selected, primarily in West Africa, which in some mosquito populations produces more than 1000-fold resistance. As this spreads the effectiveness of pyrethroid-based bednets and IRS will be compromised. New public health insecticides are not readily available. The pipeline of agrochemical insecticides that can be re-purposed for public health dried up 30 years ago when the target product profile for agricultural insecticides shifted from broad spectrum, stable, contact-acting insecticides to narrow spectrum stomach poisons that could be delivered through the plant. A public–private partnership, the Innovative Vector Control Consortium, was established in 2005 to stimulate the development of new public health pesticides. Nine potential new classes of chemistry are in the pipeline, with the intention of developing three into new insecticides. While this has been successfully achieved, it will still take 6–9 years for new insecticides to reach the market. Careful management of the resistance situation in the interim will be needed if current gains in malaria control are not to be reversed. PMID:24821917
SODIUM CHANNELS (NAV1.2/B1) EXPRESSED IN XENOPUS OOCYTES DEMONSTRATE SENSITIVITY TO PYRETHROIDS.
Voltage-sensitive sodium channels (VSSCs) are hypothesized to be a primary target of pyrethroid insecticides. However, multiple isoforms of VSSCs exist and the sensitivity of different isoforms to pyrethroids has not been well characterized. The Nav1.2/1 channel predominates in a...
Chourasia, Mehul Kumar; Kamaraju, Raghavendra; Kleinschmidt, Immo; Bhatt, Rajendra M; Swain, Dipak Kumar; Knox, Tessa Bellamy; Valecha, Neena
2017-04-01
Subclinical (asymptomatic) cases of malaria could be a major barrier to the success of malaria elimination programs. This study has evaluated the impact of long-lasting insecticidal nets (LLINs) on the prevalence of subclinical malaria in the presence of pyrethroid resistance in the main malaria vector Anopheles culicifacies on malaria transmission among a cohort of children in villages of the Keshkal sub-district in Chhattisgarh state. A cohort of 6582 children ages less than 14 years was enrolled from 80 study clusters. Post monsoon survey was carried out at baseline before LLIN distribution, and 5862 children were followed up in the subsequent year. Study outcomes included assessment of subclinical malarial infections and use of LLINs among the study cohort in the presence of varied levels of pyrethroid resistance. In the baseline survey, the proportion of subclinical malaria was 6·1%. LLIN use during the previous night was 94·8%. Overall, prevalence of subclinical malaria was significantly reduced to 1% (p<0·001) in the second survey. LLIN users were protected from malaria (OR: 0·25, 95% CI=0·12-0·52, p<0.001) and subclinical malaria (OR: 0·25, 95% CI=0·11-0·58, p=0·001) despite the presence of pyrethroid resistance in the study area. In this low transmission area, sleeping under LLINs significantly reduced the burden of malaria among children. In the presence of pyrethroid resistant malaria vector, a high LLIN use of 94·5% was observed to have significantly brought down the proportion of subclinical malaria among the cohort children. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Romero, Alvaro; Anderson, Troy D
2016-05-01
The rapid increase of bed bug populations resistant to pyrethroids demands the development of novel control tactics. Products combining pyrethroids and neonicotinoids have become very popular for bed bug control in the United States, but there are concerns about evolution of resistance to these compounds. Laboratory assays were used to measure the toxicity of topical applications of four neonicotinoids to a susceptible population and three pyrethroid-resistant populations. Activity of esterases, glutathione S-transferases, and cytochrome P450s of all strains was also evaluated. High levels of resistance to four neonicotinoids, acetamiprid, imidacloprid, dinotefuran, and thiamethoxam, relative to the susceptible Fort Dix population, were detected in populations collected from human dwellings in Cincinnati and Michigan. Because activity of detoxifying enzymes was increased in these two populations, our results suggest that these enzymes have some involvement in neonicotinoid resistance, but other resistance mechanisms might be involved as well. Detection of high levels of resistance to neonicotinoids further limits the options for chemical control of bed bugs. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Basilua Kanza, Jean Pierre; El Fahime, Elmostafa; Alaoui, Sanaa; Essassi, El Mokhtar; Brooke, Basil; Nkebolo Malafu, André; Watsenga Tezzo, Francis
2013-01-01
Malaria remains the most important parasitic disease in sub-Saharan Africa. We investigated the extent of resistance in the malaria vector Anopheles gambiae from the Democratic Republic of Congo (DRC) to three classes of insecticide approved by WHO for indoor residual spraying. Standard WHO bioassays were performed on adult Anopheles mosquitoes reared in the laboratory from larvae collected from different sites. Molecular techniques were used for species identification and to identify knockdown resistance (kdr) and acetylcholinesterase (ace-1(R)) mutations in individual mosquitoes. Only A. gambiae s.s., the nominal member of the A. gambiae species complex, was found. Bioassays showed phenotypic resistance to the main insecticides used in the region, notably pyrethroids (deltamethrin, permethrin, lambda-cyhalothrin), an organochlorine (DDT) and an organophosphate (malathion). The L1014F kdr allele, often associated with resistance to pyrethroids and DDT, was detected in samples from all collection sites at varying frequencies. No ace-1(R) resistance alleles (associated with organophosphate and carbamate resistance) were detected. These data can be used to inform a resistance management strategy that requires comprehensive information concerning malaria vector species composition in the areas of interest, and their susceptibility to the insecticides proposed for their control.
Obrępalska-Stęplowska, Aleksandra; Czerwoniec, Anna; Wieczorek, Przemysław; Wrzesińska, Barbara
2016-01-01
The voltage-sensitive sodium channel (VSSC) is a target for the pharmacological action of pyrethroids which are used in controlling pests, including those of agricultural importance. Among these is the pollen beetle (Meligethes aeneus F.) - the most serious pest of Brassica napus. Owing to the heavy use of pyrethroids, a widespread build-up of resistance has occurred. The main cause of pyrethroid insensitivity in M. aeneus is considered to be an increased oxidative metabolism; however, the additional mechanism of resistance associated with mutations in the VSSC might contribute to this phenomenon. We generated a VSSC 3D model to study the docking affinities of pyrethroids to their target site within the channel. Our goal was to identify the pyrethroids for which docking affinity scores were high and not affected by potential mutations in the VSSC. We found that the docking scores of cypermethrin are hardly influenced by the appearance of point mutations. Additionally, tau-fluvalinate, deltamethrin and bifenthrin are VSSC ligands with high affinity scores. Our docking models suggest that point mutations in the VSSC binding pocket might affect the stability of ligand interactions and change the pattern of ligand docking locations, which might have a potential effect on VSSC gating properties. © 2015 Society of Chemical Industry.
Intirach, J; Junkum, A; Lumjuan, N; Chaithong, U; Jitpakdi, A; Riyong, D; Wannasan, A; Champakaew, D; Muangmoon, R; Chansang, A; Pitasawat, B
2016-12-01
The increasing and widespread resistance to conventional synthetic insecticides in vector populations has underscored the urgent need to establish alternatives in the mosquito management system. This study was carried out with the aim to investigate the antimosquito property, larvicidal and adulticidal potential, of plant products against both the pyrethroid-susceptible and resistant strains of Aedes aegypti. Seventeen plant products, including essential oils and ethanolic extracts, were obtained by steam distillation and extraction with 95 % ethanol, respectively. Their larvicidal activity was screened, using World Health Organization (WHO) procedures against A. aegypti, Muang Chiang Mai-susceptible (MCM-S) strain. The most effective product was a candidate for investigating larvicidal and adulticidal potential against three laboratory strains of A. aegypti, comprising MCM-S, Pang Mai Dang-resistant (PMD-R), and Upakut-resistant (UPK-R). Potential toxicity of the plant candidate was compared with that of synthetic temephos, permethrin, and deltamethrin. Chemical constituents of the most effective plant product also were analyzed by gas chromatography-mass spectrometry (GC-MS). Results obtained from the preliminary screening revealed the varying larvicidal efficacy of plant-derived products against MCM-S A. aegypti, with mortality ranging from 0 to 100 %. The larvicidal activity of seven effective plant products was found to be dose dependent, with the highest efficacy established from Petroselinum crispum fruit oil, followed by oils of Foeniculum vulgare, Myristica fragrans, Limnophila aromatica, Piper sarmentosum, Curcuma longa, and M. fragrans ethanolic extract (LC 50 values of 43.22, 44.84, 47.42, 47.94, 49.19, 65.51, and 75.45 ppm, respectively). Essential oil of P. crispum was then investigated further and proved to be a promising larvicide and adulticide against all strains of A. aegypti. The pyrethroid-resistant strains of both PMD-R and UPK-R A. aegypti showed significant resistance to temephos, permethrin, and deltamethrin in either the larval or adult stage. Interestingly, high susceptibility to P. crispum oil was observed in the larvae and adults of MCM-S, which are pyrethroid-susceptible A. aegypti, and comparable to those of the pyrethroid-resistant strains, PMD-R and UPK-R. GC-MS analysis of P. crispum oil demonstrated that 19 compounds, accounting for 98.25 % of the whole oil, were identified, with the main constituents being thymol (42.41 %), p-cymene (27.71 %), and γ-terpinene (20.98 %). In conclusion, the profound larvicidal and adulticidal potential of P. crispum oil promises to form a new larvicide and adulticide against either the pyrethroid-susceptible or resistant strain of A. aegypti. Consequently, P. crispum oil and its constituents can be used or incorporated with other chemicals/measures in integrated mosquito management for controlling A. aegypti, particularly in localities with high levels of pyrethroid and organophosphate resistance.
Saavedra-Rodriguez, Karla; Maloof, Farah Vera; Campbell, Corey L; Garcia-Rejon, Julian; Lenhart, Audrey; Penilla, Patricia; Rodriguez, Americo; Sandoval, Arturo Acero; Flores, Adriana E; Ponce, Gustavo; Lozano, Saul; Black, William C
2018-04-30
Aedes aegypti is the primary urban mosquito vector of viruses causing dengue, Zika and chikungunya fevers -for which vaccines and effective pharmaceuticals are still lacking. Current strategies to suppress arbovirus outbreaks include removal of larval-breeding sites and insecticide treatment of larval and adult populations. Insecticidal control of Ae. aegypti is challenging, due to a recent rapid global increase in knockdown-resistance (kdr) to pyrethroid insecticides. Widespread, heavy use of pyrethroid space-sprays has created an immense selection pressure for kdr, which is primarily under the control of the voltage-gated sodium channel gene (vgsc). To date, eleven replacements in vgsc have been discovered, published and shown to be associated with pyrethroid resistance to varying degrees. In Mexico, F1,534C and V1,016I have co-evolved in the last 16 years across Ae. aegypti populations. Recently, a novel replacement V410L was identified in Brazil and its effect on vgsc was confirmed by electrophysiology. Herein, we screened V410L in 25 Ae. aegypti historical collections from Mexico, the first heterozygote appeared in 2002 and frequencies have increased in the last 16 years alongside V1,016I and F1,534C. Knowledge of the specific vgsc replacements and their interaction to confer resistance is essential to predict and to develop strategies for resistance management.
Ziapour, Seyyed Payman; Kheiri, Sadegh; Asgarian, Fatemeh; Fazeli-Dinan, Mahmoud; Yazdi, Fariborz; Mohammadpour, Reza Ali; Aarabi, Mohsen; Enayati, Ahmadali
2016-04-01
Rhipicephalus (Boophilus) annulatus is one of the most important hard ticks parasitizing cattle in northern Iran. The aim of this study was to evaluate pyrethroid resistance levels of this species from Nur County, northern Iran. The hard ticks were collected through a multistage cluster randomized sampling method from the study area and fully engorged female R. (B.) annulatus were reared in a controlled insectary until they produced larvae for bioassay. Seventeen populations of the hard ticks were bioassayed with cypermethrin and 12 populations with lambda-cyhalothrin using a modified larval packet test (LPT). Biochemical assays to measure the contents/activity of different enzyme groups including mixed function oxidases (MFOs), glutathione S-transferases (GSTs) and general esterases were performed. Population 75 showed a resistance ratio of 4.05 with cypermethrin when compared with the most susceptible field population 66 at the LC50 level. With lambda-cyhalothrin the resistance ratio based on LC50 was 3.67 when compared with the susceptible population. The results of biochemical assays demonstrated significantly elevated levels of GSTs and esterases in populations tested compared with the heterozygous susceptible filed population and a correlation coefficient of these enzymes was found in association to lambda-cyhalothrin resistance. Based on the results, pyrethroid acaricides may operationally fail to control R. (B.) annulatus in North of Iran. This study is the first document of pyrethroid resistance in R. (B.) annulatus populations from Iran. Copyright © 2016 Elsevier B.V. All rights reserved.
Nardini, Luisa; Blanford, Simon; Coetzee, Maureen; Koekemoer, Lizette L
2014-04-01
Fungal biopesticides are of great interest to vector control scientists as they provide a novel and environmentally friendly alternative to insecticide use. The aim of this study was to determine whether genes associated with pyrethroid resistance in Anopheles arabiensis from Sudan and South Africa are further induced following exposure to the entomopathogenic fungus, Beauveria bassiana (strain GHA). Following B. bassiana bioassays, RNA was extracted from infected mosquitoes and the transcription of four important insecticide resistance genes, CYP9L1, CYP6M2 and CYP4G16 (cytochrome P450s) and TPX4 (thioredoxin peroxidase) was investigated using quantitative real-time PCR. Beauveria bassiana strain GHA was highly infective and virulent against An. arabiensis. In terms of changes in gene transcription, overall, the fold change (FC) values for each gene in the infected strains, were lower than 1.5. The FC values of CYP9L1, CYP6M2 and TPX4, were significantly lower than the FC values of the same genes in uninfected resistant An. arabiensis. These data suggest that B. bassiana does not enhance the pyrethroid resistant phenotype on a molecular level as the two An. arabiensis strains used here, with different pyrethroid resistance mechanisms, revealed no increase in pre-existing metabolic transcripts. This supports the fact that fungal pathogens are suitable candidates for vector control, particularly with regard to the development of novel vector control strategies.
Viana-Medeiros, P F; Bellinato, D F; Martins, A J; Valle, D
2017-12-01
In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR 95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR 95 > 10), which is consistent with the use of intense chemical control. In Crato, RR 95 values were > 50 for both compounds. Knock-down-resistant (kdr) mutants in the voltage-gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione-S-transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR 95 , increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed. © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.
Evidence for Metabolic Pyrethroid Resistance in the Common Bed Bug (Hemiptera: Cimicidae).
Lilly, David G; Dang, Kai; Webb, Cameron E; Doggett, Stephen L
2016-03-27
Resistance to insecticides, especially the pyrethroids, in the common bed bug,Cimex lectulariusL., has been well-documented. However, the presence and relative contribution of metabolic detoxifying microsomal oxidases and hydrolytic esterases to the observed resistance has yet to be fully elucidated. This is due, in part, to the absence of a simple bioassay procedure that appropriately isolates esterases from potentially competing oxidases. Recently, an analogue of piperonyl butoxide (PBO) was developed, EN16/5-1 (6-[2-(2-butoxyethoxy) ethoxymethyl]-5-propyl-2,3-dihydrobenzofuranby), which inhibits esterases but has limited efficacy against the oxidases, whereas PBO inhibits both. The opportunity is now available to use both synergists via established bioassay methodologies and to screen for the potential presence of oxidase- or esterase-derived pyrethroid resistance in insecticide-resistant insects, including bed bugs. In the present study, EN16/5-1 and PBO were assayed in conjunction with deltamethrin against four field strains ofC. lectulariuscollected from independent geographic locations across Australia. All strains expressed a high degree of resistance to deltamethrin and significant inhibition of the observed resistance with preexposure to PBO. Nonsignificant differences between the cumulative mortality values for PBO and EN16/5-1 were then observed in two of the four bed bug strains, which indicate that detoxifying esterases are conferring substantially to the observed resistance in those strains. This study is the first to provide evidence that metabolic detoxification in the form of both hydrolytic esterases and microsomal oxidases is a major contributing factor to pyrethroid resistance inC. lectularius. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Estep, Alden S; Sanscrainte, Neil D; Waits, Christy M; Louton, Jessica E; Becnel, James J
2017-11-07
Puerto Rico (PR) has a long history of vector-borne disease and insecticide-resistant Aedes aegypti (L.). Defining contributing mechanisms behind phenotypic resistance is critical for effective vector control intervention. However, previous studies from PR have each focused on only one mechanism of pyrethroid resistance. This study examines the contribution of P450-mediated enzymatic detoxification and sodium channel target site changes to the overall resistance phenotype of Ae. aegypti collected from San Juan, PR, in 2012. Screening of a panel of toxicants found broad resistance relative to the lab susceptible Orlando (ORL1952) strain. We identified significant resistance to representative Type I, Type II, and nonester pyrethroids, a sodium channel blocker, and a sodium channel blocking inhibitor, all of which interact with the sodium channel. Testing of fipronil, a chloride channel agonist, also showed low but significant levels of resistance. In contrast, the PR and ORL1952 strains were equally susceptible to chlorfenapyr, which has been suggested as an alternative public health insecticide. Molecular characterization of the strain indicated that two common sodium channel mutations were fixed in the population. Topical bioassay with piperonyl butoxide (PBO) indicated cytochrome P450-mediated detoxification accounts for approximately half of the resistance profile. Transcript expression screening of cytochrome P450s and glutathione-S-transferases identified the presence of overexpressed transcripts. This study of Puerto Rican Ae. aegypti with significant contributions from both genetic changes and enzymatic detoxification highlights the necessity of monitoring for resistance but also defining the multiple resistance mechanisms to inform effective mosquito control. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Kafy, Hmooda Toto; Ismail, Bashir Adam; Mnzava, Abraham Peter; Lines, Jonathan; Abdin, Mogahid Shiekh Eldin; Eltaher, Jihad Sulieman; Banaga, Anuar Osman; West, Philippa; Bradley, John; Cook, Jackie; Thomas, Brent; Subramaniam, Krishanthi; Hemingway, Janet; Knox, Tessa Bellamy; Malik, Elfatih M.; Yukich, Joshua O.; Donnelly, Martin James; Kleinschmidt, Immo
2017-01-01
Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions. PMID:29229808
Araújo, Rúbia A; Williamson, Martin S; Bass, Christopher; Field, Linda M; Duce, Ian R
2011-08-01
The maize weevil, Sitophilus zeamais, is the most important pest affecting stored grain in Brazil and its control relies heavily on the use of insecticides. The intensive use of compounds such as the pyrethroids has led to the emergence of resistance, and previous studies have suggested that resistance to both pyrethroids and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) may result from reduced sensitivity of the insecticide target, the voltage-gated sodium channel. To identify the molecular mechanisms underlying pyrethroid resistance in S. zeamais, the domain II region of the voltage-gated sodium channel (para-orthologue) gene was amplified by PCR and sequenced from susceptible and resistant laboratory S. zeamais strains that were selected with a discriminating dose of DDT. A single point mutation, T929I, was found in the para gene of the resistant S. zeamais populations and its presence in individual weevils was strongly associated with survival after DDT exposure. This is the first identification of a target-site resistance mutation in S. zeamais and unusually it is a super-kdr type mutation occurring in the absence of the more common kdr (L1014F) substitution. A high-throughput assay based on TaqMan single nucleotide polymorphism genotyping was developed for sensitive detection of the mutation and used to screen field-collected strains of S. zeamais. This showed that the mutation is present at low frequency in field populations and is a useful tool for informing control strategies. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
MacKenzie, Tyler D B; Arju, Irin; Poirier, René; Singh, Mathuresh
2018-05-28
Aphids are viral vectors in potatoes, most importantly of Potato virus Y (PVY), and insecticides are frequently used to reduce viral spread during the crop season. Aphids collected from the potato belt of New Brunswick, Canada, in 2015 and 2016 were surveyed for known and novel mutations in the Na-channel (para) gene, coding for the target of synthetic pyrethroid insecticides. Specific genetic mutations known to confer resistance (kdr and skdr) were found in great abundance in Myzus persicae (Sulzer) (Hemiptera: Aphididae), which rose from 76% in 2015 to 96% in 2016. Aphids other than M. persicae showed lower frequency of resistance. In 2015, 3% of individuals contained the resistance mutation skdr, rising to 13% in 2016 (of 45 species). Several novel resistance mutations or mutations not before reported in aphids were identified in this gene target. One of these mutations, I936V, is known to confer pyrethroid resistance in another unrelated insect, and three others occur immediately adjacent and prompt similar chemical shifts in the primary protein structure, to previously characterized mutations associated with pyrethroid resistance. Most novel mutations were found in species other than M. persicae or others currently tracked individually by the provincial aphid monitoring program, which were determined by cytochrome C oxidase I (cox1) sequencing. Through our cox1 DNA barcoding survey, at least 45 species of aphids were discovered in NB potato fields in 2015 and 2016, many of which are known carriers of PVY.
Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V
2017-02-01
Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas' disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms.
Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G.; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V.
2017-01-01
Background Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas’ disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas’ disease. Methods and findings The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas’ disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high levels of pyrethroid resistance detected in triatomines from the Gran Chaco ecoregion. Conclusions and significance Our results help to elucidate the potential insecticide resistance mechanisms in vectors of Chagas’ disease and provide new relevant information for this field. This study shows that metabolic resistance might be a contributing cause of the high pyrethroid resistance observed in wild T. infestans populations from the Gran Chaco ecoregion, area in which although subjected to intense pyrethroid treatments, vector control has failed. This study opens new avenues for further functional studies on triatomine detoxification mechanisms. PMID:28199333
Killeen, Gerry F; Masalu, John P; Chinula, Dingani; Fotakis, Emmanouil A; Kavishe, Deogratius R; Malone, David; Okumu, Fredros
2017-05-01
We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.
Koppenhöfer, Albrecht M; Kostromytska, Olga S; Wu, Shaohui
2018-05-25
The annual bluegrass weevil, Listronotus maculicollis Kirby (Coleoptera: Curculionidae), is a major pest of golf course turf in eastern North America with widespread insecticide resistance. This study examined the effect of pyrethroid-resistance level on the efficacy of adulticides and larvicides from different insecticide classes commonly used for L. maculicollis management through greenhouse and field studies. The tested populations had previously been determined to be susceptible, moderately resistant, resistant, and highly resistant to the pyrethroid bifenthrin. Targeting adults, efficacy was significantly reduced for bifenthrin against the highly resistant population and for the spinosyn spinosad and the oxadizine indoxacarb against the resistant and highly resistant populations. Efficacy of the organophosphate chlorpyrifos was not significantly reduced. No adulticide provided significant control of resistant and highly resistant populations. Targeting larvae, the efficacy of spinosad and the anthranilic diamide cyantraniliprole was marginally reduced against the highly resistant population. Significant reductions in efficacy and no significant control were observed for indoxacarb against the highly resistant population and for the neonicotinoid clothianidin, the anthranilic diamide chlorantraniliprole, and the organophosphate trichlorfon against the resistant and highly resistant populations. Our findings lay the groundwork for management recommendations for populations with different resistance levels. Generally, synthetic insecticide applications should be minimized with greater use of larvicides supplemented with nonchemical control alternatives. The remaining effective larvicides should be rotated using cyantraniliprole, spinosad, and indoxacarb against resistant and cyantraniliprole and spinosad against highly resistant populations.
Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...
Tawatsin, Apiwat; Thavara, Usavadee; Chompoosri, Jakkrawarn; Phusup, Yutthana; Jonjang, Nisarat; Khumsawads, Chayada; Bhakdeenuan, Payu; Sawanpanyalert, Pathom; Asavadachanukorn, Preecha; Mulla, Mir S; Siriyasatien, Padet; Debboun, Mustapha
2011-09-01
Bedbugs are found in many countries around the world, and in some regions they are resistant to numerous insecticides. This study surveyed bedbugs in Thailand and determined their resistance to insecticides. The surveys were carried out in six provinces that attract large numbers of foreign tourists: Bangkok, Chonburi, Chiang Mai, Ubon Ratchathani, Phuket, and Krabi. Bedbugs were collected from hotels and colonized in the laboratory to evaluate their resistance to insecticides. Cimex hemipterus (F.) was found in some hotels in Bangkok, Chonburi, Phuket, and Krabi, whereas Cimex lectularius L. was found only in hotels in Chiang Mai. No bedbugs were found in Ubon Ratchathani. The colonized bedbugs showed resistance to groups of insecticides, including organochlorines (dichlorodiphenyl trichloroethane, dieldrin), carbamates (bendiocarb, propoxur), organophosphates (malathion, fenitrothion), and pyrethroids (cyfluthrin, deltamethrin, permethrin, lambda-cyhalothrin, etofenprox) in tests using World Health Organization insecticide-impregnated papers. The new insecticides imidacloprid (neonicotinoid group), chlorfenapyr (pyrrole group), and fipronil (phenylpyrazole group) were effective against the bedbugs; however, organophosphate (diazinon), carbamates (fenobucarb, propoxur), and pyrethroids (bifenthrin, cypermethrin, esfenvalerate, etofenprox) were ineffective. Aerosols containing various pyrethroid insecticides with two to four different active ingredients were effective against the bedbugs. The results obtained from this study suggested that both species of bedbugs in Thailand have developed marked resistance to various groups of insecticides, especially those in the pyrethroid group, which are the most common insecticides used for pest control. Therefore, an integrated pest management should be implemented for managing bedbugs in Thailand.
Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management
Hemmings, Kay; Hughes, Angela J.; Chanda, Emmanuel; Musapa, Mulenga; Kamuliwo, Mulakwa; Phiri, Faustina N.; Muzia, Lucy; Chanda, Javan; Kandyata, Alister; Chirwa, Brian; Poer, Kathleen; Hemingway, Janet; Wondji, Charles S.; Ranson, Hilary; Coleman, Michael
2014-01-01
Background There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. Methodology/Principal Findings A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. Conclusions/Significance Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan. PMID:24932861
Associated patterns of insecticide resistance in field populations of malaria vectors across Africa.
Hancock, Penelope A; Wiebe, Antoinette; Gleave, Katherine A; Bhatt, Samir; Cameron, Ewan; Trett, Anna; Weetman, David; Smith, David L; Hemingway, Janet; Coleman, Michael; Gething, Peter W; Moyes, Catherine L
2018-06-05
The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies. Copyright © 2018 the Author(s). Published by PNAS.
Roca-Acevedo, Gonzalo; Picollo, María Inés; Santo-Orihuela, Pablo
2013-07-01
The aim of the current study was to investigate the susceptibility to the insecticide deltamethrin and the expression of resistance to this insecticide in developing eggs and neonate nymphs of Triatoma infestans from two areas of Argentina (Campo Largo) and Bolivia (Entre Ríos), where resistance to this pyrethroid is suspected. Both nymphal populations showed resistance to deltamethrin, with lower resistance ratio for Entre Ríos (173X) than Campo Largo (1108X). Efficacy of deltamethrin on 4-, 7-, and 12-d-old eggs for both field populations were significantly lower than efficacy on eggs of the susceptible strain. This is the first documented evidence of the expression of pyrethroid resistance during the embryonic development of Chagas Disease vectors.
Davies, T G E; Field, L M; Williamson, M S
2012-09-01
A global resurgence of bed bugs (Hemiptera: Cimicidae) has led to renewed scientific interest in these insects. The current bed bug upsurge appears to have started almost synchronously in the late 1990 s in Europe, the U.S.A. and Australia. Several factors have led to this situation, with resistance to applied insecticides making a significant contribution. With a growing number of insecticides (DDT, carbamates, organophosphates etc.) being no longer available as a result of regulatory restrictions, the mainstay chemistry used for bed bug control over the past few decades has been the pyrethroid insecticides. With reports of increasing tolerance to pyrethroids leading to control failures on the rise, containing and eradicating bed bugs is proving to be a difficult task. Consequently, several recent studies have focused on determining the mode of action of pyrethroid resistance in bed bug populations sourced from different locations. Correct identification of the factor(s) responsible for the increasing resistance is critical to the development of effective management strategies, which need to be based, wherever possible, on firm scientific evidence. Here we review the literature on this topic, highlighting the mechanisms thought to be involved and the problems currently faced by pest control professionals in dealing with a developing pandemic. © 2012 Rothamsted Research. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.
Human exposure to multiple pyrethroid insecticides may occur because of their broad use on crops and for residential pest control. To address the potential health risk from co-exposure to pyrethroids, it is important to understand their disposition and toxicity in target organs ...
Haddi, Khalid; Berger, Madeleine; Bielza, Pablo; Cifuentes, Dina; Field, Linda M; Gorman, Kevin; Rapisarda, Carmelo; Williamson, Martin S; Bass, Chris
2012-07-01
The tomato leaf miner, Tuta absoluta (Lepidoptera) is a significant pest of tomatoes that has undergone a rapid expansion in its range during the past six years and is now present across Europe, North Africa and parts of Asia. One of the main means of controlling this pest is through the use of chemical insecticides. In the current study insecticide bioassays were used to determine the susceptibility of five T. absoluta strains established from field collections from Europe and Brazil to pyrethroids. High levels of resistance to λ cyhalothrin and tau fluvalinate were observed in all five strains tested. To investigate whether pyrethroid resistance was mediated by mutation of the para-type sodium channel in T. absoluta the IIS4-IIS6 region of the para gene, which contains many of the mutation sites previously shown to confer knock down (kdr)-type resistance to pyrethroids across a range of different arthropod species, was cloned and sequenced. This revealed that three kdr/super-kdr-type mutations (M918T, T929I and L1014F), were present at high frequencies within all five resistant strains at known resistance 'hot-spots'. This is the first description of these mutations together in any insect population. High-throughput DNA-based diagnostic assays were developed and used to assess the prevalence of these mutations in 27 field strains from 12 countries. Overall mutant allele frequencies were high (L1014F 0.98, M918T 0.35, T929I 0.60) and remarkably no individual was observed that did not carry kdr in combination with either M918T or T929I. The presence of these mutations at high frequency in T. absoluta populations across much of its range suggests pyrethroids are likely to be ineffective for control and supports the idea that the rapid expansion of this species over the last six years may be in part mediated by the resistance of this pest to chemical insecticides. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
O'Reilly, Andrias O; Williamson, Martin S; González-Cabrera, Joel; Turberg, Andreas; Field, Linda M; Wallace, B A; Davies, T G Emyr
2014-03-01
The pyrethroid insecticides are a very successful group of compounds that target invertebrate voltage-gated sodium channels and are widely used in the control of insects, ticks and mites. It is well established that some pyrethroids are good insecticides whereas others are more effective as acaricides. This species specificity is advantageous for controlling particular pest(s) in the presence of another non-target invertebrate, for example controlling the Varroa mite in honeybee colonies. We applied in silico techniques to compare the voltage-gated sodium channels of insects versus ticks and mites and their interactions with a range of pyrethroids and DDT analogues. We identified a single amino acid difference within the pyrethroid binding pocket of ticks/mites that may have significant impact on the effectiveness of pyrethroids as acaricides. Other individual amino acid differences within the binding pocket in distinct tick and mite species may provide a basis for future acaricidal selectivity. Three-dimensional modelling of the pyrethroid/DDT receptor site has led to a new hypothesis to explain the preferential binding of acaricidal pyrethroids to the sodium channels of ticks/mites. This is important for understanding pyrethroid selectivity and the potential effects of mutations that can give rise to resistance to pyrethroids in commercially-important pest species. © 2013 Society of Chemical Industry.
Vera-Maloof, Farah Z; Saavedra-Rodriguez, Karla; Elizondo-Quiroga, Armando E; Lozano-Fuentes, Saul; Black Iv, William C
2015-12-01
Worldwide the mosquito Aedes aegypti (L.) is the principal urban vector of dengue viruses. Currently 2.5 billion people are at risk for infection and reduction of Ae. aegypti populations is the most effective means to reduce the risk of transmission. Pyrethroids are used extensively for adult mosquito control, especially during dengue outbreaks. Pyrethroids promote activation and prolong the activation of the voltage gated sodium channel protein (VGSC) by interacting with two distinct pyrethroid receptor sites [1], formed by the interfaces of the transmembrane helix subunit 6 (S6) of domains II and III. Mutations of S6 in domains II and III synergize so that double mutants have higher pyrethroid resistance than mutants in either domain alone. Computer models predict an allosteric interaction between mutations in the two domains. In Ae. aegypti, a Ile1,016 mutation in the S6 of domain II was discovered in 2006 and found to be associated with pyrethroid resistance in field populations in Mexico. In 2010 a second mutation, Cys1,534 in the S6 of domain III was discovered and also found to be associated with pyrethroid resistance and correlated with the frequency of Ile1,016. A linkage disequilibrium analysis was performed on Ile1,016 and Cys1,534 in Ae. aegypti collected in Mexico from 2000-2012 to test for statistical associations between S6 in domains II and III in natural populations. We estimated the frequency of the four dilocus haplotypes in 1,016 and 1,534: Val1,016/Phe1,534 (susceptible), Val1,016/Cys1,534, Ile1,016/Phe1,534, and Ile1,016/Cys1,534 (resistant). The susceptible Val1,016/Phe1,534 haplotype went from near fixation to extinction and the resistant Ile1,016/Cys1,534 haplotype increased in all collections from a frequency close to zero to frequencies ranging from 0.5-0.9. The Val1,016/Cys1,534 haplotype increased in all collections until 2008 after which it began to decline as Ile1,016/Cys1,534 increased. However, the Ile1,016/Phe1,534 haplotype was rarely detected; it reached a frequency of only 0.09 in one collection and subsequently declined. Pyrethroid resistance in the vgsc gene requires the sequential evolution of two mutations. The Ile1,016/Phe1,534 haplotype appears to have low fitness suggesting that Ile1,016 was unlikely to have evolved independently. Instead the Cys1,534 mutation evolved first but conferred only a low level of resistance. Ile1,016 in S6 of domain II then arose from the Val1,016/Cys1,534 haplotype and was rapidly selected because double mutants confer higher pyrethroid resistance. This pattern suggests that knowledge of the frequencies of mutations in both S6 in domains II and III are important to predict the potential of a population to evolve kdr. Susceptible populations with high Val1,016/Cys1,534 frequencies are at high risk for kdr evolution, whereas susceptible populations without either mutation are less likely to evolve high levels of kdr, at least over a 10 year period.
Asidi, Alex N; N' Guessan, Raphael; Koffi, Alphonsine A; Curtis, Christopher F; Hougard, Jean-Marc; Chandre, Fabrice; Corbel, Vincent; Darriet, Frédéric; Zaim, Morteza; Rowland, Mark W
2005-01-01
Background Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. Methods Comparative studies of chlorpyrifos-methyl (CM), an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L), a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1R). Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. Results and Conclusion All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1R genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1R and Ace.1S genes did not differ significantly from mosquitoes that carried only Ace.1S genes on any of the treated nets, indicating that the Ace.1R allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut. PMID:15918909
Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru
2014-01-01
Background Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. Methodology/Principal Findings We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Conclusions/Significance Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti. PMID:25077956
Kawada, Hitoshi; Oo, Sai Zaw Min; Thaung, Sein; Kawashima, Emiko; Maung, Yan Naung Maung; Thu, Hlaing Myat; Thant, Kyaw Zin; Minakawa, Noboru
2014-01-01
Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present study was to determine the types and frequencies of mutations in the para gene of Aedes aegypti collected from used tires in Yangon City, Myanmar. We determined high pyrethroid resistance in Aedes aegypti larvae at all collection sites in Yangon City, by using a simplified knockdown bioassay. We showed that V1016G and S989P mutations were widely distributed, with high frequencies (84.4% and 78.8%, respectively). By contrast, we were unable to detect I1011M (or I1011V) or L1014F mutations. F1534C mutations were also widely distributed, but with a lower frequency than the V1016G mutation (21.2%). High percentage of co-occurrence of the homozygous V1016G/S989P mutations was detected (65.7%). Additionally, co-occurrence of homozygous V1016G/F1534C mutations (2.9%) and homozygous V1016G/F1534C/S989P mutations (0.98%) were detected in the present study. Pyrethroid insecticides were first used for malaria control in 1992, and have since been constantly used in Myanmar. This intensive use may explain the strong selection pressure toward Aedes aegypti, because this mosquito is generally a domestic and endophagic species with a preference for indoor breeding. Extensive use of DDT for malaria control before the use of this chemical was banned may also explain the development of pyrethroid resistance in Aedes aegypti.
Vontas, John G; Small, Graham J; Nikou, Dimitra C; Ranson, Hilary; Hemingway, Janet
2002-01-01
A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majority of peroxidase activity, previously correlated with resistance, was confined to the fraction that bound to the affinity column, which was considerably elevated in the resistant insects. A cDNA clone encoding a GST (nlgst1-1) - the first reported GST sequence from Hemiptera with up to 54% deduced amino-acid identity with other insect class I GSTs - was isolated from a pyrethroid-resistant strain. Northern analysis showed that nlgst1-1 was overexpressed in resistant insects. nlgst1-1 was expressed in Escherichia coli, purified and characterized. The ability of the recombinant protein to bind to the S-hexylglutathione affinity matrix, its substrate specificities and its immunological properties confirmed that this GST was one from the elevated subset of N. lugens GSTs. Peroxidase activity of the recombinant nlgst1-1 indicated that it had a role in resistance, through detoxification of lipid peroxidation products induced by pyrethroids. Southern analysis of genomic DNA from the resistant and susceptible strains indicated that GST-based insecticide resistance may be associated with gene amplification in N. lugens. PMID:11853540
Vontas, John G; Small, Graham J; Nikou, Dimitra C; Ranson, Hilary; Hemingway, Janet
2002-03-01
A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majority of peroxidase activity, previously correlated with resistance, was confined to the fraction that bound to the affinity column, which was considerably elevated in the resistant insects. A cDNA clone encoding a GST (nlgst1-1) - the first reported GST sequence from Hemiptera with up to 54% deduced amino-acid identity with other insect class I GSTs - was isolated from a pyrethroid-resistant strain. Northern analysis showed that nlgst1-1 was overexpressed in resistant insects. nlgst1-1 was expressed in Escherichia coli, purified and characterized. The ability of the recombinant protein to bind to the S-hexylglutathione affinity matrix, its substrate specificities and its immunological properties confirmed that this GST was one from the elevated subset of N. lugens GSTs. Peroxidase activity of the recombinant nlgst1-1 indicated that it had a role in resistance, through detoxification of lipid peroxidation products induced by pyrethroids. Southern analysis of genomic DNA from the resistant and susceptible strains indicated that GST-based insecticide resistance may be associated with gene amplification in N. lugens.
Santo-Orihuela, Pablo L; Vassena, Claudia V; Carvajal, Guillermo; Clark, Eva; Menacho, Silvio; Bozo, Ricardo; Gilman, Robert H; Bern, Caryn; Marcet, Paula L
2017-01-01
A wide range of insecticide resistance profiles has been reported across Bolivian domestic and sylvatic populations of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae), including some with levels proven to be a threat for vector control. In this work, the insecticide profile of domestic T. infestans was studied with standardized toxicological bioassays, in an area that has not undergone consistent vector control. F1 first-instar nymphs hatched in laboratory from bugs captured in three communities from the Santa Cruz Department were evaluated with different insecticides. Moreover, the enzymatic activity of esterases and cytochrome P450 monooxygenases was measured in individual insects to evaluate the possible mechanism of metabolic resistance to pyrethroids. In addition, the DNA sequence of sodium channel gene (kdr) was screened for two point mutations associated with pyrethroid resistance previously reported in T. infestans.All populations showed reduced susceptibility to deltamethrin and α-cypermethrin, albeit the RR50 values varied significantly among them. Increased P450 monooxygenases and permethrate esterases suggest the contribution, as detoxifying mechanisms, to the observed resistance to deltamethrin in all studied populations. No individuals presented either mutation associated to resistance in the kdr gene. The level of susceptibility to α-cypermethrin, the insecticide used by the local vector control program, falls within an acceptable range to continue its use in these populations. However, the observed RR50 values evidence the possibility of selection for resistance to pyrethroids, especially to deltamethrin. Consequently, the use of pyrethroid insecticides should be closely monitored in these communities, which should be kept under entomological surveillance and sustained interventions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Santo-Orihuela, Pablo L.; Vassena, Claudia V.; Carvajal, Guillermo; Clark, Eva; Menacho, Silvio; Bozo, Ricardo; Gilman, Robert H.; Bern, Caryn; Marcet, Paula L.
2017-01-01
A wide range of insecticide resistance profiles has been reported across Bolivian domestic and sylvatic populations of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae), including some with levels proven to be a threat for vector control. In this work, the insecticide profile of domestic T. infestans was studied with standardized toxicological bioassays, in an area that has not undergone consistent vector control. F1 first-instarnymphs hatched in laboratory from bugs captured in three communities from the Santa Cruz Department were evaluated with different insecticides. Moreover, the enzymatic activity of esterases and cytochrome P450 monooxygenases was measured in individual insects to evaluate the possible mechanism of metabolic resistance to pyrethroids. In addition, the DNA sequence of sodium channel gene (kdr) was screened for two point mutations associated with pyrethroid resistance previously reported in T. infestans. All populations showed reduced susceptibility to deltamethrin and α-cypermethrin, albeit the RR50 values varied significantly among them. Increased P450 monooxygenases and permethrate esterases suggest the contribution, as detoxifying mechanisms, to the observed resistance to deltamethrin in all studied populations. No individuals presented either mutation associated to resistance in the kdr gene. The level of susceptibility to α-cypermethrin, the insecticide used by the local vector control program, falls within an acceptable range to continue its use in these populations. However, the observed RR50 values evidence the possibility of selection for resistance to pyrethroids, especially to deltamethrin. Consequently, the use of pyrethroid insecticides should be closely monitored in these communities, which should be kept under entomological surveillance and sustained interventions. PMID:28011736
Dusfour, Isabelle; Thalmensy, Véronique; Gaborit, Pascal; Issaly, Jean; Carinci, Romuald; Girod, Romain
2011-05-01
In French Guiana, pyrethroids and organophosphates have been used for many years against Aedes aegypti. We aimed to establish both the resistance level of Ae. aegypti and the ultra low volume spray efficacy to provide mosquito control services with practical information to implement vector control and resistance management. Resistance to deltamethrin and fenitrothion was observed. In addition, the profound loss of efficacy of AquaK'othrine® and the moderate loss of efficacy of Paluthion® 500 were recorded. Fenitrothion remained the most effective candidate for spatial application in French Guiana until its removal in December 2010. Further investigation of the mechanism of resistance to deltamethrin demonstrated the involvement of mixed-function oxidases and, to a lesser extent, of carboxylesterases. However, these observations alone cannot explain the level of insecticide resistance we observed during tube and cage tests.
Insecticide resistance status of Aedes aegypti (L.) from Colombia.
Fonseca-González, Idalyd; Quiñones, Martha L; Lenhart, Audrey; Brogdon, William G
2011-04-01
To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT-PCR. All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda-cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non-specific esterases (NSE) in some of the fenitrothion- and pyrethroid-resistant populations. All populations showed high levels of glutathione-S-transferase (GST) activity. GSTe2 gene was found overexpressed in DDT-resistant populations compared with Rockefeller susceptible strain. Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry.
Wu, Meixiang; Gotoh, Hiroki; Waters, Timothy; Walsh, Douglas B; Lavine, Laura Corley
2014-06-01
Knockdown resistance (kdr) has been identified as a main mechanism against pyrethroid insecticides in many arthropod pests including in the onion thrips, Thrips tabaci. To characterize and identify pyrethroid-resistance in onion thrips in Washington state, we conducted insecticide bioassays and sequenced a region of the voltage gated sodium channel gene from several different T. tabaci populations. Field collected Thrips tabaci were found to have large variations in resistance to the pyrethroid insecticide lambda-cyhalothrin. We identified two single nucleotide substitutions in our analysis of a partial sequence of the T. tabaci voltage-gated sodium channel gene. One mutation resulted in the non-synonymous substitution of methionine with leucine (M918L), which is well known to be responsible for super knockdown resistance in some pest species. Another non-synonymous substitution, a valine (GTT) to alanine (GCT) replacement at amino acid 1010 (V1010A) was identified in our study and was associated with lambda-cyhalothrin resistance. We have characterized a known kdr mutation and identified a novel mutation in the voltage-gated sodium channel gene of Thrips tabaci associated with resistance to lambda-cyhalothrin. This gene region and these mutations are expected to be useful in the development of a diagnostic test to detect kdr resistance in many onion thrips populations. © 2013 Society of Chemical Industry.
Molecular characterization of pyrethroid resistance in the olive fruit fly Bactrocera oleae.
Pavlidi, Nena; Kampouraki, Anastasia; Tseliou, Vasilis; Wybouw, Nicky; Dermauw, Wannes; Roditakis, Emmanouil; Nauen, Ralf; Van Leeuwen, Thomas; Vontas, John
2018-06-01
Α reduction of pyrethroid efficacy has been recently recorded in Bactrocera oleae, the most destructive insect of olives. The resistance levels of field populations collected from Crete-Greece scaled up to 22-folds, compared to reference laboratory strains. Sequence analysis of the IIS4-IIS6 region of para sodium channel gene in a large number of resistant flies indicated that resistance may not be associated with target site mutations, in line with previous studies in other Tephritidae species. We analyzed the transcriptomic differences between two resistant populations versus an almost susceptible field population and two laboratory strains. A large number of genes was found to be significantly differentially transcribed across the pairwise comparisons. Interestingly, gene set analysis revealed that genes of the 'electron carrier activity' GO group were enriched in one specific comparison, which might suggest a P450-mediated resistance mechanism. The up-regulation of several transcripts encoding detoxification enzymes was qPCR validated, focusing on transcripts coding for P450s. Of note, the expression of contig00436 and contig02103, encoding CYP6 P450s, was significantly higher in all resistant populations, compared to susceptible ones. These results suggest that an increase in the amount of the CYP6 P450s might be an important mechanism of pyrethroid resistance in B. oleae. Copyright © 2018 Elsevier Inc. All rights reserved.
Akogbeto, Martin; Padonou, Gil Germain; Bankole, Honore Sourou; Gazard, Dorothee Kinde; Gbedjissi, Ghelus Louis
2011-01-01
In 2008, the National Malaria Control Program in Benin implemented a vector control intervention based on indoor residual spraying (IRS). Four districts of high resistance of Anopheles gambiae to pyrethroids were sprayed with bendiocarb. More than 350,000 inhabitants have been protected. Entomologic parameters in the control area were compared with those in intervention sites. The study has shown a drastic decrease in the An. gambiae biting rate in the sprayed areas. Results of an enzyme-linked immunosorbent assay were negative for Plasmodium falciparum antigen during the entire period of the intervention. No household members received infected bites (entomologic inoculation rate = 0 during January–July). Parous rates were low in areas covered by IRS because bendiocarb is not conducive to long-term mosquito survival. Bendiocarb was found to be a good alternative insecticide for IRS in Benin, in areas where An. gambiae has developed high resistance to pyrethroids. PMID:21976555
Macagnan, Natani; Rutkoski, Camila F; Kolcenti, Cassiane; Vanzetto, Guilherme V; Macagnan, Luan P; Sturza, Paola F; Hartmann, Paulo A; Hartmann, Marilia T
2017-09-01
It is important to establish the toxicity pesticides against non-target species, especially those pesticides used in commercial formulations. Pyrethroid insecticides are widely used in agriculture despite their toxicity to aquatic animals. In this study, we determine the toxicity of commercial formulation of two pyrethroid insecticides, cypermethrin and deltamethrin, in two life stages of Physalaemus gracilis, a frog that breeds in agricultural ecosystems and has potential contact with pyrethroid pesticides. The acute toxicity test (96 h) was carried out with embryos of stage 17:18 and larvae of stages 24:25. Embryos were more resistant to both pesticides than larvae. In embryo mobility assays, we found that both pesticides caused spasmodic contractions, suggestive of neurological effects. In acute toxicity assays, we found that P. gracilis is more resistant to these insecticides than other studied species.
Levot, G W; Johnson, P W; Hughes, P B; Powis, K J; Boray, J C; Dawson, K L
1995-01-01
Synthetic pyrethroid (SP) resistance has developed in Australian field populations of the sheep body louse, Bovicola (Damalinia) ovis. Laboratory bioassays were used to measure the susceptibility of lice to cypermethrin and the other registered SPs. Results of these bioassays indicated resistance to cypermethrin, deltamethrin, cyhalothrin and alphacypermethrin. So far, high-level resistance has been diagnosed in only a few strains. The toxicological responses of these strains were clearly separated from those of the majority of louse strains tested. Furthermore, these strains had survived immersion in commercial SP dips. The level of resistance described in some strains was sufficient to cause pour-on products to fail despite the fact that the LC50s of these strains fell within the normal range of field responses.
Dang, Kai; Toi, Cheryl S; Lilly, David G; Bu, Wenjun; Doggett, Stephen L
2015-07-01
Pyrethroid resistance in the common bed bug, Cimex lectularius L., has been reported worldwide. An important resistance mechanism is via knockdown resistance (kdr) mutations, notably V419L and L925I. Information regarding this kdr-type resistance mechanism is unknown in Australia. This study aims to examine the status of kdr mutations in Australian C. lectularius strains. Several modern field-collected strains and museum-preserved reference collections of Australian C. lectularius were examined. Of the field strains (2007-2013), 96% had the known kdr mutations (L925I or both V419L/L925I). The 'Adelaide' strain (2013) and samples from the preserved reference collections (1994-2002) revealed no known kdr mutations. A novel mutation I936F was apparent in the insecticide-resistant 'Adelaide' strain, one strain from Perth (with L925I) and the majority of the reference collection specimens. The laboratory insecticide-resistant 'Sydney' strain showed a mixture of no kdr mutations (20%) and L925I (80%). The novel mutation I936F may be a kdr mutation but appeared to contribute less resistance to the pyrethroids than the V419L and L925I mutations. The detection of high frequencies of kdr mutations indicates that kdr-type resistance is widespread across Australia. Hence, there should be a reduced reliance on pyrethroid insecticides and an integrated management approach for the control of C. lectularius infestations. © 2014 Society of Chemical Industry.
Khan, Hafiz Azhar Ali; Akram, Waseem; Shad, Sarfraz Ali; Lee, Jong-Jin
2013-01-01
House flies, Musca domestica L., are important pests of dairy operations worldwide, with the ability to adapt wide range of environmental conditions. There are a number of insecticides used for their management, but development of resistance is a serious problem. Insecticide mixtures could enhance the toxicity of insecticides in resistant insect pests, thus resulting as a potential resistance management tool. The toxicity of bifenthrin, cypermethrin, deltamethrin, chlorpyrifos, profenofos, emamectin benzoate and fipronil were assessed separately, and in mixtures against house flies. A field-collected population was significantly resistant to all the insecticides under investigation when compared with a laboratory susceptible strain. Most of the insecticide mixtures like one pyrethroid with other compounds evaluated under two conditions (1∶1-“A” and LC50: LC50-“B”) significantly increased the toxicity of pyrethroids in the field population. Under both conditions, the combination indices of pyrethroids with other compounds, in most of the cases, were significantly below 1, suggesting synergism. The enzyme inhibitors, PBO and DEF, when used in combination with insecticides against the resistant population, toxicities of bifenthrin, cypermethrin, deltamethrin and emamectin were significantly increased, suggesting esterase and monooxygenase based resistance mechanism. The toxicities of bifenthrin, cypermethrin and deltamethrin in the resistant population of house flies could be enhanced by the combination with chlorpyrifos, profenofos, emamectin and fipronil. The findings of the present study might have practical significance for resistance management in house flies. PMID:23613758
Starr, James M; Scollon, Edward J; Hughes, Michael F; Ross, David G; Graham, Stephen E; Crofton, Kevin M; Wolansky, Marcelo J; Devito, Michael J; Tornero-Velez, Rogelio
2012-12-01
Due to extensive use, human exposure to multiple pyrethroid insecticides occurs frequently. Studies of pyrethroid neurotoxicity suggest a common mode of toxicity and that pyrethroids should be considered cumulatively to model risk. The objective of this work was to use a pyrethroid mixture that reflects human exposure to common pyrethroids to develop comparative toxicokinetic profiles in rats, and then model the relationship between brain concentration and motor activity. Data from a national survey of child care centers were used to make a mixture reflecting proportions of the most prevalent pyrethroids: permethrin, cypermethrin, β-cyfluthrin, deltamethrin, and esfenvalerate. The mixture was administered orally at one of two concentrations (11.2 and 27.4 mg/kg) to adult male rats. At intervals from 1 to 24h, motor activity was assessed and the animals were sacrificed. Pyrethroid concentrations were measured in the blood, liver, fat, and brain. After controlling for dose, there were no differences in any tissue concentrations, except blood at the initial time point. Elimination half-lives for all pyrethroids in all tissues were < 7h. Brain concentrations of all pyrethroids (when cis- and trans-permethrin were pooled) at the initial time point were proportional to their relative doses. Decreases in motor activity indicated dose additivity, and the relationship between pyrethroid brain concentration and motor activity was described by a four-parameter sigmoidal E(max) model. This study links environmental data with toxicokinetic and neurobehavioral assays to support cumulative risk assessments of pyrethroid pesticides. The results support the additive model of pyrethroid effect on motor activity and suggest that variation in the neurotoxicity of individual pyrethroids is related to toxicodynamic rather than toxicokinetic differences.
Multiple molecular targets for pyrethroid insecticides have been evaluated in in vitro preparations, including but not limited to voltage-sensitive sodium channels (VSSCs), voltage-sensitive calcium channels (VSCCs), GABAergic receptors, ATPases and mitochondrial respiratory chai...
Choi, Kwang S; Christian, Riann; Nardini, Luisa; Wood, Oliver R; Agubuzo, Eunice; Muleba, Mbanga; Munyati, Shungu; Makuwaza, Aramu; Koekemoer, Lizette L; Brooke, Basil D; Hunt, Richard H; Coetzee, Maureen
2014-10-08
Two mitochondrial DNA clades have been described in Anopheles funestus populations from southern Africa. Clade I is common across the continent while clade II is known only from Mozambique and Madagascar. The specific biological status of these clades is at present unknown. We investigated the possible role that each clade might play in the transmission of Plasmodium falciparum and the insecticide resistance status of An. funestus from Zimbabwe and Zambia. Mosquitoes were collected inside houses from Nchelenge District, Zambia and Honde Valley, Zimbabwe in 2013 and 2014. WHO susceptibility tests, synergist assays and resistance intensity tests were conducted on wild females and progeny of wild females. ELISA was used to detect Plasmodium falciparum circumsporozoite protein. Specimens were identified to species and mtDNA clades using standard molecular methods. The Zimbabwean samples were all clade I while the Zambian population comprised 80% clade I and 20% clade II in both years of collection. ELISA tests gave an overall infection rate of 2.3% and 2.1% in 2013, and 3.5% and 9.2% in 2014 for Zimbabwe and Zambia respectively. No significant difference was observed between the clades. All populations were resistant to pyrethroids and carbamates but susceptible to organochlorines and organophosphates. Synergist assays indicated that pyrethroid resistance is mediated by cytochrome P450 mono-oxygenases. Resistance intensity tests showed high survival rates after 8-hrs continuous exposure to pyrethroids but exposure to bendiocarb gave the same results as the susceptible control. This is the first record of An. funestus mtDNA clade II occurring in Zambia. No evidence was found to suggest that the clades are markers of biologically separate populations. The ability of An. funestus to withstand prolonged exposure to pyrethroids has serious implications for the use of these insecticides, either through LLINs or IRS, in southern Africa in general and resistance management strategies should be urgently implemented.
Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae
Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.
2015-01-01
Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119
Kawada, Hitoshi; Higa, Yukiko; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Thi Yen, Nguyen; Loan, Luu Lee; Sánchez, Rodrigo A. P.; Takagi, Masahiro
2009-01-01
Background Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observed in several mosquito species, point mutations in the para gene have not been fully characterized in Ae. aegypti populations in Vietnam. The aim of this study was to determine the types and frequencies of mutations in the para gene in Ae. aegypti collected from used tires in Vietnam. Methods and Findings Several point mutations were examined that cause insensitivity of the voltage-gated sodium channel in the insect nervous system due to the replacement of the amino acids L1014F, the most commonly found point mutation in several mosquitoes; I1011M (or V) and V1016G (or I), which have been reported to be associated to knockdown resistance in Ae. aegypti located in segment 6, domain II; and a recently found amino acid replacement in F1269 in Ae. aegypti, located in segment 6, domain III. Among 756 larvae from 70 locations, no I1011M or I1011V nor L1014F mutations were found, and only two heterozygous V1016G mosquitoes were detected. However, F1269C mutations on domain III were distributed widely and with high frequency in 269 individuals among 757 larvae (53 collection sites among 70 locations surveyed). F1269C frequencies were low in the middle to north part of Vietnam but were high in the areas neighboring big cities and in the south of Vietnam, with the exception of the southern mountainous areas located at an elevation of 500–1000 m. Conclusions The overall percentage of homozygous F1269C seems to remain low (7.4%) in the present situation. However, extensive and uncontrolled frequent use of photostable pyrethroids might be a strong selection pressure for this mutation to cause serious problems in the control of dengue fever in Vietnam. PMID:19806205
First report of L1014F kdr mutation in Culex quinquefasciatus in Mexico.
Ponce, Gustavo; Sanchez, Iram P; García, Selene M; Torrado, Jose M; Lozano-Fuentes, Saúl; Lopez-Monroy, Beatriz; Flores, Adriana E
2016-12-01
The L1014F mutation in the voltage-sodium channel gene has been associated with resistance to DDT and pyrethroids in various arthropod species including mosquitoes. We determined the frequency of the L1014F kdr mutation in 16 field populations of Culex quinquefasciatus from Northeastern Mexico collected between 2008 and 2013. The L1014F was present in all populations analyzed with the lowest frequency (3.33%) corresponding to the population from Monclova collected in 2012, and the highest frequency (63.63%) from the Monterrey population collected in 2012. The presence of a kdr mutation in populations of Cx. quinquefasciatus from northeastern Mexico provides evidence of pyrethroid resistance. This requires a special attention, considering that pyrethroid-based insecticides are commonly used in vector-control campaigns, especially against Aedes aegypti (L.). © 2015 Institute of Zoology, Chinese Academy of Sciences.
Wu, Shaohui; Kostromytska, Olga S; Koppenhöfer, Albrecht M
2017-08-01
The annual bluegrass weevil, Listronotus maculicollis (Kirby), is a major pest of golf course turf in eastern North America and has become particularly problematic owing to widespread development of insecticide resistance. As an alternative option to manage resistant adult L. maculicollis, we explored combinations of the pyrethroid insecticide bifenthrin with an emulsifiable oil formulation of the entomopathogenic fungus Beauveria bassiana strain GHA (Bb ES). Combinations synergistically enhanced mortality in both insecticide-susceptible and insecticide-resistant L. maculicollis adults in the laboratory when bifenthrin was used at LC50s for each population. To determine the component behind the synergism, technical spores of B. bassiana GHA and the emulsifiable oil carrier in the fungal formulation were tested separately or in combination with bifenthrin. In both separate and combined applications, the emulsifiable oil carrier was responsible for high mortality within 3 d after treatment and interacted synergistically with bifenthrin, whereas fungus-induced mortality started later. Strong synergism was also observed in three field experiments with a relatively resistant L. maculicollis population. Combinations of Bb ES and bifenthrin hold promise as an effective L. maculicollis management tool, particularly of pyrethroid-resistant populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pichler, Verena; Bellini, Romeo; Veronesi, Rodolfo; Arnoldi, Daniele; Rizzoli, Annapaola; Lia, Riccardo Paolo; Otranto, Domenico; Montarsi, Fabrizio; Carlin, Sara; Ballardini, Marco; Antognini, Elisa; Salvemini, Marco; Brianti, Emanuele; Gaglio, Gabriella; Manica, Mattia; Cobre, Pietro; Serini, Paola; Velo, Enkelejda; Vontas, John; Kioulos, Ilias; Pinto, Joao; Della Torre, Alessandra; Caputo, Beniamino
2018-06-01
Aedes albopictus has spread during the last few decades all over the world. This has increased significantly the risk of exotic arbovirus transmission (e.g. chikungunya, dengue, and Zika) also in temperate areas, as demonstrated by the Chikungunya 2007 and 2017 outbreaks in northeastern and central Italy. Insecticides are an important tool for limiting the circulation of these mosquito-borne viruses. The aim of the present study was to address the gap in current knowledge of pyrethroid insecticide resistance of European Ae. albopictus populations, focusing on populations from Italy, Albania and Greece. Bioassays for resistance to permethrin (0.75%), α-cypermethrin (0.05%) or deltamethrin (0.05%) were performed according to World Health Organization (WHO) protocols and showed reduced susceptibility (<90% mortality) of some Italian populations to permethrin and α-cypermethrin, but not to deltamethrin. This study reports the first evidence of resistance to pyrethroids in adult Italian Ae. albopictus populations. Results refer to the season preceding the Chikungunya 2017 outbreak in central Italy and highlight the need to increase efforts to monitor the spread of insecticide resistance and the need to develop strategies to limit the spread of insecticide resistance, particularly in areas where extensive treatments have been carried out to contain disease outbreaks. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc
2009-11-19
Chemicals are used on bed nets in order to prevent infected bites and to kill aggressive malaria vectors. Because pyrethroid resistance has become widespread in the main malaria vectors, research for alternative active ingredients becomes urgent. Mixing a repellent and a non-pyrethroid insecticide seemed to be a promising tool as mixtures in the laboratory showed the same features as pyrethroids. We present here the results of two trials run against free-flying Anopheles gambiae populations comparing the effects of two insect repellents (either DEET or KBR 3023, also known as icaridin) and an organophosphate insecticide at low-doses (pirimiphos-methyl, PM) used alone and in combination on bed nets. We showed that mixtures of PM and the repellents induced higher exophily, blood feeding inhibition and mortality among wild susceptible and resistant malaria vectors than compounds used alone. Nevertheless the synergistic interactions are only involved in the high mortality induced by the two mixtures. These field trials argue in favour of the strategy of mixing repellent and organophosphate on bed nets to better control resistant malaria vectors.
Djouaka, Rousseau F; Bakare, Adekunle A; Coulibaly, Ousmane N; Akogbeto, Martin C; Ranson, Hilary; Hemingway, Janet; Strode, Clare
2008-01-01
Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms were also identified that warrant further investigation. Metabolic genes were over expressed irrespective of the presence of kdr, the latter resistance mechanism being absent in one resistant population. The discovery that mosquitoes collected from different types of breeding sites display differing profiles of metabolic genes at the adult stage may reflect the influence of a range of xenobiotics on selecting for resistance in mosquitoes. PMID:19014539
Pyrethroids (PYR) are pesticides with high insecticidal activity that may disrupt neuronal excitability in target and nontarget species. The accumulated evidence consistently showed that this neurophysiologic action is followed by alterations in motor, sensorimotor, neuromuscular...
USDA-ARS?s Scientific Manuscript database
Pyrethroid insecticides are widely used to control larvae or adult western corn rootworm, a key pest of corn in the United States. In response to reports of reduced efficacy of pyrethroids in WCR management programs in southwestern areas of Nebraska and Kansas the present research was designed to es...
USDA-ARS?s Scientific Manuscript database
The brown dog tick, Rhipicephalus sanguineus sensu lato, is a cosmopolitan ectoparasite and vector of pathogens that kill humans and animals. Pyrethroids represent a class of synthetic acaricides that have been used intensely to try to control the brown dog tick and mitigate the risk of tick-borne d...
Granada, Yurany; Mejía-Jaramillo, Ana María; Strode, Clare
2018-01-01
Resistance to pyrethroids in mosquitoes is mainly caused by target site insensitivity known as knockdown resistance (kdr). In this work, we examined the point mutations present in portions of domains I, II, III, and IV of the sodium channel gene in Aedes aegypti mosquitoes from three Colombian municipalities. A partial region coding for the sodium channel gene from resistant mosquitoes was sequenced, and a simple allele-specific PCR-based assay (AS-PCR) was used to analyze mutations at the population level. The previously reported mutations, V1016I and F1534C, were found with frequencies ranging from 0.04 to 0.41, and 0.56 to 0.71, respectively, in the three cities. Moreover, a novel mutation, at 419 codon (V419L), was found in Ae. aegypti populations from Bello, Riohacha and Villavicencio cities with allelic frequencies of 0.06, 0.36, and 0.46, respectively. Interestingly, the insecticide susceptibility assays showed that mosquitoes from Bello were susceptible to λ-cyhalothrin pyrethroid whilst those from Riohacha and Villavicencio were resistant. A positive association between V419L and V1016I mutations with λ-cyhalothrin resistance was established in Riohacha and Villavicencio. The frequency of the F1534C was high in the three populations, suggesting that this mutation could be conferring resistance to insecticides other than λ-cyhalothrin, particularly type I pyrethroids. Further studies are required to confirm this hypothesis. PMID:29443870
Granada, Yurany; Mejía-Jaramillo, Ana María; Strode, Clare; Triana-Chavez, Omar
2018-02-14
Resistance to pyrethroids in mosquitoes is mainly caused by target site insensitivity known as knockdown resistance ( kdr ). In this work, we examined the point mutations present in portions of domains I, II, III, and IV of the sodium channel gene in Aedes aegypti mosquitoes from three Colombian municipalities. A partial region coding for the sodium channel gene from resistant mosquitoes was sequenced, and a simple allele-specific PCR-based assay (AS-PCR) was used to analyze mutations at the population level. The previously reported mutations, V1016I and F1534C, were found with frequencies ranging from 0.04 to 0.41, and 0.56 to 0.71, respectively, in the three cities. Moreover, a novel mutation, at 419 codon (V419L), was found in Ae. aegypti populations from Bello, Riohacha and Villavicencio cities with allelic frequencies of 0.06, 0.36, and 0.46, respectively. Interestingly, the insecticide susceptibility assays showed that mosquitoes from Bello were susceptible to λ-cyhalothrin pyrethroid whilst those from Riohacha and Villavicencio were resistant. A positive association between V419L and V1016I mutations with λ-cyhalothrin resistance was established in Riohacha and Villavicencio. The frequency of the F1534C was high in the three populations, suggesting that this mutation could be conferring resistance to insecticides other than λ-cyhalothrin, particularly type I pyrethroids. Further studies are required to confirm this hypothesis.
Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier
2017-01-01
Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can act as regulators of the activity of various ABC and SLC drug transporters, but only when used at high and non-relevant concentrations, making unlikely any contribution of these transporter activity alterations to pyrethroid toxicity in environmentally exposed humans. PMID:28099443
Torres, J B; Rodrigues, A R S; Barros, E M; Santos, D S
2015-02-01
Pyrethroid insecticides are widely recommended to control insect defoliators but lack efficacy against most aphid species. Thus, conserving aphid predators such as the lady beetle Eriopis connexa (Germar) is important to pest management in crop ecosystems that require pyrethroid sprays. In a greenhouse, early fourth-instar larvae and 5-day-old adults from susceptible (S) and resistant (R) E. connexa populations were caged on lambda-cyhalothrin-treated cotton plants, after which survival and egg production (for those caged at adult stage) were assessed. In the laboratory, similar groups were subjected to dried residues and topical treatment with one of eight pyrethroids (alpha-cypermethrin, bifenthrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, zeta-cypermethrin, and lambda-cyhalothrin), the organophosphate methidathion, or water and wetting agent. After caging on treated cotton terminals, 66% of the R-population larvae survived to adulthood, compared with 2% of those from the S-population. At 12 d after caging at adult stage under the same conditions, 64% of the females from the R-population survived and laid eggs, compared with 100% mortality and no oviposition for the S-females. In trials involving dried insecticide residues, gain in survival based on the survival difference (percentage for R-population minus percentage for S-population) across all tested pyrethroids varied from 3 to 63% for larvae and from 3 to 70% for adults. In trials involving topical sprays of the tested pyrethroids, survival differences ranged from 36 to 96% for larvae and from 21 to 82% for adults. Fenpropathrin and bifenthrin were the least and most toxic, respectively. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Demkovich, Mark; Siegel, Joel P; Higbee, Bradley S; Berenbaum, May R
2015-06-01
The polyphagous navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is the most destructive pest of nut crops, including almonds and pistachios, in California orchards. Management of this insect has typically been a combination of cultural controls and insecticide use, with the latter increasing substantially along with the value of these commodities. Possibly associated with increased insecticide use, resistance has been observed recently in navel orangeworm populations in Kern County, California. In studies characterizing a putatively pyrethroid-resistant strain (R347) of navel orangeworm, susceptibility to bifenthrin and β-cyfluthrin was compared with that of an established colony of susceptible navel orangeworm. Administration of piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in first-instar feeding bioassays with the pyrethroids bifenthrin and β-cyfluthrin produced synergistic effects and demonstrated that cytochrome P450 monooxygenases and carboxylesterases contribute to resistance in this population. Resistance is therefore primarily metabolic and likely the result of overexpression of specific cytochrome P450 monooxygenases and carboxylesterase genes. Resistance was assessed by median lethal concentration (LC50) assays and maintained across nine generations in the laboratory. Life history trait comparisons between the resistant strain and susceptible strain revealed significantly lower pupal weights in resistant individuals reared on the same wheat bran-based artificial diet across six generations. Time to second instar was greater in the resistant strain than the susceptible strain, although overall development time was not significantly different between strains. Resistance was heritable and may have an associated fitness cost, which could influence the dispersal and expansion of resistant populations in nut-growing areas in California. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The U.S. EPA's SHEDS-Multimedia model was applied to enhance the understanding of children's exposures and doses to multiple pyrethroid pesticides, including major contributing chemicals and pathways. This paper presents combined dietary and residential exposure estimates and cum...
USDA-ARS?s Scientific Manuscript database
Although insecticide resistance is a widespread problem for most insect pests, frequently the assessment of resistance occurs over a limited geographic range. Herein we report the first widespread survey of insecticide resistance ever undertaken for the house fly, Musca domestica, a major pest of a...
Yadouleton, Anges; Martin, Thibaud; Padonou, Gil; Chandre, Fabrice; Asidi, Alex; Djogbenou, Luc; Dabiré, Roch; Aïkpon, Rock; Boko, Michel; Glitho, Isabelle; Akogbeto, Martin
2011-04-13
Pyrethroid insecticides, carbamate and organophosphate are the classes of insecticides commonly used in agriculture for crop protection in Benin. Pyrethroids remain the only class of insecticides recommended by the WHO for impregnation of bed nets. Unfortunately, the high level of pyrethroid resistance in Anopheles gambiae s.l., threatens to undermine the success of pyrethroid treated nets. This study focuses on the investigation of agricultural practices in cotton growing areas, and their direct impact on larval populations of An. gambiae in surrounding breeding sites. The protocol was based on the collection of agro-sociological data where farmers were subjected to semi-structured questionnaires based on the strategies used for crop protection. This was complemented by bioassay tests to assess the susceptibility of malaria vectors to various insecticides. Molecular analysis was performed to characterize the resistance genes and the molecular forms of An. gambiae. Insecticide residues in soil samples from breeding sites were investigated to determine major factors that can inhibit the normal growth of mosquito larvae by exposing susceptible and resistant laboratory strains. There is a common use by local farmers of mineral fertilizer NPK at 200 kg/ha and urea at 50 kg/hectare following insecticide treatments in both the Calendar Control Program (CCP) and the Targeted Intermittent Control Program (TICP). By contrast, no chemicals are involved in Biological Program (BP) where farmers use organic and natural fertilizers which include animal excreta.Susceptibility test results confirmed a high resistance to DDT. Mean mortality of An. gambiae collected from the farms practicing CCP, TICP and BP methods were 33%, 42% and 65% respectively. An. gambiae populations from areas using the CCP and TICP programs showed resistance to permethrin with mortality of 50% and 58% respectively. By contrast, bioassay test results of An. gambiae from BP areas gave a high level of susceptibility to permethrin with an average mortality of 94%.Molecular analysis identified An. gambiae s.s, and An. arabiensis with a high predominance of An. gambiae s.s (90%). The two molecular forms, M and S, were also determined with a high frequency of the S form (96%).The Kdr gene seemed the main target- site resistance mechanism detected in CCP, TICP, and BP areas at the rates ranging from 32 to 78%. The frequency of ace-1R gene was very low (< 0.1).The presence of inhibiting factors in soil samples under insecticide treatments were found and affected negatively in delaying the development of An. gambiae larval populations. This research shows that Kdr has spread widely in An. gambiae, mainly in CCP and TICP areas where pyrethroids are extensively used. To reduce the negative impact of pesticides use in cotton crop protection, the application of BP-like programs, which do not appear to select for vector resistance would be useful. These results could serve as scientific evidence of the spread of resistance due to a massive agricultural use of insecticides and contribute to the management of pesticides usage on cotton crops hence reducing the selection pressure of insecticides on An. gambiae populations.
2012-01-01
Background Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. Methods Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. Results Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P < 0.05) in populations exposed to DDT. All mosquitoes tested were identified as A. gambiae s.s (M form). The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. Conclusion Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of insecticide resistance management strategies to combat the multiple resistance identified. PMID:22686575
Sangba, Marina Lidwine Olé; Deketramete, Tanguy; Wango, Solange Patricia; Kazanji, Mirdad; Akogbeto, Martin; Ndiath, Mamadou Ousmane
2016-04-25
In the Central African Republic, malaria is a major public health problem and the leading cause of death among children. This disease appears to be hyperendemic but no substantial entomological data, including data on Anopheles spp. susceptibility to insecticides, is available. This study evaluates, for the first time in the CAR, the status of insecticide resistance in the Anopheles funestus population, the second major vector of malaria in Africa. WHO standard bioassay susceptibility tests were performed on the An. funestus population using F1 generation from gravid females mosquitoes (F0) collected by manual aspirator sampling of households in Gbanikola, Bangui in October 2014 to assess: (i) An. funestus susceptibility to bendiocarb, malathion, permethrin, lamda-cyhalothrin, deltamethrin and DDT, and (ii) the effect of pre-exposure to the piperonyl butoxide (PBO) synergist on insecticide susceptibility. Additional tests were conducted to investigate metabolic resistance status (cytochrome P450 monooxygenases, glutathione S-transferases, and esterases). A high phenotypic resistance of An. funestus population to malathion, DDT and pyrethroids was observed with a mortality rate ranging from 23 to 74%. For the pyrethroid groups, the mortality rate was 35, 31 and 23% for lambda-cyhalothrin, deltamethrin, and permethrin, respectively. In contrast a 100% mortality rate to bendiocarb was recorded. Knockdown time (KDT) was long for all pyrethroids, DDT and malathion with KDT50 higher than 50 min. Pre-exposure of An. funestus to PBO synergist significantly restored susceptibility to all pyrethroids (Fisher's exact test P <0.0001) but not in DDT (Fisher's exact test P = 0.724). Data from biochemical tests suggest the involvement of cytochrome P450 monooxygenases, esterases and glutatione S-transferases in the resistance of An. funestus population from Gbanikola (Wilcoxon test P <0.05). Evidence of biochemical resistance to insecticide was detected in An. funestus population from the district of Gbanikola, Bangui. This study suggests that detoxifying enzymes are involved in insecticide resistance of An. funestus. However, despite disruptive violence, further research is urgently needed to assess the insecticide susceptibility status of An. funestus population in all CAR regions; insecticide resistance could rapidly compromise the success of malaria control programs.
Schmidt-Jeffris, Rebecca A; Nault, Brian A
2016-12-01
Many vegetable insect pests are managed using neonicotinoid and pyrethroid insecticides. Unfortunately, these insecticides are toxic to many bees and natural enemies and no longer control some pests that have developed resistance. Anthranilic diamide insecticides provide systemic control of many herbivorous arthropod pests, but exhibit low toxicity to beneficial arthropods and mammals, and may be a promising alternative to neonicotinoids and pyrethroids. Anthranilic diamides may be delivered to vegetable crops via seed, in-furrow, or foliar treatments; therefore, it would be desirable to identify which application method provides high levels of pest control while minimizing the amount of active ingredient. As a case study, chlorantraniliprole and cyantraniliprole applied via the methods listed above were evaluated for managing seedcorn maggot, Delia platura (Meigen) (Diptera: Anthomyiidae), and European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), in snap bean. Chlorantraniliprole and cyantraniliprole delivered as seed and in-furrow treatments reduced D. platura damage to the same level as the standard neonicotinoid seed treatment. Both diamides applied via all three methods significantly reduced O. nubilalis damage, but only the foliar application provided similar control as the standard pyrethroid spray. Results from laboratory bioassays revealed that both diamides applied as seed and in-furrow treatments caused high O. nubilalis neonate mortality up to 44 d after application. While the diamides provided equivalent control of these pests as the neonicotinoid and pyrethroid standards when applied in the same manner, chlorantraniliprole delivered as a seed treatment showed the most promise for managing both pests. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dusfour, Isabelle; Zorrilla, Pilar; Guidez, Amandine; Issaly, Jean; Girod, Romain; Guillaumot, Laurent; Robello, Carlos; Strode, Clare
2015-01-01
Background Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. Methodology/Principal Findings We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. Conclusion /significance This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence. PMID:26588076
Hamainza, Busiku; Sikaala, Chadwick H; Moonga, Hawela B; Chanda, Javan; Chinula, Dingani; Mwenda, Mulenga; Kamuliwo, Mulakwa; Bennett, Adam; Seyoum, Aklilu; Killeen, Gerry F
2016-02-18
Long-lasting, insecticidal nets (LLINs) and indoor residual spraying (IRS) are the most widely accepted and applied malaria vector control methods. However, evidence that incremental impact is achieved when they are combined remains limited and inconsistent. Fourteen population clusters of approximately 1000 residents each in Zambia's Luangwa and Nyimba districts, which had high pre-existing usage rates (81.7 %) of pyrethroid-impregnated LLINs were quasi-randomly assigned to receive IRS with either of two pyrethroids, namely deltamethrin [Wetable granules (WG)] and lambdacyhalothrin [capsule suspension (CS)], with an emulsifiable concentrate (EC) or CS formulation of the organophosphate pirimiphos methyl (PM), or with no supplementary vector control measure. Diagnostic positivity of patients tested for malaria by community health workers in these clusters was surveyed longitudinally over pre- and post-treatment periods spanning 29 months, over which the treatments were allocated and re-allocated in advance of three sequential rainy seasons. Supplementation of LLINs with PM CS offered the greatest initial level of protection against malaria in the first 3 months of application (incremental protective efficacy (IPE) [95 % confidence interval (CI)] = 0.63 [CI 0.57, 0.69], P < 0.001), followed by lambdacyhalothrin (IPE [95 % CI] = 0.31 [0.10, 0.47], P = 0.006) and PM EC (IPE, 0.23 [CI 0.15, 0.31], P < 0.001) and then by deltamethrin (IPE [95 % CI] = 0.19 [-0.01, 0.35], P = 0.064). Neither pyrethroid formulation provided protection beyond 3 months after spraying, but the protection provided by both PM formulations persisted undiminished for longer periods: 6 months for CS and 12 months for EC. The CS formulation of PM provided greater protection than the combined pyrethroid IRS formulations throughout its effective life IPE [95 % CI] = 0.79 [0.75, 0.83] over 6 months. The EC formulation of PM provided incremental protection for the first 3 months (IPE [95 % CI] = 0.23 [0.15, 0.31]) that was approximately equivalent to the two pyrethroid formulations (lambdacyhalothrin, IPE [95 % CI] = 0.31 [0.10, 0.47] and deltamethrin, IPE [95 % CI] = 0.19 [-0.01, 0.35]) but the additional protection provided by the former, apparently lasted an entire year. Where universal coverage targets for LLIN utilization has been achieved, supplementing LLINs with IRS using pyrethroids may reduce malaria transmission below levels achieved by LLIN use alone, even in settings where pyrethroid resistance occurs in the vector population. However, far greater reduction of transmission can be achieved under such conditions by supplementing LLINs with IRS using non-pyrethroid insecticide classes, such as organophosphates, so this is a viable approach to mitigating and managing pyrethroid resistance.
Penilla, R P; Rodríguez, A D; Hemingway, J; Torres, J L; Arredondo-Jiménez, J I; Rodríguez, M H
1998-07-01
A high level of DDT resistance and low levels of resistance to organophosphorus, carbamate and pyrethroid insecticides were detected by discriminating dose assays in field populations of Anopheles albimanus in Chiapas, southern Mexico, prior to a large-scale resistance management project described by Hemingway et al. (1997). Biochemical assays showed that the DDT resistance was caused by elevated levels of glutathione S-transferase (GST) activity leading to increased rates of metabolism of DDT to DDE. The numbers of individuals with elevated GST and DDT resistance were well correlated, suggesting that this is the only major DDT resistance mechanism in this population. The carbamate resistance in this population is conferred by an altered acetylcholinesterase (AChE)-based resistance mechanism. The level of resistance observed in the bioassays correlates with the frequency of individuals homozygous for the altered AChE allele. This suggests that the level of resistance conferred by this mechanism in its heterozygous state is below the level of detection by the WHO carbamate discriminating dosage bioassay. The low levels of organophosphate (OP) and pyrethroid resistance could be conferred by either the elevated esterase or monooxygenase enzymes. The esterases were elevated only with the substrate pNPA, and are unlikely to be causing broad spectrum OP resistance. The altered AChE mechanism may also be contributing to the OP but not the pyrethroid resistance. Significant differences in resistance gene frequencies were obtained from the F1 mosquitoes resulting from adults obtained by different collection methods. This may be caused by different insecticide selection pressures on the insects immediately prior to collection, or may be an indication that the indoor- and outdoor-resting A. albimanus collections are not from a randomly mating single population. The underlying genetic variability of the populations is currently being investigated by molecular methods.
Ngufor, Corine; Fongnikin, Augustin; Rowland, Mark; N'Guessan, Raphael
2017-01-01
There is an urgent need for new insecticides for indoor residual spraying (IRS) which can provide improved and prolonged control of malaria vectors that have developed resistance to existing insecticides. The neonicotinoid, clothianidin represents a class of chemistry new to public health. Clothianidin acts as an agonist on nicotinic acetyl choline receptors. IRS with a mixture of Clothianidin and another WHO approved insecticide such as deltamethrin could provide improved control of insecticide resistant malaria vector populations and serve as a tool for insecticide resistance management. The efficacy and residual activity of a novel IRS mixture of deltamethrin and clothianidin was evaluated against wild pyrethroid resistant An. gambiae sl in experimental huts in Cove, Benin. Two application rates of the mixture were tested and comparison was made with clothianidin and deltamethrin applied alone. To assess the residual efficacy of the treatments on different local wall substrates, the inner walls of the experimental huts were covered with either cement, mud or plywood. Clothianidin demonstrated a clear delayed expression in mortality of wild pyrethroid resistant An. gambiae sl in the experimental huts which reached its full effect 120 hours after exposure. Overall mortality over the 12-month hut trial was 15% in the control hut and 24-29% in the deltamethrin-treated huts. The mixture of clothianidin 200mg/m2 and deltamethrin 25mg/m2 induced high overall hut mortality rates (87% on mud walls, 82% on cement walls and 61% on wooden walls) largely due to the clothianidin component and high hut exiting rates (67-76%) mostly due to the deltamethrin component. Mortality rates remained >80% for 8-9 months on mud and cement walls. The residual activity trend was confirmed by results from monthly in situ cone bioassays with laboratory susceptible An. gambiae Kisumu strain. IRS campaigns with the mixture of clothianidin plus deltamethrin have the potential to provide prolonged control of malaria transmitted by pyrethroid resistant mosquito populations.
Fongnikin, Augustin; Rowland, Mark; N’Guessan, Raphael
2017-01-01
Introduction There is an urgent need for new insecticides for indoor residual spraying (IRS) which can provide improved and prolonged control of malaria vectors that have developed resistance to existing insecticides. The neonicotinoid, clothianidin represents a class of chemistry new to public health. Clothianidin acts as an agonist on nicotinic acetyl choline receptors. IRS with a mixture of Clothianidin and another WHO approved insecticide such as deltamethrin could provide improved control of insecticide resistant malaria vector populations and serve as a tool for insecticide resistance management. Methods The efficacy and residual activity of a novel IRS mixture of deltamethrin and clothianidin was evaluated against wild pyrethroid resistant An. gambiae sl in experimental huts in Cove, Benin. Two application rates of the mixture were tested and comparison was made with clothianidin and deltamethrin applied alone. To assess the residual efficacy of the treatments on different local wall substrates, the inner walls of the experimental huts were covered with either cement, mud or plywood. Results Clothianidin demonstrated a clear delayed expression in mortality of wild pyrethroid resistant An. gambiae sl in the experimental huts which reached its full effect 120 hours after exposure. Overall mortality over the 12-month hut trial was 15% in the control hut and 24–29% in the deltamethrin-treated huts. The mixture of clothianidin 200mg/m2 and deltamethrin 25mg/m2 induced high overall hut mortality rates (87% on mud walls, 82% on cement walls and 61% on wooden walls) largely due to the clothianidin component and high hut exiting rates (67–76%) mostly due to the deltamethrin component. Mortality rates remained >80% for 8–9 months on mud and cement walls. The residual activity trend was confirmed by results from monthly in situ cone bioassays with laboratory susceptible An. gambiae Kisumu strain. Conclusion IRS campaigns with the mixture of clothianidin plus deltamethrin have the potential to provide prolonged control of malaria transmitted by pyrethroid resistant mosquito populations. PMID:29252986
Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K.; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc
2009-01-01
Background Chemicals are used on bed nets in order to prevent infected bites and to kill aggressive malaria vectors. Because pyrethroid resistance has become widespread in the main malaria vectors, research for alternative active ingredients becomes urgent. Mixing a repellent and a non-pyrethroid insecticide seemed to be a promising tool as mixtures in the laboratory showed the same features as pyrethroids. Methodology/Principal Findings We present here the results of two trials run against free-flying Anopheles gambiae populations comparing the effects of two insect repellents (either DEET or KBR 3023, also known as icaridin) and an organophosphate insecticide at low-doses (pirimiphos-methyl, PM) used alone and in combination on bed nets. We showed that mixtures of PM and the repellents induced higher exophily, blood feeding inhibition and mortality among wild susceptible and resistant malaria vectors than compounds used alone. Nevertheless the synergistic interactions are only involved in the high mortality induced by the two mixtures. Conclusion These field trials argue in favour of the strategy of mixing repellent and organophosphate on bed nets to better control resistant malaria vectors. PMID:19936249
Hughes, Michael F; Ross, David G; Starr, James M; Scollon, Edward J; Wolansky, Marcelo J; Crofton, Kevin M; DeVito, Michael J
2016-06-01
Human exposure to multiple pyrethroid insecticides may occur because of their broad use on crops and for residential pest control. To address the potential health risk from co-exposure to pyrethroids, it is important to understand their disposition and toxicity in target organs such as the brain, and surrogates such as the blood when administered as a mixture. The objective of this study was to assess the correlation between blood and brain concentrations of pyrethroids and neurobehavioral effects in the rat following an acute oral administration of the pyrethroids as a mixture. Male Long-Evans rats were administered a mixture of β-cyfluthrin, cypermethrin, deltamethrin, esfenvalerate and cis- and trans-permethrin in corn oil at seven dose levels. The pyrethroid with the highest percentage in the dosing solution was trans-permethrin (31% of total mixture dose) while deltamethrin and esfenvalerate had the lowest percentage (3%). Motor activity of the rats was then monitored for 1h. At 3.5h post-dosing, the animals were euthanized and blood and brain were collected. These tissues were extracted and analyzed for parent pyrethroid using HPLC-tandem mass spectrometry. Cypermethrin and cis-permethrin were the predominate pyrethroids detected in blood and brain, respectively, at all dosage levels. The relationship of total pyrethroid concentration between blood and brain was linear (r=0.93). The pyrethroids with the lowest fraction in blood were trans-permethrin and β-cyfluthrin and in brain were deltamethrin and esfenvalerate. The relationship between motor activity of the treated rats and summed pyrethroid blood and brain concentration was described using a sigmoidal Emax model with the Effective Concentration50 being more sensitive for brain than blood. The data suggests summed pyrethroid rat blood concentration could be used as a surrogate for brain concentration as an aid to study the neurotoxic effects of pyrethroids administered as a mixture under the conditions used in this study. Published by Elsevier Ireland Ltd.
Unexpected Failures to Control Chagas Disease Vectors With Pyrethroid Spraying in Northern Argentina
Gurevitz, J. M.; Gaspe, M. S.; Enríquez, G. F.; Vassena, C. V.; Alvarado-Otegui, J. A.; Provecho, Y. M.; Mougabure Cueto, G. A; Picollo, M. I.; Kitron, U.; Gürtler, R. E.
2013-01-01
Effectiveness of the elimination efforts against Triatoma infestans (Klug) in South America through residual application of pyrethroid insecticides has been highly variable in the Gran Chaco region. We investigated apparent vector control failures after a standard community-wide spraying with deltamethrin SC in a rural area of northeastern Argentina encompassing 353 houses. Insecticide spraying reduced house infestation less than expected: from 49.5% at baseline to 12.3 and 6.7% at 4 and 8 mo postspraying, respectively. Persistent infestations were detected in 28.4% of houses, and numerous colonies with late-stage bugs were recorded after the interventions. Laboratory bioassays showed reduced susceptibility to pyrethroids in the local bug populations. Eleven of 14 bug populations showed reduced mortality in diagnostic dose assays (range, 35 ± 5% to 97 ± 8%) whereas the remainder had 100% mortality. A fully enclosed residual bug population in a large chicken coop survived four pyrethroid sprays, including two double-dose applications, and was finally suppressed with malathion. The estimated resistance ratio of this bug population was 7.17 (range, 4.47–11.50). Our field data combined with laboratory bioassays and a residual foci experiment demonstrate that the initial failure to suppress T. infestans was mainly because of the unexpected occurrence of reduced susceptibility to deltamethrin in an area last treated with pyrethroid insecticides 12 yr earlier. Our results underline the need for close monitoring of the impact of insecticide spraying to provide early warning of possible problems due to enhanced resistance or tolerance and determine appropriate responses. PMID:23270166
Kaufman, Phillip E; Nunez, Sonia C; Mann, Rajinder S; Geden, Christopher J; Scharf, Michael E
2010-03-01
The housefly, Musca domestica L., continues to be a major pest of confined livestock operations. Houseflies have developed resistance to most chemical classes, and new chemistries for use in animal agriculture are increasingly slow to emerge. Five adult housefly strains from four Florida dairy farms were evaluated for resistance to four insecticides (beta-cyfluthrin, permethrin, imidacloprid and nithiazine). Significant levels of tolerance were found in most field strains to all insecticides, and in some cases substantial resistance was apparent (as deduced from comparison with prior published results). At the LC(90) level, greater than 20-fold resistance was found in two of the fly strains for permethrin and one fly strain for imidacloprid. Beta-cyfluthrin LC(90) resistance ratios exceeded tenfold resistance in three fly strains. The relatively underutilized insecticide nithiazine had the lowest resistance ratios; however, fourfold LC(90) resistance was observed in one southern Florida fly strain. Farm insecticide use and its impact on resistance selection in Florida housefly populations are discussed. Housefly resistance to pyrethroids is widespread in Florida. Imidacloprid resistance is emerging, and tolerance was observed to both imidacloprid and nithiazine. If these insecticides are to retain efficacy, producer use must be restrained.
Bt crops benefit natural enemies to control non-target pests
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M.
2015-01-01
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM. PMID:26559133
Bt crops benefit natural enemies to control non-target pests.
Tian, Jun-Ce; Yao, Ju; Long, Li-Ping; Romeis, Jörg; Shelton, Anthony M
2015-11-12
Crops producing insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) control important lepidopteran pests. However, pests such as aphids not susceptible to Cry proteins may require other integrated pest management (IPM) tactics, including biological control. We fed aphids on Bt and non-Bt plants and analyzed the Bt protein residue in aphids and compared the effects of Bt plants and a pyrethroid, lambda-cyhalothrin, on the performance of three natural enemies (predators: Coleomegilla maculata and Eupeodes americanus; parasitoid Aphidius colemani) of the green peach aphid, Myzus persicae. No Bt protein residues in aphids were detected and no significant differences were recorded in the performance of pyrethroid-resistant aphids that fed on Bt broccoli expressing Cry1Ab or Cry1C, or on non-Bt broccoli plants treated or not treated with the pyrethroid. This indicated the aphids were not affected by the Cry proteins or the pyrethroid, thus removing any effect of prey quality. Tri-trophic experiments demonstrated that no C. maculata and E. americanus survived consumption of pyrethroid-treated aphids and that ovipositional behavior of A. colemani was impaired when provided with pyrethroid-treated aphids. In contrast, natural enemies were not affected when fed aphids reared on Bt broccoli, thus demonstrating the safety of these Bt plants for IPM.
Long-term trends in Anopheles gambiae insecticide resistance in Côte d'Ivoire.
Edi, Constant A V; Koudou, Benjamin G; Bellai, Louise; Adja, Akre M; Chouaibou, Mouhamadou; Bonfoh, Bassirou; Barry, Sarah J E; Johnson, Paul C D; Müller, Pie; Dongus, Stefan; N'Goran, Eliezer K; Ranson, Hilary; Weetman, David
2014-11-28
Malaria control is heavily dependent on the use of insecticides that target adult mosquito vectors via insecticide treated nets (ITNs) or indoor residual spraying (IRS). Four classes of insecticide are approved for IRS but only pyrethroids are available for ITNs. The rapid rise in insecticide resistance in African malaria vectors has raised alarms about the sustainability of existing malaria control activities. This problem might be particularly acute in Côte d'Ivoire where resistance to all four insecticide classes has recently been recorded. Here we investigate temporal trends in insecticide resistance across the ecological zones of Côte d'Ivoire to determine whether apparent pan-African patterns of increasing resistance are detectable and consistent across insecticides and areas. We combined data on insecticide resistance from a literature review, and bioassays conducted on field-caught Anopheles gambiae mosquitoes for the four WHO-approved insecticide classes for ITN/IRS. The data were then mapped using Geographical Information Systems (GIS) and the IR mapper tool to provide spatial and temporal distribution data on insecticide resistance in An. gambiae sensu lato from Côte d'Ivoire between 1993 and 2014. Bioassay mortality decreased over time for all insecticide classes, though with significant spatiotemporal variation, such that stronger declines were observed in the southern ecological zone for DDT and pyrethroids than in the central zone, but with an apparently opposite effect for the carbamate and organophosphate. Variation in relative abundance of the molecular forms, coupled with dramatic increase in kdr 1014F frequency in M forms (An. coluzzii) seems likely to be a contributory factor to these patterns. Although records of resistance across insecticide classes have become more common, the number of classes tested in studies has also increased, precluding a conclusion that multiple resistance has also increased. Our analyses attempted synthesis of 22 years of bioassay data from Côte d'Ivoire, and despite a number of caveats and potentially confounding variables, suggest significant but spatially-variable temporal trends in insecticide resistance. In the light of such spatio-temporal dynamics, regular, systematic and spatially-expanded monitoring is warranted to provide accurate information on insecticide resistance for control programme management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Dongfang; Wang Xiliang; Chen Yitzai
2009-05-15
Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrinmore » were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.« less
Yang, Dongfang; Wang, Xiliang; Chen, Yi-tzai; Deng, Ruitang; Yan, Bingfang
2009-01-01
Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity. PMID:19249324
Yang, Dongfang; Wang, Xiliang; Chen, Yi-Tzai; Deng, Ruitang; Yan, Bingfang
2009-05-15
Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.
USDA-ARS?s Scientific Manuscript database
A number of gene mutation in various arthropods have been found to be associated with pesticide resistance. Some of these mutations have been found in the two cattle pests, Rhipicephalus microplus and Haematobia irritans. Sodium channel gene mutations have been associated with pyrethroid resistance ...
Hladik, Michelle; Orlando, James L.; Kuivila, Kathryn
2009-01-01
Loss of pyrethroid insecticides onto surfaces during sample collection can confound the interpretation of analytical and toxicity test results. Sample collection devices, container materials, and water matrix composition have a significant influence on the association of pyrethroids to container walls, which can be as high as 50 percent. Any sample collection method involving transfer through multiple containers or pieces of equipment increases the potential for pyrethroid loss. This loose 'surface-association' with container walls can be reversed through agitation. When sampling water matrices with pumps or autosamplers, no pyrethroids were lost as long as the water was moving continuously through the system. When collecting water matrices in containers, the material with the least amount of pyrethroid sorption is as follows: glass less than (<) plastic less than (<) Teflon. Additionally, pyrethroids were easier to re-suspend from the glass container walls. Since the amount of surface-association is proportional to the ratio of volume-to-contact-area of the sample, taking larger-volume field samples (greater than 3 liters) reduced pyrethroid losses to less than 10 percent. The amount of surface-association cannot be predicted easily because of the dependence on water matrix composition; samples with higher dissolved organic carbon or suspended-sediment concentrations were observed to have lower percent loss. Sediment samples were not affected by glass-container sorption (the only containers tested). Standardized sample-collection protocols are critical to yield accurate pyrethroid concentrations for assessment of potential effects, and have been summarized in an accompanying standard operating procedure.
PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato
Singh, Om P; Bali, Prerna; Hemingway, Janet; Subbarao, Sarala K; Dash, Aditya P; Adak, Tridibes
2009-01-01
Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F) in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at kdr locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped. PMID:19594947
MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens.
Tian, Mengmeng; Liu, Bingqian; Hu, Hongxia; Li, Xixi; Guo, Qin; Zou, Feifei; Liu, Xianmiao; Hu, Mengxue; Guo, Juxin; Ma, Lei; Zhou, Dan; Sun, Yan; Shen, Bo; Zhu, Changliang
2016-12-01
MicroRNAs play critical roles in post-transcriptional regulation of gene expression, which participate in the modulation of almost all of the cellular processes. Although emerging evidence indicates that microRNAs are related with antineoplastic drugs resistance, whether microRNAs are responsible for insecticide resistance in mosquitos is poorly understood. In this paper, we found that miR-285 was significantly upregulated in the deltamethrin-resistant strain of Culex pipiens pallens, and overexpression miR-285 through microinjection increased mosquito survival rate against deltamethrin treatement. Using bioinformatic software, quantitative reverse transcription PCR, luciferase reporter assay and microinjection approaches, we conformed that CYP6N23 was the target of miR-285. Lower expression of CYP6N23 was observed in the deltamethrin-resistant strain. While, mosquito mortality rate was decreased after downregulating expression of CYP6N23 by dsRNA against CYP6N23 or miR-285 mimic microinjection. These findings revealed that miR-285 could target CYP6N23 to regulate pyrethroid resistance, providing new insights into mosquito insecticide resistance surveillance and control.
Carvalho, Renato A.; Omoto, Celso; Field, Linda M.; Williamson, Martin S.; Bass, Chris
2013-01-01
The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide evidence that both target-site and metabolic mechanisms underlie the resistance of S. frugiperda to pyrethroids and organophosphates. PMID:23614047
Carvalho, Renato A; Omoto, Celso; Field, Linda M; Williamson, Martin S; Bass, Chris
2013-01-01
The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide evidence that both target-site and metabolic mechanisms underlie the resistance of S. frugiperda to pyrethroids and organophosphates.
Djènontin, Armel; Ahoua Alou, Ludovic P; Koffi, Alphonsine; Zogo, Barnabas; Duarte, Elves; N'Guessan, Raphael; Moiroux, Nicolas; Pennetier, Cédric
2015-01-01
In the context of the widespread distribution of pyrethroid resistance among malaria vectors, we did a release-recapture trial in experimental huts to investigate the insecticidal and sterilizing effects of a novel long-lasting net (LN), Olyset® Duo, incorporating a mixture of permethrin (PER) and the insect growth regulator (IGR), pyri-proxyfen (PPF). An LN containing PPF alone and a classic Olyset® Net were tested in parallel as positive controls. The effect of progressive number of holes (6, 30, or 150) that may accrue in nets over time was simulated. We used two laboratory Anopheles gambiae s.s. strains: the susceptible Kisumu strain and the pyrethroid-resistant VK-Per strain having solely kdr as resistance mechanism. The effect of these nets on the reproductive success of blood-fed females that survived the different LNs conditions was recorded. Regardless of the mosquito strain, the LNs containing PPF alone with as many as 30 holes drastically reduced the number of eggs laid by females succeeding in feeding, i.e. fecundity by 98% and egg hatching rate (fertility) by 93% relative to untreated control net. Very few of the resistant females blood fed and survived under the Olyset® Duo with similar number of holes (up to 30) but of these few, the inhibition of reproductive success was 100%. There was no evidence that the Olyset® Duo LN with 150 holes impacted fecundity or fertility of the resistant colony. The efficacy of Olyset® Duo is encouraging and clearly illustrates that this new net might be a promising tool for malaria transmission control and resistance management. © A. Djènontin et al., published by EDP Sciences, 2015.
Zoh, Dounin Danielle; Ahoua Alou, Ludovic Phamien; Toure, Mahama; Pennetier, Cédric; Camara, Soromane; Traore, Dipomin François; Koffi, Alphonsine Amanan; Adja, Akré Maurice; Yapi, Ahoua; Chandre, Fabrice
2018-03-02
Several studies were carried out in experimental hut station in areas surrounding the city of Bouaké, after the crisis in Côte d'Ivoire. They reported increasing resistance levels to insecticide for malaria transmiting mosquitoes. The present work aims to evaluate the current resistance level of An. gambiae (s.l.) in rural and urban areas in the city of Bouaké. Larvae of Anopheles gambiae (s.l.) were collected from five different study sites and reared to adult stages. The resistance status was assessed using the WHO bioassay test kits for adult mosquitoes, with eight insecticides belonging to pyrethroids, organochlorines, carbamates and organophosphates classes. Molecular assays were performed to identify the molecular forms of An. gambiae (s.l.), the L1014F kdr and the ace-1R alleles in individual mosquitoes. The synergist PBO was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed function oxidase (MFO) levels, non-specific esterases (NSE) and glutathione S-transferases (GST). High resistance levels to pyrethroids, organochlorines, and carbamates were observed in Anopheles gambiae (s.l.) from Bouaké. Mortalities ranged between 0 and 73% for the eight tested insecticides. The pre-exposure to PBO restored full or partial susceptibility to pyrethroids in the different sites. The same trend was observed with the carbamates in five sites, but to a lesser extent. With DDT, pre-exposure to PBO did not increase the mortality rate of An. gambiae (s.l.) from the same sites. Tolerance to organophosphates was observed. An increased activity of NSE and higher level of MFO were found compared to the Kisumu susceptible reference strain. Two molecular forms, S form [(An. gambiae (s.s)] and M form (An. coluzzi) were identified. The kdr allele frequencies vary from 85.9 to 99.8% for An. gambiae (s.s.) and from 81.7 to 99.6% for An. coluzzii. The ace-1R frequencies vary between 25.6 and 38.8% for An. gambiae (s.s.) and from 28.6 to 36.7% for An. coluzzii. Resistance to insecticides is widespread within both An. gambiae (s.s.) and An. coluzzii. Two mechanisms of resistance, i.e. metabolic and target-site mutation seemed to largely explain the high resistance level of mosquitoes in Bouaké. Pyrethroid resistance was found exclusively due to the metabolic mechanism.
Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke
2016-01-01
1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. PMID:26637352
Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke
2016-02-26
1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Modelling the effect of pyrethroid use intensity on mite population density for walnuts.
Zhan, Yu; Fan, Siqi; Zhang, Minghua; Zalom, Frank
2015-01-01
Published studies relating pyrethroid use and subsequent mite outbreaks have largely been based on laboratory and field experiments, with some inferring a result of increased miticide use. The present study derived a mathematical model proposed to quantify the effect of pyrethroid use intensity on mite population density. The model was validated against and parameterized with actual field-level pyrethroid and miticide use data from 1995 to 2009 for California walnuts, where the miticide use intensity was a proxy of the mite population density. The parameterized model was MI = 1.61 - 0.89 · exp(-93.31PI) (RMSE = 0.13; R(2) = 0.69; P < 0.01), where PI and MI are the average pyrethroid and miticide use intensity in small intervals respectively. A three-range scheme was presented to quantify pesticide applications based on the change rate of MI to PI. Specific for California walnuts, the PI range of 0-0.025 kg ha(-1) was identified as the rapidly increasing range where MI increased vastly when PI increased. Results confirmed that more miticide was used, presumably to prevent or control mite resurgence when pyrethroids were applied, a practice that is not only costly but might be expected to aggravate mite resistance to miticides and increase risk associated with these chemicals to the environment and human health. © 2014 Society of Chemical Industry.
Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno
2015-01-01
Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.
Abd-Ella, Aly; Stankiewicz, Maria; Mikulska, Karolina; Nowak, Wieslaw; Pennetier, Cédric; Goulu, Mathilde; Fruchart-Gaillard, Carole; Licznar, Patricia; Apaire-Marchais, Véronique; List, Olivier; Corbel, Vincent; Servent, Denis; Lapied, Bruno
2015-01-01
Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes. PMID:25961834
Plernsub, Suriya; Saingamsook, Jassada; Yanola, Jintana; Lumjuan, Nongkran; Tippawangkosol, Pongsri; Walton, Catherine; Somboon, Pradya
2016-10-01
In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection pressure would be expected to have led to an increase in frequency of the G1016 allele, it is likely that the relatively stable kdr mutation allele frequencies observed here result from balancing selection, in the form of overdominance for VG/FC genotypes and/or the effects of fluctuating environments that vary in insecticide exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
Uploaded datasets are detailed exposure information (chemical concentrations and water quality parameters) for exposures conducted in a flow through diluter system with larval Pimephales promelas to four different pyrethroid pesticides. The GEO submission URL links to the NCBI GEO database and contains gene expression data from whole larvae exposed to different concentrations of the pyrethroids across multiple experiments.This dataset is associated with the following publication:Biales, A., M. Kostich, A. Batt, M. See, R. Flick, D. Gordon, J. Lazorchak, and D. Bencic. Initial Development of a Multigene Omics-Based Exposure Biomarker for Pyrethroid Pesticides. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY. CRC Press LLC, Boca Raton, FL, USA, 179(0): 27-35, (2016).
Agossa, Fiacre R; Padonou, Gil G; Koukpo, Come Z; Zola-Sahossi, Jacques; Azondekon, Roseric; Akuoko, Osei K; Ahoga, Juniace; N'dombidje, Boris; Akinro, Bruno; Fassinou, Arsene Jacques Y H; Sezonlin, Michel; Akogbeto, Martin C
2018-05-10
Scale-up of the distribution of long-lasting insecticide-treated bed nets and indoor residual spraying with insecticides over the last decade have contributed to the considerable decrease of malaria morbidity and mortality in sub-Saharan Africa. Due to the increasing pyrethroid resistance intensity and the spread of carbamate resistance in Anopheles gambiae (s.s.) mosquitoes and the limited number of insecticides recommended by the WHO for vector control, alternative insecticide formulations for IRS with long-lasting residual activity are required to sustain the gains obtained in most malaria-endemic countries. SumiShield 50WG (clothianidin 300 mg ai/m 2 ) developed by Sumitomo Chemical was evaluated alongside deltamethrin 25 mg ai/m 2 (K-Othrine 250 WG) against a pyrethroid resistant Anopheles gambiae (s.l.) population in experimental huts in Covè, Benin. Residual activity was also tested in cone bioassays with the susceptible An. gambiae "Kisumu" strain and the local wild resistant population. The results showed very low toxicity from deltamethrin (mortality rates ranged between 1-40%) against host-seeking resistant Anopheles populations. SumiShield in contrast gave an overall mean mortality of 91.7% at the 120 h observation across the eight- month observation period following spraying. The residual activity measured using cone tests was over the 80% WHO threshold for 24 weeks for resistant wild Anopheles population and 32 weeks for the susceptible strain "Kisumu" after the spraying. SumiShield is a good candidate for IRS in areas of permanent malaria transmission and where Anopheles populations are resistant to other conventional insecticides such as pyrethroids. It would be interesting to complete experimental huts studies by assessing the efficacy and residual effect of SumiShield 50WG at community level (small-scale field testing) in an area where vectors are highly resistant to insecticides.
Starr, James M; Graham, Stephen E; Ross, David G; Tornero-Velez, Rogelio; Scollon, Edward J; Devito, Michael J; Crofton, Kevin M; Wolansky, Marcelo J; Hughes, Michael F
2014-06-05
National surveys of United States households and child care centers have demonstrated that pyrethroids are widely distributed in indoor habited dwellings and this suggests that co-exposure to multiple pyrethroids occurs in nonoccupational settings. The purpose of this research was to use an environmentally relevant mixture of pyrethroids to assess their cumulative effect on motor activity and develop kinetic profiles for these pyrethroids and their hydrolytic metabolites in brain and blood of rats. Rats were dosed orally at one of two levels (1.5× or 5.0× the calculated dose that decreases rat motor activity by 30%) with a mixture of cypermethrin, deltamethrin, esfenvalerate, cis-/trans-permethrin, and β-cyfluthrin in corn oil. At 1, 2, 4, 8, or 24h after dosing, the motor activity of each animal was assessed and the animals sacrificed. Concentrations of pyrethroids in brain and blood, and the following metabolites: cis-/trans-dichlorovinyl-dimethylcyclopropane-carboxylic acid, 3-phenoxybenzoic acid, 3-phenoxybenzyl alcohol, 4-fluoro-3-phenoxybenzoic acid, and cis-dibromovinyl-dimethylcyclopropane-carboxylic acid were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS). Using this pyrethroid mixture in rats, the results suggest there is greater metabolism of trans-permethrin prior to entering the systemic circulatory system. All pyrethroids had tissue half-lives (t1/2) of less than 5h, excepting esfenvalerate in brain. At early time points, relative pyrethroid brain concentrations approximated their dose mixture proportions and a sigmoidal Emax model described the relationship between motor activity decrease and total pyrethroid brain concentration. In blood, the t1/2's of the cyclopropane metabolites were longer than the phenoxybenzoic metabolites. However, relative to their respective precursors, concentrations of the phenoxybenzoic acids were much higher than concentrations of the cyclopropane metabolites. Brain concentrations of all metabolites were low relative to blood concentrations. This implies limited metabolite penetration of the blood-brain barrier and little metabolite formation within the brain. toxicokinetic differences between the pyrethroids did not appear to be important determinants of their relative potency and their effect on motor activity was consistent with a pyrethroid dose additive model. Published by Elsevier Ireland Ltd.
Fontoura, Nathalia Giglio; Bellinato, Diogo Fernandes; Valle, Denise; Lima, José Bento Pereira
2012-05-01
The mosquito Aedes aegypti is the main focus of dengue control campaigns. Because of widespread resistance against conventional chemical insecticides, chitin synthesis inhibitors (CSIs) are considered control alternatives. We evaluated the resistance status of four Brazilian Ae. aegypti populations to both the organophosphate temephos and the pyrethroid deltamethrin, which are used in Brazil to control larvae and adults, respectively. All vector populations exhibited high levels of temephos resistance and varying rates of alterations in their susceptibility to pyrethroids. The effect of the CSI novaluron on these populations was also investigated. Novaluron was effective against all populations under laboratory conditions. Field-simulated assays with partial water replacement were conducted to evaluate novaluron persistence. Bioassays were continued until an adult emergence inhibition of at least 70% was attained. We found a residual effect of eight weeks under indoor conditions and novaluron persisted for five-six weeks in assays conducted in an external area. Our data show that novaluron is effective against the Ae. aegypti populations tested, regardless of their resistance to conventional chemical insecticides.
Umina, Paul A; Weeks, Andrew R; Roberts, John; Jenkins, Sommer; Mangano, G Peter; Lord, Alan; Micic, Svetlana
2012-06-01
The redlegged earth mite, Halotydeus destructor Tucker, is an important pest of broad-acre farming systems in Australia, New Zealand and South Africa. In 2006, high levels of resistance to synthetic pyrethroids were discovered in this species in Western Australia. Between 2007 and 2010, the authors monitored resistance in field populations and found it had spread considerably within the state of Western Australia. Twenty-six paddocks from 15 individual properties were identified with resistance, and these paddocks ranged over 480 km. To date, resistance has not been detected in any other Australian state. Resistance in H. destructor appears to be found across the entire pyrethroid group, but not to other chemical classes such as organophosphates and carbamates, or other chemistries with novel modes of action. The high levels of resistance occurring in Western Australia have caused considerable economic losses due to ineffective chemical applications and mortality of crop plants at seedling establishment. These findings highlight the need for a comprehensive resistance surveillance programme to be developed for H. destructor within Australia. Growers need to consider non-chemical approaches for pest control and should be encouraged to implement pesticide resistance management programmes for H. destructor. Copyright © 2011 Society of Chemical Industry.
Bielza, Pablo; Espinosa, Pedro J; Quinto, Vicente; Abellán, Jaime; Contreras, Josefina
2007-01-01
The major mechanism of resistance to most insecticides in Frankliniella occidentalis (Pergande) is metabolic, piperonyl butoxide (PBO) suppressible, mediated by cytochrome-P450 monooxygenases and conferring cross-resistance among insecticide classes. The efficacy of insecticide mixtures of acrinathrin, methiocarb, formetanate and chlorpyrifos was studied by topical exposure in strains of F. occidentalis selected for resistance to each insecticide. The method consisted in combining increasing concentrations of one insecticide with a constant low rate of the second one as synergist. Acrinathrin activity against F. occidentalis was enhanced by carbamate insecticides, methiocarb being a much better synergist than formetanate. Monooxygenase action on the carbamates would prevent degradation of the pyrethroid, hence providing a level of synergism by competitive substrate inhibition. However, the number of insecticides registered for control of F. occidentalis is very limited, and they are needed for antiresistance strategies such as mosaics and rotations. Therefore, a study was made of the synergist effect of other carbamates not used against thrips, such as carbofuran and carbosulfan, against a susceptible strain and a field strain. Neither carbamate showed synergism to acrinathrin in the susceptible strain, but both did in the field strain, carbosulfan being a better synergist than carbofuran. The data obtained indicate that low rates of carbamates could be used as synergists to restore some pyrethroid susceptibility in F. occidentalis. Copyright (c) 2006 Society of Chemical Industry.
Pyrethroid resistance is widespread among Florida populations of Aedes aegypti
USDA-ARS?s Scientific Manuscript database
Aedes aegypti is an efficient vector of a number of diseases that affect man and is of increasing concern because of the reemergence of dengue and recent identification of locally acquired chikungunya in Florida. Pesticide resistance in this species has been demonstrated in several neighboring coun...
USDA-ARS?s Scientific Manuscript database
Rhipicephalus sanguineus (Latreille) (Ixodida: Ixodidae) is a three-host dog tick found worldwide that is able to complete its’ entire lifecycle indoors. Options for the management of R. sanguineus are limited and its’ control relies largely on only a few acaricidal active ingredients. Previous stud...
Palenchar, Daniel J; Gellatly, Kyle J; Yoon, Kyong Sup; Mumcuoglu, Kosta Y; Shalom, Uri; Clark, J Marshall
2015-09-01
Human bed bug infestations have dramatically increased worldwide since the mid-1990s. A similar phenomenon was also observed in Israel since 2005, when infestations were reported from all over the country. Two single nucleotide polymorphisms (V419L and L925I) in the bed bug voltage-sensitive sodium channel confer kdr-type resistance to pyrethroids. Using quantitative sequencing (QS), the resistance allele frequencies of Israeli bed bug populations from across the country were determined. Genomic DNA was extracted from samples of 12 populations of bed bugs collected from Israel and DNA fragments containing the V419L or L925I and I936F mutations sites were PCR amplified. The PCR products were analyzed by QS and the nucleotide signal ratios calculated and used to predict the resistance allele frequencies of the unknown populations. Results of the genetic analysis show that resistant nucleotide signals are highly correlated to resistance allele frequencies for both mutations. Ten of the 12 tested populations had 100% of the L925I mutation and 0% of the V419L mutation. One population was heterogeneous for the L925I mutation and had 0% of the V419L mutation and another population was heterogeneous for the V419L mutation and had 100% of the L925I mutation. I936F occurred only at low levels. These results indicate that bed bugs in Israel are genetically resistant to pyrethroids. Thus, pyrethroids should only be used for bed bug management with caution using effective application and careful monitoring procedures. Additionally, new and novel-acting insecticides and nonchemical means of controlling bed bugs should be explored. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2010-01-01
Background Insecticide treated plastic sheeting (ITPS), sometimes known as durable lining, has potential as a long-lasting insecticidal surface for malaria vector control when used as lining for interior walls and ceilings inside the home. Against a backdrop of increasing long lasting net (LN) coverage, we examined the effect of combining permethrin-treated plastic sheeting (ITPS) with LNs in Burkina Faso. Methods A verandah trap experimental hut trial of ITPS with or without Olyset LN was conducted in the Vallée du Kou near Bobo-Dioulasso, where the two molecular forms of Anopheles gambiae s.s., S (frequency 65%) and M (frequency 35%), occur. The S form is mostly pyrethroid resistant (Fkdr = 92%) owing to the kdr mechanism, and the M form is mostly kdr susceptible (Fkdr = 7%). The treatment arms included ITPS, Olyset, ITPS plus Olyset, ITPS plus untreated net (with or without holes), and untreated control. Results ITPS was significantly inferior to Olyset LN in terms of mortality (37% vs 63%), blood feeding inhibition (20% vs 81%) and deterrence (0 vs 42%) effects, and hence altogether inferior as a means of personal protection (16% vs 89%). The addition of ITPS to Olyset did not improve mortality (62%), blood feeding inhibition (75%), deterrence (50%) or personal protection (88%) over that of Olyset used alone. Use of untreated nets - both holed and intact - with ITPS provided greater protection from blood-feeding. The intact net/ITPS combination killed more mosquitoes than ITPS on its own. Conclusions Although ITPS has a potential role for community control of malaria, at low coverage it is unlikely to be as good as Olyset LNs for household protection. The combination of pyrethroid IRS and pyrethroid LN - as practiced in some countries - is unlikely to be additive except, perhaps, at high levels of IRS coverage. A combination of LN and ITPS treated with an alternative insecticide is likely to be more effective, particularly in areas of pyrethroid resistance. PMID:20682050
Chandre, Fabrice; Dabire, Roch K; Hougard, Jean-Marc; Djogbenou, Luc S; Irish, Seth R; Rowland, Mark; N'guessan, Raphael
2010-08-03
Insecticide treated plastic sheeting (ITPS), sometimes known as durable lining, has potential as a long-lasting insecticidal surface for malaria vector control when used as lining for interior walls and ceilings inside the home. Against a backdrop of increasing long lasting net (LN) coverage, we examined the effect of combining permethrin-treated plastic sheeting (ITPS) with LNs in Burkina Faso. A verandah trap experimental hut trial of ITPS with or without Olyset LN was conducted in the Vallée du Kou near Bobo-Dioulasso, where the two molecular forms of Anopheles gambiae s.s., S (frequency 65%) and M (frequency 35%), occur. The S form is mostly pyrethroid resistant (Fkdr = 92%) owing to the kdr mechanism, and the M form is mostly kdr susceptible (Fkdr = 7%). The treatment arms included ITPS, Olyset, ITPS plus Olyset, ITPS plus untreated net (with or without holes), and untreated control. ITPS was significantly inferior to Olyset LN in terms of mortality (37% vs 63%), blood feeding inhibition (20% vs 81%) and deterrence (0 vs 42%) effects, and hence altogether inferior as a means of personal protection (16% vs 89%). The addition of ITPS to Olyset did not improve mortality (62%), blood feeding inhibition (75%), deterrence (50%) or personal protection (88%) over that of Olyset used alone. Use of untreated nets - both holed and intact - with ITPS provided greater protection from blood-feeding. The intact net/ITPS combination killed more mosquitoes than ITPS on its own. Although ITPS has a potential role for community control of malaria, at low coverage it is unlikely to be as good as Olyset LNs for household protection. The combination of pyrethroid IRS and pyrethroid LN - as practiced in some countries - is unlikely to be additive except, perhaps, at high levels of IRS coverage. A combination of LN and ITPS treated with an alternative insecticide is likely to be more effective, particularly in areas of pyrethroid resistance.
Rakotoson, Jean-Desire; Fornadel, Christen M; Belemvire, Allison; Norris, Laura C; George, Kristen; Caranci, Angela; Lucas, Bradford; Dengela, Dereje
2017-08-23
Insecticide-based vector control, which comprises use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method to malaria control in Madagascar. However, its effectiveness is threatened as vectors become resistant to insecticides. This study investigated the resistance status of malaria vectors in Madagascar to various insecticides recommended for use in ITNs and/or IRS. WHO tube and CDC bottle bioassays were performed on populations of Anopheles gambiae (s.l.), An. funestus and An. mascarensis. Adult female An. gambiae (s.l.) mosquitoes reared from field-collected larvae and pupae were tested for their resistance to DDT, permethrin, deltamethrin, alpha-cypermethrin, lambda-cyhalothrin, bendiocarb and pirimiphos-methyl. Resting An. funestus and An. mascarensis female mosquitoes collected from unsprayed surfaces were tested against permethrin, deltamethrin and pirimiphos-methyl. The effect on insecticide resistance of pre-exposure to the synergists piperonyl-butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) also was assessed. Molecular analyses were done to identify species and determine the presence of knock-down resistance (kdr) and acetylcholinesterase resistance (ace-1 R ) gene mutations. Anopheles funestus and An. mascarensis were fully susceptible to permethrin, deltamethrin and pirimiphos-methyl. Anopheles gambiae (s.l.) was fully susceptible to bendiocarb and pirimiphos-methyl. Among the 17 An. gambiae (s.l.) populations tested for deltamethrin, no confirmed resistance was recorded, but suspected resistance was observed in two sites. Anopheles gambiae (s.l.) was resistant to permethrin in four out of 18 sites (mortality 68-89%) and to alpha-cypermethrin (89% mortality) and lambda-cyhalothrin (80% and 85%) in one of 17 sites, using one or both assay methods. Pre-exposure to PBO restored full susceptibility to all pyrethroids tested except in one site where only partial restoration to permethrin was observed. DEF fully suppressed resistance to deltamethrin and alpha-cypermethrin, while it partially restored susceptibility to permethrin in two of the three sites. Molecular analysis data suggest absence of kdr and ace-1 R gene mutations. This study suggests involvement of detoxifying enzymes in the phenotypic resistance of An. gambiae (s.l.) to pyrethroids. The absence of resistance in An. funestus and An. mascarensis to pirimiphos-methyl and pyrethroids and in An. gambiae (s.l.) to carbamates and organophosphates presents greater opportunity for managing resistance in Madagascar.
Knockdown Resistance Mutations in Aedes aegypti (Diptera: Culicidae) From Puerto Rico.
Ponce-García, Gustavo; Del Río-Galvan, Samantha; Barrera, Roberto; Saavedra-Rodriguez, Karla; Villanueva-Segura, Karina; Felix, Gilberto; Amador, Manuel; Flores, Adriana E
2016-11-01
Permethrin resistance is widespread in Aedes aegypti (L.), the main dengue, zika, and chikungunya virus vector in Latin America and the Caribbean. A common mechanism of resistance to pyrethroids-knockdown resistance (kdr)-is conferred through mutations in the insect's voltage-dependent sodium channel. In this mosquito, around 10 replacement substitutions in the voltage-gated sodium channel gene (vgsc) have been reported in pyrethroid-resistant strains. Two of these mutations, named Ile1,016 and Cys1,534, are widespread in mosquito populations from Latin America and the Caribbean. This study assessed the levels of permethrin resistance and the frequency of two kdr mutations in eight Ae. aegypti populations collected in Puerto Rico in 2013. Permethrin resistance factors ranged from 33-214-fold relative to the New Orleans reference strain. The frequency of kdr mutation Ile1,016 ranged from 0.65 to fixation (1.0), and for Cys1,534 frequencies varied from 0.8 to fixation. Alarmingly, two populations-Carolina and Caguas-reached fixation at both loci. Our results suggest that permethrin effectiveness for Ae. aegypti control is compromised in these collections from Puerto Rico. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2013-01-01
Background Long-lasting insecticide treated nets (LLINs) and indoor residual house spraying (IRS) are the main interventions for the control of malaria vectors in Zanzibar. The aim of the present study was to assess the susceptibility status of malaria vectors against the insecticides used for LLINs and IRS and to determine the durability and efficacy of LLINs on the island. Methods Mosquitoes were sampled from Pemba and Unguja islands in 2010–2011 for use in WHO susceptibility tests. One hundred and fifty LLINs were collected from households on Unguja, their physical state was recorded and then tested for efficacy as well as total insecticide content. Results Species identification revealed that over 90% of the Anopheles gambiae complex was An. arabiensis with a small number of An. gambiae s.s. and An. merus being present. Susceptibility tests showed that An. arabiensis on Pemba was resistant to the pyrethroids used for LLINs and IRS. Mosquitoes from Unguja Island, however, were fully susceptible to all pyrethroids tested. A physical examination of 150 LLINs showed that two thirds were damaged after only three years in use. All used nets had a significantly lower (p < 0.001) mean permethrin concentration of 791.6 mg/m2 compared with 944.2 mg/m2 for new ones. Their efficacy decreased significantly against both susceptible An. gambiae s.s. colony mosquitoes and wild-type mosquitoes from Pemba after just six washes (p < 0.001). Conclusion The sustainability of the gains achieved in malaria control in Zanzibar is seriously threatened by the resistance of malaria vectors to pyrethroids and the short-lived efficacy of LLINs. This study has revealed that even in relatively well-resourced and logistically manageable places like Zanzibar, malaria elimination is going to be difficult to achieve with the current control measures. PMID:23537463
2014-01-01
Background Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper. Methods A systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper ( http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data. Results Literature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010–2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution of insecticide resistance in malaria vectors in Africa. Conclusions The increasing pyrethroid and DDT resistance in Anopheles in the Afrotropical region is alarming. Urgent attention should be afforded to testing An. funestus populations especially for metabolic resistance mechanisms. IR Mapper is a useful tool for investigating temporal and spatial trends in Anopheles resistance to support the pragmatic use of insecticidal interventions. PMID:24559061
Miarinjara, Adélaïde; Boyer, Sébastien
2016-02-01
Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.
Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.
Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana
2012-06-01
Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.
Kweka, Eliningaya J; Mwang'onde, Beda J; Kimaro, Epiphania E; Msangi, Shandala; Tenu, Filemoni; Mahande, Aneth M
2009-01-01
The recent spread of bedbugs, Cimex lectularius L. (Heteroptera: Cimicidae), has received attention of the public health sector for designing of effective plan of action for control. Several studies have focused on determining the distribution and abundance of bedbug populations in tropical areas. This study establishes baseline information on deltamethrin, permethrin, alphacypermethrin, lambdacypermethrin and K-O tab susceptibility status in a bedbug population collected from Magugu area in northern Tanzania. The evolution of insecticide resistance could be a primary factor in explaining this resurgence of bedbugs in many areas, both rural and urban. Evaluation of the bedbug population from houses in Magugu indicates that the population of bedbugs is susceptible to pyrethroid insecticides, which are commonly used. Without the development of new tactics for bedbug resistance management, further escalation of this public health problem should be expected when resistant gene spreads within the population. These results suggest that although all concentrations kill bedbugs, more evaluations should be done using WHO kits and mechanisms involved in pyrethroid resistance should be evaluated, such as metabolic and knockdown resistance gene, to have a broad picture for better design of control methodologies. PMID:20300399
Djadid, Navid Dinparast; Forouzesh, Flora; Karimi, Mohsen; Raeisi, Ahmad; Hassan-Zehi, Abdoulghaffar; Zakeri, Sedigheh
2007-07-01
Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. In current study, along with WHO routine susceptibility test with DDT (4%), dieldrin (0.4%), malathion (5%), permethrin (0.25%), lambadacyhalothrin (0.1%), and deltamethrin 0.025, we cloned and sequenced segment VI of domain II (SII6) in voltage-gated sodium channel (vgsc) gene of An. culicifacies specimens collected in Sistan and Baluchistan province (Iran). A 221-bp amplified fragment showed 91% and 93% similarity with exon I and exon II of An. gambiae. The size of intron II in An. culicifacies is 62 bp, while in An. gambiae is 57 bp. The major difference within An. culicifacies specimens and also with An. gambiae is in position 29 of exon I, which led to substitution of Leu to His amino acid. This data will act as first report on partial sequence of vgsc gene and its polymorphism in An. culicifacies. A Leu to His amino acid substitution detected upstream the formerly known knockdown resistance (kdr) mutation site could be an indication for other possible mutations related to insecticide resistance. However, the result of WHO susceptibility test carried out in Baluchistan of Iran revealed a level of tolerance to DDT and dieldrin, but almost complete susceptibility to pyrethroids in An. culicifacies. We postulate that the molecular diagnostic tool developed for detection and identification of kdr-related mutations in An. culicifacies, could be useful in monitoring insecticide resistance in Iran and neighbouring countries such as Pakistan and Afghanistan. A phylogenetic tree also constructed based on the sequence of exon I and II, which readily separated An. culicifacies populations from An. stephensi, An. fluviatilis and An. gambiae.
Martins, Ademir Jesus; Ribeiro, Camila Dutra e Mello; Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira
2012-01-01
Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost.
Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira
2012-01-01
Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost. PMID:22431967
N.G. Rappaport; M.I. Haverty; P.J. Shea; R.E. Sandquist
1994-01-01
We tested the pyrethroid insecticide esfenvalerate in single, double, and triple applications for control of insects affecting seed production of blister rust-resistant western white pine, Pinus monticola Douglas. All treatments increased the proportion of normal seed produced and reduced the proportion of seed damaged by the western conifer seed...
USDA-ARS?s Scientific Manuscript database
The common bed bug, Cimex lectularius (L.) (Hemiptera: Cimicidae) is undergoing a rapid resurgence in the United States during the last decade which has created a notable pest management challenge largely because the pest has developed resistance against DDT, organophosphates, carbamates, and pyreth...
ERIC Educational Resources Information Center
Osteen, Craig; Suguiyama, Luis
This report examines the economic implications of losing chlordimeform use on cotton and considers chlordimeform's role in managing the resistance of bollworms and tobacco budworms to synthetic pyrethroids. It estimates changes in prices, production, acreage, consumer expenditures, aggregate producer returns, regional crop effects, and returns to…
A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius
Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K.
2016-01-01
The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species. PMID:27733453
2014-01-01
Background Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. Results Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. Conclusions This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies. PMID:24565444
Sharma, Surya K.; Upadhyay, Ashok K.; Haque, Mohammed A.; Tyagi, Prajesh K.; Kindo, Bikrant K.
2012-01-01
Background & objectives: Development of insecticide resistance in malaria vectors has been a major problem for achieving effective vector control. Due to limited availability of insecticides, the only option is management of resistance by judiciously using the insecticides and rotating them to maintain their effectiveness. This study was carried out in a malaria endemic area of Sundergarh district in Orissa where synthetic pyrethroids (SP) were in use for the last couple of years. The change-over from SP to DDT was done in one arm of study, and the other two arms remained on SP and insecticide-treated nets (ITN). Entomological and parasitological monitoring was done to assess the impact. Methods: The study design comprised of three arms (i) two rounds of indoor residual spraying (IRS) with DDT 1g/m2 as a change-over insecticide in areas previously under synthetic pyrethroids; (ii) two rounds of IRS with synthetic pyrethroid (alphacypermethrin, ACM) @ 25 mg/m2; and (iii) an unsprayed area under ITN/long lasting insecticide nets (LNs). Indoor residual spraying was undertaken under strict supervision to maintain quality and coverage. Contact bioassays were conducted to know the persistence of insecticide on sprayed surfaces and adult vector density was monitored in fixed and randomly selected houses. Malaria incidence was measured through fortnightly domiciliary surveillance under primary health care system in all the study villages. Results: The insecticide susceptibility tests showed that An.culicifacies was resistant to DDT but susceptible to malathion and ACM. However, An. fluviatilis was susceptible to all the three insecticides. ACM was effective in killing An. culicifacies on mud and wooden sprayed surfaces and maintained effective bioefficacy ranging from 92 to 100 per cent up to five months, whereas DDT failed to achieve effective mortality in An.culicifacies. However, there was significant decline in the density of An.culicifacies in ACM and DDT areas in comparison to ITNs/LNs. There was 61 per cent reduction in the slide positivity rate in ACM area in comparison to 48 and 51 per cent in DDT and ITN/LNs areas, respectively. The adjusted incidence rate of malaria cases per 1000 population in three study areas also showed significant declines within each group. Interpretation & conclusions: The present findings show that the change-over of insecticide from synthetic pyrethroids to DDT brings about the same epidemiological impact as envisaged from continuing SP spray or distributing insecticide treated nets/long-lasting insecticidal nets provided there is a good quality spray and house coverage. PMID:22561626
Rathor, Hamayun Rashid; Nadeem, Ghazala; Khan, Imtinan Akram
2013-01-01
Recent floods drastically increased the burden of disease, in particular the incidence of malaria, in the southern districts of the Punjab province in Pakistan. Control of malaria vector mosquitoes in these districts requires the adoption of an appropriate evidence-based policy on the use of pesticides, and having the latest information on the insecticide resistance status of malaria vector mosquitoes is essential for designing effective disease prevention policy. Using World Health Organization (WHO) test kits, the present study utilized papers impregnated with DDT, malathion, deltamethrin, lambda-cyhalothrin, and permethrin, to determine the insecticide susceptibility/resistance status of malaria vector mosquitoes in four flood-affected districts. The test results showed that both Anopheles stephensi and Anopheles culicifacies remained resistant to DDT and malathion. Tests with three commonly used pyrethroids, permethrin, lambda-cyhalothrin, and deltamethrin, detected resistance in the majority of cases, but in a number of localities mortalities with these three pyrethroids ranged from 80-97% and were therefore placed under verification-required status. This status indicates the presence of susceptible individuals in these populations. These results suggest that if appropriate resistance management strategies are applied in these areas, then the development of high levels of resistance can still be prevented or slowed. This study forms an important evidence base for the strategic planning of vector control in the four flood-affected districts.
Mitchell, Sara N; Stevenson, Bradley J; Müller, Pie; Wilding, Craig S; Egyir-Yawson, Alexander; Field, Stuart G; Hemingway, Janet; Paine, Mark J I; Ranson, Hilary; Donnelly, Martin James
2012-04-17
In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate.
[Susceptibility of Aedes aegypti to DDT, deltamethrin, and lambda-cyhalothrin in Colombia].
Santacoloma Varón, Liliana; Chaves Córdoba, Bernardo; Brochero, Helena Luisa
2010-01-01
To assess the susceptibility status of 13 natural populations of Aedes aegypti (collected from sites in Colombia where dengue is a serious public health problem) to the pyrethroids, deltamethrin and lambda-cyhalothrin, and to the organochlorine, DDT, and to identify any biochemical mechanisms associated with resistance. Immature forms of the vector were collected from natural breeding spots at each site and then raised under controlled conditions. Using the F2 generation, bioassays were performed using the World Health Organization's 1981 methodology (impregnated paper) and United States Centers for Disease Control and Prevention's 1998 methodology (impregnated bottles). In populations where mortality rates were consistent with decreased susceptibility, levels of nonspecific esterases (NSE), mixed-function oxidases (MFO), and acetylcholinesterase (AChE) were measured using colorimetric tests. All of the mosquito populations that were tested showed resistance to the organochlorine DDT. In the case of the pyrethroids, widespread resistance to lambda-cyhalothrin was found, but not to deltamethrin. Assessing the biochemical resistance mechanisms showed that 7 of the 11 populations had elevated NSE, and one population, increased MFO. Physiological cross-resistance between DDT and lambda-cyhalothrin in the A. aegypti populations tested was dismissed. Physiological resistance to lambda-cyhalothrin appears to be associated with increased NSE. The differences in susceptibility levels and enzyme values among the populations were associated with genetic variations and chemicals in use locally.
Mitchell, Sara N.; Stevenson, Bradley J.; Müller, Pie; Wilding, Craig S.; Egyir-Yawson, Alexander; Field, Stuart G.; Hemingway, Janet; Paine, Mark J. I.; Ranson, Hilary; Donnelly, Martin James
2012-01-01
In the last decade there have been marked reductions in malaria incidence in sub-Saharan Africa. Sustaining these reductions will rely upon insecticides to control the mosquito malaria vectors. We report that in the primary African malaria vector, Anopheles gambiae sensu stricto, a single enzyme, CYP6M2, confers resistance to two classes of insecticide. This is unique evidence in a disease vector of cross-resistance associated with a single metabolic gene that simultaneously reduces the efficacy of two of the four classes of insecticide routinely used for malaria control. The gene-expression profile of a highly DDT-resistant population of A. gambiae s.s. from Ghana was characterized using a unique whole-genome microarray. A number of genes were significantly overexpressed compared with two susceptible West African colonies, including genes from metabolic families previously linked to insecticide resistance. One of the most significantly overexpressed probe groups (false-discovery rate-adjusted P < 0.0001) belonged to the cytochrome P450 gene CYP6M2. This gene is associated with pyrethroid resistance in wild A. gambiae s.s. populations) and can metabolize both type I and type II pyrethroids in recombinant protein assays. Using in vitro assays we show that recombinant CYP6M2 is also capable of metabolizing the organochlorine insecticide DDT in the presence of solubilizing factor sodium cholate. PMID:22460795
Naveen, N. C.; Chaubey, Rahul; Kumar, Dinesh; Rebijith, K. B.; Rajagopal, Raman; Subrahmanyam, B.; Subramanian, S.
2017-01-01
The present study is a summary of the current level of the insecticide resistance to selected organophosphates, pyrethroids, and neonicotinoids in seven Indian field populations of Bemisia tabaci genetic groups Asia-I, Asia-II-1, and Asia-II-7. Susceptibility of these populations was varied with Asia-II-7 being the most susceptible, while Asia-I and Asia-II-1 populations were showing significant resistance to these insecticides. The variability of the LC50 values was 7x for imidacloprid and thiamethoxam, 5x for monocrotophos and 3x for cypermethrin among the Asia-I, while, they were 7x for cypermethrin, 6x for deltamethrin and 5x for imidacloprid within the Asia-II-1 populations. When compared with the most susceptible, PUSA population (Asia-II-7), a substantial increase in resistant ratios was observed in both the populations of Asia-I and Asia-II-1. Comparative analysis during 2010–13 revealed a decline in susceptibility in Asia-I and Asia-II-1 populations of B. tabaci to the tested organophosphate, pyrethroid, and neonicotinoid insecticides. Evidence of potential control failure was detected using probit analysis estimates for cypermethrin, deltamethrin, monocrotophos and imidacloprid. Our results update resistance status of B. tabaci in India. The implications of insecticide resistance management of B. tabaci on Indian subcontinent are discussed. PMID:28098188
Insecticide resistance in vector Chagas disease: evolution, mechanisms and management.
Mougabure-Cueto, Gastón; Picollo, María Inés
2015-09-01
Chagas disease is a chronic parasitic infection restricted to America. The disease is caused by the protozoa Trypanosoma cruzi, which is transmitted to human through the feces of infected triatomine insects. Because no treatment is available for the chronic forms of the disease, vector chemical control represents the best way to reduce the incidence of the disease. Chemical control has been based principally on spraying dwellings with insecticide formulations and led to the reduction of triatomine distribution and consequent interruption of disease transmission in several areas from endemic region. However, in the last decade it has been repeatedly reported the presence triatomnes, mainly Triatoma infestans, after spraying with pyrethroid insecticides, which was associated to evolution to insecticide resistance. In this paper the evolution of insecticide resistance in triatomines is reviewed. The insecticide resistance was detected in 1970s in Rhodnius prolixus and 1990s in R. prolixus and T. infestans, but not until the 2000s resistance to pyrthroids in T. infestans associated to control failures was described in Argentina and Bolivia. The main resistance mechanisms (i.e. enhanced metabolism, altered site of action and reduced penetration) were described in the T. infestans resistant to pyrethrods. Different resistant profiles were demonstrated suggesting independent origin of the different resistant foci of Argentina and Bolivia. The deltamethrin resistance in T. infestans was showed to be controlled by semi-dominant, autosomally inherited factors. Reproductive and developmental costs were also demonstrated for the resistant T. infestans. A discussion about resistance and tolerance concepts and the persistence of T. infestans in Gran Chaco region are presented. In addition, theoretical concepts related to toxicological, evolutionary and ecological aspects of insecticide resistance are discussed in order to understand the particular scenario of pyrethroid resistance in triatomines. Copyright © 2015 Elsevier B.V. All rights reserved.
A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius.
Fountain, Toby; Ravinet, Mark; Naylor, Richard; Reinhardt, Klaus; Butlin, Roger K
2016-12-07
The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F 2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species. Copyright © 2016 Fountain et al.
Fronza, G; Toloza, A C; Picollo, M I; Spillmann, C; Mougabure-Cueto, G A
2016-07-01
Chagas disease is one of the most important parasitic infections in Latin America. The main vector of the protozoan Trypanosoma cruzi in America is Triatoma infestans, a blood-sucking triatomine bug who is widely distributed in the Gran Chaco ecoregion. Control programs in endemic countries are focused in the elimination of triatomine vectors with pyrethroid insecticides. However, chemical control has failed in the Gran Chaco over the last two decades because of several factors. Previous studies have reported the evolution of different levels of resistance to deltamethrin in Tri. infestans Recently, very high resistance has been found in the central area of the Argentine Gran Chaco. However, the origin and the extension of this remarkably resistant focus remain unknown. The aim of this study was to evaluate the geographical variation of deltamethrin susceptibility of Tri. infestans in different endemic provinces of Argentina, with emphasis in the center of the Argentine Gran Chaco ecoregion where this main vector has not been reduced. Populations of Mendoza, San Juan, Santiago del Estero, and Tucumán provinces were all susceptible. Resistant populations were only detected in the province of Chaco, where a mosaic resistant focus was described at the Güemes Department. It was characterized into three pyrethroid resistance categories: susceptible, low, and highly resistant populations. We found the populations with the highest resistance levels to deltamethrin, with resistant ratios over 1000. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak Hossain, Muhammad; Suzuki, Tadahiko; United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193
2006-11-15
In order to obtain a more complete understanding of pyrethroid neurotoxicity, effects of the pyrethroid insecticides, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) on extracellular levels of dopamine (DA) and its metabolites in the striatum of conscious rats were studied by in vivo microdialysis. Rats were treated i.p. with pyrethroids or vehicle. Allethrin had a dual effect on DA release. The increase in the extracellular level of striatal DA by 10 mg/kg allethrin reached a maximum of 178% of baseline but 20 and 60 mg/kg inhibited DA release to 63% and 52% of baseline with a peakmore » effect at 60-80 min after injection. Cyhalothrin 10, 20 and 60 mg/kg inhibited DA release to 65%, 56% and 45% of basal release, respectively, with a peak time of inhibition 40-80 min past injection. Deltamethrin (10 and 20 mg/kg) increased DA release to maximum of 187% and 252% of basal release whereas 60 mg/kg first reduced the efflux for 40 min to 50% of basal release and then increased the efflux to a maximum of 344% of basal release with a peak time of 120 min. Local infusion of 1 {mu}M tetrodotoxin, a Na{sup +} blocker through the dialysis probe completely prevented the effect of allethrin (10 and 60 mg/kg), cyhalothrin (60 mg/kg) and deltamethrin (20 mg/kg) on DA release but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on DA release was completely prevented by local infusion of 10 {mu}M nimodipine, an L-type Ca{sup ++} channel blocker. All three pyrethroids did not alter the extracellular levels of DOPAC, 3-MT and HVA except that 20 and 60 mg/kg of allethrin and cyhalothrin increased 3-MT levels. Effect of the pyrethroids on synaptosomal DA uptake was also examined. The DA uptake was decreased in rats exposed to 60 mg/kg of allethrin and cyhalothrin but was increased in rats exposed to 60 mg/kg of deltamethrin. Our results demonstrate that striatal DA release and DA uptake are differentially affected by type I and the two type II pyrethroids indicating that dopaminergic circuitry, striatal DA in particular, may be a pyrethroid target and that pyrethroids may be acting on striatal DA by multiple mechanisms.« less
Exposure to pyrethroids insecticides and serum levels of thyroid-related measures in pregnant women
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Hisada, Aya; Yoshinaga, Jun, E-mail: junyosh@k.u-tokyo.ac.jp
Possible association between environmental exposure to pyrethroid insecticides and serum thyroid-related measures was explored in 231 pregnant women of 10–12 gestational weeks recruited at a university hospital in Tokyo during 2009–2011. Serum levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and thyroid biding globulin (TBG) and urinary pyrethroid insecticide metabolite (3-phenoxybenzoic acid, 3-PBA) were measured. Obstetrical information was obtained from medical records and dietary and lifestyle information was collected by self-administered questionnaire. Geometric mean concentration of creatinine-adjusted urinary 3-PBA was 0.363 (geometric standard deviation: 3.06) μg/g cre, which was consistent with the previously reported levels for non-exposed Japanese adultmore » females. The range of serum fT4, TSH and TBG level was 0.83–3.41 ng/dL, 0.01–27.4 μIU/mL and 16.4–54.4 μg/mL, respectively. Multiple regression analysis was carried out by using either one of serum levels of thyroid-related measures as a dependent variable and urinary 3-PBA as well as other potential covariates (age, pre-pregnancy BMI, parity, urinary iodine, smoking and drinking status) as independent variables: 3-PBA was not found as a significant predictor of serum level of thyroid-related measures. Lack of association may be due to lower pyrethroid insecticide exposure level of the present subjects. Taking the ability of pyrethroid insecticides and their metabolite to bind to nuclear thyroid hormone (TH) receptor, as well as their ability of placental transfer, into consideration, it is warranted to investigate if pyrethroid pesticides do not have any effect on TH actions in fetus brain even though maternal circulating TH level is not affected. -- Highlights: • Pyrethroid exposure and thyroid hormone status was examined in pregnant women. • Urinary 3-phenoxybenzoic acid was used as a biomarker of exposure. • Iodine nutrition, age and other covariates were included in statistical models. • No association was found between levels of thyroid hormone and pyrethroid exposure. • The result may be ascribed to lower exposure level.« less
Endocrine disruptor activity of multiple environmental food chain contaminants.
Wielogórska, E; Elliott, C T; Danaher, M; Connolly, L
2015-02-01
Industrial chemicals, antimicrobials, drugs and personal care products have been reported as global pollutants which enter the food chain. Some of them have also been classified as endocrine disruptors based on results of various studies employing a number of in vitro/vivo tests. The present study employed a mammalian reporter gene assay to assess the effects of known and emerging contaminants on estrogen nuclear receptor transactivation. Out of fifty-nine compounds assessed, estrogen receptor agonistic activity was observed for parabens( n = 3), UV filters (n = 6), phthalates (n = 4) and a metabolite, pyrethroids (n = 9) and their metabolites (n = 3). Two compounds were estrogen receptor antagonists while some of the agonists enhanced 17b-estradiol mediated response.This study reports five new compounds (pyrethroids and their metabolites) possessing estrogen agonist activity and highlights for the first time that pyrethroid metabolites are of particular concern showing much greater estrogenic activity than their parent compounds.
Carmona-Antoñanzas, Greta; Bekaert, Michaël; Humble, Joseph L.; Boyd, Sally; Roy, William; Bassett, David I.; Houston, Ross D.; Gharbi, Karim
2017-01-01
Parasitic infections by the salmon louse, Lepeophtheirus salmonis (Krøyer), cause huge economic damage in salmon farming in the northern hemisphere, with combined treatment costs and production losses in 2014 having been estimated at US$ 350 million for Norway (annual production 1.25 million tonnes). The control of L. salmonis relies significantly on medicinal treatments, supplemented by non-pharmacological approaches. However, efficacy losses have been reported for several delousing agents, including the pyrethroid deltamethrin. The aim of the present study was to analyse the genetic basis of deltamethrin resistance in L. salmonis. Deltamethrin median effective concentrations (EC50) were 0.28 μg L-1 in the drug susceptible L. salmonis strain IoA-00 and 40.1 μg L-1 in the pyrethroid resistant strain IoA-02. IoA-00 and IoA-02 were crossed to produce families spanning one parental and three filial generations (P0, F1-F3). In three families derived from P0 crosses between an IoA-00 sire and an IoA-02 dam, 98.8% of F2 parasites (n = 173) were resistant, i.e. remained unaffected after exposure to 2.0 μg L-1 deltamethrin. F3 parasites from these crosses showed a deltamethrin EC50 of 9.66 μg L-1. In two families of the inverse orientation at P0 (IoA-02 sire x IoA-00 dam), 16.7% of F2 parasites were resistant (n = 84), while the deltamethrin EC50 in F3 animals was 0.26 μg L-1. The results revealed a predominantly maternal inheritance of deltamethrin resistance. The 15,947-nt mitochondrial genome was sequenced and compared among six unrelated L. salmonis strains and parasites sampled from wild salmon in 2010. IoA-02 and three further deltamethrin resistant strains, established from isolates originating from different regions of Scotland, showed almost identical mitochondrial haplotypes. In contrast, the mitochondrial genome was variable among susceptible strains and L. salmonis from wild hosts. Deltamethrin caused toxicity and depletion of whole body ATP levels in IoA-00 but not IoA-02 parasites. The maternal inheritance of deltamethrin resistance and its association with mitochondrial haplotypes suggests that pyrethroid toxicity in L. salmonis may involve molecular targets encoded by mitochondrial genes. PMID:28704444
Philbert, Anitha; Lyantagaye, Sylvester Leonard; Pradel, Gabriele; Ngwa, Che Julius; Nkwengulila, Gamba
2017-04-01
To assess the susceptibility status of malaria vectors to pyrethroids and dichlorodiphenyltrichloroethane (DDT), characterise the mechanisms underlying resistance and evaluate the role of agro-chemical use in resistance selection among malaria vectors in Sengerema agro-ecosystem zone, Tanzania. Mosquito larvae were collected from farms and reared to obtain adults. The susceptibility status of An. gambiae s.l. was assessed using WHO bioassay tests to permethrin, deltamethrin, lambdacyhalothrin, etofenprox, cyfluthrin and DDT. Resistant specimens were screened for knock-down resistance gene (kdr), followed by sequencing both Western and Eastern African variants. A gas chromatography-mass spectrophotometer (GC-MS) was used to determine pesticide residues in soil and sediments from mosquitoes' breeding habitats. Anopheles gambiae s.l. was resistant to all the insecticides tested. The population of Anopheles gambiae s.l was composed of Anopheles arabiensis by 91%. The East African kdr (L1014S) allele was found in 13 of 305 specimens that survived insecticide exposure, with an allele frequency from 0.9% to 50%. DDTs residues were found in soils at a concentration up to 9.90 ng/g (dry weight). The observed high resistance levels of An. gambiae s.l., the detection of kdr mutations and pesticide residues in mosquito breeding habitats demonstrate vector resistance mediated by pesticide usage. An integrated intervention through collaboration of agricultural, livestock and vector control units is vital. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, J.-S.; Soderlund, David M.
2006-03-15
Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na{sub v}1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed withmore » kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na{sub v}1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na{sub v}1.8 sodium channels from the perspective of either resting or use-dependent modification. When use dependence is taken into account, cypermethrin, deltamethrin and tefluthrin approached the effectiveness of fenpropathrin. The selective expression of Na{sub v}1.8 sodium channels in nociceptive neurons suggests that these channels may be important targets for pyrethroids in the production of paresthesia following dermal expo0010su.« less
Jones, Susan C; Bryant, Joshua L; Sivakoff, Frances S
2015-05-01
Sublethal exposure to pesticides can alter insect behavior with potential for population-level consequences. We investigated sublethal effects of ActiveGuard, a permethrin-impregnated fabric, on feeding behavior and fecundity of bed bugs (Cimex lectularius L.) from five populations that ranged from susceptible to highly pyrethroid resistant. After exposure to ActiveGuard fabric or untreated fabric for 1 or 10 min, adult virgin female bed bugs were individually observed when offered a blood meal to determine feeding attempts and weight gain. Because bed bug feeding behavior is tightly coupled with its fecundity, all females were then mated, and the number of eggs laid and egg hatch rate were used as fecundity measures. We observed that pyrethroid-resistant and -susceptible bugs were not significantly different for all feeding and fecundity parameters. Bed bugs exposed to ActiveGuard for 10 min were significantly less likely to attempt to feed or successfully feed, and their average blood meal size was significantly smaller compared with individuals in all other groups. Independent of whether or not feeding occurred, females exposed to ActiveGuard for 10 min were significantly more likely to lay no eggs. Only a single female exposed to ActiveGuard for 10 min laid any eggs. Among the other fabric treatment-exposure time groups, there were no observable differences in egg numbers or hatch rates. Brief exposure of 10 min to ActiveGuard fabric appeared to decrease feeding and fecundity of pyrethroid-resistant and susceptible bed bugs, suggesting the potentially important role of sublethal exposure for the control of this ectoparasitic insect. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kotewong, Rattanawadee; Duangkaew, Panida; Srisook, Ekaruth; Sarapusit, Songklod; Rongnoparut, Pornpimol
2014-09-01
The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.
NASA Astrophysics Data System (ADS)
ccanccapa, alexander; Masia, Ana; Pico, Yolanda
2016-04-01
Pyrethroids are the synthetic analogues of pyrethrins which were developed as pesticides from the extracts of dried and powdered flower heads of Chrysanthemum cinerariaefolium. They are increasingly used in agriculture due to their broad biological activity and slow development of pest resistance. Contamination of fresh-water ecosystems appears either because of the direct discharge of industrial and agricultural effluents or as a result of effluents from sewage treatment works; residues can thus accumulate in the surrounding biosphere [1, 2]. These substances, mostly determined by gas chromatography mass spectrometry (GC-MS) can be difficult to analyse due to their volatility and degradability. The purpose of this study is, as an alternative, to develop a fast and sensitive multi-residue method for the target analysis of 7 pyrethroids and the 6 natural pyrethrins currently used in water samples by liquid chromatography tandem mass spectrometry (LC-MS/MS). The compounds included in the study were acrinathrin, etofenprox, cyfluthrin, esfenvalerate, cyhalothrin, cypermethrin and flumethrin as pyrethroids and a commercial mix of pyrethrins containing Cinerin I, Jasmolin I, pyrethrin I, cinerin II, jasmolin II, pyrethrins II in different percentages. As a preliminary step, the ionization and fragmentation of the compounds were optimized injecting individual solutions of each analyte at 10 ppm in the system, using a gradient elution profile of water-methanol both with 10 mM ammonium formate. The ESI conditions were: capillary voltage 4000 V, nebulizer15 psi, source temperature 300◦C and gas flow 10 L min-1. [M+H]+, [M+Na]+ ,[M+NH3]+ ,[M+NH4+]+ were tested as precursor ions. The most intense signal was for ammonium adduct for all compounds. The optimal fragmentor range for product ions were between 20 to 80 ev and the collision energy ranged between 5 to 86 ev. The efficiency of the method was tested in water samples from Turia River without any known exposure to pyrethroids. At least three of the seven pyrethroids were detected.
Siegwart, Myriam; Thibord, Jean-Baptiste; Olivares, Jérôme; Hirn, Céline; Elias, Jan; Maugin, Sandrine; Lavigne, Claire
2017-04-01
The European corn borer (Ostrinia nubilalis (Hübner)) is one of the most serious corn pest in Europe where it is controlled with pesticides, in particular, pyrethroids. First control failures with this chemical family occurred on the field in 2008 in the center of France, and the first resistance case was described in 2012. In the present study, we investigate resistance mechanisms involved in seven French populations of O. nubilalis collected in the field. Resistances to deltamethrin and lambda-cyhalothrin were confirmed, with a higher resistance ratio for lambda-cyhalothrin (63.79 compared to 7.67). Resistance to the two active compounds was correlated except for one population, indicating a high probability of cross-resistance. Analyses of the activity of three major families of detoxification enzymes in resistant individuals showed a significant increase of the average MFO activity in males of four populations (activity ratios of 2.76-5.73) and higher GST activity in females of two other populations (activity ratios 4.48 and 5.21). Molecular investigation of the sodium channel gene sequence showed the presence of the kdr mutation in a highly resistant individual. We designed a PCR-RFLP screening tool to search for this mutation in the field, and we found it in five populations but not in the susceptible one. The resistance of O. nubilalis to pyrethroids in France seems to result from a combination of resistance mechanisms, possibly as a consequence of a selection pressure with an exceptional duration (almost 40 yr old). © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Denlinger, David S; Creswell, Joseph A; Anderson, J Laine; Reese, Conor K; Bernhardt, Scott A
2016-04-15
Insecticide resistance to synthetic chemical insecticides is a worldwide concern in phlebotomine sand flies (Diptera: Psychodidae), the vectors of Leishmania spp. parasites. The CDC bottle bioassay assesses resistance by testing populations against verified diagnostic doses and diagnostic times for an insecticide, but the assay has been used limitedly with sand flies. The objective of this study was to determine diagnostic doses and diagnostic times for laboratory Lutzomyia longipalpis (Lutz & Nieva) and Phlebotomus papatasi (Scopoli) to ten insecticides, including pyrethroids, organophosphates, carbamates, and DDT, that are used worldwide to control vectors. Bioassays were conducted in 1,000-ml glass bottles each containing 10-25 sand flies from laboratory colonies of L. longipalpis or P. papatasi. Four pyrethroids, three organophosphates, two carbamates and one organochlorine, were evaluated. A series of concentrations were tested for each insecticide, and four replicates were conducted for each concentration. Diagnostic doses were determined only during the exposure bioassay for the organophosphates and carbamates. For the pyrethroids and DDT, diagnostic doses were determined for both the exposure bioassay and after a 24-hour recovery period. Both species are highly susceptible to the carbamates as their diagnostic doses are under 7.0 μg/ml. Both species are also highly susceptible to DDT during the exposure assay as their diagnostic doses are 7.5 μg/ml, yet their diagnostic doses for the 24-h recovery period are 650.0 μg/ml for Lu. longipalpis and 470.0 μg/ml for P. papatasi. Diagnostic doses and diagnostic times can now be incorporated into vector management programs that use the CDC bottle bioassay to assess insecticide resistance in field populations of Lu. longipalpis and P. papatasi. These findings provide initial starting points for determining diagnostic doses and diagnostic times for other sand fly vector species and wild populations using the CDC bottle bioassay.
Balvín, Ondrej; Booth, Warren
2018-03-15
For over two decades, the bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) has been undergoing a dramatic global resurgence, likely in part to the evolution of mechanisms conferring resistance to insecticides. One such mechanism is knock-down resistance (kdr), resulting from nonsynonymous mutations within the voltage-gated sodium channel (VGSC) gene. To date, three mutations have been identified in C. lectularius, V419L, L925I, and I936F. Using Sanger sequencing, the frequency and distribution of these VGSC mutations across 131 populations collected from the bat-associated and human-associated lineages of C. lectularius found in Europe are documented. All populations from the bat-associated lineage lacked mutations at the three sites. In contrast, the majority of populations associated with humans (93.5%) possessed the mutation at the L925I site. The I936F mutation, previously only reported in Israel and Australia, was found in nine populations spread across several European countries, including the Czech Republic and Switzerland. The high frequency of kdr-associated resistance already reported in C. lectularius and the occurrence and broad geographic distribution of this additional VGSC mutation, questions the continued use of pyrethroids in the treatment of infestations.
Swale, Daniel R; Carlier, Paul R; Hartsel, Joshua A; Ma, Ming; Bloomquist, Jeffrey R
2015-08-01
Insecticide resistance in the malaria mosquito Anopheles gambiae is well documented, and widespread agricultural use of pyrethroids may exacerbate development of resistance when pyrethroids are used in vector control. We have developed carbamate anticholinesterases that possess a high degree of An. gambiae:human selectivity for enzyme inhibition. The purpose of this study was to assess the spectrum of activity of these carbamates against other mosquitoes and agricultural pests. Experimental carbamates were potent inhibitors of mosquito acetylcholinesterases, with IC50 values in the nanomolar range. Similar potencies were observed for Musca domestica and Drosophila melanogaster enzymes. Although meta-substituted carbamates were potent inhibitors, two ortho-substituted carbamates displayed poor enzyme inhibition (IC50 ≥ 10(-6) M) in honey bee (Apis mellifera), Asian citrus psyllid (Diaphorina citri) and lepidopteran agricultural pests (Plutella xylostella and Ostrinia nubilalis). Enzyme inhibition results were confirmed by toxicity studies in caterpillars, where the new carbamates were 2-3-fold less toxic than propoxur and up to tenfold less active than bendiocarb, indicating little utility of these compounds for crop protection. The experimental carbamates were broadly active against mosquito species but not agricultural pests, which should mitigate selection for mosquito insecticide resistance by reducing agricultural uses of these compounds. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.
Detecting pyrethroid resistance in predatory mites inhabiting soil and litter: an in vitro test.
El Adouzi, Marine; Bonato, Olivier; Roy, Lise
2017-06-01
While resistance against insecticides is widely known in pest arthropods, it remains poorly known in non-target arthropods of the same agrosystems. This may be of crucial importance in the context of organic pest management or integrated pest management. First, stopping of pesticide pressure during farm conversion may lead to important rearrangements of non-target communities due to fitness cost of resistance in populations of some species. Second, resistant biological agents may be useful to farms with low synthetic pesticide use. Communities of mesostigmatid mites, encompassing numerous predatory species, are supposed to be involved in important ecological processes in both crop soils and animal litter/manure. Here we provide a tarsal contact method for assessing resistance in different populations from various species of mesostigmatid mites. Analyses of data from repeated tests on three populations from different mesostigmatid families proved the method to be robust and able to generate consistent and reliable mortality percentages according to insecticide concentration. Our bioassay system allows for both one-shot estimate of pyrethroid sensitivity in mite populations and estimation of how it changes over time, making possible survival analyses and assessment of recovery from knockdown. The rating system retained makes it possible to score response to insecticides in a consistent and standard way in species from different mesostigmatid families. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Boltaña, Sebastian; Chávez-Mardones, Jaqueline; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian
2016-01-01
The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids. PMID:27187362
Boltaña, Sebastian; Chávez-Mardones, Jaqueline; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian
2016-05-12
The extensive use of organophosphates and pyrethroids in the aquaculture industry has negatively impacted parasite sensitivity to the delousing effects of these antiparasitics, especially among sea lice species. The NOTCH signaling pathway is a positive regulator of ABC transporter subfamily C expression and plays a key role in the generation and modulation of pesticide resistance. However, little is known about the molecular mechanisms behind pesticide resistance, partly due to the lack of genomic and molecular information on the processes involved in the resistance mechanism of sea lice. Next-generation sequencing technologies provide an opportunity for rapid and cost-effective generation of genome-scale data. The present study, through RNA-seq analysis, determined that the sea louse Caligus rogercresseyi (C. rogercresseyi) specifically responds to the delousing drugs azamethiphos and deltamethrin at the transcriptomic level by differentially activating mRNA of the NOTCH signaling pathway and of ABC genes. These results suggest that frequent antiparasitic application may increase the activity of inhibitory mRNA components, thereby promoting inhibitory NOTCH output and conditions for increased resistance to delousing drugs. Moreover, data analysis underscored that key functions of NOTCH/ABC components were regulated during distinct phases of the drug response, thus indicating resistance modifications in C. rogercresseyi resulting from the frequent use of organophosphates and pyrethroids.
Singh, O. P.; Dykes, C. L.; Sharma, G.; Das, M. K.
2015-01-01
Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis–polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. PMID:26336276
Belinato, Thiago Affonso; Valle, Denise
2015-01-01
Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators.
Matowo, Johnson; Jones, Christopher M; Kabula, Bilali; Ranson, Hilary; Steen, Keith; Mosha, Franklin; Rowland, Mark; Weetman, David
2014-06-19
Pyrethroid resistance has been slower to emerge in Anopheles arabiensis than in An. gambiae s.s and An. funestus and, consequently, studies are only just beginning to unravel the genes involved. Permethrin resistance in An. arabiensis in Lower Moshi, Tanzania has been linked to elevated levels of both P450 monooxygenases and β-esterases. We have conducted a gene expression study to identify specific genes linked with metabolic resistance in the Lower Moshi An. arabiensis population. Microarray experiments employing an An. gambiae whole genome expression chip were performed on An. arabiensis, using interwoven loop designs. Permethrin-exposed survivors were compared to three separate unexposed mosquitoes from the same or a nearby population. A subsection of detoxification genes were chosen for subsequent quantitative real-time PCR (qRT-PCR). Microarray analysis revealed significant over expression of 87 probes and under expression of 85 probes (in pairwise comparisons between permethrin survivors and unexposed sympatric and allopatric samples from Dar es Salaam (controls). For qRT-PCR we targeted over expressed ABC transporter genes (ABC '2060'), a glutathione-S-transferase, P450s and esterases. Design of efficient, specific primers was successful for ABC '2060'and two P450s (CYP6P3, CYP6M2). For the CYP4G16 gene, we used the primers that were previously used in a microarray study of An. arabiensis from Zanzibar islands. Over expression of CYP4G16 and ABC '2060' was detected though with contrasting patterns in pairwise comparisons between survivors and controls. CYP4G16 was only up regulated in survivors, whereas ABC '2060' was similar in survivors and controls but over expressed in Lower Moshi samples compared to the Dar es Salaam samples. Increased transcription of CYP4G16 and ABC '2060' are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Increased transcription of a P450 (CYP4G16) and an ABC transporter (ABC 2060) are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Our study provides replication of CYP4G16 as a candidate gene for pyrethroid resistance in An. arabiensis, although its role may not be in detoxification, and requires further investigation.
Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand
2013-01-01
Physiological resistance and behavioral responses of mosquito vectors to insecticides are critical aspects of the chemical-based disease control equation. The complex interaction between lethal, sub-lethal and excitation/repellent ('excito-repellent’) properties of chemicals is typically overlooked in vector management and control programs. The development of “physiological” resistance, metabolic and/or target site modifications, to insecticides has been well documented in many insect groups and disease vectors around the world. In Thailand, resistance in many mosquito populations has developed to all three classes of insecticidal active ingredients currently used for vector control with a majority being synthetic-derived pyrethroids. Evidence of low-grade insecticide resistance requires immediate countermeasures to mitigate further intensification and spread of the genetic mechanisms responsible for resistance. This can take the form of rotation of a different class of chemical, addition of a synergist, mixtures of chemicals or concurrent mosaic application of different classes of chemicals. From the gathered evidence, the distribution and degree of physiological resistance has been restricted in specific areas of Thailand in spite of long-term use of chemicals to control insect pests and disease vectors throughout the country. Most surprisingly, there have been no reported cases of pyrethroid resistance in anopheline populations in the country from 2000 to 2011. The precise reasons for this are unclear but we assume that behavioral avoidance to insecticides may play a significant role in reducing the selection pressure and thus occurrence and spread of insecticide resistance. The review herein provides information regarding the status of physiological resistance and behavioral avoidance of the primary mosquito vectors of human diseases to insecticides in Thailand from 2000 to 2011. PMID:24294938
Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice
2013-01-01
Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged.
Deletre, Emilie; Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice
2013-01-01
Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic) of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged. PMID:24376515
Qin, Qian; Li, Yiji; Zhong, Daibin; Zhou, Ning; Chang, Xuelian; Li, Chunyuan; Cui, Liwang; Yan, Guiyun; Chen, Xiao-Guang
2014-03-03
Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays. The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1 gene were detected by DNA sequencing and PCR-RFLP analysis, respectively. An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (<10%) was detected in An. sinensis, but no kdr mutation was detected in An. vagus populations. Modest to high (45%-75%) ace-1 mutation frequency was found in An. sinensis populations, but no ace-1 mutation was detected in An. vagus populations. Significantly higher P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes. Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.
Jones, Susan C; Bryant, Joshua L
2012-06-01
Field-collected bed bugs (Cimex lectularius L.) showed little, if any, adverse effects after 2-h direct exposure to the aerosolized pyrethroid(s) from three over-the-counter total-release foggers ('bug bombs' or 'foggers'); Hotshot Bedbug and Flea Fogger, Spectracide Bug Stop Indoor Fogger, and Eliminator Indoor Fogger. One field-collected population, EPM, was an exception in that there was significant mortality at 5-7 d when bugs out in the open had been exposed to the Spectracide Fogger; mortality was low when these bugs had access to an optional harborage, a situation observed for all field-collected populations when exposed to the three foggers. Even the Harlan strain, the long-term laboratory population that is susceptible to pyrethroids and that served as an internal control in these experiments, was unaffected if the bugs were covered by a thin cloth layer that provided harborage. In residences and other settings, the majority of bed bugs hide in protected sites where they will not be directly contracted by the insecticide mist from foggers. This study provides the first scientific data supporting the position that total-release foggers should not be recommended for control of bed bugs, because 1) many field-collected bed bugs are resistant to pyrethroids, and they are not affected by brief exposure to low concentrations of pyrethrins and/or pyrethroids provided by foggers; and 2) there is minimal, if any, insecticide penetration into typical bed bug harborage sites. This study provides strong evidence that Hotshot Bedbug and Flea Fogger, Spectracide Bug Stop Indoor Fogger, and Eliminator Indoor Fogger were ineffective as bed bug control agents.
Oxborough, Richard M; N'Guessan, Raphael; Jones, Rebecca; Kitau, Jovin; Ngufor, Corine; Malone, David; Mosha, Franklin W; Rowland, Mark W
2015-03-24
The rapid selection of pyrethroid resistance throughout sub-Saharan Africa is a serious threat to malaria vector control. Chlorfenapyr is a pyrrole insecticide which shows no cross resistance to insecticide classes normally used for vector control and is effective on mosquito nets under experimental hut conditions. Unlike neurotoxic insecticides, chlorfenapyr owes its toxicity to disruption of metabolic pathways in mitochondria that enable cellular respiration. A series of experiments explored whether standard World Health Organization (WHO) guidelines for evaluation of long-lasting insecticidal nets, developed through testing of pyrethroid insecticides, are suitable for evaluation of non-neurotoxic insecticides. The efficacy of WHO recommended cone, cylinder and tunnel tests was compared for pyrethroids and chlorfenapyr. To establish bioassay exposure times predictive of insecticide-treated net (ITN) efficacy in experimental hut trials, standard three-minute bioassays of pyrethroid and chlorfenapyr ITNs were compared with longer exposures. Mosquito behaviour and response to chlorfenapyr ITN in bioassays conducted at night were compared to day and across a range of temperatures representative of highland and lowland transmission. Standard three-minute bioassay of chlorfenapyr produced extremely low levels of mortality compared to pyrethroids. Thirty-minute day-time bioassay produced mortality closer to hut efficacy of chlorfenapyr ITN but still fell short of the WHO threshold. Overnight tunnel test with chlorfenapyr produced 100% mortality and exceeded the WHO threshold of 80%. The endogenous circadian activity rhythm of anophelines results in inactivity by day and raised metabolism and flight activity by night. A model which explains improved toxicity of chlorfenapyr ITN when tested at night, and during the day at higher ambient temperature, is that activation of chlorfenapyr and disruption of respiratory pathways is enhanced when the insect is more metabolically and behaviourally active. Testing according to current WHO guidelines is not suitable for certain types of non-neurotoxic insecticide which, although highly effective in field trials, would be overlooked at the screening stage of evaluation through bioassay. Testing methods must be tailored to the characteristics and mode of action of each insecticide class. The WHO tunnel test on night-active anophelines is the most reliable bioassay for identifying the toxicity of novel insecticides.
Olé Sangba, Marina Lidwine; Sidick, Aboubakar; Govoetchan, Renaud; Dide-Agossou, Christian; Ossè, Razaki A; Akogbeto, Martin; Ndiath, Mamadou Ousmane
2017-01-13
Knowledge of insecticide resistance status in the main malaria vectors is an essential component of effective malaria vector control. This study presents the first evaluation of the status of insecticide resistance in Anopheles gambiae populations from Bangui, the Central African Republic. Anopheles mosquitoes were reared from larvae collected in seven districts of Bangui between September to November 2014. The World Health Organisation's bioassay susceptibility tests to lambda-cyhalothrin (0.05%), deltamethrin (0.05%), DDT (4%), malathion (5%), fenitrothion (1%) and bendiocarb (0.1%) were performed on adult females. Species and molecular forms as well as the presence of L1014F kdr and Ace-1 R mutations were assessed by PCR. Additional tests were conducted to assess metabolic resistance status. After 1 h exposure, a significant difference of knockdown effect was observed between districts in all insecticides tested except deltamethrin and malathion. The mortality rate (MR) of pyrethroids group ranging from 27% (CI: 19-37.5) in Petevo to 86% (CI: 77.6-92.1) in Gbanikola; while for DDT, MR ranged from 5% (CI: 1.6-11.3) in Centre-ville to 39% (CI: 29.4-49.3) in Ouango. For the organophosphate group a MR of 100% was observed in all districts except Gbanikola where a MR of 96% (CI: 90-98.9) was recorded. The mortality induced by bendiocarb was very heterogeneous, ranging from 75% (CI: 62.8-82.8) in Yapele to 99% (CI: 84.5-100) in Centre-ville. A high level of kdr-w (L1014F) frequency was observed in all districts ranging from 93 to 100%; however, no kdr-e (L1014S) and Ace-1 R mutation were found in all tested mosquitoes. Data of biochemical analysis showed significant overexpression activities of cytochrome P450, GST and esterases in Gbanikola and Yapele (χ 2 = 31.85, df = 2, P < 0.001). By contrast, esterases activities using α and β-naphthyl acetate were significantly low in mosquitoes from PK10 and Ouango in comparison to Kisumu strain (χ 2 = 17.34, df = 2, P < 0.005). Evidence of resistance to DDT and pyrethroids as well as precocious emergence of resistance to carbamates were detected among A. gambiae mosquitoes from Bangui, including target-site mutations and metabolic mechanisms. The co-existence of these resistance mechanisms in A. gambiae may be a serious obstacle for the future success of malaria control programmes in this region.
Andriessen, Rob; Snetselaar, Janneke; Suer, Remco A.; Osinga, Anne J.; Deschietere, Johan; Lyimo, Issa N.; Mnyone, Ladslaus L.; Brooke, Basil D.; Ranson, Hilary; Knols, Bart G. J.; Farenhorst, Marit
2015-01-01
Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations. PMID:26324912
Gunasekaran, Kasinathan; Sahu, Sudhansu Sekhar; Vijayakumar, Tharmalingam; Subramanian, Swaminathan; Yadav, Rajpal Singh; Pigeon, Olivier; Jambulingam, Purushothaman
2016-07-21
Fast development of pyrethroid resistance in malaria vectors prompted the development of new vector control tools including combination of insecticides with different modes of action as part of resistance management strategies. Olyset Plus® is a new long-lasting insecticidal net, in which, permethrin and a synergist, piperonyl butoxide (PBO), are incorporated into filaments. Mixture nets such as this may have application against resistant mosquitoes, particularly those whose resistance is based on oxidative metabolism. There may also be enhanced activity against susceptible mosquitoes since mixed function oxidases are involved in a many metabolic activities including activation to form bioactive compounds. Bio-efficacy of Olyset Plus was evaluated against susceptible malaria vector, Anopheles fluviatilis in experimental huts. Deterrence, blood feeding inhibition, induced exophily and killing effect were measured to assess the bio-efficacy. The results were compared with Olyset Net®, a polyethylene permethrin-incorporated LLIN and a conventionally treated polyester net (with permethrin) washed to just before exhaustion. Results showed significant reduction in entry (treatment: 0.4-0.8; control: 4.2 per trap-night) and increase in exit (56.3-82.9 % and 44.2 %) rates of Anopheles fluviatilis in the treatment arms compared to control (P < 0.05). While blood feeding rates declined in treatment arms (18.8-30.6 %), it increased in control (77.6 %) (P < 0.05). This was further evident from the blood-feeding inhibition rates in treatment arms (60.6-90.6 %). Total mortality was significantly higher in all treatment arms (96.3-100 %) compared to control arm (2 %) (P < 0.05). Chemical analysis for active ingredient (AI) showed retention of 75 and 88 % in Olyset plus and Olyset net respectively after 20 washes. Performance of Olyset Plus washed 20 times was equal to the CTN and Olyset Net against the susceptible malaria vector An. fluviatilis, fulfilling the WHO efficacy criteria of Phase II evaluation for LLIN. However, the benefit of incorporating PBO and permethrin together in a long-lasting treatment could not be demonstrated in the current study as the target vector species was fully susceptible to pyrethroids. Olyset Plus, with its intrinsic bio-efficacy could be an effective vector control tool to prevent transmission of malaria by susceptible vectors like An. fluviatilis. However, the results of the current study need to be further supported by testing the net at village level (Phase III) for community acceptability. Before taking the net to village level, it needs to be verified whether the net is better than pyrethroid nets in terms of bio-efficacy against resistant An. culicifacies, another malaria vector that has developed resistance to synthetic pyrethroids in India.
Nkya, Theresia E; Akhouayri, Idir; Poupardin, Rodolphe; Batengana, Bernard; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe
2014-01-25
Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact of agriculture on resistance mechanisms with multiple genes encoding pesticide targets, detoxification enzymes and proteins linked to neurotransmitter activity affected. In contrast, resistance mechanisms found in the urban area appeared more specific and more related to the use of insecticides for vector control. Overall, this study confirmed the role of the environment in shaping insecticide resistance in mosquitoes with a major impact of agriculture activities. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies.
Antonio-Nkondjio, Christophe; Sonhafouo-Chiana, N; Ngadjeu, C S; Doumbe-Belisse, P; Talipouo, A; Djamouko-Djonkam, L; Kopya, E; Bamou, R; Awono-Ambene, P; Wondji, Charles S
2017-10-10
Malaria remains a major public health threat in Cameroon and disease prevention is facing strong challenges due to the rapid expansion of insecticide resistance in vector populations. The present review presents an overview of published data on insecticide resistance in the main malaria vectors in Cameroon to assist in the elaboration of future and sustainable resistance management strategies. A systematic search on mosquito susceptibility to insecticides and insecticide resistance in malaria vectors in Cameroon was conducted using online bibliographic databases including PubMed, Google and Google Scholar. From each peer-reviewed paper, information on the year of the study, mosquito species, susceptibility levels, location, insecticides, data source and resistance mechanisms were extracted and inserted in a Microsoft Excel datasheet. The data collected were then analysed for assessing insecticide resistance evolution. Thirty-three scientific publications were selected for the analysis. The rapid evolution of insecticide resistance across the country was reported from 2000 onward. Insecticide resistance was highly prevalent in both An. gambiae (s.l.) and An. funestus. DDT, permethrin, deltamethrin and bendiocarb appeared as the most affected compounds by resistance. From 2000 to 2017 a steady increase in the prevalence of kdr allele frequency was noted in almost all sites in An. gambiae (s.l.), with the L1014F kdr allele being the most prevalent. Several detoxification genes (particularly P450 monooxygenase) were associated with DDT, pyrethroids and bendiocarb resistance. In An. funestus, resistance to DDT and pyrethroids was mainly attributed to the 119F-GSTe2 metabolic resistance marker and over-expression of P450 genes whereas the 296S-RDL mutation was detected in dieldrin-resistant An. funestus. The review provides an update of insecticide resistance status in malaria vector populations in Cameroon and stresses the need for further actions to reinforce malaria control strategies in the coming years.
Hottel, Benjamin A; Pereira, Roberto M; Koehler, Philip G
2015-05-12
Two-choice tests were conducted to examine the effect of surface roughness on the resting preference of bed bugs, Cimex lectularius L., on copper, basswood, and acrylic materials. The influence of pyrethroid formulation applications on resting preferences was also evaluated. Bed bugs were given the choice of resting between two sanded halves of each material tested. One half was sanded with a P60 grit sandpaper and the other with a less rough P600 grit sandpaper. A significantly higher proportion of bed bugs chose to rest on the rougher P60 grit sanded half of all materials tested. Pyrethroid applications were made to either the P60 grit half or both halves of acrylic arenas and resting preferences were again assessed. Behavioral responses of bed bugs to pyrethroid formulation applications varied depending on the bed bug strain used and the formulation applied. Bed bugs would still rest on the P60 grit half when Suspend SC formulation (0.06% deltamethrin) was applied; however, an avoidance response was observed from a bed bug strain susceptible to D-Force aerosol formulations (0.06% deltamethrin). The avoidance behavior is likely attributed to one, more than one, or even an interaction of multiple spray constituents and not the active ingredient.
75 FR 858 - Propoxur; Receipt of Application for Emergency Exemption; Solicitation of Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
..., and commercial industrial buildings to control bed bugs (Cimex lectularius). The applicant proposes a..., modes of transportation, and commercial industrial buildings to control bed bugs. Information in... existing labeled insecticides, in part due to pyrethroid resistance in the bed bug population. Bed bugs are...
Xue, Jianping; Zartarian, Valerie; Tornero-Velez, Rogelio; Tulve, Nicolle S
2014-12-01
The U.S. EPA's SHEDS-Multimedia model was applied to enhance the understanding of children's exposures and doses to multiple pyrethroid pesticides, including major contributing chemicals and pathways. This paper presents combined dietary and residential exposure estimates and cumulative doses for seven commonly used pyrethroids, and comparisons of model evaluation results with NHANES biomarker data for 3-PBA and DCCA metabolites. Model input distributions were fit to publicly available pesticide usage survey data, NHANES, and other studies, then SHEDS-Multimedia was applied to estimate total pyrethroid exposures and doses for 3-5 year olds for one year variability simulations. For dose estimations we used a pharmacokinetic model and two approaches for simulating dermal absorption. SHEDS-Multimedia predictions compared well to NHANES biomarker data: ratios of 3-PBA observed data to SHEDS-Multimedia modeled results were 0.88, 0.51, 0.54 and 1.02 for mean, median, 95th, and 99th percentiles, respectively; for DCCA, the ratios were 0.82, 0.53, 0.56, and 0.94. Modeled time-averaged cumulative absorbed dose of the seven pyrethroids was 3.1 nmol/day (versus 8.4 nmol/day for adults) in the general population (residential pyrethroid use and non-use homes) and 6.7 nmol/day (versus 10.5 nmol/day for adults) in the simulated residential pyrethroid use population. For the general population, contributions to modeled cumulative dose by chemical were permethrin (60%), cypermethrin (22%), and cyfluthrin (16%); for residential use homes, contributions were cypermethrin (49%), permethrin (29%), and cyfluthrin (17%). The primary exposure route for 3-5 year olds in the simulated residential use population was non-dietary ingestion exposure; whereas for the simulated general population, dietary exposure was the primary exposure route. Below the 95th percentile, the major exposure pathway was dietary for the general population; non-dietary ingestion was the major pathway starting below the 70th percentile for the residential use population. The new dermal absorption methodology considering surface loading had some impact, but did not change the order of key pathways. Published by Elsevier Ltd.
Migneron-Foisy, Vincent; Bouchard, Maryse F; Freeman, Ellen E; Saint-Amour, Dave
2017-09-01
Previous research suggests that exposure to pesticides might be associated with human myopia, although data were obtained only from highly exposed individuals. The present study aimed to assess whether exposure to organophosphates and pyrethroids in the United States general population was associated with the prevalence of myopia. Data were obtained from the National Health and Nutrition Examination Survey (NHANES, years 1999-2008). One-spot urine samples were used to estimate the concentration of several pesticide metabolites. Exposure data and equivalent spherical refraction errors were available for 5147 and 2911 individuals for organophosphates and pyrethroids, respectively. Multiple logistic regression models were used to assess the relation between log10-transformed urinary levels of pesticide metabolites and the risk of moderate (≤-1 and >-5 diopters [D]) and high myopia (≤-5 D) in adolescents (12- to 19-years old) and young adults (20- to 40-years old). Models were adjusted for sex, age, ethnicity, diabetes, creatinine, cadmium and lead concentrations, and income in both age groups, but also for education level and cigarette and alcohol consumption in the adult group. No association between organophosphates or pyrethroid metabolites and myopia was observed. However, after adjusting for education level and cigarette and alcohol consumption, a statistically significant decreased risk of high myopia in those with a 10-fold increase of dialkyl phosphate metabolites was found in adults but only in men (P < 0.05). Our results suggest that exposure to organophosphates or pyrethroids do not increase the risk of myopia in the United States general population.
Gomez, Marinely Bustamante; D'Avila, Grasielle Caldas Pessoa; Orellana, Ana Lineth Garcia; Cortez, Mirko Rojas; Rosa, Aline Cristine Luiz; Noireau, François; Diotaiuti, Liléia Gonçalves
2014-11-14
The persistence of Triatoma infestans and the continuous transmission of Trypanosoma cruzi in the Inter-Andean Valleys and in the Gran Chaco of Bolivia are of great significance. Coincidentally, it is in these regions the reach of the vector control strategies is limited, and reports of T. infestans resistance to insecticides, including in wild populations, have been issued. This study aims to characterize the susceptibility to deltamethrin of wild and domestic populations of T. infestans from Bolivia, in order to better understand the extent of this relevant problem. Susceptibility to deltamethrin was assessed in nine, wild and domestic, populations of T. infestans from the Gran Chaco and the Inter-Andean Valleys of Bolivia. Serial dilutions of deltamethrin in acetone (0.2 μL) were topically applied in first instar nymphs (F1, five days old, fasting, weight 1.2 ± 0.2 mg). Dose response results were analyzed with PROBIT version 2, determining the lethal doses, slope and resistance ratios (RR). Qualitative tests were also performed. Three wild T. infestans dark morph samples of Chaco from the Santa Cruz Department were susceptible to deltamethrin with RR50 of <2, and 100% mortality to the diagnostic dose (DD); however, two domestic populations from the same region were less susceptible than the susceptibility reference lineage (RR50 of 4.21 and 5.04 respectively and 93% DD). The domestic population of Villa Montes from the Chaco of the Tarija Department presented high levels of resistance (RR50 of 129.12 and 0% DD). Moreover, the domestic populations from the Valleys of the Cochabamba Department presented resistance (RR50 of 8.49 and 62% DD), the wild populations were less susceptible than SRL and T. infestans dark morph populations (RR50 < 5). The elimination of T. infestans with pyrethroid insecticides in Brazil, Uruguay, Chile, and its drastic reduction in large parts of Paraguay and Argentina, clearly indicates that pyrethroid resistance was very uncommon in non-Andean regions. The pyrethroid susceptibility of non-Andean T. infestans dark morph population, and the resistance towards it, of Andean T. infestans wild and domestic populations, indicates that the Andean populations from Bolivia are less susceptible.
Belinato, Thiago Affonso; Valle, Denise
2015-01-01
Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715
Germano, M; Picollo, M I; Spillmann, C; Mougabure-Cueto, G
2014-03-01
Deltamethrin-based campaigns to control Triatoma infestans (Klug) (Hemiptera: Reduviidae) have decreased in success as a result of the development of insecticide resistance. We compared the in vitro effects of the pyrethroid deltamethrin and two doses of the organophosphate fenitrothion, presented on different materials, on T. infestans from La Esperanza, Argentina. Laboratory tests demonstrated a decrease in susceptibility to deltamethrin in the field population [LD50 : 30.32 nanograms per insect (ng/i)] compared with the reference population (LD50 : 0.13 ng/i), giving a high resistance ratio of 233.42. By contrast, similar susceptibility to fenitrothion was assessed in both the field and reference populations (LD50 : 21.65 ng/i and 21.38 ng/i, respectively). The effectiveness of the formulated insecticides varied according to the surfaces to which they were applied. The application of fenitrothion formulations to glass or brick resulted in mortality of 90-100%. The application of fenitrothion formulations to wood or mud caused mortality in the range of 6.7-56.7%. Resistant insects presented low mortality when exposed to the deltamethrin formulation and high mortality when exposed to fenitrothion formulations. Moreover, the insecticides demonstrated residual activity only when applied to glass. The present work demonstrates that fenitrothion is an alternative to pyrethroids for the management of deltamethrin-resistant insects in La Esperanza. However, this effectiveness is not sustained over time. © 2013 The Royal Entomological Society.
Firooziyan, Samira; Sadaghianifar, Ali; Taghilou, Behrooz; Galavani, Hossein; Ghaffari, Eslam; Gholizadeh, Saber
2017-09-01
In recent years, the increase of head louse infestation in Iran (7.4%) and especially in West-Azerbaijan Province (248%) has raised the hypothesis of insecticide resistance development. There are different mechanisms of resistance to various groups of insecticides, and knockdown resistance (kdr) is a prominent mechanism of resistance to pyrethroids, an insecticide group which is used conventionally for pediculosis control. For detection of kdr-type well-known amino acid substitutions (M815I-T917I-L920F) and additional sodium channel mutations potentially associated with kdr resistance in head and body lice, louse populations were collected from West-Azerbaijan and Zanjan Provinces of Iran. Six novel mutations were found to be located in the IIS1-2 extracellular loop (H813P) and IIS5 (I927F, L928A, R929V, L930M, and L932M) of the α-subunit. Genotyping results showed that all specimens (100%) have at least one of these or the well-known mutations. Therefore, the presence of kdr-related and novel mutations in the sodium channel is likely to be the reason for the frequent use of pyrethroid insecticides due to treatment failure against lice. Further studies are now required to evaluate the prevalence of the kdr-like mutant allele for monitoring of insecticide resistance and the management of head and body lice in other provinces of the country. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
The polyphagous navel orangeworm (Amyelois transitella) is the most destructive pest of nut crops, including almonds and pistachios, in California orchards. Management of this insect has typically been a combination of cultural controls and insecticide use, with the latter increasing substantially a...
Mechanism of resistance to synthetic pyrethroids in buffalo flies in south-east Queensland
USDA-ARS?s Scientific Manuscript database
Buffalo fly (Haematobia irritans exigua) and horn fly (Haematobia irritans irritans) cause irritation and production loss in much of the cattle producing area of the world. In Australia losses from buffalo fly were recently estimated at A$78m per year. Control is largely performed by using organoph...
DIETARY EXPOSURE TO PYRETHROIDS IN THE U.S POPULATION
We examined the contribution of pyrethroid residues in food as an important driver of exposure. The levels of urinary metabolites of pyrethroids reported in NHANES were used as a general estimate of population exposure to pyrethroids. Dietary exposure to pyrethroids was estimat...
Wheelock, Craig E.; Miller, Jeff L.; Miller, Mike J.; Phillips, Bryn M.; Gee, Shirley J.; Tjeerdema, Ronald S.; Hammock, Bruce D.
2006-01-01
Pyrethroid insecticides are known for their potential toxicity to aquatic invertebrates and many fish species. A significant problem in the study of pyrethroid toxicity is their extreme hydrophobicity. They can adsorb to test container surfaces and many studies, therefore, report pyrethroid levels as nominal water concentrations. In this study, pyrethroid adsorption to sampling and test containers was measured and several container treatments were examined for their ability to decrease pyrethroid adsorption. None of the chemical treatments were successful at preventing pyrethroid loss from aqueous samples, but vortexing of containers served to resuspend pyrethroids. The effects of the observed adsorption on Ceriodaphnia dubia and Hyalella azteca permethrin toxicity were examined. Species-specific results showed a time-dependent decrease in toxicity following pyrethroid adsorption to test containers for C. dubia, but not for H. azteca. These results demonstrate that pyrethroid adsorption to containers can significantly affect the observed outcome in toxicity-testing and serves as a caution for researchers and testing laboratories. PMID:15951033
Mmbando, Arnold S.; Ngowo, Halfan S.; Kilalangongono, Masoud; Abbas, Said; Matowo, Nancy S.; Moore, Sarah J.; Okumu, Fredros O.
2017-01-01
Background: Despite high coverage of indoor interventions like insecticide-treated nets, mosquito-borne infections persist, partly because of outdoor-biting, early-biting and insecticide-resistant vectors. Push-pull systems, where mosquitoes are repelled from humans and attracted to nearby lethal targets, may constitute effective complementary interventions. Methods: A partially randomized cross-over design was used to test efficacy of push-pull in four experimental huts and four local houses, in an area with high pyrethroid resistance in Tanzania. The push-pull system consisted of 1.1% or 2.2% w/v transfluthrin repellent dispensers and an outdoor lure-and-kill device (odour-baited mosquito landing box). Matching controls were set up without push-pull. Adult male volunteers collected mosquitoes attempting to bite them outdoors, but collections were also done indoors using exit traps in experimental huts and by volunteers in the local houses. The collections were done hourly (1830hrs-0730hrs) and mosquito catches compared between push-pull and controls. An. gambiae s.l. and An. funestus s.l. were assessed by PCR to identify sibling species, and ELISA to detect Plasmodium falciparum and blood meal sources. Results: Push-pull in experimental huts reduced outdoor-biting for An. arabiensis and Mansonia species by 30% and 41.5% respectively. However, the reductions were marginal and insignificant for An. funestus (12.2%; p>0.05) and Culex (5%; p>0.05). Highest protection against all species occurred before 2200hrs. There was no significant difference in number of mosquitoes inside exit traps in huts with or without push-pull. In local households, push-pull significantly reduced indoor and outdoor-biting of An. arabiensis by 48% and 25% respectively, but had no effect on other species. Conclusion: This push-pull system offered modest protection against outdoor-biting An. arabiensis, without increasing indoor mosquito densities. Additional experimentation is required to assess how transfluthrin-based products affect mosquito blood-feeding and mortality in push-pull contexts. This approach, if optimised, could potentially complement existing malaria interventions even in areas with high pyrethroid resistance. PMID:29568808
Raab, Ronald W.; Moore, Julia E.; Vargo, Edward L.; Rose, Lucy; Raab, Julie; Culbreth, Madeline; Burzumato, Gracie; Koyee, Aurvan; McCarthy, Brittany; Raffaele, Jennifer; Schal, Coby; Vaidyanathan, Rajeev
2016-01-01
Infestations of the common bed bug (Cimex lectularius L.) have increased substantially in the United States in the past 10–15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4–6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a) 16/21 (73%) infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b) up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr), from valine to leucine (V419L) and leucine to isoleucine (L925I) that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40%) bed bugs were homozygous for both kdr mutations (L419/I925), and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug infestations in multistory apartment buildings. PMID:26901153
Pyrethroid illnesses in California, 1996-2002.
Spencer, Janet; O'Malley, Michael
2006-01-01
This survey summarizes California's recent experience with illnesses related to pyrethroid exposures and augments the data available on pyrethroid inhalation exposure and residue dissipation. We reviewed California Department of Pesticide Regulation (DPR) Pesticide Illness Surveillance Program (PISP) data and DPR Pesticide Use Reporting (PUR) data for 13 pyrethroids used during 1996-2002 and identified 317 illnesses associated with exposure. PUR found a total of 4,629,852 pound (2,100,068 kg) of the 13 active ingredients were applied during the 7 yr. Type II pyrethroids accounted for 1,979,352 (897,820 kg) and 42.7% of the total pounds applied and 220 (69.6%) of the reported illnesses. Cyfluthrin was associated with 122 cases (55% of illnesses related to type II pyrethroids and 38.4% of all pyrethroid illnesses). Agricultural uses accounted for 118 (37.3%) of the reported illness cases, with 116 cases associated with employment. For the 199 cases (62.8%) associated with nonagricultural use, 132 (66.3%) were occupationally related. Overall, approximately equal numbers of illnesses resulted from individual exposures (167 cases) and group exposures (150 cases). The symptom arrays associated with the pyrethroid illnesses included irritant effects or pares- thesias of the eye, skin, or respiratory tract in 269 cases (84.9%). Type II pyrethroids were more frequently associated with isolated irritant symptoms (107 cases) than the type I pyrethroids (26 of 97 cases). Systemic symptoms were reported in 184 illnesses (58% of cases). Isolated systemic effects occurred in 48 cases (15.1%), but systemic effects were also present in 136 (50.6%) of the 269 cases with irritant symptoms. Residue exposures accounted for 158 illnesses (49.8%). Single or multiple violations of pesticide use regulations contributed to exposures in 90 of the 317 illnesses (28.4%); 76 were related to nonagricultural pyrethroid use. We also report results of DPR Worker Health and Safety Branch (WH&S) investigations of three large group illness episodes related to exposure to type II pyrethroids cyfluthrin and lambda-cyhalothrin that involved primarily respiratory irritation symptoms. An inhalation monitoring study found cyfluthrin air levels that approached experimentally established irritant thresholds for airborne cyfluthrin, from which a mean estimated absorbed dosage of 1.311 microg/kg/d was calculated. Although additional data are needed to establish threshold levels for both irritant and systemic symptoms for cyfluthrin and other pyrethroids, these observations suggest that field residues can cause irritant respiratory symptoms. DPR conducted a residue dissipation study in seven orange groves and estimated cyfluthrin residue half-lives. The dissipation rates fell into two distinct decay patterns, with more rapid decay in groves 1-4 (overall average half-life = 4.9 d) and a considerably longer decay in groves 5-7. The half-life for groves exhibiting the slower residue dissipation was not constant. The first two half-lives for groves 5-7 can be approximated; they are 11 and 32d, respectively. The third investigation involved an illness episode in which 11 raisin harvesters developed acute respiratory irritation symptoms when they were exposed to residues of lambda-cyhalothrin, propargite, and sulfur. Gas chromatography analyses of eight dislodgeable foliar residue (DFR) samples verified mean residues of lambda-cyhalothrin (0.43 +/- 0.10 microg/cm2), propargite (0.35 +/- 0.11 microg/cm2), and sulfur (0.31 +/- 0.28 microg/cm2) on the grape leaves. Subsequent investigation confirmed that the lambda-cyhalothrin product, which was not registered for use on grapes, was mistakenly mixed and applied 45 d earlier at 35 times the highest legal rate for any crop. The effects of exposure to average lambda-cyhalothrin DFR levels of 0.43 microg/cm2 have not been previously documented.
Multiple activities of insect repellents on odorant receptors in mosquitoes
USDA-ARS?s Scientific Manuscript database
Several lines of evidence suggest that insect repellent molecules reduce mosquito-host contacts by interacting with odorants and odorant receptors (ORs) ultimately affecting olfactory-driven behaviors. We describe the molecular effects of ten insect repellents and a pyrethroid insecticide with known...
Pyrethroid pesticide residues in the global environment: An overview.
Tang, Wangxin; Wang, Di; Wang, Jiaqi; Wu, Zhengwen; Li, Lingyu; Huang, Mingli; Xu, Shaohui; Yan, Dongyun
2018-01-01
Pyrethroids are synthetic organic insecticides with low mammalian toxicity that are widely used in both rural and urban areas worldwide. After entering the natural environment, pyrethroids circulate among the three phases of solid, liquid, and gas and enter organisms through food chains, resulting in substantial health risks. This review summarized the available studies on pyrethroid residues since 1986 in different media at the global scale and indicated that pyrethroids have been widely detected in a range of environments (including soils, water, sediments, and indoors) and in organisms. The concentrations and detection rates of agricultural pyrethroids, which always contain α-cyanogroup (α-CN), such as cypermethrin and fenvalerate, decline in the order of crops > sediments > soils > water. Urban pyrethroids (not contain α-CN), such as permethrin, have been detected at high levels in the indoor environment, and 3-phenoxybenzoic acid, a common pyrethroid metabolite in human urine, is frequently detected in the human body. Pyrethroid pesticides accumulate in sediments, which are a source of pyrethroid residues in aquatic products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Faulde, Michael K; Nehring, Oliver
2012-08-01
New and improved strategies for malaria control and prevention are urgently needed. As a contribution to an optimized personal protection strategy, a novel long-lasting insecticide and repellent-treated net (LLIRN) has been designed by binding combinations of permethrin plus N,N-diethyl-m-toluamide (DEET), or insect repellent 3535 (IR3535), and etofenprox plus DEET, onto fibres of bed net fabric employing a new multi-layer polymer-coating technique. Protective repellent efficacy, toxicological effectiveness and residual activity of 12 LLIRN types have been evaluated by laboratory testing against adult Aedes aegypti. The novel multi-layer LLIRN design allowed simultaneous embedding at concentrations up to 5,930 mg/m(2) for DEET, 3,408 mg/m(2) for IR3535, 2,296 mg/m(2) for permethrin and 2,349 mg/m(2) for etofenprox, respectively. IR3535 layers prevented co-binding of additional pyrethroid-containing polymer layers, thus making pyrethroids plus DEET LLIRNs an ideal combination. All LLIRNs revealed synergistic insecticidal effects which, when measured against concentration controls of the isolated compounds, were significant in all LLIRN types designed. DEET in DEET plus permethrin LLIRNs significantly (p < 0.0001) reduced the concentration-dependent permethrin 100 % knockdown (KD) time from 55 to 75 %, the corresponding 100 % kill time (p < 0.0001) from 55 to 64 %. DEET in DEET plus etofenprox LLIRNs reduced the dose-specific 100 % knockdown (KD) time of etofenprox from 42 to 50 % (p = 0.004), the 100 % kill time from 25 to 38 % (p < 0.0001). Permethrin or etofenprox did not influence spatial repellency of DEET or IR3535 on LLIRNs. Vice versa, DEET and IR3535 increased spatial and excitatory repellency and reduced landing and probing frequency on LLIRNs resulting in strongly enhanced biting protection, even at low concentrations. One hundred percent biting and probing protection of stored LLIRNs was preserved for 83 weeks with the 5,930 mg/m(2) DEET and 2,139 mg/m(2) etofenprox LLIRN, for 72 weeks with the 5,002 mg/m(2) DEET and 2,349 mg/m(2) etofenprox LLIRN, for 63 weeks with the 3,590 mg/m(2) DEET and 1,208 mg/m(2) permethrin LLRN, and for 61 weeks with the 4,711 mg/m(2) DEET and 702 mg/m(2) etofenprox LLIRN. Because 100 % bite protection with up to 75 % quicker contact toxicity of pyrethroids were documented, synergistic toxicological and repellent effects of multi-layer polymer-coating LLIRNs may overcome LLIN-triggered selection pressure for development of new kdr- and metabolic pyrethroid resistances while simultaneously increasing protective efficacy also against kdr- and metabolic pyrethroid-resistant mosquitoes substantially due to the repellent-induced effects of LLIRNs thus indicating that this approach is a promising new candidate for future bed net, curtain, and window screen impregnation aiming at optimized prevention from mosquito-borne diseases.
Otali, Dennis; Novak, Robert J.; Wan, Wen; Bu, Su; Moellering, Douglas R.; De Luca, Maria
2014-01-01
Control of the malaria vector An. gambiae is still largely obtained through chemical intervention using pyrethroids, such as permethrin. However, strains of An. gambiae that are resistant to the toxic effects of pyrethroids have become widespread in several endemic areas over the last decade. The objective of this study was to assess differences in five life-history traits (larval developmental time and the body weight, fecundity, hatch rate, and longevity of adult females) and energy metabolism between a strain of An. gambiae that is resistant to permethrin (RSP), due to knockdown resistance and enhanced metabolic detoxification, and a permethrin susceptible strain reared under laboratory conditions. We also quantified the expression levels of five antioxidant enzyme genes: GSTe3, CAT, GPXH1, SOD1, and SOD2. We found that the RSP strain had a longer developmental time than the susceptible strain. Additionally, RSP adult females had higher wet body weight and increased water and glycogen levels. Compared to permethrin susceptible females, RSP females displayed reduced metabolic rate and mitochondrial coupling efficiency and higher mitochondrial ROS production. Furthermore, despite higher levels of GSTe3 and CAT transcripts, RSP females had a shorter adult life span than susceptible females. Collectively, these results suggest that permethrin resistance alleles might affect energy metabolism, oxidative stress, and adult survival of An. gambiae. However, because the strains used in this study differ in their genetic backgrounds, the results need to be interpreted with caution and replicated in other strains in order to have significant implications for malaria transmission and vector control. PMID:24555527
Kuivila, Kathryn; Hladik, Michelle; Ingersoll, Christopher G.; Kemble, Nile E.; Moran, Patrick W.; Calhoun, Daniel L.; Nowell, Lisa H.; Gilliom, Robert J.
2012-01-01
A nationally consistent approach was used to assess the occurrence and potential sources of pyrethroid insecticides in stream bed sediments from seven metropolitan areas across the United States. One or more pyrethroids were detected in almost half of the samples, with bifenthrin detected the most frequently (41%) and in each metropolitan area. Cyhalothrin, cypermethrin, permethrin, and resmethrin were detected much less frequently. Pyrethroid concentrations and Hyalella azteca mortality in 28-d tests were lower than in most urban stream studies. Log-transformed total pyrethroid toxic units (TUs) were significantly correlated with survival and bifenthrin was likely responsible for the majority of the observed toxicity. Sampling sites spanned a wide range of urbanization and log-transformed total pyrethroid concentrations were significantly correlated with urban land use. Dallas/Fort Worth had the highest pyrethroid detection frequency (89%), the greatest number of pyrethroids (4), and some of the highest concentrations. Salt Lake City had a similar percentage of detections but only bifenthrin was detected and at lower concentrations. The variation in pyrethroid concentrations among metropolitan areas suggests regional differences in pyrethroid use and transport processes. This study shows that pyrethroids commonly occur in urban stream sediments and may be contributing to sediment toxicity across the country.
Tan, Wei L; Li, Chun X; Wang, Zhong M; Liu, Mei D; Dong, Yan D; Feng, Xiang Y; Wu, Zhi M; Guo, Xiao X; Xing, Dan; Zhang, Ying M; Wang, Zhong C; Zhao, Tong Y
2012-09-01
To investigate knockdown resistance (kdr)-like mutations associated with pyrethroid resistance in Anopheles sinensis (Wiedemann, 1828), from Guangxi province, southwest China, a segment of a sodium channel gene was sequenced and genotyped using three new genotyping assays. Direct sequencing revealed the presence of TTG-to-TCG and TG-to-TTT mutations at allele position L1014, which led to L1014S and L1014F substitutions in a few individual and two novel substitutions of N1013S and L1014W in two DNA templates. A low frequency of the kdr allele mostly in the heterozygous state of L1014S and L1014F was observed in this mosquito population. In this study, the genotyping of An. sinensis using three polymerase chain reaction-based methods generated consistent results, which agreed with the results of DNA sequencing. In total, 52 mosquitoes were genotyped using a direct sequencing assay. The number of mosquitoes and their genotypes were as follows: L/L = 24, L/S = 19, L/F = 8, and F/W = 1. The allelic frequency of L1014, 1014S, and 1014F were 72, 18, and 9%, respectively.
Ashbrook, Aaron R; Scharf, Michael E; Bennett, Gary W; Gondhalekar, Ameya D
2017-06-01
Insecticide resistance is a major impediment for effective control of Cimex lectularius L. Previous resistance detection studies with bed bugs have focused on certain pyrethroid, neonicotinoid, organochlorine, organophosphate, and carbamate insecticides. Within the pyrethroid class, resistance studies have mostly been limited to deltamethrin, lambda-cyhalothrin, and alpha- and beta-cyfluthrin. The goal of this study was to develop diagnostic concentration bioassays for assessing bed bug susceptibility levels to chlorfenapyr- and bifenthrin-containing products. First, glass vial and filter paper bioassay methods were compared for their utility in susceptibility monitoring. Statistical comparison of toxicity data between bioassays indicated that the vial assay was less confounded by assay susbtrate effects, required less insecticide, and was faster, especially for chlorfenapyr. Next, using vial diagnostic concentrations (LC99) for each insecticide, 10 laboratory-adapted field strains and the Harlan lab-susceptible strain were screened for susceptibility to chlorfenapyr and bifenthrin. The results of this study reveal recent bed bug susceptibility levels to certain chlorfenapyr- and bifenthrin-containing products. Reduced susceptibility was detected in three and five field strains to chlorfenapyr and bifenthrin, respectively. Detection of reduced susceptibility suggests that certain strains may be segregating toward greater chlorfenapyr and bifenthrin resistance. These results merit continuous resistance monitoring efforts to detect chlorfenapyr and bifenthrin susceptibility shifts. Additionally, to reduce insecticide selection pressures and delay resistance development, adoption of integrated bed bug control strategies that combine chemical and nonchemical methods is recommended. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Carlier, Paul R.; Bloomquist, Jeffrey R.; Totrov, Max; Li, Jianyong
2017-01-01
Great reductions in malaria mortality have been accomplished in the last 15 years, in part due to the widespread roll-out of insecticide-treated bednets across sub-Saharan Africa. To date, these nets only employ pyrethroids, insecticides that target the voltage-gated sodium ion channel of the malaria vector, Anopheles gambiae. Due to the growing emergence of An. gambiae strains that are resistant to pyrethroids, there is an urgent need to develop new public health insecticides that engage a different target and possess low mammalian toxicity. In this review, we will describe efforts to develop highly species-specific and resistance-breaking inhibitors of An. gambiae acetylcholinesterase (AgAChE). These efforts have been greatly aided by advances in knowledge of the structure of the enzyme, and two major inhibitor design strategies have been explored. Since AgAChE possesses an unpaired Cys residue not present in mammalian AChE, a logical strategy to achieve selective inhibition involves design of compounds that could ligate that Cys. A second strategy involves the design of new molecules to target the catalytic serine of the enzyme. Here the challenge is not only to achieve high inhibition selectivity vs human AChE, but also to demonstrate toxicity to An. gambiae that carry the G119S resistance mutation of AgAChE. The advances made and challenges remaining will be presented. This review is part of the special issue “Insecticide Mode of Action: From Insect to Mammalian Toxicity. PMID:28176636
Zhen, Congai; Gao, Xiwu
2016-02-01
In China, the green mirid bug, Apolygus lucorum (Meyer-Dür), has caused severe economic damage to many kinds of crops, especially the cotton and jujubes. Pyrethroid insecticides have been widely used for controlling this pest in the transgenic Bt cotton field. Five populations of A. lucorum collected from cotton crops at different locations in China were evaluated for lambda-cyhalothrin resistance. The results showed that only the population collected from Shandong Province exhibited 30-fold of resistance to lambda-cyhalothrin. Neither PBO nor DEF had obvious synergism when compared the synergistic ratio between SS and RR strain which was originated from the Shandong population. Besides, there were no statistically significant differences (p>0.05) in the carboxylesterase, glutathione S-transferase, or 7-ethoxycoumarin O-deethylase activities between the Shandong population and the laboratory susceptible strain (SS). The full-length sodium channel gene named AlVSSC encoding 2028 amino acids was obtained by RT-PCR and rapid amplification of cDNA ends (RACE). One single point mutation L1015F in the AlVSSC was detected only in the Shandong population. Our results revealed that the L1015F mutation associated with pyrethroid resistance was identified in A. lucorum populations in China. These results will be useful for the rational chemical control of A. lucorum in the transgenic Bt cotton field. Copyright © 2015 Elsevier Inc. All rights reserved.
Saingamsook, Jassada; Saeung, Atiporn; Yanola, Jintana; Lumjuan, Nongkran; Walton, Catherine; Somboon, Pradya
2017-10-10
Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.
Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.
DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A
2010-01-01
Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.
Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos
DeMicco, Amy; Cooper, Keith R.; Richardson, Jason R.; White, Lori A.
2010-01-01
Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and λ-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC50, permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems. PMID:19861644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Yuzhe; Nomura, Yoshiko; Luo Ningguang
2009-01-15
Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an {alpha}-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report themore » identification of a residue G{sup 1111} and two positively charged lysines immediately downstream of G{sup 1111} in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G{sup 1111}, a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G{sup 1111} had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.« less
Metabolic resistance in Nilaparvata lugens to etofenprox, a non-ester pyrethroid insecticide.
Sun, Huahua; Yang, Baojun; Zhang, Yixi; Liu, Zewen
2017-03-01
Etofenprox, a non-ester pyrethroid insecticide, will be registered to control rice pests such as the brown planthopper (BPH, Nilaparvata lugens Stål) in mainland China. Insecticide resistance is always a problem to the effective control of N. lugens by chemical insecticides. An etofenprox resistance selection of N. lugens was performed in order to understand the related mechanisms. Through successive selection by etofenprox for 16 generations in the laboratory, an etofenprox-resistant strain (G16) with the resistance ratio (RR) of 422.3-fold was obtained. The resistance was partly synergised (2.68-fold) with the metabolic inhibitor PBO, suggesting a role for P450 monooxygenases. In this study, 11 P450 genes were significantly up-regulated in G16, among which eight genes was above 2.0-fold higher than that in US16, a population with the same origin of G16 but without contacting any insecticide in the laboratory. The expression level of four genes (CYP6AY1, CYP6FU1 and CYP408A1 from Clade 3, and CYP425A1 from Clade 4) were above 4.0-fold when compared to US16. RNA interference (RNAi) was performed to evaluate the importance of the selected P450s in etofenprox resistance. When CYP6FU1, CYP425A1 or CYP6AY1 was interfered, the susceptibility was significantly recovered in both G16 and US16, while the knockdown of CYP408A1 or CYP353D1 did not cause significant changes in etofenprox susceptibility. We supposed that CYP6FU1 was the most important P450 member for etofenprox resistance because of the highest expression level and the most noticeable effects on resistance ratios following RNAi. Copyright © 2016 Elsevier Inc. All rights reserved.
Grosso, Carla G; Blariza, María J; Mougabure-Cueto, Gastón; Picollo, María I; García, Beatriz A
2016-10-01
Cytochrome P450 monooxygenases play a predominant role in the metabolism of insecticides. Many insect P450 genes have frequently been associated with detoxification processes allowing the insect to become tolerant or resistant to insecticides. The increases of expression of P450 genes at transcriptional level are often consider responsible for increasing the metabolism of insecticides and seems to be a common phenomenon in the evolution of resistance development in insects. As pyrethroid resistance has been detected in Triatoma infestans, it was of interest to analyze genes associated with resistance to insecticides such as those encoding for cytochromes P450. With this purpose, the cDNA sequences of three cytochrome P450 genes (CYP4EM7, CYP3085B1, and CYP3092A6) were identified in this species. Primers and specific Taqman probes were designed from these sequences to determine their expression by quantitative PCR. The mRNA levels of the cytochrome P450 genes identified were determined from total RNA extracted from pools of fat body collected from individuals of different resistant and susceptible strains of T. infestans, and at different interval times after the topical application of the lethal doses 50% (LD50) of deltamethrin on the ventral abdomen of insects belonging to the different populations analyzed. It was detected overexpression of the CYP4EM7 gene in the most resistant strain of T. infestans and the expression of the three cytochrome P450 genes isolated was induced by deltamethrin in the susceptible and resistant populations included in this study. These results suggest that these genes would be involved in the detoxification of deltamethrin and support the hypothesis that considers to the cytochrome P450 genes of importance in the development of pyrethroid resistance. Copyright © 2016 Elsevier B.V. All rights reserved.
Pyrethroid stimulation of ion transport across frog skin.
Cassano, Giuseppe; Bellantuono, Vito; Ardizzone, Concetta; Lippe, Claudio
2003-06-01
Pyrethroids are grouped into two classes (types I and II) because of the absence or presence of an alpha-cyano substituent and the production of a different intoxication syndrome in rodents. In this study, we investigated the effect of pyrethroids on the ion transport across frog skin (Rana esculenta). The short-circuit current value (estimate of ion transport) was increased by each of the eight pyrethroids tested, with the following order of potency: lambda-cyhalothrin > deltamethrin > alpha-cypermethrin = beta-cyfluthrin > bioallethrin > permethrin > bioresmethrin > phenothrin. The first four compounds are type II pyrethroids. Therefore, ion transport is stimulated more by type II pyrethroids than by type I. Experiments performed in the presence of amiloride support the conclusion that pyrethroids mainly increase Na+ absorption and to a lesser extent Cl- secretion. In these experiments, no systematic difference between type I and II pyrethroids was found. Finally, the stimulation by pyrethroids was inhibited by indomethacin and W7 (inhibitors of cyclooxygenases and the Ca2+/calmodulin system, respectively). These observations suggest that pyrethroids do not directly affect the epithelial Na+ channel (ENaC) but indirectly influence an intracellular event involved in ENaC modulation and linked to the Ca2+ signaling cascade.
2014-01-01
Background PermaNet® 3.0 is an insecticide synergist-combination long-lasting insecticidal net designed to have increased efficacy against malaria vectors with metabolic resistance, even when combined with kdr. The current study reports on the impact of this improved tool on entomological indices in an area with pyrethroid-resistant malaria vectors in Nigeria. Methods Baseline entomological indices across eight villages in Remo North LGA of Ogun State provided the basis for selection of three villages (Ilara, Irolu and Ijesa) for comparing the efficacy of PermaNet® 3.0 (PN3.0), PermaNet® 2.0 (PN2.0) and untreated polyester nets as a control (UTC). In each case, nets were distributed to cover all sleeping spaces and were evaluated for insecticidal activity on a 3-monthly basis. Collection of mosquitoes was conducted monthly via window traps and indoor resting catches. The arithmetic means of mosquito catches per house, entomological inoculation rates before and during the intervention were compared as well as three other outcome parameters: the mean mosquito blood feeding rate, mean mortality and mean parity rates. Results Anopheles gambiae s.l. was the main malaria vector in the three villages, accounting for >98% of the Anopheles population and found in appreciable numbers for 6–7 months. Deltamethrin, permethrin and lambdacyhalothrin resistance were confirmed at Ilara, Irolu and Ijesa. The kdr mutation was the sole resistance mechanism at Ilara, whereas kdr plus P450-based metabolic mechanisms were detected at Irolu and Ijesa. Bioassays repeated on domestically used PN 2.0 and PN 3.0 showed persistent optimal (100%) bio-efficacy for both net types after the 3rd, 6th, 9th and 12th month following net distribution. The use of PN 3.0 significantly reduced mosquito densities with a ‘mass killing’ effect inside houses. Households with PN 3.0 also showed reduced blood feeding as well as lower mosquito parity and sporozoite rates compared to the PN 2.0 and the UTC villages. A significant reduction in the entomological inoculation rate was detected in both the PN 2.0 village (75%) and PN 3.0 village (97%) post LLIN-distribution and not in the UTC village. Conclusion The study confirms the efficacy of PN 3.0 in reducing malaria transmission compared to pyrethroid-only LLINs in the presence of malaria vectors with P450-based metabolic- resistance mechanisms. PMID:24886399
2014-01-01
Background Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. Methods Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. Results Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact of agriculture on resistance mechanisms with multiple genes encoding pesticide targets, detoxification enzymes and proteins linked to neurotransmitter activity affected. In contrast, resistance mechanisms found in the urban area appeared more specific and more related to the use of insecticides for vector control. Conclusions Overall, this study confirmed the role of the environment in shaping insecticide resistance in mosquitoes with a major impact of agriculture activities. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies. PMID:24460952
Forlani, Lucas; Pedrini, Nicolás; Girotti, Juan R.; Mijailovsky, Sergio J.; Cardozo, Rubén M.; Gentile, Alberto G.; Hernández-Suárez, Carlos M.; Rabinovich, Jorge E.; Juárez, M. Patricia
2015-01-01
Background Current Chagas disease vector control strategies, based on chemical insecticide spraying, are growingly threatened by the emergence of pyrethroid-resistant Triatoma infestans populations in the Gran Chaco region of South America. Methodology and findings We have already shown that the entomopathogenic fungus Beauveria bassiana has the ability to breach the insect cuticle and is effective both against pyrethroid-susceptible and pyrethroid-resistant T. infestans, in laboratory as well as field assays. It is also known that T. infestans cuticle lipids play a major role as contact aggregation pheromones. We estimated the effectiveness of pheromone-based infection boxes containing B. bassiana spores to kill indoor bugs, and its effect on the vector population dynamics. Laboratory assays were performed to estimate the effect of fungal infection on female reproductive parameters. The effect of insect exuviae as an aggregation signal in the performance of the infection boxes was estimated both in the laboratory and in the field. We developed a stage-specific matrix model of T. infestans to describe the fungal infection effects on insect population dynamics, and to analyze the performance of the biopesticide device in vector biological control. Conclusions The pheromone-containing infective box is a promising new tool against indoor populations of this Chagas disease vector, with the number of boxes per house being the main driver of the reduction of the total domestic bug population. This ecologically safe approach is the first proven alternative to chemical insecticides in the control of T. infestans. The advantageous reduction in vector population by delayed-action fungal biopesticides in a contained environment is here shown supported by mathematical modeling. PMID:25969989
Neurobehavioral toxicology of pyrethroid insecticides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crofton, K.M.
1986-01-01
Pyrethroid insecticides are classified as either Type I or Type II based upon in vivo toxic signs, and neurophysiological and biochemical data. Both axonal sodium channels and the ..gamma..-aminobutyric acid (GABA) receptor complex have been proposed as the major site of action of the Type II pyrethroids. This investigation characterized the behavior and biochemical effects of low dosages of pyrethroids in rats. Type I and II pyrethroids were tested for effects on figure-eight maze activity and the acoustic startle response (ASR). All compounds decreased figure-eight maze activity. Interactions of Type I and II pyrethroids with the three major binding sitesmore » on the GABA complex were determined in vivo. Radioligand binding experiments assessed in vitro interactions of pyrethroids with the three major GABA-complex binding sites. None of the pyrethroids competed for (/sup 3/H)-muscimol or (/sup 3/H)-flunitrazepam binding. Only Type II pyrethroids inhibited binding of (/sup 35/S)-t-butylbicyclophosphorothionate (TBPS) in cortical synaptosome preparations with K/sub i/ values of 5 to 10 ..mu..M. The (/sup 35/S)-TBPS data implicate the TBPS/picrotoxinin binding site in the mechanism of Type II pyrethroid toxicity. The results of these experiments support the classification of pyrethroids into two classes, and demonstrate the utility of the figure-eight maze and the ASR in studies to elucidate neurotoxic mechanisms. The interaction of the Type II pyrethroids is probably restricted to the TBPS/picrotoxinin binding domain on the GABA complex as shown by both the in vivo and in vitro studies.« less
Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda.
Hakizimana, Emmanuel; Karema, Corine; Munyakanage, Dunia; Iranzi, Gad; Githure, John; Tongren, Jon Eric; Takken, Willem; Binagwaho, Agnes; Koenraadt, Constantianus J M
2016-12-01
The widespread emergence of resistance to pyrethroids is a major threat to the gains made in malaria control. To monitor the presence and possible emergence of resistance against a variety of insecticides used for malaria control in Rwanda, nationwide insecticide resistance surveys were conducted in 2011 and 2013. Larvae of Anopheles gambiae sensu lato mosquitoes were collected in 12 sentinel sites throughout Rwanda. These were reared to adults and analysed for knock-down and mortality using WHO insecticide test papers with standard diagnostic doses of the recommended insecticides. A sub-sample of tested specimens was analysed for the presence of knockdown resistance (kdr) mutations. A total of 14,311 mosquitoes were tested and from a sample of 1406 specimens, 1165 (82.9%) were identified as Anopheles arabiensis and 241 (17.1%) as Anopheles gambiae sensu stricto. Mortality results indicated a significant increase in resistance to lambda-cyhalothrin from 2011 to 2013 in 83% of the sites, permethrin in 25% of the sites, deltamethrin in 25% of the sites and DDT in 50% of the sites. Mosquitoes from 83% of the sites showed full susceptibility to bendiocarb and 17% of sites were suspected to harbour resistance that requires further confirmation. No resistance was observed to fenitrothion in all study sites during the entire survey. The kdr genotype results in An. gambiae s.s. showed that 67 (50%) possessed susceptibility (SS) alleles, while 35 (26.1%) and 32 (23.9%) mosquitoes had heterozygous (RS) and homozygous (RR) alleles, respectively. Of the 591 An. arabiensis genotyped, 425 (71.9%) possessed homozygous (SS) alleles while 158 (26.7%) and 8 (1.4%) had heterozygous (RS) and homozygous (RR) alleles, respectively. Metabolic resistance involving oxidase enzymes was also detected using the synergist PBO. This is the first nationwide study of insecticide resistance in malaria vectors in Rwanda. It shows the gradual increase of insecticide resistance to pyrethroids (lambda-cyhalothrin, deltamethrin, permethrin) and organochlorines (DDT) and the large presence of target site insensitivity. The results demonstrate the need for Rwanda to expand monitoring for insecticide resistance including further metabolic resistance testing and implement an insecticide resistance management strategy to sustain the gains made in malaria control.
2013-01-01
Background Caused by trypanosomes and transmitted by tsetse flies, Human African Trypanosomiasis and bovine trypanosomiasis remain endemic across much of rural Uganda where the major reservoir of acute human infection is cattle. Following elimination of trypanosomes by mass trypanocidal treatment, it is crucial that farmers regularly apply pyrethroid-based insecticides to cattle to sustain parasite reductions, which also protect against tick-borne diseases. The private veterinary market is divided between products only effective against ticks (amidines) and those effective against both ticks and tsetse (pyrethroids). This study explored insecticide sales, demand and use in four districts of Uganda where mass cattle treatments have been undertaken by the ‘Stamp Out Sleeping Sickness’ programme. Methods A mixed-methods study was undertaken in Dokolo, Kaberamaido, Serere and Soroti districts of Uganda between September 2011 and February 2012. This included: focus groups in 40 villages, a livestock keeper survey (n = 495), a veterinary drug shop questionnaire (n = 74), participatory methods in six villages and numerous semi-structured interviews. Results Although 70.5% of livestock keepers reportedly used insecticide each month during the rainy season, due to a variety of perceptions and practices nearly half used products only effective against ticks and not tsetse. Between 640 and 740 litres of insecticide were being sold monthly, covering an average of 53.7 cattle/km2. Sales were roughly divided between seven pyrethroid-based products and five products only effective against ticks. In the high-risk HAT district of Kaberamaido, almost double the volume of non-tsetse effective insecticide was being sold. Factors influencing insecticide choice included: disease knowledge, brand recognition, product price, half-life and mode of product action, product availability, and dissemination of information. Stakeholders considered market restriction of non-tsetse effective products the most effective way to increase pyrethroid use. Conclusions Conflicts of interest between veterinary business and vector control were found to constrain sleeping sickness control. While a variety of strategies could increase pyrethroid use, regulation of the insecticide market could effectively double the number of treated cattle with little cost to government, donors or farmers. Such regulation is entirely consistent with the role of the state in a privatised veterinary system and should include a mitigation strategy against the potential development of tick resistance. PMID:23841963
Bardosh, Kevin; Waiswa, Charles; Welburn, Susan C
2013-07-10
Caused by trypanosomes and transmitted by tsetse flies, Human African Trypanosomiasis and bovine trypanosomiasis remain endemic across much of rural Uganda where the major reservoir of acute human infection is cattle. Following elimination of trypanosomes by mass trypanocidal treatment, it is crucial that farmers regularly apply pyrethroid-based insecticides to cattle to sustain parasite reductions, which also protect against tick-borne diseases. The private veterinary market is divided between products only effective against ticks (amidines) and those effective against both ticks and tsetse (pyrethroids). This study explored insecticide sales, demand and use in four districts of Uganda where mass cattle treatments have been undertaken by the 'Stamp Out Sleeping Sickness' programme. A mixed-methods study was undertaken in Dokolo, Kaberamaido, Serere and Soroti districts of Uganda between September 2011 and February 2012. This included: focus groups in 40 villages, a livestock keeper survey (n = 495), a veterinary drug shop questionnaire (n = 74), participatory methods in six villages and numerous semi-structured interviews. Although 70.5% of livestock keepers reportedly used insecticide each month during the rainy season, due to a variety of perceptions and practices nearly half used products only effective against ticks and not tsetse. Between 640 and 740 litres of insecticide were being sold monthly, covering an average of 53.7 cattle/km(2). Sales were roughly divided between seven pyrethroid-based products and five products only effective against ticks. In the high-risk HAT district of Kaberamaido, almost double the volume of non-tsetse effective insecticide was being sold. Factors influencing insecticide choice included: disease knowledge, brand recognition, product price, half-life and mode of product action, product availability, and dissemination of information. Stakeholders considered market restriction of non-tsetse effective products the most effective way to increase pyrethroid use. Conflicts of interest between veterinary business and vector control were found to constrain sleeping sickness control. While a variety of strategies could increase pyrethroid use, regulation of the insecticide market could effectively double the number of treated cattle with little cost to government, donors or farmers. Such regulation is entirely consistent with the role of the state in a privatised veterinary system and should include a mitigation strategy against the potential development of tick resistance.
Bagchi, Vikram A.; Siegel, Joel P.; Demkovich, Mark R.; Zehr, Luke N.; Berenbaum, May R.
2016-01-01
For some polyphagous insects, adaptation to phytochemically novel plants can enhance resistance to certain pesticides, but whether pesticide resistance expands tolerance to phytochemicals has not been examined. Amyelois transitella Walker (navel orangeworm) is an important polyphagous pest of nut and fruit tree crops in California. Bifenthrin resistance, partially attributable to enhanced cytochrome P450 (P450)-mediated detoxification, has been reported in an almond-infesting population exposed to intense pesticide selection. We compared the toxicity of bifenthrin and three phytochemicals–chlorogenic acid, and the furanocoumarins xanthotoxin and bergapten–to three strains of A. transitella: pyrethroid-resistant R347 (maintained in the laboratory for ∼10 generations), fig-derived FIG (in the laboratory for ∼25 generations), and CPQ–a laboratory strain derived from almonds ∼40 years ago). Whereas both Ficus carica (fig) and Prunus dulcis (almond) contain chlorogenic acid, furanocoumarins occur only in figs. Both R347 and FIG exhibited 2-fold greater resistance to the three phytochemicals compared with CPQ; surprisingly, bifenthrin resistance was highest in FIG. Piperonyl butoxide, a P450 synergist, increased toxicity of all three phytochemicals only in CPQ, implicating alternate tolerance mechanisms in R347 and FIG. To test the ability of the strains to utilize novel hostplants directly, we compared survival on diets containing seeds of Wisteria sinensis and Prosopis pallida, two non-host Fabaceae species; survival of FIG was highest and survival of R347 was lowest. Our results suggest that, while P450-mediated pesticide resistance enhances tolerance of certain phytochemicals in this species, it is only one of multiple biochemical adaptations associated with acquiring novel hostplants. PMID:27620560
Bagchi, Vikram A; Siegel, Joel P; Demkovich, Mark R; Zehr, Luke N; Berenbaum, May R
2016-01-01
For some polyphagous insects, adaptation to phytochemically novel plants can enhance resistance to certain pesticides, but whether pesticide resistance expands tolerance to phytochemicals has not been examined. Amyelois transitella Walker (navel orangeworm) is an important polyphagous pest of nut and fruit tree crops in California. Bifenthrin resistance, partially attributable to enhanced cytochrome P450 (P450)-mediated detoxification, has been reported in an almond-infesting population exposed to intense pesticide selection. We compared the toxicity of bifenthrin and three phytochemicals-chlorogenic acid, and the furanocoumarins xanthotoxin and bergapten-to three strains of A. transitella: pyrethroid-resistant R347 (maintained in the laboratory for ∼10 generations), fig-derived FIG (in the laboratory for ∼25 generations), and CPQ-a laboratory strain derived from almonds ∼40 years ago). Whereas both Ficus carica (fig) and Prunus dulcis (almond) contain chlorogenic acid, furanocoumarins occur only in figs. Both R347 and FIG exhibited 2-fold greater resistance to the three phytochemicals compared with CPQ; surprisingly, bifenthrin resistance was highest in FIG. Piperonyl butoxide, a P450 synergist, increased toxicity of all three phytochemicals only in CPQ, implicating alternate tolerance mechanisms in R347 and FIG. To test the ability of the strains to utilize novel hostplants directly, we compared survival on diets containing seeds of Wisteria sinensis and Prosopis pallida, two non-host Fabaceae species; survival of FIG was highest and survival of R347 was lowest. Our results suggest that, while P450-mediated pesticide resistance enhances tolerance of certain phytochemicals in this species, it is only one of multiple biochemical adaptations associated with acquiring novel hostplants. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sexual selection expedites the evolution of pesticide resistance.
Jacomb, Frances; Marsh, Jason; Holman, Luke
2016-12-01
The evolution of insecticide resistance by crop pests and disease vectors causes serious problems for agriculture and health. Sexual selection can accelerate or hinder adaptation to abiotic challenges in a variety of ways, but the effect of sexual selection on resistance evolution is little studied. Here, we examine this question using experimental evolution in the pest insect Tribolium castaneum. The experimental removal of sexual selection slowed the evolution of resistance in populations treated with pyrethroid pesticide, and also reduced the rate at which resistance was lost from pesticide-free populations. These results suggest that selection arising from variance in mating and fertilization success can augment natural selection on pesticide resistance, meaning that sexual selection should be considered when designing strategies to limit the evolution of pesticide resistance. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Singh, O P; Dykes, C L; Sharma, G; Das, M K
2015-01-01
Leucine-to-phenylalanine substitution at residue L1014 in the voltage-gated sodium channel, target site of action for dichlorodiphenyltrichloroethane (DDT) and pyrethroids, is the most common knockdown resistance (kdr) mutation reported in several insects conferring resistance against DDT and pyrethroids. Here, we report presence of two coexisting alternative transversions, A>T and A>C, on the third codon position of L1014 residue in malaria vector Anopheles subpictus Grassi (species A) from Jamshedpur (India), both leading to the same amino acid substitution of Leu-to-Phe with allelic frequencies of 19 and 67%, respectively. A single primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) was devised for the identification of L1014F-kdr mutation in An. subpictus resulting from either type of point mutation. Genotyping of samples with PIRA-PCR revealed high frequency (82%) of L1014F-kdr mutation in the study area. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gnankiné, Olivier; Bassolé, Imaël Henri Nestor
2017-09-22
Widespread resistance of Anopheles sp. populations to pyrethroid insecticides has led to the search for sustainable alternatives in the plant kingdom. Among many botanicals, there is great interest in essential oils and their constituents. Many researchers have explored essential oils (EOs) to determine their toxicity and identify repellent molecules that are effective against Anopheles populations. Essential oils are volatile and fragrant substances with an oily consistency typically produced by plants. They contain a variety of volatile molecules such as terpenes and terpenoids, phenol-derived aromatic components and aliphatic components at quite different concentrations with a significant insecticide potential, essentially as ovicidal, larvicidal, adulticidal, repellency, antifeedant, growth and reproduction inhibitors. The current review provides a summary of chemical composition of EOs, their toxicity at different developmental stages (eggs, larvae and adults), their repellent effects against Anopheles populations, for which there is little information available until now. An overview of antagonist and synergistic phenomena between secondary metabolites, the mode of action as well as microencapsulation technologies are also given in this review. Finally, the potential use of EOs as an alternative to current insecticides has been discussed.
Correlation of tissue concentrations of the pyrethroid bifenthrin with neurotoxicity in the rat
Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household products. Due to the phase-out oforganophosphate pesticides, the use of pyrethroids has increased. The potential for human exposure to pyrethroids has prompted pharmacodynamic and pharmacokine...
2014-01-01
Background Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. Results After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. Conclusions The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides. PMID:24593293
David, Jean-Philippe; Faucon, Frédéric; Chandor-Proust, Alexia; Poupardin, Rodolphe; Riaz, Muhammad Asam; Bonin, Aurélie; Navratil, Vincent; Reynaud, Stéphane
2014-03-05
Mosquito control programmes using chemical insecticides are increasingly threatened by the development of resistance. Such resistance can be the consequence of changes in proteins targeted by insecticides (target site mediated resistance), increased insecticide biodegradation (metabolic resistance), altered transport, sequestration or other mechanisms. As opposed to target site resistance, other mechanisms are far from being fully understood. Indeed, insecticide selection often affects a large number of genes and various biological processes can hypothetically confer resistance. In this context, the aim of the present study was to use RNA sequencing (RNA-seq) for comparing transcription level and polymorphism variations associated with adaptation to chemical insecticides in the mosquito Aedes aegypti. Biological materials consisted of a parental susceptible strain together with three child strains selected across multiple generations with three insecticides from different classes: the pyrethroid permethrin, the neonicotinoid imidacloprid and the carbamate propoxur. After ten generations, insecticide-selected strains showed elevated resistance levels to the insecticides used for selection. RNA-seq data allowed detecting over 13,000 transcripts, of which 413 were differentially transcribed in insecticide-selected strains as compared to the susceptible strain. Among them, a significant enrichment of transcripts encoding cuticle proteins, transporters and enzymes was observed. Polymorphism analysis revealed over 2500 SNPs showing > 50% allele frequency variations in insecticide-selected strains as compared to the susceptible strain, affecting over 1000 transcripts. Comparing gene transcription and polymorphism patterns revealed marked differences among strains. While imidacloprid selection was linked to the over transcription of many genes, permethrin selection was rather linked to polymorphism variations. Focusing on detoxification enzymes revealed that permethrin selection strongly affected the polymorphism of several transcripts encoding cytochrome P450 monooxygenases likely involved in insecticide biodegradation. The present study confirmed the power of RNA-seq for identifying concomitantly quantitative and qualitative transcriptome changes associated with insecticide resistance in mosquitoes. Our results suggest that transcriptome modifications can be selected rapidly by insecticides and affect multiple biological functions. Previously neglected by molecular screenings, polymorphism variations of detoxification enzymes may play an important role in the adaptive response of mosquitoes to insecticides.
Niang, El Hadji Amadou; Konaté, Lassana; Diallo, Mawlouth; Faye, Ousmane; Dia, Ibrahima
2016-02-05
Malaria vector control in Africa relies on insecticides targeting adult mosquito vectors via insecticide treated nets or indoor residual spraying. Despite the proven efficacy of these strategies, the emergence and rapid rise in insecticide resistance in malaria vectors raises many concerns about their sustainability. Therefore, the monitoring of insecticide resistance is essential for resistance management strategies implementation. We investigated the kdr mutation frequencies in 20 sympatric sites of An. arabiensis Patton, An. coluzzii Coetzee & Wilkerson and An. gambiae Giles and its importance in malaria vector control by evaluating the susceptibility to insecticides in four representative sites in Senegal. Sibling species identification and kdr mutation detection were determined using polymerase chain reaction on mosquitoes collected using pyrethrum sprays collection in 20 sites belonging to two transects with differential insecticide selection pressure. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to DDT, deltamethrin, lambdacyholothrin, permethrin, bendiocarb and malathion in four representative sites. The L1014F kdr mutation was widely distributed and was predominant in An. gambiae in comparison to An. arabiensis and An. coluzzii. The bioassay tests showed a general trend with a resistance to DDT and pyrethroids and a susceptibility to organophosphate and carbamate according to WHO thresholds. For deltamethrin and permethrin, the two most used insecticides, no significant difference were observed either between the two transects or between mortality rates suggesting no differential selection pressures on malaria vectors. The study of the KD times showed similar trends as comparable levels of resistance were observed, the effect being more pronounced for permethrin. Our study showed a widespread resistance of malaria vectors to DDT and pyrethroids and a widespread distribution of the 1014F kdr allele. These combined observations could suggest the involvement of the kdr mutation. The existence of other resistance mechanisms could not be ruled out as a proportion of mosquitoes did not harbour the kdr allele whereas the populations were fully resistant. The susceptibility to carbamate and organophosphate could be exploited as alternative for insecticide resistance management.
Crawley, Sydney E; Kowles, Katelyn A; Gordon, Jennifer R; Potter, Michael F; Haynes, Kenneth F
2017-03-01
Bed bugs (Cimex lectularius) are blood-feeding insect pests with public health relevance. Their rapid evolution of resistance to pyrethroids has prompted a shift to combination products that include both a pyrethroid and neonicotinoid insecticide. Insecticides have both a direct impact on mortality and an indirect effect on behavior. Thus, we assessed the sublethal effects of a widely used combination product containing β-cyfluthrin (a pyrethroid) and imidacloprid (a neonicotinoid), as unexpected behavioral changes after exposure have been known to affect efficacy of insecticides. We found that bed bugs exposed to sublethal doses of a combination product containing β-cyfluthrin and imidacloprid did not feed as effectively as untreated bugs. Their locomotion behavior was also reduced. However, aggregation in response to the presence of conspecific harborages was not affected by sublethal exposure. Bed bugs exhibit behavioral changes after sublethal exposure to a combination product that could affect pest management choices and outcomes. A reduction in host-finding efficiency and feeding could complement the lethal effects of the insecticide. Alternatively, reduced locomotion following exposure could limit ongoing contact with insecticide deposits. However, an overall reduction in movement indicates that treatments are unlikely to cause dispersal of bugs to adjacent dwellings. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2016-01-01
Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of pesticide molecules, the factors/conditions that influence the survival of strains that are introduced into soil and the rate of the removal of pyrethroids are also discussed. This knowledge may be useful to optimize the environmental conditions of bioremediation and may be crucial for the effective removal of pyrethroids from polluted soils. PMID:27695449
Pyrethroids insecticides commonly used in pest control disrupt the normal function of voltage-sensitive sodium channels. We have previously demonstrated that permethrin (a Type I pyrethroid) and deltamethrin (a Type II pyrethroid) inhibit sodium channel-dependent spontaneous netw...
METABOLISM OF PYRETHROID PESTICIDES BY RAT AND HUMAN CYP450'S AND SERUM.
Pyrethroids are a class of neurotoxic pesticides in which the parent chemical acts via the modulation of nerve axon ion channels. Both the pharmacokinetic and pharmacodynamic behavior of pyrethroids play a role in their toxicity. The phase one biotransformation of pyrethroids ca...
Increasing use of pyrethroids in Canadian households: should we be concerned?
van Balen, Erna C; Wolansky, Marcelo J; Kosatsky, Tom
2012-11-07
Pyrethroids are a class of plant-derived insecticides and their man-made analogues that are increasingly applied in Canada as first choice for pest control in many agricultural and residential settings. Their popularity is partly due to their alleged safety compared to the older organochlorine and organophosphate insecticides. Application of pyrethroids is expanding because of recent increases in the level of pest infestations--such as bed bugs--and the decreased susceptibility of target species to many pest control products. Pyrethroid residues have been documented in homes, child care centres and food. While pyrethroids are considered of low health risk for humans, their increased use is of concern. Our current understanding of the adverse effects of pyrethroids derives mainly from studies of short-term effects in laboratory animals, case reports of self- and accidental poisonings, and high-dose occupational exposures, for which the levels and formulations of pyrethroid products differ from those relevant for long-term exposure in the general population. The available data suggest that the reproductive and nervous systems, endocrine signalling pathways, and early childhood development may be targets for adverse effects in the case of repeated exposure to pyrethroid formulations. Given uncertainty about the existence of long-term health effects of exposure to pyrethroids, particularly under realistic scenarios, we should be cautious when promoting pyrethroid products as safe methods for pest control.
Morgan, Marsha K.
2012-01-01
Pyrethroid insecticides are frequently used to control insects in residential and agriculture settings in the United States and worldwide. As a result, children can be potentially exposed to pyrethroid residues in food and at home. This review summarizes data reported in 15 published articles from observational exposure measurement studies conducted from 1999 to present that examined children’s (5 months to 17 years of age) exposures to pyrethroids in media including floor wipes, floor dust, food, air, and/or urine collected at homes in the United States. At least seven different pyrethroids were detected in wipe, dust, solid food, and indoor air samples. Permethrin was the most frequently detected (>50%) pyrethroid in these media, followed by cypermethrin (wipes, dust, and food). 3-phenoxybenzoic acid (3-PBA), a urinary metabolite of several pyrethroids, was the most frequently (≥67%) detected pyrethroid biomarker. Results across studies indicate that these children were likely exposed to several pyrethroids, but primarily to permethrin and cypermethrin, from several sources including food, dust, and/or on surfaces at residences. Dietary ingestion followed by nondietary ingestion were the dominate exposure routes for these children, except in homes with frequent pesticide applications (dermal followed by dietary ingestion). Urinary 3-PBA concentration data confirm that the majority of the children sampled were exposed to one or more pyrethroids. PMID:23066409
Toxicological effects of pyrethroids on non-target aquatic insects.
Antwi, Frank B; Reddy, Gadi V P
2015-11-01
The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Koama, Bayili; Namountougou, Moussa; Sanou, Roger; Ndo, Sévérin; Ouattara, Abdoulaye; Dabiré, Roch K; Malone, David; Diabaté, Abdoulaye
2015-03-04
Adult females An. gambiae were exposed in 3 min cone test to treated nets with PPF before or after they were blood fed. The effects of PPF on ovaries development, females oviposition and eggs hatching were assessed. Both unfed and fed mosquitoes exposed to PPF exhibited nearly complete inhibition of fecundity (70-100%) and fertility (90-100%). After females have been exposed once to PPF, the sterilizing effect on their fecundity was observed over 3 consecutive blood meals suggesting that PPF might have an irreversible sterilizing effect. Observation of the ovaries of exposed females to PPF under microscope revealed that the ovaries failed to develop even after several blood meals. The combination of PPF to pyrethroids on bednets could provide better malaria control tool and prevent the further development and spread of pyrethroid resistance in malaria vectors.
Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R
2015-09-01
Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pyrethroids are widely used in agricultural, industrial and residential settings to control insect pests. Pyrethroids prolong sodium channel inactivation, although their complete mode of action is not fully understood. We previously reported that permethrin (a Type I pyrethroid) ...
In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin
Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...
Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons. The physiological result is disruption of nerve membrane excitability. A current focus of pyrethroid research is examination of the molecular mechanisms-of-action of pyrethroids, in...
Toxicokinetics of the pyrethroid insecticide bifenthrin in blood and brain of the rat
Bifenthrin is a pyrethroid insecticide and human exposure to it can occur by oral, pulmonary and dermal routes. Pyrethroids are neurotoxic agents and it is generally believed that the parent pyrethroid is the toxic entity. The objective of this study was to assess the toxicokinet...
Bifenthrin is a pyrethroid insecticide and human exposure to it can occur by oral, pulmonary and dermal routes. Pyrethroids are neurotoxic agents and it is generally believed that the parent pyrethroid is the toxic entity. This study evaluated the oral disposition and bioavaila...
Godara, R; Katoch, R; Yadav, A; Ahanger, R R; Bhutyal, A D S; Verma, P K; Katoch, M; Dutta, S; Nisa, F; Singh, N K
2015-09-01
Detection of resistance levels against deltamethrin and cypermethrin in Rhipicephalus (Boophilus) microplus collected from Jammu (India) was carried out using larval packet test (LPT). The results showed the presence of resistance level II and I against deltamethrin and cypermethrin, respectively. Adult immersion test (AIT) and LPT were used to evaluate the in vitro efficacy of ethanolic and aqueous floral extracts of Calendula officinalis against synthetic pyrethroid resistant adults and larvae of R. (B.) microplus. Four concentrations (1.25, 2.5, 5 and 10 %) of each extract with four replications for each concentration were used in both the bioassays. A concentration dependent mortality was observed and it was more marked with ethanolic extract. In AIT, the LC50 values for ethanolic and aqueous extracts were calculated as 9.9 and 12.9 %, respectively. The egg weight of the live ticks treated with different concentrations of the ethanolic and aqueous extracts was significantly lower than that of control ticks; consequently, the reproductive index and the percent inhibition of oviposition values of the treated ticks were reduced. The complete inhibition of hatching was recorded at 10 % of ethanolic extract. The 10 % extracts caused 100 % mortality of larvae after 24 h. In LPT, the LC50 values for ethanolic and aqueous extracts were determined to be 2.6 and 3.2 %, respectively. It can be concluded that the ethanolic extract of C. officinalis had better acaricidal properties against adults and larvae of R. (B.) microplus than the aqueous extract.
Huseth, Anders S; Groves, Russell L; Chapman, Scott A; Nault, Brian A
2015-12-01
Multiple applications of pyrethroid insecticides are used to manage European corn borer, Ostrinia nubilalis Hübner, in snap bean, but new diamide insecticides may reduce application frequency. In a 2 year small-plot study, O. nubilalis control was evaluated by applying cyantraniliprole (diamide) and bifenthrin (pyrethroid) insecticides at one of three phenological stages (bud, bloom and pod formation) of snap bean development. Co-application of these insecticides with either herbicides or fungicides was also examined as a way to reduce the total number of sprays during a season. Cyantraniliprole applications timed either during bloom or during pod formation controlled O. nubilalis better than similar timings of bifenthrin. Co-applications of insecticides with fungicides controlled O. nubilalis as well as insecticide applications alone. Insecticides applied either alone or with herbicides during bud stage did not control this pest. Diamides are an alternative to pyrethroids for the management of O. nubilalis in snap bean. Adoption of diamides by snap bean growers could improve the efficiency of production by reducing the number of sprays required each season. © 2015 Society of Chemical Industry.
Itokawa, K; Komagata, O; Kasai, S; Kawada, H; Mwatele, C; Dida, G O; Njenga, S M; Mwandawiro, C; Tomita, T
2013-09-01
Insecticide resistance develops as a genetic factor (allele) conferring lower susceptibility to insecticides proliferates within a target insect population under strong positive selection. Intriguingly, a resistance allele pre-existing in a population often bears a series of further adaptive allelic variants through new mutations. This phenomenon occasionally results in replacement of the predominating resistance allele by fitter new derivatives, and consequently, development of greater resistance at the population level. The overexpression of the cytochrome P450 gene CYP9M10 is associated with pyrethroid resistance in the southern house mosquito Culex quinquefasciatus. Previously, we have found two genealogically related overexpressing CYP9M10 haplotypes, which differ in gene copy number (duplicated and non-duplicated). The duplicated haplotype was derived from the non-duplicated overproducer probably recently. In the present study, we investigated allelic series of CYP9M10 involved in three C. quinquefasciatus laboratory colonies recently collected from three different localities. Duplicated and non-duplicated overproducing haplotypes coexisted in African and Asian colonies indicating a global distribution of both haplotype lineages. The duplicated haplotypes both in the Asian and African colonies were associated with higher expression levels and stronger resistance than non-duplicated overproducing haplotypes. There were slight variation in expression level among the non-duplicated overproducing haplotypes. The nucleotide sequences in coding and upstream regions among members of this group also showed a little diversity. Non-duplicated overproducing haplotypes with relatively higher expression were genealogically closer to the duplicated haplotypes than the other non-duplicated overproducing haplotypes, suggesting multiple cis-acting mutations before duplication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu
2011-12-15
We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltagemore » dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels in HEK293 cells differ from the effects of these compounds on Na{sub v}1.6 channels in Xenopus oocytes and more closely reflect the actions of pyrethroids on channels in their native neuronal environment. -- Highlights: Black-Right-Pointing-Pointer We expressed rat Na{sub v}1.6 voltage-gated sodium channels in HEK293 cells. Black-Right-Pointing-Pointer Tefluthrin and deltamethrin caused resting modification of Na{sub v}1.6 channels. Black-Right-Pointing-Pointer Only deltamethrin exhibited use-dependent enhancement of modification. Black-Right-Pointing-Pointer State-dependent effects of pyrethroids are influenced by the cellular context. Black-Right-Pointing-Pointer Channels in HEK293 cells exhibit properties similar to native neuronal channels.« less
Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad
2016-04-01
United States Environmental Protection Agency has recommended estimating pyrethroids' risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8-2,000 ng/mL with correlation coefficients of ≥ 0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC-MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Is the chronic Tier-1 effect assessment approach for insecticides protective for aquatic ecosystems?
Brock, Theo Cm; Bhatta, Ranjana; van Wijngaarden, René Pa; Rico, Andreu
2016-10-01
We investigated the appropriateness of several methods, including those recommended in the Aquatic Guidance Document of the European Food Safety Authority (EFSA), for the derivation of chronic Tier-1 regulatory acceptable concentrations (RACs) for insecticides and aquatic organisms. The insecticides represented different chemical classes (organophosphates, pyrethroids, benzoylureas, insect growth regulators, biopesticides, carbamates, neonicotinoids, and miscellaneous). Chronic Tier-1 RACs derived using toxicity data for the standard species Daphnia magna, Chironomus spp., and/or Americamysis bahia, were compared with Tier-3 RACs derived from micro- and mesocosm studies on basis of the ecological threshold option (ETO-RACs). ETO-RACs could be derived for 31 insecticides applied to micro- and mesocosms in single or multiple applications, yielding a total number of 36 cases for comparison. The chronic Tier-1 RACs calculated according to the EFSA approach resulted in a sufficient protection level, except for 1 neonicotinoid (slightly underprotective) and for several pyrethroids if toxicity data for A. bahia were not included. This latter observation can be explained by 1) the fact that A. bahia is the most sensitive standard test species for pyrethroids, 2) the hydrophobic properties of pyrethroids, and 3) the fact that long-term effects observed in (epi) benthic arthropods may be better explained by exposure via the sediment than via overlying water. Besides including toxicity data for A. bahia, the protection level for pyrethroids can be improved by selecting both D. magna and Chironomus spp. as standard test species for chronic Tier-1 derivation. Although protective in the majority of cases, the conservativeness of the recommended chronic Tier-1 RACs appears to be less than an order of magnitude for a relatively large proportion of insecticides when compared with their Tier-3 ETO-RACs. This may leave limited options for refinement of the chronic effect assessment using laboratory toxicity data for additional species. Integr Environ Assess Manag 2016;12:747-758. © 2015 SETAC. © 2015 SETAC.
Determination of Pyrethroids through Liquid-Liquid Extraction and GC-ECD
NASA Astrophysics Data System (ADS)
Ding, B.
2010-12-01
Storm water samples from various locations in San Diego Creek and Newport Bay watershed, southern California, were taken to study the occurrence and fate of pyrethroids. This study focused on four commonly used pyrethroids: bifenthrin, cypermethrin, permethrin, and fenpropathrin. Since the ban of DDT, usage of pyrethroids became an effective second choice. However, pyrethroids are extremely toxic to fish and aquatic organisms. They can pass through secondary wastewater treatment system, causing the final effluent to be in lethal doses to aquatic invertebrates and some insects such as mayflies. Hence, it is necessary to monitor the amount of pyrethroid concentration in storm water. As a part of this study, I attended the RISE internship program at Stanford University in this summer. In the seven weeks, I learned liquid-liquid extraction, water-bath evaporation, nitrogen evaporation, and gas chromatography-electron capture detector techniques to extract and detect the pyrethroid residues in the water sample.
Massebo, Fekadu; Balkew, Meshesha; Gebre-Michael, Teshome; Lindtjørn, Bernt
2013-02-22
Anopheles arabiensis, the main malaria vector in Ethiopia, shows both anthropophilic and zoophilic behaviours. Insecticide resistance is increasing, and alternative methods of vector control are needed. The objectives of this study were to determine the blood meal origins and the susceptibility to insecticides of An. arabiensis from Chano village near Arba Minch in South-West Ethiopia. Blood meal sources of anopheline mosquitoes collected using Centers for Disease Control and Prevention (CDC) light traps and pyrethrum spray catches (PSC) from human dwellings, and hand-held mouth aspirators from outdoor pit shelters were analysed using a direct enzyme-linked-immunosorbent assay (ELISA). The susceptibility of An. arabiensis to pyrethroid insecticides (alphacypermethrin, lambdacyhalothrin, deltamethrin, and cyfluthrin) and DDT was assessed using females reared from larval and pupal collections from natural breeding sites. The blood meal origins of 2967 freshly fed Anopheles mosquitoes were determined. An. arabiensis was the predominant species (75%), and it fed mainly on cattle. The densities of both freshly fed An. arabiensis and those fed on human blood followed similar seasonal patterns. The overall human blood index (HBI) of An. arabiensis, including mixed blood meals, was 44% and the bovine blood index (BBI) was 69%. The HBI of An. arabiensis from CDC light trap collections was 75% and this was higher than those for PSC (38%) and outdoor pit shelter collections (13%), while the BBI was 65% for PSC, 68% for outdoor pit shelters and 72% for CDC light traps. More freshly fed and human blood-fed An. arabiensis were sampled from houses close to the shore of Lake Abaya (the major breeding site).A high proportion of An. arabiensis was resistant to the pyrethroid insecticides, with a mortality rate of 56% for lambdacyhalothrin, 50% for cyfluthrin and alphacypermethrin, 47% for deltamethrin, and 10% for DDT. Anopheles arabiensis is the predominant species of anopheline mosquito in this region, and cattle are the main source of its blood meals. The greater tendency of this species to feed on cattle justifies the application of insecticides on cattle to control it. However, An. arabiensis has already developed resistance to the available pyrethroid insecticides, and alternative insecticides are needed for malaria vector control.
Lynd, Amy; Ranson, Hilary; McCall, P J; Randle, Nadine P; Black, William C; Walker, Edward D; Donnelly, Martin J
2005-01-01
Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR) which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. Methods A Hot Ligation Oligonucleotide Assay (HOLA) was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. Results and Discussion The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA) technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. Conclusion The method is capable of detecting both the East and West African kdr alleles in the homozygous and heterozygous states from fresh or dried material using several DNA extraction methods. It is more reliable than the traditional PCR method and may be more sensitive for the detection of heterozygotes. It is inexpensive, simple and relatively safe making it suitable for use in resource-poor countries. PMID:15766386
Mechanisms of Pyrethroid Insecticide-Induced Stimulation of Calcium Influx in Neocortical Neurons
Cao, Zhengyu; Shafer, Timothy J.
2011-01-01
Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca2+ influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, λ-cyhalothrin, β-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca2+]i) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca2+]i. These pyrethroids displayed a range of efficacies on Ca2+ influx; however, the EC50 values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca2+]i caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca2+ influx include N-methyl-d-aspartic acid receptors, L-type Ca2+ channels, and reverse mode of operation of the Na+/Ca2+ exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca2+ influx. These data demonstrate that pyrethroids stimulate Ca2+ entry into neurons subsequent to their actions on VGSCs. PMID:20881019
McCoy, Mark R.; Yang, Zheng; Fu, Xun; Ahn, Ki Chang; Gee, Shirley J.; Bom, David C.; Zhong, Ping; Chang, Dan; Hammock, Bruce D.
2012-01-01
Pyrethroids are a class of insecticides that are becoming increasingly popular in agricultural and home use applications. Sensitive assays for pyrethroid insecticides in complex matrices are difficult both with instrumental and immunochemical methods. Environmental analysis of the pyrethroids by immunoassay requires either knowing which pyrethroids contaminate the source or the use of non-specific antibodies with cross reactivities to a class of compounds. We describe an alternative method that converts the type-II-pyrethroids to a common chemical product, 3-phenoxybenzoic acid (3-PBA), prior to analysis. This method is much more sensitive than detecting the parent compound, and it is much easier to detect a single compound rather than an entire class of compounds. This is useful in screening for pyrethroids as a class or in situations where a single type of pyrethroid is used. We demonstrated this technique in both citrus oils and environmental water samples with conversion rates of the pyrethroid to 3-PBA that range from 45%-75% and methods that require no extraction steps for either the immunoassay or LC-MS/MS techniques. Limits of detection for this technique applied to orange oil are 5 nM, 2 μM, and 0.8 μM when detected by LC-MS/MS, GC-MS, and immunoassay respectively. The limit of detection for pyrethroids in water when detected by immunoassay was 2 nM. PMID:22486225
Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs
Shafer, Timothy J.; Meyer, Douglas A.; Crofton, Kevin M.
2005-01-01
Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system. PMID:15687048
Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs.
Shafer, Timothy J; Meyer, Douglas A; Crofton, Kevin M
2005-02-01
Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Yuzhe; Song Weizhong; Groome, James R.
2010-08-15
Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action ofmore » pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.« less
Additivity of Pyrethroid Actions on Sodium Influx in Cerebrocortical Neurons in Primary Culture
Cao, Zhengyu; Shafer, Timothy J.; Crofton, Kevin M.; Gennings, Chris
2011-01-01
Background: Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Although previous work has tested the additivity of pyrethroids in vivo, this has not been assessed directly at the primary molecular target using a functional measure. Objectives: We investigated the potency and efficacy of 11 structurally diverse food-use pyrethroids to evoke sodium (Na+) influx in neurons and tested the hypothesis of dose additivity for a mixture of these same 11 compounds. Methods: We determined pyrethroid-induced increases in Na+ influx in primary cultures of cerebrocortical neurons using the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI). Concentration-dependent responses for 11 pyrethroids were determined, and the response to dilutions of a mixture of all 11 compounds at an equimolar mixing ratio was assessed. Additivity was tested assuming a dose-additive model. Results: Seven pyrethroids produced concentration-dependent, tetrodotoxin-sensitive Na+ influx. The rank order of potency was deltamethrin > S-bioallethrin > β-cyfluthrin > λ-cyhalothrin > esfenvalerate > tefluthrin > fenpropathrin. Cypermethrin and bifenthrin produced modest increases in Na+ influx, whereas permethrin and resmethrin were inactive. When all 11 pyrethroids were present at an equimolar mixing ratio, their actions on Na+ influx were consistent with a dose-additive model. Conclusions: These data provide in vitro relative potency and efficacy measurements for 7 pyrethroid compounds in intact mammalian neurons. Despite differences in individual compound potencies, we found the action of a mixture of all 11 pyrethroids to be additive when we used an appropriate statistical model. These results are consistent with a previous report of the additivity of pyrethroids in vivo. PMID:21665567
Munhenga, Givemore; Masendu, Hieronymo T; Brooke, Basil D; Hunt, Richard H; Koekemoer, Lizette K
2008-11-28
Insecticide resistance can present a major obstacle to malaria control programmes. Following the recent detection of DDT resistance in Anopheles arabiensis in Gokwe, Zimbabwe, the underlying resistance mechanisms in this population were studied. Standard WHO bioassays, using 0.75% permethrin, 4% DDT, 5% malathion, 0.1% bendiocarb and 4% dieldrin were performed on wild-collected adult anopheline mosquitoes and F1 progeny of An. arabiensis reared from wild-caught females. Molecular techniques were used for species identification as well as to identify knockdown resistance (kdr) and ace-1 mutations in individual mosquitoes. Biochemical assays were used to determine the relative levels of detoxifying enzyme systems including non-specific esterases, monooxygenases and glutathione-S-transferases as well as to detect the presence of an altered acetylcholine esterase (AChE). Anopheles arabiensis was the predominant member of the Anopheles gambiae complex. Of the 436 An. arabiensis females, 0.5% were positive for Plasmodium falciparum infection. WHO diagnostic tests on wild populations showed resistance to the pyrethroid insecticide permethrin at a mean mortality of 47% during February 2006 and a mean mortality of 68.2% in January 2008. DDT resistance (68.4% mean mortality) was present in February 2006; however, two years later the mean mortality was 96%. Insecticide susceptibility tests on F1 An. arabiensis families reared from material from two separate collections showed an average mean mortality of 87% (n = 758) after exposure to 4% DDT and 65% (n = 587) after exposure to 0.75% permethrin. Eight families were resistant to both DDT and permethrin. Biochemical analysis of F1 families reared from collections done in 2006 revealed high activity levels of monooxygenase (48.5% of families tested, n = 33, p < 0.05), glutathione S-transferase (25.8% of families tested, n = 31, p < 0.05) and general esterase activity compared to a reference susceptible An. arabiensis colony. Knockdown resistance (kdr) and ace-IR mutations were not detected. This study confirmed the presence of permethrin resistance in An. arabiensis populations from Gwave and emphasizes the importance of periodic and ongoing insecticide susceptibility testing of malaria vector populations whose responses to insecticide exposure may undergo rapid change over time.
Guo, Xin Y; Sun, Li S; Huang, Meng Y; Xu, Wei L; Wang, Ying; Wang, Na
2017-01-02
A simultaneous method for quantifying eight metabolites of organophosphate pesticides and pyrethroid pesticides in urine samples has been established. The analytes were extracted using liquid-liquid extraction coupled with WCX solid phase extraction (SPE) cartridges. Eight metabolites were chemically derivatized before analysis using gas chromatography-tandem mass spectrometry (GC-MS-MS). The separation was performed on a HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm) with temperature programming. The detection was performed under electro-spray ionization (ESI) in multiple reaction monitoring (MRM) mode. An internal standard method was used. The extraction solvent, types of SPE cartridges and eluents were optimized by comparing the sample recoveries under different conditions. The results showed that the calibration curves of the five organophosphorus pesticides metabolites were linear in the range of 0.2-200 μg/L (r 2 ≥ 0.992) and that of the three pyrethroid pesticides metabolites were linear in the range of 0.025-250 μg/L (r 2 ≥ 0.991). The limits of detection (LODs, S/N ≥ 3) and the limits of quantification (LOQs, S/N ≥ 10) of the eight metabolites were 0.008-0.833 μg/L and 0.25-2.5 μg/L, respectively. The recoveries of the eight metabolites ranged from 54.08% to 82.49%. This efficient, stable, and cost-effective method is adequate to handle the large number of samples required for surveying the exposure level of organophosphorus and pyrethroid pesticides in the general population.
Pocquet, Nicolas; Milesi, Pascal; Makoundou, Patrick; Unal, Sandra; Zumbo, Betty; Atyame, Célestine; Darriet, Frédéric; Dehecq, Jean-Sébastien; Thiria, Julien; Bheecarry, Ambicadutt; Iyaloo, Diana P.; Weill, Mylène; Chandre, Fabrice; Labbé, Pierrick
2013-01-01
Several mosquito-borne diseases affect the Western Indian Ocean islands. Culex pipiens quinquefasciatus is one of these vectors and transmits filariasis, Rift Valley and West Nile viruses and the Japanese encephalitis. To limit the impact of these diseases on public health, considerable vector control efforts have been implemented since the 50s, mainly through the use of neurotoxic insecticides belonging to Organochlorines (OC), Organophosphates (OP) and pyrethroids (PYR) families. However, mosquito control failures have been reported on site, and they were probably due to the selection of resistant individuals in response to insecticide exposure. In this study, we used different approaches to establish a first regional assessment of the levels and mechanisms of resistance to various insecticides. Bioassays were used to evaluate resistance to various insecticides, enzyme activity was measured to assess the presence of metabolic resistances through elevated detoxification, and molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. These complementary approaches showed that resistance to the most used insecticides families (OC, OP and PYR) is widespread at a regional scale. However, the distribution of the different resistance genes is quite heterogeneous among the islands, some being found at high frequencies everywhere, others being frequent in some islands and absent in others. Moreover, two resistance alleles displayed clinal distributions in Mayotte and La Réunion, probably as a result of a heterogeneous selection due to local treatment practices. These widespread and diverse resistance mechanisms reduce the capacity of resistance management through classical strategies (e.g. insecticide rotation). In case of a disease outbreak, it could undermine the efforts of the vector control services, as only few compounds could be used. It thus becomes urgent to find alternatives to control populations of Cx. p. quinquefasciatus in the Indian Ocean. PMID:24204997
Pyrethroids in human breast milk: occurrence and nursing daily intake estimation.
Corcellas, Cayo; Feo, Maria Luisa; Torres, Joao Paulo; Malm, Olaf; Ocampo-Duque, William; Eljarrat, Ethel; Barceló, Damià
2012-10-15
There is an assumption that pyrethroid pesticides are converted to non-toxic metabolites by hydrolysis in mammals. However, some recent works have shown their bioaccumulation in human breast milk collected in areas where pyrethroids have been widely used for agriculture or malaria control. In this work, thirteen pyrethroids have been studied in human breast milk samples coming from areas without pyrethroid use for malaria control, such as Brazil, Colombia and Spain. The concentrations of pyrethroids ranged from 1.45 to 24.2 ng g⁻¹ lw. Cypermethrin, λ-cyhalothrin, permethrin and esfenvalerate/fenvalerate were present in all the studied samples. The composition of pyrethroid mixture depended on the country of origin of the samples, bifenthrin being the most abundant in Brazilian samples, λ-cyhalothrin in Colombian and permethrin in Spanish ones. When the pyrethroid concentrations were confronted against the number of gestations, an exponential decay was observed. Moreover, a time trend study was carried out in Brazil, where additional archived pool samples were analyzed, corresponding to years when pyrethroids were applied for dengue epidemic control. In these cases, total pyrethroid levels reached up to 128 ng g⁻¹ lw, and concentrations decreased when massive use was not allowed. Finally, daily intake estimation of nursing infants was calculated in each country and compared to acceptable WHO levels. The estimated daily intakes for nursing infants were always below the acceptable daily intake levels, nevertheless in certain samples the detected concentrations were very close to the maximum acceptable levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gomez, Marinely Bustamante; Pessoa, Grasielle D'Avila Caldas; Rosa, Aline Cristine Luiz; Echeverria, Jorge Espinoza; Diotaiuti, Liléia Gonçalves
2015-11-16
Over the last few decades, pyrethroid-resistant in Triatoma infestans populations have been reported, mainly on the border between Argentina and Bolivia. Understanding the genetic basis of inheritance mode and heritability of resistance to insecticides under laboratory conditions is crucial for vector management and monitoring of insecticide resistance. Currently, few studies have been performed to characterize the inheritance mode of resistance to pyrethroids in T. infestans; for this reason, the present study aims to characterize the inheritance and heritability of deltamethrin resistance in T. infestans populations from Bolivia with different toxicological profiles. Experimental crosses were performed between a susceptible (S) colony and resistant (R) and reduced susceptibility (RS) colonies in both directions (♀ x ♂ and ♂ x ♀), and inheritance mode was determined based on degree of dominance (DO) and effective dominance (D(ML)). In addition, realized heritability (h(2)) was estimated based on a resistant colony, and select pressure was performed for two generations based on the diagnostic dose (10 ng. i. a. /nymph). The F1 progeny of the experimental crosses and the selection were tested by a standard insecticide resistance bioassay. The result for DO and D(ML) (< 1) indicates that resistance is an incompletely dominant character, and inheritance is autosomal, not sex-linked. The LD50 for F1 of ♀S x ♂R and ♂S x ♀R was 0.74 and 3.97, respectively, which is indicative of dilution effect. In the resistant colony, after selection pressure, the value of h(2) was 0.37; thus, the LD50 value increased 2.25-fold (F2) and 26.83-fold (F3) compared with the parental colony. The inheritance mode of resistance of T. infestans to deltamethrin, is autosomal and an incompletely dominant character; this is a previously known process, confirmed in the present study on T. infestans populations from Bolivia. The lethal doses (LD50) increase from one generation to another rapidly after selection pressure with deltamethrin. This suggests that resistance is an additive and cumulative factor, mainly in highly structured populations with limited dispersal capacity, such as T. infestans. This phenomenon was demonstrated for the first time for T. infestans in the present study. These results are very important for vector control strategies in problematic areas where high resistance ratios of T. infestans have been reported.
Feo, M L; Corcellas, C; Barata, C; Ginebreda, A; Eljarrat, E; Barceló, D
2013-01-01
Solid phase extraction with Poly (2,6-diphenyl-p-phenylene oxide) Polymer (Tenax) was used for determining the bioavailability of eleven pyrethroids in field collected sediments with different organic carbon content (OC). The bioavailable fraction of pyrethroids decreased with increasing OC in sediments; the percentages of desorption ranged from 10 to 20% for sediment with higher OC content (5.8%) and 15-40% for that with lower OC (2%). Generally pyrethroids showed low bioavailability and cyfluthrin resulted to be the most bioavailable among the studied pyrethroids. Acute toxicity tests with Daphnia magna were carried out on sediment spiked with three selected pyrethroids (λ-cyhalothrin, cypermethrin and deltamethrin) and served to validate the efficiency of Tenax as a method for assessing the bioavailability of pyrethroids. Toxicity test demonstrated that Tenax was able to remove the toxic bio-available fraction of pyrethroids in sediment. Extracts from Tenax beads after the desorption experiments and spiked sediment before desorption had an equivalent toxicity (LC50) to D. magna neonates at 48 and 72 h of exposure. These results indicate that Tenax beds can be used to predict bio-available and toxic fractions of pyrethroids sorbed to sediments to aquatic organisms like D. magna. Copyright © 2012 Elsevier B.V. All rights reserved.
Interactions of pyrethroid insecticides with GABA sub A and peripheral-type benzodiazepine receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaud, L.L.
1988-01-01
Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1R{alpha}S, cis cypermethrin having an ED{sub 50} value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of ({sup 3}H)Ro5-4864 to rat brain membranes with a significant correlation between the logmore » EC{sub 50} values for their activities as proconvulsants and the log IC{sub 50} values for their inhibition of ({sup 3}H)Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific ({sup 35}S)TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of ({sup 35}S)TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated {sup 36}Chloride influx. Moreover, the Type II pyrethroids elicited an increase in {sup 36}chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin.« less
2009-03-01
pyrethroid- treated surfacespairedwithadjacentuntreated surfaces.The threepyrethroids testedwerebifenthrin, deltamethrin, and lambda - cyhalothrin . Landing...three pyrethroids tested were bifenthrin deltamethrin, and lambda - cyhalothrin . Landing and resting behavior was video recorded and quanti?ed using...study and tested with the pyrethroids bifenthrin, deltamethrin, and lambda - cyhalothrin . Materials and Methods Mosquitoes. Mosquitoes were reared, as
Foster, S P; Young, S; Williamson, M S; Duce, I; Denholm, I; Devine, G J
2003-08-01
We show that single-point mutations conferring target-site resistance (kdr) to pyrethroids and DDT in aphids and houseflies, and gene amplification conferring metabolic resistance (carboxylesterase) to organophosphates and carbamates in aphids, can have deleterious pleiotropic effects on fitness. Behavioural studies on peach-potato aphids showed that a reduced response to alarm pheromone was associated with both gene amplification and the kdr target-site mutation. In this species, gene amplification was also associated with a decreased propensity to move from senescing leaves to fresh leaves at low temperature. Housefly genotypes possessing the identical kdr mutation were also shown to exhibit behavioural differences in comparison with susceptible insects. In this species, resistant individuals showed no positional preference along a temperature gradient while susceptible genotypes exhibited a strong preference for warmer temperatures.
Insecticide Resistance in Fleas.
Rust, Michael K
2016-03-17
Fleas are the major ectoparasite of cats, dogs, and rodents worldwide and potential vectors of animal diseases. In the past two decades the majority of new control treatments have been either topically applied or orally administered to the host. Most reports concerning the development of insecticide resistance deal with the cat flea, Ctenocephalides felis felis. Historically, insecticide resistance has developed to many of the insecticides used to control fleas in the environment including carbamates, organophosphates, and pyrethroids. Product failures have been reported with some of the new topical treatments, but actual resistance has not yet been demonstrated. Failures have often been attributed to operational factors such as failure to adequately treat the pet and follow label directions. With the addition of so many new chemistries additional monitoring of flea populations is needed.
Stenhouse, Steven A; Plernsub, Suriya; Yanola, Jintana; Lumjuan, Nongkran; Dantrakool, Anchalee; Choochote, Wej; Somboon, Pradya
2013-08-30
Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such exposure. However, resistance in some populations cannot be explained due to kdr mutations and indicates that other resistance mechanisms are operating. The presence of this mutation alone does not fully explain the resistance phenotype we see among Thai Ae. aegypti populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crofton, K.M.; Reiter, L.W.; Mailman, R.B.
1987-01-01
Radioligand binding displacement studies were conducted to determine the effects of Type I and II pyrethroids on /sup 3/H-flunitrazepam (FLU), /sup 3/H-muscimol (MUS), and (/sup 35/S-t-butylbicyclophosphorothionate (TBPS) binding. Competition experiments with /sup 3/H-FLU and /sup 3/H-MUS indicate a lack of competition for binding by the pyrethroids. Type I pyrethroids failed to compete for the binding of (/sup 35/S-TBPS at concentrations as high as 50 pM. Type II pyrethroids inhibited (/sup 35/S-TBPS binding to rat brain synaptosomes with Ki values ranging from 5-10 pM. The data presented suggest that the interaction of Type II pyrethroids with the GABA receptor-ionophore complex ismore » restricted to a site near the TBPS/picrotoxinin binding site.« less
Rasmussen, Jes Jessen; Cedergreen, Nina; Kronvang, Brian; Andersen, Maj-Britt Bjergager; Nørum, Ulrik; Kretschmann, Andreas; Strobel, Bjarne Westergaard; Hansen, Hans Christian Bruun
2016-04-01
Current ecotoxicological research on particle-associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L(-1)). Mortality of G. pulex was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L(-1) adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments. MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration-response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity of pyrethroids to G. pulex and that passive uptake of pyrethroids can be significant even when pyrethroids are adsorbed to suspended particles.
Gonzales Correa, Yenis Del Carmen; Faroni, Lêda R A; Haddi, Khalid; Oliveira, Eugênio E; Pereira, Eliseu José G
2015-11-01
Plant essential oils have been suggested as a suitable alternative for controlling stored pests worldwide. However, very little is known about the physiological or behavioral responses induced by these compounds in insect populations that are resistant to traditional insecticides. Thus, this investigation evaluated the toxicity (including the impacts on population growth) as well as the locomotory and respiratory responses induced by clove, Syzygium aromaticum L., and cinnamon, Cinnamomum zeylanicum L., essential oils in Brazilian populations of the maize weevil Sitophilus zeamais. We used populations that are resistant to phosphine and pyrethroids (PyPhR), only resistant to pyrethroids (PyR1 and PyR2) or susceptible to both insecticide types (SUS). The PyPhR population was more tolerant to cinnamon essential oil, and its population growth rate was less affected by both oil types. Insects from this population reduced their respiratory rates (i.e., CO2 production) after being exposed to both oil types and avoided (in free choice-experiments) or reduced their mobility on essential oil-treated surfaces. The PyR1 and PyR2 populations reduced their respiratory rates, avoided (without changing their locomotory behavior in no-choice experiments) essential oil-treated surfaces and their population growth rates were severely affected by both oil types. Individuals from SUS population increased their mobility on surfaces that were treated with both oil types and showed the highest levels of susceptibility to these oils. Our findings indicate that S. zeamais populations that are resistant to traditional insecticides might have distinct but possibly overlapping mechanisms to mitigate the actions of essential oils and traditional insecticides. Copyright © 2015 Elsevier Inc. All rights reserved.
2014-01-01
Background The rapid expansion of insecticide resistance is limiting the efficiency of malaria vector control interventions. However, current knowledge of factors inducing pyrethroid resistance remains incomplete. In the present study, the role of selection at the larval stage by disinfectants, such as soap and hydrogen peroxide (H2O2), on adult mosquito resistance to permethrin was investigated. Methods Field Anopheles gambiae sensu lato larvae, were exposed to variable concentrations of soap and H2O2. Larvae surviving to acute toxicity assays after 24 hours were reared to the adult stage and exposed to permethrin. The susceptibility level of adults was compared to the untreated control group. The effect of soap or hydrogen peroxide selection on the length of larval development and emergence rate was assessed. Result Larval bioassays analysis showed a more acute effect of hydrogen peroxide on mosquito larvae compared to soap. The regression lines describing the dose mortality profile showed higher mean and variance to hydrogen peroxide than to soap. The duration of larval development (<5 days) and adults emergence rates (1 to 77%) were shorter and lower compare to control. Anopheles gambiae s.l. larvae surviving to selection with either soap or hydrogen peroxide or both, produced adults who were up to eight-times more resistant to permethrin than mosquitoes from the untreated control group. Conclusion The present study shows that selective pressure exerted by non-insecticidal compounds such as soap and hydrogen peroxide affect An. gambiae s.l. tolerance to pyrethroids. This requires further studies with regard to the adaptation of An. gambiae s.l. to polluted habitats across sub-Saharan Africa cities. PMID:25086741
Mavridis, Konstantinos; Fotakis, Emmanouil A; Kioulos, Ilias; Mpellou, Spiridoula; Konstantas, Spiros; Varela, Evangelia; Gewehr, Sandra; Diamantopoulos, Vasilis; Vontas, John
2018-06-01
During July-October 2017 a WNV outbreak took place in the Peloponnese, Southern Greece with five confirmed deaths. During routine monitoring survey in the Peloponnese, supported by the local Prefecture, we have confirmed the presence of all three Culex pipiens biotypes in the region, with a high percentage of Culex pipiens/molestus hybrids (37.0%) which are considered a highly competent vector of WNV. Kdr mutations related to pyrethroid resistance were found at relatively low levels (14.3% homozygosity) while no mosquitoes harboring the recently identified chitin synthase diflubenzuron-resistance mutations were detected in the region. As an immediate action, following the disease outbreak (within days), we collected a large number of mosquitoes using CO 2 CDC traps from the villages in the Argolis area of the Peloponnese, where high incidence of WNV human infections were reported. WNV lineage 2 was detected in 3 out of 47 Cx. pipiens mosquito pools (detection rate = 6.38%). The virus was not detected in any other mosquito species, such as Aedes albopictus, sampled from the region at the time of the disease outbreak. Our results show that detection of WNV lineage 2 in Cx. pipiens pools is spatially and chronologically associated with human clinical cases, thus implicating Cx. pipiens mosquitoes as the most likely WNV vector. The absence of diflubenzuron resistance mutations and the low frequency of pyrethroid (kdr) resistance mutations indicates the suitability of these insecticides for Cx. pipiens control, in the format of larvicides and/or residual spraying applications respectively, which was indeed the main (evidence based) response, following the disease outbreak. Copyright © 2018 Elsevier B.V. All rights reserved.
Antonio-Nkondjio, Christophe; Youmsi-Goupeyou, Marlene; Kopya, Edmond; Tene-Fossog, Billy; Njiokou, Flobert; Costantini, Carlo; Awono-Ambene, Parfait
2014-08-03
The rapid expansion of insecticide resistance is limiting the efficiency of malaria vector control interventions. However, current knowledge of factors inducing pyrethroid resistance remains incomplete. In the present study, the role of selection at the larval stage by disinfectants, such as soap and hydrogen peroxide (H2O2), on adult mosquito resistance to permethrin was investigated. Field Anopheles gambiae sensu lato larvae, were exposed to variable concentrations of soap and H2O2. Larvae surviving to acute toxicity assays after 24 hours were reared to the adult stage and exposed to permethrin. The susceptibility level of adults was compared to the untreated control group. The effect of soap or hydrogen peroxide selection on the length of larval development and emergence rate was assessed. Larval bioassays analysis showed a more acute effect of hydrogen peroxide on mosquito larvae compared to soap. The regression lines describing the dose mortality profile showed higher mean and variance to hydrogen peroxide than to soap. The duration of larval development (<5 days) and adults emergence rates (1 to 77%) were shorter and lower compare to control. Anopheles gambiae s.l. larvae surviving to selection with either soap or hydrogen peroxide or both, produced adults who were up to eight-times more resistant to permethrin than mosquitoes from the untreated control group. The present study shows that selective pressure exerted by non-insecticidal compounds such as soap and hydrogen peroxide affect An. gambiae s.l. tolerance to pyrethroids. This requires further studies with regard to the adaptation of An. gambiae s.l. to polluted habitats across sub-Saharan Africa cities.
Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s and carboxylesterase enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme are needed to support in vitro ...
[Health effects of pyrethrins and pyrethroids].
Macan, Jelena; Varnai, Veda Marija; Turk, Rajka
2006-06-01
Pyrethrins, natural extracts of Chrysanthemum cinerariaefolium and Chrysanthemum cocineum flowers, and pyrethroids, synthetic analogues and derivatives of pyrethrins, are powerful insecticides. They are widely used in households and insect control in pets or livestock, in textiles such as carpets, wallpapers, furniture and clothes, as well as in agriculture, forestry and public health services. This article brings a list of pyrethrin and pyrethroid insecticides registered for use in plant protection in Croatia. Pyrethrins and pyrethroids can enter the organism by ingestion (accidental or suicidal ingestion or in food), by inhalation and/or by skin contact. Although these pesticides pose a relatively low risk to mammals due to rapid metabolism with no significant accumulation, they can induce adverse health effects, more often in acute poisoning, but also due to chronic exposure. The primary target of pyrethrin and pyrethroid toxicity is the nervous system, since they act directly on the sodium channels of nerve cell axons, leading to hyperexcitation. Another important toxicological mechanism is allergenicity, which is more pronounced with pyrethrins than with synthetic pyrethroids. Because there is no antidote for pyrethrin and pyrethroid poisoning, treatment is symptomatic and supportive. The article discusses the measures for poisoning prevention and alleviation of exposure to pyrethrins and pyrethroids in occupational settings and in general population.
Alzogaray, R A; Zerba, E N
2001-01-15
The hyperactivity (an increase in locomotor activity) and repellency produced by eight pyrethroids, applied as films on filter paper, were evaluated on fifth instar nymphs of Triatoma infestans (Hemiptera: Reduviidae) using a video tracking technique. All the pyrethroids studied produced hyperactivity. As a trend, hyperactivity produced by cyanopyrethroids was higher than that produced by non-cyanopyrethroids. Hyperactivity was not observed when nymphs were pretreated with the sulphydryl reagent N-ethylmaleimide before exposure to the pyrethroids. The eight pyrethroids failed to produce repellency. No repellency was also observed for the flowable formulation of deltamethrin at the concentration recommended for T. infestans control.
Provecho, Yael M; Gaspe, M Sol; Fernández, M Del Pilar; Gürtler, Ricardo E
2017-05-01
We investigated the dynamics and underlying causes of house (re)infestation with Triatoma infestans (Klug 1834) after a community-wide residual spraying with pyrethroids in a well-defined rural section of Pampa del Indio municipality (northeastern Argentina) over a 4-yr period. House infestation was assessed by timed manual searches, during insecticide applications, and by opportunistic householders' bug collections. All reinfested houses were selectively re-sprayed with insecticides. The resident population comprised Qom (66.6%) and Creole (33.4%) households, whose sociodemographic profiles differed substantially. The prevalence of house infestation dropped, less than expected, from 20.5% at baseline to 5.0% at 14 months postspraying (MPS), and then fluctuated between 0.8 and 4.2% over 21-51 MPS. Postspraying house infestation was positively and highly significantly associated with prespraying infestation. Most of the foci detected over 14-21 MPS were considered persistent (residual), some of which were moderately resistant to pyrethroids and were suppressed with malathion. Infestation patterns over 27-51 MPS suggested bug invasion from internal or external foci, but the sources of most findings were unaccounted for. Local spatial analysis identified two hotspots of postspraying house infestation. Using multimodel inference with model averaging, we corroborated that baseline domestic infestation was closely related to refuge availability, housing quality, and occurrence of peridomestic infestation. The diminished effectiveness of single pyrethroid treatments, partly attributable to moderate resistance compounded with rather insensitive vector detection methods and poor housing conditions, contributed to vector persistence. Improved control strategies combined with broad social participation are needed for the sustainable elimination of vector-borne human Chagas disease from the Gran Chaco. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Erban, Tomas; Harant, Karel; Chalupnikova, Julie; Kocourek, Frantisek; Stara, Jitka
2017-01-06
Insecticide resistance is an increasingly global problem that hampers pest control. We sought the mechanism responsible for survival following pyrethroid treatment and the factors connected to paralysis/death of the pollen beetle Meligethes aeneus through a proteome-level analysis using nanoLC coupled with Orbitrap Fusion™ Tribrid™ mass spectrometry. A tolerant field population of beetles was treated with deltamethrin, and the ensuing proteome changes were observed in the survivors (resistant), dead (paralyzed) and control-treated beetles. The protein database consisted of the translated transcriptome, and the resulting changes were manually annotated via BLASTP. We identified a number of high-abundance changes in which there were several dominant proteins, e.g., the electron carrier cytochrome b5, ribosomal proteins 60S RPL28, 40S RPS23 and RPS26, eIF4E-transporter, anoxia up-regulated protein, 2 isoforms of vitellogenin and pathogenesis-related protein 5. Deltamethrin detoxification was influenced by different cytochromes P450, which were likely boosted by increased cytochrome b5, but glutathione-S-transferase ε and UDP-glucuronosyltransferases also contributed. Moreover, we observed changes in proteins related to RNA interference, RNA binding and epigenetic modifications. The high changes in ribosomal proteins and associated factors suggest specific control of translation. Overall, we showed modulation of expression processes by epigenetic markers, alternative splicing and translation. Future functional studies will benefit. Insects develop pesticide resistance, which has become one of the key issues in plant protection. This growing resistance increases the demand for pesticide applications and the development of new substances. Knowledge in the field regarding the resistance mechanism and its responses to pesticide treatment provides us the opportunity to propose a solution for this issue. Although the pollen beetle Meligethes aeneus was effectively controlled with pyrethroids for many years, there have been reports of increasing resistance. We show protein changes including production of isoforms in response to deltamethrin at the protein level. These results illustrate the insect's survival state as a resistant beetle and in its paralyzed state (evaluated as dead) relative to resistant individuals. Copyright © 2016 Elsevier B.V. All rights reserved.
Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I
2013-12-03
Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.
Distribution of pyrethroid insecticides in secondary wastewater effluent
Parry, Emily; Young, Thomas M.
2014-01-01
Although the freely dissolved form of hydrophobic organic chemicals may best predict aquatic toxicity, differentiating between dissolved and particle bound forms is challenging at environmentally relevant concentrations for compounds with low toxicity thresholds such as pyrethroid insecticides. We investigated the distribution of pyrethroids among three forms: freely dissolved, complexed with dissolved organic carbon (DOC), and sorbed to suspended particulate matter, during a yearlong study at a secondary wastewater treatment plant. Effluent was fractionated by laboratory centrifugation to determine if sorption was driven by particle size. Linear distribution coefficients were estimated for pyrethroid sorption to suspended particulate matter (Kid) and dissolved organic carbon (Kidoc) at environmentally relevant pyrethroid concentrations. Resulting Kid values were higher than those reported for other environmental solids, and variation between sampling events correlated well with available particle surface area. Fractionation results suggest that no more than 40% of the pyrethroid remaining in secondary effluent could be removed by extending settling periods. Less than 6%of the total pyrethroid load in wastewater effluent was present in the dissolved form across all sampling events and chemicals. PMID:23939863
Moreno, Shaiene C; Silvério, Flaviano O; Lopes, Mayara C; Ramos, Rodrigo S; Alvarenga, Elson S; Picanço, Marcelo C
2017-04-03
There is increasing demand for new products for vegetable pest management. Thus, the aim of this study was to assess the toxicity of pyrethroids with acid moiety modifications to measure the insecticidal activity of these compounds on the lepidopteran vegetable pests Diaphania hyalinata (L.) (Lepidoptera: Pyralidae) and Asciamonuste (Latreille) (Lepidoptera: Pieridae) and evaluate their selectivity for the predatory ant Solenopsis saevissima (F. Smith) (Hymenoptera: Formicidae) and pollinator Tetragonisca angustula (Latreille) (Hymenoptera: Apidae: Meliponinae). Racemic mixtures of five new pyrethroids (30 µg molecule mg -1 insect body weight) resulted in high (100%) and rapid (stable LD 50 after 12 h) mortality in D. hyalinata and A. monuste. In A. monuste, the trans-pyrethroid [12] isomer showed similar toxicity to permethrin. For D. hyalinata, the trans-pyrethroid [9] isomer and cis-pyrethroid [10] isomer were as toxic as permethrin. Due to their low selectivity, these new pyrethroids should be applied on the basis of ecological selectivity principles to minimize impacts on nontarget organisms S. saevissima and T. angustula.
Bradley, John; Ogouyèmi-Hounto, Aurore; Cornélie, Sylvie; Fassinou, Jacob; de Tove, Yolande Sissinto Savi; Adéothy, Adicath Adéola; Tokponnon, Filémon T; Makoutode, Patrick; Adechoubou, Alioun; Legba, Thibaut; Houansou, Telesphore; Kinde-Gazard, Dorothée; Akogbeto, Martin C; Massougbodji, Achille; Knox, Tessa Bellamy; Donnelly, Martin; Kleinschmidt, Immo
2017-05-26
Malaria control is heavily reliant on insecticides, especially pyrethroids. Resistance of mosquitoes to insecticides may threaten the effectiveness of insecticide-based vector control and lead to a resurgence of malaria in Africa. In 21 villages in Southern Benin with high levels of insecticide resistance, the resistance status of local vectors was measured at the same time as the prevalence of malaria infection in resident children. Children who used LLINs had lower levels of malaria infection [odds ratio = 0.76 (95% CI 0.59, 0.98, p = 0.033)]. There was no evidence that the effectiveness of nets was different in high and low resistance locations (p = 0.513). There was no association between village level resistance and village level malaria prevalence (p = 0.999). LLINs continue to offer individual protection against malaria infection in an area of high resistance. Insecticide resistance is not a reason to stop efforts to increase coverage of LLINs in Africa.
Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad
2016-01-01
United States Environmental Protection Agency has recommended estimating pyrethroids’ risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8–2,000 ng/mL with correlation coefficients of ≥0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC–MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. PMID:26801239
Averting a malaria disaster: will insecticide resistance derail malaria control?
Hemingway, Janet; Ranson, Hilary; Magill, Alan; Kolaczinski, Jan; Fornadel, Christen; Gimnig, John; Coetzee, Maureen; Simard, Frederic; Roch, Dabiré K; Hinzoumbe, Clément Kerah; Pickett, John; Schellenberg, David; Gething, Peter; Hoppé, Mark; Hamon, Nicholas
2016-04-23
World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hernández-Guzmán, Félix Augusto; Macías-Zamora, José Vinicio; Ramírez-Álvarez, Nancy; Alvarez-Aguilar, Arturo; Quezada-Hernández, Cristina; Fonseca, Ana Paula
2017-11-01
Pyrethroids are insecticides widely used to control pests and disease vectors in residential areas and agricultural lands. Pyrethroids are emerging pollutants, and their use is a growing concern because of their toxicity potential to aquatic organisms. Todos Santos Bay and the Punta Banda estuary, 2 coastal bodies located to the south of the Southern California Bight, were studied to establish a baseline of the current conditions of pollution by pyrethroids and fipronil. Eight pyrethroids, along with fipronil and its 2 metabolites, were determined in effluents from wastewater-treatment plants (n = 3), surface sediments (n = 32), and 3 locations with mussels (Mytilus californianus, n = 9). Bifenthrin, permethrin, and cypermethrin were the most common pyrethroids found in the study areas and were widespread in sediments, mussels, and wastewater-treated effluents. Fipronil and its metabolites were detected in mussels and wastewater-treated effluents only. Total pyrethroid concentrations in sediments ranged from 0.04 to 1.95 ng/g dry weight in the Punta Banda estuary (n = 13) and from 0.07 to 6.62 ng/g dry weight in Todos Santos Bay (n = 19). Moreover, total pyrethroids in mussels ranged from 1.19 to 6.15 ng/g wet weight. Based on the toxic unit data calculated for pyrethroids and fipronil for Eohaustorius estuarius and Hyalella azteca, little to no impact is expected to the benthic population structure. Environ Toxicol Chem 2017;36:3057-3064. © 2017 SETAC. © 2017 SETAC.
GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES
Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...
DETERMINATION OF PYRETHROID PESTICIDE RESIDUES FROM RAT TISSUE USING TWO-DIMENSIONAL LCMS
Pyrethroids are a synthetic class of pesticides that elicit neurobehavioral effects in mammals. They are applied occupationally and residentially creating the potential for human exposure. Determining relationships between parent pyrethroid tissue concentrations and neurotoxic ...
2014-01-01
Background Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Methods Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Results Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. Conclusions The low resistance observed in Mayotte’s main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control services. Together with the relative isolation of the island (thus limited immigration of mosquitoes), it provides us with a unique place to implement an integrated vector management plan, including all the good practices learned from previous experiences. PMID:24984704
Pocquet, Nicolas; Darriet, Frédéric; Zumbo, Betty; Milesi, Pascal; Thiria, Julien; Bernard, Vincent; Toty, Céline; Labbé, Pierrick; Chandre, Fabrice
2014-07-01
Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. The low resistance observed in Mayotte's main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control services. Together with the relative isolation of the island (thus limited immigration of mosquitoes), it provides us with a unique place to implement an integrated vector management plan, including all the good practices learned from previous experiences.
Barbee, Gary C; Stout, Michael J
2009-11-01
Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non-target crayfish associated with rice-crayfish crop rotations. One solution to the near-exclusive reliance on pyrethroids in a rice-crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice-crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda-cyhalothrin and etofenprox. Neonicotinoid insecticides are at least 2-3 orders of magnitude less acutely toxic (96 h LC(50)) than pyrethroids to juvenile Procambarid crayfish: lambda-cyhalothrin (0.16 microg AI L(-1)) = etofenprox (0.29 microg AI L(-1)) > clothianidin (59 microg AI L(-1)) > thiamethoxam (967 microg AI L(-1)) > dinotefuran (2032 microg AI L(-1)). Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice-crayfish crop rotations. Further field-level neonicotinoid acute and chronic toxicity testing with crayfish is needed. (c) 2009 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David
2014-01-18
Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the targetmore » tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.« less
Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing
2017-02-15
Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude
2015-01-01
The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies.
Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude
2015-01-01
The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies. PMID:26659095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meacham, Connie A.; Brodfuehrer, Peter D.; Watkins, Jennifer A.
2008-09-15
Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of {alpha} and {beta} subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner. To begin to test whether toxicodynamic differences could contribute to age-dependent deltamethrin toxicity, deltamethrin effects were examined on sodium currents in Xenopus laevis oocytes injected with different combinations of rat {alpha} (Na{sub v}1.2 or Na{sub v}1.3) andmore » {beta} ({beta}{sub 1} or {beta}{sub 3}) subunits. Deltamethrin induced tail currents in all isoform combinations and increased the percent of modified channels in a concentration-dependent manner. Effects of deltamethrin were dependent on subunit combination; Na{sub v}1.3-containing channels were modified to a greater extent than were Na{sub v}1.2-containing channels. In the presence of a {beta} subunit, deltamethrin effects were significantly greater, an effect most pronounced for Na{sub v}1.3 channels; Na{sub v}1.3/{beta}{sub 3} channels were more sensitive to deltamethrin than Na{sub v}1.2/{beta}{sub 1} channels. Na{sub v}1.3/{beta}{sub 3} channels are expressed embryonically, while the Na{sub v}1.2 and {beta}{sub 1} subunits predominate in adults, supporting the hypothesis for age-dependent toxicodynamic differences. Structure-activity relationships for sensitivity of these subunit combinations were examined for other pyrethroids. Permethrin and tetramethrin did not modify currents mediated by either subunit combination. Cypermethrin, {beta}-cyfluthrin, esfenvalerate and fenpropathrin all modified sodium channel function; effects were significantly greater on Na{sub v}1.3/{beta}{sub 3} than on Na{sub v}1.2/{beta}{sub 1} channels. These data demonstrate a greater sensitivity of Na{sub v}1.3 vs Na{sub v}1.2 channels to deltamethrin and other cyano-containing pyrethroids, particularly in the presence of a {beta} subunit.« less
PREDICTIVE PHYSIOLOGICALLY BASED PHARMACOKINETICS MODELING (PBPK) OF PYRETHROID PESTICIDES
Pyrethroids are a class of neurotoxic pesticides that have many different applications in agriculture, horticulture, and homes, and medicinal uses for animals and humans. Differences in the toxicity of pyrethroids are the result of their pharmacokinetic and/or pharmacodynamic pr...
Palmquist, Katherine; Fairbrother, Anne; Salatas, Johanna; Guiney, Patrick D
2011-07-01
According to several recent studies using standard acute Hyalella azteca sediment bioassays, increased pyrethroid use in urban and suburban regions in California has resulted in the accumulation of toxic concentrations of pyrethroids in sediments of area streams and estuaries. However, a critical review of the literature indicates that this is likely an overestimation of environmental risk. Hyalella azteca is consistently the most susceptible organism to both aqueous and sediment-associated pyrethroid exposures when compared to a suite of other aquatic taxa. In some cases, H. azteca LC50 values are less than the community HC10 values, suggesting that the amphipod is an overly conservative model for community- or ecosystem-level impacts of sediment-associated pyrethroids. Further, as a model for responses of field populations of H. azteca, the laboratory bioassays considerably overestimate exposure, because the amphipod is more appropriately characterized as an epibenthic organism, not a true sediment dweller; H. azteca preferentially inhabit aquatic macrophytes, periphyton mats, and leaf litter, which drastically reduces their exposure to contaminated sediments. Sediment-bound pyrethroids are transported via downstream washing of fine particulates resulting in longer range transport but also more efficient sequestration of the chemical. In addition, site-specific variables such as sediment organic carbon content, grain size, temperature, and microbial activity alter pyrethroid bioavailability, degradation, and toxicity on a microhabitat scale. The type and source of the carbon in particular, influences the pyrethroid sequestering ability of sediments. The resulting irregular distribution of pyrethroids in stream sediments suggests that sufficient nonimpacted habitat may exist as refugia for resident sediment-dwelling organisms for rapid recolonization to occur. Given these factors, we argue that the amphipod model provides, at best, a screening level assessment of pyrethroid impacts and can correctly identify those sediments not toxic to benthic organisms but cannot accurately predict where sediments will be toxic. Copyright © 2011 SETAC.
Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.
2013-01-01
Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381
Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel.
Zhorov, Boris S; Dong, Ke
2017-05-01
DDT and pyrethroid insecticides were among the earliest neurotoxins identified to act on voltage-gated sodium channels. In the 1960s, equipped with, at the time, new voltage-clamp techniques, Professor Narahashi and associates provided the initial evidence that DDT and allethrin (the first commercial pyrethroid insecticide) caused prolonged flow of sodium currents in lobster and squid giant axons. Over the next several decades, continued efforts by Prof. Narahashi's group as well as other laboratories led to a comprehensive understanding of the mechanism of action of DDT and pyrethroids on sodium channels. Fast forward to the 1990s, genetic, pharmacological and toxicological data all further confirmed voltage-gated sodium channels as the primary targets of DDT and pyrethroid insecticides. Modifications of the gating kinetics of sodium channels by these insecticides result in repetitive firing and/or membrane depolarization in the nervous system. This mini-review focuses on studies from Prof. Narahashi's pioneer work and more recent mutational and computational modeling analyses which collectively elucidated the elusive pyrethroid receptor sites as well as the molecular basis of differential sensitivities of insect and mammalian sodium channels to pyrethroids. Copyright © 2016 Elsevier B.V. All rights reserved.
Weston, Donald P; Lydy, Michael J
2010-03-01
While studies have documented the presence of pyrethroid insecticides at acutely toxic concentrations in sediments, little quantitative data on sources exist. Urban runoff, municipal wastewater treatment plants and agricultural drains in California's Sacramento-San Joaquin River Delta were sampled to understand their importance as contributors of these pesticides to surface waters. Nearly all residential runoff samples were toxic to the amphipod, Hyalella azteca, and contained pyrethroids at concentrations exceeding acutely toxic thresholds, in many cases by 10-fold. Toxicity identification evaluation data were consistent with pyrethroids, particularly bifenthrin and cyfluthrin, as the cause of toxicity. Pyrethroids passed through secondary treatment systems at municipal wastewater treatment facilities and were commonly found in the final effluent, usually near H. azteca 96-h EC(50) thresholds. Agricultural discharges in the study area only occasionally contained pyrethroids and were also occasional sources of toxicity related to the organophosphate insecticide chlorpyrifos. Discharge of the pyrethroid bifenthrin via urban stormwater runoff was sufficient to cause water column toxicity in two urban creeks, over at least a 30 km reach of the American River, and at one site in the San Joaquin River, though not in the Sacramento River.
Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John
2016-08-16
The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.
Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J.; Tittiger, Claus; Juárez, M. Patricia; Mijailovsky, Sergio J.; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J.; Vontas, John
2016-01-01
The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of 14C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An. gambiae. PMID:27439866
Insecticide resistance status in Anopheles gambiae in southern Benin
2010-01-01
Background The emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs) and IRS has previously been reported. Methods The protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace-1 mutations were determined by PCR. Results Strong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100%) to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%). The molecular M form of An. gambiae was predominant in southern Benin (97%). The kdr mutation was detected in all districts at various frequency (1% to 95%) whereas the Ace-1 mutation was found at a very low frequency (≤ 5%). Conclusion This study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to pyrethroids for IRS in Benin. PMID:20334637
Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons
Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...
DOSE-DEPENDENT DISTRIBUTION AND ELIMINATION OF CIS- AND TRANS-PERMETHRIN IN THE RAT
Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household activities. Due to the phase-out of organophosphate pesticides, use of pyrethroids has increased. The potential for increased human exposure to pyrethroids has prompted pharmacokinetic resea...
Pyrethroid insecticides have potent actions on voltage-gated sodium channels, inhibiting inactivation and increasing channel open times. These are thought to underlie, at least in part, the clinical symptoms of pyrethroid intoxication. However, disruption of neuronal activity at ...
EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.
Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...
Additivity of Pyrethroid Actions on Sodium Influx in Cortical Neuronsin vitro
Background: Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. While previous work has tested the additivity of pyrethroids in vivo, the additivity of these compounds at the major target si...
Pharmacokinetics of a pyrethroid insecticide mixture in the rat
Pyrethroid insecticides are used and co-occur in the environment, in residences and day care facilities. Pharmacokinetic models of pyrethroids and assessment of risk from their exposure would be better informed if data are derived from studies using chemical mixtures. The objecti...
Norris, Laura C; Norris, Douglas E
2011-08-31
The mosquito Anopheles arabiensis is the primary vector of Plasmodium falciparum in Macha, Zambia. A major portion of Zambia's current malaria control programme relies on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) with insecticides. Currently, the efficacy of these measures against An. arabiensis in Macha is unknown, and previous data has shown that An. arabiensis has continued to feed on human hosts, despite high ITN coverage. It is possible that this could be due to either decreased efficacy of ITNs in used in Macha, or pyrethroid resistance in the vector. F1 offspring of field-collected adult An. arabiensis were tested for insecticide resistance, using CDC bottle bioassays and deltamethrin ITN susceptibility assays. The mosquitoes were characterized for the knock-down resistance (kdr) allele by PCR. LLINs that had been in use for two years in nearby villages were collected and tested for residual deltamethrin concentration and net quality, and were used in bioassays against susceptible colonized Anopheles gambiae s.s. Keele. Additionally, a survey on ITN use and care was conducted among LLIN owners. In the F1 An. arabiensis field population, low levels of resistance to DDT and deltamethrin-treated net material were detected by bioassay, although the knock-down resistance (kdr) allele not present in the population. ITN evaluations revealed high variability in residual deltamethrin concentration, quality of the nets, and mosquito mortality in bioassays. Mortality against An. gambiae s.s. in bioassays was correlated with residual deltamethrin concentration, which was dependent upon the number of washes each net had received. Proper LLIN care was a strong determinant of LLIN efficacy, indicating that education on the importance of LLIN use and care is key when distributing nets. As there is little insecticide resistance in the local vector population, degradation of LLINs most likely allowed for continued human feeding by An. arabiensis. Continued monitoring and assessment of both the vector population and the efficacy of LLINs in use is necessary in order to appropriately modify vector control operations and prevent the development of pyrethroid resistance.
Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats
Wolansky, Marcelo J.; Gennings, Chris; DeVito, Michael J.; Crofton, Kevin M.
2009-01-01
Background Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose–effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. Objectives We used a mixture of these 11 pyrethroids and the same testing paradigm used in single-compound assays to test the hypothesis that cumulative neurotoxic effects of pyrethroid mixtures can be predicted using the default dose–addition theory. Methods Mixing ratios of the 11 pyrethroids in the tested mixture were based on the ED30 (effective dose that produces a 30% decrease in response) of the individual chemical (i.e., the mixture comprised equipotent amounts of each pyrethroid). The highest concentration of each individual chemical in the mixture was less than the threshold for inducing behavioral effects. Adult male rats received acute oral exposure to corn oil (control) or dilutions of the stock mixture solution. The mixture of 11 pyrethroids was administered either simultaneously (2 hr before testing) or after a sequence based on times of peak effect for the individual chemicals (4, 2, and 1 hr before testing). A threshold additivity model was fit to the single-chemical data to predict the theoretical dose–effect relationship for the mixture under the assumption of dose additivity. Results When subthreshold doses of individual chemicals were combined in the mixtures, we found significant dose-related decreases in motor activity. Further, we found no departure from the predicted dose-additive curve regardless of the mixture dosing protocol used. Conclusion In this article we present the first in vivo evidence on pyrethroid cumulative effects supporting the default assumption of dose addition. PMID:20019907
Solomon, K R; Giddings, J M; Maund, S J
2001-03-01
This is the first in a series of five papers that assess the risk of the cotton pyrethroids in aquatic ecosystems in a series of steps ranging from the analysis of effects data through modeling exposures in the landscape. Pyrethroid insecticides used on cotton have the potential to contaminate aquatic systems. The objectives of this study were to develop probabilistic estimates of toxicity distributions, to compare these among the pyrethroids, and to evaluate cypermethrin as a representative pyrethroid for the purposes of a class risk assessment of the pyrethroids. The distribution of cypermethrin acute toxicity data gave 10th centile values of 10 ng/L for all organisms, 6.4 ng/L for arthropods, and 380 ng/L for vertebrates. For bifenthrin, cyfluthrin, lambda-cyhalothrin, and deltamethrin, the 10th centile values for all organisms were 15, 12, 10, and 9 ng/L, respectively, indicating similar or somewhat lower toxicity than cypermethrin. For tralomethrin and fenpropathrin, the 10th centiles were <310 and 240 ng/L, respectively. The distribution of permethrin toxicity to all organisms, arthropods, and vertebrates gave 10th centiles of 180, 76, and 1600 ng/L, respectively, whereas those for fenvalerate were 37, 8, and 150 ng/L. With the exception of tralomethrin, the distributions of acute toxicity values had similar slopes, suggesting that the variation of sensitivity in a range of aquatic nontarget species is similar. The pyrethroids have different recommended field rates of application that are related to their efficacy, and the relationship between field rate and 10th centiles showed a trend. These results support the use of cypermethrin as a reasonable worst-case surrogate for the other pyrethroids for the purposes of risk assessment of pyrethroids as a class.
Evidence for dose-additive effects of pyrethroids on motor activity in rats.
Wolansky, Marcelo J; Gennings, Chris; DeVito, Michael J; Crofton, Kevin M
2009-10-01
Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. We used a mixture of these 11 pyrethroids and the same testing paradigm used in single-compound assays to test the hypothesis that cumulative neurotoxic effects of pyrethroid mixtures can be predicted using the default dose-addition theory. Mixing ratios of the 11 pyrethroids in the tested mixture were based on the ED30 (effective dose that produces a 30% decrease in response) of the individual chemical (i.e., the mixture comprised equipotent amounts of each pyrethroid). The highest concentration of each individual chemical in the mixture was less than the threshold for inducing behavioral effects. Adult male rats received acute oral exposure to corn oil (control) or dilutions of the stock mixture solution. The mixture of 11 pyrethroids was administered either simultaneously (2 hr before testing) or after a sequence based on times of peak effect for the individual chemicals (4, 2, and 1 hr before testing). A threshold additivity model was fit to the single-chemical data to predict the theoretical dose-effect relationship for the mixture under the assumption of dose additivity. When subthreshold doses of individual chemicals were combined in the mixtures, we found significant dose-related decreases in motor activity. Further, we found no departure from the predicted dose-additive curve regardless of the mixture dosing protocol used. In this article we present the first in vivo evidence on pyrethroid cumulative effects supporting the default assumption of dose addition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trunnelle, Kelly J., E-mail: kjtrunnelle@ucdavis.edu; Bennett, Deborah H.; Ahn, Ki Chang
Indoor pesticide exposure is a growing concern, particularly from pyrethroids, a commonly used class of pesticides. Pyrethroid concentrations may be especially high in homes of immigrant farm worker families who often live in close proximity to agricultural fields, and are faced with poor housing conditions, causing higher pest infestation and more pesticide use. We investigate exposure of farm worker families to pyrethroids in a study of mothers and children living in Mendota, CA within the population-based Mexican Immigration to California: Agricultural Safety and Acculturation (MICASA) Study. We present pyrethroid exposure based on an ELISA analysis of urinary metabolite 3-phenoxybenzoic acidmore » (3PBA) levels among 105 women and 103 children. The median urinary 3PBA levels (children=2.56 ug/g creatinine, mothers=1.46 ug/g creatinine) were higher than those reported in population based studies for the United States general population, but similar to or lower than studies with known high levels of pyrethroid exposure. A positive association was evident between poor housing conditions and the urinary metabolite levels, showing that poor housing conditions are a contributing factor to the higher levels of 3PBA seen in the urine of these farm worker families. Further research is warranted to fully investigate sources of exposure. - Highlights: • We investigate exposure of farm worker families to pyrethroids. • We present pyrethroid exposure based on an ELISA analysis of urinary 3PBA levels. • 3PBA levels were higher than those reported for the U.S. general population. • Poor housing conditions may be associated with pyrethroid exposure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu
We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased inmore » the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin shifted channel gating to hyperpolarized potentials. • The β1 subunit had opposite effects on the actions of tefluthrin and deltamethrin. • Auxiliary subunits are required for full reconstitution of channel function. • Channels in HEK293 cells exhibit properties similar to channels in neurons.« less
Mathias, Leah; Baraka, Vito; Philbert, Anitha; Innocent, Ester; Francis, Filbert; Nkwengulila, Gamba; Kweka, Eliningaya J
2017-06-09
Aedes aegypti (Diptera: Culicidae) is the main vector of the dengue virus globally. Dengue vector control is mainly based on reducing the vector population through interventions, which target potential breeding sites. However, in Tanzania, little is known about this vector's habitat productivity and insecticide susceptibility status to support evidence-based implementation of control measures. The present study aimed at assessing the productivity and susceptibility status of A. aegypti mosquitoes to pyrethroid-based insecticides in Dar es Salaam, Tanzania. An entomological assessment was conducted between January and July 2015 in six randomly selected wards in Dar es Salaam, Tanzania. Habitat productivity was determined by the number of female adult A. aegypti mosquitoes emerged per square metre. The susceptibility status of adult A. aegypti females after exposure to 0.05% deltamethrin, 0.75% permethrin and 0.05% lambda-cyhalothrin was evaluated using the standard WHO protocols. Mortality rates were recorded after 24 h exposure and the knockdown effect was recorded at the time points of 10, 15, 20, 30, 40, 50 and 60 min to calculate the median knockdown times (KDT 50 and KDT 95 ). The results suggest that disposed tyres had the highest productivity, while water storage tanks had the lowest productivity among the breeding habitats Of A. aegypti mosquitoes. All sites demonstrated reduced susceptibility to deltamethrin (0.05%) within 24 h post exposure, with mortalities ranging from 86.3 ± 1.9 (mean ± SD) to 96.8 ± 0.9 (mean ± SD). The lowest and highest susceptibilities were recorded in Mikocheni and Sinza wards, respectively. Similarly, all sites demonstrated reduced susceptibility permethrin (0.75%) ranging from 83.1 ± 2.1% (mean ± SD) to 96.2 ± 0.9% (mean ± SD), in Kipawa and Sinza, respectively. Relatively low mortality rates were observed in relation to lambda-cyhalothrin (0.05%) at all sites, ranging from 83.1 ± 0.7 (mean ± SD) to 86.3 ± 1.4 (mean ± SD). The median KDT 50 for deltamethrin, permethrin and lambda-cyhalothrin were 24.9-30.3 min, 24.3-34.4 min and 26.7-32.8 min, respectively. The KDT 95 were 55.2-90.9 min for deltamethrin, 54.3-94.6 min for permethrin and 64.5-69.2 min for lambda-cyhalothrin. The productive habitats for A. aegypti mosquitoes found in Dar es Salaam were water storage containers, discarded tins and tyres. There was a reduced susceptibility of A. aegypti to and emergence of resistance against pyrethroid-based insecticides. The documented differences in the resistance profiles of A. aegypti mosquitoes warrants regular monitoring the pattern concerning resistance against pyrethroid-based insecticides and define dengue vector control strategies.
2013-01-01
Background Anopheles arabiensis, the main malaria vector in Ethiopia, shows both anthropophilic and zoophilic behaviours. Insecticide resistance is increasing, and alternative methods of vector control are needed. The objectives of this study were to determine the blood meal origins and the susceptibility to insecticides of An. arabiensis from Chano village near Arba Minch in South-West Ethiopia. Methods Blood meal sources of anopheline mosquitoes collected using Centers for Disease Control and Prevention (CDC) light traps and pyrethrum spray catches (PSC) from human dwellings, and hand-held mouth aspirators from outdoor pit shelters were analysed using a direct enzyme-linked-immunosorbent assay (ELISA). The susceptibility of An. arabiensis to pyrethroid insecticides (alphacypermethrin, lambdacyhalothrin, deltamethrin, and cyfluthrin) and DDT was assessed using females reared from larval and pupal collections from natural breeding sites. Results The blood meal origins of 2967 freshly fed Anopheles mosquitoes were determined. An. arabiensis was the predominant species (75%), and it fed mainly on cattle. The densities of both freshly fed An. arabiensis and those fed on human blood followed similar seasonal patterns. The overall human blood index (HBI) of An. arabiensis, including mixed blood meals, was 44% and the bovine blood index (BBI) was 69%. The HBI of An. arabiensis from CDC light trap collections was 75% and this was higher than those for PSC (38%) and outdoor pit shelter collections (13%), while the BBI was 65% for PSC, 68% for outdoor pit shelters and 72% for CDC light traps. More freshly fed and human blood-fed An. arabiensis were sampled from houses close to the shore of Lake Abaya (the major breeding site). A high proportion of An. arabiensis was resistant to the pyrethroid insecticides, with a mortality rate of 56% for lambdacyhalothrin, 50% for cyfluthrin and alphacypermethrin, 47% for deltamethrin, and 10% for DDT. Conclusion Anopheles arabiensis is the predominant species of anopheline mosquito in this region, and cattle are the main source of its blood meals. The greater tendency of this species to feed on cattle justifies the application of insecticides on cattle to control it. However, An. arabiensis has already developed resistance to the available pyrethroid insecticides, and alternative insecticides are needed for malaria vector control. PMID:23433306
Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin
2010-01-01
Background This study aimed to investigate baseline data on malaria before the evaluation of new vector control strategies in an area of pyrethroid-resistance of vectors. The burden of malaria was estimated in terms of infection (prevalence and parasite density) and of clinical episodes. Methods Between December 2007 and December 2008 in the health district of Ouidah - Kpomassè - Tori Bossito (southern Benin), a descriptive epidemiological survey of malaria was conducted. From 28 selected villages, seven were randomized from which a total of 440 children aged 0 to 5 years were randomly selected. Clinical and parasitological information was obtained by active case detection of malaria episodes carried out during eight periods of six consecutive days scheduled at six weekly intervals and by cross-sectional surveys of asymptomatic infection. Entomological information was also collected. The ownership, the use and the correct use of long-lasting insecticide-treated nets (LLINs) were checked over weekly-survey by unannounced visits at home in the late evening. Results Mean parasite density in asymptomatic children was 586 P. falciparum asexual forms per μL of blood (95%CI 504-680). Pyrogenic parasite cut-off was estimated 2,000 P. falciparum asexual blood forms per μL. The clinical incidence of malaria was 1.5 episodes per child per year (95%CI 1.2-1.9). Parasitological and clinical variables did not vary with season. Anopheles gambiae s.l. was the principal vector closely followed by Anopheles funestus. Entomological inoculation rate was 5.3 (95%CI 1.1-25.9) infective bites per human per year. Frequency of the L1014F kdr (West) allele was around 50%. Annual prevalence rate of Plasmodium falciparum asymptomatic infection was 21.8% (95%CI 19.1-24.4) and increased according to age. Mean rates of ownership and use of LLINs were 92% and 70% respectively. The only correct use of LLINs (63%) conferred 26% individual protection against only infection (OR = 0.74 (95%IC 0.62-0.87), p = 0.005). Conclusion The health district of Ouidah-Kpomassè-Tori Bossito is a mesoendemic area with a moderate level of pyrethroid-resistance of vectors. The used LLINs rate was high and only the correct use of LLINs was found to reduce malaria infection without influencing malaria morbidity. PMID:21194470
A long-term assessment of pesticide mixture effects on aquatic invertebrate communities.
Hasenbein, Simone; Lawler, Sharon P; Geist, Juergen; Connon, Richard E
2016-01-01
To understand the potential effects of pesticide mixtures on aquatic ecosystems, studies that incorporate increased ecological relevance are crucial. Using outdoor mesocosms, the authors examined long-term effects on aquatic invertebrate communities of tertiary mixtures of commonly used pesticides: 2 pyrethroids (permethrin, λ-cyhalothrin) and an organophosphate (chlorpyrifos). Application scenarios were based on environmentally relevant concentrations and stepwise increases of lethal concentrations from 10% (LC10) to 50% (LC50) based on laboratory tests on Hyalella azteca and Chironomus dilutus; repeated applications were meant to generally reflect runoff events in a multiple-grower or homeowner watershed. Pyrethroids rapidly dissipated from the water column, whereas chlorpyrifos was detectable even 6 wk after application. Twelve of 15 macroinvertebrate and 10 of 16 zooplankton taxa responded to contaminant exposures. The most sensitive taxa were the snail Radix sp., the amphipod H. azteca, the water flea Daphnia magna, and copepods. Environmentally relevant concentrations had acute effects on D. magna and H. azteca (occurring 24 h after application), whereas lag times were more pronounced in Radix sp. snails and copepods, indicating chronic sublethal responses. Greatest effects on zooplankton communities were observed in environmentally relevant concentration treatments. The results indicate that insecticide mixtures continue to impact natural systems over multiple weeks, even when no longer detectable in water and bound to particles. Combinations of indirect and direct effects caused consequences across multiple trophic levels. © 2015 SETAC.
THE DETERMINATION OF PYRETHROID AND PRETHRIN INSECTICIDES IN FOODS
Pyrethrins, and the more light stable synthetic pyrethroids, are insecticides that are effective against many pests. They have been used for many years and are relatively non-toxic to warm blooded animals. The residue analysis of pyrethrins and pyrethroids is of interest to the...
Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC fun...
Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons
Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...
Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats
BACKGROUND: Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. OBJECTIVES...
HOMOGENEOUS FLUOROIMMUNOASSAY OF A PYRETHROID METABOLITE IN URINE. (R825433)
Pyrethroids are widely used in agriculture as insecticides. In this study, we describe a simple one-step homogeneous fluoroimmunoassay for the glycine conjugate of phenoxybenzoic acid (PBAG), a putative pyrethroid metabolite that may be used as a biomarker of exposure to pyret...
OXIDATIVE AND HYDROLYTIC METABOLISM OF TYPE I PYRETHROIDS IN RAT HEPATIC MICROSOMES
Pyrethroids are a class of neurotoxic insecticides used in a variety of agricultural and household activities. Increased potential for human exposure to pyrethroids has prompted pharmacokinetic research. To that end, our lab has determined the in vitro clearance of the Type I p...
OXIDATIVE AND HYDROLYTIC METABOLISM OF TYPE I PYRETHROIDS IN RAT AND HUMAN HEPATIC MICROSOMES
Pyrethroids are a class of neurotoxic insecticides used in a variety of agricultural and household activities. Increased potential for human exposure to pyrethroids has prompted pharmacokinetic research. To that end, our laboratory has determined the in vitro clearance of the T...
Pyrethroids have emerged as a major class of insecticide due to their selective potency in insects and their relatively low potency in mammalian studies. Pyrethroids exert toxicity by binding to voltage-gated sodium channels, thereby eliciting excitatory neurotoxicity. The Food...
Pyrethroids have emerged as a major class of insecticide due to their selective potency in insects and their relatively low potency in mammalian studies. Pyrethroids exert toxicity by binding to voltage-gated sodium channels, thereby eliciting excitatory neurotoxicity. The Fo...
Pyrethroid insecticides produce neurotoxicity in mammals by disrupting ion channel function in excitable nerve membranes. Pyrethroid use has increased as regulatory guidelines have restricted the use of other pesticide classes. Currently, a sensitive, specific, and dose-responsiv...
Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household activities. Due to the phase-out of organophosphate pesticides, the use of pyrethroids has increased. The potential for human exposure to pyrethroids has prompted pharmacodynamic and pharmac...
BACKGROUND: Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Although previous work has tested the additivity of pyrethroids in vivo, this has not been assessed directly at the primary molecular ...
In vitro dermal absorption of pyrethroid pesticides in human and rat skin
Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flowthrough diffusi...
Assogba, Benoît S; Djogbénou, Luc S; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène
2015-10-05
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1(R) allele), is already present. Furthermore, a duplicated allele (ace-1(D)) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1(D) confers less resistance than ace-1(R), the high fitness cost associated with ace-1(R) is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.
Assogba, Benoît S.; Djogbénou, Luc S.; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène
2015-01-01
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management. PMID:26434951
Deming, Regan; Manrique-Saide, Pablo; Medina Barreiro, Anuar; Cardeña, Edgar Ulises Koyoc; Che-Mendoza, Azael; Jones, Bryant; Liebman, Kelly; Vizcaino, Lucrecia; Vazquez-Prokopec, Gonzalo; Lenhart, Audrey
2016-02-04
Dengue is a major public health problem in Mexico, where the use of chemical insecticides to control the principal dengue vector, Aedes aegypti, is widespread. Resistance to insecticides has been reported in multiple sites, and the frequency of kdr mutations associated with pyrethroid resistance has increased rapidly in recent years. In the present study, we characterized patterns of insecticide resistance in Ae. aegypti populations in five small towns surrounding the city of Merida, Mexico. A cross-sectional, entomological survey was performed between June and August 2013 in 250 houses in each of the five towns. Indoor resting adult mosquitoes were collected in all houses and four ovitraps were placed in each study block. CDC bottle bioassays were conducted using F0-F2 individuals reared from the ovitraps and kdr allele (Ile1016 and Cys1534) frequencies were determined. High, but varying, levels of resistance to chorpyrifos-ethyl was detected in all study towns, complete susceptibility to bendiocarb in all except one town, and variations in resistance to deltamethrin between towns, ranging from 63-88% mortality. Significant associations were detected between deltamethrin resistance and the presence of both kdr alleles. Phenotypic resistance was highly predictive of the presence of both alleles, however, not all mosquitoes containing a mutant allele were phenotypically resistant. An analysis of genotypic differentiation (exact G test) between the five towns based on the adult female Ae. aegypti collected from inside houses showed highly significant differences (p < 0.0001) between genotypes for both loci. When this was further analyzed to look for fine scale differences at the block level within towns, genotypic differentiation was significant for both loci in San Lorenzo (Ile1016, p = 0.018 and Cys1534, p = 0.007) and for Ile1016 in Acanceh (p = 0.013) and Conkal (p = 0.031). The results from this study suggest that 3 years after switching chemical groups, deltamethrin resistance and a high frequency of kdr alleles persisted in Ae. aegypti populations. The spatial variation that was detected in both resistance phenotypes and genotypes has practical implications, both for vector control operations as well as insecticide resistance management strategies.
Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe
2009-10-26
The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. These results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide.
Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe
2009-01-01
Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest that the high level of insecticide resistance found in Ae. aegypti mosquitoes from Martinique island is the consequence of both target-site and metabolic based resistance mechanisms. Insecticide resistance levels and associated mechanisms are discussed in relation with the environmental context of Martinique Island. These finding have important implications for dengue vector control in Martinique and emphasizes the need to develop new tools and strategies for maintaining an effective control of Aedes mosquito populations worldwide. PMID:19857255
Risk Characterization and Cumulative Risk Assessment of Pyrethroids Based on Mode of Action.
Pyrethrins and pyrethroids are insecticides included in over 3,500 registered products in the U.S., many of which are used widely in and around households, including on pets, in mosquito control, and in agriculture. The use of pyrethrins and pyrethroids has increased during the p...
Pyrethroid insecticides disrupt neuronal function by interfering with the function of voltage-sensitive Na+ channels (VSSCs). Distinct differences in the pharmacological actions of pyrethroid sub-types (Type I or Type II) on VSSCs have been observed. The impact of these pharmac...
Assessing Dietary Exposure to Pyrethroid Insecticides by LC/MS/MS of Food Composites
Introduction Pyrethroid insecticides are widely used to control household pests such as cockroaches, for public works control of mosquitoes, and on crops and livestock. Though more toxic to insects than to mammals, some pyrethroids are highly toxic to fish, bees, and cats. Perme...
Pyrethroid insecticides increase the excitability of the central and peripheral nervous systems. Modulation of voltage-gated sodium channels is likely to play a primary role in this effect, but recent studies have suggested that pyrethroid effects on other ion channels may contri...
Previous research has reported concurrent levels of pyrethroid insecticides and their environmental degradates in foods. These data raise concerns about using these same pyrethroid degradates found in the diet as urinary biomarkers of exposures in humans. The primary objective wa...
Species differences in the intrinsic clearance (CLint) and the enzymes involved in the metabolism of pyrethroid pesticides were examined in rat and human hepatic microsomes. The pyrethroids bifenthrin, S-bioallethrin, bioresmethrin, β-cyfluthrin, cypermethrin, cis-per...
Biomarkers of Type II Synthetic Pyrethroid Pesticides in Freshwater Fish
2014-01-01
Type II synthetic pyrethroids contain an alpha-cyano group which renders them more neurotoxic than their noncyano type I counterparts. A wide array of biomarkers have been employed to delineate the toxic responses of freshwater fish to various type II synthetic pyrethroids. These include hematological, enzymatic, cytological, genetic, omic and other types of biomarkers. This review puts together the applications of different biomarkers in freshwater fish species in response to the toxicity of the major type II pyrethroid pesticides and assesses their present status, while speculating on the possible future directions. PMID:24868555
Biomarkers of type II synthetic pyrethroid pesticides in freshwater fish.
Kaviraj, Anilava; Gupta, Abhik
2014-01-01
Type II synthetic pyrethroids contain an alpha-cyano group which renders them more neurotoxic than their noncyano type I counterparts. A wide array of biomarkers have been employed to delineate the toxic responses of freshwater fish to various type II synthetic pyrethroids. These include hematological, enzymatic, cytological, genetic, omic and other types of biomarkers. This review puts together the applications of different biomarkers in freshwater fish species in response to the toxicity of the major type II pyrethroid pesticides and assesses their present status, while speculating on the possible future directions.
Assessing the occurrence and distribution of pyrethroids in water and suspended sediments
Hladik, M.L.; Kuivila, K.M.
2009-01-01
The distribution of pyrethroid insecticides in the environment was assessed by separately measuring concentrations in the dissolved and suspended sediment phases of surface water samples. Filtered water was extracted by HLB solid-phase extraction cartridges, while the sediment on the filter was sonicated and cleaned up using carbon and aluminum cartridges. Detection limits for the 13 pyrethroids analyzed by gas chromatography-tandem mass spectrometry were 0.5 to 1 ng L-1 for water and 2 to 6 ng g for the suspended sediments. Seven pyrethroids were detected in six water samples collected from either urban or agricultural creeks, with bifenthrin detected the most frequently and at the highest concentrations. In spiked water samples and field samples, the majority of the pyrethroids were associated with the suspended sediments.
Hall, Lenwood W; Anderson, Ronald D; Killen, William D
2016-02-01
The objective of this study was to assess temporal and spatial trends for eight pyrethroids monitored in sediment spanning 10 years from 2006 to 2015 in a residential stream in California (Pleasant Grove Creek). The timeframe for this study included sampling 3 years during a somewhat normal non-drought period (2006-2008) and 3 years during a severe drought period (2013-2015). Regression analysis of pyrethroid concentrations in Pleasant Grove Creek for 2006, 2007, 2008, 2012, 2013, 2014, and 2015 using ½ the detection limit for nondetected concentrations showed statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, permethrin, and total pyrethoids. Additional trends analysis of the Pleasant Grove Creek pyrethroid data using only measured concentrations, without nondetected values, showed similar statistically significant declining trends for cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, permethrin, and total pyrethroids. Spatial trends analysis for the specific creek sites showed that six of the eight pyrethroids had a greater number of sites with statistically significant declining concentrations. Possible reasons for reduced pyrethroid concentrations in the stream bed in Pleasant Grove Creek during this 10-year period are label changes in 2012 that reduced residential use and lack of precipitation during the later severe drought years of 2013-2015.
Xiao, Jin-Jing; Li, Yang; Fang, Qing-Kui; Shi, Yan-Hong; Liao, Min; Wu, Xiang-Wei; Hua, Ri-Mao
2017-01-01
The transfer of pesticide residues from herbal teas to their infusion is a subject of particular interest. In this study, a multi-residue analytical method for the determination of pyrethroids (fenpropathrin, beta-cypermethrin, lambda-cyhalothrin, and fenvalerate) in honeysuckle, chrysanthemum, wolfberry, and licorice and their infusion samples was validated. The transfer of pyrethroid residues from tea to infusion was investigated at different water temperatures, tea/water ratios, and infusion intervals/times. The results show that low amounts (0–6.70%) of pyrethroids were transferred under the different tea brewing conditions examined, indicating that the infusion process reduced the pyrethroid content in the extracted liquid by over 90%. Similar results were obtained for the different tea varieties, and pesticides with high water solubility and low octanol–water partition coefficients (log Kow) exhibited high transfer rates. Moreover, the estimated values of the exposure risk to the pyrethroids were in the range of 0.0022–0.33, indicating that the daily intake of the four pyrethroid residues from herbal tea can be regarded as safe. The present results can support the identification of suitable tea brewing conditions for significantly reducing the pesticide residue levels in the infusion. PMID:28973970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.
2007-05-15
Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrinmore » are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are {approx} 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts ({approx} 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected. Together, these results demonstrate that extrahepatic esterolytic metabolism of specific pyrethroids may be significant. Moreover, hepatic cytosolic and microsomal hydrolytic metabolism should each be considered during the development of pharmacokinetic models that predict the disposition of pyrethroids and other esterified compounds.« less
Pyrethroid insecticides are widely used to control insects in both agricultural and residential settings worldwide. Few data are available on the temporal variability of pyrethroid metabolites in the urine of non-occupationally exposed adults. In this work, we describe the study ...
Pyrethroids are pesticides that disrupt nervous system function by prolongation of sodium currents
through voltage-sensitive sodium channels present in nerve membranes. Pyrethroid usage has
increased as use of other pesticides has declined. A sensitive, dose-respons...
IN VITRO METABOLISM OF PYRETHROIDS IN RAT LIVER MICROSOMES
IN VITRO METABOLISM OF PYRETHROIDS IN RAT LIVER MICROSOMES
SJ Godin1, RA Harrison2 MF. Hughes 2, MJ DeVito2; 1Curriculum In Toxicology, UNC-CH, Chapel Hill NC, USA; 2ETD, NHEERL, ORD, US EPA, RTP, NC, 27711, USA.
Pyrethroids are neurotoxic pesticides that bin...
Worldwide studies on aircraft disinsection at "blocks away".
Sullivan, W N; Pal, R; Wright, J W; Azurin, J C; Okamoto, R; McGuire, J U; Waters, R M
1972-01-01
During 1971 worldwide experiments on the disinsection of passenger cabins at "blocks away" (as the aircraft starts taxiing for take-off) were conducted in several types of jet aircraft. A procedure was developed whereby the high capacity Boeing 747 could be disinsected by four stewardesses in less than 1 minute. The favourable results of these and previous trials indicate that this method is suitable as a standard procedure for aircraft disinsection for international quarantine purposes.The biological effectiveness against resistant and non-resistant mosquitos of a 2% concentration of a pyrethroid, resmethrin, in Freon 11+Freon 12 (1:1) (without kerosine) and a favourable passenger response make it suitable as a standard formulation for aircraft disinsection.
Oulhote, Youssef
2013-01-01
Background: Exposure to organophosphate pesticides has been associated with neurobehavioral deficits in children, although data on low levels of exposure experienced by the general population are sparse. Pyrethroids are insecticides rapidly gaining popularity, and epidemiological evidence on their potential effects is lacking. Objective: We examined the association between exposure to organophosphate and pyrethroid pesticides, indicated by urinary metabolites, and parentally reported behavioral problems in children. Methods: We used data on children 6–11 years of age from the Canadian Health Measures Survey (2007–2009). We used logistic regressions to estimate odds ratios (ORs) for high scores on the Strengths and Difficulties Questionnaire (SDQ), which may indicate behavioral problems, in association with concentrations of pyrethroid and organophosphate metabolites in the urine of 779 children, adjusting for covariates (sex, age, race/ethnicity, income, parental education, blood lead levels, maternal smoking during pregnancy, and others). Results: At least one urinary metabolite for organophosphates was detected in 91% of children, and for pyrethroids in 97% of children. Organophosphate metabolites were not significantly associated with high SDQ scores. The pyrethroid metabolite cis-DCCA [3-(2,2-dichlorovinyl)-2,2-dimethylycyclopropane carboxylic acid] was significantly associated with high scores for total difficulties on the SDQ (OR for a 10-fold increase = 2.0; 95% CI: 1.1, 3.6), and there was a nonsignificant association with trans-DCCA (OR = 1.6; 95% CI: 0.9, 3.0). Conclusion: In contrast with previous studies, we did not observe an association between exposure to organophosphate pesticides and behavioral scores in children. However, some pyrethroid urinary metabolites were associated with a high level of parent-reported behavioral problems. Longitudinal studies should be conducted on the potential risks of pyrethroids. Citation: Oulhote Y, Bouchard MF. 2013. Urinary metabolites of organophosphate and pyrethroid pesticides and behavioral problems in Canadian children. Environ Health Perspect 121:1378–1384; http://dx.doi.org/10.1289/ehp.1306667 PMID:24149046
Development of pyrethroid-like fluorescent substrates for glutathione S-transferase
Huang, Huazhang; Yao, Hongwei; Liu, Jun-Yan; Samra, Aman I.; Kamita, Shizuo G.; Cornel, Anthony J.; Hammock, Bruce D.
2012-01-01
The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers) preference. A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized CDNB, a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (kcat/KM ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes. PMID:23000005
Pyrethroid insecticides are used extensively in agriculture and they, as well as their environmental degradates, may remain as residues on food products such as fruits and vegetables. Since pyrethroid degradates can be identical to the urinary markers used in human biomonitoring ...
Pyrethroid insecticides are frequently used to control insects in residential and agriculture settings in the United States and worldwide. As a result, children can be potentially exposed to pyrethroid residues in food and at home. This review summarizes data reported in 15 publi...
A recently published review (Soderlund et al., 2002, Toxicology 171, 3-59.) of the mechanisms of acute neurotoxicity of pyrethroid compounds postulated that voltage-sensitive calcium channels (VSCC) may be a target of some pyrethroid compounds and that effects on VSCC may contrib...
Breckenridge, Charles B; Holden, Larry; Sturgess, Nicholas; Weiner, Myra; Sheets, Larry; Sargent, Dana; Soderlund, David M; Choi, Jin-Sung; Symington, Steve; Clark, J Marshall; Burr, Steve; Ray, David
2009-11-01
Neurotoxicity and mechanistic data were collected for six alpha-cyano pyrethroids (beta-cyfluthrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin and lambda-cyhalothrin) and up to six non-cyano containing pyrethroids (bifenthrin, S-bioallethrin [or allethrin], permethrin, pyrethrins, resmethrin [or its cis-isomer, cismethrin] and tefluthrin under standard conditions. Factor analysis and multivariate dissimilarity analysis were employed to evaluate four independent data sets comprised of (1) fifty-six behavioral and physiological parameters from an acute neurotoxicity functional observatory battery (FOB), (2) eight electrophysiological parameters from voltage clamp experiments conducted on the Na(v)1.8 sodium channel expressed in Xenopus oocytes, (3) indices of efficacy, potency and binding calculated for calcium ion influx across neuronal membranes, membrane depolarization and glutamate released from rat brain synaptosomes and (4) changes in chloride channel open state probability using a patch voltage clamp technique for membranes isolated from mouse neuroblastoma cells. The pyrethroids segregated into Type I (T--syndrome-tremors) and Type II (CS syndrome--choreoathetosis with salivation) groups based on FOB data. Of the alpha-cyano pyrethroids, deltamethrin, lambda-cyhalothrin, cyfluthrin and cypermethrin arrayed themselves strongly in a dose-dependent manner along two factors that characterize the CS syndrome. Esfenvalerate and fenpropathrin displayed weaker response profiles compared to the non-cyano pyrethroids. Visual clustering on multidimensional scaling (MDS) maps based upon sodium ion channel and calcium influx and glutamate release dissimilarities gave similar groupings. The non-cyano containing pyrethroids were arrayed in a dose-dependent manner along two different factors that characterize the T-syndrome. Bifenthrin was an outlier when MDS maps of the non-cyano pyrethroids were based on sodium ion channel characteristics and permethrin was an outlier when the MDS maps were based on calcium influx/glutamate release potency. Four of six alpha-cyano pyrethroids (lambda-cyfluthrin, cypermethrin, deltamethrin and fenpropathrin) reduced open chloride channel probability. The R-isomers of lambda-l-cyhalothrin reduced open channel probability whereas the S-isomers, antagonized the action of the R-isomers. None of the non-cyano pyrethroids reduced open channel probability, except bioallethrin, which gave a weak response. Overall, based upon neurotoxicity data and the effect of pyrethroids on sodium, calcium and chloride ion channels, it is proposed that bioallethrin, cismethrin, tefluthrin, bifenthrin and permethrin belong to one common mechanism group and deltamethrin, lambda-cyhalothrin, cyfluthrin and cypermethrin belong to a second. Fenpropathrin and esfenvalerate occupy an intermediate position between these two groups.
Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors
Kumar, Anoop; Behera, Padma Charan; Rangra, Naresh Kumar; Dey, Suddhasattya; Kant, Kamal
2018-01-01
Background: Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. Objective: This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Materials and Methods: Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Results: Pyrethroids (specifically type 2) such as fenvalerate (−5.534 kcal/mol: CD8), fluvalinate (−4.644 and − 4.431 kcal/mol: CD4 and CD45), and cypermethrin (−3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. Conclusion: The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity. SUMMARY Fenvalerate showed apex glide score toward CD8 immune receptor, while fluvalinate confirmed top-ranked binding with CD4 and CD45 immune proteinsIn addition, cypermethrin outcame in top glide score against CD28 immune receptorTop dock hits (Type 2) pyrethroids have shown probable toxicity targets toward AOFA: Amine oxidase (flavin-containing) A and PGH1: Prostaglandin G/H synthase 1, respectively. Abbreviations used: PDB: Protein Data Bank; AOFA: Amine oxidase (flavin-containing) A; PGH 1: Prostaglandin G/H synthase 1. PMID:29576712
Computational tool for immunotoxic assessment of pyrethroids toward adaptive immune cell receptors.
Kumar, Anoop; Behera, Padma Charan; Rangra, Naresh Kumar; Dey, Suddhasattya; Kant, Kamal
2018-01-01
Pyrethroids have prominently known for their insecticidal actions worldwide, but recent reports as anticancer and antiviral applications gained a lot of interest to further understand their safety and immunotoxicity. This encouraged us to carry out our present study to evaluate the interactions of pyrethroids toward adaptive immune cell receptors. Type 1 and Type 2 pyrethroids were tested on T (CD4 and CD8) and B (CD28 and CD45) immune cell receptors using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). In addition, top-ranked tested ligands were too explored for toxicity prediction in rodents using ProTOX tool. Pyrethroids (specifically type 2) such as fenvalerate (-5.534 kcal/mol: CD8), fluvalinate (-4.644 and - 4.431 kcal/mol: CD4 and CD45), and cypermethrin (-3.535 kcal/mol: CD28) have outcome in less energy or more affinity for B-cell and T-cell immune receptors which may later result in the immunosuppressive and hypersensitivity reactions. The current findings have uncovered that there is a further need to assess the Type 2 pyrethroids with wet laboratory experiments to understand the chemical nature of pyrethroid-induced immunotoxicity. Fenvalerate showed apex glide score toward CD8 immune receptor, while fluvalinate confirmed top-ranked binding with CD4 and CD45 immune proteinsIn addition, cypermethrin outcame in top glide score against CD28 immune receptorTop dock hits (Type 2) pyrethroids have shown probable toxicity targets toward AOFA: Amine oxidase (flavin-containing) A and PGH1: Prostaglandin G/H synthase 1, respectively. Abbreviations used: PDB: Protein Data Bank; AOFA: Amine oxidase (flavin-containing) A; PGH 1: Prostaglandin G/H synthase 1.
Johnstone, Andrew F M; Strickland, Jenna D; Crofton, Kevin M; Gennings, Chris; Shafer, Timothy J
2017-05-01
Pyrethroid insecticides exert their insecticidal and toxicological effects primarily by disrupting voltage-gated sodium channel (VGSC) function, resulting in altered neuronal excitability. Numerous studies of individual pyrethroids have characterized effects on mammalian VGSC function and neuronal excitability, yet studies examining effects of complex pyrethroid mixtures in mammalian neurons, especially in environmentally relevant mixture ratios, are limited. In the present study, concentration-response functions were characterized for five pyrethroids (permethrin, deltamethrin, cypermethrin, β-cyfluthrin and esfenvalerate) in an in vitro preparation containing cortical neurons and glia. As a metric of neuronal network activity, spontaneous mean network firing rates (MFR) were measured using microelectorde arrays (MEAs). In addition, the effect of a complex and exposure relevant mixture of the five pyrethroids (containing 52% permethrin, 28.8% cypermethrin, 12.9% β-cyfluthrin, 3.4% deltamethrin and 2.7% esfenvalerate) was also measured. Data were modeled to determine whether effects of the pyrethroid mixture were predicted by dose-addition. At concentrations up to 10μM, all compounds except permethrin reduced MFR. Deltamethrin and β-cyfluthrin were the most potent and reduced MFR by as much as 60 and 50%, respectively, while cypermethrin and esfenvalerate were of approximately equal potency and reduced MFR by only ∼20% at the highest concentration. Permethrin caused small (∼24% maximum), concentration-dependent increases in MFR. Effects of the environmentally relevant mixture did not depart from the prediction of dose-addition. These data demonstrate that an environmentally relevant mixture caused dose-additive effects on spontaneous neuronal network activity in vitro, and is consistent with other in vitro and in vivo assessments of pyrethroid mixtures. Published by Elsevier B.V.
Panini, Michela; Tozzi, Francesco; Zimmer, Christoph T; Bass, Chris; Field, Linda; Borzatta, Valerio; Mazzoni, Emanuele; Moores, Graham
2017-09-01
Metabolic resistance is an important consideration in the whitefly Bemisia tabaci, where an esterase-based mechanism has been attributed to pyrethroid resistance and over-expression of the cytochrome P450, CYP6CM1, has been correlated to resistance to imidacloprid and other neonicotinoids. In vitro interactions between putative synergists and CYP6CM1, B and Q-type esterases were investigated, and structure-activity relationship analyses allowed the identification of chemical structures capable of acting as inhibitors of esterase and oxidase activities. Specifically, methylenedioxyphenyl (MDP) moieties with a polyether chain were preferable for optimum inhibition of B-type esterase, whilst corresponding dihydrobenzofuran structures were potent for the Q-esterase variation. Potent inhibition of CYP6CM1 resulted from structures which contained an alkynyl chain with a terminal methyl group. Synergist candidates could be considered for field control of B. tabaci, especially to abrogate neonicotinoid resistance. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Strode, Clare; Donegan, Sarah; Garner, Paul; Enayati, Ahmad Ali; Hemingway, Janet
2014-03-01
Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes. We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organization-recommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut), deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs) using the risk difference (RD). Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD) 0.86 (95% CI 0.72 to 1.01); moderate resistance, RD 0.71 (95% CI 0.53 to 0.88); high resistance, RD 0.56 (95% CI 0.17 to 0.95). For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87); moderate resistance, RD 0.50 (95% CI 0.40 to 0.60); high resistance, RD 0.39 (95% CI 0.24 to 0.54). For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68); moderate resistance, RD 0.39 (95% CI 0.16 to 0.61); high resistance, RD 0.35 (95% CI 0.27 to 0.43). However, with the exception of the moderate resistance category for tunnel tests, there was extremely high heterogeneity across studies in each resistance category (chi-squared test, p<0.00001, I² varied from 95% to 100%). This meta-analysis found that ITNs are more effective than UTNs regardless of resistance. There appears to be a relationship between resistance and the RD for mosquito mortality in laboratory and field studies. However, the substantive heterogeneity in the studies' results and design may mask the true relationship between resistance and the RD, and the results need to be interpreted with caution. Our analysis suggests the potential for cumulative meta-analysis in entomological trials, but further field research in this area will require specialists in the field to work together to improve the quality of trials, and to standardise designs, assessment, and reporting of both resistance and entomological outcomes.
Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun
2015-01-01
Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito—parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission. PMID:25742511
Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Raghavendra, Kamaraju; Sharma, Arun
2015-01-01
Vector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts. The salivary glands secrete anti-haemostatic, anti-inflammatory biologically active molecules to facilitate blood feeding from the host and also inadvertently inject malaria parasites into the vertebrate host. The Anopheles stephensi mosquito, an urban vector of malaria to both human and rodent species has been identified as a reference laboratory model to study mosquito-parasite interactions. In this study, we adopted a conventional proteomic approach of 2D-electrophoresis coupled with MALDI-TOF mass spectrometry and bioinformatics to identify putative differentially expressed annotated functional salivary proteins between An. stephensi susceptible and multiresistant strains with same genetic background. Our results show 2D gel profile and MALDI-TOF comparisons that identified 31 differentially expressed putative modulated proteins in deltamethrin/DDT resistant strains of An. stephensi. Among these 15 proteins were found to be upregulated and 16 proteins were downregulated. Our studies interpret that An. stephensi (multiresistant) caused an upregulated expression of proteins and enzymes like cytochrome 450, short chain dehyrdogenase reductase, phosphodiesterase etc that may have an impact in insecticide resistance and xenobiotic detoxification. Our study elucidates a proteomic response of salivary glands differentially regulated proteins in response to insecticide resistance development which include structural, redox and regulatory enzymes of several pathways. These identified proteins may play a role in regulating mosquito biting behavior patterns and may have implications in the development of malaria parasites in resistant mosquitoes during parasite transmission.
Pyrethroids are a class of neurotoxic insecticides that are used in a variety of agricultural and household activities. Hepatic clearance of the Type I pyrethroids permethrin and bifenthrin may be a critical determinant of their toxic effect. Rat LD50s reported in the literatur...
Pyrethroid insecticides are used extensively in agriculture, and they, as well as their environmental degradates, may remain as residues on foods such as fruits and vegetables. Since pyrethroid degradates can be identical to the urinary markers used in human biomonitoring, it is ...
Pyrethroids are a class of neurotoxic synthetic insecticides. Exposure to pyrethroids can be widespread because of their use in agriculture, medicine, and in residential homes and schools. Our studies are focused on generating in vitro and in vivo data for the development of phys...
Song, Jinlong; Shi, Yanhua; Li, Kang; Zhao, Bin; Yan, Yanchun
2013-01-01
A novel pyrethroid-degrading esterase gene pytY was isolated from the genomic library of Ochrobactrum anthropi YZ-1. It possesses an open reading frame (ORF) of 897 bp. Blast search showed that its deduced amino acid sequence shares moderate identities (30% to 46%) with most homologous esterases. Phylogenetic analysis revealed that PytY is a member of the esterase VI family. pytY showed very low sequence similarity compared with reported pyrethroid-degrading genes. PytY was expressed, purified, and characterized. Enzyme assay revealed that PytY is a broad-spectrum degrading enzyme that can degrade various pyrethroids. It is a new pyrethroid-degrading gene and enriches genetic resource. Kinetic constants of Km and Vmax were 2.34 mmol·L−1 and 56.33 nmol min−1, respectively, with lambda-cyhalothrin as substrate. PytY displayed good degrading ability and stability over a broad range of temperature and pH. The optimal temperature and pH were of 35°C and 7.5. No cofactors were required for enzyme activity. The results highlighted the potential use of PytY in the elimination of pyrethroid residuals from contaminated environments. PMID:24155944
Oudou, H Chaaieri; Hansen, H C Bruun
2002-12-01
Sorption to mineral surfaces may be important for retention and degradation of hydrophobic pesticides in subsoils and aquifers poor in organic matter. In this work the title pyrethroids have been used to investigate selective interactions with the surfaces of four minerals. Sorption of the four pyrethroids was quantified in batch experiments with initial pyrethroid concentrations of 1-100 microg/l. Sorption to centrifuge tubes used in the batch experiments accounted for 25-60% of total sorption. Net sorption was obtained from total sorption after subtracting the amounts of pyrethroids sorbed to centrifuge tubes used. All isotherms could be fitted by the Freundlich equation with n ranging between 0.9 and 1.1. Bonding affinities per unit surface area decreased in the order: corundum > quartz > montmorillonite approximately equal kaolinite. A similar sequence as found for the total surface tension of the minerals. All minerals showed the same selectivity order with respect to sorption affinity of the four pyrethroids: lambda-cyhalothrin > deltamethrin > cypermethrin > fenvalerate, which shows that the most hydrophobic compound is sorbed most strongly. Stereochemical properties of the four pyrethroid formulations may also contribute to the selectivity pattern.
DeLorenzo, Marie E; Key, Peter B; Chung, Katy W; Sapozhnikova, Yelena; Fulton, Michael H
2014-10-01
Pyrethroid insecticides are widely used on agricultural crops, as well as for nurseries, golf courses, urban structural and landscaping sites, residential home and garden pest control, and mosquito abatement. Evaluation of sensitive marine and estuarine species is essential for the development of toxicity testing and risk-assessment protocols. Two estuarine crustacean species, Americamysis bahia (mysids) and Palaemonetes pugio (grass shrimp), were tested with the commonly used pyrethroid compounds, lambda-cyhalothrin, permethrin, cypermethrin, deltamethrin, and phenothrin. Sensitivities of adult and larval grass shrimp and 7-day-old mysids were compared using standard 96-h LC50 bioassay protocols. Adult and larval grass shrimp were more sensitive than the mysids to all the pyrethroids tested. Larval grass shrimp were approximately 18-fold more sensitive to lambda-cyhalothrin than the mysids. Larval grass shrimp were similar in sensitivity to adult grass shrimp for cypermethrin, deltamethrin, and phenothrin, but larvae were approximately twice as sensitive to lambda-cyhalothrin and permethrin as adult shrimp. Acute toxicity to estuarine crustaceans occurred at low nanogram per liter concentrations of some pyrethroids, illustrating the need for careful regulation of the use of pyrethroid compounds in the coastal zone. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.
Synthetic pyrethroid insecticides: a dermatological evaluation.
Flannigan, S A; Tucker, S B; Key, M M; Ross, C E; Fairchild, E J; Grimes, B A; Harrist, R B
1985-01-01
Synthetic pyrethroids are lipophilic insecticides whose biological activity seems to be directly related to their chemical structure. In this investigation differences in cutaneous sensation were detected by human participants between synthetic pyrethroids with a cyano group in the (S)-configuration of the 3-phenoxybenzyl alcohol of their molecular structure (fenvalerate) and those that do not (permethrin). A strong relation was noted between insecticidal potency and degree of induced cutaneous sensation for the alpha-cyano and non-cyano pyrethroids, with a prominent difference between the two. No sensation was observed by any of the same participants on topical exposure to the inert ingredients of these agents. A linear correlation between concentration and degree of induced dysaethesia was observed for both pyrethroids. Regressing the cutaneous sensation on the common logarithm of concentration resulted in a regression equation of Y = 84.0 + 31.0X1 for fenvalerate and Y = 27.5 + 15.8X1 for permethrin. A highly efficacious therapeutic agent for pyrethroid exposure was noted to be dl-alpha tocopherol acetate. An impressive degree of inhibition of paraesthesia resulted from the topical application of vitamin E acetate, with a therapeutic index of almost 100%. PMID:4005189
Li, Huizhen; Lydy, Michael J; You, Jing
2016-02-01
Commercial mosquito repellents (MRs) are generally applied as mosquito coils, electric vaporizers (liquid and solid) or aerosol spray, with pyrethroids often being the active ingredients. Four types of MRs were applied individually in a 13-m(2) bedroom to study the occurrence, dissipation and risk of pyrethroids in indoor environments. Total air concentrations (in gas and particle phases) of allethrin, cypermethrin, dimefluthrin and tetramethrin during MR applications were three to six orders of magnitude higher than indoor levels before the applications, and allethrin emitted from a vaporizing mat reached the highest concentration measured during the current study (18,600 ± 4980 ng m(-3)). The fate of airborne pyrethroids was different when the four MRs were applied. Particle-associated allethrin accounted for 95% of its total concentration from the aerosol spray, and was significantly higher than the vaporizing mat (67%), suggesting that the released phase of MRs and size distribution of pyrethroid-carrying particles played important roles in the gas-particle partitioning process. In addition, air exchange through open windows more effectively reduced the levels of indoor pyrethroids than ventilation using an air conditioner. The inhalation risk quotients (RQ) for allethrin derived from application of the vaporizing mat ranged from 1.04 ± 0.40 to 1.98 ± 0.75 for different age-subgroups of the population, suggesting potential exposure risk. Special attention should be given concerning indoor exposure of pyrethroids to these vulnerable groups. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Concentration of biocides in indoor rooms using pyrethroids as an example].
Walker, G; Keller, R; Beckert, J; Butte, W
1994-06-01
Pyrethroids are an analogous substance group to one of the oldest known, naturally occurring insecticides pyrethrum and have replaced a number of pesticides such as Lindane, DDT and PCP on the market. Biocides are more persistent indoors than in nature, which could lead to permanent health hazards for the people concerned. Within a few days after application pyrethroids are rarely detected in room air but can be traced for a long time on textiles, furniture and in dust particles (3, 8). The investigation results of approx. 100 analyses from dust and carpet samples show that approx. 1/3 of these samples are positive for at least one pyrethroid and contain a concentration of > 2 mg substance per kg sample. The evaluation of 35 air samples taken from rooms where substances containing pyrethroids had been used at least a month prior to the investigation (the samples were sampled on active charcoal or Chromosorb) showed that pyrethroids could no longer be traced above the detection limit of 0.05-0.1 micrograms/m3. We therefore think that when investigating a contamination of rooms by biocides it is more advisable to determine pyrethroid and its synergists in the suspended dust portion and corresponding dust sample rather than analysing air by adsorption to active charcoal, Chromosorb or other carrier materials. From the observed concentrations of biocides one could conclude that in an indoor setting secondary contamination by biocides plays a more significant role in the total-body-load than that of air contamination.
2014-01-01
Background Pyrethroid-resistant mosquitoes are an increasing threat to malaria vector control. The Global Plan for Insecticide Resistance Management (GPIRM) recommends rotation of non-pyrethroid insecticides for indoor residual spraying (IRS). The options from other classes are limited. The carbamate bendiocarb and the organophosphate pirimiphos-methyl (p-methyl) emulsifiable concentrate (EC) have a short residual duration of action, resulting in increased costs due to multiple spray cycles, and user fatigue. Encapsulation (CS) technology was used to extend the residual performance of p-methyl. Methods Two novel p-methyl CS formulations were evaluated alongside the existing EC in laboratory bioassays and experimental hut trials in Tanzania between 2008-2010. Bioassays were carried out monthly on sprayed substrates of mud, concrete, plywood, and palm thatch to assess residual activity. Experimental huts were used to assess efficacy against wild free-flying Anopheles arabiensis, in terms of insecticide-induced mortality and blood-feeding inhibition. Results In laboratory bioassays of An. arabiensis and Culex quinquefasciatus both CS formulations produced high rates of mortality for significantly longer than the EC formulation on all substrates. On mud, the best performing CS killed >80% of An. arabiensis for five months and >50% for eight months, compared with one and two months, respectively, for the EC. In monthly bioassays of experimental hut walls the EC was ineffective shortly after spraying, while the best CS formulation killed more than 80% of An. arabiensis for five months on mud, and seven months on concrete. In experimental huts both CS and EC formulations killed high proportions of free-flying wild An. arabiensis for up to 12 months after spraying. There was no significant difference between treatments. All treatments provided considerable personal protection, with blood-feeding inhibition ranging from 9-49% over time. Conclusions The long residual performance of p-methyl CS was consistent in bioassays and experimental huts. The CS outperformed the EC in laboratory and hut bioassays but the EC longevity in huts was unexpected. Long-lasting p-methyl CS formulations should be more effective than both p-methyl EC and bendiocarb considering a single spray could be sufficient for annual malaria control. IRS with p-methyl 300 CS is a timely addition to the limited portfolio of long-lasting residual insecticides. PMID:24476070
Yi, Chang Geun; Hieu, Tran Trung; Lee, Si Hyeock; Choi, Byeoung-Ryeol; Kwon, Min; Ahn, Young-Joon
2016-06-01
Plutella xylostella is one of the most serious insect pests of cruciferous crops. This study was conducted to determine the toxicity of 21 constituents from Lavandula angustifolia essential oil (LA-EO) and another 16 previously known LA-EO constituents and the toxicity of six experimental spray formulations containing the oil (1-6 g L(-1) sprays) to susceptible KS-PX and pyrethroid-resistant JJ-PX P. xylostella larvae, as well as to its endoparasitoid Cotesia glomerata adults. Linalool and linalool oxide (LC50 = 0.016 mg cm(-3) ) were the most toxic fumigant compounds and were 10.7-fold less toxic than dichlorvos to KS-PX larvae. Either residual or fumigant toxicity of these compounds was almost identical against larvae from either of the two strains. Against C. glomerata, dichlorvos (LC50 = 7 × 10(-6) mg cm(-3) ) was the most toxic insecticide. LA-EO was ∼1430 times less toxic than dichlorvos. The oil applied as 6 g L(-1) spray and emamectin benzoate 21.5 g L(-1) emulsifiable concentrate provided 100% mortality against larvae from either of the two strains. Reasonable P. xylostella control in greenhouses can be achieved by a spray formulation containing the 6 g L(-1) oil as potential contact-action fumigant. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Physical and chemical properties of pyrethroids.
Laskowski, Dennis A
2002-01-01
The physical and chemical properties of the pyrethroids bifenthrin, cyfluthrin, cypermethrin (also zetacypermethrin), deltamethrin, esfenvalerate (also fenvalerate), fenpropathrin, lambda-cyhalothrin (also cyhalothrin), permethrin, and tralomethrin have been reviewed and summarized in this paper. Physical properties included molecular weight, octanol-water partition coefficient, vapor pressure, water solubility, Henry's law constant, fish biocencentration factor, and soil sorption, desorption, and Freundlich coefficients. Chemical properties included rates of degradation in water as a result of hydrolysis, photodecomposition, aerobic or anaerobic degradation by microorganisms in the absence of light, and also rates of degradation in soil incubated under aerobic or anaerobic conditions. Collectively, the pyrethroids display a highly nonpolar nature of low water solubility, low volatility, high octanol-water partition coefficients, and have high affinity for soil and sediment particulate matter. Pyrethroids have low mobility in soil and are sorbed strongly to the sediments of natural water systems. Although attracted to living organisms because of their nonpolar nature, their capability to bioconcentrate is mitigated by their metabolism and subsequent elimination by the organisms. In fish, bioconcentration factors (BCF) ranged from 360 and 6000. Pyrethroids in water solution tend to be stable at acid and neutral pH but [table: see text] become increasingly susceptible to hydrolysis at pH values beyond neutral. Exceptions at higher pH are bifenthrin (stable), esfenvalerate (stable), and permethrin (half-life, 240 d). Pyrethroids vary in susceptibility to sunlight. Cyfluthrin and tralomethrin in water had half-lives of 0.67 and 2.5 d; lambda-cyhalothrin, esfenvalerate, deltamethrin, permethrin, and cypermethrin were intermediate with a range of 17-110 d; and bifenthrin and fenpropathrin showed the least susceptibility with half-lives of 400 and 600 d, respectively. Pyrethroids on soil can also undergo photolysis, often at rates similar to that in water. Half-lives ranged from 5 to 170 d. [table: see text] Pyrethroids are degradable in soils with half-lives ranging from 3 to 96 d aerobically, and 5 to 430 d anaerobically. For those pyrethroids studied in water (cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, and lambda-cyhalothrin), aerobic and anaerobic degradation often continued at rates similar to that displayed in soil.
Kloke, R Graham; Nhamahanga, Eduardo; Hunt, Richard H; Coetzee, Maureen
2011-02-09
The dual problems of rising insecticide resistance in the malaria vectors and increasing human malaria cases since 2001 in southern Mozambique are cause for serious concern. The selection of insecticides for use in indoor residual spraying (IRS) programmes is highly dependent on the extent to which local mosquitoes are susceptible to the approved classes of insecticides. The insecticide resistance status and role in malaria transmission of Anopheles funestus was evaluated at the Maragra Sugar Estate in southern Mozambique where an IRS vector control programme has been in operation for seven years using the carbamate insecticide bendiocarb. No Anopheles species were captured inside the sugar estate control area. Anopheles funestus group captured outside of the estate represented 90% (n = 475) of the total collections. Of the specimens identified to species by PCR (n = 167), 95% were An. funestus s.s. One An. rivulorum was identified and seven specimens did not amplify. The Anopheles gambiae complex was less abundant (n = 53) and of those identified (n = 33) 76% were An. arabiensis and 24% An. merus. Insecticide susceptibility tests showed that wild-caught and F-1 family An. funestus were resistant to deltamethrin (32.5% mortality) and lambda-cyhalothrin (14.6% mortality), less so to bendiocarb (71.5% mortality) and fully susceptible to both malathion and DDT (100%). Bendiocarb and pyrethroid resistance was nullified using 4% piperonyl butoxide (Pbo), strongly suggesting that both are mediated by P450 monooxygenase detoxification. ELISA tests of An. funestus for Plasmodium falciparum, gave a sporozoite rate of 6.02% (n = 166). One unidentified member of the An. gambiae complex tested positive for P. falciparum sporozoites. Anopheles funestus was found to be the most abundant and principle vector of malaria in this area, with members of the An. gambiae complex being secondary vectors. Despite the continual use of bendiocarb within the estate for seven years and the level of An. funestus resistance to this insecticide, the IVC programme is still effective against this and other Anopheles in that no vectors were found inside the control area. However, the Mozambique National Malaria Control Programme ceased the use of DDT and bendiocarb in this area of its operations in 2009, and replaced these insecticides with a pyrethroid which will increase insecticide resistance selection pressure and impact on control programmes such as the Maragra IVC.
Characterizing the insecticide resistance of Anopheles gambiae in Mali.
Cisse, Moussa B M; Keita, Chitan; Dicko, Abdourhamane; Dengela, Dereje; Coleman, Jane; Lucas, Bradford; Mihigo, Jules; Sadou, Aboubacar; Belemvire, Allison; George, Kristen; Fornadel, Christen; Beach, Raymond
2015-08-22
The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases. The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases. Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase, GSTs and esterase detoxification, was also documented. Multiple insecticide-resistance mechanisms have evolved in An. coluzzii, An. gambiae s.s. and An. arabiensis in Mali. These include at least two target site modifications: kdr, and ace-1 (R) , as well as elevated metabolic detoxification systems (monooxygenases and esterases). The selection pressure for resistance could have risen from the use of these insecticides in agriculture, as well as in public health. Resistance management strategies, based on routine resistance monitoring to inform insecticide-based malaria vector control in Mali, are recommended.
Worldwide studies on aircraft disinsection at “blocks away”
Sullivan, W. N.; Pal, R.; Wright, J. W.; Azurin, J. C.; Okamoto, R.; McGuire, J. U.; Waters, R. M.
1972-01-01
During 1971 worldwide experiments on the disinsection of passenger cabins at “blocks away” (as the aircraft starts taxiing for take-off) were conducted in several types of jet aircraft. A procedure was developed whereby the high capacity Boeing 747 could be disinsected by four stewardesses in less than 1 minute. The favourable results of these and previous trials indicate that this method is suitable as a standard procedure for aircraft disinsection for international quarantine purposes. The biological effectiveness against resistant and non-resistant mosquitos of a 2% concentration of a pyrethroid, resmethrin, in Freon 11+Freon 12 (1:1) (without kerosine) and a favourable passenger response make it suitable as a standard formulation for aircraft disinsection. PMID:4538193
Germano, Mónica D; Picollo, María I
2018-02-20
Triatoma infestans Klug (Hemiptera: Reduviidae) is the main vector of Chagas disease in Latin America. This insect has been controlled with pyrethroids since the 1980s, although the emergence of resistance to deltamethrin has decreased control success in some areas of the Gran Chaco ecoregion. The response of T. infestans to deltamethrin was evaluated per developmental stage. In addition, we evaluated the possible stage-dependent expression of deltamethrin resistance. The bioassays were conducted by topical application of the insecticide in acetone. The drop size, age at the time of exposure, and mortality measuring time were standardized per stage. The lethal dose of deltamethrin moderately increased with the developmental stage. The resistance to deltamethrin was expressed in every instar, and was the highest in the fourth- and fifth-instar nymphs. While increasing, weight plays a relevant role in lethal dose stage dependency, a number of contributing factors such as degradative metabolism are probably involved in the variability of insecticide effect and resistance described for different T. infestans developmental stages. Possible explanations for these differences and their implications on resistance management and chemical control are discussed.
Norris, Douglas E.
2014-01-01
Culex quinquefasciatus , an arboviral and filarial vector, is present in high numbers throughout sub-Saharan Africa, and insecticide-resistant populations have been reported worldwide. In order to determine the insecticide resistance status of Cx. quinquefasciatus in Macha, Zambia, adult mosquitoes reared from eggs collected from oviposition traps were tested by bioassay. High levels of resistance to DDT, pyrethroids, malathion, and deltamethrin-treated net material were detected, and molecular assays revealed that the knockdown resistance (kdr) allele was frequent in the Cx. quinquefasciatus population, with 7.0% homozygous for the kdr L1014 allele and 38.5% heterozygous (0.263 kdr frequency). The kdr frequency was significantly higher in mosquitoes that had successfully fed on human hosts, and screening archived specimens revealed that kdr was present at lower frequency prior to the introduction of ITNs, indicating that ITNs might be a selective force in this population. Additionally, metabolic detoxification enzyme activity assays showed upregulated glutathione S-transferases, α-esterases, and β-esterases. Continued monitoring and assessment of the Cx. quinquefasciatus population is necessary to determine levels of resistance. PMID:22129413
Formulation Effects and the Off-target Transport of Pyrethroid Insecticides from Urban Hard Surfaces
Jorgenson, Brant C.; Young, Thomas M.
2010-01-01
Controlled rainfall experiments utilizing drop forming rainfall simulators were conducted to study various factors contributing to off-target transport of off-the-shelf formulated pyrethroid insecticides from concrete surfaces. Factors evaluated included active ingredient, product formulation, time between application and rainfall (set time), and rainfall intensity. As much as 60% and as little as 0.8% of pyrethroid applied could be recovered in surface runoff depending primarily on product formulation, and to a lesser extent on product set time. Resulting wash-off profiles during one-hour storm simulations could be categorized based on formulation, with formulations utilizing emulsifying surfactants rather than organic solvents resulting in unique wash-off profiles with overall higher wash-off efficiency. These higher wash-off efficiency profiles were qualitatively replicated by applying formulation-free neat pyrethroid in the presence of independently applied linear alkyl benzene sulfonate (LAS) surfactant, suggesting that the surfactant component of some formulated products may be influential in pyrethroid wash-off from urban hard surfaces. PMID:20524665