NASA Astrophysics Data System (ADS)
Liu, Yang; Ren, Xingfeng; Pan, Changwei; Zheng, Ting; Yuan, Ling; Zheng, Juhua; Gao, Qingyu
2017-10-01
Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.
X-ray driven reaction front dynamics at calcite-water interfaces
Laanait, Nouamane; Callagon, Erika Blanca R.; Zhang, Zhan; ...
2015-09-18
The interface of minerals with aqueous solutions is central to geochemical reactivity, hosting processes that span multiple spatiotemporal scales. Understanding such processes requires spatially and temporally resolved observations, and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron X-ray beam, we drove dissolution at the calcite-aqueous interface and simultaneously probed the dynamics of the propagating reaction fronts using surface X-ray microscopy. Evolving surface structures are controlled by the time-dependent solution composition as characterized by a kinetic reaction model. At extreme disequilibria, the onset of reaction front instabilities was observed with velocitiesmore » of >30 nanometers per second. As a result, these instabilities are identified as a signature of transport-limited dissolution of calcite under extreme disequilibrium.« less
Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Li; Liu, Xiao H.; Wang, G. F.
2011-06-17
The atomic scale lithiation mechanism of individual SnO2 nanowires in a flooding geometry with the entire wires being immersed in the electrolyte was revealed by in-situ transmission electron microscopy. The lithiation initiated multiple stripes with width of a few nanometer parallel to {020} planes transversing the entire wires, serving as multiple reaction fronts for late stage of lithiation. Inside the stripes, we identified high density of dislocations and enlarged inter-planar spacing, which provide effective path for lithium ion transport. The density of the stripes increased with further lithiation, and eventually they merged with one another, causing a large enlongation andmore » volume expansion and the crystalline to amorphous phase transformation. This multiple stripes and multiple reaction fronts lithiation mechanism is unexpected and differs completely from the expected core-shell lithiation mechanism.« less
Pattern formation in the iodate-sulfite-thiosulfate reaction-diffusion system.
Liu, Haimiao; Pojman, John A; Zhao, Yuemin; Pan, Changwei; Zheng, Juhua; Yuan, Ling; Horváth, Attila K; Gao, Qingyu
2012-01-07
Sodium polyacrylate-induced pH pattern formation and starch-induced iodine pattern formation were investigated in the iodate-sulfite-thiosulfate (IST) reaction in a one-side fed disc gel reactor (OSFR). As binding agents of the autocatalyst of hydrogen ions or iodide ions, different content of sodium polyacrylate or starch has induced various types of pattern formation. We observed pH pulses, striped patterns, mixed spots and stripes, and hexagonal spots upon increasing the content of sodium polyacrylate and observed iodine pulses, branched patterns, and labyrinthine patterns upon increasing the starch content in the system. Coexistence of a pH front and an iodine front was also studied in a batch IST reaction-diffusion system. Both pH and iodine front instabilities were observed in the presence of sodium polyacrylate, i.e., cellular fronts and transient Turing structures resulting from the decrease in diffusion coefficients of activators. The mechanism of multiple feedback may explain the different patterns in the IST reaction-diffusion system.
NASA Astrophysics Data System (ADS)
Brantley, S. L.; Gu, X.; Sullivan, P. L.; Kim, H.; Stinchcomb, G. E.; Lebedeva, M.; Balashov, V. N.
2016-12-01
To first order, weathering is the reaction of rocks with oxidants (oxygen, nitrate, etc.), acids (carbonic, sulfuric, and organic acids), and water. To explore weathering we have been studying the depth intervals in soils, saprolite, and weathering rock where mineral reactions are localized - "reaction fronts". We limit the study to ridges or catchments in climates where precipitation is greater than potential evapotranspiration. For example, in the Susquehanna Shale Hills Critical Zone Observatory, we observe reaction fronts that generally define very rough surfaces in 3D that mimic the land surface topography, although with lower relief. Overall, the fronts form nested curved surfaces. In Shale Hills, the deepest reaction fronts are oxidation of pyrite, and dissolution of carbonate. The carbonate is inferred to dissolve at least partly due to the sulfuric acid produced by the pyrite. In addition to pyrite, chlorite also starts to oxidize at the water table. We hypothesize that these dissolution and oxidation reactions open pores and cause microfracturing that open the rock to infiltration of advecting meteoric waters. At much shallower depths, illite is observed to dissolve. In Shale Hills, these reaction fronts - pyrite, carbonate, illite - separate over meters beneath the ridges. Such separated reaction fronts have also been observed in other fractured lithologies where oxidation is the deepest reaction and is associated with weathering-induced fractures. In contrast, in some massive mafic rocks, reaction fronts are almost co-located. By studying the geometry of reaction fronts, it may be possible to elucidate the relative importance of how oxygen cracks rocks; carbonic, organic, and sulfuric acids dissolve rocks; and water mobilizes rock materials during weathering.
The classification of magnetohydrodynamic regimes of thermonuclear combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remming, Ian S.; Khokhlov, Alexei M.
2014-10-10
Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Iamore » supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.« less
Existence and non-existence of transition fronts in mixed ignition-monostable media
NASA Astrophysics Data System (ADS)
Graham, Cole; Shean Lim, Tau; Ma, Andrew; Weber, David
2018-02-01
We study transition fronts for one-dimensional reaction-diffusion equations with compactly-perturbed ignition-monostable reactions. We establish an almost sharp condition on reactions which characterizes the existence and non-existence of fronts. In particular, we prove that a strong inhomogeneity in the reaction prevents formation of transition fronts, while a weak inhomogeneity gives rise to a front. Our work extends the results and methods introduced in Nolen et al 2012 (Arch. Ration. Mech. Anal. 203 217-46), which studied the same question in inhomogeneous KPP media.
Convective instabilities in traveling fronts of addition polymerization
NASA Technical Reports Server (NTRS)
Pojman, John A.; Jones, Chris E.; Khan, Akhtar M.
1993-01-01
An autocatalytic reaction in an unstirred vessel can support a constant velocity wavefront resulting from the coupling of diffusion to the chemical reaction. A flare front is a common example in which heat is the autocatalytic species that diffuses into unreacted regions stimulating a reaction that produces more heat. Traveling fronts were studied in synthetic polymerization reactions under high pressure by workers in the former USSR. More recently, propagating fronts of methacrylic acid polymerization were studied under ambient conditions, both with video techniques and by NMR.
Deciphering Front-Side Complex Formation in SN2 Reactions via Dynamics Mapping.
Szabó, István; Olasz, Balázs; Czakó, Gábor
2017-07-06
Due to their importance in organic chemistry, the atomistic understanding of bimolecular nucleophilic substitution (S N 2) reactions shows exponentially growing interest. In this publication, the effect of front-side complex (FSC) formation is uncovered via quasi-classical trajectory computations combined with a novel analysis method called trajectory orthogonal projection (TOP). For both F - + CH 3 Y [Y = Cl,I] reactions, the lifetime distributions of the F - ···YCH 3 front-side complex revealed weakly trapped nucleophiles (F - ). However, only the F - + CH 3 I reaction features strongly trapped nucleophiles in the front-side region of the prereaction well. Interestingly, both back-side and front-side attack show propensity to long-lived FSC formation. Spatial distributions of the nucleophile demonstrate more prominent FSC formation in case of the F - + CH 3 I reaction compared to F - + CH 3 Cl. The presence of front-side intermediates and the broad spatial distribution in the back-side region may explain the indirect nature of the F - + CH 3 I reaction.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng
2017-04-01
Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.
Reaction fronts of the autocatalytic hydrogenase reaction
NASA Astrophysics Data System (ADS)
Gyevi-Nagy, László; Lantos, Emese; Gehér-Herczegh, Tünde; Tóth, Ágota; Bagyinka, Csaba; Horváth, Dezső
2018-04-01
We have built a model to describe the hydrogenase catalyzed, autocatalytic, reversible hydrogen oxidation reaction where one of the enzyme forms is the autocatalyst. The model not only reproduces the experimentally observed front properties, but also explains the found hydrogen ion dependence. Furthermore, by linear stability analysis, two different front types are found in good agreement with the experiments.
Structure of the detonation wave front in a mixture of nitromethane with acetone
NASA Astrophysics Data System (ADS)
Buravova, S. N.
2012-09-01
It is shown that the leading front of an inhomogeneous detonation wave is a shock wave in which wave structures of the type of triple shock configurations are moving. It was experimentally found that the reaction in these inhomogeneities occurs in oblique shock waves. The reaction sites at the wave front are ring-shaped. In a 75: 25 mixture of nitromethane with acetone, up to 70% of the front surface is occupied by the reaction at the sites in the wave front. Measurements of the mass velocity profile indicate that afterburning takes place in the unloading area behind the Jouguet plane. Calculations of the heat release in the reaction mixture with a decrease in the mass velocity indicate that the material that have not reacted in the inhomogeneities can be ignited in the induction zone. It is suggested that the adiabatic flashes are a mechanism that generates inhomogeneities in the detonation wave front.
Transition fronts of time periodic bistable reaction-diffusion equations in RN
NASA Astrophysics Data System (ADS)
Sheng, Wei-Jie; Guo, Hong-Jun
2018-09-01
This paper is concerned with the existence and qualitative properties of transition fronts for time periodic bistable reaction-diffusion equations in RN. We first show that any almost-planar transition front is actually planar, regardless of the number of transition layers. Then we prove that all transition fronts admit a global mean speed γ and it holds γ = | c |, where c is the speed of the planar traveling front. Finally we establish the existence of a transition front in RN that is not a standard traveling front. Such a front behaves like three moving time periodic planar fronts as time goes to -∞ and like a time periodic V-shaped traveling front as time goes to ∞.
NASA Astrophysics Data System (ADS)
Mueller, T.; Dohmen, R.; Jonas, L.; Immenhauser, A.
2016-12-01
The geological record stored in the geochemical composition of carbonates provides a direct source of information on the Earth systems. However, the robustness and accuracy of these key records can be compromised by post-depositional alteration of sediments, such as dolomitization during diagenesis or low temperature metamorphism. Hence, knowledge on the mechanisms and rates of these processes hold the key to evaluate the robustness of proxies or to evaluate the extent of geochemical alteration. Previously, we presented experimental results of hydrothermal alteration of single calcite crystals and aragonitic coral fragments leading to replacement of the original carbonate by a Ca-Mg carbonate phase of variable composition. The experiments revealed the formation of a multiphase reaction rim with multiple replacement fronts [1]. Here, the reaction rate as well as composition of the reaction products is controlled by element transport in the pore fluid. In this study we focus on the reaction path of the replacement reaction and its effect on the recorded Mg-isotope composition. XRD diffraction patterns suggest the initial precipitation of non-ordered protodolomite that is subsequently continuously recrystallizing over the duration of the experiments to form an ordered, albeit non-stoichiometric dolomite. These observations are in agreement with Mg-isotope composition measured of the bulk reaction rim showing a systematic evolution over time that cannot be explained by simple Rayleigh or equilibrium fractionation. We interpret these findings as additional, but delayed reaction fronts affecting the microstructure and chemical composition of the newly formed carbonate rim that are essentially decoupled from the initial replacement front. Our results highlight the need to quantitatively understand alteration processes during diagenesis in order to accurately interpret the preserved geochemical record stored in element and isotope ratios of carbonates. [1] Jonas L., Mueller T., Dohmen R., Baumgartner L., and Putlitz B. (2015): Transport-controlled hydrothermal replacement of calcite by Mg-carbonates, Geology, 43, 779-782.
Barriers to front propagation in laminar, three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.
2018-03-01
We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.
Revealing a double-inversion mechanism for the F⁻+CH₃Cl SN2 reaction.
Szabó, István; Czakó, Gábor
2015-01-19
Stereo-specific reaction mechanisms play a fundamental role in chemistry. The back-side attack inversion and front-side attack retention pathways of the bimolecular nucleophilic substitution (SN2) reactions are the textbook examples for stereo-specific chemical processes. Here, we report an accurate global analytic potential energy surface (PES) for the F(-)+CH₃Cl SN2 reaction, which describes both the back-side and front-side attack substitution pathways as well as the proton-abstraction channel. Moreover, reaction dynamics simulations on this surface reveal a novel double-inversion mechanism, in which an abstraction-induced inversion via a FH···CH₂Cl(-) transition state is followed by a second inversion via the usual [F···CH₃···Cl](-) saddle point, thereby opening a lower energy reaction path for retention than the front-side attack. Quasi-classical trajectory computations for the F(-)+CH₃Cl(ν1=0, 1) reactions show that the front-side attack is a fast direct, whereas the double inversion is a slow indirect process.
Xu, Feng; Wu, Lijun; Meng, Qingping; Kaltak, Merzuk; Huang, Jianping; Durham, Jessica L; Fernandez-Serra, Marivi; Sun, Litao; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J; Hybertsen, Mark S; Zhu, Yimei
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.
Xu, Feng; Wu, Lijun; Meng, Qingping; ...
2017-05-24
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Feng; Wu, Lijun; Meng, Qingping
Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less
The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.
Worthington, Peter; King, Mark; Ranson, Craig
2013-01-01
High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.
Nomura, Ken-Ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri C T; Goddard, William A
2007-10-05
Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results, and quantum-mechanical calculations are unable to handle systems large enough to describe shock structure. Recent developments in reactive force-field molecular dynamics (ReaxFF-MD) combined with advances in parallel computing have paved the way to accurately simulate reaction pathways along with the structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of l,3,5-trinitro-l,3,5-triazine (RDX) reveal that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind it to a disordered dipole distribution behind a sharp front.
Curved fronts in the Belousov-Zhabotinskii reaction-diffusion systems in R2
NASA Astrophysics Data System (ADS)
Niu, Hong-Tao; Wang, Zhi-Cheng; Bu, Zhen-Hui
2018-05-01
In this paper we consider a diffusion system with the Belousov-Zhabotinskii (BZ for short) chemical reaction. Following Brazhnik and Tyson [4] and Pérez-Muñuzuri et al. [45], who predicted V-shaped fronts theoretically and discovered V-shaped fronts by experiments respectively, we give a rigorous mathematical proof of their results. We establish the existence of V-shaped traveling fronts in R2 by constructing a proper supersolution and a subsolution. Furthermore, we establish the stability of the V-shaped front in R2.
Finite-time barriers to reaction front propagation
NASA Astrophysics Data System (ADS)
Locke, Rory; Mahoney, John; Mitchell, Kevin
2015-11-01
Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.
Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisternas, Jaime, E-mail: jecisternas@miuandes.cl; Karpitschka, Stefan; Wehner, Stefan
2014-10-28
In this work, we study a surface reaction on Pd(111) crystals under ultra-high-vacuum conditions that can be modeled by two coupled reaction-diffusion equations. In the bistable regime, the reaction exhibits travelling fronts that can be observed experimentally using photo electron emission microscopy. The spatial profile of the fronts reveals a coverage-dependent diffusivity for one of the species. We propose a method to solve the nonlinear eigenvalue problem and compute the direction and the speed of the fronts based on a geometrical construction in phase-space. This method successfully captures the dependence of the speed on control parameters and diffusivities.
Mapping the local reaction kinetics by PEEM: CO oxidation on individual (100)-type grains of Pt foil
Vogel, D.; Spiel, C.; Suchorski, Y.; Urich, A.; Schlögl, R.; Rupprechter, G.
2011-01-01
The locally-resolved reaction kinetics of CO oxidation on individual (100)-type grains of a polycrystalline Pt foil was monitored in situ using photoemission electron microscopy (PEEM). Reaction-induced surface morphology changes were studied by optical differential interference contrast microscopy and atomic force microscopy (AFM). Regions of high catalytic activity, low activity and bistability in a (p,T)-parameter space were determined, allowing to establish a local kinetic phase diagram for CO oxidation on (100) facets of Pt foil. PEEM observations of the reaction front propagation on Pt(100) domains reveal a high degree of propagation anisotropy both for oxygen and CO fronts on the apparently isotropic Pt(100) surface. The anisotropy vanishes for oxygen fronts at temperatures above 465 K, but is maintained for CO fronts at all temperatures studied, i.e. in the range of 417 to 513 K. A change in the front propagation mechanism is proposed to explain the observed effects. PMID:22140277
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Toussaint, Renaud; Gomez-Rivas, Enrique; Bons, Paul; Chung, Peter; Martín-Martín, Juan Diego
2014-05-01
Fluid migrations are the principal agent for mineral replacement in the upper crust, leading to dramatic changes in the porosity and permeability of rocks over several kilometers. Consequently, a better understanding of the physical parameters leading to mineral replacement is required to better understand and model fluid flow and rock reservoir properties. Large-scale dolostone bodies are one of the best and most debated examples of such fluid-related mineral replacement. These formations received a lot of attention lately, and although genetic mechanics and implications for fluid volume are understood, the mechanisms controlling the formation and propagation of the dolomitization reaction front remain unclear. This contribution aims at an improvement of the knowledge about how this replacement front propagates over space and time. We study the front sharpness on hand specimen and thin section scale and what the influence of advection versus diffusion of material is on the front development. In addition, we demonstrate how preexisting heterogeneities in the host rock affect the propagation of the reaction front. The rock is normally not homogeneous but contains grain boundaries, fractures and stylolites, and such structures are important on the scale of the front width. Using Scanning Electron Microscopy and Raman Spectroscopy we characterized the reaction front chemistry and morphology in different context. Specimens of dolomitization fronts, collected from carbonate sequences of the southern Maestrat Basin, Spain and the Southwestern Scottish Highlands suggest that the front thickness is about several mm being relatively sharp. Fluid infiltrated grain boundaries and fractures forming mm-scale transition zone. We study the structure of the reaction zone in detail and discuss implications for fluid diffusion-advection models and mineral replacement. In addition we formulate a numerical model taking into account fluid flow, diffusion and advection of the mobile reactive species, reaction rates, disorder in the location of the potential replacement seeds, and permeability heterogeneities. The goal of this model is to compare the shape of the resulting patterns, notably in terms of thickness, and eventually roughness or fractal dimension.
Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection.
Rongy, L; Trevelyan, P M J; De Wit, A
2008-08-22
The dynamics of A+B-->C fronts in horizontal solution layers can be influenced by buoyancy-driven convection as soon as the densities of A, B, and C are not all identical. Such convective motions can lead to front propagation even in the case of equal diffusion coefficients and initial concentration of reactants for which reaction-diffusion (RD) scalings predict a nonmoving front. We show theoretically that the dynamics in the presence of convection can in that case be predicted solely on the basis of the knowledge of the one-dimensional RD density profile across the front.
pH Wave-Front Propagation in the Urea-Urease Reaction
Wrobel, Magdalena M.; Bánsági, Tamás; Scott, Stephen K.; Taylor, Annette F.; Bounds, Chris O.; Carranza, Arturo; Pojman, John A.
2012-01-01
The urease-catalyzed hydrolysis of urea displays feedback that results in a switch from acid (pH ∼3) to base (pH ∼9) after a controllable period of time (from 10 to >5000 s). Here we show that the spatially distributed reaction can support pH wave fronts propagating with a speed of the order of 0.1−1 mm min−1. The experimental results were reproduced qualitatively in reaction-diffusion simulations including a Michaelis-Menten expression for the urease reaction with a bell-shaped rate-pH dependence. However, this model fails to predict that at lower enzyme concentrations, the unstirred reaction does not always support fronts when the well-stirred reaction still rapidly switches to high pH. PMID:22947878
Burning invariant manifolds for reaction fronts in three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Solomon, Tom
2017-11-01
The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.
NASA Astrophysics Data System (ADS)
Benguria, Rafael D.; Depassier, M. Cristina; Loss, Michael
2012-12-01
We study the effect of a cutoff on the speed of pulled fronts of the one-dimensional reaction diffusion equation. To accomplish this, we first use variational techniques to prove the existence of a heteroclinic orbit in phase space for traveling wave solutions of the corresponding reaction diffusion equation under conditions that include discontinuous reaction profiles. This existence result allows us to prove rigorous upper and lower bounds on the minimal speed of monotonic fronts in terms of the cut-off parameter ɛ. From these bounds we estimate the range of validity of the Brunet-Derrida formula for a general class of reaction terms.
Convection induced by thermal gradients on thin reaction fronts
NASA Astrophysics Data System (ADS)
Ruelas Paredes, David R. A.; Vasquez, Desiderio A.
2017-09-01
We present a thin front model for the propagation of chemical reaction fronts in liquids inside a Hele-Shaw cell or porous media. In this model we take into account density gradients due to thermal and compositional changes across a thin interface. The front separating reacted from unreacted fluids evolves following an eikonal relation between the normal speed and the curvature. We carry out a linear stability analysis of convectionless flat fronts confined in a two-dimensional rectangular domain. We find that all fronts are stable to perturbations of short wavelength, but they become unstable for some wavelengths depending on the values of compositional and thermal gradients. If the effects of these gradients oppose each other, we observe a range of wavelengths that make the flat front unstable. Numerical solutions of the nonlinear model show curved fronts of steady shape with convection propagating faster than flat fronts. Exothermic fronts increase the temperature of the fluid as they propagate through the domain. This increment in temperature decreases with increasing speed.
Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain
2017-06-13
The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.
Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts.
Tiani, R; Rongy, L
2016-09-28
The nonlinear dynamics of A + B → C fronts is analyzed both numerically and theoretically in the presence of Marangoni flows, i.e., convective motions driven by surface tension gradients. We consider horizontal aqueous solutions where the three species A, B, and C can affect the surface tension of the solution, thereby driving Marangoni flows. The resulting dynamics is studied by numerically integrating the incompressible Navier-Stokes equations coupled to reaction-diffusion-convection (RDC) equations for the three chemical species. We show that the dynamics of the front cannot be predicted solely on the basis of the one-dimensional reaction-diffusion profiles as is the case for buoyancy-driven convection around such fronts. We relate this observation to the structure of Marangoni flows which lead to more complex and exotic dynamics. We find in particular the surprising possibility of a reversal of the front propagation direction in time for some sets of Marangoni numbers, quantifying the influence of each chemical species concentration on the solution surface tension. We explain this reversal analytically and propose a new classification of the convective effects on A + B → C reaction fronts as a function of the Marangoni numbers. The influence of the layer thickness on the RDC dynamics is also presented. Those results emphasize the importance of flow symmetry properties when studying convective front dynamics in a given geometry.
Reaction front dynamics under shear flow for arbitrary Damköhler numbers
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Méheust, Yves; Le Borgne, Tanguy
2016-04-01
Reaction fronts where two reactive fluids displace one another play an important role in a range of applications, including contaminant plume transport and reaction, soil and aquifer remediation, CO2 sequestration, geothermal dipoles and the development of hotspots of reaction in mixing zones. The background flow induces enhanced mixing, and therefore reaction, through interfacial shear. Hence the coupling of fluid flow with chemical reactions is pivotal in understanding and quantifying effective reaction kinetics in reaction fronts. While this problem has been addressed in the limit of fast reactions (e.g. de Simoni 2005, Le Borgne 2014), in natural systems reactions can span a large range of Damköhler numbers since their characteristic reaction times vary over a large range of typical values. Here the coupling of shear flow and reversible chemical reactions is studied for a reaction front with initially separated reactants at arbitrary Damköhler numbers. Approximate analytical expressions for the global production rate are derived based on a reactive lamella approach. We observe three distinct regimes, each of them characterized by different scalings of the global production rate and width of the reactive zone. We describe the dependency of these scalings and the associated characteristic transition times as a function of Damköhler and Péclet numbers. These results are validated against 2D numerical simulations. The study is expected to shed light on the inherently complex cases of reactive mixing with varying reaction rates under the influence of an imposed flow. de Simoni et al. (2005) Water Resour. Res., 41, W11410 Le Borgne et al. (2014) GRL, 41(22), 7898
The effect of phase change materials on the frontal polymerization of a triacrylate
NASA Astrophysics Data System (ADS)
Viner, Veronika G.; Pojman, John A.; Golovaty, Dmitry
2010-06-01
The production of smoke and fumes is a major obstacle to the practical use of thermal frontal polymerization. The front temperature and the amount of smoking can be reduced by adding inert fillers, such as clay and silica, to the reactive mixture. Here we investigate the possibility of incorporating inert materials that melt (so-called phase change materials) to the mixture. By performing both experiments and mathematical modeling, we demonstrate that, in addition to the standard parameters of frontal polymerization, the front temperature and velocity depend on the melting point and heat of fusion of the phase change material. We use the method of matched asymptotic expansions to develop an explicit expression for the velocity of the reaction front. The expression demonstrates that the behavior of the front is determined by the difference between the reaction temperature and the melting temperature, with the front being slower and cooler if melting occurs farther ahead of the reaction front. The theoretical trends are hard to confirm directly because different characteristics of the phase change material cannot be varied separately.
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
NASA Astrophysics Data System (ADS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
Experimental studies of one-way reaction front barriers in three-dimensional vortex flows
NASA Astrophysics Data System (ADS)
Gannon, Joanie; Doan, Minh; Simons, Jj; Mitchell, Kevin; Solomon, Tom
2017-11-01
We present results of experimental studies of the evolution of the excitable, Ruthenium (Ru)-catalyzed, Belousov-Zhabotinsky (BZ) reaction in a three-dimensional (3D) flow composed of the superposition of horizontal and vertical vortex chains. The reaction fronts are imaged in 3D with a scanning, laser-induced fluorescence technique that takes advantage of the differential fluoresence of the Ruthenium indicated at the front. When the horizontal and vertical vortex chains are lined up, a dominant scroll structure is observed that acts as a one-way barrier blocking fronts propagating across vortex boundaries and into vortex centers. A second, quarter-tube barrier is observed along the edges of the unit cell. When the vortices are shifted relative to each other, tube-like barriers are observed in the interior. All of these barriers are compared with burning invariant manifolds predicted from a 6D set of differential equations describing the evolution of front elements in the flow. Supported by NSF Grants DMR-1361881 and DUE-1317446.
Traveling interface modulations and anisotropic front propagation in ammonia oxidation over Rh(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafti, Matías; Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstr. 3-3a, D-30167 Hannover; Borkenhagen, Benjamin
The bistable NH{sub 3} + O{sub 2} reaction over a Rh(110) surface was explored in the pressure range 10{sup −6}–10{sup −3} mbar and in the temperature range 300–900 K using photoemission electron microscopy and low energy electron microscopy as spatially resolving methods. We observed a history dependent anisotropy in front propagation, traveling interface modulations, transitions with secondary reaction fronts, and stationary island structures.
NASA Astrophysics Data System (ADS)
Rajaram, H.; Arshadi, M.
2016-12-01
In-situ chemical oxidation (ISCO) is an effective strategy for remediation of DNAPL contamination in fractured rock. During ISCO, an oxidant (e.g. permanganate) is typically injected through fractures and is consumed by bimolecular reactions with DNAPLs such as TCE and natural organic matter in the fracture and the adjacent rock matrix. Under these conditions, moving reaction fronts form and propagate along the fracture and into the rock matrix. The propagation of these reaction fronts is strongly influenced by the heterogeneity/discontinuity across the fracture-matrix interface (advective transport dominates in the fractures, while diffusive transport dominates in the rock matrix). We present analytical solutions for the concentrations of the oxidant, TCE and natural organic matter; and the propagation of the reaction fronts in a fracture-matrix system. Our approximate analytical solutions assume advection and reaction dominate over diffusion/dispersion in the fracture and neglect the latter. Diffusion and reaction with both TCE and immobile natural organic matter in the rock matrix are considered. The behavior of the reaction-diffusion equations in the rock matrix is posed as a Stefan problem where the diffusing oxidant reacts with both diffusing (TCE) and immobile (natural organic matter) reductants. Our analytical solutions establish that the reaction fronts propagate diffusively (i.e. as the square root of time) in both the matrix and the fracture. Our analytical solutions agree very well with numerical simulations for the case of uniform advection in the fracture. We also present extensions of our analytical solutions to non-uniform flows in the fracture by invoking a travel-time transformation. The non-uniform flow solutions are relevant to field applications of ISCO. The approximate analytical solutions are relevant to a broad class of reactive transport problems in fracture-matrix systems where moving reaction fronts occur.
NASA Astrophysics Data System (ADS)
Bernert, T.; Winkler, B.; Haussühl, E.; Trouw, F.; Vogel, S. C.; Hurd, A. J.; Smilowitz, L.; Henson, B. F.; Merrill, F. E.; Morris, C. L.; Mariam, F. G.; Saunders, A.; Juarez-Arellano, E. A.
2013-08-01
Self-propagating high temperature reactions of tantalum and titanium with silicon and titanium with boron were studied using proton and X-ray radiography, small-angle neutron scattering, neutron time-of-flight, X-ray and neutron diffraction, dilatometry and video recording. We show that radiography allows the observation of the propagation of the flame front in all investigated systems and the determination of the widths of the burning zones. X-ray and neutron diffraction showed that the reaction products consisted of ≈90 wt% of the main phase and one or two secondary phases. For the reaction 5Ti + 3Si → Ti5Si3 flame front velocities of 7.1(3)-34.2(4) mm/s were determined depending on the concentration of a retardant added to the starting material, the geometry and the green density of the samples. The flame front width was determined to be 1.17(4)-1.82(8) mm and depends exponentially on the flame front velocity. Similarly, for the reaction Ti + 2B → TiB2 flame front velocities of 15(2)-26.6(4) mm/s were determined, while for a 5Ta + 3Si → Ta5Si3 reaction the flame front velocity was 7.05(4) mm/s. The micro structure of the product phase Ta5Si3 shows no texture. From SANS measurements the dependence of the specific surface of the product phase on the particle sizes of the starting materials was studied.
Influence of exothermic chemical reactions on laser-induced shock waves.
Gottfried, Jennifer L
2014-10-21
Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.
Prize to a Faculty Member for Research in an Undergraduate: Chaotic mixing and front propagation
NASA Astrophysics Data System (ADS)
Solomon, Tom
2014-03-01
We present results from a series of experiments - all done with undergraduate students - on chaotic fluid mixing and the effects of fluid flows on the behavior of reaction systems. Simple, well-ordered laminar fluid flows can give rise to fluid mixing with complexity far beyond that of the underlying flow, with tracers that separate exponentially in time and invariant manifolds that act as barriers to transport. Recently, we have studied how fluid mixing affects the propagation of reaction fronts in a flow. This is an issue with applications to a wide range of systems including microfluidic chemical reactors, blooms of phytoplankton in the oceans, and the spreading of a disease in a moving population. To analyze and predict the behavior of the fronts, we generalize tools developed to describe passive mixing. In particular, the concept of an invariant manifold is expanded to account for reactive burning. ``Burning invariant manifolds'' (BIMs) are predicted and measured experimentally as structures in the flow that act as one-way barriers that block the motion of reaction fronts. We test these ideas experimentally in three fluid flows: (a) and chain of alternating vortices; (b) an extended, spatially-random pattern of vortices; and (c) a time-independent, three-dimensional, nested vortex flow. The reaction fronts are produced chemically with variations of the well-known Belousov-Zhabotinsky reaction. Supported by Research Corporation and the National Science Foundation.
Anomalous Impact in Reaction-Diffusion Financial Models
NASA Astrophysics Data System (ADS)
Mastromatteo, I.; Tóth, B.; Bouchaud, J.-P.
2014-12-01
We generalize the reaction-diffusion model A +B → /0 in order to study the impact of an excess of A (or B ) at the reaction front. We provide an exact solution of the model, which shows that the linear response breaks down: the average displacement of the reaction front grows as the square root of the imbalance. We argue that this model provides a highly simplified but generic framework to understand the square-root impact of large orders in financial markets.
Loodts, V; Trevelyan, P M J; Rongy, L; De Wit, A
2016-10-01
Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.
Lavery, Kristopher A; Prabhu, Vivek M; Satija, Sushil; Wu, Wen-Li
2010-12-01
Off-specular neutron reflectometry was applied to characterize the form and amplitude of lateral compositional variations at a buried reaction-diffusion front. In this work, off-specular neutron measurements were first calibrated using off-specular x-ray reflectivity and atomic force microscopy via a roughened glass surface, both as a free surface and as a buried interface that was prepared by spin coating thin polymer films upon the glass surface. All three methods provided consistent roughness values despite the difference in their detection mechanism. Our neutron results demonstrated, for the first time, that the compositional heterogeneity at a buried reaction front can be measured; the model system used in this study mimics the deprotection reaction that occurs during the photolithographic process necessary for manufacturing integrated circuits.
Weakly and strongly coupled Belousov-Zhabotinsky patterns.
Weiss, Stephan; Deegan, Robert D
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Weakly and strongly coupled Belousov-Zhabotinsky patterns
NASA Astrophysics Data System (ADS)
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
Discreteness effects in a reacting system of particles with finite interaction radius.
Berti, S; López, C; Vergni, D; Vulpiani, A
2007-09-01
An autocatalytic reacting system with particles interacting at a finite distance is studied. We investigate the effects of the discrete-particle character of the model on properties like reaction rate, quenching phenomenon, and front propagation, focusing on differences with respect to the continuous case. We introduce a renormalized reaction rate depending both on the interaction radius and the particle density, and we relate it to macroscopic observables (e.g., front speed and front thickness) of the system.
Time-delayed reaction-diffusion fronts
NASA Astrophysics Data System (ADS)
Isern, Neus; Fort, Joaquim
2009-11-01
A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82, 867 (1999)]. Here we show that taking proper care of the effect of the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation yields speeds about 10% slower than the previous one.
Intracellular signal propagation in a two-dimensional autocatalytic reaction model.
Castiglione, F; Bernaschi, M; Succi, S; Heinrich, R; Kirschner, M W
2002-09-01
We study a simple reaction scheme in a two-dimensional lattice of particles or molecules with a refractory state. We analyze the dynamics of the propagating front as a function of physical-chemical properties of the host medium. The anisotropy of the medium significantly affects the smoothness of the wave front. Similarly, if particles or molecules may diffuse slowly to neighboring sites, then the front wave is more likely to be irregular. Both situations affect the ability of the whole system to relax to the original state, which is a required feature in the biological cells. Attempts to map this simple reaction scheme to reactions involved in the intracellular pathways suggest that, in some cases, signal transduction might take both connotation of a random walk and a propagating wave, depending on the local density of the medium. In particular, a sufficient condition for the appearance of waves in high-density regions of the media, is the existence of at least one autocatalytic reaction in the chain of reactions characterizing the pathway.
Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective
NASA Astrophysics Data System (ADS)
Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.
2018-01-01
Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.
Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective
NASA Astrophysics Data System (ADS)
Mahoney, John R.; Li, John; Boyer, Carleen; Solomon, Tom; Mitchell, Kevin A.
2015-12-01
The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in x y θ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.
Subnanosecond measurements of detonation fronts in solid high explosives
NASA Astrophysics Data System (ADS)
Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.
1984-04-01
Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.
Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell
Bockmann; Muller
2000-09-18
Experimental studies were performed on the buoyancy-driven instability of an autocatalytic reaction front in a quasi-2D cell. The unstable density stratification at an ascending front leads to convection that results in a fingerlike front deformation. The growth rates of the spatial modes of the instability are determined at the initial stage. A stabilization is found at higher wave numbers, while the system is unstable against low wave number perturbations. Whereas comparison with a reported model governed by Hele-Shaw flow fails, a two-dimensional Navier-Stokes model yields more satisfactory results. Still, present deviations suggest the presence of an additional mechanism that suppresses the growth.
Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.
Beauvier, E; Bodea, S; Pocheau, A
2016-11-04
We experimentally address the propagation of reaction-diffusion fronts in vortex lattices by combining, in a Hele-Shaw cell and at low Reynolds number, forced electroconvective flows and an autocatalytic reaction in solution. We consider both vortex chains and vortex arrays, the former referring to mixed free/rigid boundary conditions for vortices and the latter to free boundary conditions. Varying the depth of the fluid layer, we observe no variation of the mean front velocities for vortex arrays and a noticeable variation for vortex chains. This questions the two-dimensional character of front propagation in low Reynolds number vortex lattices, as well as the mechanisms of this dependence.
Link between alginate reaction front propagation and general reaction diffusion theory.
Braschler, Thomas; Valero, Ana; Colella, Ludovica; Pataky, Kristopher; Brugger, Jürgen; Renaud, Philippe
2011-03-15
We provide a common theoretical framework reuniting specific models for the Ca(2+)-alginate system and general reaction diffusion theory along with experimental validation on a microfluidic chip. As a starting point, we use a set of nonlinear, partial differential equations that are traditionally solved numerically: the Mikkelsen-Elgsaeter model. Applying the traveling-wave hypothesis as a major simplification, we obtain an analytical solution. The solution indicates that the fundamental properties of the alginate reaction front are governed by a single dimensionless parameter λ. For small λ values, a large depletion zone accompanies the reaction front. For large λ values, the alginate reacts before having the time to diffuse significantly. We show that the λ parameter is of general importance beyond the alginate model system, as it can be used to classify known solutions for second-order reaction diffusion schemes, along with the novel solution presented here. For experimental validation, we develop a microchip model system, in which the alginate gel formation can be carried out in a highly controlled, essentially 1D environment. The use of a filter barrier enables us to rapidly renew the CaCl(2) solution, while maintaining flow speeds lower than 1 μm/s for the alginate compartment. This allows one to impose an exactly known bulk CaCl(2) concentration and diffusion resistance. This experimental model system, taken together with the theoretical development, enables the determination of the entire set of physicochemical parameters governing the alginate reaction front in a single experiment.
Non-stationary filtration mode during chemical reactions with the gas phase
NASA Astrophysics Data System (ADS)
Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey
2015-04-01
An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.
Coupled charge migration and fluid mixing in reactive fronts
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves
2017-04-01
Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501
NASA Astrophysics Data System (ADS)
Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.
2012-09-01
The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.
NASA Astrophysics Data System (ADS)
Kondratiuk, Paweł; Dutka, Filip; Szymczak, Piotr
2016-04-01
Infiltration of a rock by an external fluid very often drives it out of chemical equilibrium. As a result, alteration of the rock mineral composition occurs. It does not however proceed uniformly in the entire rock volume. Instead, one or more reaction fronts are formed, which are zones of increased chemical activity, separating the altered (product) rock from the yet unaltered (primary) one. The reaction fronts propagate with velocities which are usually much smaller than those of the infiltrating fluid. One of the simplest examples of such alteration is the dissolution of some of the minerals building the primary rock. For instance, calcium carbonate minerals in the rock matrix can be dissolved by infiltrating acidic fluids. In such a case the product rock has higher porosity and permeability than the primary one. Due to positive feedbacks between the reactant transport, fluid flow, and porosity generation, the reaction fronts in porosity-generating replacement systems are inherently unstable. An arbitrarily small protrusion of the front gets magnified and develops into a highly porous finger-like or funnel-like structure. This feature of dissolution fronts, dubbed the "reactive-infiltration instability" [1], is responsible for the formation of a number of geological patterns, such as solution pipes or various karst forms. It is also of practical importance, since spontaneous front breakup and development of localized highly porous flow paths (a.k.a. "wormholes") is favourable by petroleum engineers, who apply acidization to oil-bearing reservoirs in order to increase their permeability. However, more complex chemical reactions might occur during infiltration of a rock by a fluid. In principle, the products of dissolution might react with other species present either in the fluid or in the rock and reprecipitate [2]. The dissolution and precipitation fronts develop and and begin to propagate with equal velocities, forming a single dissolution-precipitation front. The porosity profile is not monotonic as in the case of pure dissolution, but it typically has a minimum in the vicinity of the front. Additionally, the porosity difference between the initial rock far-downstream and the well-developed secondary rock far-upstream can be either negative or positive, which either destabilizes of stabilized the front. We propose a theoretical model of a simple infiltration-driven dissolution-precipitation system and find the morphology of the resulting planar reaction front. By performing linear stability analysis of the stationary planar solutions we show that the front can be unstable for a wide range of control parameters, even if the porosity of the secondary rock is lower than the porosity of the primary rock. Next, by numerical simulations of the full nonlinear model we present the long-term evolution of the system. [1] D. Chadam et al., IMA J. Appl. Math. 36, 207-221, 1986. [2] A. Putnis, Rev. Mineral. Geochemistry, 70(1), 87-124, 2009.
Shallow temperature differences along the Deep Creek Range front, Idaho
NASA Astrophysics Data System (ADS)
Ore, H. T.; Wiegand, G. H.
1990-02-01
The extent of the solvolysis reaction of a tertiary butyl chloride solution placed in vials buried about 1.2 m below the ground surface is dependent on average temperature at that depth over the period of burial. This method is herein used to indicate differences in shallow temperature from the western flank of the Basin and Range Deep Creek Range front, about 5 km westward into Rockland Valley in southeastern Idaho. Ninety-three samples, distributed to allow determination of lateral and vertical sample-site variation in total reaction amount, were analyzed after being in place for 3 months. Results from two sample lines, 3.5 km apart, show that subsurface total reaction amount declines slightly for the first 1.6 km away from the mountain front, rises abruptly to several times initial reaction, slowly declines for the next several km, then tends to slowly rise again. Plots of extent of reaction vs distance for the two traverses are nearly parallel; in both the abrupt increase in total reaction coincides with a line of springs, suggesting that hydrologic activity is at least related to the effects noted.
Levitán, D; D'Onofrio, A
2012-09-01
A vertical Hele-Shaw cell was used to study the influence of temperature on Rayleigh-Taylor instabilities on reaction-diffusion fronts. The propagation of the chemical front can thus be observed, and experimental results can be obtained via image treatment. A chemical front produced by the coupling between molecular diffusion and the auto-catalysis of the chlorite-tetrathionate reaction, descends through the cell, consuming the reactants below while the product is formed above. Buoyancy-driven instabilities are formed due to the density difference between reactants and products, and the front takes a fingering pattern, whose growth rate has temperature dependence. In this study, the effect of temperature on the linear regime of the instability (that is, when the effects of such instability start to appear) was analyzed. To measure the instability, Fourier transform analysis is performed, in order to obtain the different wave numbers and their power as a function of time. Thus, the growth rate for each wave number and the most unstable wave number is obtained for each of the temperatures under study. Based on repeated experiments, a decrease in the growth rate for the most unstable wave number can be observed with the increase of temperature.
A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction
NASA Astrophysics Data System (ADS)
Rajaram, Harihar; Arshadi, Masoud
2015-04-01
Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.
Upper and lower bounds for the speed of pulled fronts with a cut-off
NASA Astrophysics Data System (ADS)
Benguria, R. D.; Depassier, M. C.; Loss, M.
2008-02-01
We establish rigorous upper and lower bounds for the speed of pulled fronts with a cut-off. For all reaction terms of KPP type a simple analytic upper bound is given. The lower bounds however depend on details of the reaction term. For a small cut-off parameter the two leading order terms in the asymptotic expansion of the upper and lower bounds coincide and correspond to the Brunet-Derrida formula. For large cut-off parameters the bounds do not coincide and permit a simple estimation of the speed of the front.
On the transition from pulled to pushed monotonic fronts of the extended Fisher Kolmogorov equation
NASA Astrophysics Data System (ADS)
Benguria, R. D.; Depassier, M. C.
2005-10-01
The extended Fisher-Kolmogorov equation ut=uxx-γuxxxx+f(u) with arbitrary positive f(u), satisfying f(0)=f(1)=0, has monotonic traveling fronts for γ<{1}/{12}. We find a simple lower bound on the speed of the fronts which allows to determine, for a given reaction term, when will the front of minimal speed be pushed.
Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
Rongy, L; Goyal, N; Meiburg, E; De Wit, A
2007-09-21
Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as square root Ra for Ra>5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts propagating in horizontal capillaries. We furthermore compare the buoyancy-driven dynamics studied here to Marangoni-driven deformation of traveling chemical fronts in solution open to the air in the absence of gravity previously studied in the same geometry [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)].
NASA Astrophysics Data System (ADS)
Jonas, Laura; John, Timm; Geisler, Thorsten; Putnis, Andrew
2013-04-01
The pseudomorphic replacement of Carrara marble by calcium phosphates was studied as a model system to examine the influence of different fluid pathways for reaction front propagation induced by fluid-rock interaction. In this model system, the grain boundaries present in the rock and the transient porosity structures developing throughout the replacement reaction enable the reaction front to progress further into the rock as well as to the center of each single grain until complete transformation. Hydrothermal treatment of the marble using phosphate bearing solutions at temperature levels of 150° C and 200° C for different durations lead to the formation of two product phases which were identified as hydroxyapatite [Ca5(PO4)3OH] as well as β-tricalcium phosphate [β-Ca3(PO4)2] (β-TCP). The formation of β-TCP was probably favored by the presence of ~0.6wt.% of Mg in the parent phase. Completely transformed single grains show a distinctive zoning, both in composition and texture. Whereas areas next to the grain boundary consist of nearly pure hydroxyapatite and show a coarse porosity, areas close to the center of the single grains show a high amount of β-TCP and a very fine porous microstructure. If F was added as an additional solution component, the formation of β-TCP was avoided and up to 3wt.% of F were incorporated into the product apatite. The use of the isotope 18O as a chronometer for the replacement reaction makes it possible to reconstruct the chronological development of the calcium phosphate reaction front. Raman analysis revealed that the incorporation of 18O in the PO4 tetrahedron of hydroxyapatite results in the development of distinct profiles in the calcium phosphate reaction front perpendicular to the grain boundaries of the marble. Through the use of the 18O chronometer, it is possible to estimate and compare the time effectiveness of the different fluid pathways in this model system. The results show that the grain boundaries serve as a very effective pathway that enable the fluid to penetrate the rock more than one order of magnitude faster compared to the newly developing channel-like porosity structures which act as pathways towards the center of single mineral grains. Thus, it may be possible for the fluid to progress relatively large distances along the grain boundaries after only short reaction durations without producing broad reaction fronts along the path.
NASA Astrophysics Data System (ADS)
Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.
2017-09-01
High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.
A Generalized Model for Transport of Contaminants in Soil by Electric Fields
Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.
2012-01-01
A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884
Propagating gene expression fronts in a one-dimensional coupled system of artificial cells
NASA Astrophysics Data System (ADS)
Tayar, Alexandra M.; Karzbrun, Eyal; Noireaux, Vincent; Bar-Ziv, Roy H.
2015-12-01
Living systems employ front propagation and spatiotemporal patterns encoded in biochemical reactions for communication, self-organization and computation. Emulating such dynamics in minimal systems is important for understanding physical principles in living cells and in vitro. Here, we report a one-dimensional array of DNA compartments in a silicon chip as a coupled system of artificial cells, offering the means to implement reaction-diffusion dynamics by integrated genetic circuits and chip geometry. Using a bistable circuit we programmed a front of protein synthesis propagating in the array as a cascade of signal amplification and short-range diffusion. The front velocity is maximal at a saddle-node bifurcation from a bistable regime with travelling fronts to a monostable regime that is spatially homogeneous. Near the bifurcation the system exhibits large variability between compartments, providing a possible mechanism for population diversity. This demonstrates that on-chip integrated gene circuits are dynamical systems driving spatiotemporal patterns, cellular variability and symmetry breaking.
Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics
Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.
2012-01-01
Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010
Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tujin; Su, Dian; Liu, Tao
2012-04-01
Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, whichmore » have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.« less
The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.
1997-01-01
Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.
Kuster, S; Riolfo, L A; Zalts, A; El Hasi, C; Almarcha, C; Trevelyan, P M J; De Wit, A; D'Onofrio, A
2011-10-14
Buoyancy-driven hydrodynamic instabilities of acid-base fronts are studied both experimentally and theoretically in the case where an aqueous solution of a strong acid is put above a denser aqueous solution of a color indicator in the gravity field. The neutralization reaction between the acid and the color indicator as well as their differential diffusion modifies the initially stable density profile in the system and can trigger convective motions both above and below the initial contact line. The type of patterns observed as well as their wavelength and the speed of the reaction front are shown to depend on the value of the initial concentrations of the acid and of the color indicator and on their ratio. A reaction-diffusion model based on charge balances and ion pair mobility explains how the instability scenarios change when the concentration of the reactants are varied.
Reaction front barriers in time aperiodic fluid flows
NASA Astrophysics Data System (ADS)
Locke, Rory; Mitchell, Kevin
2016-11-01
Many chemical and biological systems can be characterized by the propagation of a front that separates different phases or species. One approach to formalizing a general theory is to apply frameworks developed in nonlinear dynamics. It has been shown that invariant manifolds form barriers to passive transport in time-dependent or time-periodic fluid flows. More recently, analogous manifolds termed burning- invariant-manifolds (BIMs), have been shown to form one-sided barriers to reaction fronts in advection-reaction-diffusion (ARD) systems. To model more realistic time-aperiodic systems, recent theoretical work has suggested that similar one-sided barriers, termed burning Lagrangian coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval. In this presentation, we use a stochastic "wind" to generate time dependence in a double-vortex channel flow and demonstrate the (locally) most attracting or repelling curves are the bLCSs.
Pareto-front shape in multiobservable quantum control
NASA Astrophysics Data System (ADS)
Sun, Qiuyang; Wu, Re-Bing; Rabitz, Herschel
2017-03-01
Many scenarios in the sciences and engineering require simultaneous optimization of multiple objective functions, which are usually conflicting or competing. In such problems the Pareto front, where none of the individual objectives can be further improved without degrading some others, shows the tradeoff relations between the competing objectives. This paper analyzes the Pareto-front shape for the problem of quantum multiobservable control, i.e., optimizing the expectation values of multiple observables in the same quantum system. Analytic and numerical results demonstrate that with two commuting observables the Pareto front is a convex polygon consisting of flat segments only, while with noncommuting observables the Pareto front includes convexly curved segments. We also assess the capability of a weighted-sum method to continuously capture the points along the Pareto front. Illustrative examples with realistic physical conditions are presented, including NMR control experiments on a 1H-13C two-spin system with two commuting or noncommuting observables.
NASA Astrophysics Data System (ADS)
Gorodetskii, V.; Drachsel, W.; Block, J. H.
1994-05-01
Elementary steps of the CO oxidation—which are important for understanding the oscillatory behavior of this catalytic reaction—are investigated simultaneously on different Pt-single crystal surfaces by field ion microscopy. Due to preferential ionization probabilities of oxygen as imaging gas on those surface sites, which are adsorbed with oxygen, these sites can be imaged in a lateral resolution on the atomic scale. In the titration reaction a COad-precovered field emitter surface reacts with gaseous oxygen adsorbed from the gas phase or, vice versa, the Oad-precovered surface with carbon monoxide adsorbed from the gas phase. The competition of the manifold of single crystal planes exposed to the titration reaction at the field emitter tip is studied. The surface specificity can be documented in the specific reaction delay times of the different planes and in the propagation rates of the reaction-diffusion wave fronts measured on these individual planes during the titration reaction with a time resolution of 40 ms. At 300 K the COad-precovered surfaces display the {011} regions, precisely the {331} planes as the most active, followed by {012}, {122}, {001}, and finally by {111}. Reaction wave fronts move with a velocity of 8 Å/s at {012}, with ≊0.8 Å/s at {111}, and have a very fast ``switch-on'' reaction at the (001) plane with 500 Å/s. At higher temperature, T=350 K, an acceleration of reaction rates is combined with shorter delay times. The titration reaction of a precovered Oad surface with COgas at T=373 K shows the formation of CO islands starting in the {011} regions with a quickly moving reaction front into the other surface areas without showing particular delay times for different surface symmetries. The two reverse titration reactions have a largely different character. The titration of COad with oxygen adsorbed from the gas phase consists of three different steps, (i) the induction times, (ii) the highly surface specific reaction, and (iii) different rates of wave front propagation. The reaction of COgas with a precovered Oad layer on the other hand starts with nucleating islands around the {011} planes from where the whole emitter surface is populated with COad without pronounced surface specifity.
Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations
NASA Astrophysics Data System (ADS)
Zhang, Tianran
2017-05-01
In this paper, we study the traveling wave solutions and minimal wave speed for a class of non-cooperative reaction-diffusion systems consisting of three equations. Based on the eigenvalues, a pair of upper-lower solutions connecting only the invasion-free equilibrium are constructed and the Schauder's fixed-point theorem is applied to show the existence of traveling semi-fronts for an auxiliary system. Then the existence of traveling semi-fronts of original system is obtained by limit arguments. The traveling semi-fronts are proved to connect another equilibrium if natural birth and death rates are not considered and to be persistent if these rates are incorporated. Then non-existence of bounded traveling semi-fronts is obtained by two-sided Laplace transform. Then the above results are applied to some disease-transmission models and a predator-prey model.
Parametric study of shock-induced combustion in a hydrogen air system
NASA Technical Reports Server (NTRS)
Ahuja, J. K.; Tiwari, Surendra N.
1994-01-01
A numerical parametric study is conducted to simulate shock-induced combustion under various free-stream conditions and varying blunt body diameter. A steady combustion front is established if the free-stream Mach number is above the Chapman-Jouguet speed of the mixture, whereas an unsteady reaction front is established if the free-stream Mach number is below or at the Chapman-Jouguet speed of the mixture. The above two cases have been simulated for Mach 5.11 and Mach 6.46 with a projectile diameter of 15 mm. Mach 5.11, which is an underdriven case, shows an unsteady reaction front, whereas Mach 6.46, which is an overdriven case, shows a steady reaction front. Next for Mach 5. 11 reducing the diameter to 2.5 mm causes the instabilities to disappear, whereas, for Mach 6.46 increasing the diameter of the projectile to 225 mm causes the instabilities to reappear, indicating that Chapman-Jouguet speed is not the only deciding factor for these instabilities to trigger. The other key parameters are the projectile diameter, induction time, activation energy and the heat release. The appearance and disappearance of the instabilities have been explained by the one-dimensional wave interaction model.
Rongy, L; Schuszter, G; Sinkó, Z; Tóth, T; Horváth, D; Tóth, A; De Wit, A
2009-06-01
The spatiotemporal dynamics of vertical autocatalytic fronts traveling horizontally in thin solution layers closed to the air can be influenced by buoyancy-driven convection induced by density gradients across the front. We perform here a combined experimental and theoretical study of the competition between solutal and thermal effects on such convection. Experimentally, we focus on the antagonistic chlorite-tetrathionate reaction for which solutal and thermal contributions to the density jump across the front have opposite signs. We show that in isothermal conditions the heavier products sink below the lighter reactants, providing an asymptotic constant finger shape deformation of the front by convection. When thermal effects are present, the hotter products, on the contrary, climb above the reactants for strongly exothermic conditions. These various observations as well as the influence of the relative weight of the solutal and thermal effects and of the thickness of the solution layer on the dynamics are discussed in terms of a two-dimensional reaction-diffusion-convection model parametrized by a solutal R(C) and a thermal R(T) Rayleigh number.
Modelling chemical depletion profiles in regolith
Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.
2008-01-01
Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.
Coarsening in the buoyancy-driven instability of a reaction-diffusion front.
Böckmann, Martin; Müller, Stefan C
2004-10-01
When propagating in a vertical direction an autocatalytic reaction front associated with a change in density can become buoyantly unstable, leading to the formation of a fingerlike pattern. Later on these fingers start to interact. Their temporal evolution is studied experimentally by tracking the horizontal and vertical locations of the extrema of the front pattern. A proceeding development towards larger spatial scales is found. This is reflected in the differences in the vertical speed of neighboring fingers: continually some fingers start to decelerate and vanish finally in the neighboring ones which show a simultaneous acceleration. In addition, weak lateral movements of fingers towards gaps are observed, but there is no evidence for a correlation with the extinction of fingers.
Pareto fronts for multiobjective optimization design on materials data
NASA Astrophysics Data System (ADS)
Gopakumar, Abhijith; Balachandran, Prasanna; Gubernatis, James E.; Lookman, Turab
Optimizing multiple properties simultaneously is vital in materials design. Here we apply infor- mation driven, statistical optimization strategies blended with machine learning methods, to address multi-objective optimization tasks on materials data. These strategies aim to find the Pareto front consisting of non-dominated data points from a set of candidate compounds with known character- istics. The objective is to find the pareto front in as few additional measurements or calculations as possible. We show how exploration of the data space to find the front is achieved by using uncer- tainties in predictions from regression models. We test our proposed design strategies on multiple, independent data sets including those from computations as well as experiments. These include data sets for Max phases, piezoelectrics and multicomponent alloys.
Dissolution Front Instabilities in Reacting Porous Media
NASA Astrophysics Data System (ADS)
Raoof, Amir; Spiers, Chris; Hassanizadeh, Majid
2013-04-01
The main objective of this research is to gain a better understanding of the relation between regime of reaction and dissolution front instability, leading to formation of channels or wormholes. Potential applications are geological sequestration of CO2 and acid-gas injection during enhanced oil recovery. The microscopic pore space is modeled using a multi-directional pore network, allowing for a distribution of pore coordination number, together with distribution of pore sizes. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat). We have considered advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, including both equilibrium and kinetic reactions. Using dimensionless scaling groups (such as Damköhler number and Péclet-Damköhler number) we characterized the dissolution front behavior, and by averaging over the network domain we calculated the evolution of porosity and permeability as well as flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is also evaluated and regime of reaction is shown to play a key role.
A Luenberger observer for reaction-diffusion models with front position data
NASA Astrophysics Data System (ADS)
Collin, Annabelle; Chapelle, Dominique; Moireau, Philippe
2015-11-01
We propose a Luenberger observer for reaction-diffusion models with propagating front features, and for data associated with the location of the front over time. Such models are considered in various application fields, such as electrophysiology, wild-land fire propagation and tumor growth modeling. Drawing our inspiration from image processing methods, we start by proposing an observer for the eikonal-curvature equation that can be derived from the reaction-diffusion model by an asymptotic expansion. We then carry over this observer to the underlying reaction-diffusion equation by an ;inverse asymptotic analysis;, and we show that the associated correction in the dynamics has a stabilizing effect for the linearized estimation error. We also discuss the extension to joint state-parameter estimation by using the earlier-proposed ROUKF strategy. We then illustrate and assess our proposed observer method with test problems pertaining to electrophysiology modeling, including with a realistic model of cardiac atria. Our numerical trials show that state estimation is directly very effective with the proposed Luenberger observer, while specific strategies are needed to accurately perform parameter estimation - as is usual with Kalman filtering used in a nonlinear setting - and we demonstrate two such successful strategies.
Double-inversion mechanisms of the X⁻ + CH₃Y [X,Y = F, Cl, Br, I] SN2 reactions.
Szabó, István; Czakó, Gábor
2015-03-26
The double-inversion and front-side attack transition states as well as the proton-abstraction channels of the X(-) + CH3Y [X,Y = F, Cl, Br, I] reactions are characterized by the explicitly correlated CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory using small-core relativistic effective core potentials and the corresponding aug-cc-pVTZ-PP bases for Br and I. In the X = F case the double-inversion classical(adiabatic) barrier heights are 28.7(25.6), 15.8(13.4), 13.2(11.0), and 8.6(6.6) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, whereas the barrier heights are in the 40-90 kcal mol(-1) range for the other 12 reactions. The abstraction channels are always above the double-inversion saddle points. For X = F, the front-side attack classical(adiabatic) barrier heights, 45.8(44.8), 31.0(30.3), 24.7(24.2), and 19.5(19.3) kcal mol(-1) for Y = F, Cl, Br, and I, respectively, are higher than the corresponding double-inversion ones, whereas for the other systems the front-side attack saddle points are in the 35-70 kcal mol(-1) range. The double-inversion transition states have XH···CH2Y(-) structures with Cs point-group symmetry, and the front-side attack saddle points have either Cs (X = F or X = Y) or C1 symmetry with XCY angles in the 78-88° range. On the basis of the previous reaction dynamics simulations and the minimum energy path computations along the inversion coordinate of selected XH···CH2Y(-) systems, we suggest that the double inversion may be a general mechanism for SN2 reactions.
Influence of an electric field on the buoyancy-driven instabilities.
Zadrazil, Ales; Sevcíková, Hana
2005-11-01
The influence of dc electric fields (EFs) on the development of buoyancy-driven instabilities of reaction fronts is investigated experimentally in a modified Hele-Shaw cell for the arsenous acid-iodate system. Assessment of effects of external EFs is made both visually and through dispersion curves. It is shown that density fingering, observed on ascending fronts, is suppressed by the EF if the front propagates towards the positive electrode and is enhanced when the front propagates towards the negative electrode. The stabilizing (destabilizing) effects include slower (faster) development of fingers and the decrease (increase) in their numbers. The descending front, stable under no EF conditions, remains stable when an EF is applied with the positive electrode facing the approaching front. When the descending front faces the negative electrode, the tiny fingerlike structure develops after quite a long time.
Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.
Andres, Jeanne Therese H; Cardoso, Silvana S S
2012-09-01
We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.
Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts
Zhalyalov, Ansar S.; Panteleev, Mikhail A.; Gracheva, Marina A.; Ataullakhanov, Fazoil I.
2017-01-01
Fibrinolysis is a cascade of proteolytic reactions occurring in blood and soft tissues, which functions to disintegrate fibrin clots when they are no more needed. In order to elucidate its regulation in space and time, fibrinolysis was investigated using an in vitro reaction-diffusion experimental model of blood clot formation and dissolution. Clotting was activated by a surface with immobilized tissue factor in a thin layer of recalcified blood plasma supplemented with tissue plasminogen activator (TPA), urokinase plasminogen activator or streptokinase. Formation and dissolution of fibrin clot was monitored by videomicroscopy. Computer systems biology model of clot formation and lysis was developed for data analysis and experimental planning. Fibrin clot front propagated in space from tissue factor, followed by a front of clot dissolution propagating from the same source. Velocity of lysis front propagation linearly depended on the velocity clotting front propagation (correlation r2 = 0.91). Computer model revealed that fibrin formation was indeed the rate-limiting step in the fibrinolysis front propagation. The phenomenon of two fronts which switched the state of blood plasma from liquid to solid and then back to liquid did not depend on the fibrinolysis activator. Interestingly, TPA at high concentrations began to increase lysis onset time and to decrease lysis propagation velocity, presumably due to plasminogen depletion. Spatially non-uniform lysis occurred simultaneously with clot formation and detached the clot from the procoagulant surface. These patterns of spatial fibrinolysis provide insights into its regulation and might explain clinical phenomena associated with thrombolytic therapy. PMID:28686711
Uncertainty analysis of trade-offs between multiple responses using hypervolume
Cao, Yongtao; Lu, Lu; Anderson-Cook, Christine M.
2017-08-04
When multiple responses are considered in process optimization, the degree to which they can be simultaneously optimized depends on the optimization objectives and the amount of trade-offs between the responses. The normalized hypervolume of the Pareto front is a useful summary to quantify the amount of trade-offs required to balance performance across the multiple responses. In order to quantify the impact of uncertainty of the estimated response surfaces and add realism to what future data to expect, 2 versions of the scaled normalized hypervolume of the Pareto front are presented. To demonstrate the variation of the hypervolume distributions, we exploremore » a case study for a chemical process involving 3 responses, each with a different type of optimization goal. Our results show that the global normalized hypervolume characterizes the proximity to the ideal results possible, while the instance-specific summary considers the richness of the front and the severity of trade-offs between alternatives. Furthermore, the 2 scaling schemes complement each other and highlight different features of the Pareto front and hence are useful to quantify what solutions are possible for simultaneous optimization of multiple responses.« less
Uncertainty analysis of trade-offs between multiple responses using hypervolume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yongtao; Lu, Lu; Anderson-Cook, Christine M.
When multiple responses are considered in process optimization, the degree to which they can be simultaneously optimized depends on the optimization objectives and the amount of trade-offs between the responses. The normalized hypervolume of the Pareto front is a useful summary to quantify the amount of trade-offs required to balance performance across the multiple responses. In order to quantify the impact of uncertainty of the estimated response surfaces and add realism to what future data to expect, 2 versions of the scaled normalized hypervolume of the Pareto front are presented. To demonstrate the variation of the hypervolume distributions, we exploremore » a case study for a chemical process involving 3 responses, each with a different type of optimization goal. Our results show that the global normalized hypervolume characterizes the proximity to the ideal results possible, while the instance-specific summary considers the richness of the front and the severity of trade-offs between alternatives. Furthermore, the 2 scaling schemes complement each other and highlight different features of the Pareto front and hence are useful to quantify what solutions are possible for simultaneous optimization of multiple responses.« less
Lag-driven motion in front propagation
NASA Astrophysics Data System (ADS)
Amor, Daniel R.; Fort, Joaquim
2013-10-01
Front propagation is a ubiquitous phenomenon. It arises in physical, biological and cross-disciplinary systems as diverse as flame propagation, superconductors, virus infections, cancer spread or transitions in human prehistory. Here we derive a single, approximate front speed from three rather different time-delayed reaction-diffusion models, suggesting a general law. According to our approximate speed, fronts are crucially driven by the lag times (periods during which individuals or particles do not move). Rather surprisingly, the approximate speed is able to explain the observed spread rates of completely different biophysical systems such as virus infections, the Neolithic transition in Europe, and postglacial tree recolonizations.
Weathering crusts on peridotite
NASA Astrophysics Data System (ADS)
Bucher, Kurt; Stober, Ingrid; Müller-Sigmund, Hiltrud
2015-05-01
Chemical weathering of dark-green massive peridotite, including partly serpentinized peridotite, produces a distinct and remarkable brown weathering rind when exposed to the atmosphere long enough. The structure and mineral composition of crusts on rocks from the Ronda peridotite, Spain, have been studied in some detail. The generic overall weathering reaction serpentinized peridotite + rainwater = weathering rind + runoff water describes the crust-forming process. This hydration reaction depends on water supply from the outcrop surface to the reaction front separating green peridotite from the brown crust. The reaction pauses after drying and resumes at the front after wetting. The overall net reaction transforms olivine to serpentine in a volume-conserving replacement reaction. The crust formation can be viewed as secondary serpentinization of peridotite that has been strongly altered by primary hydrothermal serpentinization. The reaction stoichiometry of the crust-related serpentinization is preserved and reflected by the composition of runoff waters in the peridotite massif. The brown color of the rind is caused by amorphous Fe(III) hydroxide, a side product from the oxidation of Fe(II) released by the dissolution of fayalite component in olivine.
Numerical analysis on infiltration-driven decarbonation during skarnification
NASA Astrophysics Data System (ADS)
Chu, X.; Lee, C. T.; Dasgupta, R.
2017-12-01
Interaction of arc magmas with carbonate sequences on active margins leads to contact metamorphism and metasomatism by infiltrating magmatic fluids. This skarnification process releases CO2 to the metasomatic fluids, which transport carbon to shallow reservoirs and can affect the long-term carbon budget in the exogenic system [1]. In this study, we apply a self-consistent 1D finite difference model to an impure marble consisting of quartz and calcite, in a similar scheme as ref [2]. The Darcian flow is modeled with a fixed boundary condition of water influx, taking into account the reaction kinetics [3,4] and pore space compaction. The modeling results show that the reaction front lags the fluid infiltration front and propagates at the rate scaling with: = k × [infiltrating fluid flux] / [reactant amount], where k is a function of the reaction kinetics and rock rheology. The reaction front does not advance until one reactant is exhausted; thus a protolith assemblage of 50:50 quartz:calcite has the slowest-moving reaction front. The steady-state carbon flux scales with the distance of reaction front to comply with mass conservation, and thus yields a linear relationship with the infiltrating flux and is largely independent of the protolith quartz:calcite ratio. Assuming that the rate of global magma emplacement on the continental arcs is 3 km3/yr [5], the arc magmas exsolve 5 vol.% water as they crystallize, and 40% of such magmas intrude carbonate sequences, the total steady-state carbon flux due to skarnification is 0.2 Tmol/yr. By contrast, Mount Etna alone emits carbon up to 0.2 Tmol/yr, most of which is the product of magma-carbonate interaction [6]. We note that the infiltration of pure water produces a wollastonite marble; natural metasomatic fluid is saturated with silica and other components, which leads to greater decarbonation and the formation of calc-silicate skarn. Wallrock assimilation also adds to the carbon flux from arcs, so the simplified analysis should be viewed as a lower-limit estimate. [1] Lee et al (2013) Geosphere 9. [2] Balashov & Yardley (1998) Am J Sci 298. [3] Joesten & Fisher (1988) GSA Bull 100. [4] Lasaga & Rye (1993) Am J Sci 293. [5] Crisp (1984) J Volcanol Geotherm Res 20. [6] Allard et al (1991) Nature 351.
Recovery of tritium from tritiated molecules
Swansiger, W.A.
1984-10-17
This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.
Prieto, Mauricio J; Klemm, Hagen W; Xiong, Feng; Gottlob, Daniel M; Menzel, Dietrich; Schmidt, Thomas; Freund, Hans-Joachim
2018-04-16
Using low-energy electron microscopy and local photoelectron spectroscopy, water formation from adsorbed O and H 2 on a Ru(0001) surface covered with a vitreous SiO 2 bilayer (BL) was investigated and compared to the same reaction on bare Ru(0001). In both cases the reaction is characterized by moving reaction fronts. The reason for this might be related to the requirement of site release by O adatoms for further H 2 -dissociative adsorption. Apparent activation energies (Eaapp ) are found for the front motion of 0.59 eV without cover and 0.27 eV under cover. We suggest that the smaller activation energy but higher reaction temperature for the reaction on the SiO 2 BL covered Ru(0001) surface is due to a change of the rate-determining step. Other possible effects of the cover are discussed. Our results give the first values for Eaapp in confined space. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Making MUSIC: A multiple sampling ionization chamber
NASA Astrophysics Data System (ADS)
Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.
2007-08-01
A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.
A 2.5D Reactive Transport Model for Fracture Alteration Simulation
Deng, Hang; Molins, Sergi; Steefel, Carl; ...
2016-06-30
Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here in this paper, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the modelmore » is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO 2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. Finally, with an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer.« less
On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
D'Hernoncourt, J; Zebib, A; De Wit, A
2007-03-01
Exothermic autocatalytic fronts traveling in the gravity field can be deformed by buoyancy-driven convection due to solutal and thermal contributions to changes in the density of the product versus the reactant solutions. We classify the possible instability mechanisms, such as Rayleigh-Benard, Rayleigh-Taylor, and double-diffusive mechanisms known to operate in such conditions in a parameter space spanned by the corresponding solutal and thermal Rayleigh numbers. We also discuss a counterintuitive instability leading to buoyancy-driven deformation of statically stable fronts across which a solute-light and hot solution lies on top of a solute-heavy and colder one. The mechanism of this chemically driven instability lies in the coupling of a localized reaction zone and of differential diffusion of heat and mass. Dispersion curves of the various cases are analyzed. A discussion of the possible candidates of autocatalytic reactions and experimental conditions necessary to observe the various instability scenarios is presented.
Engesgaard, Peter; Kipp, Kenneth L.
1992-01-01
A one-dimensional prototype geochemical transport model was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The model was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2013-11-01
Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.
Phase-field model for the two-phase lithiation of silicon
NASA Astrophysics Data System (ADS)
Gao, Fangliang; Hong, Wei
2016-09-01
As an ideal anode material, silicon has the highest lithium-ion capacity in theory, but the broader application is limited by the huge volumetric strain caused by lithium insertion and extraction. To better understand the physical process and to resolve the related reliability issue, enormous efforts have been made. Recent experiments observed sharp reaction fronts in both crystalline and amorphous silicon during the first lithiation half-cycle. Such a concentration profile indicates that the process is likely to be reaction limited. Based on this postulation, a phase-field model is developed and implemented into a finite-element code to simulate the coupled large inelastic deformation and motion of the reaction front in a silicon electrode. In contrast to most existing models, the model treats both volumetric and deviatoric inelastic deformation in silicon as a direct consequence of the lithiation at the reaction front. The amount of deviatoric deformation is determined by using the recently developed kinetic model of stress-induced anisotropic reaction. By considering the role of stress in the lithiation process, this model successfully recovers the self-limiting phenomenon of silicon electrodes, and relates it to the local geometry of electrodes. The model is also used to evaluate the energy-release rate of the surface crack on a spherical electrode, and the result suggests a critical size of silicon nanoparticles to avert fracture. As examples, the morphology evolution of a silicon disk and a Si nanowire during lithiation are also investigated.
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Le Borgne, Tanguy; Méheust, Yves; Dentz, Marco
2017-02-01
Mixing fronts, where fluids of different chemical compositions mix with each other, are known to represent hotspots of chemical reaction in hydrological systems. These fronts are typically subjected to velocity gradients, ranging from the pore scale due to no slip boundary conditions at fluid solid interfaces, to the catchment scale due to permeability variations and complex geometry of the Darcy velocity streamlines. A common trait of these processes is that the mixing interface is strained by shear. Depending on the Péclet number Pe , which represents the ratio of the characteristic diffusion time to the characteristic shear time, and the Damköhler number Da , which represents the ratio of the characteristic diffusion time to the characteristic reaction time, the local reaction rates can be strongly impacted by the dynamics of the mixing interface. So far, this impact has been characterized mostly either in kinetics-limited or in mixing-limited conditions, that is, for either low or high Da. Here the coupling of shear flow and chemical reactivity is investigated for arbitrary Damköhler numbers, for a bimolecular reaction and an initial interface with separated reactants. Approximate analytical expressions for the global production rate and reactive mixing scale are derived based on a reactive lamella approach that allows for a general coupling between stretching enhanced mixing and chemical reactions. While for Pe < Da , reaction kinetics and stretching effects are decoupled, a scenario which we name "weak stretching", for Pe > Da , we uncover a "strong stretching" scenario where new scaling laws emerge from the interplay between reaction kinetics, diffusion, and stretching. The analytical results are validated against numerical simulations. These findings shed light on the effect of flow heterogeneity on the enhancement of chemical reaction and the creation of spatially localized hotspots of reactivity for a broad range of systems ranging from kinetic limited to mixing limited situations.
Rapid detonation initiation by sparks in a short duct: a numerical study
NASA Astrophysics Data System (ADS)
Hu, Z. M.; Dou, H. S.; Khoo, B. C.
2010-06-01
Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.
On the existence of stationary reaction fronts in precipitation-dissolution systems
NASA Astrophysics Data System (ADS)
Kondratiuk, Paweł; Nizinkiewicz, Hanna; Ladd, Anthony JC; Szymczak, Piotr
2014-05-01
Coupled precipitation-dissolution processes are ubiquitous in hydrogeochemical systems which are out of chemical equilibrium. However, as already remarked by Ortoleva et al. [1], the precipitation front will in general move with a velocity different form that of a dissolution front; thus the distance between them will increase in time. However, there are a number of systems where the both fronts appear to move with the same velocity. One example is the terra rossa formation process [2], in which kaolinite precipitation produces hydrogen ions that dissolve the underlying calcite. In this case the velocities of the dissolution and precipitation front agree to within 1%, which does not seem accidental. In this communication, we propose a possible mechanism of such a front synchronization, and study its further implications for the dynamics of the system. [1] P. Ortoleva et al., Physica D: 19, 334 (1986) [2] E. Merino and A. Banjerjee, J. Geol., 116, 62 (2008)
Frontal Polymerization of Dicyclopentadiene: A Numerical Study.
Goli, Elyas; Robertson, Ian D; Geubelle, Philippe H; Moore, Jeffrey S
2018-04-26
As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e., front velocity and characteristic length scales. The second part of this study focuses on the prediction of the temperature spike associated with the merger of two polymerization fronts. The thermal peak, which might be detrimental to the properties of the polymerized material, is due to the inability of the heat associated with the highly exothermic reaction to be dissipated when the two fronts merge. The analysis investigates how the amplitude of the thermal spike is affected by the degree of cure at the time of the front merger.
Fluctuation Effects on Propagating Waves of Self-Assembly in Organosilane Monolayers.
NASA Astrophysics Data System (ADS)
Douglas, Jack
2008-03-01
Wavefronts associated with reaction--diffusion and self-assembly processes are ubiquitous in the natural world. For example, propagating fronts arise in crystallization and diverse other thermodynamic ordering processes, in polymerization fronts involved in cell movement and division, as well as in the competitive social interactions and population dynamics of animals at much larger scales. Although it is often claimed that self-sustaining or autocatalytic front propagation is well described by mean-field ``reaction-- diffusion'' or ``phase field'' ordering models, it has recently become appreciated from simulations and theoretical arguments that fluctuation effects in lower spatial dimensions can lead to appreciable deviations from the classical mean-field theory (MFT) of this type of front propagation. The present work explores these fluctuation effects in a real physical system. In particular, we consider a high-resolution near-edge x-ray absorption fine structure spectroscopy (NEXAFS) study of the spontaneous frontal self-assembly of organosilane (OS) molecules into self-assembled monolayer (SAM) surface-energy gradients on oxidized silicon wafers. We find that these layers organize from the wafer edge as propagating wavefronts having well defined velocities. In accordance with two-dimensional simulations of this type of front propagation that take fluctuation effects into account, we find that the interfacial widths w(t) of these SAM self-assembly fronts exhibit a power-law broadening of in time w(t) ˜ t^β, rather than the constant width predicted by MFT. Moreover, the observed exponent values accord rather well with previous simulation and theoretical estimates. These observations have significant implications for diverse types of ordering fronts that occur under confinement conditions in biological or materials-processing contexts.
Robert N. Addington; Gregory H. Aplet; Mike A. Battaglia; Jennifer S. Briggs; Peter M. Brown; Antony S. Cheng; Yvette Dickinson; Jonas A. Feinstein; Kristen A. Pelz; Claudia M. Regan; Jim Thinnes; Rick Truex; Paula J. Fornwalt; Benjamin Gannon; Chad W. Julian; Jeffrey L. Underhill; Brett Wolk
2018-01-01
Wildfires have become larger and more severe over the past several decades on Coloradoâs Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks. The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest...
Adaptive two-regime method: Application to front propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Martin, E-mail: martin.robinson@maths.ox.ac.uk; Erban, Radek, E-mail: erban@maths.ox.ac.uk; Flegg, Mark, E-mail: mark.flegg@monash.edu
2014-03-28
The Adaptive Two-Regime Method (ATRM) is developed for hybrid (multiscale) stochastic simulation of reaction-diffusion problems. It efficiently couples detailed Brownian dynamics simulations with coarser lattice-based models. The ATRM is a generalization of the previously developed Two-Regime Method [Flegg et al., J. R. Soc., Interface 9, 859 (2012)] to multiscale problems which require a dynamic selection of regions where detailed Brownian dynamics simulation is used. Typical applications include a front propagation or spatio-temporal oscillations. In this paper, the ATRM is used for an in-depth study of front propagation in a stochastic reaction-diffusion system which has its mean-field model given in termsmore » of the Fisher equation [R. Fisher, Ann. Eugen. 7, 355 (1937)]. It exhibits a travelling reaction front which is sensitive to stochastic fluctuations at the leading edge of the wavefront. Previous studies into stochastic effects on the Fisher wave propagation speed have focused on lattice-based models, but there has been limited progress using off-lattice (Brownian dynamics) models, which suffer due to their high computational cost, particularly at the high molecular numbers that are necessary to approach the Fisher mean-field model. By modelling only the wavefront itself with the off-lattice model, it is shown that the ATRM leads to the same Fisher wave results as purely off-lattice models, but at a fraction of the computational cost. The error analysis of the ATRM is also presented for a morphogen gradient model.« less
Emissivity corrected pyrometry of reactive multilayers
NASA Astrophysics Data System (ADS)
Farrow, Darcie; Abere, Michael; Rupper, Stephen; Conwell, Thomas; Tappan, Alexander; Adams, David
2017-06-01
Ignition of sputter deposited nano-laminates results in rapid, self-propagating reactions. Due to high (10's of m/s) reaction front velocities, temperatures in the 1,000's of °K, and rapid phase changes occurring during reaction, direct measurement of temperature has proven difficult. This work presents a pyrometry technique with sub-microsecond time resolution, 10-6 m spatial resolution, and real time calculation of emissivity. By modulating a laser at 100 kHz and then Fourier processing the summed signal of emission and modulated reflectance, this emissivity corrected pyrometer overcomes the traditional limitations of two-color pyrometery for samples that do not follow the grey body approximation. The instrument has allowed for the direct measurement of temperature in NiAl and AlPt flame fronts, which allows for a determination of heat loss from an adiabatic condition. Further, a bilayer thickness dependence study has shown the relationship between front propagation velocity and flame temperature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Effect of phase front modulation on the merging of multiple regularized femtosecond filaments
NASA Astrophysics Data System (ADS)
Pushkarev, D.; Shipilo, D.; Lar'kin, A.; Mitina, E.; Panov, N.; Uryupina, D.; Ushakov, A.; Volkov, R.; Karpeev, S.; Khonina, S.; Kosareva, O.; Savel'ev, A.
2018-04-01
Comparative experimental data on filamentation of a powerful femtosecond laser beams with amplitude or phase front modulation is presented. We show that phase discontinuities and zero intensity lines prevented filament merging and superfilament formation.
Method for fabricating an ignitable heterogeneous stratified metal structure
Barbee, T.W. Jr.; Weihs, T.
1996-08-20
A multilayer structure has a selectable: (1) propagating reaction front velocity V; (2) reaction initiation temperature attained by application of external energy; and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.
Method for fabricating an ignitable heterogeneous stratified metal structure
Barbee, Jr., Troy W.; Weihs, Timothy
1996-01-01
A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.
NASA Astrophysics Data System (ADS)
Hwang, Stephen
Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.
Geng, Xiaohua; Podlaha, Elizabeth J
2016-12-14
A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H + ), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.
Observational evidence confirms modelling of the long-term integrity of CO 2-reservoir caprocks
Kampman, N.; Busch, A.; Bertier, P.; ...
2016-07-28
Storage of anthropogenic CO 2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO 2 escaping. Although natural CO 2 reservoirs demonstrate that CO 2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO 2-bearing brines. The resulting uncertainty poses a significant challenge to the risk assessment of geological carbon storage. We describe mineral reaction fronts in a CO 2 reservoir-caprock system exposed to CO 2 over a timescale comparable with that needed for geological carbon storage. Moreover, the propagation of the reaction front ismore » retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ~7 cm in ~10 5 years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO 2.« less
Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks
Kampman, N.; Busch, A.; Bertier, P.; Snippe, J.; Hangx, S.; Pipich, V.; Di, Z.; Rother, G.; Harrington, J. F.; Evans, J. P.; Maskell, A.; Chapman, H. J.; Bickle, M. J.
2016-01-01
Storage of anthropogenic CO2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO2 escaping. Although natural CO2 reservoirs demonstrate that CO2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO2-bearing brines. This uncertainty poses a significant challenge to the risk assessment of geological carbon storage. Here we describe mineral reaction fronts in a CO2 reservoir-caprock system exposed to CO2 over a timescale comparable with that needed for geological carbon storage. The propagation of the reaction front is retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ∼7 cm in ∼105 years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO2. PMID:27464840
NASA Astrophysics Data System (ADS)
Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.
2015-09-01
A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.
Gorski Findling, Mary T; Werth, Paul M; Musicus, Aviva A; Bragg, Marie A; Graham, Dan J; Elbel, Brian; Roberto, Christina A
2018-01-01
In 2011, a National Academy of Medicine report recommended that packaged food in the U.S. display a uniform front-of-package nutrition label, using a system such as a 0-3 star ranking. Few studies have directly compared this to other labels to determine which best informs consumers and encourages healthier purchases. In 2013, we randomized adult participants (N=1247) in an Internet-based survey to one of six conditions: no label control; single traffic light; multiple traffic light; Facts Up Front; NuVal; or 0-3 star ranking. We compared groups on purchase intentions and accuracy of participants' interpretation of food labels. There were no differences in the nutritional quality of hypothetical shopping baskets across conditions (p=0.845). All labels improved consumers' abilities to judge the nutritional quality of foods relative to no label, but the best designs varied by outcomes. NuVal and multiple traffic light labels led to the greatest accuracy identifying the healthier of two products (p<0.001), while the multiple traffic light also led to the most accurate estimates of saturated fat, sugar, and sodium (p<0.001). The single traffic light outperformed other labels when participants compared nutrient levels between similar products (p<0.03). Single/multiple traffic light and Facts Up Front labels led to the most accurate calories per serving estimations (p<0.001). Although front-of-package labels helped participants more accurately assess products' nutrition information relative to no label, no conditions shifted adults' purchase intentions. Results did not point to a clearly superior label design, but they suggest that a 3-star label might not be best for educating consumers. Copyright © 2017 Elsevier Inc. All rights reserved.
The firehose instability during multiple reconnection in the Earth's magnetotail
NASA Astrophysics Data System (ADS)
Alexandrova, Alexandra; Divin, Andrey; Retino, Alessandro; Deca, Jan; Catapano, Filomena; Cozzani, Giulia
2017-04-01
We found unique events in the Cluster spacecraft observations of the Earth's magnetotail which correspond to the case of multiple reconnection sites. The ion temperature anisotropy of more energized ions in the direction parallel to the magnetic field, rather than in the perpendicular direction, is observed in the region of dynamical interaction between two active X-lines. The magnetic field and plasma parameters associated with the anisotropy correspond to the firehose instability conditions. We discuss possible scenarios of development of the firehose instability in multiple reconnection by comparing the observations with numerical simulations. Conventional Particle-in-Cell simulations of 2D magnetic reconnection starting from Harris equilibria are performed using implicit PIC code iPIC3D [Markidis, 2010]. At earlier stages the evolution creates fronts which push the weakly magnetized current sheet plasma away from the X-line. Fronts accelerate and reflect particles, producing parallel ion beams and increasing parallel ion temperature ahead of the front. If multiple X-lines are present, then the counterstreaming ion beams appear inside the original current sheet between colliding reconnection jet fronts. For large enough parallel ion pressure anisotropy, the firehose-like mode is excited inside the original current sheet with a flapping-like appearance along the X GSM direction but not Y GSM (current) direction. One should note that our simulations do not include the Bz magnetic field component (normal to the current sheet), hence ion beams cannot escape into the lobes and the whole region between two colliding fronts is unstable to firehose-like instability. In the Earth's magnetotail such configuration likely occurs when two active X-lines are close enough to each other, similar to a few cases we found in the Cluster observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
SURFplus is a reactive burn model for high explosives aimed at modelling shock initiation and propagation of detonation waves. It utilizes the SURF model for the fast hot-spot reaction plus a slow reaction for the energy released by carbon clustering. A feature of the SURF model is that there is a partially decoupling between burn rate parameters and detonation wave properties. Previously, parameters for PBX 9502 that control shock ini- tiation had been calibrated to Pop plot data (distance-of-run to detonation as a function of shock pressure initiating the detonation). Here burn rate parameters for the high pres- sure regimemore » are adjusted to t the failure diameter and the limiting detonation speed just above the failure diameter. Simulated results are shown for an uncon ned rate stick when the 9502 diameter is slightly above and slightly below the failure diameter. Just above the failure diameter, in the rest frame of the detonation wave, the front is sonic at the PBX/air interface. As a consequence, the lead shock in the neighborhood of the interface is supported by the detonation pressure in the interior of the explosive rather than the reaction immediately behind the front. In the interior, the sonic point occurs near the end of the fast hot-spot reaction. Consequently, the slow carbon clustering reaction can not a ect the failure diameter. Below the failure diameter, the radial extent of the detonation front decreases starting from the PBX/air interface. That is, the failure starts at the PBX boundary and propagates inward to the axis of the rate stick.« less
Barbee, T.W. Jr.; Weihs, T.
1996-07-23
A multilayer structure has a selectable, (1) propagating reaction front velocity V, (2) reaction initiation temperature attained by application of external energy, and (3) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as igniters, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t{sub i}, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D{sup n}){times}[1-(t{sub i}/D)] and n is about 0.8 to 1.2. 8 figs.
Barbee, Jr., Troy W.; Weihs, Timothy
1996-01-01
A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, where V=K(1/D.sup.n).times.[1-(t.sub.i /D)] and n is about 0.8 to 1.2.
Insights from field observations into controls on flow front speed in submarine sediment flows
NASA Astrophysics Data System (ADS)
Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.
2017-12-01
Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.
NASA Astrophysics Data System (ADS)
Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.
2010-12-01
Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.
Technique of electrical stimulation of the vestibular analyzer under clinical conditions
NASA Technical Reports Server (NTRS)
Khechinashvili, S. N.; Zargaryan, B. M.; Karakozov, K. G.
1980-01-01
Vestibular reactions appear under the action of direct current (dc) on the labyrinth of man and animals. A decrease of the stimulation effect of dc on the extralabyrinthine nervous formations in the suggested method is achieved by the use of electric pulses with steep front and back parts, as well as by previous anesthetization of the skin in the electrode application area by means of novocain solution electrophoresis. For this purpose a pulse producer giving trapezoid pulses with smoothly changing fronts and duration was constructed. With the help of an interrupter it is possible to stop the current increase instantly, and stimulation is performed at the level of the pulse 'plateau'. To induce vestibular reactions under monopolar stimulation, it is necessary to apply the current twice as high as that with bipolar electrode position. The use of short pulses with steep front and back parts for electrode stimulation of the vestibular analyzer is considered to be inexpedient.
Frontal Polymerization in Microgravity: Bubble Behavior and Convection on the KC-135 Aircraft
NASA Technical Reports Server (NTRS)
Pojman, John A.; Ainsworth, William; Chekanov, Yuri; Masere, Jonathan; Volpert, Vitaly; Dumont, Thierry; Wilke, Hermann
2001-01-01
Frontal polymerization is a mode of converting monomer into polymer via a localized exothermic reaction zone that propagates through the coupling of thermal diffusion and Arrhenius reaction kinetics. Frontal polymerization was discovered in Russia by Chechilo and Enikolopyan in 1972. The macrokinetics and dynamics of frontal polymerization have been examined in detail and applications for materials synthesis considered. Large temperature and concentration gradients that occur in the front lead to large density gradients. A schematic is presented for a liquid monomer, usually a monoacrylate, being converted to a liquid (thermoplastic) polymer. The velocity can be controlled by the initiator concentration but is on the order of a cm/min. If the liquid monomer is multifunctional, then a solid (thermoset) polymer is formed. Convection can occur with all types of monomers if the front propagates up a tube. Bowden et al. studied liquid/solid systems. McCaughey et al. studied liquid polymer systems. Descending fronts in thermoplastic systems are also susceptible to the Rayleigh-Taylor instability.
Beyond the Western front: Targeted proteomics and organelle abundance profiling
Parsons, Harriet T.; Heazlewood, Joshua L.
2015-05-05
The application of westerns or immunoblotting techniques for assessing the composition, dynamics, and purity of protein extracts from plant material has become common practice. While the approach is reproducible, can be readily applied and is generally considered robust, the field of plant science suffers from a lack of antibody variety against plant proteins. The development of approaches that employ mass spectrometry to enable both relative and absolute quantification of many hundreds of proteins in a single sample from a single analysis provides a mechanism to overcome the expensive impediment in having to develop antibodies in plant science. Here, we considermore » it an opportune moment to consider and better develop the adoption of multiple reaction monitoring (MRM)-based analyses in plant biochemistry.« less
Beyond the Western front: Targeted proteomics and organelle abundance profiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Harriet T.; Heazlewood, Joshua L.
The application of westerns or immunoblotting techniques for assessing the composition, dynamics, and purity of protein extracts from plant material has become common practice. While the approach is reproducible, can be readily applied and is generally considered robust, the field of plant science suffers from a lack of antibody variety against plant proteins. The development of approaches that employ mass spectrometry to enable both relative and absolute quantification of many hundreds of proteins in a single sample from a single analysis provides a mechanism to overcome the expensive impediment in having to develop antibodies in plant science. Here, we considermore » it an opportune moment to consider and better develop the adoption of multiple reaction monitoring (MRM)-based analyses in plant biochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu
In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less
Instabilities and finger formation in replacement fronts driven by an oversaturated solution
NASA Astrophysics Data System (ADS)
Kondratiuk, Paweł; Tredak, Hanna; Upadhyay, Virat; Ladd, Anthony J. C.; Szymczak, Piotr
2017-08-01
We consider a simple model of infiltration-driven mineral replacement, in which the chemical coupling between precipitation and dissolution leads to the appearance of a reaction front advancing into the system. Such fronts are usually accompanied by a local increase of porosity. We analyze the linear stability of the replacement front to establish whether such a localized porosity increase can lead to global instability and pattern formation in these systems. We find that for a wide range of control parameters such fronts are unstable. However, both short- and long-wavelength perturbations are stabilized, whereas in a purely dissolutional instability only short wavelengths are stable. We analyze the morphologies of the dissolution patterns emerging in the later stages of the evolution of the system, when the dynamics are beyond the linear regime. Implications of these results for the natural systems are discussed, particularly in the context of karst formation in terra rossa-covered carbonate bedrock.
40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of... primary condenser recovering monomer, reaction products, by-products, or solvent from a stripper operated in batch mode, and the primary condenser recovering monomer, reaction products, by-products, or...
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...
2017-03-08
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
Detonation equation of state at LLNL, 1995. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P.C.; Wu, B.; Haselman, L.C. Jr.
1996-02-01
JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuousmore » oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.« less
Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers
2011-04-01
6 Figure 4 . Combustion synthesis process of the cold-rolled Ni/Al multilayer foils: (a) reaction front of the displacement of the reaction...Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium . J. Appl. Phys. 2004, 96 ( 4 ), 2336–2342. 16. Wang, J.; Besnoin, E...2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) January 2006–January 2008 4 . TITLE AND SUBTITLE Combustion Synthesis Reaction Behavior of
Onset of a Propagating Self-Sustained Spin Reversal Front in a Magnetic System
NASA Astrophysics Data System (ADS)
Kent, Andrew D.
2014-03-01
The energy released in a magnetic material by reversing spins as they relax toward equilibrium can lead to a dynamical magnetic instability in which all the spins in a sample rapidly reverse in a run-away process known as magnetic deflagration. A well-defined front separating reversed and un-reversed spins develops that propagates at a constant speed. This process is akin to a chemical reaction in which a flammable substance ignites and the resulting exothermic reaction leads via thermal conduction to increases in the temperature of an adjacent unburned substance that ignites it. In a magnetic system the reaction is the reversal of spins that releases Zeeman energy and the magnetic anisotropy barrier is the reaction's activation energy. An interesting aspect of magnetic systems is that these key energies-the activation energy and the energy released-can be independently controlled by applied magnetic fields enabling systematic studies of these magnetic instabilities. We have studied the instability that leads to the ignition of magnetic deflagration in a thermally driven Mn12-Ac molecular magnet single crystal. Each Mn12-ac molecule is a uniaxial nanomagnet with spin 10 and energy barrier of 60 K. We use a longitudinal field (a field parallel to the easy axis) to set the energy released and a transverse field to control the activation energy. A heat pulse is applied to one end of the crystal to initiate the process. We study the crossover between slow magnetic relaxation and rapid, self-sustained magnetic deflagration as a function of these fields at low temperature (0.5 K). An array of Hall sensors adjacent to a single crystal is used to detect and measure the speed of the spin-reversal front. I will describe a simple model we developed based on a reaction-diffusion process that describes our experimental findings. I will also discuss prospects for observing spin-fronts driven by magnetic dipole interactions between molecules that can be sonic, i.e. travel near the speed of sound (~ 1000 m/s). In collaboration with P. Subedi, S. Velez, F. Macià, S. Li, M. P. Sarachik, J. Tejada, S. Mukherjee and G. Christou. Supported by NSF-DMR-1006575.
Lopez, Aurelio; Mateos, Maria-Victoria; Oriol, Albert; Valero, Marta; Martínez, Joaquín; Lorenzo, Jose Ignacio; Perez, Montserrat; Martinez, Rafael; de Paz, Raquel; Granell, Miguel; De Arriba, Felipe; Blanchard, M. Jesús; Peñalver, Francisco Javier; Bello, Jose Luis; Martin, Maria Luisa; Bargay, Joan; Blade, Joan; Lahuerta, Juan Jose; San Miguel, Jesús F.; de la Rubia, Javier
2015-01-01
We report the characteristics of relapse, treatment response, and outcomes of 145 elderly patients with multiple myeloma in first relapse after front-line treatment with VMP or VTP. Reappearance of CRAB symptoms (113 patients) and more aggressive forms of disease (32 patients) were the most common patterns of relapse. After second-line therapy, 75 (51.7%) patients achieved at partial response and 16 (11%) complete response (CR). Overall survival was longer among patients receiving VMP as front-line induction (21.4 vs. 14.4 months, P=0.037), in patients achieving CR (28.3 vs. 14.8 months; P=0.04), and in patients without aggressive relapse (28.6 vs. 7.6 months; P=0.0007). PMID:26500850
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2014-08-01
Wildland fire propagation is studied in the literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternatives to each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay, and it is not zero in an infinite domain, while the level-set method, which is a front tracking technique, generates a sharp function that is not zero inside a compact domain. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random nature and they are extremely important in wildland fire propagation. Consequently, the fire front gets a random character, too; hence, a tracking method for random fronts is needed. In particular, the level-set contour is randomised here according to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterising role that is typical of the level-set approach. The resulting model emerges to be suitable for simulating effects due to turbulent convection, such as fire flank and backing fire, the faster fire spread being because of the actions by hot-air pre-heating and by ember landing, and also due to the fire overcoming a fire-break zone, which is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation, a correction follows for the formula of the rate of spread which is due to the mean jump length of firebrands in the downwind direction for the leeward sector of the fireline contour. The presented study constitutes a proof of concept, and it needs to be subjected to a future validation.
Konishi, Tsuyoshi; Shimada, Yoshifumi; Lee, Lik Hang; Cavalcanti, Marcela S; Hsu, Meier; Smith, Jesse Joshua; Nash, Garrett M; Temple, Larissa K; Guillem, José G; Paty, Philip B; Garcia-Aguilar, Julio; Vakiani, Efsevia; Gonen, Mithat; Shia, Jinru; Weiser, Martin R
2018-06-01
This study aimed to compare common histologic markers at the invasive front of colon adenocarcinoma in terms of prognostic accuracy and interobserver agreement. Consecutive patients who underwent curative resection for stages I to III colon adenocarcinoma at a single institution in 2007 to 2014 were identified. Poorly differentiated clusters (PDCs), tumor budding, perineural invasion, desmoplastic reaction, and Crohn-like lymphoid reaction at the invasive front, as well as the World Health Organization (WHO) grade of the entire tumor, were analyzed. Prognostic accuracies for recurrence-free survival (RFS) were compared, and interobserver agreement among 3 pathologists was assessed. The study cohort consisted of 851 patients. Although all the histologic markers except WHO grade were significantly associated with RFS (PDCs, tumor budding, perineural invasion, and desmoplastic reaction: P<0.001; Crohn-like lymphoid reaction: P=0.021), PDCs (grade 1 [G1]: n=581; G2: n=145; G3: n=125) showed the largest separation of 3-year RFS in the full cohort (G1: 94.1%; G3: 63.7%; hazard ratio [HR], 6.39; 95% confidence interval [CI], 4.11-9.95; P<0.001), stage II patients (G1: 94.0%; G3: 67.3%; HR, 4.15; 95% CI, 1.96-8.82; P<0.001), and stage III patients (G1: 89.0%; G3: 59.4%; HR, 4.50; 95% CI, 2.41-8.41; P<0.001). PDCs had the highest prognostic accuracy for RFS with the concordance probability estimate of 0.642, whereas WHO grade had the lowest. Interobserver agreement was the highest for PDCs, with a weighted kappa of 0.824. The risk of recurrence over time peaked earlier for worse PDCs grade. Our findings indicate that PDCs are the best invasive-front histologic marker in terms of prognostic accuracy and interobserver agreement. PDCs may replace WHO grade as a prognostic indicator.
Experimental Investigation of Turbojet Thrust Augmentation Using an Ejector
2007-03-01
mechanisms in which a particle can exchange energy. Thrust augmenting devices can be divided into two categories: ones that exchange net work or heat and...two categories from the energy equation discussion above. Thrust augmentation is achieved through turbulent entrainment where work and/or heat is...front sustained by compression waves from a trailing reaction zone. A deflagration wave is a subsonic flame front sustained by heat transfer
Experimental investigation of detonation waves instabilities in liquid high explosives
NASA Astrophysics Data System (ADS)
Sosikov, V. A.; Torunov, S. I.; Utkin, A. V.; Mochalova, V. M.; Rapota, D. Yu
2018-01-01
Experimental investigation of unstable detonation front structure in mixtures of liquid high explosives (nitromethane and FEFO—bis-(2-fluor-2.2-dinitroethyl)-formal) with inert diluents (acetone, methanol, DETA—diethylene triamine) has been carried out. Inhomogeneities have been registered by electro-optical camera NANOGATE 4BP allowing to make 4 frames with the exposure time 10 ns. According to experimental results the detonation front in nitromethane-acetone mixture is unstable. It is evident that pulsations on detonation front do not form spatial periodic structure and their dimensions differ several times. But mean longitudinal size of pulsation is about 500 μm at 20 wt% of acetone concentration. This means that the typical size of cell equals to reaction zone width. The same structure of cellular front have been registered in 70/30 FEFO-methanol mixture. Second kind of instability, failure waves, was observed in neat nitromethane at the free surface. In this case the stability loss result in turbulent flow which is clearly detected in the shots obtained. Adding small amount of DETA (0.5 wt%) results in disappearance of the failure waves and flow stabilization. The effect is caused by the fact that DETA sharply accelerates initial rate of chemical reaction because it is sensitizer for nitromethane.
Binocular Interactions Underlying the Classic Optomotor Responses of Flying Flies
Duistermars, Brian J.; Care, Rachel A.; Frye, Mark A.
2012-01-01
In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory–motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow. PMID:22375108
Simplified modeling of blast waves from metalized heterogeneous explosives
NASA Astrophysics Data System (ADS)
Zarei, Z.; Frost, D. L.
2011-09-01
The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.
HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reaugh, J E
2011-11-22
HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the responsemore » of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where explosives were subjected to a gradual rise in pressure and did not exhibit reaction. More recent models do distinguish between slow pressure rises and shocks, and have had some success in the describing the response of explosives to single and multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited range. The original formulation is appropriate for sustained shocks, but further work is ongoing to describe the response to short pulses. The HERMES model combines features from these prior models. It describes burning and explosion in damaged reactant, and also will develop a detonation if the gradual rise in pressure from burning steepens into a strong-enough shock. The shock strength needed for detonation in a fixed run distance decreases with increasing porosity.« less
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders
Lim, Kian Sheng; Buyamin, Salinda; Ahmad, Anita; Shapiai, Mohd Ibrahim; Naim, Faradila; Mubin, Marizan; Kim, Dong Hwa
2014-01-01
The vector evaluated particle swarm optimisation (VEPSO) algorithm was previously improved by incorporating nondominated solutions for solving multiobjective optimisation problems. However, the obtained solutions did not converge close to the Pareto front and also did not distribute evenly over the Pareto front. Therefore, in this study, the concept of multiple nondominated leaders is incorporated to further improve the VEPSO algorithm. Hence, multiple nondominated solutions that are best at a respective objective function are used to guide particles in finding optimal solutions. The improved VEPSO is measured by the number of nondominated solutions found, generational distance, spread, and hypervolume. The results from the conducted experiments show that the proposed VEPSO significantly improved the existing VEPSO algorithms. PMID:24883386
The multiple V-shaped double peeling of elastic thin films from elastic soft substrates
NASA Astrophysics Data System (ADS)
Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.
2018-04-01
In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.
Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia
2012-12-15
The analysis of inter-leg coordination in insect walking is generally a study of six-legged locomotion. For decades, the stick insect Carausius morosus has been instrumental for unravelling the rules and mechanisms that control leg coordination in hexapeds. We analysed inter-leg coordination in C. morosus that freely walked on straight paths on plane surfaces with different slopes. Consecutive 1.7 s sections were assigned inter-leg coordination patterns (which we call gaits) based on footfall patterns. Regular gaits, i.e. wave, tetrapod or tripod gaits, occurred in different proportions depending on surface slopes. Tetrapod gaits were observed most frequently, wave gaits only occurred on 90 deg inclining slopes and tripod gaits occurred most often on 15 deg declining slopes, i.e. in 40% of the sections. Depending on the slope, 36-66% of the sections were assigned irregular gaits. Irregular gaits were mostly due to multiple stepping by the front legs, which is perhaps probing behaviour, not phase coupled to the middle legs' cycles. In irregular gaits, middle leg and hindleg coordination was regular, related to quadrupedal walk and wave gaits. Apparently, front legs uncouple from and couple to the walking system without compromising middle leg and hindleg coordination. In front leg amputees, the remaining legs were strictly coordinated. In hindleg and middle leg amputees, the front legs continued multiple stepping. The coordination of middle leg amputees was maladapted, with front legs and hindlegs performing multiple steps or ipsilateral legs being in simultaneous swing. Thus, afferent information from middle legs might be necessary for a regular hindleg stepping pattern.
Kinetics of Reactive Fronts in Porous Media: quantification through a laboratory experiment
NASA Astrophysics Data System (ADS)
De Anna, P.; Jimenez-Martinez, J.; Turuban, R.; Tabuteau, H.; Derrien, M.; Le Borgne, T.; Meheust, Y.
2013-12-01
The kinetics of reaction fronts in heterogeneous flows is tightly linked to the mixing dynamics governed by the combined action of stretching, diffusion and dispersion. Focusing on porous media flows, with a new experimental setup we show that the invading solute is organized into stretched lamellae, whose deformation and coalescence control the effective reaction kinetics of the mixing limited bimolecular reaction A + B --> C. While the classic advection-dispersion theory predicts a scaling of the cumulative product mass of C as t^(0.5), we observe two distinct kinetics regimes, one characterized by the stretching and the other by the coalescence of the invading lamellae, in which the mass of C scales faster than t^(0.5). The proposed experimental set up allows for direct quantification of mixing and reactive transport in porous media with a high spatial resolution, at the pore scale. The analogous two dimensional porous medium consists in a Hele-Shaw cell containing a single layer of cylindrical solid grains built by soft lithography. On the one hand, the measurement of the local, intra-pore, conservative concentration field is done using a fluorescent tracer. On the other hand, considering a fast bimolecular advection-dispersion reaction A + B --> C occurring as A displaces B, we quantify the reaction kinetics from the spatially-resolved measurement of the pore scale reaction rate, using a chemiluminescent reaction.
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.
Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong
2013-01-01
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides. PMID:23799097
NASA Astrophysics Data System (ADS)
Postma, D.; Appelo, C. A. J.
2000-04-01
The reduction of Mn-oxide by Fe2+ was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement of adsorbed Ca2+ with Mg2+. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the FeCl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe2+ reacts with MnO2 producing Fe(OH)3, Mn2+ and H+. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2.0, was done to quantify and analyze the reaction controls and the coupling between transport and chemical processes. A model containing only mineral equilibria constraints for birnessite, manganite, gibbsite, and ferrihydrite, was able to explain the overall reaction pattern with the sequential appearance of Mn2+, Al3+, Fe3+, and Fe2+ in the column outlet solution. However, the initial breakthrough of a peak of Ca2+ and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course of the experiment. A model containing surface complexation coupled to varying concentrations of birnessite and ferrihydrite and a constant charge exchanger in addition to mineral equilibria provided a satisfactory description of the distribution of all solutes in time and space. However, the observed concentration profiles are more gradual than indicated by the equilibrium model. Reaction kinetics for the dissolution of MnO2 and MnOOH and dissolution of Al(OH)3 were incorporated in the model, which explained the shape of the breakthrough curves satisfactorily. The results of this study emphasize the importance of understanding the interplay between chemical reactions and transport in addition to interactions between redox, proton buffering, and adsorption processes when dealing with natural sediments. Reactive transport modeling is a powerful tool to analyze and quantify such interactions.
NASA Astrophysics Data System (ADS)
Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis
2017-06-01
Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.
An Open Pit Nanofluidic Tool: Localized Chemistry Assisted by Mesoporous Thin Film Infiltration.
Mercuri, Magalí; Pierpauli, Karina A; Berli, Claudio L A; Bellino, Martín G
2017-05-17
Nanofluidics based on nanoscopic porous structures has emerged as the next evolutionary milestone in the construction of versatile nanodevices with unprecedented applications. However, the straightforward development of nanofluidically interconnected systems is crucial for the production of practical devices. Here, we demonstrate that spontaneous infiltration into supramolecularly templated mesoporous oxide films at the edge of a sessile drop in open air can be used to connect pairs of landmarks. The liquids from the drops can then join through the nanoporous network to guide a localized chemical reaction at the nanofluid-front interface. This method, here named "open-pit" nanofluidics, allows mixing reagents from nanofluidically connected droplet reservoirs that can be used as reactors to conduct reactions and precipitation processes. From the fundamental point of view, the work contributes to unveiling subtle phenomena during spontaneous infiltration of fluids in bodies with nanoscale dimensions such as the front broadening effect and the oscillatory behavior of the infiltration-evaporation front. The approach has distinctive advantages such as easy fabrication, low cost, and facility of scaling up for future development of ultrasensitive detection, controlled nanomaterial synthesis, and novel patterning methods.
In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J Y; Zhong, L; Wang, C M
2010-12-09
We report the creation of a nanoscale electrochemical device inside a transmission electron microscope—consisting of a single tin dioxide (SnO{sub 2}) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO{sub 2}) cathode—and the in situ observation of the lithiation of the SnO{sub 2} nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which are continuously nucleated and absorbed at the moving front. This dislocation cloud indicates large in-plane misfitmore » stresses and is a structural precursor to electrochemically driven solid-state amorphization. Because lithiation-induced volume expansion, plasticity, and pulverization of electrode materials are the major mechanical effects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important mechanistic insight for the design of advanced batteries.« less
Front propagation in one-dimensional spatially periodic bistable media
NASA Astrophysics Data System (ADS)
Löber, Jakob; Bär, Markus; Engel, Harald
2012-12-01
Front propagation in heterogeneous bistable media is studied using the Schlögl model as a representative example. Spatially periodic modulations in the parameters of the bistable kinetics are taken into account perturbatively. Depending on the ratio L/l (L is the spatial period of the heterogeneity, l is the front width), appropriate singular perturbation techniques are applied to derive an ordinary differential equation for the position of the front in the presence of the heterogeneities. From this equation, the dependence of the average propagation speed on L/l as well as on the modulation amplitude is calculated. The analytical results obtained predict velocity overshoot, different cases of propagation failure, and the propagation speed for very large spatial periods in quantitative agreement with the results of direct numerical simulations of the underlying reaction-diffusion equation.
Phase behavior and reactive transport of partial melt in heterogeneous mantle model
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2013-12-01
The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬
The impact of interpretive and reductive front-of-pack labels on food choice and willingness to pay.
Talati, Zenobia; Norman, Richard; Pettigrew, Simone; Neal, Bruce; Kelly, Bridget; Dixon, Helen; Ball, Kylie; Miller, Caroline; Shilton, Trevor
2017-12-19
This study examined how front-of-pack labels and product healthfulness affect choice and willingness to pay across a range of foods. It was hypothesized that: (i) product choice and (ii) willingness to pay would be more aligned with product healthfulness when healthfulness was expressed through the Health Star Rating, followed by the Multiple Traffic Light, then the Daily Intake Guide, and (iii) the Nutrition Facts Panel would be viewed infrequently. Adults and children aged 10+ years (n = 2069) completed an online discrete choice task involving mock food packages. A 4 food type (cookies, corn flakes, pizza, yoghurt) × 2 front-of-pack label presence (present, absent) × 3 front-of-pack label type (Daily Intake Guide, Multiple Traffic Light, Health Star Rating) × 3 price (cheap, moderate, expensive) × 3 healthfulness (less healthy, moderately healthy, healthier) design was used. A 30 s time limit was imposed for each choice. Of the three front-of-pack labels tested, the Health Star Rating produced the largest differences in choices, with 40% (95% CIs: 38%-42%) of respondents selecting the healthier variant, 33% selecting the moderately healthy variant (95% CIs: 31%-35%), and 23% (95% CIs: 21%-24%) selecting the less healthy variant of the four products included in the study. The Multiple Traffic Light led to significant differences in choices between healthier (35%, 95% CIs: 33%-37%) and less healthy products (29%, 95% CIs: 27%-31%), but not moderately healthy products (32%, 95% CIs: 30%-34%). No significant differences in choices were observed by product healthfulness when the Daily Intake Guide was present. Only the Health Star Rating resulted in a significantly greater willingness to pay for healthier versus less healthy products. The Nutrition Facts Panel was viewed for only 7% of all mock packages. Front-of-pack labels that are more interpretive, such as the Health Star Rating, can be more effective at directing consumers towards healthier choices than reductive front-of-pack labels such as the Daily Intake Guide. The study results provide policy makers with clear guidance on the types of front-of-pack labels that are most likely to achieve positive health outcomes at a population level.
Europium-doped aluminum oxide phosphors as indicators for frontal polymerization dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranza, Arturo; Gewin, Mariah; Pojman, John A., E-mail: japojman@lsu.edu
2014-06-15
In this study, we present an inexpensive and practical method that allows the monitoring and visualization of front polymerization, propagation, and dynamics. Commercially available europium-doped aluminum oxide powders were combined with video imaging to visualize free-radical propagating polymer fronts. In order to demonstrate the applicability of this method, frontal copolymerization reactions of propoxylated glycerin triacrylate (EB53), pentaerythritol triacrylate (PETA), and pentaerythritol tetra-acrylate (PETEA) with 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231®) as an initiator were studied and compared to the results obtained by IR imaging. Systems exhibiting higher filler loading, higher EB53 content, and less acrylated monomers showed a marked decrease in front velocity,more » while those with more acrylated monomers and higher crosslinking density showed a marked increase in front velocity. Finally, in order to show the potential of the imaging technique, we studied fronts propagating in planar and spherical geometries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.
2010-09-15
We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less
Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction.
Jee, Elizabeth; Bánsági, Tamás; Taylor, Annette F; Pojman, John A
2016-02-05
Chemical systems that remain kinetically dormant until activated have numerous applications in materials science. Herein we present a method for the control of gelation that exploits an inbuilt switch: the increase in pH after an induction period in the urease-catalyzed hydrolysis of urea was used to trigger the base-catalyzed Michael addition of a water-soluble trithiol to a polyethylene glycol diacrylate. The time to gelation (minutes to hours) was either preset through the initial concentrations or the reaction was initiated locally by a base, thus resulting in polymerization fronts that converted the mixture from a liquid into a gel (ca. 0.1 mm min -1 ). The rate of hydrolytic degradation of the hydrogel depended on the initial concentrations, thus resulting in a gel lifetime of hours to months. In this way, temporal programming of gelation was possible under mild conditions by using the output of an autocatalytic enzyme reaction to drive both the polymerization and subsequent degradation of a hydrogel.
Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.
Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M
2017-02-01
Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.
Shock Waves Mitigation at Blunt Bodies Using Needles and Shells Against a Supersonic Flow
NASA Technical Reports Server (NTRS)
Gilinsky, M.; Blankson, I. M.; Sakharov, V. I.; Shvets, A. I.
2004-01-01
The paper contains some experimental and numerical simulation test results on cylindrical blunt body drag reduction using thin spikes or shell mounted in front of a body against a supersonic flow. Experimental tests were conducted using the Aeromechanics and Gas Dynamics Laboratory facilities at the Institute of Mechanics of Moscow State University (IMMSU). Numerical simulations utilizing NASA and IM/MSU codes were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory. The main purpose of this research is to examine the efficiency of application of multiple spikes for drag reduction and flow stability at the front of a blunt body in different flight conditions, i.e. Mach number, angle of attack, etc. The principal conclusions of these test results are: multiple spike/needle application leads to decrease of drag reduction benefits by comparison with the case of one central mounted needle at the front of a blunt body, but increase lift benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieba, P.; Gust, W.
1999-07-09
The morphology and kinetics of the discontinuous precipitation (DP) and discontinuous dissolution (DD) reactions have been studied in a Ni-4 at.% Sn alloy. High spatial resolution energy-dispersive X-ray microanalysis has been used to determine the Sn concentration profiles left behind the moving reaction front for the individual cells of the Sn-depleted [alpha] lamellae and Ni[sub 3]Sn compound. These data, combined with the local values of the reaction front velocity and the thickness of the [alpha]lamellae, have been used to evaluate the local s[delta]D[sub b] values (D[sub b] is the grain-boundary chemical diffusion coefficient, [delta] is the grain-boundary thickness and smore » is the segregation factor). The obtained results have been compared with those calculated by the global approach to the DP and DD reactions, which is relevant for the whole population of the cells. It has been shown that the application of the local characterization of the DP and DD reactions removes essentially the differences between the s[delta]D[sub b] values calculated by the Petermann-Hornbogen equation and the equations of Cahn and Zieba-Pawlowski. Moreover, both sets of data do not show any substantial differences from the s[delta]D[sub b] values obtained from measurements of the tracer diffusion of tin along stationary grain boundaries in nickel.« less
NASA Astrophysics Data System (ADS)
Jonas, Laura; Müller, Thomas; Dohmen, Ralf; Immenhauser, Adrian; Putlitz, Benita
2017-01-01
Dolomitization, i.e., the secondary replacement of calcite or aragonite (CaCO3) by dolomite (CaMg[CO3]2), is one of the most volumetrically important carbonate diagenetic processes. It occurs under near surface and shallow burial conditions and can significantly modify rock properties through changes in porosity and permeability. Dolomitization fronts are directly coupled to fluid pathways, which may be related to the initial porosity/permeability of the precursor limestone, an existing fault network or secondary porosity/permeability created through the replacement reaction. In this study, the textural control on the replacement of biogenic and abiogenic aragonite by Mg-carbonates, that are typical precursor phases in the dolomitization process, was experimentally studied under hydrothermal conditions. Aragonite samples with different textural and microstructural properties exhibiting a compact (inorganic aragonite single crystal), an intermediate (bivalve shell of Arctica islandica) and open porous structure (skeleton of coral Porites sp.) were reacted with a solution of 0.9 M MgCl2 and 0.015 M SrCl2 at 200 °C. The replacement of aragonite by a Ca-bearing magnesite and a Mg-Ca carbonate of non-stoichiometric dolomitic composition takes place via a dissolution-precipitation process and leads to the formation of a porous reaction front that progressively replaces the aragonite precursor. The reaction leads to the development of porosity within the reaction front and distinctive microstructures such as gaps and cavities at the reaction interface. The newly formed reaction rim consists of chemically distinct phases separated by sharp boundaries. It was found that the number of phases and their chemical variation decreases with increasing initial porosity and reactive surface area. This observation is explained by variations in effective element fluxes that result in differential chemical gradients in the fluid within the pore space of the reaction rim. Observed reaction rates are highest for the replacement of the initially highly porous coral and lowest for the compact structure of a single aragonite crystal. Therefore, the reaction progress equally depends on effective element fluxes between the fluid at the reaction interface and the bulk solution surrounding the test material as well as the reactive surface area. This study demonstrates that the textural and microstructural properties of the parent material have a significant influence on the chemical composition of the product phase. Moreover, our data highlight the importance of effective fluid-mediated element exchange between the fluid at the reaction interface and the bulk solution controlled by the local microstructure.
Akosman, Cengiz; Ordu, Cetin; Eroglu, Elif; Oyan, Basak
2015-01-01
Bortezomib is widely used in treatment of multiple myeloma. In recent years, severe bortezomib-induced lung injury has been reported. The clinical course is generally characterized with fever and dyspnea, followed by respiratory failure with pulmonary infiltrates. Herein, we report a 57-year-old man with newly diagnosed multiple myeloma admitted with dyspnea, fever, and hypotension on the third day of the first dose of bortezomib therapy. He had bilateral jugular venous distention, crackles at the bases of the lungs and hepatomegaly. Transthoracic echocardiography revealed acute pulmonary hypertension (PH) with an estimated pressure of 70 mm Hg. The perfusion scintigraphy ruled out pulmonary embolism, and microbiological examination was negative. On his course, fever, dyspnea, hypoxia, and pulmonary vascular pressure subsided rapidly. The sudden onset of PH and its rapid decrement without any treatment suggests bortezomib as the underlying cause. Subsequently, the patient did not respond to vincristine-doxorubicin-dexamethasone regimen and thalidomide. Bortezomib treatment was repeated, and no pulmonary adverse reactions occurred. Follow-up echocardiographies revealed pulmonary arterial pressures to be maximally of 35 mm Hg. To our knowledge, this is the first case of acute PH after front-line bortezomib therapy. In this report, we review bortezomib-related pulmonary complications in the literature and possible underlying mechanisms.
Shock implosion of a small homogeneous pellet
NASA Astrophysics Data System (ADS)
Fujimoto, Yasuichi; Mishkin, Eli A.; Alejaldre, Carlos
1985-10-01
A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.
Hydrothermal replacement of calcite by Mg-carbonates
NASA Astrophysics Data System (ADS)
Jonas, Laura; Mueller, Thomas; Dohmen, Ralf
2014-05-01
The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product phases increases with increasing distance from the unreacted calcite core, countered by a decrease of Ca incorporated. Both the coexistence of two different product phases and the distinct compositional gradient within the forming reaction rim are unequivocal signs of a chemical zonation of Ca and Mg in the fluid phase which mediates the element exchange between the reaction interface and the bulk solution. Atomic adsorption spectroscopy revealed that the Ca/Mg ratio in the reacted fluid increases as a function of time, reflecting the progressive exchange of Mg and Ca between the fluid and the solid phase. The time-dependence of the evolving Ca/Mg ratio can be fitted with a square root of time relation that indicates a transport controlled reaction. We interpret the hydrothermal replacement of calcite to operate via a dissolution/re-precipitation mechanism, whereas the reaction progress is controlled by the transport of the structure forming elements through the developing reaction rim.
Density fingering in spatially modulated Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Tamara; Horvath, Dezso; Toth, Agota
Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.
Crossmaps: Visualization of overlapping relationships in collections of journal papers
Morris, Steven A.; Yen, Gary G.
2004-01-01
A crossmapping technique is introduced for visualizing multiple and overlapping relations among entity types in collections of journal articles. Groups of entities from two entity types are crossplotted to show correspondence of relations. For example, author collaboration groups are plotted on the x axis against groups of papers (research fronts) on the y axis. At the intersection of each pair of author group/research front pairs a circular symbol is plotted whose size is proportional to the number of times that authors in the group appear as authors in papers in the research front. Entity groups are found by agglomerative hierarchical clustering using conventional similarity measures. Crossmaps comprise a simple technique that is particularly suited to showing overlap in relations among entity groups. Particularly useful crossmaps are: research fronts against base reference clusters, research fronts against author collaboration groups, and research fronts against term co-occurrence clusters. When exploring the knowledge domain of a collection of journal papers, it is useful to have several crossmaps of different entity pairs, complemented by research front timelines and base reference cluster timelines. PMID:14762168
EXTERIOR VIEW, FRONT (NORTH) ELEVATION. THIS THREESTORY BRICK BUILDING WITH ...
EXTERIOR VIEW, FRONT (NORTH) ELEVATION. THIS THREE-STORY BRICK BUILDING WITH DEEPLY-BRACKETED AND OVERHANGING EAVES INCLUDES MULTIPLE BAYS CONSTRUCTED BEGINNING IN 1913 TO SERVE AS A 'CIVIC CENTER' FOR ACIPCO EMPLOYEES AND THEIR FAMILIES. THE BUILDING CURRENTLY INCLUDES THE TIME OFFICE, CAFETERIA, AND AUDITORIUM. - American Cast Iron Pipe Company, Service Building, 1501 Thirty-first Avenue North, Birmingham, Jefferson County, AL
Detonation Propagation in Slabs and Axisymmetric Rate Sticks
NASA Astrophysics Data System (ADS)
Romick, Christopher; Aslam, Tariq
Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.
Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.
Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng
2002-12-01
We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.
A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits
NASA Astrophysics Data System (ADS)
Kittell, D. E.; Yarrington, C. D.; Hobbs, M. L.; Abere, M. J.; Adams, D. P.
2018-04-01
A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quench limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. This higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.
Neutron energy spectra from the laser-induced Dd,n3He reaction.
Hilscher, D; Berndt, O; Enke, M; Jahnke, U; Nickles, P V; Ruhl, H; Sandner, W
2001-07-01
Detailed neutron energy spectra were measured for the D(d,n)3He reaction induced in solid (CD2)(n) targets by irradiation with 50-fs 2 x 10(18) W/cm(2) light pulses from a 10-TW Ti:Sapphire laser. The neutrons were observed at two angles 5 degrees and 112 degrees relative to the incident laser beam. The neutron spectra at the two angles are characterized by peaks with large widths of about 700 keV full width at half maximum and a shift of 300 keV between them. Neutron energies of up to about 4 MeV were observed indicating that deuterons are accelerated up to an energy of 1 MeV in the laser produced plasma. Simulation calculations can describe qualitatively the neutron spectra by assuming isotropic deuteron acceleration and a reduction of the reaction probability by a factor of 1/3 for deuterons emitted from the front of the target. These calculations indicate in particular that it is necessary to assume deuterons moving both into and out of the front of the target in order to describe the neutron energy spectra at the two angles. The highest recorded mean neutron yield was about 10(4) neutrons per pulse. The neutron yield increases with the number of electrons emitted from the front of the target and with the intensity of the prompt gamma flash induced by the bremsstrahlung of energetic electrons.
Non-monotonic resonance in a spatially forced Lengyel-Epstein model
Haim, Lev; Hagberg, Aric; Meron, Ehud
2015-06-02
Here, we study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. Furthermore, we show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcationmore » can be reversed. Finally, we attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.« less
A Comparison of Golf Shoe Designs Highlights Greater Ground Reaction Forces with Shorter Irons
Worsfold, Paul; Smith, Neal A.; Dyson, Rosemary J.
2007-01-01
In an effort to reduce golf turf damage the traditional metal spike golf shoe has been redesigned, but shoe-ground biomechanical evaluations have utilised artificial grass surfaces. Twenty-four golfers wore three different golf shoe traction designs (traditional metal spikes, alternative spikes, and a flat-soled shoe with no additional traction) when performing shots with a driver, 3 iron and 7 iron. Ground action forces were measured beneath the feet by two natural grass covered force platforms. The maximum vertical force recorded at the back foot with the 3 iron and 7 iron was 0.82 BW (body weight) and at the front foot 1.1 BW approximately in both the metal spike and alternative spike golf shoe designs. When using the driver these maximal vertical values were 0.49 BW at the back foot and 0.84 BW at the front foot. Furthermore, as performance of the backswing and then downswing necessitates a change in movement direction the range of force generated during the complete swing was calculated. In the metal spike shoe the vertical force generated at the back foot with both irons was 0.67 BW and at the front foot 0.96 BW with the 3 iron and 0.92 BW with the 7 iron. The back foot vertical force generated with the driver was 0.33 BW and at the front foot 0.83 BW wearing the metal spike shoe. Results indicated the greater force generation with the irons. When using the driver the more horizontal swing plane associated with the longer club reduced vertical forces at the back and front foot. However, the mediolateral force generated across each foot in the metal and alternative spike shoes when using the driver was greater than when the irons were used. The coefficient of friction was 0. 62 at the back and front foot whichever shoe was worn or club used. Key pointsDuring the golf swing ground reaction forces at the golf shoe to natural grass turf interface were greater with irons than with the longer driver.In the golf swing maximal vertical forces were greater at the front (left) foot in the than at the back foot for a right handed golfer.Similar maximum vertical ground reaction forces were recorded with each club when a 8 mm metal spike golf shoe or an alternative spike golf shoe were worn.Force generation and coefficients of friction were similar for the alternative spike design and traditional metal seven spike golf shoe on natural grass turf.Data collection possible due to application of technical developments to golf from work on other natural turf based sports. PMID:24149482
Lower extremity muscle function of front row rugby union scrummaging.
Yaghoubi, Mostafa; Lark, Sally D; Page, Wyatt H; Fink, Philip W; Shultz, Sarah P
2018-05-16
A rugby scrum's front row must act uniformly to transfer maximal horizontal force and improve performance. This study investigated the muscle activation patterns of lower extremity muscles in front row forwards during live and machine scrums at professional and amateur levels. Electromyography was collected bilaterally on vastus lateralis, rectus femoris and gastrocnemius muscles of 75 male rugby prop players during live and machine scrums. ANOVAs compared muscle reaction time, rate of change in muscle amplitude and muscle amplitude between groups and conditions. Cross-correlation analysis explored muscle synchronicity. There were significantly greater rates of change in each muscle amplitude in professional players than amateur players. Additionally, there was significantly quicker muscle reaction time in all muscles, and greater amplitude in vastus lateralis and gastrocnemius, during the live scrum vs. machine condition. The professional props produced more synchronised muscle activation than amateur players and all players produced more synchronised muscle activation against the scrum machine vs. live scrummage. The results indicate a higher skill proficiency and muscle synchronicity in professional players. While scrum machine training is ideally suited for functional muscle strengthening during practice, to truly simulate the requirements of the scrum, training should incorporate the live situation as much as possible.
Delivering Faster Congestion Feedback with the Mark-Front Strategy
NASA Technical Reports Server (NTRS)
Liu, Chunlei; Jain, Raj
2001-01-01
Computer networks use congestion feedback from the routers and destinations to control the transmission load. Delivering timely congestion feedback is essential to the performance of networks. Reaction to the congestion can be more effective if faster feedback is provided. Current TCP/IP networks use timeout, duplicate Acknowledgement Packets (ACKs) and explicit congestion notification (ECN) to deliver the congestion feedback, each provides a faster feedback than the previous method. In this paper, we propose a markfront strategy that delivers an even faster congestion feedback. With analytical and simulation results, we show that mark-front strategy reduces buffer size requirement, improves link efficiency and provides better fairness among users. Keywords: Explicit Congestion Notification, mark-front, congestion control, buffer size requirement, fairness.
De Sterck H; Poedts
2000-06-12
Simulation results of three-dimensional (3D) stationary magnetohydrodynamic (MHD) bow-shock flows around perfectly conducting spheres are presented. For strong upstream magnetic field a new complex bow-shock flow topology arises consisting of two consecutive interacting shock fronts. It is shown that the leading shock front contains a segment of intermediate 1-3 shock type. This is the first confirmation in 3D that intermediate shocks, which were believed to be unphysical for a long time, can be formed and can persist for small-dissipation MHD in a realistic flow configuration.
Observations from the Microgravity Smoldering Combustion (MSC) Ultrasound Imaging System (UIS)
NASA Technical Reports Server (NTRS)
Walther, D.C.; Fernandez-Pello, A. C.; Anthenien, R. A.; Urban, D. L.
1999-01-01
The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the GAS-CAN, an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS). Thermocouples are currently used to measure temperature and reaction front velocities, but a less intrusive method is desirable, as smolder is affected by heat transfer along the thermocouple. It is expected that the UIS will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. Smoldering is defined as a non-flaming, self-sustaining, propagating, exothermic, surface reaction, deriving its principal heat from heterogeneous oxidation of the fuel. Smolder of cable insulation is of particular concern in the space program; to date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. Recently, the establishment of the International Space Station and other space facilities has increased interest in the study of smoldering in microgravity because of the need to preempt the possibility, and/or to minimize the effect of a smolder initiated fire during the operation of these facilities. The ignition and propagation of smolder are examined using both thermocouples and the UIS. The UIS has been implemented into the MSC flight hardware. The system provides information about local permeability variations within a smoldering sample, which can, in turn, be interpreted to track the propagation of the smolder reaction. The method utilizes the observation that transmission of an ultrasonic signal through a porous material increases with increasing permeability. Since a propagating smolder reaction leaves behind a char that is higher in permeability than the original (unburnt) material, ultrasonic transmission can be employed to monitor the progress of the primary reaction front, char evolution (i.e. material left by the smolder reaction), pyrolysis, and condensation fronts.
Sharma, Amit K; Gohel, Sangeeta; Singh, Satya P
2012-01-01
Actinobase is a relational database of molecular diversity, phylogeny and biocatalytic potential of haloalkaliphilic actinomycetes. The main objective of this data base is to provide easy access to range of information, data storage, comparison and analysis apart from reduced data redundancy, data entry, storage, retrieval costs and improve data security. Information related to habitat, cell morphology, Gram reaction, biochemical characterization and molecular features would allow researchers in understanding identification and stress adaptation of the existing and new candidates belonging to salt tolerant alkaliphilic actinomycetes. The PHP front end helps to add nucleotides and protein sequence of reported entries which directly help researchers to obtain the required details. Analysis of the genus wise status of the salt tolerant alkaliphilic actinomycetes indicated 6 different genera among the 40 classified entries of the salt tolerant alkaliphilic actinomycetes. The results represented wide spread occurrence of salt tolerant alkaliphilic actinomycetes belonging to diverse taxonomic positions. Entries and information related to actinomycetes in the database are publicly accessible at http://www.actinobase.in. On clustalW/X multiple sequence alignment of the alkaline protease gene sequences, different clusters emerged among the groups. The narrow search and limit options of the constructed database provided comparable information. The user friendly access to PHP front end facilitates would facilitate addition of sequences of reported entries. The database is available for free at http://www.actinobase.in.
Theoretical and computer models of detonation in solid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C.M.; Urtiew, P.A.
1997-10-01
Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less
Discontinuous precipitation in a Cd-6 at.% Ag alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manna, I.; Bala, P.K.; Pabi, S.K.
1996-11-01
Discontinuous precipitation (DP) in a Cd-6 at.% Ag alloy has been investigated for the first time. The precipitate phase maintains a lamellar morphology and statistically constant interlamellar spacing under a given isothermal condition in the temperature range studied (333--523 K). The interlamellar spacing increases with an increase in isothermal temperature. The reaction front velocity registers a typical C-curve variation with the inverse of temperature. The reaction rate is maximum at 470 K. The predicted upper limit of DP occurrence in this alloy is 23 K lower than the concerned equilibrium solvus temperature. Continuous precipitation accompanies DP at all temperatures, especiallymore » beyond a certain time, and adversely affects the growth kinetics of DP colonies by reducing the local chemical driving force and/or posing physical hindrance to the reaction front migration. An extensive kinetic analysis of DP using the models by Turnbull, Aaronson and Liu, and Petermann and Hornbogen has yielded the grain boundary chemical diffusivity data in Cd-6 At.% Ag for the first time, the activation energy of which lies in the range 55--77 kJ/mol.« less
Shock-wave-like structures induced by an exothermic neutralization reaction in miscible fluids
NASA Astrophysics Data System (ADS)
Bratsun, Dmitry; Mizev, Alexey; Mosheva, Elena; Kostarev, Konstantin
2017-11-01
We report shock-wave-like structures that are strikingly different from previously observed fingering instabilities, which occur in a two-layer system of miscible fluids reacting by a second-order reaction A +B →S in a vertical Hele-Shaw cell. While the traditional analysis expects the occurrence of a diffusion-controlled convection, we show both experimentally and theoretically that the exothermic neutralization reaction can also trigger a wave with a perfectly planar front and nearly discontinuous change in density across the front. This wave propagates fast compared with the characteristic diffusion times and separates the motionless fluid and the area with anomalously intense convective mixing. We explain its mechanism and introduce a new dimensionless parameter, which allows to predict the appearance of such a pattern in other systems. Moreover, we show that our governing equations, taken in the inviscid limit, are formally analogous to well-known shallow-water equations and adiabatic gas flow equations. Based on this analogy, we define the critical velocity for the onset of the shock wave which is found to be in the perfect agreement with the experiments.
Spatially Localized Chemical Patterns around an A + B → Oscillator Front.
Budroni, M A; Lemaigre, L; Escala, D M; Muñuzuri, A P; De Wit, A
2016-02-18
When two gels, each loaded with a different set of reactants A and B of an oscillatory reaction, are brought into contact, reaction-diffusion patterns such as waves or Turing patterns can develop in the reactive contact zone. The initial condition which separates the reactants at the beginning leads to a localization in space of the different dynamical regimes accessible to the chemical oscillator. We study here both numerically and experimentally the composite traveling structures resulting from the interaction between chemical fronts and localized waves in the case in which the reactants of such an A + B → oscillator system are those of the canonical Belousov-Zhabotinsky (BZ) oscillating reaction. A transition between different dynamics is obtained by varying the initial concentration of the organic substrate of the BZ reactants, which is one of the parameters controlling the local excitability. We show that the dynamical regime (excitable or oscillatory) characterizing the BZ oscillator in the initial contact area is the key feature which determines the spatiotemporal evolution of the system. The experimental results are in qualitative agreement with the theoretical predictions.
Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction.
Jee, Elizabeth; Bánsági, Tamás; Taylor, Annette F; Pojman, John A
2016-02-05
Chemical systems that remain kinetically dormant until activated have numerous applications in materials science. Herein we present a method for the control of gelation that exploits an inbuilt switch: the increase in pH after an induction period in the urease-catalyzed hydrolysis of urea was used to trigger the base-catalyzed Michael addition of a water-soluble trithiol to a polyethylene glycol diacrylate. The time to gelation (minutes to hours) was either preset through the initial concentrations or the reaction was initiated locally by a base, thus resulting in polymerization fronts that converted the mixture from a liquid into a gel (ca. 0.1 mm min(-1)). The rate of hydrolytic degradation of the hydrogel depended on the initial concentrations, thus resulting in a gel lifetime of hours to months. In this way, temporal programming of gelation was possible under mild conditions by using the output of an autocatalytic enzyme reaction to drive both the polymerization and subsequent degradation of a hydrogel. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Characterization and application of droplet spray ionization for real-time reaction monitoring.
Zhang, Hong; Li, Na; Li, Xiao-di; Jiang, Jie; Zhao, Dan-Dan; You, Hong
2016-08-01
The ionization source for real-time reaction monitoring has attracted tremendous interest in recent years. We have previously reported a reliable approach in which droplet spray ionization (DSI) was used for monitoring chemical reactions in real-time. Herein, we systematically investigated the characterization and application of DSI for real-time reaction monitoring. Analyte ions are generated by loading a sample solution onto a corner of a microscope cover glass positioned in front of the MS inlet and applying a high voltage to the sample. The tolerance to positioning, solvent effect, spray angle and spray time were investigated. Extension to real-time monitoring of macromolecule reactions was also demonstrated by the charge state change of cytochrome c in the presence of acetic acid. The corner could be positioned within an area of approximately 10 × 6 × 5 mm (x, y, z) in front of the MS inlet. The broad polarities of solvents from methanol to PhF were suitable for DSI. It featured monitoring real-time changes in reactions on the time scale of seconds to minutes. A real-time charge state change of cytochrome c was captured. DSI-MS features ease of use, durability of the spray platform and reusability of the ion source. Eliminating the need for a sample transport capillary, DSI opens a new avenue for the in situ analysis and real-time monitoring of short-lived key reaction intermediates even at subsecond dead times. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Miller Buffinton, Christine; Buffinton, Elise M; Bieryla, Kathleen A; Pratt, Jerry E
2016-03-01
Balance-recovery stepping is often necessary for both a human and humanoid robot to avoid a fall by taking a single step or multiple steps after an external perturbation. The determination of where to step to come to a complete stop has been studied, but little is known about the strategy for initiation of forward motion from the static position following such a step. The goal of this study was to examine the human strategy for stepping by moving the back foot forward from a static, double-support position, comparing parameters from normal step length (SL) to those from increasing SLs to the point of step failure, to provide inspiration for a humanoid control strategy. Healthy young adults instrumented with joint reflective markers executed a prescribed-length step from rest while marker positions and ground reaction forces (GRFs) were measured. The participants were scaled to the Gait2354 model in opensim software to calculate body kinematic and joint kinetic parameters, with further post-processing in matlab. With increasing SL, participants reduced both static and push-off back-foot GRF. Body center of mass (CoM) lowered and moved forward, with additional lowering at the longer steps, and followed a path centered within the initial base of support (BoS). Step execution was successful if participants gained enough forward momentum at toe-off to move the instantaneous capture point (ICP) to within the BoS defined by the final position of both feet on the front force plate. All lower extremity joint torques increased with SL except ankle joint. Front knee work increased dramatically with SL, accompanied by decrease in back-ankle work. As SL increased, the human strategy changed, with participants shifting their CoM forward and downward before toe-off, thus gaining forward momentum, while using less propulsive work from the back ankle and engaging the front knee to straighten the body. The results have significance for human motion, suggesting the upper limit of the SL that can be completed with back-ankle push-off before additional knee flexion and torque is needed. For biped control, the results support stability based on capture-point dynamics and suggest strategy for center-of-mass trajectory and distribution of ground force reactions that can be compared with robot controllers for initiation of gait after recovery steps.
Remick, Kyle N; Shackelford, Stacy; Oh, John S; Seery, Jason M; Grabo, Daniel; Chovanes, John; Gross, Kirby R; Nessen, Shawn C; Tai, Nigel Rm; Rickard, Rory F; Elster, Eric; Schwab, C W
2016-01-01
Military surgeons have gained familiarity and experience with mass casualty events (MCEs) as a matter of routine over the course of the last two conflicts in Afghanistan and Iraq. Over the same period of time, civilian surgeons have increasingly faced complex MCEs on the home front. Our objective is to summarize and adapt these combat surgery lessons to enhance civilian surgeon preparedness for complex MCEs on the home front. The authors describe the unique lessons learned from combat surgery over the course of the wars in Afghanistan and Iraq and adapt these lessons to enhance civilian surgical readiness for a MCE on the home front. Military Damage Control Surgery (mDCS) combines the established concept of clinical DCS (cDCS) with key combat situational awareness factors that enable surgeons to optimally care for multiple, complex patients, from multiple simultaneous events, with limited resources. These additional considerations involve the surgeon's role of care within the deployed trauma system and the battlefield effects. The proposed new concept of mass casualty DCS (mcDCS) similarly combines cDCS decisions with key factors of situational awareness for civilian surgeons faced with complex MCEs to optimize outcomes. The additional considerations for a civilian MCE include the surgeon's role of care within the regional trauma system and the incident effects. Adapting institutionalized lessons from combat surgery to civilian surgical colleagues will enhance national preparedness for complex MCEs on the home front.
An efficient hybrid approach for multiobjective optimization of water distribution systems
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2014-05-01
An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.
MMS Observations of Protons and Heavy Ions Acceleration at Plasma Jet Fronts
NASA Astrophysics Data System (ADS)
Catapano, F.; Retino, A.; Zimbardo, G.; Cozzani, G.; Breuillard, H.; Le Contel, O.; Alexandrova, A.; Mirioni, L.; Cohen, I. J.; Turner, D. L.; Perri, S.; Greco, A.; Mauk, B.; Torbert, R. B.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Giles, B. L.; Fuselier, S. A.; Moore, T. E.; Burch, J.
2017-12-01
Plasma jet fronts in the Earth's magnetotail are kinetic-scale boundaries separating hot fast plasma jets, generally attributed to reconnection outflows, from colder ambient plasma. Jet fronts are typically associated with a sharp increase of the vertical component of the magnetic field Bz, an increase of the plasma temperature and a drop of plasma density. Spacecraft observations and numerical simulations indicate that jet fronts are sites of major ion acceleration. The exact acceleration mechanisms as well as the dependence of such mechanisms on ion composition are not fully understood, yet. Recent high-resolution measurements of ion distribution functions in the magnetotail allow for the first time to study the acceleration mechanisms in detail. Here, we show several examples of jet fronts and discuss ion acceleration therein. We show fronts that propagate in the mid-tail magnetotail both as isolated laminar boundaries and as multiple boundaries embedded in strong magnetic fluctuations and turbulence. We also show fronts in the near-Earth jet braking region, where they interact with the dipolar magnetic field and are significantly decelerated/diverted. Finally, we study the acceleration of different ion species (H+, He++, O+) at different types of fronts and we discuss possible different acceleration mechanisms and how they depend on the ion species.
Reaction patterns in a blinking vortex flow
NASA Astrophysics Data System (ADS)
Nugent, Carolyn
2005-11-01
We study the patterns formed by the excitable Belousov-Zhabotinsky reaction in a blinking vortex flow produced by magnetohydrodynamic forcing. Mixing in this flow is chaotic, as has been documented extensively in previous studies. The reaction is triggered by a silver wire, and the result is a pulse (``trigger wave'') that propagates through the system. We investigate the patterns formed by the propagating pulse and compare them with theoriesootnotetextT. Tel, A. de Moura, C. Grebogi and G. Karolyi, Phys. Rep. 413, 91 (2005). that predict fractal patterns determined by the unstable manifolds of the flow. We also consider ``burn-like'' reaction fronts, and compare the results with previous experiments for patterns of oscillatory reactions in this flow.
Class of self-limiting growth models in the presence of nonlinear diffusion
NASA Astrophysics Data System (ADS)
Kar, Sandip; Banik, Suman Kumar; Ray, Deb Shankar
2002-06-01
The source term in a reaction-diffusion system, in general, does not involve explicit time dependence. A class of self-limiting growth models dealing with animal and tumor growth and bacterial population in a culture, on the other hand, are described by kinetics with explicit functions of time. We analyze a reaction-diffusion system to study the propagation of spatial front for these models.
Strain-based diffusion solver for realistic representation of diffusion front in physical reactions
2017-01-01
When simulating fluids, such as water or fire, interacting with solids, it is a challenging problem to represent details of diffusion front in physical reaction. Previous approaches commonly use isotropic or anisotropic diffusion to model the transport of a quantity through a medium or long interface. We have identified unrealistic monotonous patterns with previous approaches and therefore, propose to extend these approaches by integrating the deformation of the material with the diffusion process. Specifically, stretching deformation represented by strain is incorporated in a divergence-constrained diffusion model. A novel diffusion model is introduced to increase the global rate at which the solid acquires relevant quantities, such as heat or saturation. This ensures that the equations describing fluid flow are linked to the change of solid geometry, and also satisfy the divergence-free condition. Experiments show that our method produces convincing results. PMID:28448591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, J.; Larson, E.M.; Holt, J.B.
Real-time synchrotron diffraction has been used to monitor the phase transformations of highly exothermic, fast self-propagating solid combustion reactions on a subsecond time scale down to 100 milliseconds and in some instances to 10 milliseconds. Three systems were investigated: Ti + C {yields} TiC; Ti + C + xNi {yields} TiC + Ni-Ti alloy; and Al + Ni {yields} AlNi. In all three reactions, the first step was the melting of the metal reactants. Formation of TiC in the first two reactions was completed within 400 milliseconds of the melting of the Ti metal, indicating that the formation of TiCmore » took place during the passage of the combustion wave front. In the Al + Ni reaction, however, passage of the wave front was followed by the appearance and disappearance of at least one intermediate in the afterburn region. The final AlNi was formed some 5 seconds later and exhibited a delayed appearance of the (210) reflection, which tends to support a phase transformation from a disordered AlNi phase at high temperature to an ordered CsCl structure some 20 seconds later. This new experimental approach can be used to study the chemical dynamics of high-temperature solid-state phenomena and to provide the needed database to test various models for solid combustion. 28 refs., 4 figs.« less
The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems
NASA Astrophysics Data System (ADS)
Morillo, Robin; Manz, Niklas
We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.
A Photographic Study of Combustion and Knock in a Spark-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1938-01-01
Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kittell, David E.; Yarrington, Cole D.; Hobbs, M. L.
A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quenchmore » limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Finally, possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. Finally, this higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.« less
A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits
Kittell, David E.; Yarrington, Cole D.; Hobbs, M. L.; ...
2018-04-14
A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quenchmore » limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Finally, possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. Finally, this higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.« less
NASA Astrophysics Data System (ADS)
Zhang, Huangwei; Chen, Zheng
2018-05-01
Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.
The range expansion patterns of Spartina alterniflora on salt marshes in the Yangtze Estuary, China
NASA Astrophysics Data System (ADS)
Xiao, Derong; Zhang, Liquan; Zhu, Zhenchang
2010-06-01
The range expansion patterns of Spartina alterniflora and the roles which sexual reproduction and asexual propagation play in range expansion were investigated at the Chongming Dongtan nature reserve in the Yangtze Estuary, China. Two range expansion patterns of S. alterniflora at its advancing fronts could be found (1) S. alterniflora-mudflat front (S-M) and (2) S. alterniflora- Scirpus mariqueter-mudflat front (S-S-M). One feature revealed by this study was that a flush of seedling recruitment and establishment in spring was a crucial way for S. alterniflora to colonize new habitats and achieve a fast rate of range expansion. The mean number of seedlings recruited at the S-M front was much higher than that at the S-S-M front. Once established, the survivorship of seedlings was high, both at the S-M and S-S-M fronts. The established seedlings formed new tussocks quickly by vegetative tillering and growth of rhizomes and these finally merged into dense meadows. The mean distance of range expansion of S. alterniflora, after one growing season at the S-M front, was 25.4 ± 3.1 m yr -1 and 2.7 ± 0.5 m yr -1 at the S-S-M front. Sexual reproduction by seedlings and asexual propagation by tillering and growth of rhizomes were the two main means by which S. alterniflora could maintain a fast rate of range expansion on the salt marshes of the Yangtze Estuary. The colonization behaviors of S. alterniflora on advancing fronts differed as a reaction to various external and internal factors. The impact of abiotic and biotic factors governing the range expansion of S. alterniflora and its implications for the spatial structure of tidal wetlands are discussed.
Solutions multiples thermocapillaires en zone flottante à gravité nulle
NASA Astrophysics Data System (ADS)
Chénier, E.; Delcarte, C.; Labrosse, G.
1998-04-01
An original model is adopted to analyse the melted phase hydrodynamics, in the floating zone technique configuration for crystal growth. In particular, a small capillary scale located near the fusion fronts is taken into account. Its size turns out to influence significantly the flow structure. For the first time, multiple solutions are exhibited in zero gravity. Un modèle original a été adopté pour analyser l'hydrodynamique de la phase fondue pour la technique de la zone flottante, en croissance cristalline. En particulier, une petite échelle capillaire, située près des fronts de fusion, est prise en considération. Son extension se révèle influencer significativement la structure des écoulements. L'existence de solutions multiples est, pour la première fois, mise en évidence en gravité zéro.
Modeling stable isotope transport in metamorphic and hydrothermal systems
NASA Astrophysics Data System (ADS)
Baumgartner, L. P.; Mueller, T.; Skora, S.; Begue, F.
2007-12-01
Stable isotopes are powerful tools for deciphering the fluid flow histories of metamorphic terrains. The nature of fluid flow, fluid sources, and fluid fluxes can be delineated in well constrained studies. Continuum mechanics models for stable isotope fluid-rock exchange were developed and used over the last three decades in an attempt to accurately interpret the signatures left behind by fluid flow in the earths crust. The efforts have been hampered by the realization that the exchange of many stable isotopes, e.g. oxygen and carbon, by intracrystalline diffusion, hence without re-organization of the crystal lattice, appears to be too slow to achieve significant exchange. This should lead to relatively flat isotopic exchange profiles on hand-, outcrop, or aureole scale. Nevertheless, isotopic fronts are typically sharp (sub mm to cm scale), when measured in the field. This has lead to the suggestion that these sharp fronts correspond to the sides of infiltration fronts, implying the data to have been collected at a high angle to the infiltration direction. Nevertheless, the fact that the oxygen and carbon fronts are located at the same place is not explained by this. A review of published carbon and oxygen data reveals that many contact aureoles show linear trends in oxygen-carbon isotope ratio diagrams for carbonate sample suits. This implies that the fluid composition infiltrating the aureoles had essentially an X(CO2) of 0.5. This is in contrast to skarn mineralogy developed, which requires a water-rich fluid, in agreement with the general notion that igneous fluids are water-rich. These and other observations indicate that the mass transport equation used for stable isotope exchange needs to be improved to model appropriately the actual isotope kinetics during fluid-rock exchange. Detailed isotope studies on systems where net transport reactions are driven by mass transport have led us to identify different exchange mechanisms, including: a) the stable isotope exchange is given by instantaneous mass balance written for the isotope during reaction; b) equilibrium precipitation of products, but slow exchange kinetics for reactants. These observations require that the reactive term in the stable isotope reactive transport equation is re-written to include the net transfer reactions, which in turn implies the solution of the transport equation for the elements driving the reaction.
Ikeda, Yusuke; Ichikawa, Hiroshi; Nara, Rio; Baba, Yasuhiro; Shimoyama, Yoshimitsu; Kubo, Yasuyuki
2016-10-01
This study investigated factors that determine the velocity of the center of mass (CM) and flight distance from a track start to devise effective technical and physical training methods. Nine male and 5 female competitive swimmers participated in this study. Kinematics and ground reaction forces of the front and back legs were recorded using a video camera and force plates. The track start was modeled as an inverted pendulum system including a compliant leg, connecting the CM and front edge of the starting block. The increase in the horizontal velocity of the CM immediately after the start signal was closely correlated with the rotational component of the inverted pendulum. This rotational component at hands-off was significantly correlated with the average vertical force of the back plate from the start signal to hands-off (r = .967, P < .001). The flight distance / height was significantly correlated with the average vertical force of the front plate from the back foot-off to front foot-off (r = .783, P < .01). The results indicate that the legs on the starting block in the track start play a different role in the behavior of the inverted pendulum.
Nursing gaze of the Eastern Front in World War II: a feminist narrative analysis.
Georges, Jane M; Benedict, Susan
2008-01-01
Grounded in a feminist perspective, a narrative analysis of letters written by Martha Lohmann, a nurse who served with the German Army on the Eastern Front in World War II, is undertaken. Utilizing "gaze" as a focus, an exploration of the narrative and the multiple gazes embedded within it is performed. Implications for future analysis of nurses' textual accounts of violence, armed conflict, and war are presented.
Analysis of laser remote fusion cutting based on a mathematical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matti, R. S.; Department of Mechanical Engineering, College of Engineering, University of Mosul, Mosul; Ilar, T.
Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, lasermore » remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.« less
Analysis of laser remote fusion cutting based on a mathematical model
NASA Astrophysics Data System (ADS)
Matti, R. S.; Ilar, T.; Kaplan, A. F. H.
2013-12-01
Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.
NASA Technical Reports Server (NTRS)
Walther, David C.; Anthenien, Ralph A.; Roslon, Mark; Fernandez-Pello, A. Carlos; Urban, David L.
1999-01-01
The Microgravity Smoldering Combustion (MSC) experiment is a study of the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal earth gravity. Experiments have been conducted aboard the NASA Space Shuttle in the Get Away Special Canister (GAS-CAN), an apparatus requiring completely remote operation. Future GAS-CAN experiments will utilize an ultrasound imaging system (UIS) which has been incorporated into the MSC experimental apparatus. Thermocouples are currently used to measure temperature and reaction front velocities. A less intrusive method is desirable, however, as smolder is a very weak reaction and it has been found that heat transfer along the thermocouple is sufficient to affect the smolder reaction. It is expected that the UIS system will eventually replace the existing array of thermocouples as a non-intrusive technique without compromising data acquisition. The UIS measures line of sight permeability, providing information about the reaction front position and extent. Additionally, the ignition sequence of the MSC experiments has been optimized from previous experiments to provide longer periods of self-supported smolder. An ignition protocol of a fixed power to the igniter for a fixed time is now implemented. This, rather than a controlled temperature profile ignition protocol at the igniter surface, along with the UIS system, will allow for better study of the effect of gravity on a smolder reaction.
Physarum machines: encapsulating reaction-diffusion to compute spanning tree
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2007-12-01
The Physarum machine is a biological computing device, which employs plasmodium of Physarum polycephalum as an unconventional computing substrate. A reaction-diffusion computer is a chemical computing device that computes by propagating diffusive or excitation wave fronts. Reaction-diffusion computers, despite being computationally universal machines, are unable to construct certain classes of proximity graphs without the assistance of an external computing device. I demonstrate that the problem can be solved if the reaction-diffusion system is enclosed in a membrane with few ‘growth points’, sites guiding the pattern propagation. Experimental approximation of spanning trees by P. polycephalum slime mold demonstrates the feasibility of the approach. Findings provided advance theory of reaction-diffusion computation by enriching it with ideas of slime mold computation.
Reactive transport in a partially molten system with binary solid solution
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2017-12-01
Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the qualitative behavior of reactive melt transport simulations conducted in two-dimensions. The theoretical framework presented can be extended to more complex and realistic phase behavior, and is therefore a useful tool for understanding nonlinear feedbacks in reactive melt transport problems relevant to mantle dynamics.
RhIG for the treatment of immune thrombocytopenia: consensus and controversy
Despotovic, Jenny M.; Lambert, Michele P.; Herman, Jay H.; Gernsheimer, Terry B.; McCrae, Keith R.; Tarantino, Michael D.; Bussel, James B.
2012-01-01
Anti-D immune globulin (RhIG) is a front-line option in North America for the treatment of immune thrombocytopenia (ITP) in children and adults. Recently, addition of a Food and Drug Administration-mandated black box warning highlighted the risks of intravascular hemolysis, renal failure, and disseminated intravascular coagulation after anti-D infusion, prompting concern within the medical community regarding its use. A working group convened in response to this warning to prepare a consensus document regarding the safety of RhIG because there has been no increased incidence of adverse events since the initial discovery of these reactions many years ago. The efficacy of anti-D is well documented and only briefly reviewed. The estimated incidence and proposed mechanisms for the rare, major treatment-related complications are discussed, and signal detection data associated with heightened risk of acute hemolytic reactions are presented. The importance of considering host factors, given the rarity of severe reactions, is emphasized. Safety profiles of parallel treatment options are reviewed. The working group consensus is that RhIG has comparable safety and efficacy to other front-line agents for the treatment of children and adults with ITP. Safety may be further improved by careful patient selection. PMID:21981825
Modeling the ignition of a copper oxide aluminum thermite
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher
2017-01-01
An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.
Initiation structure of oblique detonation waves behind conical shocks
NASA Astrophysics Data System (ADS)
Yang, Pengfei; Ng, Hoi Dick; Teng, Honghui; Jiang, Zonglin
2017-08-01
The understanding of oblique detonation dynamics has both inherent basic research value for high-speed compressible reacting flow and propulsion application in hypersonic aerospace systems. In this study, the oblique detonation structures formed by semi-infinite cones are investigated numerically by solving the unsteady, two-dimensional axisymmetric Euler equations with a one-step irreversible Arrhenius reaction model. The present simulation results show that a novel wave structure, featured by two distinct points where there is close-coupling between the shock and combustion front, is depicted when either the cone angle or incident Mach number is reduced. This structure is analyzed by examining the variation of the reaction length scale and comparing the flow field with that of planar, wedge-induced oblique detonations. Further simulations are performed to study the effects of chemical length scale and activation energy, which are both found to influence the formation of this novel structure. The initiation mechanism behind the conical shock is discussed to investigate the interplay between the effect of the Taylor-Maccoll flow, front curvature, and energy releases from the chemical reaction in conical oblique detonations. The observed flow fields are interpreted by means of the energetic limit as in the critical regime for initiation of detonation.
Nuclear reactions in shock wave front during supernova events
NASA Technical Reports Server (NTRS)
Lavrukhina, A. K.
1985-01-01
The new unique isotopic anomalous coponent of Xe(XeX) was found in the carbonaceous chondrites. It is enriched in light shielded isotopes (124Xe and 126Xe) and in heavy nonshielded isotopes (134Xe and 136Xe. All characteristics of Xe-X can be explained by a model of nucleosynthesis of the Xe isotopes in shock wave front passed through the He envelope during supernova events. The light isotopes are created by p process and the heavy isotopes are created by n process (slow r process). They were captured with high temperature carbon grains condensing by supernova shock waves.
Materialistic Cues Boosts Personal Relative Deprivation.
Zhang, Hong; Zhang, Wen
2016-01-01
Three studies investigated whether exposure to materialistic cues would increase perceptions of personal relative deprivation and related emotional reactions. In Study 1, individuals who were surveyed in front of a luxury store reported higher levels of personal relative deprivation than those surveyed in front of an ordinary building. In Study 2, participants who viewed pictures of luxurious goods experienced greater personal relative deprivation than those viewed pictures of neutral scenes. Study 3 replicated the results from Study 2, with a larger sample size and a more refined assessment of relative deprivation. Implications of these findings for future studies on relative deprivation and materialism are discussed.
NASA Astrophysics Data System (ADS)
Trindade Pedrosa, Elisabete; Putnis, Andrew
2015-04-01
Pseudomorphic mineral replacement reactions are a common phenomena in nature, and often described as interface-coupled dissolution-reprecipitation processes. The generation of porosity is a key factor for its progression since it creates the pathway for fluid infiltration towards an ongoing reaction front. The generation of porosity depends on two key factors: the molar volume differences between parent and product phase, and the relative solubilities of the parent and product in the fluid at the mineral-fluid interface (Pollok et al., 2011). Jamtveit et al., (2009) demonstrated that the permeability of the parent rock may also be enhanced by the development of fractures as a response to stresses generated by local volume changes at the reaction interface, which in turn increases the reaction rate. The replacement of calcite (CaCO3) by fluorite (CaF2) involves a molar volume decrease of 33.5 %. If indeed high volume changes generate high local stresses, a fragmentation process is expected to be driven by this replacement reaction. To test this hypothesis, a number of hydrothermal experiments were performed. Small cubes of calcite rock (Carrara marble), and single crystals of calcite were used as parent materials. Two fluoride solutions (ammonium fluoride and sodium fluoride) were used as reactants. Samples were reacted at temperatures up to 200°C for various times and quenched to room temperature. After drying, samples were mounted in epoxy holders, cross sections through the centre of the samples were cut and polished, and analysed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMP). The replacement end product of all experiments was confirmed to be fluorite. In every case the external shape of the samples was perfectly maintained. No reaction induced fracturing was visible in any of the samples (rock or single crystals) although the texture of the replaced material was quite complex, often with a 'V' shaped reaction front. The main difference between single crystals and rock was that in the former, grain boundaries were rapid transport pathways for fluid infiltration resulting in the precipitation of fluorite within the sample at locations further from the main reaction front. The porosity formed was very high and complex, its texture depending on the shape and orientation of the replaced material. Very large hollow spaces with diameter >30 μm formed in several samples. In this system the large volume decrease is accommodated by a high porosity rather than fracturing. Jamtveit B., Putnis C.V. & Malthe-Sørenssen A. (2009). Reaction induced fracturing during replacement processes. Contrib. Min. Pet., 157 127-133 Pollok K., Putnis C.V. & Putnis A. (2011) Mineral replacement reactions in solid solution-aqueous solution systems: Volume changes, reaction paths and end points using the example of model salt systems. Am. J. Sci., 311, 211-236
Propagation of detonations in hydrazine vapor
NASA Technical Reports Server (NTRS)
Heinrich, H. J.
1985-01-01
In the range of greater hydrazine vapor pressure, detonation speed depends exclusively on the extent of the ammonia decomposition in the second reaction stage. As vapor pressure decreases, the ammonia disintegration speed becomes increasingly slower and the reaction reached in the reaction zone increasingly decreases until finally, in the vapor pressure range between 53 and 16 Torr, the contribution of the second stage to detonation propagation disappears, and only the first stage remains active. Since the disintegration speed of the hydrazine in this pressure range has decreased markedly as well, no level, but rather only spinning, detonations occur. Temporary separations of the impact front and the reaction zone in the process lead to fluctuations of the detonation speed.
Measurements of ion velocity separation and ionization in multi-species plasma shocks
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.
2018-05-01
The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.
Measurements of shock-front structure in multi-species plasmas on OMEGA
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Wilks, S. C.; Amendt, P. A.; Heeter, R. F.; Katz, J.; Hoffman, N. M.; Vold, E.; Taitano, W.; Simakov, A.; Chacon, L.
2016-10-01
The structure of a shock front in a plasma with multiple ion species is measured for the first time in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%)+Ne(2%) and H(98%)+C(2%). Separation of the ion species within the shock front is inferred. Although shocks play an important role in ICF and astrophysical plasmas, the intrinsically kinetic nature of the shock front indicates the need for experiments to benchmark hydrodynamic models. Comparison with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented. This work performed under auspices of U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Growth of III-V films by control of MBE growth front stoichiometry
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)
1992-01-01
For the growth of strain-layer materials and high quality single and multiple quantum wells, the instantaneous control of growth front stoichiometry is critical. The process of the invention adjusts the offset or phase of molecular beam epitaxy (MBE) control shutters to program the instantaneous arrival or flux rate of In and As4 reactants to grow InAs. The interrupted growth of first In, then As4, is also a key feature.
Predictor - Predictive Reaction Design via Informatics, Computation and Theories of Reactivity
2017-10-10
into more complex and valuable molecules, but are limited by: 1. The extensive time it takes to design and optimize a synthesis 2. Multi-step...system. As it is fully compatible to the industry standard SQL, designing a server- based system at a later time will be trivial. Producing a JAVA front...Report: PREDICTOR - Predictive REaction Design via Informatics, Computation and Theories of Reactivity The goal of this program was to create a cyber
Hajdu, Bálint; Czakó, Gábor
2018-02-22
We report a comprehensive high-level explicitly correlated ab initio study on the X - + NH 2 Y [X,Y = F, Cl, Br, I] reactions characterizing the stationary points of the S N 2 (Y - + NH 2 X) and proton-transfer (HX + NHY - ) pathways as well as the reaction enthalpies of various endothermic additional product channels such as H - + NHXY, XY - + NH 2 , XY + NH 2 - , and XHY - + NH. Benchmark structures and harmonic vibrational frequencies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ(-PP) level of theory, followed by CCSD(T)-F12b/aug-cc-pVnZ(-PP) [n = Q and 5] and core correlation energy computations. In the entrance and exit channels we find two equivalent hydrogen-bonded C 1 minima, X - ···HH'NY and X - ···H'HNY connected by a C s first-order saddle point, X - ···H 2 NY, as well as a halogen-bonded front-side complex, X - ···YNH 2 . S N 2 reactions can proceed via back-side attack Walden inversion and front-side attack retention pathways characterized by first-order saddle points, submerged [X-NH 2 -Y] - and high-energy [H 2 NXY] - , respectively. Product-like stationary points below the HX + NHY - asymptotes are involved in the proton-transfer processes.
Geoelectrical signatures of reactive mixing
NASA Astrophysics Data System (ADS)
Ghosh, U.; Bandopadhyay, A.; Jougnot, D.; Le Borgne, T.; Meheust, Y.
2017-12-01
Characterizing the effects of fluid mixing on geochemical reactions in the subsurface is of paramount importance owing to their pivotal role in processes such as contaminant migration or aquifer remediation, to name a few [1]. Large velocity gradients in the porous media are expected to lead to enhanced diffusive mixing accompanied by augmented reaction rates [2]. Despite its importance, accurate monitoring of such processes still remains an open challenge, mainly due to the opacity of the medium and to the lack of access to it. However, in recent years, geophysical methods based on electrical conductivity and polarization have come up as a promising tool for mapping and monitoring such reactions in the subsurface. In this regard, one of the main challenges is to properly characterize the multiple sources of electrical signals and in particular isolate the influence of reactive mixing on the electrical conductivity from those of other sources [3]. In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of obtaining a spatially-resolved measurement of local reaction rates in the subsurface from electrical measurements. To this end, we employ a lamellar description of the mixing interface [4] with novel semi-analytical upscaling techniques to quantify changes in electrical conductivity induced by chemical reactions across mixing fronts. The changes in electrical conductivity are strongly dependent on the concentration of ionic species as well as on the polarization of the pore (water) solution around the grains, which in turn are controlled by local reaction rates and, consequently, by the local velocity gradients. Hence, our results essentially suggest that local variations in the electrical conductivity may be quantitatively related to the mixing and reaction dynamics, and thus be used as a measurement tool to characterize these dynamics. References 1. M. Dentz, T. Le Borgne, A. Englert, and B. Bijeljic, J. Cont. Hyd., 120, 1-17, 2011. 2. T. Le Borgne, T. R. Ginn, and M. Dentz, Geophys. Res. Lett., 41(22), 7898-7906, 2014. 3. R Knight et al. Reviews of Geophysics, 48(4), 2010. 4. T. Le Borgne, M. Dentz, and E. Villermaux, J. Fluid Mech., 770, 458-498, 2015.
Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine
2016-03-01
Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.
Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames
NASA Astrophysics Data System (ADS)
Tamadonfar, Parsa
Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.
Huang, W.; Zheng, Lingyun; Zhan, X.
2002-01-01
Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.
Shimojo, Fuyuki; Nakano, Aiichiro; Kalia, Rajiv K; Vashishta, Priya
2008-06-01
Rapid reaction of a molten metal with an oxide is the key to understanding recently discovered fast reactions in nanothermite composites. We have investigated the thermite reaction of Fe2O3 with aluminum by molecular dynamics simulations with interatomic forces calculated quantum mechanically in the framework of the density functional theory. A redox reaction to form iron metal and Al2O3 initiates with the rapid formation of Al-O bonds at the interface within 1 ps, followed by the propagation of the combustion front with a velocity of 70 m/s for at least 5 ps at 2000 K. The reaction time for an oxygen atom to change character from Fe2O3 type to Al2O3 type at the interface is estimated to be 1.7+/-0.9 ps , and bond-overlap population analysis has been used to calculate reaction rates.
Ducrot, Pauline; Julia, Chantal; Méjean, Caroline; Kesse-Guyot, Emmanuelle; Touvier, Mathilde; Fezeu, Léopold K; Hercberg, Serge; Péneau, Sandrine
2016-05-01
Despite growing evidence supporting the utility of front-of-pack nutrition labels in enabling consumer evaluation of food product healthiness, research on food choices is scarce. This study aims at comparing the impact of front-of-pack nutrition labels on consumers' purchasing intentions. Five-arm, open-label RCT. The study setting was a virtual web-based supermarket, with participants from the French NutriNet-Santé study. The eligibility requirement was grocery shopping involvement. The intervention was to simulate one shopping situation with front-of-pack nutrition labels affixed on food products (December 2014 to March 2015). Participants were randomly assigned to one of five exposure conditions using a central computer system: Guideline Daily Amounts, Multiple Traffic Lights, Five-Color Nutrition Label, Green Tick, or control (no front-of-pack exposure). Given the nature of the intervention, masking of participants was not performed. The primary outcome was the overall nutritional quality of the contents of the shopping cart, estimated using the United Kingdom Food Standards Agency nutrient profiling system. Secondary outcomes included energy and nutrient content of the shopping cart. Impact of the front-of-pack labels was also evaluated across sociodemographic subgroups based on age, educational level, income, and nutrition knowledge. A total of 11,981 participants were included in the analyses (April 2015). The Five-Color Nutrition Label significantly led to the highest overall nutritional quality of the shopping cart, as reflected by lower Food Standards Agency scores (M=8.72; SD=2.75), followed by Multiple Traffic Lights (M=8.97; SD=2.68) and Green Tick (M=8.99; SD=2.71), compared with the control (M=9.34; SD=2.57) (p<0.0001). The Five-Color Nutrition Label was the only front-of-pack format that led to a lower content in lipids, saturated fatty acids, and sodium of the shopping cart (all p<0.05). The impact of the different front-of-pack labels was similar across sociodemographic subgroups. The Five-Color Nutrition Label based on a color-coded and graded scale indicating overall nutritional quality is effective in promoting overall healthier food choices in all population subgroups. This study is registered at www.clinicaltrials.gov NCT02385838. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.
2014-12-01
Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using the combination of Lidar, photogrammetry DEMs and infrared imagery. These techniques leverage electromagnetic surface properties that allow us to identify the presence of water, measure the slope and elevation of the channel, as well as the two-dimensional temperature variability of the water/ice/snow in multiple melt channels within a drainage system.
Should the "Grenville Front" in the Central U.S. be Erased from Geologic Maps?
NASA Astrophysics Data System (ADS)
Stein, C. A.; Stein, S.; Elling, R. P.; Keller, G. R.; Kley, J.
2017-12-01
Two prominent Precambrian geologic features of central North America are the Midcontinent Rift (MCR) and Grenville Front. The MCR, an extensive band of buried igneous and sedimentary rocks that outcrop near Lake Superior, records a major rifting event at 1.1 Ga that failed to split North America. In Canada, the Grenville Front is the landward extent of deformation of the fold and thrust belt from the Grenville orogeny, the sequence of events from ca. 1.3-0.98 Ga culminating in the assembly of the supercontinent of Rodinia. In the central United States, lineated gravity anomalies extending southward along the trend of the front in Canada have been interpreted as a buried Grenville Front. However, we argue that these anomalies delineate the eastern arm of the MCR extending from Michigan to Alabama, for multiple reasons. First, gravity anomalies along this trend are similar to those along the remainder of the MCR, and quite different from those across the Grenville Front in Canada. Second, the Precambrian deformation observed on seismic reflection profiles cannot confidently be assigned to the Grenville orogeny and deformation is recorded at least 100 km west of the "front". Third, during the Grenville orogeny deformational events from Texas to Canada were not synchronous or caused by the same plate interactions. Hence the commonly-inferred position of the "Grenville Front" in the east-central United States is part of the Midcontinent Rift, and should not be mapped as a separate entity.
Mechanochemistry for shock wave energy dissipation
NASA Astrophysics Data System (ADS)
Shaw, William L.; Ren, Yi; Moore, Jeffrey S.; Dlott, Dana D.
2017-01-01
Using a laser-driven flyer-plate apparatus to launch 75 μm thick Al flyers up to 2.8 km/s, we developed a technique for detecting the attenuation of shock waves by mechanically-driven chemical reactions. The attenuating sample was spread on an ultrathin Au mirror deposited onto a glass window having a known Hugoniot. As shock energy exited the sample and passed through the mirror, into the glass, photonic Doppler velocimetry monitored the velocity profile of the ultrathin mirror. Knowing the window Hugoniot, the velocity profile could be quantitatively converted into a shock energy flux or fluence. The flux gave the temporal profile of the shock front, and showed how the shock front was reshaped by passing through the dissipative medium. The fluence, the time-integrated flux, showed how much shock energy was transmitted through the sample. Samples consisted of microgram quantities of carefully engineered organic compounds selected for their potential to undergo negative-volume chemistry. Post mortem analytical methods were used to confirm that shock dissipation was associated with shock-induced chemical reactions.
The conductive propagation of nuclear flames. I - Degenerate C + O and O + Ne + Mg white dwarfs
NASA Technical Reports Server (NTRS)
Timmes, F. X.; Woosley, S. E.
1992-01-01
The paper determines the physical properties - speed, width, and density structure - of conductive burning fronts in degenerate carbon-oxygen (C + O) and oxygen-neon-magnesium (O + Ne + Mg) compositions for a grid of initial densities and compositions. The dependence of the physical properties of the flame on the assumed values of nuclear reaction rates, the nuclear reaction network employed, the thermal conductivity, and the choice of coordinate system are investigated. The occurrence of accretion-induced collapse of a white dwarf is found to be critically dependent on the velocity of the nuclear conductive burning front and the growth rate of hydrodynamic instabilities. Treating the expanding area of the turbulent burning region as a fractal whose tile size is identical to the minimum unstable Rayleigh-Taylor wavelength, it is found, for all reasonable values of the fractal dimension, that for initial C + O or O + Ne + Mg densities above about 9 x 10 exp 9 g/cu cm the white dwarf should collapse to a neutron star.
Three-dimensional hybrid grid generation using advancing front techniques
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Noack, Ralph W.
1995-01-01
A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.
Evolutionary trade-offs and the structure of polymorphisms.
Sheftel, Hila; Szekely, Pablo; Mayo, Avi; Sella, Guy; Alon, Uri
2018-05-26
Populations of organisms show genetic differences called polymorphisms. Understanding the effects of polymorphisms is important for biology and medicine. Here, we ask which polymorphisms occur at high frequency when organisms evolve under trade-offs between multiple tasks. Multiple tasks present a problem, because it is not possible to be optimal at all tasks simultaneously and hence compromises are necessary. Recent work indicates that trade-offs lead to a simple geometry of phenotypes in the space of traits: phenotypes fall on the Pareto front, which is shaped as a polytope: a line, triangle, tetrahedron etc. The vertices of these polytopes are the optimal phenotypes for a single task. Up to now, work on this Pareto approach has not considered its genetic underpinnings. Here, we address this by asking how the polymorphism structure of a population is affected by evolution under trade-offs. We simulate a multi-task selection scenario, in which the population evolves to the Pareto front: the line segment between two archetypes or the triangle between three archetypes. We find that polymorphisms that become prevalent in the population have pleiotropic phenotypic effects that align with the Pareto front. Similarly, epistatic effects between prevalent polymorphisms are parallel to the front. Alignment with the front occurs also for asexual mating. Alignment is reduced when drift or linkage is strong, and is replaced by a more complex structure in which many perpendicular allele effects cancel out. Aligned polymorphism structure allows mating to produce offspring that stand a good chance of being optimal multi-taskers in at least one of the locales available to the species.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Lemarchand, A.; Lesne, A.; Mareschal, M.
1995-05-01
The reaction-diffusion equation associated with the Fisher chemical model A+B-->2A admits wave-front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity vmin, as predicted by the marginal stability criterion. In order to test the relevance of this deterministic description we investigate the macroscopic consequences, on the velocity and the width of the front, of the intrinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin equations, deduced analytically from the master equation within a system size expansion procedure. We show that the mean profile associated with the stochastic solution propagates faster than the deterministic solution at a velocity up to 25% greater than vmin.
Determining the orientation of depth-rotated familiar objects.
Niimi, Ryosuke; Yokosawa, Kazuhiko
2008-02-01
How does the human visual system determine the depth-orientation of familiar objects? We examined reaction times and errors in the detection of 15 degrees differences in the depth orientations of two simultaneously presented familiar objects, which were the same objects (Experiment 1) or different objects (Experiment 2). Detection of orientation differences was best for 0 degrees (front) and 180 degrees (back), while 45 degrees and 135 degrees yielded poorer results, and 90 degrees (side) showed intermediate results, suggesting that the visual system is tuned for front, side and back orientations. We further found that those advantages are due to orientation-specific features such as horizontal linear contours and symmetry, since the 90 degrees advantage was absent for objects with curvilinear contours, and asymmetric object diminished the 0 degrees and 180 degrees advantages. We conclude that the efficiency of visually determining object orientation is highly orientation-dependent, and object orientation may be perceived in favor of front-back axes.
A Preliminary Study of Flame Propagation in a Spark-ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Spencer, R C
1937-01-01
The N.A.C.A. combustion apparatus was altered to operate as a fuel-injection, spark-ignition engine, and a preliminary study was made of the combustion of gasoline-air mixtures at various air-fuel ratios. Air-fuel ratios ranging from 10 to 21.6 were investigated. Records from an optical indicator and films from a high-speed motion-picture camera were the chief sources of data. Schlieren photography was used for an additional study. The results show that the altered combustion apparatus has characteristics similar to those of a conventional spark-ignition engine and should be useful in studying phenomena in spark-ignition engines. The photographs show the flame front to be irregularly shaped rather than uniformly curved. With a theoretically correct mixture the reaction, as indicated by the photographs, is not completed in the flame front but continues for some time after the combustion front has traversed the mixture.
Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond
NASA Astrophysics Data System (ADS)
Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.
Inpota, Prawpan; Strzelak, Kamil; Koncki, Robert; Sripumkhai, Wisaroot; Jeamsaksiri, Wutthinan; Ratanawimarnwong, Nuanlaor; Wilairat, Prapin; Choengchan, Nathawut; Chantiwas, Rattikan; Nacapricha, Duangjai
2018-01-01
A microfluidic method with front-face fluorometric detection was developed for the determination of total inorganic iodine in drinking water. A polydimethylsiloxane (PDMS) microfluidic device was employed in conjunction with the Sandell-Kolthoff reaction, in which iodide catalyzed the redox reaction between Ce(IV) and As(III). Direct alignment of an optical fiber attached to a spectrofluorometer was used as a convenient detector for remote front-face fluorometric detection. Trace inorganic iodine (IO 3 - and I - ) present naturally in drinking water was measured by on-line conversion of iodate to iodide for determination of total inorganic iodine. On-line conversion efficiency of iodate to iodide using the microfluidic device was investigated. Excellent conversion efficiency of 93 - 103% (%RSD = 1.6 - 11%) was obtained. Inorganic iodine concentrations in drinking water samples were measured, and the results obtained were in good agreement with those obtained by an ICP-MS method. Spiked sample recoveries were in the range of 86%(±5) - 128%(±8) (n = 12). Interference of various anions and cations were investigated with tolerance limit concentrations ranging from 10 -6 to 2.5 M depending on the type of ions. The developed method is simple and convenient, and it is a green method for iodine analysis, as it greatly reduces the amount of toxic reagent consumed with reagent volumes in the microfluidic scale.
Community assembly rules affect the diversity of expanding communities.
Peng, Zechen; Zhou, Shurong
2014-11-01
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two-species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity-survival trade-offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.
Initial Fire Suppression Reactions of Halons Phase 1. Development of Experimental Approach
1990-09-01
Engineering News, pp. 22-46, August 31, 1987. Mitani, T., " Flame Retardant Effects of CF 3Br and NaHCO 3 Combustion and Flame , Vol. 50, pp. 177-188, 1983...occurring when halons enter flame fronts are unclear. It is these initial reactions, however, that determine differences in halon performance, the effect of...LABORATORY FLAMES Over the past four decades, numerous tests have been performed in an effort to characterize the relative effectiveness of candidate
How Obstacles Perturb Population Fronts and Alter Their Genetic Structure.
Möbius, Wolfram; Murray, Andrew W; Nelson, David R
2015-12-01
As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles.
How Obstacles Perturb Population Fronts and Alter Their Genetic Structure
Möbius, Wolfram; Murray, Andrew W.; Nelson, David R.
2015-01-01
As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle’s shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call ‘geometry-enhanced genetic drift’, complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles. PMID:26696601
Adaptive optics for array telescopes using piston-and-tilt wave-front sensing
NASA Technical Reports Server (NTRS)
Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.
1992-01-01
A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.
Materialistic Cues Boosts Personal Relative Deprivation
Zhang, Hong; Zhang, Wen
2016-01-01
Three studies investigated whether exposure to materialistic cues would increase perceptions of personal relative deprivation and related emotional reactions. In Study 1, individuals who were surveyed in front of a luxury store reported higher levels of personal relative deprivation than those surveyed in front of an ordinary building. In Study 2, participants who viewed pictures of luxurious goods experienced greater personal relative deprivation than those viewed pictures of neutral scenes. Study 3 replicated the results from Study 2, with a larger sample size and a more refined assessment of relative deprivation. Implications of these findings for future studies on relative deprivation and materialism are discussed. PMID:27574515
Levison, Bruce S.; Zhang, Renliang; Wang, Zeneng; Fu, Xiaoming; DiDonato, Joseph A.; Hazen, Stanley L.
2013-01-01
Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific-oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) as efficient, selective and sensitive methods for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature, and liquid-liquid phase sample extraction with lighter than water solvents facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable isotope dilution and multiple reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time. PMID:23499838
Inside out: Speed-dependent barriers to reactive mixing
NASA Astrophysics Data System (ADS)
Kelley, Douglas; Nevins, Thomas
2015-11-01
Reactive mixing occurs wherever fluid flow and chemical or biological growth interact over time and space. Those interactions often lead to steep gradients in reactant and product concentration, arranged in complex spatial structures that can cause wide variation in the global reaction rate and concentrations. By simultaneously measuring fluid velocity and reaction front locations in laboratory experiments with the Belousov-Zhabotinsky reaction, we find that the barriers defining those structures vary dramatically with speed. In particular, we find that increasing flow speed causes reacted regions to move from vortex edges to vortex cores, thus turning the barriers ``inside out''. This observation has implications for reactive mixing of phytoplankton in global oceans.
Predicting Upscaled Behavior of Aqueous Reactants in Heterogeneous Porous Media
NASA Astrophysics Data System (ADS)
Wright, E. E.; Hansen, S. K.; Bolster, D.; Richter, D. H.; Vesselinov, V. V.
2017-12-01
When modeling reactive transport, reaction rates are often overestimated due to the improper assumption of perfect mixing at the support scale of the transport model. In reality, fronts tend to form between participants in thermodynamically favorable reactions, leading to segregation of reactants into islands or fingers. When such a configuration arises, reactions are limited to the interface between the reactive solutes. Closure methods for estimating control-volume-effective reaction rates in terms of quantities defined at the control volume scale do not presently exist, but their development is crucial for effective field-scale modeling. We attack this problem through a combination of analytical and numerical means. Specifically, we numerically study reactive transport through an ensemble of realizations of two-dimensional heterogeneous porous media. We then employ regression analysis to calibrate an analytically-derived relationship between reaction rate and various dimensionless quantities representing conductivity-field heterogeneity and the respective strengths of diffusion, reaction and advection.
Measurements of ion species separation in strong plasma shocks
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans
2017-10-01
Shocks are important dynamic phenomena in inertial confinement fusion (ICF) and astrophysical plasmas. While the relationship between upstream and downstream plasmas far from the shock front is fully determined by conservation equations, the structure of shock fronts is determined by dynamic kinetic processes. Kinetic theory and simulations predict that the width of a strong (M >2) collisional plasma shock front is on the order of tens of ion mean-free-paths. The shock front structure plays an important role for overall dynamics when the shock front width approaches plasma scale lengths, as in the spherically converging shock in the DT-vapor in an ICF implosion. However, there has been no experimental data benchmarking shock front structure in the plasma phase. The structure of a shock front in a plasma with multiple ion species has been directly measured for the first time using a combination of Thomson scattering and proton radiography in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%) +Ne(2%). Within the shock front, velocity separation of the ion species is observed for the first time: the light species (H) accelerates to of order the shocked fluid velocity (450 microns/ns) before the heavy species (Ne) begins to move. This velocity-space separation implies that the separation of ion species occurs at the shock front, a predicted feature of shocks in multi-species plasmas but never observed experimentally until now. Comparison of experimental data with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn
2015-08-15
Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less
Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher
2015-06-01
An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).
NASA Astrophysics Data System (ADS)
Naine, Tarun Bharath; Gundawar, Manoj Kumar
2017-09-01
We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.
NASA Technical Reports Server (NTRS)
Marchenko, V. I.
1974-01-01
It is shown that on days with frontal activity in the atmosphere the levels of fibrinolysis and fibrinogenolysis are increased. The reactions of fibrinolysis and fibrinogenolysis to the passage of warm and cold fronts varies with the season of the year.
Detonation Initiation of Heterogeneous Melt-Cast High Explosives
NASA Astrophysics Data System (ADS)
Chuzeville, Vincent; Baudin, Gerard; Lefrancois, Alexandre; Boulanger, Remi; Catoire, Laurent
2015-06-01
The melt-cast explosives' shock initiation mechanisms are less investigated than pressed and cast-cured ones. If the existence of hot-spots is widely recognized, their formation mechanism is not yet established. We study here two melt-cast explosives, NTO-TNT 60:40 and RDX-TNT 60:40 in order to establish a relation between the microstructure and the reaction rate using a two-phase model based on a ZND approach. Such a model requires the reaction rate, the equations of state of the unreacted phase and of the detonation products and an interaction model between the two phases to describe the reaction zone thermodynamics. The reaction rate law can be written in a factorized form including the number of initiation sites, the explosive's deflagration velocity around hot spots and a function depending on gas volume fraction produced by the deflagration front propagation. The deflagration velocity mainly depends on pressure and is determined from pop-plot tests using the hypothesis of the single curve build-up. This hypothesis has been verified for our two melt-cast explosives. The function depending on gas volume fraction is deduced from microstructural observations and from an analogy with the solid nucleation and growth theory. It has been established for deflagration fronts growing from grain's surface and a given initial grain size distribution. The model requires only a few parameters, calibrated thanks to an inversion method. A good agreement is obtained between experiments and numerical simulations.
Hacker, Bradley R.; Rubie, David C.; Kirby, Stephen H.; Bohlen, Steven R.
2005-01-01
Experimental transformation of a rather pure natural calcite marble to aragonite marble did not proceed via the expected straightforward polymorphic replacement. Instead, the small amount of Mg in the starting material (0.36 wt %) was excluded from the growing aragonite and diffused preferentially into the remaining calcite grains, producing Mg-rich calcite rods that persisted as relicts. Nucleation of aragonite occurred exclusively on grain boundaries, with aragonite [001] oriented subparallel to calcite [0001]. The aragonite crystals preferentially consumed the calcite crystal on which they nucleated, and the reaction fronts developed preferentially along the {010} and {110} planes of aragonite. Each aragonite neoblast that grew was nearly free of Mg (typically <0.1 wt %). The excess Mg was taken up by the calcite grains in between, stabilizing them and causing a few volume percent rodlike relicts of Mg-enriched calcite (up to 10 wt % MgO) to be left behind by the advancing reaction front. The aragonite growth rates are approximately linear and range from ∼3 × 10−11 m s−1 at 600°C to ∼9 × 10−9 m s−1 at 850°C, with an apparent activation enthalpy of 166 ± 91 kJ mol−1. This reaction mechanism and the resultant texture are akin to cellular precipitation reactions in metals. Similar transformation textures have been reported from high-Mg marbles in Japan and China that disproportionated to low-Mg calcite and dolomite.
Solar tomography adaptive optics.
Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang
2014-03-10
Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.
Multiple response optimization for higher dimensions in factors and responses
Lu, Lu; Chapman, Jessica L.; Anderson-Cook, Christine M.
2016-07-19
When optimizing a product or process with multiple responses, a two-stage Pareto front approach is a useful strategy to evaluate and balance trade-offs between different estimated responses to seek optimum input locations for achieving the best outcomes. After objectively eliminating non-contenders in the first stage by looking for a Pareto front of superior solutions, graphical tools can be used to identify a final solution in the second subjective stage to compare options and match with user priorities. Until now, there have been limitations on the number of response variables and input factors that could effectively be visualized with existing graphicalmore » summaries. We present novel graphical tools that can be more easily scaled to higher dimensions, in both the input and response spaces, to facilitate informed decision making when simultaneously optimizing multiple responses. A key aspect of these graphics is that the potential solutions can be flexibly sorted to investigate specific queries, and that multiple aspects of the solutions can be simultaneously considered. As a result, recommendations are made about how to evaluate the impact of the uncertainty associated with the estimated response surfaces on decision making with higher dimensions.« less
NASA Astrophysics Data System (ADS)
Hatakeyama, K.; Katayama, I.
2016-12-01
Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction (e.g., Fujie et al., 2013, Shilington et al., 2015). The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes (e.g., Seno and Yamanaka, 1996) and the subduction water flux (e.g., Hacker, 2008). Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures (Martin and Fyfe, 1970), the rate of water delivery to the reaction front likely controls the extent of serpentinization (Macdonald and Fyfe, 1985). Because the water through existing serpentinite is supplied to reaction front, permeability of serpentinite has important role of the extent of serpentinization along the outer-rise fault. In this study, we measured permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the extent of serpentinization along an outer-rise fault from Darcy's law. Our experimental results show that the permeability of serpnetinites decreases with increasing confining pressure, and reaches to 10-19 m2 to 10-21 m2 at confining pressure of 100 MPa. In extrapolating our experimental results to pressure of oceanic mantle, permeability of serpentinite can be as low as 10-22 m2 at the top of oceanic mantle (7 km depth beneath seafloor). If we assume that the time scale of water supply to the reaction front of 1.0 My, the lateral extent of serpentinization is approximately 9 km along the outer-rise fault in the uppermost oceanic mantle. Based on these estimate, we calculated the global water flux carried by serpentinized oceanic mantle to be 3.4×1012 kg/year, which is markedly higher than the water flux of hydrated oceanic crust (1.3×1012 kg/year). Since the subduction water flux is much greater than the output flux through magmatic degassing, the amount of present-day ocean might be decreasing, and this may result in the disappearance of the Earth's oceans in the future.
NASA Technical Reports Server (NTRS)
Kurtz, R. L.; Liu, H. K.
1974-01-01
When a hologram storing more than one wave is illuminated with coherent light, the reconstructed wave fronts interfere with each other or with any other phase-related wave front derived from the illuminating source. This multiple wave front comparison is called holographic interferometry, and its application is called holographic nondestructive testing (HNDT). The theoretical aspects of HNDT techniques and the sensitivity of the holographic system to the geometrical placement of the optical components are briefly discussed. A unique HNDT system which is mobile and possesses variable sensitivity to stress amplitude is discribed, the experimental evidence of the application of this system to the testing of the hidden debonds in a ceramic-epoxy-fiberglass structure used for sample testing of the radome of the Pershing missile system is presented.
Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts
NASA Astrophysics Data System (ADS)
D'Hernoncourt, J.; De Wit, A.
2010-06-01
Across traveling exothermic autocatalytic fronts, a density jump can be observed due to changes in composition and temperature. These density changes are prone to induce buoyancy-driven convection around the front when the propagation takes place in absence of gel within the gravity field. Most recent experiments devoted to studying such reaction-diffusion-convection dynamics are performed in Hele-Shaw cells, two glass plates separated by a thin gap width and filled by the chemical solutions. We investigate here the influence of heat losses through the walls of such cells on the nonlinear fingering dynamics of exothermic autocatalytic fronts propagating in vertical Hele-Shaw cells. We show that these heat losses increase tip splittings and modify the properties of the flow field. A comparison of the differences between the dynamics in reactors with respectively insulating and conducting walls is performed as a function of the Lewis number Le, the Newton cooling coefficient α quantifying the amplitude of heat losses and the width of the system. We find that tip splitting is enhanced for intermediate values of α while coarsening towards one single finger dominates for insulated systems or large values of α leading to situations equivalent to isothermal ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mathew; Bowen, Brian; Coles, Dwight
The Middleware Automated Deployment Utilities consists the these three components: MAD: Utility designed to automate the deployment of java applications to multiple java application servers. The product contains a front end web utility and backend deployment scripts. MAR: Web front end to maintain and update the components inside database. MWR-Encrypt: Web utility to convert a text string to an encrypted string that is used by the Oracle Weblogic application server. The encryption is done using the built in functions if the Oracle Weblogic product and is mainly used to create an encrypted version of a database password.
Effects of hair, clothing, and headgear on localization of three-dimensional sounds Part IIb
NASA Astrophysics Data System (ADS)
Riederer, Klaus A. J.
2003-10-01
Seven 20-25-year-old normal hearing (<=20 dBHL) native male-undergraduates listened twice to treatments of 85 virtual source locations in a large dark anechoic chamber. The 3-D-stimuli were anew-calculated white noise bursts, amplitude modulated (40-Hz sine), repeated after a pause (total duration 3×275=825 ms), HRTF-convolved and headphone-equalized (Sennheiser HD580). The HRTFs were measured from a Cortex dummy head wearing different garments: 1=alpaca pullover only; 2=1+curly pony-tailed thick-hair+eye-glasses 3=1+long thin-hair (ear-covering) 4=1+mens trilby; 5=2+bicycle helmet+jacket [Riederer, J. Acoust. Soc. Am., this issue]. Perceived directions were signified by placing a tailored digitizer-stylus over an illuminated ball darkened after the response. Subjects did the experiments during three days, each consisting of a 2-h session of several randomized sets with multiple breaks. Azimuth and elevation errors were investigated separately in factorial within-subjects ANOVA showing strong dependence p(<=0.004) on all main effects and interactions (garment, elevation, azimuth). The grand mean errors were approximately 16°-19°. Confused angles were retained around the +/-90°-interaural axis and cos(elev)-weighting was applied to azimuth errors. The total front-back/back-front confusion rate was 18.38% and up-down/down-up 12.21%. The confusions (except left-right/right-left, 2.07%) and reaction times depended strongly on azimuth (main effect) and garment (interaction). [Work supported by Graduate School of Electronics, Telecommunication and Automation.
NASA Astrophysics Data System (ADS)
Garrido, C. J.; Padrón-Navarta, J. A.; López-Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M. T.; Marchesi, C.; Tommasi, A.
2012-04-01
Our understanding of subduction zone processes is tightly connected to our knowledge of the cycling of volatiles in the Earth, namely the loci of devolatilization reactions and the fluid migration mechanism. The exact nature of fluid pathways at high-pressure conditions is poorly known and still highly speculative. Studies metamorphic terrains that record main dehydration reaction are, thus, an invaluable tool to decipher the mechanism for fluid expulsion. Among other dehydration reactions in subduction zones, the antigorite (Atg) breakdown is rather discontinuous, releases the largest amount of fluids (ca. 9 wt. %) and is considered to have important seismological implications. The antigorite dehydration front in the Cerro del Almirez (Betic Cordillera, Spain) offers, thus, an unique opportunity to investigate the dynamics of fluid expulsion through the study of micro- and macrotextures recorded in the prograde assemblage (chlorite harzburgite). Granoblastic texture are interspersed in decameter-sized domains with spinifex-like chl-harzburgite and were formed under similar P-T conditions (~1.6-1.9 GPa and 680-710°C). We ascribe these textures to shifts of the growth rate due to temporal and spatial fluctuations of the affinity of the Atg-breakdown reaction. These fluctuations are driven by cyclic variations of the excess fluid pressure which are ultimately controlled by the hydrodynamics of deserpentinization fluid expulsion. Crystallization at a low affinity of the reaction, correspondig to the granoblastic texture, may be attained if fluids are slowly drained out from the dehydration front. During the advancement of the dehydration front, overpressured domains are left behind preserving highly metastable Atg-serpentinite domains. Brittle failure results in a sudden drop of the fluid pressure, and a displacement of Atg equilibrium towards the prograde products that crystallizes at a high affinity of the reaction (spinifex-like texture). Evidences of brittle failure are found along grain-size reduction zones (GSRZ), a few mm to meters wide, which form roughly planar conjugate structures and crosscut the metamorphic texture. GSRZ are characterized by (1) sharp, irregular shapes and abrupt terminations contacts with undeformed metaperidotite, (2) an important reduction of the olivine grain size (60-250 µm), and (3) decrease in the opx modal amount. Analysis of olivine crystal-preferred orientations in GSRZ shows similar patterns, but a higher dispersion than in neighboring metaperidotite. These structures are interpreted as due to hydrofracturing allowing for the formation of high permeability channelways for overpressured fluids. This textural bimodality (granofels and Spinifex-like) and the record of brittle failure hence witnesses a unique example of the feedbacks between the cyclic dynamic of metamorphic fluid expulsion, the reaction rate and crystallisation of the Atg-dehydrating system.
Episodic fluid expulsion and fluid pathways during high-pressure dehydration of serpentinite
NASA Astrophysics Data System (ADS)
Padrón-Navarta, J.; Garrido, C. J.; López Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M.; Tommasi, A.; Marchesi, C.
2011-12-01
Our understanding of subduction zone processes is tightly connected to our knowledge of the cycling of volatiles in the Earth, namely the loci of devolatilization reactions and the fluid migration mechanism. The exact nature of fluid pathways at high-pressure conditions is poorly known and still highly speculative. The study of metamorphic terrains that record main dehydration reaction are, thus, an invaluable tool to decipher the mechanism for fluid expulsion. Among other dehydration reactions in subduction zones, the antigorite (Atg) breakdown is rather discontinuous, releases the largest amount of fluids (ca. 9 wt. %) and is considered to have important seismological implications. The antigorite dehydration front in the Cerro del Almirez (Betic Cordillera, Spain) offers, thus, an unique opportunity to investigate the dynamics of fluid expulsion through the study of micro- and macrotextures recorded in the prograde assemblage (chlorite harzburgite). Chl-harzburgites show two textures interspersed in decameter-sized domains: granoblastic and spinifex-like. Both were formed under similar P-T conditions (~1.6-1.9 GPa and 680-710°C)). We ascribe the change in texture to shifts of the growth rate due to temporal and spatial fluctuations of the affinity of the Atg-breakdown reaction. These fluctuations are driven by cyclic variations of the excess fluid pressure which are ultimately controlled by the hydrodynamics of deserpentinization fluid expulsion. Crystallization at a low affinity of the reaction, correspondig to the granoblastic texture, may be attained if fluids are slowly drained out from the dehydration front. During the advancement of the dehydration front, overpressured domains are left behind preserving highly metastable Atg-serpentinite domains. Brittle failure results in a sudden drop of the fluid pressure, and a displacement of Atg equilibrium towards the prograde products that crystallizes at a high affinity of the reaction (spinifex-like texture). Evidences of brittle failure are found along grain-size reduction zones (GSRZ), a few mm to meters wide, which form roughly planar conjugate structures and crosscut the metamorphic texture. GSRZ are characterized by (1) sharp, irregular shapes and abrupt terminations contacts with undeformed metaperidotite, (2) an important reduction of the olivine grain size (60-250 μm), and (3) decrease in the opx modal amount. Analysis of olivine crystal-preferred orientations in GSRZ shows similar patterns, but a higher dispersion than in neighboring metaperidotite. These structures are interpreted as due to hydrofracturing allowing for the formation of high permeability channelways for overpressured fluids. This textural bimodality (granofels and spinifex-like) and the record of brittle failure witness a unique example of feedback between cyclic metamorphic fluid expulsion, reaction rates, and deformation in the Atg-dehydrating system.
NASA Astrophysics Data System (ADS)
Cartwright, Ian
Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.
Solar farms grow out of town renewable energy goals | State, Local, and
a nearby town and school district. Dartmouth leveraged its community-scale solar leadership to support clean energy on multiple fronts, promoting residential solar installations through the Dartmouth
NASA Technical Reports Server (NTRS)
1971-01-01
A preliminary investigation of the parameters included in run-up dust reactions is presented. Two types of tests were conducted: (1) ignition criteria of large bulk pyrotechnic dusts, and (2) optimal run-up conditions of large bulk pyrotechnic dusts. These tests were used to evaluate the order of magnitude and gross scale requirements needed to induce run-up reactions in pyrotechnic dusts and to simulate at reduced scale an accident that occurred in a manufacturing installation. Test results showed that propagation of pyrotechnic dust clouds resulted in a fireball of relatively long duration and large size. In addition, a plane wave front was observed to travel down the length of the gallery.
Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board
NASA Technical Reports Server (NTRS)
Breeding Shawn; Khodabandeh, Julia; Turner, Larry D. (Technical Monitor)
2001-01-01
The science requirements for materials processing is to provide the desired PI requirements of thermal gradient, solid/liquid interface front velocity for a given processing temperature desired by the PI. Processing is performed by translating the furnace with the sample in a stationary position to minimize any disturbances to the solid/liquid interface front during steady state processing. Typical sample materials for this metals and alloys furnace are lead-tin alloys, lead-antimony alloys, and aluminum alloys. Samples must be safe to process and therefore typically are contained with hermetically sealed cartridge tubes (gas tight) with inner ceramic liners (liquid tight) to prevent contamination and/or reaction of the sample material with the cartridge tube.
ERIC Educational Resources Information Center
Johnson, J. David
A review of literature and two surveys, one of college students and one of a random sample of adults, were used to examine four aspects of media embedded interactions (social behavior in front of a TV or radio): their functions, their environment, their effects, and the reactions of the interactants to them. Television is seen as performing a…
Setting initial conditions for inflation with reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Bagchi, Partha; Das, Arpan; Dave, Shreyansh S.; Sengupta, Srikumar; Srivastava, Ajit M.
2018-03-01
We discuss the issue of setting appropriate initial conditions for inflation. Specifically, we consider natural inflation model and discuss the fine tuning required for setting almost homogeneous initial conditions over a region of order several times the Hubble size which is orders of magnitude larger than any relevant correlation length for field fluctuations. We then propose to use the special propagating front solutions of reaction-diffusion equations for localized field domains of smaller sizes. Due to very small velocities of these propagating fronts we find that the inflaton field in such a field domain changes very slowly, contrary to naive expectation of rapid roll down to the true vacuum. Continued expansion leads to the energy density in the Hubble region being dominated by the vacuum energy, thereby beginning the inflationary phase. Our results show that inflation can occur even with a single localized field domain of size smaller than the Hubble size. We discuss possible extensions of our results for different inflationary models, as well as various limitations of our analysis (e.g. neglecting self gravity of the localized field domain).
Inner clot diffusion and permeation during fibrinolysis.
Diamond, S L; Anand, S
1993-01-01
A model of fibrinolysis was developed using multicomponent convection-diffusion equations with homogeneous reaction and heterogeneous adsorption and reaction. Fibrin is the dissolving stationary phase and plasminogen, tissue plasminogen activator (tPA), urokinase (uPA), and plasmin are the soluble mobile species. The model is based on an accurate molecular description of the fibrin fiber and protofibril structure and contains no adjustable parameters and one phenomenological parameter estimated from experiment. The model can predict lysis fronts moving across fibrin clots (fine or coarse fibers) of various densities under different administration regimes using uPA and tPA. We predict that pressure-driven permeation is the major mode of transport that allows for kinetically significant thrombolysis during clinical situations. Without permeation, clot lysis would be severely diffusion limited and would require hundreds of minutes. Adsorption of tPA to fibrin under conditions of permeation was a nonequilibrium process that tended to front load clots with tPA. Protein engineering efforts to design optimal thrombolytics will likely be affected by the permeation processes that occur during thrombolysis. PMID:8312497
NASA Astrophysics Data System (ADS)
Pandey, S.; Rajaram, H.
2015-12-01
This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most pronounced in the fractured systems, with a departure from the maximum system-averaged dissolution rate occurring after ~100 kyr followed by a gradual decrease in the reaction rate with time that persists beyond 104 kyr.
3D DNS of Turbulent Premixed Flame with over 50 Species and 300 Elementary Reactions
NASA Astrophysics Data System (ADS)
Shimura, Masayasu; Yenerdag, Basmil; Naka, Yoshitsugu; Nada, Yuzuru; Tanahashi, Mamoru
2014-11-01
Three-dimensional direct numerical simulation of methane-air premixed planar flame propagating in homogenous isotropic turbulence is conducted to investigate local flame structure in thin reaction zones. Detailed kinetic mechanism, GRI-Mech 3.0 which includes 53 species and 325 elementary reactions, is used to represent methane-air reaction, and temperature dependences of transport and thermal properties are considered. For a better understanding of the local flame structure in thin reaction zones regime, distributions of mass fractions of major species, heat release rate, temperature and turbulent structures are investigated. Characteristic flame structures, such as radical fingering and multi-layered-like flame structures, are observed. The most expected maximum heat release rate in flame elements is lower than that of laminar flame with same mixture. To clarify mechanism of the decrease in local heat release rate, effects of strain rates tangential to flame front on local heat release rate are investigated.
Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles
NASA Astrophysics Data System (ADS)
Bernitt, Erik; Döbereiner, Hans-Günther; Gov, Nir S.; Yochelis, Arik
2017-06-01
During macropinocytosis, cells remodel their morphologies for the uptake of extracellular matter. This endocytotic mechanism relies on the collapse and closure of precursory structures, which are propagating actin-based, ring-shaped vertical undulations at the dorsal (top) cell membrane, a.k.a. circular dorsal ruffles (CDRs). As such, CDRs are essential to a range of vital and pathogenic processes alike. Here we show, based on both experimental data and theoretical analysis, that CDRs are propagating fronts of actin polymerization in a bistable system. The theory relies on a novel mass-conserving reaction-diffusion model, which associates the expansion and contraction of waves to distinct counter-propagating front solutions. Moreover, the model predicts that under a change in parameters (for example, biochemical conditions) CDRs may be pinned and fluctuate near the cell boundary or exhibit complex spiral wave dynamics due to a wave instability. We observe both phenomena also in our experiments indicating the conditions for which macropinocytosis is suppressed.
Numerical simulation of the hydrodynamical combustion to strange quark matter
NASA Astrophysics Data System (ADS)
Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth
2010-12-01
We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below ≈2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.
NASA Astrophysics Data System (ADS)
Higgins, Andrew
2009-06-01
Detonation in a heterogeneous explosive with a relatively sparse concentration of reaction centers (``hot spots'') is investigated experimentally. The explosive system considered is nitromethane gelled with PMMA and with glass microballoons (GMB's) in suspension. The detonation velocity is measured as a function of the characteristic charge dimension (diameter or thickness) in both axisymmetric and two-dimensional planar geometries. The use of a unique, annular charge geometry (with the diameter of the annulus much greater than the annular gap thickness) permits quasi-two-dimensional detonations to be observed without undesirable lateral rarefactions that result from a finite aspect ratio. The detonation front curvature is also measured directly using an electronic streak camera. The results confirm the prior findings of Gois et al. (1996) which showed that, for a low concentration of GMB's, detonation propagation does not exhibit the expected 2:1 scaling from axisymmetric to planar geometries. This reinforces the idea that detonation in highly nonideal explosives is not governed exclusively by front curvature.
NASA Astrophysics Data System (ADS)
Kim, Wuhyun; Gwak, Min-Cheol; Yoh, Jack; Seoul National University Team
2017-06-01
The performance characteristics of aluminized HMX are considered by varying the aluminum (Al) concentration in a hybrid non-ideal detonation model. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al concentration and a double front detonation (DFD) feature when aerobic Al reaction occurs behind the front. While experimental studies have been reported on the effect of Al concentration on both gas-phase and solid-phase detonations, the numerical investigations were limited to only gas-phase detonation for the varying Al concentration. In the current study, a two-phase model is utilized for understanding the volumetric effects of Al concentration in the condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterizing the performance of aluminized HMX with a maximum Al concentration of 50%. The simulated results are compared with the experimental data for 5%-25% concentrations, and the formation of DFD structure under varying Al concentration (0%-50%) in HMX is investigated.
Moore, M
2001-11-01
Mount Clemens General Hospsital, Mount Clemens, Mich. performance anomalies due to multiple interfaces with separate systems. implementation of an interface engine. improved management of data exchange among disparate systems. up-front studies of vendor offerings, potential problems, and long-term needs.
Characterization of edge oscillation in a traveling-wave field-effect transistor.
Narahara, Koichi
2013-07-01
In this study, we characterize the oscillating pulse edges developed in a traveling-wave field-effect transistor (TWFET). Recently, it has been found that a stable shock front can develop on a TWFET, which can travel in one direction only. Once the reflected pulse edge at the far end is transmitted to the input, the shock front develops and begins to travel on the device again. This process establishes a permanent edge oscillation. This paper discusses the device setup necessary to excite such oscillations and how pulse edges oscillate on a TWFET. By applying the phase reduction scheme to the transmission equations of a TWFET, we obtain phase sensitivity, which appropriately explains the measured spatial dependence of the locking range in frequency. Moreover, multiple oscillating edges can develop simultaneously, which are mutually synchronized. The dynamics of these multiple edges are also described.
Horizontal geometrical reaction time model for two-beam nacelle LiDARs
NASA Astrophysics Data System (ADS)
Beuth, Thorsten; Fox, Maik; Stork, Wilhelm
2015-06-01
Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.
NASA Astrophysics Data System (ADS)
Andrushchenko, V. A.; Murashkin, I. V.; Shevelev, Yu. D.
2016-06-01
Within the investigation of various aspects of asteroid and comet danger and, in particular, the explosion of several fragments of meteoroids in the atmosphere above the Earth surface, the toy problem about four point explosions in the case of their special arrangement above the underlying surface is numerically solved. Complex interactions of primary and secondary shock waves between themselves, with the hard surface, and with tangential discontinuities are examined. The structure of flow inside gas regions disturbed by the explosions—the occurrence of eddy structures in them and the influence of reflected shocks waves on them—are investigated. The tendency of the external wave fronts of each explosion to form a unified front and the tendency of their internal hot domains to merge into a joined configuration (where the second process proceeds a little later than the first one) is revealed. This unified front and joined configuration are qualitatively identical to the external internal structure for the solitary explosion. The specially arranged explosions are chosen because the effects of multiple diffraction, interference, and, the main thing, cumulation of spherical waves are manifested more clearly in this caseTwo variants with different altitude of the explosions above the surface are calculated.
Modeling deflagration waves out of hot spots
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2017-01-01
It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.
Xu, Feng; Li, Zhengrui; Wu, Lijun; ...
2016-09-13
Development of sodium-ion battery (SIB) electrode materials currently lags behind electrodes in commercial lithium-ion batteries (LIBs). However, in the long term, development of SIB components is a valuable goal. Their similar, but not identical, chemistries require careful identification of the underlying sodiation mechanism in SIBs. Here in this study, we utilize in situ transmission electron microscopy to explore quite different sodiation behaviors even in similar electrode materials through real-time visualization of microstructure and phase evolution. Upon electrochemical sodiation, single-crystalline ZnO nanowires (sc-ZNWs) are found to undergo a step-by-step electrochemical displacement reaction, forming crystalline NaZn 13 nanograins dispersed in a Namore » 2O matrix. This process is characterized by a slowly propagating reaction front and the formation of heterogeneous interfaces inside the ZNWs due to non-uniform sodiation amorphization. In contrast, poly-crystalline ZNWs (pc-ZNWs) exhibited an ultrafast sodiation process, which can partly be ascribed to the availability of unobstructed ionic transport pathways among ZnO nanograins. Thus the reaction front and heterogeneous interfaces disappear. The in situ TEM results, supported by calculation of the ion diffusion coefficient, provide breakthrough insights into the dependence of ion diffusion kinetics on crystallization form. This points toward a goal of optimizing the microstructure of electrode materials in order to develop high performance SIBs.« less
Microbiological and meteorological analysis of two Australian dust storms in April 2009.
Lim, Natalie; Munday, Chris I; Allison, Gwen E; O'Loingsigh, Tadhg; De Deckker, Patrick; Tapper, Nigel J
2011-12-15
Dust is an important source of bioaerosols including bacteria. In this study, the microbiology and meteorology of specific dust storms in Australia were investigated. The samples were collected from two dust events in April 2009 that were characterised by intense cold fronts that entrained dust from the highly erodible and drought-stricken Mallee and Riverina regions of Victoria and central NSW. In the first storm, the dust travelled eastward over Canberra and Sydney, and in the second storm, the dust travelled east/southeastward over Canberra and Melbourne. Rain fell on both cities during the second dust storm. Dust and rain samples were collected, cultured, and the composition compared using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Multiple bands were evident on DGGE indicative of a diverse microflora, and identification of several bands confirmed the presence of multiple genera and species representing three phyla. Numerous bands represented Bacillus species, and these were present in multiple dust samples collected from both Canberra and Melbourne. Interestingly, the microflora present in rain samples collected in Canberra during the second dust storm was quite different and the DGGE banding patterns from these samples clustered separately to most dust samples collected at the same time. Identification of several DGGE bands and PCR products from these rain samples indicated the presence of Pseudomonas species. These results indicate that Australian dust and rain have a diverse microflora and highlights the contribution of dust events to the distribution of microbes in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, R.S.
The effect of the 11 vol% losing during reaction of yttrium-aluminas garnet (YAG) and zirconia was observed in zirconia coated single-crystal alumina fiber-YAG matrix composites. The reaction caused plastic deformation in the alumina fibers, and possibly a minor amount of porosity at fiber-matrix interfaces that was usually indistinguishable from matrix porosity. The results were analyzed by models for diffusive cavitation modified to use reaction self-stress. Crack-healing, tensile stress states along the reaction front that approach plane stress, and the small volume of self-stressed material make crack-like pores unlikely at the high temperatures required for reaction. Smaller matrix grains might promotemore » formation of smaller cavities but are also incompatible with high temperature. Both modeling and experiment suggest that sufficient porosity for crack deflection and fiber pullout cannot form unless processing methods that form dense composites at lower temperatures are used.« less
Lahuerta, Juan J.; Pepin, François; González, Marcos; Barrio, Santiago; Ayala, Rosa; Puig, Noemí; Montalban, María A.; Paiva, Bruno; Weng, Li; Jiménez, Cristina; Sopena, María; Moorhead, Martin; Cedena, Teresa; Rapado, Immaculada; Mateos, María Victoria; Rosiñol, Laura; Oriol, Albert; Blanchard, María J.; Martínez, Rafael; Bladé, Joan; San Miguel, Jesús; Faham, Malek; García-Sanz, Ramón
2014-01-01
We assessed the prognostic value of minimal residual disease (MRD) detection in multiple myeloma (MM) patients using a sequencing-based platform in bone marrow samples from 133 MM patients in at least very good partial response (VGPR) after front-line therapy. Deep sequencing was carried out in patients in whom a high-frequency myeloma clone was identified and MRD was assessed using the IGH-VDJH, IGH-DJH, and IGK assays. The results were contrasted with those of multiparametric flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). The applicability of deep sequencing was 91%. Concordance between sequencing and MFC and ASO-PCR was 83% and 85%, respectively. Patients who were MRD– by sequencing had a significantly longer time to tumor progression (TTP) (median 80 vs 31 months; P < .0001) and overall survival (median not reached vs 81 months; P = .02), compared with patients who were MRD+. When stratifying patients by different levels of MRD, the respective TTP medians were: MRD ≥10−3 27 months, MRD 10−3 to 10−5 48 months, and MRD <10−5 80 months (P = .003 to .0001). Ninety-two percent of VGPR patients were MRD+. In complete response patients, the TTP remained significantly longer for MRD– compared with MRD+ patients (131 vs 35 months; P = .0009). PMID:24646471
Failure Waves in Glass and Ceramics under Shock Compression
NASA Astrophysics Data System (ADS)
Singh Brar, N.
1999-06-01
The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the ``so called" failure wave or front has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance, and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress level. The shear strength [τ = 1/2(σ_x-σ_y)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 2 GPa for soda-lime, borosilicate, and filled glasses. The optical (high-speed photography) observations also confirm the formation of failure front. There is a general agreement among various researchers on these observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton is based on the process of nucleation of local densification due to shock compression followed by shear failure around inhomogeneities resulting in phase boundary between the comminuted from the intact material. The second, proposed by Grady involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe microcracking originating from impact face. The third, by Espinosa and Brar proposes that the front is created through shear microcracks, which nucleate and propagate from the impact face, as originally suggested by Kanel. This mechanism is incorporated in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et. al.
The role of whole brain radiation therapy in the management of melanoma brain metastases
2014-01-01
Background Brain metastases are common in patients with melanoma, and optimal management is not well defined. As melanoma has traditionally been thought of as “radioresistant,” the role of whole brain radiation therapy (WBRT) in particular is unclear. We conducted this retrospective study to identify prognostic factors for patients treated with stereotactic radiosurgery (SRS) for melanoma brain metastases and to investigate the role of additional up-front treatment with whole brain radiation therapy (WBRT). Methods We reviewed records of 147 patients who received SRS as part of initial management of their melanoma brain metastases from January 2000 through June 2010. Overall survival (OS) and time to distant intracranial progression were calculated using the Kaplan-Meier method. Prognostic factors were evaluated using the Cox proportional hazards model. Results WBRT was employed with SRS in 27% of patients and as salvage in an additional 22%. Age at SRS > 60 years (hazard ratio [HR] 0.64, p = 0.05), multiple brain metastases (HR 1.90, p = 0.008), and omission of up-front WBRT (HR 2.24, p = 0.005) were associated with distant intracranial progression on multivariate analysis. Extensive extracranial metastases (HR 1.86, p = 0.0006), Karnofsky Performance Status (KPS) ≤ 80% (HR 1.58, p = 0.01), and multiple brain metastases (HR 1.40, p = 0.06) were associated with worse OS on univariate analysis. Extensive extracranial metastases (HR 1.78, p = 0.001) and KPS (HR 1.52, p = 0.02) remained significantly associated with OS on multivariate analysis. In patients with absent or stable extracranial disease, multiple brain metastases were associated with worse OS (multivariate HR 5.89, p = 0.004), and there was a trend toward an association with worse OS when up-front WBRT was omitted (multivariate HR 2.56, p = 0.08). Conclusions Multiple brain metastases and omission of up-front WBRT (particularly in combination) are associated with distant intracranial progression. Improvement in intracranial disease control may be especially important in the subset of patients with absent or stable extracranial disease, where the competing risk of death from extracranial disease is low. These results are hypothesis generating and require confirmation from ongoing randomized trials. PMID:24954062
Development and tests of MCP based timing and multiplicity detector for MIPs
NASA Astrophysics Data System (ADS)
Feofilov, G.; Kondratev, V.; Stolyarov, O.; Tulina, T.; Valiev, F.; Vinogradov, L.
2017-01-01
We present summary of technological developments and tests of the MCP based large area detector aimed at precise timing and charged particles multiplicity measurements. Results obtained in course of these developments of isochronous (simultaneity) precise signal readout, passive summation of 1 ns signals, fast (1 GHz) front-end electronics, miniature vacuum systems, etc. could be potentially interesting for a number of future applications in different fields.
Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi
2011-04-15
Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.
NASA Astrophysics Data System (ADS)
Ravindran, Prashaanth
The unstable nature of detonation waves is a result of the critical relationship between the hydrodynamic shock and the chemical reactions sustaining the shock. A perturbative analysis of the critical point is quite challenging due to the multiple spatio-temporal scales involved along with the non-linear nature of the shock-reaction mechanism. The author's research attempts to provide detailed resolution of the instabilities at the shock front. Another key aspect of the present research is to develop an understanding of the causality between the non-linear dynamics of the front and the eventual breakdown of the sub-structures. An accurate numerical simulation of detonation waves requires a very efficient solution of the Euler equations in conservation form with detailed, non-equilibrium chemistry. The difference in the flow and reaction length scales results in very stiff source terms, requiring the problem to be solved with adaptive mesh refinement. For this purpose, Berger-Colella's block-structured adaptive mesh refinement (AMR) strategy has been developed and applied to time-explicit finite volume methods. The block-structured technique uses a hierarchy of parent-child sub-grids, integrated recursively over time. One novel approach to partition the problem within a large supercomputer was the use of modified Peano-Hilbert space filling curves. The AMR framework was merged with CLAWPACK, a package providing finite volume numerical methods tailored for wave-propagation problems. The stiffness problem is bypassed by using a 1st order Godunov or a 2nd order Strang splitting technique, where the flow variables and source terms are integrated independently. A linearly explicit fourth-order Runge-Kutta integrator is used for the flow, and an ODE solver was used to overcome the numerical stiffness. Second-order spatial resolution is obtained by using a second-order Roe-HLL scheme with the inclusion of numerical viscosity to stabilize the solution near the discontinuity. The scheme is made monotonic by coupling the van Albada limiter with the higher order MUSCL-Hancock extrapolation to the primitive variables of the Euler equations. Simulations using simplified single-step and detailed chemical kinetics have been provided. In detonations with simplified chemistry, the one-dimensional longitudinal instabilities have been simulated, and a mechanism forcing the collapse of the period-doubling modes was identified. The transverse instabilities were simulated for a 2D detonation, and the corresponding transverse wave was shown to be unstable with a periodic normal mode. Also, a Floquet analysis was carried out with the three-dimensional inviscid Euler equations for a longitudinally stable case. Using domain decomposition to identify the global eigenfunctions corresponding to the two least stable eigenvalues, it was found that the bifurcation of limit cycles in three dimensions follows a period doubling process similar to that proven to occur in one dimension and it is because of transverse instabilities. For detonations with detailed chemistry, the one dimensional simulations for two cases were presented and validated with experimental results. The 2D simulation shows the re-initiation of the triple point leading to the formation of cellular structure of the detonation wave. Some of the important features in the front were identified and explained.
Effects of backing board materials on wood combustion performance
Mathew J. Hagge; Kenneth M. Bryden; Mark A. Dietenberger
2004-01-01
Cone calorimeter tests show that backing board materials do not affect the ignition time, initial heat release rate, or the total heat released of combustion for redwood slabs. However, it has been observed that backing board materials alter combustion performance by altering the secondary heat release peak observed when the pyrolysis reaction front nears the unheated...
Wan, Jiamin; Tokunaga, Tetsu K; Kim, Yongman; Wang, Zheming; Lanzirotti, Antonio; Saiz, Eduardo; Serne, R Jeffrey
2008-03-15
The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagated through sediments, pH decreased greatly (as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates (> or =5 cm/day) permitted practically unretarded U transport. Therefore, given the very high Ksat of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, S.F.; Foltz, M.F.
1991-11-01
This paper reports on the combustion-front propagation rate of nitromethane that has been examined to pressures of 40 GPa. A new and general technique involving pulsed laser ignition of an energetic material within a diamond anvil cell and a method for monitoring the rapid decomposition of nitromethane and other explosives to more stable chemical products is described in detail. Nitromethane is shown to exhibit a flame propagation rate that increases smoothly to 100 m/s at 30 GPa as a function of pressure. Above 30 GPa, the final solid-state combustion products change dramatically and the flame propagation rate begins to decrease.more » The combustion-front propagation rate is analyzed in terms of an existing condensed-phase model that predicts a relationship between the front propagation rate, U, and the pressure derivative of the chemical kinetic activation energy, dE{sub a}/dP, such that a plot of logU{sup 2} vs. P should be linear. The activation energy is analyzed to yield an effective volume of activation, {Delta}V, of {minus}3.4 ml/mol. The chemical kinetic parameters determined from the combustion-front propagation rate analysis of solid high-pressure nitromethane is compared with results from other thermal decomposition studies of this prototypic molecular explosive.« less
Effect of vehicular size on chain-reaction crash
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-11-01
We present the dynamic model of the chain-reaction crash to take account of the vehicular size. Drivers brake according to taillights of the forward vehicle. We investigate the effect of the vehicular size on the chain-reaction crash (multiple-vehicle collision) in the traffic flow controlled by taillights. In the multiple-vehicle collision, the first crash induces more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in the traffic flow of vehicles with finite sizes. We clarify the effect of the vehicular size on the multiple-vehicle collision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, K.; Steefel, C. I.; White, A.F.
2009-02-25
In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals inmore » the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.« less
Sparse aperture differential piston measurements using the pyramid wave-front sensor
NASA Astrophysics Data System (ADS)
Arcidiacono, Carmelo; Chen, Xinyang; Yan, Zhaojun; Zheng, Lixin; Agapito, Guido; Wang, Chaoyan; Zhu, Nenghong; Zhu, Liyun; Cai, Jianqing; Tang, Zhenghong
2016-07-01
In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wave-front sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to verify the ability of the pyramid WFS work in close loop to perform the phasing of the primary mirrors of a sparse Fizeau imaging telescope. In the experiment we installed on the optical bench we performed various test checking the ability to flat the wave-front using a deformable mirror and to measure the signal of the differential piston on a two pupils setup. These steps represent the background from which we start to perform full close loop operation on multiple apertures. These steps were also useful to characterize the achromatic double pyramids (double prisms) manufactured in the SHAO optical workshop.
Broadband quantitative NQR for authentication of vitamins and dietary supplements
NASA Astrophysics Data System (ADS)
Chen, Cheng; Zhang, Fengchao; Bhunia, Swarup; Mandal, Soumyajit
2017-05-01
We describe hardware, pulse sequences, and algorithms for nuclear quadrupole resonance (NQR) spectroscopy of medicines and dietary supplements. Medicine and food safety is a pressing problem that has drawn more and more attention. NQR is an ideal technique for authenticating these substances because it is a non-invasive method for chemical identification. We have recently developed a broadband NQR front-end that can excite and detect 14N NQR signals over a wide frequency range; its operating frequency can be rapidly set by software, while sensitivity is comparable to conventional narrowband front-ends over the entire range. This front-end improves the accuracy of authentication by enabling multiple-frequency experiments. We have also developed calibration and signal processing techniques to convert measured NQR signal amplitudes into nuclear spin densities, thus enabling its use as a quantitative technique. Experimental results from several samples are used to illustrate the proposed methods.
Mechanisms of collective cell movement lacking a leading or free front edge in vivo.
Uechi, Hiroyuki; Kuranaga, Erina
2017-08-01
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Role of competition between polarity sites in establishing a unique front
Wu, Chi-Fang; Chiou, Jian-Geng; Minakova, Maria; Woods, Benjamin; Tsygankov, Denis; Zyla, Trevin R; Savage, Natasha S; Elston, Timothy C; Lew, Daniel J
2015-01-01
Polarity establishment in many cells is thought to occur via positive feedback that reinforces even tiny asymmetries in polarity protein distribution. Cdc42 and related GTPases are activated and accumulate in a patch of the cortex that defines the front of the cell. Positive feedback enables spontaneous polarization triggered by stochastic fluctuations, but as such fluctuations can occur at multiple locations, how do cells ensure that they make only one front? In polarizing cells of the model yeast Saccharomyces cerevisiae, positive feedback can trigger growth of several Cdc42 clusters at the same time, but this multi-cluster stage rapidly evolves to a single-cluster state, which then promotes bud emergence. By manipulating polarity protein dynamics, we show that resolution of multi-cluster intermediates occurs through a greedy competition between clusters to recruit and retain polarity proteins from a shared intracellular pool. DOI: http://dx.doi.org/10.7554/eLife.11611.001 PMID:26523396
An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment
de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James
2012-01-01
In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Le Borgne, Tanguy; Davy, Philippe
2017-04-01
Topography-driven subsurface flows are thought to play a central role in determining solute turnover and biogeochemical processes at different scales in the critical zone, including river-hyporheic zone exchanges, hillslope solute transport and reactions, and catchment biogeochemical cycles. Hydraulic head gradients, induced by topography gradients at different scales, generate a distribution of streamlines at depth, dictating the spatial distribution of redox sensitive species, the magnitude of surface water - ground water exchanges and ultimately the source/sink function of the subsurface. Flow velocities generally decrease with depth, leading to broad residence time distributions, which have been shown to affect river chemistry and geochemical reactions in catchments. In this presentation, we discuss the impact of topography-driven flows on mixing processes and the formation of localized reactive hotspots. For this, we solve analytically the coupled flow, mixing and reaction equations in two-dimensional vertical cross-sections of subsurface domains with different topography gradients. For a given topography gradient, we derive the spatial distribution of subsurface velocities, the rates of solute mixing accross streamlines and the induced kinetics of redox, precipitation and dissolution reactions using a Lagrangian approach (Le Borgne et al. 2014). We demonstrate that vertical velocity profiles driven by topography variations, act effectively as shear flows, hence stretching continuously the mixing fronts between recently infiltrated and resident water (Bandopadhyay et al. 2017). We thus derive analytical expressions for residence time distributions, mixing rates and kinetics of chemical reactions as a function of the topography gradients. We show that the rates dissolution and precipitation reactions are significantly enhanced by the existence of vertical velocity gradients and that reaction rates reach a maximum in a localized subsurface reactive layer, whose location and intensity depends on topography gradients. As a consequence of these findings, we discuss the links between topography variations, subsurface velocity gradients and biogeochemical processes in the critical zone. References: Bandopadhyay A., T. Le Borgne, Y. Méheust and M. Dentz (2017) Enhanced reaction kinetics and reactive mixing scale dynamics in mixing fronts under shear flow for arbitrary Damkohler numbers, Adv. in Water Resour. Vol. 100, p. 78-95 Le Borgne T., T. Ginn and M. Dentz (2014) Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in Heterogeneous Flows, Geophys. Res. Lett., Vol. 41, 22, p. 7898-790
NASA Astrophysics Data System (ADS)
Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.
2017-12-01
Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re < 30) relevant in this and similar thermal remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant destruction rates, and the extremes that lead to extinction. Overall, this research provides unique insights into the complex interplay of thermochemical processes that govern the success of smouldering as well as other thermal remediation approaches.
Analysis of Urinary Metabolites of Nerve and Blister Chemical Warfare Agents
2014-08-01
of CWAs. The analysis methods use UHPLC-MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method...Chromatography Mass Spectrometry LOD Limit Of Detection LOQ Limit of Quantitation MRM Multiple Reaction Monitoring MSMS Tandem mass...urine [1]. Those analysis methods use UHPLC- MS/MS in Multiple Reaction Monitoring ( MRM ) mode to enhance the selectivity and sensitivity of the method
Localized microwave pulsed plasmas for ignition and flame front enhancement
NASA Astrophysics Data System (ADS)
Michael, James Bennett
Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.
NASA Astrophysics Data System (ADS)
Jarvis, S.; Hargrave, G. K.
2006-01-01
Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.
A transport model for computer simulation of wildfires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linn, R.
1997-12-31
Realistic self-determining simulation of wildfires is a difficult task because of a large variety of important length scales (including scales on the size of twigs or grass and the size of large trees), imperfect data, complex fluid mechanics and heat transfer, and very complicated chemical reactions. The author uses a transport approach to produce a model that exhibits a self-determining propagation rate. The transport approach allows him to represent a large number of environments such as those with nonhomogeneous vegetation and terrain. He accounts for the microscopic details of a fire with macroscopic resolution by dividing quantities into mean andmore » fluctuating parts similar to what is done in traditional turbulence modeling. These divided quantities include fuel, wind, gas concentrations, and temperature. Reaction rates are limited by the mixing process and not the chemical kinetics. The author has developed a model that includes the transport of multiple gas species, such as oxygen and volatile hydrocarbons, and tracks the depletion of various fuels and other stationary solids and liquids. From this model he develops a simplified local burning model with which he performs a number of simulations that demonstrate that he is able to capture the important physics with the transport approach. With this simplified model he is able to pick up the essence of wildfire propagation, including such features as acceleration when transitioning to upsloping terrain, deceleration of fire fronts when they reach downslopes, and crowning in the presence of high winds.« less
Effect of slow energy releasing on divergent detonation of Insensitive High Explosives
NASA Astrophysics Data System (ADS)
Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui
2014-03-01
There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.
Synthesis and materialization of a reaction-diffusion French flag pattern
NASA Astrophysics Data System (ADS)
Zadorin, Anton S.; Rondelez, Yannick; Gines, Guillaume; Dilhas, Vadim; Urtel, Georg; Zambrano, Adrian; Galas, Jean-Christophe; Estevez-Torres, André
2017-10-01
During embryo development, patterns of protein concentration appear in response to morphogen gradients. These patterns provide spatial and chemical information that directs the fate of the underlying cells. Here, we emulate this process within non-living matter and demonstrate the autonomous structuration of a synthetic material. First, we use DNA-based reaction networks to synthesize a French flag, an archetypal pattern composed of three chemically distinct zones with sharp borders whose synthetic analogue has remained elusive. A bistable network within a shallow concentration gradient creates an immobile, sharp and long-lasting concentration front through a reaction-diffusion mechanism. The combination of two bistable circuits generates a French flag pattern whose 'phenotype' can be reprogrammed by network mutation. Second, these concentration patterns control the macroscopic organization of DNA-decorated particles, inducing a French flag pattern of colloidal aggregation. This experimental framework could be used to test reaction-diffusion models and fabricate soft materials following an autonomous developmental programme.
Theory and Modeling of Liquid Explosive Detonation
NASA Astrophysics Data System (ADS)
Tarver, Craig M.; Urtiew, Paul A.
2010-10-01
The current understanding of the detonation reaction zones of liquid explosives is discussed in this article. The physical and chemical processes that precede and follow exothermic chemical reaction within the detonation reaction zone are discussed within the framework of the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation. Nonequilibrium chemical and physical processes cause finite time duration induction zones before exothermic chemical energy release occurs. This separation between the leading shock wave front and the chemical energy release needed to sustain it results in shock wave amplification and the subsequent formation of complex three-dimensional cellular structures in all liquid detonation waves. To develop a practical Zeldovich-von Neumann-Doring (ZND) reactive flow model for liquid detonation, experimental data on reaction zone structure, confined failure diameter, unconfined failure diameter, and failure wave velocity in the Dremin-Trofimov test for detonating nitromethane are calculated using the ignition and growth reactive flow model.
Desensitizing Flame Structure and Exhaust Emissions to Flow Parameters in an Ultra-Compact Combustor
2012-03-22
fuel .... 9 Figure 2.4: UNICORN model of hydrogen in air flame front propagation under the loading condition (a) 10 g’s and (b) 500 g’s...Lean Blowout ...................................................................................8 UNICORN Unsteady Ignition and Combustion with...computationally recreate Lewis’ experimental results. Using the Unsteady Ignition and 9 Combustion with Reactions ( UNICORN ) code, flame propagation
Ramirez, Samuel A.; Elston, Timothy C.
2018-01-01
Polarity establishment, the spontaneous generation of asymmetric molecular distributions, is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) undergoes directed growth during budding and mating, and is an ideal model organism for studying polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key molecular player in polarity establishment. During yeast polarization, multiple patches of Cdc42 initially form, then resolve into a single front. Because polarization relies on strong positive feedback, it is likely that the amplification of molecular-level fluctuations underlies the generation of multiple nascent patches. In the absence of spatial cues, these fluctuations may be key to driving polarization. Here we used particle-based simulations to investigate the role of stochastic effects in a Turing-type model of yeast polarity establishment. In the model, reactions take place either between two molecules on the membrane, or between a cytosolic and a membrane-bound molecule. Thus, we developed a computational platform that explicitly simulates molecules at and near the cell membrane, and implicitly handles molecules away from the membrane. To evaluate stochastic effects, we compared particle simulations to deterministic reaction-diffusion equation simulations. Defining macroscopic rate constants that are consistent with the microscopic parameters for this system is challenging, because diffusion occurs in two dimensions and particles exchange between the membrane and cytoplasm. We address this problem by empirically estimating macroscopic rate constants from appropriately designed particle-based simulations. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit polarization in parameter regions predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of yeast cells, and promote polarization on timescales consistent with experimental results. To our knowledge, our work represents the first particle-based simulations of a model for yeast polarization that is based on a Turing mechanism. PMID:29529021
On Spurious Numerics in Solving Reactive Equations
NASA Technical Reports Server (NTRS)
Kotov, D. V; Yee, H. C.; Wang, W.; Shu, C.-W.
2013-01-01
The objective of this study is to gain a deeper understanding of the behavior of high order shock-capturing schemes for problems with stiff source terms and discontinuities and on corresponding numerical prediction strategies. The studies by Yee et al. (2012) and Wang et al. (2012) focus only on solving the reactive system by the fractional step method using the Strang splitting (Strang 1968). It is a common practice by developers in computational physics and engineering simulations to include a cut off safeguard if densities are outside the permissible range. Here we compare the spurious behavior of the same schemes by solving the fully coupled reactive system without the Strang splitting vs. using the Strang splitting. Comparison between the two procedures and the effects of a cut off safeguard is the focus the present study. The comparison of the performance of these schemes is largely based on the degree to which each method captures the correct location of the reaction front for coarse grids. Here "coarse grids" means standard mesh density requirement for accurate simulation of typical non-reacting flows of similar problem setup. It is remarked that, in order to resolve the sharp reaction front, local refinement beyond standard mesh density is still needed.
Improving Upon String Methods for Transition State Discovery.
Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker
2012-02-14
Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Szecsody, James E.; Truex, Michael J.
Use of gas-phase amendments for in situ remediation of inorganic contaminants in unsaturated sediments of the vadose zone may be advantageous, but there has been limited development and testing of gas remediation technologies. Treatment with ammonia gas has been studied and has a potential for use in treating inorganic contaminants such as uranium because it induces a high pore-water pH causing mineral dissolution and subsequent formation of stable precipitates that decrease the mobility of some contaminants. For field application, knowledge of ammonia transport and the geochemical reactions induced by ammonia is needed. Laboratory studies were conducted to support calculations neededmore » for field treatment design, to quantify advective and diffusive ammonia transport in unsaturated sediments, to evaluate reactions among gas, sediment, and water, and to study reaction-induced pore-water chemistry changes as a function of ammonia delivery conditions. Ammonia gas quickly partitions into sediment pore water and increases pH up to 13.2. Injected ammonia gas front movement can be reasonably predicted by gas flow rate and equilibrium partitioning. The ammonia gas diffusion rate is a function of the water content in the sediment. Measured diffusion front movement was 0.05, 0.03, and 0.02 cm/hr. in sediments with 2.0%, 8.7%, and 13.0% water content, respectively. Sodium, aluminum, and silica pore-water concentrations increase on exposure to ammonia and then decline as aluminosilicates precipitate with declining pH. When uranium is present in the sediment and pore water, up to 85% of the water-leachable uranium was immobilized by ammonia treatment.« less
Chen, Wenbin; Hendrix, William; Samatova, Nagiza F
2017-12-01
The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.
A multimodal 3D framework for fire characteristics estimation
NASA Astrophysics Data System (ADS)
Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.
2018-02-01
In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.
Non-equilibrium dynamics due to moving deflagration front at RDX/HTPB interface
NASA Astrophysics Data System (ADS)
Chaudhuri, Santanu; Joshi, Kaushik; Lacevic, Naida
Reactive dissipative particle dynamics (DPD-RX), a promising tool in characterizing the sensitivity and performance of heterogeneous solid propellants like polymer bonded explosives (PSXs), requires further testing for non-equilibrium dynamics. It is important to understand detailed atomistic chemistry for developing coarse grain reactive models needed for the DPD-RX. In order to obtain insights into combustion chemistry of RDX/HTPB binder, we used reactive molecular dynamics (RMD) to obtain energy up-pumping and reaction mechanisms at RDX/HTPB interface when exposed to a self-sustaining deflagration front. Hot spots are ignited near and away from the heterogeneous interface using the thermal pulse. The results show that the hot spot near interface significantly delays the transition from ignition to deflagration. We will present the mechanical response and the combustion chemistry of HTPB when the propagating deflagration front hits the polymer binder. We will discuss our efforts to incorporate this RMD based chemistry into the DPD-RX which will enable us to perform such non-equilibrium dynamics simulations on large-length scale with microstructural heterogeneities. Funding from DTRA Grant Number HDTRA1-15-1-0034 is acknowledged.
NASA Astrophysics Data System (ADS)
Rubtsov, N. M.; Seplyarskii, B. S.; Chernysh, V. I.; Tsvetkov, G. I.
2010-05-01
High-speed color filming was used to study laminar spherical flame propagation at the initial stage in preliminarily mixed stoichiometric mixtures of natural gas and isobutylene with oxygen containing krypton and carbon dioxide and in hydrogen-air mixtures at atmospheric pressure in a bomb with a constant volume. Under experimental conditions ( T 0 = 298 K, p 0 = 100 torr, spark discharge energy E 0 = 0.91 J), the dilution of mixtures with Kr and CO2 increased the time of formation of a stable flame front by more than 10 times. The introduction of a small chemically active admixture (1.2% isobutylene) into a stoichiometric mixture of hydrogen and air sharply increased the time of formation of a stable flame front, which was evidence of an important role played by the chemical mechanism of the reaction in the formation of the combustion field.
Influence of wheelchair front caster wheel on reverse directional stability.
Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett
2003-01-01
The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.
Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge
NASA Astrophysics Data System (ADS)
Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.
2014-11-01
The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.
Cold fronts and shocks formed by gas streams in galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.
2018-05-01
Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.
Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report
NASA Technical Reports Server (NTRS)
Burger, G. D.; Lee, D.; Snow, D. W.
1979-01-01
A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.
Pulse transmission receiver with higher-order time derivative pulse generator
Dress, Jr., William B.; Smith, Stephen F.
2003-08-12
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Mareev, E. A.
2018-03-01
An extraordinary experimental fact is presented and analyzed, namely, a rather intense broadband radio noise detected during the passage of an atmospheric front through the field of view of UHF antennas. Local atmospheric properties and possible sources of the extraordinary noise, including the thermal noise from cloudiness and extra-atmospheric sources, are considered. A conclusion is made about the presence of an additional nonthermal source of radio noise in the frontal cloudiness. According to the proposed hypothesis, these are multiple electric microdicharges on hydrometeors in the convective cloud.
Global, Multi-Objective Trajectory Optimization With Parametric Spreading
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob A.; Phillips, Sean M.; Hughes, Kyle M.
2017-01-01
Mission design problems are often characterized by multiple, competing trajectory optimization objectives. Recent multi-objective trajectory optimization formulations enable generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. A byproduct of these formulations is that clustering in design space can occur in evolving the population towards the Pareto front. This clustering can be a drawback, however, if parametric evaluations of design variables are desired. This effort addresses clustering by incorporating operators that encourage a uniform spread over specified design variables while maintaining Pareto front representation. The algorithm is demonstrated on a Neptune orbiter mission, and enhanced multidimensional visualization strategies are presented.
Fission time scale from pre-scission neutron and α multiplicities in the 16O + 194Pt reaction
NASA Astrophysics Data System (ADS)
Kapoor, K.; Verma, S.; Sharma, P.; Mahajan, R.; Kaur, N.; Kaur, G.; Behera, B. R.; Singh, K. P.; Kumar, A.; Singh, H.; Dubey, R.; Saneesh, N.; Jhingan, A.; Sugathan, P.; Mohanto, G.; Nayak, B. K.; Saxena, A.; Sharma, H. P.; Chamoli, S. K.; Mukul, I.; Singh, V.
2017-11-01
Pre- and post-scission α -particle multiplicities have been measured for the reaction 16O+P194t at 98.4 MeV forming R210n compound nucleus. α particles were measured at various angles in coincidence with the fission fragments. Moving source technique was used to extract the pre- and post-scission contributions to the particle multiplicity. Study of the fission mechanism using the different probes are helpful in understanding the detailed reaction dynamics. The neutron multiplicities for this reaction have been reported earlier. The multiplicities of neutrons and α particles were reproduced using standard statistical model code joanne2 by varying the transient (τt r) and saddle to scission (τs s c) times. This code includes deformation dependent-particle transmission coefficients, binding energies and level densities. Fission time scales of the order of 50-65 ×10-21 s are required to reproduce the neutron and α -particle multiplicities.
NASA Technical Reports Server (NTRS)
Mantel, Thierry
1994-01-01
The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.
Aerial dispersal and multiple-scale spread of epidemics
USDA-ARS?s Scientific Manuscript database
Disease spread has traditionally been described as a traveling wave of constant velocity. However, aerially dispersed pathogens capable of long distance dispersal (LDD) often have dispersal gradients with extended tails that could result in acceleration of the epidemic front over time and space. W...
Electron acceleration behind a wavy dipolarization front
NASA Astrophysics Data System (ADS)
Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Nakamura, Rumi; Zhang, Tielong
2018-02-01
In this paper, with the in-situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes we report a wavy dipolarization front (DF) event, where the DF has different magnetic structures and electron distributions at different y positions in the Geocentric Solar Magnetospheric (GSM) coordinates. At y ˜2.1RE (RE is the radius of Earth), the DF has a relatively simple structure, which is similar to that of a conventional DF. At y ˜3.0RE, the DF is revealed to have a multiple DF structure, where the plasma exhibits a vortex flow. Such a wavy DF could be the results of the interchange instability. The different structure of such a wavy DF at different sites has a great effect on electron acceleration. Fermi acceleration can occur at the site of the DF with a simple or multiple DF structure, while betatron acceleration as a local process has the contribution to energetic electrons only at the site of the DF with a simple structure.
Analysis and Design of Bridgeless Switched Mode Power Supply for Computers
NASA Astrophysics Data System (ADS)
Singh, S.; Bhuvaneswari, G.; Singh, B.
2014-09-01
Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.
Parametric excitation of multiple resonant radiations from localized wavepackets
Conforti, Matteo; Trillo, Stefano; Mussot, Arnaud; Kudlinski, Alexandre
2015-01-01
Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics “time”. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front. PMID:25801054
Watson, Wendy L; Kelly, Bridget; Hector, Debra; Hughes, Clare; King, Lesley; Crawford, Jennifer; Sergeant, John; Chapman, Kathy
2014-01-01
There is evidence that easily accessible, comprehensible and consistent nutrient information on the front of packaged foods could assist shoppers to make healthier food choices. This study used an online questionnaire of 4357 grocery shoppers to examine Australian shoppers' ability to use a range of front-of-pack labels to identify healthier food products. Seven different front-of-pack labelling schemes comprising variants of the Traffic Light labelling scheme and the Percentage Daily Intake scheme, and a star rating scheme, were applied to nine pairs of commonly purchased food products. Participants could also access a nutrition information panel for each product. Participants were able to identify the healthier product in each comparison over 80% of the time using any of the five schemes that provided information on multiple nutrients. No individual scheme performed significantly better in terms of shoppers' ability to determine the healthier product, shopper reliance on the 'back-of-pack' nutrition information panel, and speed of use. The scheme that provided information about energy only and a scheme with limited numerical information of nutrient type or content performed poorly, as did the nutrition information panel alone (control). Further consumer testing is necessary to determine the optimal format and content of an interpretive front-of-pack nutrition labelling scheme. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sopori, Bhushan
2014-05-27
Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.
Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms
NASA Technical Reports Server (NTRS)
Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.
1999-01-01
The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.
Desktop Application Program to Simulate Cargo-Air-Drop Tests
NASA Technical Reports Server (NTRS)
Cuthbert, Peter
2009-01-01
The DSS Application is a computer program comprising a Windows version of the UNIX-based Decelerator System Simulation (DSS) coupled with an Excel front end. The DSS is an executable code that simulates the dynamics of airdropped cargo from first motion in an aircraft through landing. The bare DSS is difficult to use; the front end makes it easy to use. All inputs to the DSS, control of execution of the DSS, and postprocessing and plotting of outputs are handled in the front end. The front end is graphics-intensive. The Excel software provides the graphical elements without need for additional programming. Categories of input parameters are divided into separate tabbed windows. Pop-up comments describe each parameter. An error-checking software component evaluates combinations of parameters and alerts the user if an error results. Case files can be created from inputs, making it possible to build cases from previous ones. Simulation output is plotted in 16 charts displayed on a separate worksheet, enabling plotting of multiple DSS cases with flight-test data. Variables assigned to each plot can be changed. Selected input parameters can be edited from the plot sheet for quick sensitivity studies.
Failure waves in glass and ceramics under shock compression
NASA Astrophysics Data System (ADS)
Brar, N. S.
2000-04-01
The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et al.
Chain-reaction crash on a highway in high visibility
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2016-05-01
We study the chain-reaction crash (multiple-vehicle collision) in high-visibility condition on a highway. In the traffic situation, drivers control their vehicles by both gear-changing and braking. Drivers change the gears according to the headway and brake according to taillights of the forward vehicle. We investigate whether or not the first collision induces the chain-reaction crash numerically. It is shown that dynamic transitions occur from no collisions, through a single collision, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We compare the multiple-vehicle collisions in high-visibility with that in low-visibility. We derive the transition points and the region maps for the chain-reaction crash in high visibility.
Existence and exponential stability of traveling waves for delayed reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian
2018-03-01
The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.
ERIC Educational Resources Information Center
Binder, Amy
2007-01-01
This article analyzes the newest front in the creationist battle: intelligent design. I demonstrate how reactions to this challenge can be productively examined using social movements concepts in the area of repression, or protest control, arguing that vigorous repression of challenger demands often leads to a growing sense of solidarity and moral…
Modelling reaction front formation and oscillatory behaviour in a contaminant plume
NASA Astrophysics Data System (ADS)
Cribbin, Laura; Fowler, Andrew; Mitchell, Sarah; Winstanley, Henry
2013-04-01
Groundwater contamination is a concern in all industrialised countries that suffer countless spills and leaks of various contaminants. Often, the contaminated groundwater forms a plume that, under the influences of regional groundwater flow, could eventually migrate to streams or wells. This can have catastrophic consequences for human health and local wildlife. The process known as bioremediation removes pollutants in the contaminated groundwater through bacterial reactions. Microorganisms can transform the contaminant into less harmful metabolic products. It is important to be able to predict whether such bioremediation will be sufficient for the safe clean-up of a plume before it reaches wells or lakes. Borehole data from a contaminant plume which resulted from spillage at a coal carbonisation plant in Mansfield, England is the motivation behind modelling the properties of a contaminant plume. In the upper part of the plume, oxygen is consumed and a nitrate spike forms. Deep inside the plume, nitrate is depleted and oscillations of organic carbon and ammonium concentration profiles are observed. While there are various numerical models that predict the evolution of a contaminant plume, we aim to create a simplified model that captures the fundamental characteristics of the plume while being comparable in accuracy to the detailed numerical models that currently exist. To model the transport of a contaminant, we consider the redox reactions that occur in groundwater systems. These reactions deplete the contaminant while creating zones of dominant terminal electron accepting processes throughout the plume. The contaminant is depleted by a series of terminal electron acceptors, the order of which is typically oxygen, nitrate, manganese, iron, sulphate and carbon dioxide. We describe a reaction front, characteristic of a redox zone, by means of rapid reaction and slow diffusion. This aids in describing the depletion of oxygen in the upper part of the plume. To describe the oscillatory behaviour of the reactant concentrations deeper in the plume, we employ the dynamics of competing bacterial populations. We show that the oscillatory behaviour, characteristic of competing populations, can describe the oscillations observed among the reactants.
Particle versus density models in spark formation: X-rays from pulled fronts?
NASA Astrophysics Data System (ADS)
Ebert, Ute
2008-03-01
Streamer discharges govern the early stages of sparks and lightning, of spark-like phenomena in water, oil, and semiconductors, in industrial corona reactors, or in gigantic sprite discharges above thunderclouds [1,2]. Thunderstorms recently have been found to emit terrestrial gamma-ray flashes or X-rays towards satellites and towards the ground. These emissions might be explained by particle models of ``pulled'' streamer ionization fronts. In general, the growing discharge channel has an inner structure with multiple scales [1-3]. While the largest part of this channel can be treated in a density approximation for the electrons and ions, the dynamics of the ionization front is that of a pulled front; it is determined in the leading edge where the density approach eventually breaks down. We therefore investigate a realistic MC particle model for the motion of single electrons in a discharge in pure nitrogen. The particle model not only incorporates particle fluctuations, but also shows that the electron energies are systematically larger in the leading edge of the front than in the corresponding density model, and that the ionization level behind the front is higher as well, while the front velocity hardly changes [3]. These effects increase with increasing applied electric field and might actually cause the recently observed X-ray emission from lightning through rare very energetic runaway electrons in the tail of the distribution. Comparing the leading edge of the particle front with a linear particle avalanche, the avalanche shows the same mean density gradient and energy overshoot in its leading edge as the nonlinear front; hence the pulled front concept in this sense applies to discrete particle models as well [3]. This gives a key to understanding the above effects through analytical approximations and to develop efficient numerical methods coupling particle and density models in space.[1] U. Ebert et al., Plasma Sources Sci. Techn. 15, S118 (2006) (arXiv:physics/0604023).[2] Streamers, sprites, leaders, lightning: From micro- to macroscales, workshop in Oct. 2007: http://www.lorentzcenter.nl/lc/web/2007/265/info.php3?wsid=265; and cluster issue in J. Phys. D in fall 2008; organizers/editors: U. Ebert and D.D. Sentman.[3] C. Li et al., J. Appl. Phys. 101, 123305 (2007) (arXiv:physics/0702129).
NASA Astrophysics Data System (ADS)
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2011-10-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (6.4 × 109 voxel each) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop. We discuss our findings in the context of previous studies.
NASA Astrophysics Data System (ADS)
Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.
2012-03-01
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Testing Quantum Chromodynamics with Antiprotons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S.
2004-10-21
The antiproton storage ring HESR to be constructed at GSI will open up a new range of perturbative and nonperturbative tests of QCD in exclusive and inclusive reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate novel features of QCD. The proposed experiments include the formation of exotic hadrons, measurements of timelike generalized parton distributions, the production of charm at threshold, transversity measurements in Drell-Yan reactions, and searches for single-spin asymmetries. The interactions of antiprotons in nuclear targets will allow tests of exotic nuclear phenomena such as color transparency, hidden color, reduced nuclear amplitudes, and themore » non-universality of nuclear antishadowing. The central tool used in these lectures are light-front Fock state wavefunctions which encode the bound-state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. QCD becomes scale free and conformally symmetric in the analytic limit of zero quark mass and zero {beta} function. This ''conformal correspondence principle'' determines the form of the expansion polynomials for distribution amplitudes and the behavior of non-perturbative wavefunctions which control hard exclusive processes at leading twist. The conformal template also can be used to derive commensurate scale relations which connect observables in QCD without scale or scheme ambiguity. The AdS/CFT correspondence of large N{sub C} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has important implications for hadron phenomenology in the conformal limit, including the nonperturbative derivation of counting rules for exclusive processes and the behavior of structure functions at large x{sub bj}. String/gauge duality also predicts the QCD power-law fall-off of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. I also review recent work which shows that the diffractive component of deep inelastic scattering, single spin asymmetries, as well as nuclear shadowing and antishadowing, cannot be computed from the LFWFs of hadrons in isolation.« less
Gianazza, Erica; Tremoli, Elena; Banfi, Cristina
2014-12-01
Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.
2009-01-01
In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO2(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws. ?? 2009 Elsevier Ltd.
Opto-microwave Butler matrixes based front-end for a multi-beam large direct radiating array antenna
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.
2017-09-01
The evolution of broadband communication satellites shows a clear trend towards beam forming and beam-switching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible.
Biomass Characterization | Bioenergy | NREL
analytical methods for biomass characterization available for downloading. View the Biomass Compositional Methods Molecular Beam Mass Spectrometry Photo of a man in front of multiple computer screens that present Characterization of Biomass We develop new methods and tools to understand the chemical composition of raw biomass
OASIS: Prototyping Graphical Interfaces to Networked Information.
ERIC Educational Resources Information Center
Buckland, Michael K.; And Others
1993-01-01
Describes the latest modifications being made to OASIS, a front-end enhancement to the University of California's MELVYL online union catalog. Highlights include the X Windows interface; multiple database searching to act as an information network; Lisp implementation for flexible data representation; and OASIS commands and features to help…
Milled industrial beet color kinetics and total soluble solid contents by image analysis
USDA-ARS?s Scientific Manuscript database
Industrial beets are an emerging feedstock for biofuel and bioproducts industry in the US. Milling of industrial beets is the primary step in front end processing (FEP) for ethanol production. Milled beets undergo multiple pressings with water addition during raw beet juice extraction, and extracted...
Front-Line Educators: The Impact of Classified Staff Interactions on the Student Experience
ERIC Educational Resources Information Center
Schmitt, Mary Ann; Duggan, Molly H.; Williams, Mitchell R.; McMillan, Judy B.
2015-01-01
This multiple case study explored classified staff interactions with students as a strategy for increasing success. Interviews, observations, and focus groups examined interactions from the staff perspective. Findings indicate staff members enhance the educational process by providing a human connection, offering practical strategies for success,…
NASA Astrophysics Data System (ADS)
Campbell, A. J.; Hulbe, C. L.; Sergienko, O.
2009-12-01
Many of the glaciers flowing into the Larsen B ice shelf sped up and experienced front retreat following its March 2002 disintegration. Crane Glacier stands out among the fast responding glaciers for its dramatic increase in speed, from ~500 m/a to ~1500 m/a in its downstream reach, large surface lowering, and front retreat. Between march 2002 and early 2005, the glacier's calving front retreated by about 11.5 km to a location at which it has remained since that time. In order to investigate the physical processes that control the reaction of Crane Glacier to ice shelf disintegration, a flowline model has been developed. The model solves for the full momentum balance along the flowline using the finite element method and allows for basal sliding using a Budd type sliding relation. Model parameters are tuned to reproduce observation of surface velocity prior to ice shelf disintegration. Model can be applied diagnostically to examine instantaneous changes in boundary conditions or prognostically to evolve surface elevation over time. The instantaneous model response of the glacier to ice shelf removal produces surface velocities and thinning rates that agree well with observations. When the front position is modified to represent the steady position reached in 2005, the model again produces velocities similar to those observed on the glacier. A typical tidewater calving criterion can be used to predict the steady position toward which the front retreated. We conclude that the post-collapse speed up is facilitated by rapid basal sliding, which allows a small perturbation in vertical shearing to be amplified into a large velocity response. The pattern of glacier front retreat can be explained by a tidewater calving instability. These conclusions underscore the importance of basal sliding parametrizations in understanding observed changes in ice sheet outlet glaciers and modeling their future behavior. Correct representation of iceberg calving is also important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less
Training giraffe (Giraffa camelopardalis reticulata) for front foot radiographs and hoof care.
Dadone, Liza I; Schilz, Amy; Friedman, Susan G; Bredahl, Jason; Foxworth, Steve; Chastain, Bob
2016-05-01
For a large herd of reticulated giraffes, a mainly operant-based training program was created for front foot radiographs and hoof trims in an effort to diagnose and better manage lameness. Behaviors were shaped in a restricted contact set-up, using a positive reinforcement procedure to teach a series of mastered cued behaviors. This training was used to obtain lateral and lateral oblique front foot radiographs for the entire herd. Radiographs were diagnostic for multiple possible causes of lameness including fractures and osteitis of the distal phalangeal bone, hoof overgrowth, osteoarthritis of the distal interphalangeal joint, rotation of the distal phalangeal bone, sesamoid bone cysts, and sole foreign bodies. By training giraffe for foot radiographs and hoof trims, potential causes of lameness could be identified and better managed. Long-term, the results may help zoos identify best practices for managing and preventing lameness in giraffe. Zoo Biol. 35:228-236, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.
2017-01-01
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728
Chan, U Fai; Chan, Wai Wong; Pun, Sio Hang; Vai, Mang I; Mak, Peng Un
2007-01-01
Traditional/Current electronic circuits for Telemedicine have significant performance on certain bioelectric signal detection. However, it is rarely seen that can handle multiple signals without changing of hardware. This paper introduces a general front-end amplifier for various bioelectric signals based on Field Programmable Analogy Array (FPAA) Technology. Employing FPAA technology, the implemented amplifier can be adapted for various bioelectric signals without alternating the circuitry while its compact size (core parts < 2 cm2) provides an alternative solution for miniaturized Telemedicine system and Wearable Devices. The proposed design implementation has demonstrated, through successfully ECG and EMG signal extractions, a quick way to miniaturize analog biomedical circuit in a convenient and cost effective way.
NASA Astrophysics Data System (ADS)
Ying, Kai; Kowalski, John M.; Nogami, Toshizo; Yin, Zhanping; Sheng, Jia
2018-01-01
5G systems are supposed to support coexistence of multiple services such as ultra reliable low latency communications (URLLC) and enhanced mobile broadband (eMBB) communications. The target of eMBB communications is to meet the high-throughput requirement while URLLC are used for some high priority services. Due to the sporadic nature and low latency requirement, URLLC transmission may pre-empt the resource of eMBB transmission. Our work is to analyze the URLLC impact on eMBB transmission in mobile front-haul. Then, some solutions are proposed to guarantee the reliability/latency requirements for URLLC services and minimize the impact to eMBB services at the same time.
Gravitational Reference Sensor Front-End Electronics Simulator for LISA
NASA Astrophysics Data System (ADS)
Meshksar, Neda; Ferraioli, Luigi; Mance, Davor; ten Pierick, Jan; Zweifel, Peter; Giardini, Domenico; ">LISA Pathfinder colaboration,
Hodgson, Anjelica; Xu, Bin; Satkunasivam, Raj; Downes, Michelle R
2018-02-01
Inflammation and necrosis have been associated with prognosis in multiple epithelial malignancies. Our objective was to evaluate inflammation and necrosis in a cohort of patients with high-grade urothelial carcinomas of the bladder to determine their association with pathological parameters and their prognostic effect on relapse-free and disease-specific survival. A retrospective cohort that underwent radical cystectomy for urothelial carcinomas (n=235) was evaluated for invasive front and central inflammation using the Klintrup-Makinen assessment method. Necrosis was scored using a four-point scale. The relationship of inflammation and necrosis with stage, nodal status, carcinoma in situ, tumour size, margin status and vascular space invasion and the impact on relapse-free and disease-specific survival were calculated using appropriate statistical tests. On multivariate analysis, invasive front inflammation (p=0.003) and necrosis (p=0.000) were independent predictors of relapse-free survival. Both invasive front inflammation (p=0.009) and necrosis (p=0.002) again were independent predictors of disease-specific survival. For pathological features, low invasive front inflammation was associated with lymphovascular space invasion (p=0.008), a positive soft tissue margin (p=0.028) and carcinoma in situ (p=0.042). Necrosis was statistically associated with tumours >3 cm in size (p=0.013) and carcinoma in situ (p<0.001). Necrosis and invasive front inflammation are additional histological variables with independent prognostic relevance in high-grade urothelial carcinoma of the bladder. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Calo, William A; Cubillos, Laura; Breen, James; Hall, Megan; Rojas, Krycya Flores; Mooneyham, Rachel; Schaal, Jennifer; Hardy, Christina Yongue; Dave, Gaurav; Jolles, Mónica Pérez; Garcia, Nacire; Reuland, Daniel S
2015-12-23
Health services research of Latinos with limited English proficiency (LEP) have largely focused on studying disparities related to patient-provider communication. Less is known about their non-provider interactions such as those with patient registration systems and clinic front office staff; these interactions precede the encounter with providers and may shape how comfortable patients feel about their overall health services experience. This study explored Latino patients with LEP experiences with, and expectations for, interactions with patient registration systems and front office staff. We conducted 20 in-depth interviews with Latinos with LEP (≥ 18 years of age) who seek health services in the Piedmont Triad region, North Carolina. We analyzed participants' quotes and identified themes by using a constant comparison method. This research was conducted by a community-academic partnership; partners were engaged in study design, instrument development, recruitment, data analysis, and manuscript writing. Qualitative analysis allowed us to identify the following recurring themes: 1) inconsistent registration of multiple surnames may contribute to patient misidentification errors and delays in receiving health care; 2) lack of Spanish language services in front office medical settings negatively affect care coordination and satisfaction with health care; and 3) perceived discrimination generates patients' mistrust in front office staff and discomfort with services. Latino patients in North Carolina experience health services barriers unique to their LEP background. Participants identified ways in which the lack of cultural and linguistic competence of front office staff negatively affect their experiences seeking health services. Healthcare organizations need to support their staff to encourage patient-centered principles.
Hot spot formation from shock reflections
NASA Astrophysics Data System (ADS)
Menikoff, R.
2011-04-01
Heterogeneities sensitize an explosive to shock initiation. This is due to hot-spot formation and the sensitivity of chemical reaction rates to temperature. Here, we describe a numerical experiment aimed at elucidating a mechanism for hot-spot formation that occurs when a shock wave passes over a high-density impurity. The simulation performed is motivated by a physical experiment in which glass beads are added to liquid nitromethane. The impedance mismatch between the beads and the nitromethane results in shock reflections. These, in turn, give rise to transverse waves along the lead shock front. Hot spots arise on local portions of the lead front with a higher shock strength, rather than on the reflected shocks behind the beads. Moreover, the interactions generated by reflected waves from neighboring beads can significantly increase the peak hot-spot temperature when the beads are suitably spaced.
Validation of a patient-centered culturally sensitive health care office staff inventory.
Tucker, Carolyn M; Wall, Whitney; Marsiske, Michael; Nghiem, Khanh; Roncoroni, Julia
2015-09-01
Research suggests that patient-perceived culturally sensitive health care encompasses multiple components of the health care delivery system including the cultural sensitivity of front desk office staff. Despite this, research on culturally sensitive health care focuses almost exclusively on provider behaviors, attitudes, and knowledge. This is due in part to the paucity of instruments available to assess the cultural sensitivity of front desk office staff. Thus, the objective of the present study is to determine the psychometric properties of the pilot Tucker-Culturally Sensitive Health Care Office Staff Inventory-Patient Form (T-CSHCOSI-PF), which is an instrument designed to enable patients to evaluate the patient-defined cultural sensitivity of their front desk office staff. A sample of 1648 adult patients was recruited by staff at 67 health care sites across the United States. These patients anonymously completed the T-CSHCOSI-PF, a demographic data questionnaire, and a patient satisfaction questionnaire. Findings Confirmatory factor analyses of the TCSHCOSI-PF revealed that this inventory has two factors with high internal consistency reliability and validity (Cronbach's αs=0.97 and 0.95). It is concluded that the T-CSHCOSI-PF is a psychometrically strong and useful inventory for assessing the cultural sensitivity of front desk office staff. This inventory can be used to support culturally sensitive health care research, evaluate the job performance of front desk office staff, and aid in the development of trainings designed to improve the cultural sensitivity of these office staff.
Portable LED-induced autofluorescence imager with a probe of L shape for oral cancer diagnosis
NASA Astrophysics Data System (ADS)
Huang, Ting-Wei; Lee, Yu-Cheng; Cheng, Nai-Lun; Yan, Yung-Jhe; Chiang, Hou-Chi; Chiou, Jin-Chern; Mang, Ou-Yang
2015-08-01
The difference of spectral distribution between lesions of epithelial cells and normal cells after excited fluorescence is one of methods for the cancer diagnosis. In our previous work, we developed a portable LED Induced autofluorescence (LIAF) imager contained the multiple wavelength of LED excitation light and multiple filters to capture ex-vivo oral tissue autofluorescence images. Our portable system for detection of oral cancer has a probe in front of the lens for fixing the object distance. The shape of the probe is cone, and it is not convenient for doctor to capture the oral image under an appropriate view angle in front of the probe. Therefore, a probe of L shape containing a mirror is proposed for doctors to capture the images with the right angles, and the subjects do not need to open their mouse constrainedly. Besides, a glass plate is placed in probe to prevent the liquid entering in the body, but the light reflected from the glass plate directly causes the light spots inside the images. We set the glass plate in front of LED to avoiding the light spots. When the distance between the glasses plate and the LED model plane is less than the critical value, then we can prevent the light spots caused from the glasses plate. The experiments show that the image captured with the new probe that the glasses plate placed in the back-end of the probe has no light spots inside the image.
Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary
NASA Astrophysics Data System (ADS)
Huang, Wei; Li, Chunyan
2017-11-01
With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.
4D porosity evolution during solid-solid replacement reaction in mineral system (KBr, KCl)
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Hamilton, Andrea; Koehn, Daniel; Shipton, Zoe
2017-04-01
An extensive understanding of the controlling mechanisms of phase transformation is key in geosciences to better predicting the evolution of the physical parameters of rocks (porosity, permeability, and rheology) from centimetre-scale (e.g. fingering in siltstones) to kilometer-scale (e.g. Dolostone geobodies), in both the diagenetic and metamorphic domains. This contribution reports the 4D monitoring of a KBr crystal at different time steps during an experimental, fluid-mediated replacement reaction with KCl. Volumes are reconstructed based on density contrast using non-destructive X-ray Computed Tomography (XCT) at a resolution of 3 microns. A sample of KBr was immersed in a static bath of saturated KCl at room temperature and pressure. 5 scans were performed during the reaction at 5, 10, 20, 35 and 55 minutes, until 50% of the original crystal was replaced. As a control experiment, two samples reacted continuously for 15 and 55 minutes, respectively. Each 3D dataset was reconstructed to visualize and quantify the different mineral phases, the porosity distribution and connectivity, along with the reaction front morphology. In the case of successive baths, results show that the front morphology evolves from rough with small fingers to flat and thick during the reaction, suggesting a switch between advection and diffusion controlled reactant distribution through time. This switch is also reflected in the mass evolution and the rate of propagation of the replaced zone, being rapid in the first 20 minutes before reaching steady state. The porosity develops perpendicular to the crystal wall, suggesting a self-organization process governed by advection, before connecting laterally. While the reaction changes from advection controlled to diffusion controlled, the direction of the connected pores becomes parallel to the crystal walls. This phenomenon is not observed when the crystal is reacting discontinuously for 55 minutes. In the latter case, self-organization similar to extended fingering is observed, suggesting the advection to diffusion switch is related to the successive stop of reaction progress for scanning. In both cases, when considering only the reacting zone of the crystal, we can estimate the porosity created by Br-Cl substitution at 30%. The evolution of connected porosity distribution helps to understand how fluid flow can migrate in a transforming rock, for example during dolomitisation, a phenomenon extensively observed in sedimentary basins.
Very large virtual compound spaces: construction, storage and utility in drug discovery.
Peng, Zhengwei
2013-09-01
Recent activities in the construction, storage and exploration of very large virtual compound spaces are reviewed by this report. As expected, the systematic exploration of compound spaces at the highest resolution (individual atoms and bonds) is intrinsically intractable. By contrast, by staying within a finite number of reactions and a finite number of reactants or fragments, several virtual compound spaces have been constructed in a combinatorial fashion with sizes ranging from 10(11)11 to 10(20)20 compounds. Multiple search methods have been developed to perform searches (e.g. similarity, exact and substructure) into those compound spaces without the need for full enumeration. The up-front investment spent on synthetic feasibility during the construction of some of those virtual compound spaces enables a wider adoption by medicinal chemists to design and synthesize important compounds for drug discovery. Recent activities in the area of exploring virtual compound spaces via the evolutionary approach based on Genetic Algorithm also suggests a positive shift of focus from method development to workflow, integration and ease of use, all of which are required for this approach to be widely adopted by medicinal chemists.
Development of a Multi-Point Microwave Interferometry (MPMI) Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton
2015-09-01
A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less
1960-06-06
scientists of various countries. The Investigators addressed themselves at once to the question as to what physical process causes combustion to...same values for the r poducts of com- bustion, D is the velocity of the detonation front AB, and w is the velocity of the products of com- ,bustton... mixed with oxi- dizer and mixture is preheated; 3 -- reaction zone; 4 -- products of combustion. Let us return to the single-headed spin and consider
NASA Astrophysics Data System (ADS)
Gavillot, Y. G.
2017-12-01
In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline, and displays no major emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the Suruin-Mastargh anticline hampers quantifying the earthquake potential for the deformation front. Our study combines bedrock exhumation, folded fluvial terraces, long-river profiles and river incision (specific stream power) analyses across the deformation front. At the core of the frontal fold, Apatite (U-Th)/He (AHe) cooling ages of detrital grains from the Siwalik foreland sediments indicate significant resetting. AHe data and thermal modeling reveal rapid cooling and exhumation initiated ca. 4 Ma for the deformation front, at least 3 Ma earlier than is indicated from previously available data. Exhumation rates over the last 1 m.y. and 4 m.y. range from 0.5 - 2.4 mm/yr, and 0.5 - 1 mm/yr, respectively. Four fluvial terraces yield multiple OSL and depth profiles Be10 TCN ages between 53 ka and 0.4 ka. Vector fold restoration of long terrace profiles, calculated specific stream power values, bedrock dip data, and stratigraphic thickness indicate a deformation pattern controlled by a duplex structure emplaced at depth along the basal décollement, folding the overlying roof thrust and foreland strata into a detachment-like fold. Dated terraces across the frontal fold yield rock uplift and shortening rates that range between 1.8-2.5 mm/yr, and 3.8-5.4 mm/yr, respectively, since 53 ka. Similarly, a balanced cross section yields a long-term shortening rate of 5mm mm/yr since 4 Ma. Geodetic data indicate that an 11-12 mm/yr arc-normal shortening rate characterizes the interseismic strain accumulation across the plate boundary due to India-Tibet convergence. These data combined with rates of other active internal faults in the Kashmir Himalaya indicate that shortening occurs roughly at an equal rate between folding at the deformation front and the Riasi fault system to the north. Implications of Quaternary distributed shortening indicate Main Himalayan thrust slip events may go either to the fold at the deformation front, the Riasi fault system to the north, or both, which will relieve the large slip deficit for the Kashmir Himalaya.
Videau, Yann; Ventelou, Bruno; Combes, Jean-Baptiste; Verger, Pierre; Paraponaris, Alain
2007-05-01
The general practitioners in front of reforms: the reactions of the sample group of liberal physicians of the region PACA This article intends to analyse the opinion of general practioners (GPs) about the two laws of July 2004, relating to the health insurance reform and to public health planning. We used a panel data sample of 528 GPs practising in Provence Alpes Côte d'Azur in order to analyse the determinants of physicians' adherence to the reform, using multinomial logistic regression models. The results show that GPs do not seem to be fully convinced by this reform (45% agree with it, whereas 48% don't): this mistrustful opinion is more marked for young physicians and appears little correlated with their practices. 75% of the GPs are favourable to the Personal Medical File (Dossier Médical Personnel in french) and 76% estimate that they should draw a better attention to the public health dimension of their practice. Two barriers concerning GPs' adherence to the < preferred doctor > reform (réforme du < médecin traitant >) seem relevant: the burden of administrative tasks and the disadvantage of young physicians who have not already fixed their own clientele.
Self-organization in precipitation reactions far from the equilibrium
Nakouzi, Elias; Steinbock, Oliver
2016-01-01
Far from the thermodynamic equilibrium, many precipitation reactions create complex product structures with fascinating features caused by their unusual origins. Unlike the dissipative patterns in other self-organizing reactions, these features can be permanent, suggesting potential applications in materials science and engineering. We review four distinct classes of precipitation reactions, describe similarities and differences, and discuss related challenges for theoretical studies. These classes are hollow micro- and macrotubes in chemical gardens, polycrystalline silica carbonate aggregates (biomorphs), Liesegang bands, and propagating precipitation-dissolution fronts. In many cases, these systems show intricate structural hierarchies that span from the nanometer scale into the macroscopic world. We summarize recent experimental progress that often involves growth under tightly regulated conditions by means of wet stamping, holographic heating, and controlled electric, magnetic, or pH perturbations. In this research field, progress requires mechanistic insights that cannot be derived from experiments alone. We discuss how mesoscopic aspects of the product structures can be modeled by reaction-transport equations and suggest important targets for future studies that should also include materials features at the nanoscale. PMID:27551688
Characterization of Impact Initiation of Aluminum-Based Powder Compacts
NASA Astrophysics Data System (ADS)
Tucker, Michael; Dixon, Sean; Thadhani, Naresh
2011-06-01
Impact initiation of reactions in quasi-statically pressed powder compacts of Al-Ni, Al-Ta, and Al-W powder compacts is investigated in an effort to characterize the differences in the energy threshold as a function of materials system, volumetric distribution, and environment. The powder compacts were mounted in front of a copper projectile and impacted onto a steel anvil using a 7.62 mm gas gun at velocities up to 500 m/s. The experiments were conducted in ambient environment, as well as under a 50 millitorr vacuum. The IMACON 200 framing camera was used to observe the transient powder compact densification and deformation states, as well as a signature of reaction based on light emission. Evidence of reaction was also confirmed based on post-mortem XRD analysis of the recovered residue. The effective kinetic energy, dissipated in processes leading to reaction initiation was estimated and correlated with reactivity of the various compacts as a function of composition and environment.
Evolution of microstructure and elastic wave velocities in dehydrated gypsum samples
NASA Astrophysics Data System (ADS)
Milsch, Harald; Priegnitz, Mike
2012-12-01
We report on changes in P and S-wave velocities and rock microstructure induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air, at ambient pressure, and temperatures between 378 and 423 K. Dehydration did not proceed homogeneously but via a reaction front moving sample inwards separating an outer highly porous rim from the remaining gypsum which, above approximately 393 (±5) K, concurrently decomposed into hemihydrate. Overall porosity was observed to continuously increase with reaction progress from approximately 2% for fully hydrated samples to 30% for completely dehydrated ones. Concurrently, P and S-wave velocities linearly decreased with porosity from 5.2 and 2.7 km/s to 1.0 and 0.7 km/s, respectively. It is concluded that a linearized empirical Raymer-type model extended by a critical porosity term and based on the respective time dependent mineral and pore volumes reasonably replicates the P and S-wave data in relation to reaction progress and porosity.
Joint angles of the ankle, knee, and hip and loading conditions during split squats.
Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio
2014-06-01
The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.
A front-face 'SNi synthase' engineered from a retaining 'double-SN2' hydrolase.
Iglesias-Fernández, Javier; Hancock, Susan M; Lee, Seung Seo; Khan, Maola; Kirkpatrick, Jo; Oldham, Neil J; McAuley, Katherine; Fordham-Skelton, Anthony; Rovira, Carme; Davis, Benjamin G
2017-08-01
S N i-like mechanisms, which involve front-face leaving group departure and nucleophile approach, have been observed experimentally and computationally in chemical and enzymatic substitution at α-glycosyl electrophiles. Since S N i-like, S N 1 and S N 2 substitution pathways can be energetically comparable, engineered switching could be feasible. Here, engineering of Sulfolobus solfataricus β-glycosidase, which originally catalyzed double S N 2 substitution, changed its mode to S N i-like. Destruction of the first S N 2 nucleophile through E387Y mutation created a β-stereoselective catalyst for glycoside synthesis from activated substrates, despite lacking a nucleophile. The pH profile, kinetic and mutational analyses, mechanism-based inactivators, X-ray structure and subsequent metadynamics simulations together suggest recruitment of substrates by π-sugar interaction and reveal a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape for the substitution reaction that is similar to those of natural, S N i-like glycosyltransferases. This observation of a front-face mechanism in a β-glycosyltransfer enzyme highlights that S N i-like pathways may be engineered in catalysts with suitable environments and suggests that 'β-S N i' mechanisms may be feasible for natural glycosyltransfer enzymes.
Pigolkin, Yu I; Dubrovin, I A; Sedykh, E P; Mosoyan, A S
2015-01-01
The objective of the present study was to elucidate the specific features of the lesions of the cervical spine in the driver and the front-seat passenger of a modern car after the frontal crash. We made use of the archival materials of forensic medical expertises concerning the traffic accidents carried out in the city of Moscow during the period from 2005 to 2012. The study was focused on the analysis of the character of the fractures of cervical vertebrae in the drivers (n = 55) and the front-seat passengers (n = 85) of a modern motor vehicle involved in a traffic accident. It was shown that the drivers most frequently suffer bending-extension fractures of the cervical vertebrae, with the II-IV vertebrae being especially frequently subject to multiple fractures resulting in the damage to the anterior support column, sometimes to both the anterior and posterior columns, and much rarer to the posterior column. The front-seat passengers also suffer bending-extension fractures. The IV-VI vertebrae are most frequently affected in them with isolated damages to either the anterior or the posterior support column of the neck vertebrae.
Joint kinetic determinants of starting block performance in athletic sprinting.
Brazil, Adam; Exell, Timothy; Wilson, Cassie; Willwacher, Steffen; Bezodis, Ian N; Irwin, Gareth
2018-07-01
The aim of this study was to explore the relationships between lower limb joint kinetics, external force production and starting block performance (normalised average horizontal power, NAHP). Seventeen male sprinters (100 m PB, 10.67 ± 0.32 s) performed maximal block starts from instrumented starting blocks (1000 Hz) whilst 3D kinematics (250 Hz) were also recorded during the block phase. Ankle, knee and hip resultant joint moment and power were calculated at the rear and front leg using inverse dynamics. Average horizontal force applied to the front (r = 0.46) and rear (r = 0.44) block explained 86% of the variance in NAHP. At the joint level, many "very likely" to "almost certain" relationships (r = 0.57 to 0.83) were found between joint kinetic data and the magnitude of horizontal force applied to each block although stepwise multiple regression revealed that 55% of the variance in NAHP was accounted for by rear ankle moment, front hip moment and front knee power. The current study provides novel insight into starting block performance and the relationships between lower limb joint kinetic and external kinetic data that can help inform physical and technical training practices for this skill.
Cross-language categorization of French and German vowels by naive American listeners.
Strange, Winifred; Levy, Erika S; Law, Franzo F
2009-09-01
American English (AE) speakers' perceptual assimilation of 14 North German (NG) and 9 Parisian French (PF) vowels was examined in two studies using citation-form disyllables (study 1) and sentences with vowels surrounded by labial and alveolar consonants in multisyllabic nonsense words (study 2). Listeners categorized multiple tokens of each NG and PF vowel as most similar to selected AE vowels and rated their category "goodness" on a nine-point Likert scale. Front, rounded vowels were assimilated primarily to back AE vowels, despite their acoustic similarity to front AE vowels. In study 1, they were considered poorer exemplars of AE vowels than were NG and PF back, rounded vowels; in study 2, front and back, rounded vowels were perceived as similar to each other. Assimilation of some front, unrounded and back, rounded NG and PF vowels varied with language, speaking style, and consonantal context. Differences in perceived similarity often could not be predicted from context-specific cross-language spectral similarities. Results suggest that listeners can access context-specific, phonetic details when listening to citation-form materials, but assimilate non-native vowels on the basis of context-independent phonological equivalence categories when processing continuous speech. Results are interpreted within the Automatic Selective Perception model of speech perception.
Cross-language categorization of French and German vowels by naïve American listeners
Strange, Winifred; Levy, Erika S.; Law, Franzo F.
2009-01-01
American English (AE) speakers’ perceptual assimilation of 14 North German (NG) and 9 Parisian French (PF) vowels was examined in two studies using citation-form disyllables (study 1) and sentences with vowels surrounded by labial and alveolar consonants in multisyllabic nonsense words (study 2). Listeners categorized multiple tokens of each NG and PF vowel as most similar to selected AE vowels and rated their category “goodness” on a nine-point Likert scale. Front, rounded vowels were assimilated primarily to back AE vowels, despite their acoustic similarity to front AE vowels. In study 1, they were considered poorer exemplars of AE vowels than were NG and PF back, rounded vowels; in study 2, front and back, rounded vowels were perceived as similar to each other. Assimilation of some front, unrounded and back, rounded NG and PF vowels varied with language, speaking style, and consonantal context. Differences in perceived similarity often could not be predicted from context-specific cross-language spectral similarities. Results suggest that listeners can access context-specific, phonetic details when listening to citation-form materials, but assimilate non-native vowels on the basis of context-independent phonological equivalence categories when processing continuous speech. Results are interpreted within the Automatic Selective Perception model of speech perception. PMID:19739759
Parametric Study of Reactive Melt Infiltration
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Colella, Phillip
2000-01-01
Reactive melt infiltration is viewed as a promising means of achieving near-net shape manufacturing with quick processing time and at low cost. Since the reactants and products are, in general, of varying density, overall conservation of mass dictates that there is a force related to chemical conversion which can directly influence infiltration behavior. In effect, the driving pressure forces may compete with the forces from chemical conversion, affecting the advancement of the front. We have developed a two-dimensional numerical code to examine these effects, using reaction-formed silicon carbide as a model system for this process. We have examined a range of initial porosities, pore radii, and reaction rates in order to investigate their effects on infiltration dynamics.
Muscle Activity in Single- vs. Double-Leg Squats.
DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K
Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.
Muscle Activity in Single- vs. Double-Leg Squats
DeFOREST, BRADLEY A.; CANTRELL, GREGORY S.; SCHILLING, BRIAN K.
2014-01-01
Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired. PMID:27182408
Microphysical Analysis of a Warm Front Using and Linking Radar and In-Situ Data.
NASA Astrophysics Data System (ADS)
Keppas, S.
2017-12-01
The northward movement of the Azores anticyclone over the ENE coast of Canada on 20th January 2009 caused the formation of a well-organized low pressure system in North Atlantic Ocean. That system was followed by a trough which approached the UK from the WNW on 21st January 2009. The corresponding warm front affected the UK with multiple rainbands. We present an analysis of the microphysical properties of the afore-mentioned situation using radar and in-situ data. The ground-based radars are located in Chilbolton (South England) and operate at 3 and 35 GHz frequency. Chilbolton's radar high resolution (0.4 Km in vertical and 0.3 Km in horizontal dimension) and dual-polarization technology offers a view of the different features of the hydrometeors over large scales. The in-situ measurements have been taken during a flight over the SW England in the framework of the APPRAISE Clouds project, funded by the Natural Environment Research Council (NERC). The data from microphysical probes (CDP, 2D-S, CIP15, CIP100) provide a complete picture of hydrometeor properties (cloud droplets, ice particles and snow) are used for the microphysical analysis of this well- defined warm front. Using these datasets, features we try to identify and analyse regions, within mixed-phase clouds, of embedded convection, long ice fall streaks and the warm conveyor belt. We also try to explain the way that the warm conveyor belt affects the ice multiplication processes and the formation of some particular ice-particles, which we called ice-lollies due to their similarities in shape. The main goals of this work are: a. the identification and interpretation of areas with specific ice crystal habits by comparing radar and in-situ observations and b. the determination of the polarimetric and microphysical characteristics of a warm front.
Multiple stable isotope fronts during non-isothermal fluid flow
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas
2018-02-01
Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.
Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges
NASA Astrophysics Data System (ADS)
Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan
2007-06-01
The critical conditions for the reaction of high melting-point metallic particles (Ti, Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical titanium particles (with diameters of 35, 90, or 215 μm; AP&C, Inc.) or nonspherical zirconium particles (250 -- 500 μm or 500 -- 600 μm, Atlantic Equipment Eng., NJ) saturated with sensitized liquid nitromethane. For the titanium particles, a threshold particle diameter exists, above which self-sustained particle reaction is not observed, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles, the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction initiation is a competition between particle heating and expansion cooling of the products. For zirconium particles, no critical conditions exist; particle ignition was observed for all particle and charge diameters tested. In this case, interaction of the high pressure detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜ 10's μs), which is much less than the time required for thermal equilibration of the particles.
Reaction of Titanium and Zirconium Particles in Cylindrical Explosive Charges
NASA Astrophysics Data System (ADS)
Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan
2007-12-01
The critical conditions for the reaction of particles of the transition metals titanium (Ti) and zirconium (Zr) dispersed during the detonation of long cylindrical explosive charges have been investigated experimentally. The charges consisted of packed beds of either spherical Ti particles or irregularly shaped Zr particles saturated with sensitized liquid nitromethane. For the Ti particles, a threshold particle diameter exists of 65±25 μm, above which self-sustained particle reaction is not observed for charge diameters up to 49 mm, although some particle reaction occurs immediately behind the detonation front then rapidly quenches. For the smallest particles (40 μm), the proportion of the conical particle cloud that reacts increases with charge diameter, suggesting that the reaction is a competition between particle heating and expansion cooling of the products. For 375 and 550 μm Zr particles, particle ignition was observed for 19 and 41 mm dia charges. In this case, interaction of the detonation wave with the particles is sufficient to initiate reaction at the particle surface after a delay time (˜5 μs), which is much less than the time required for thermal equilibration of the particles.
The Continuity of Metaphor: Evidence from Temporal Gestures
ERIC Educational Resources Information Center
Walker, Esther; Cooperrider, Kensy
2016-01-01
Reasoning about bedrock abstract concepts such as time, number, and valence relies on spatial metaphor and often on multiple spatial metaphors for a single concept. Previous research has documented, for instance, both future-in-front and future-to-right metaphors for time in English speakers. It is often assumed that these metaphors, which appear…
2015-09-30
ITP data is underway on multiple fronts. A few scientific highlights follow: An undergraduate student from VIT University in India, Ratnaksha...Yale University PO Box 208109 New Haven, CT 06520-8109 phone: (203) 432-3167 fax: (203) 432 3134 email: mary-louise.timmermans@yale.edu
ERIC Educational Resources Information Center
Greenberg, David; Verma, Nandita; Dillman, Keri-Nicole; Chaskin, Robert
2010-01-01
Distressed urban neighborhoods face challenges on multiple fronts, but most efforts to confront these problems work in isolation of one another. The New Communities Program (NCP) is an exception, helping selected Chicago neighborhoods develop partnerships to address challenges involving employment, education, housing, and safety in a…
Ensuring chemical safety and sustainability form a main priority of the U.S. Environmental Protection Agency. This entails efforts on multiple fronts to characterize the potential hazard posed by chemicals currently in use and those to be commercialized in the future. The use of ...
2014-10-01
during hypoxia were biologically meaningful, we investigated the activity of a reporter with multiple HIF binding sites ( HRE ) in front of a luciferase...inhibitors in a dose dependent fashion blocked the activity of the HRE to activate luciferase mRNA and protein production. This result demonstrates that
A Module-Based Approach: Training Paraeducators on Evidence-Based Practices
ERIC Educational Resources Information Center
Da Fonte, M. Alexandra; Capizzi, Andrea M.
2015-01-01
Paraeducators are on the front lines in special education settings, providing support to teachers and students with significant disabilities and specific health-care needs. The important role they play demands efficient and cost-effective training in core skills. This study utilized a multiple-baseline across behaviors design to evaluate a…
USDA-ARS?s Scientific Manuscript database
Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with differ...
A compact, low-loss, tunable phase shifter on defect mitigated dielectrics up to 40 GHz
NASA Astrophysics Data System (ADS)
Orloff, Nathan; Long, Christian; Lu, Xifeng; Nair, Hari; Dawley, Natalie; Schlom, Darrell; Booth, James
With the emergence of the internet-of-things and increased connectivity of modern commerce, consumers have driven demand for wireless spectrum beyond current capacity and infrastructure capabilities. One way the telecommunications industry is addressing this problem is by pushing front-end electronics to higher frequencies, introducing carrier aggregation schemes, and developing spectrum-sharing techniques. Some of these solutions require frequency agile components that are vastly different from what is in today's marketplace. Perhaps the most basic and ubiquitous component in front-end electronics is the phase shifter. Phase shifters are particularly important for compact beam-forming antennas that may soon appear in commercial technology. Here, we demonstrate a compact, tunable phase shifter with very low insertion loss up to 40 GHz on a defect mitigated tunable dielectric. We demonstrate performance compared to barium-doped strontium titanate phase shifters. Such phase shifters could potentially meet the stringent size and performance characteristics demanded by telecommunications industry, readily facilitating massive multiple-input multiple-output antennas in the next-generation of mobile handsets.
Formation of double front detonations of a condensed-phase explosive with powdered aluminium
NASA Astrophysics Data System (ADS)
Kim, Wuhyun; Gwak, Min-cheol; Yoh, Jack J.
2018-03-01
The performance characteristics of aluminised high explosive are considered by varying the aluminium (Al) mass fraction in a hybrid non-ideal detonation model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al mass fraction and a double front detonation (DFD) feature when anaerobic Al reaction occurs behind the front. In order to simulate the performance characteristics due to the varying Al mass fraction, the tetrahexamine tetranitramine (HMX) is considered as a base high explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between particles and HMX product gases. While experimental studies have been reported on the effect of Al mass fraction on both gas-phase and solid-phase detonations, the numerical investigations have been limited to only gas-phase detonation for the varying Al particles in the mixture. In the current study, a two-phase model is utilised for understanding the volumetric effects of Al mass fraction in condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterising the performance of aluminised HMX with a maximum Al mass fraction of 50%. The simulated results are compared with the experimental data for 5-25% mass fractions, and the higher mass fraction behaviours are consistent with the experimental observations.
Effect of perception irregularity on chain-reaction crash in low visibility
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-06-01
We present the dynamic model of the chain-reaction crash to take into account the irregularity of the perception-reaction time. When a driver brakes according to taillights of the forward vehicle, the perception-reaction time varies from driver to driver. We study the effect of the perception irregularity on the chain-reaction crash (multiple-vehicle collision) in low-visibility condition. The first crash may induce more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow of vehicles with irregular perception times. We clarify the effect of the perception irregularity on the multiple-vehicle collision.
Method for preparing small volume reaction containers
Retterer, Scott T.; Doktycz, Mitchel J.
2017-04-25
Engineered reaction containers that can be physically and chemically defined to control the flux of molecules of different sizes and charge are disclosed. Methods for constructing small volume reaction containers through a combination of etching and deposition are also disclosed. The methods allow for the fabrication of multiple devices that possess features on multiple length scales, specifically small volume containers with controlled porosity on the nanoscale.
Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.
1993-01-01
Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.
NASA Astrophysics Data System (ADS)
Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph
2014-10-01
To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.
Pirpinia, Kleopatra; Bosman, Peter A N; Loo, Claudette E; Winter-Warnars, Gonneke; Janssen, Natasja N Y; Scholten, Astrid N; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2017-06-23
Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.
Diffractive Combiner of Single-Mode Pump Laser-Diode Beams
NASA Technical Reports Server (NTRS)
Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak
2007-01-01
An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; E Loo, Claudette; Winter-Warnars, Gonneke; Y Janssen, Natasja N.; Scholten, Astrid N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2017-07-01
Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance information reduced to 7.3 mm with guidance information, but also providing a Pareto front that exhibits an intuitively sensible interplay between weights, objectives, and registration outcome, allowing outcome selection.
NASA Astrophysics Data System (ADS)
Vandersall, Kevin S.; Thadhani, Naresh N.
1999-06-01
The densification and reaction characteristics in the Mo-Si system were investigated utilizing recovery experiments as well as time resolved measurements with in-situ stress gages. The starting sample in all cases consisted of statically pressed Mo + 2 Si powder mixtures ( ~55% TMD). The recovery experiments were performed using the Sandia Momma Bear and Momma Bear A fixtures with baratol and composition B explosives respectively. The instrumented experiments were performed in a capsule design similar to that of the Momma Bear, but modified to incorporate poly-vinyl di-flouride (PVDF) stress gages at the front and rear surfaces of the powder. These experiments were performed using a single stage gas gun in the velocity range of 500 m/s to 1 km/s. The instrumented experiments allow the crush strength, densification history, and reaction threshold to be mapped at increasing pressure to correlate with reaction observed in the recovery experiments.
Determination of detonation parameters for liquid High Explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2011-06-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.
Determination of detonation parameters for liquid high explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2012-03-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted by means of laser interferometer VISAR. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. The parameters of Von Neumann spike were determined for these HE. The different methods for C-J point determination were used for each HE. For FEFO reaction time t was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ≈ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ≈ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump.
Birth-jump processes and application to forest fire spotting.
Hillen, T; Greese, B; Martin, J; de Vries, G
2015-01-01
Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.
Production of oxygen from lunar ilmenite
NASA Technical Reports Server (NTRS)
Shadman, F.; Zhao, Y.
1991-01-01
The kinetics and the mechanism of reduction of synthetic ilmenite by hydrogen in the temperature range of 807 to 1014 C were investigated. At temperatures below 876 C, the temporal profiles of conversion have a sigmoidal shape and indicate the presence of three different stages (induction, acceleration, and deceleration) during the reduction reaction. The apparent activation energy for the reaction is 22.3 kcal/mole, whereas the intrinsic activation energy is 16.9 kcal/mole. Scanning electron microscopy and energy dispersive x-ray analyses show that the diffusion of Fe product away from the reaction front and through the TiO2 phase, followed by the nucleation and growth of a separate Fe phase is an important step affecting the process kinetics. X-ray diffraction and wavelength dispersive x-ray results indicate that the TiO2 can be reduced to lower oxides of titanium at temperatures higher than 876 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm{sup 3}/g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The causemore » of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves.« less
Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics.
Ellerbroek, B L; Rigaut, F
2001-10-01
Multiconjugate adaptive optics (MCAO) is a technique for correcting turbulence-induced phase distortions in three dimensions instead of two, thereby greatly expanding the corrected field of view of an adaptive optics system. This is accomplished with use of multiple deformable mirrors conjugate to distinct ranges in the atmosphere, with actuator commands computed from wave-front sensor (WFS) measurements from multiple guide stars. Laser guide stars (LGSs) must be used (at least for the forseeable future) to achieve a useful degree of sky coverage in an astronomical MCAO system. Much as a single LGS cannot be used to measure overall wave-front tilt, a constellation of multiple LGSs at a common range cannot detect tilt anisoplanatism. This error alone will significantly degrade the performance of a MCAO system based on a single tilt-only natural guide star (NGS) and multiple tilt-removed LGSs at a common altitude. We present a heuristic, low-order model for the principal source of tilt anisoplanatism that suggests four possible approaches to eliminating this defect in LGS MCAO: (i) tip/tilt measurements from multiple NGS, (ii) a solution to the LGS tilt uncertainty problem, (iii) additional higher-order WFS measurements from a single NGS, or (iv) higher-order WFS measurements from both sodium and Rayleigh LGSs at different ranges. Sample numerical results for one particular MCAO system configuration indicate that approach (ii), if feasible, would provide the highest degree of tilt anisoplanatism compensation. Approaches (i) and (iv) also provide very useful levels of performance and do not require unrealistically low levels of WFS measurement noise. For a representative set of parameters for an 8-m telescope, the additional laser power required for approach (iv) is on the order of 2 W per Rayleigh LGS.
Studies in nonlinear problems of energy. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matkowsky, B.J.
1998-12-01
The author completed a successful research program on Nonlinear Problems of Energy, with emphasis on combustion and flame propagation. A total of 183 papers associated with the grant has appeared in the literature, and the efforts have twice been recognized by DOE`s Basic Science Division for Top Accomplishment. In the research program the author concentrated on modeling, analysis and computation of combustion phenomena, with particular emphasis on the transition from laminar to turbulent combustion. Thus he investigated the nonlinear dynamics and pattern formation in the successive stages of transition. He described the stability of combustion waves, and transitions to wavesmore » exhibiting progressively higher degrees of spatio-temporal complexity. Combustion waves are characterized by large activation energies, so that chemical reactions are significant only in thin layers, termed reaction zones. In the limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts, which must be found during the course of the analysis, so that the problems are moving free boundary problems. The analytical studies were carried out for the limiting case with fronts, while the numerical studies were carried out for the case of finite, though large, activation energy. Accurate resolution of the solution in the reaction zone(s) is essential, otherwise false predictions of dynamical behavior are possible. Since the reaction zones move, and their location is not known a-priori, the author has developed adaptive pseudo-spectral methods, which have proven to be very useful for the accurate, efficient computation of solutions of combustion, and other, problems. The approach is based on a combination of analytical and numerical methods. The numerical computations built on and extended the information obtained analytically. Furthermore, the solutions obtained analytically served as benchmarks for testing the accuracy of the solutions determined computationally. Finally, the computational results suggested new analysis to be considered. A cumulative list of publications citing the grant make up the contents of this report.« less
NASA Astrophysics Data System (ADS)
Remmert, P.; Heinrich, W.; Wunder, B.; Morales, L.; Wirth, R.; Rhede, D.; Abart, R.
2018-01-01
Homogeneous single crystals of synthetic monticellite with the composition {Ca}_{0.88}{Mg}_{1.12}{SiO}_4 (Mtc I) were annealed in a piston-cylinder apparatus at temperatures between 1000 and 1200°C, pressures of 1.0-1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite-forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is metastable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly temperature dependent. It varies from about 400 nm at 1000°C to 1200 nm at 1100°C in Sy I, and from 300 nm at 1000°C to 700 nm at 1200°C in Sy II. A thermodynamic analysis reveals that the temperature dependence of the characteristic spacing of the symplectite phases is due to a relatively high activation energy for chemical segregation by diffusion within the reaction front as compared to the activation energy for interface reactions at the reaction front. The temperature dependence of the characteristic lamellar spacing and the temperature-time dependence of overall reaction progress have potential for applications in geo-thermometry and geo-speedometry.
NASA Astrophysics Data System (ADS)
Dilissen, N. M.; Garrido, C. J.; Lopez Sanchez-Vizcaino, V.; Jabaloy-Sánchez, A.; Padrón-Navarta, J. A.
2015-12-01
Subduction zones are dynamic convergent plate boundaries associated with arc volcanism and earthquakes, which are believed to be controlled by fluids released during devolatilization reactions from the downgoing slab. The high-pressure breakdown of antigorite serpentinite to prograde chlorite-harzburgite is considered to be the most significant source of water in subduction zones. The Cerro del Almirez ultramafic massif (Betic Cordillera, SE Spain) is a unique exhumed subduction terrane that preserves this dehydration reaction as a sharp front. Chl-harzburgite in this massif displays two differentiated textures-granofels and spinifex-like- indicating that antigorite breakdown occurred at different overstepping of the dehydration reaction. Detailed mapping of textural variations in chl-harzburgite unveils a network of granofels and spinifex-like lenses. These lenses have triaxial ellipsoid shapes with average axial ratios of 16:7:1 and 19:8:1, respectively, with the shorter axis nearly perpendicular to the serpentine-out isograd, and the longest axis ranging from 23 to 190 meters. We calculated the volume of water release per lens using the modal amount of olivine according to the model reaction 1Atg = 4Clin + 6Fo + 6En + 15H2O. The growth time and water flux per lens was computed using experimental olivine growth rates for granular and dendritic, spinifex-like olivine. Preliminary results show that formation of spinifex and granofels lenses imply temporal variations of the volumetric water fluxes ranging from 0.12 to 0.02 m3m-2yr-1, respectively. If the time of formation of lenses is inversely proportional to its relative distance to the dehydration front, the 52m thick, chl-harzburgite lens network in Almirez records ca. 315 yrs of antigorite dehydration. Our results show that antigorite dehydration in subduction zones occurs in a highly non-steady regime with yearly to decadal variations of water fluxes that record variations in the dynamics of slab and fluid expulsion mechanisms.
NASA Astrophysics Data System (ADS)
Demand, D.; Blume, T.; Weiler, M.
2017-12-01
Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.
NASA Astrophysics Data System (ADS)
Di Labbio, G.; Kiyanda, C. B.; Mi, X.; Higgins, A. J.; Nikiforakis, N.; Ng, H. D.
2016-06-01
In this study, the applicability of the Chapman-Jouguet (CJ) criterion is tested numerically for heterogeneous explosive media using a simple detonation analog. The analog system consists of a reactive Burgers' equation coupled with an Arrhenius type reaction wave, and the heterogeneity of the explosive media is mimicked using a discrete energy source approach. The governing equation is solved using a second order, finite-volume approach and the average propagation velocity of the discrete detonation is determined by tracking the leading shock front. Consistent with previous studies, the averaged velocity of the leading shock front from the unsteady numerical simulations is also found to be in good agreement with the velocity of a CJ detonation in a uniform medium wherein the energy source is spatially homogenized. These simulations have thus implications for whether the CJ criterion is valid to predict the detonation velocity in heterogeneous explosive media.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Robinson, David B.
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
NASA Technical Reports Server (NTRS)
Daud, T.; Cheng, L. J.
1981-01-01
The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
Salloum, Maher; Robinson, David B.
2018-01-30
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawl /owski, P.; Brzychczyk, J.; Benchekrovn, D.
1996-07-01
Multifragment emission of charged particles from the {sup 40}Ca + {sup 40}Ca reaction at 35 MeV/nucleon has been investigated. Multiplicity as well as event shape filters were used to distinguish nearly central from peripheral collisions. A correlation between higher multiplicities and random events from two reactions occurring in one beam burst is discussed. Signatures of different reaction scenarios are investigated using simulation techniques. {copyright} {ital 1996 The American Physical Society.}
Reaction schemes visualized in network form: the syntheses of strychnine as an example.
Proudfoot, John R
2013-05-24
Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.
NASA Astrophysics Data System (ADS)
Lembège, Bertrand; Yang, Zhongwei
2016-08-01
The nonstationary dynamics of the heliospheric termination shock in the presence of pickup ions (PUI) is analyzed by using a one-dimensional particle-in-cell simulation code. This work initially stimulated by Voyager 2 data focusses on this nonstationarity for different percentages of PUIs and for different Alfvén Mach numbers M A. Solar wind ions (SWIs) and PUIs are described, respectively, as Maxwellian and shell distributions (with a zero/finite thickness). For a moderate M A, present results show that (1) the shock front is still nonstationary even in the presence of 25% of PUIs; its instantaneous velocity varies, which is in favor for shock multicrossing; (2) the presence of PUIs tends to smooth out the time fluctuations of field amplitude and of microstructure widths at the front and overshoot; (3) the shock has a multiple overshoot, which is analyzed by identifying the contributions of SWIs and the PUIs; (4) as the PUI percentage increases, the shock moves faster and the downstream compression becomes weaker, which is explained by a Rankine-Hugoniot model; (5) the reflection rate of SWIs and PUIs decreases as the PUI percentage increases; (6) the shock structure is almost insensitive to the shell thickness and (7) for the PUIs dominated shock case (PUI = 55%), the shock becomes stationary. However, for higher M A regime, the front nonstationarity persists even in the PUI = 55% case. In summary, high M A regime allows to compensate the smoothing of the microstructures and the time fluctuations of the shock front brought by the presence of PUIs.
Multiple Reaction Equilibria--With Pencil and Paper: A Class Problem on Coal Methanation.
ERIC Educational Resources Information Center
Helfferich, Friedrich G.
1989-01-01
Points out a different and much simpler approach for the study of equilibria of multiple and heterogeneous chemical reactions. A simulation on coal methanation is used to teach the technique. An example and the methodology used are provided. (MVL)
The University of Utah Urban Undertaking (U4)
NASA Astrophysics Data System (ADS)
Lin, J. C.; Mitchell, L.; Bares, R.; Mendoza, D. L.; Fasoli, B.; Bowling, D. R.; Garcia, M. A.; Buchert, M.; Pataki, D. E.; Crosman, E.; Horel, J.; Catharine, D.; Strong, C.; Ehleringer, J. R.
2015-12-01
The University of Utah is leading efforts to understand the spatiotemporal patterns in both emissions and concentrations of greenhouse gases (GHG) and criteria pollutants within urban systems. The urbanized corridor in northern Utah along the Wasatch Front, anchored by Salt Lake City, is undergoing rapid population growth that is projected to double in the next few decades. The Wasatch Front offers multiple advantages as an unique "urban laboratory": urban regions in multiple valleys spanning numerous orders of magnitude in population, each with unique airsheds, well-defined boundary conditions along deserts and tall mountains, strong signals during cold air pool events, seasonal contrasts in pollution, and a legacy of productive partnerships with local stakeholders and governments. We will show results from GHG measurements from the Wasatch Front, including one of the longest running continuous CO2 records in urban areas. Complementing this record are comprehensive meteorological observations and GHG/pollutant concentrations on mobile platforms: light rail, helicopter, and research vans. Variations in the GHG and pollutant observations illustrate human behavior and the resulting "urban metabolism" taking place on hourly, weekly, and seasonal cycles, resulting in a coupling between GHG and criteria pollutants. Moreover, these observations illustrate systematic spatial gradients in GHG and pollutant distributions between and within urban areas, traced to underlying gradients in population, energy use, terrain, and land use. Over decadal time scales the observations reveal growth of the "urban dome" due to expanding urban development. Using numerical models of the atmosphere, we further link concentrations of GHG and air quality-relevant pollutants to underlying emissions at the neighborhood scale as well as urban planning considerations.
NASA Astrophysics Data System (ADS)
Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing
2018-05-01
We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.
Chain-reaction crash in traffic flow controlled by taillights
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-02-01
We study the chain-reaction crash (multiple-vehicle collision) in low-visibility condition on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle. The first crash may induce more collisions. We investigate whether or not the first collision induces the chain-reaction crash, numerically and analytically. The dynamic transitions occur from no collisions through a single collision, double collisions and triple collisions, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow controlled by taillights.
Why in the World Would I Want to Talk to Someone Else about My Culture?
ERIC Educational Resources Information Center
Bohinski, Chesla Ann; Leventhal, Yumei
2015-01-01
This paper shares the work and observations from a task-based 6-week email exchange project between participants in Spain and the US. Though small in scale, the study offers insights for those interested in telecollaboration but face constraints on multiple fronts. Close examination of the exchanges reveal participants' engagement on multiple…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-29
... consumers interpret such symbols, how the presence of multiple and different symbols on products in the same... been examined in the literature. In addition, studies seldom compare consumer responses to different... whose labeling requirements and regulatory framework are quite different from those in the United States...
Time Savers: Make Sure Time Is on Your Side with These Practices
ERIC Educational Resources Information Center
Burrall, Bill
2006-01-01
Time is the proverbial black hole that educators must constantly manage as they juggle multiple jobs in a typical workday. Whether it be managing staff, dealing with parents and community, or implementing new technologies, time is usually not on our side. Although technology cannot solve all problems, it can assist educators on all fronts in…
ERIC Educational Resources Information Center
Tittelbach, Danielle; DeAngelis, Maureen; Sturmey, Peter; Alvero, Alicia M.
2007-01-01
This study evaluated the effects of feedback, task clarification and goal-setting on office behaviors and customer service of ten undergraduate participants that served as university advisors. A multiple baseline design was implemented across three target behaviors: client greeting, front-desk behaviors, and punctuality. During intervention the…
A new approach to flow simulation in highly heterogeneous porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rame, M.; Killough, J.E.
In this paper, applications are presented for a new numerical method - operator splittings on multiple grids (OSMG) - devised for simulations in heterogeneous porous media. A coarse-grid, finite-element pressure solver is interfaced with a fine-grid timestepping scheme. The CPU time for the pressure solver is greatly reduced and concentration fronts have minimal numerical dispersion.
Gibbons, Paul M; Busch, Martin D; Tell, Lisa A; Graham, Jennifer E; Lowenstine, Linda J
2002-01-01
A 17-yr-old pet female peach-fronted conure (Aratinga aurea) was presented with the chief complaints of mild lethargy and weight loss with increased appetite. Antemortem diagnostics included complete blood count, plasma biochemistry, and radiography. Abnormal findings included elevated inflammatory parameters (hyperfibrinogenemia) and a space-occupying mass in the region of the liver. Histologic examination of a liver biopsy sample indicated bile duct hyperplasia leading to a presumptive diagnosis of hepatoxicosis. The bird initially showed moderate improvement with supportive care, but its condition declined 9 days after the liver biopsy. Supportive care was attempted a second time, but the bird did not improve and euthanasia was elected. Abnormal gross necropsy findings were confined to the liver, which contained multiple tan nodules that exuded yellowish fluid on cut section. Histopathologic examination revealed multicentric bile duct hyperplasia and cholangiocarcinoma as well as segmental papillary hyperplasia and adenocarcinoma in the proventriculus, ventriculus, and throughout the intestinal tract. This is the first report of concurrent internal papillomatosis, gastrointestinal adenocarcinoma, and cholangiocarcinoma in a peach-fronted conure.
NASA Astrophysics Data System (ADS)
Klir, D.; Krasa, J.; Cikhardt, J.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Rezac, K.; Sila, O.; Skala, J.; Ullschmied, J.; Velyhan, A.
2015-09-01
Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 108 at the peak intensity of ≈3 × 1016 W/cm2. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the 2H(d,n)3He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 109 with the peak neutron fluence of (2.5 ± 0.5) × 108 n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 1014 deuterons in the 0.5-2.0 MeV energy range. The neutron yield of 2 × 109 at the laser energy of 600 J implied the production efficiency of 3 × 106 n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 1016 W/cm2. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.
NASA Astrophysics Data System (ADS)
Meridth, L. N.; Screaton, E.; Jaeger, J. M.; James, S. R.; Villaseñor, T. G.
2015-12-01
Sediment inputs to subduction zones impart a significant control on diagenetic reaction progress, fluid production and pore pressure development and thus affect hydrologic and tectonic behavior during subduction. Intensified glaciation following the mid-Pleistocene transition increased sediment flux to the Gulf of Alaska. Rapid sediment accumulation (>1 km/my) in the Aleutian Trench increases overburden and should accelerate dehydration of hydrous sedimentary components by elevating temperatures in the incoming sediment column. These processes have the potential to generate fluid overpressures in the mud-dominated, low permeability sediments deposited on the incoming plate, offshore SE Alaska. Mineralogical analyses on incoming sediments from Deep Sea Drilling Project Leg 18 and Integrated Ocean Drilling Program Expedition 341 show that both smectite and Opal-A are present as hydrous mineral phases. A 1-D numerical model was developed to track dehydration reaction progress and pore pressures in the incoming sediment column from the abyssal plain to the Aleutian Trench. Simulated temperatures in the incoming column increase due to the insulating effect of trench sediments. As a result, trench sedimentation causes smectite dehydration to begin and Opal-A dehydration to nearly reach completion at the deformation front. Simulated excess pore pressures in the proto-decollement zone increase from nearly hydrostatic to almost half of lithostatic due to the rapid deposition of trench sediments. The 1-D modeling results were incorporated into a 2-D model that follows the underthrust column at the deformation front into the subduction zone. Simulated results of the 2-D flow model illustrate the effects of lateral flow on pore pressure distribution following subduction.
Propagation of Reactions in Thermally-damaged PBX-9501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, J W; Glascoe, E A; Kercher, J R
A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosivemore » and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.« less
NASA Astrophysics Data System (ADS)
Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.
2013-12-01
Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large scale experiments, including: peak temperatures, velocities and thicknesses of the smouldering front, rates of mass destruction of the contaminant, and rates of gaseous emissions during combustion. Additionally, upward and downward smouldering experiments were compared at the column scale to assess the significance of buoyant flow effects. An understanding of these scaling relationships will provide important information to aid in the design of field-scale applications of STAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven,more » entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.« less
NASA Astrophysics Data System (ADS)
Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.
2013-11-01
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.
NASA Astrophysics Data System (ADS)
Chen, Hsiang-Yun; Ardo, Shane
2018-01-01
Natural photosynthesis uses the energy in sunlight to oxidize or reduce reaction centres multiple times, therefore preparing each reaction centre for a multiple-electron-transfer reaction that will ultimately generate stable reaction products. This process relies on multiple chromophores per reaction centre to quickly generate the active state of the reaction centre and to outcompete deleterious charge recombination. Using a similar design principle, we report spectroscopic evidence for the generation of a twice-oxidized TiO2-bound molecular proxy catalyst after low-intensity visible-light excitation of co-anchored molecular Ru(II)-polypyridyl dyes. Electron transfer from an excited dye to TiO2 generated a Ru(III) state that subsequently and repeatedly reacted with neighbouring Ru(II) dyes via self-exchange electron transfer to ultimately oxidize a distant co-anchored proxy catalyst before charge recombination. The largest yield for twice-oxidized proxy catalysts occurred when they were present at low coverage, suggesting that large dye/electrocatalyst ratios are also desired in dye-sensitized photoelectrochemical cells.
NASA Astrophysics Data System (ADS)
Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.
2018-01-01
We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Morisawa, Sachiko; Mizuta, Takanobu; Kubokawa, Kaoru; Tanaka, Hiroyuki; Morisawa, Masaaki
2004-11-01
The formation of an acrosomal process at acrosomal exocytosis in spermatozoa of the amphioxus was described in the present report for the first time. A non-reacted acrosome was located in front of the nucleus, where a cup-shaped acrosomal vesicle covered a conical accumulation of subacrosomal material. When naturally spawned spermatozoa were treated with a calcium ionophore, ionomycin, the acrosomal vesicle opened at the apex and an acrosomal process was projected. The process exhibited a filamentous structure. The reaction followed the mode typically seen in marine invertebrates. These observations suggest that the features and function of the acrosome of amphioxus, whose position is on the border between invertebrates and vertebrates, reflect their ecological adaptation and phylogenic position.
Buoyancy-driven instabilities around miscible A+B→C reaction fronts: a general classification.
Trevelyan, P M J; Almarcha, C; De Wit, A
2015-02-01
Upon contact between miscible solutions of reactants A and B along a horizontal interface in the gravity field, various buoyancy-driven instabilities can develop when an A+B→C reaction takes place and the density varies with the concentrations of the various chemicals. To classify the possible convective instability scenarios, we analyze the spatial dependence of the large time asymptotic density profiles as a function of the key parameters of the problem, which are the ratios of diffusion coefficients and of solutal expansion coefficients of species A, B, and C. We find that 62 different density profiles can develop in the reactive problem, whereas only 6 of them can be obtained in the nonreactive one.
Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation
NASA Astrophysics Data System (ADS)
Li, Panxiao; Wu, Shi-Liang
2018-04-01
This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.
LightWAVE: Waveform and Annotation Viewing and Editing in a Web Browser.
Moody, George B
2013-09-01
This paper describes LightWAVE, recently-developed open-source software for viewing ECGs and other physiologic waveforms and associated annotations (event markers). It supports efficient interactive creation and modification of annotations, capabilities that are essential for building new collections of physiologic signals and time series for research. LightWAVE is constructed of components that interact in simple ways, making it straightforward to enhance or replace any of them. The back end (server) is a common gateway interface (CGI) application written in C for speed and efficiency. It retrieves data from its data repository (PhysioNet's open-access PhysioBank archives by default, or any set of files or web pages structured as in PhysioBank) and delivers them in response to requests generated by the front end. The front end (client) is a web application written in JavaScript. It runs within any modern web browser and does not require installation on the user's computer, tablet, or phone. Finally, LightWAVE's scribe is a tiny CGI application written in Perl, which records the user's edits in annotation files. LightWAVE's data repository, back end, and front end can be located on the same computer or on separate computers. The data repository may be split across multiple computers. For compatibility with the standard browser security model, the front end and the scribe must be loaded from the same domain.
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Microfluidic chemical reaction circuits
Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH
2012-06-26
New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.
Marinho, Belisa A; Cristóvão, Raquel O; Djellabi, Ridha; Caseiro, Ana; Miranda, Sandra M; Loureiro, José M; Boaventura, Rui A R; Dias, Madalena M; Lopes, José Carlos B; Vilar, Vítor J P
2018-07-01
The current work presents different approaches to overcome mass and photon transfer limitations in heterogeneous photocatalytic processes applied to the reduction of hexavalent chromium to its trivalent form in the presence of a sacrificial agent. Two reactor designs were tested, a monolithic tubular photoreactor (MTP) and a micro-meso-structured photoreactor (NETmix), both presenting a high catalyst surface area per reaction liquid volume. In order to reduce photon transfer limitations, the tubular photoreactor was packed with transparent cellulose acetate monolithic structures (CAM) coated with the catalyst by a dip-coating method. For the NETmix reactor, a thin film of photocatalyst was uniformly deposited on the front glass slab (GS) or on the network of channels and chambers imprinted in the back stainless steel slab (SSS) using a spray system. The reaction rate for the NETmix photoreactor was evaluated for two illumination sources, solar light or UVA-LEDs, using the NETmix with the front glass slab or/and back stainless steel slab coated with TiO 2 -P25. The reusability of the photocatalytic films on the NETmix walls was also evaluated for three consecutive cycles using fresh Cr(VI) solutions. The catalyst reactivity in combination with the NETmix-SSS photoreactor is almost 70 times superior to one obtained with the MTP. Copyright © 2018 Elsevier Ltd. All rights reserved.
A simple method for calculating growth rates of petroleum hydrocarbon plumes
Bekins, B.A.; Cozzarelli, I.M.; Curtis, G.P.
2005-01-01
Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources. Copyright ?? 2005 National Ground Water Association.
Olasz, Balázs; Szabó, István; Czakó, Gábor
2017-04-01
Bimolecular nucleophilic substitution (S N 2) and proton transfer are fundamental processes in chemistry and F - + CH 3 I is an important prototype of these reactions. Here we develop the first full-dimensional ab initio analytical potential energy surface (PES) for the F - + CH 3 I system using a permutationally invariant fit of high-level composite energies obtained with the combination of the explicitly-correlated CCSD(T)-F12b method, the aug-cc-pVTZ basis, core electron correlation effects, and a relativistic effective core potential for iodine. The PES accurately describes the S N 2 channel producing I - + CH 3 F via Walden-inversion, front-side attack, and double-inversion pathways as well as the proton-transfer channel leading to HF + CH 2 I - . The relative energies of the stationary points on the PES agree well with the new explicitly-correlated all-electron CCSD(T)-F12b/QZ-quality benchmark values. Quasiclassical trajectory computations on the PES show that the proton transfer becomes significant at high collision energies and double-inversion as well as front-side attack trajectories can occur. The computed broad angular distributions and hot internal energy distributions indicate the dominance of indirect mechanisms at lower collision energies, which is confirmed by analyzing the integration time and leaving group velocity distributions. Comparison with available crossed-beam experiments shows usually good agreement.
NASA Astrophysics Data System (ADS)
Bao, Xiao-Wei; Wu, Yan-Qing; Wang, Ming-Yang; Huang, Feng-Lei
2017-02-01
Low-velocity drop-weight impact experiments on individual and multiple Cyclotetramethylene tetranitramine (HMX) energetic particles were performed using a modified drop-weight machine equipped with high-speed photography components. Multiple particles experienced more severe burning reactions than an individual particle. Comparisons between impacted salt and HMX particle show that jetting in HMX is mainly due to the motion of fragmented particles driven by gaseous reaction products. Velocity of jetting, flame propagation, and area expansion were measured via image processing, making it possible to quantify the chemical reaction or mechanical deformation violence at different stages.
NASA Astrophysics Data System (ADS)
Jahani, Fereidoun
In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.
NASA Astrophysics Data System (ADS)
Kasinski, K.; Koczon, P.; Ayet, S.; Löchner, S.; Schmidt, C. J.
2017-03-01
New fixed target experiments using high intensity beams with energy up to 10 AGeV from the SIS100 synchrotron presently being constructed at FAIR/GSI are under preparation. Most of the readout electronics and power supplies are expected to be exposed to a very high flux of nuclear reaction products and have to be radiation tolerant up to 3 MRad (TID) and sustain up to 1014/cm2 of 1 MeV neutron equivalent in their life time. Moreover, the mostly minimum ionising particles under investigation leave very little signal in the sensors. Therefore very low noise level amplitude measurements are required by the front-end electronics for effective tracking. Sensor and interconnecting micro-cable capacitance and series resistance in conjunction with intrinsic noise of the charge sensitive amplifier are dominant noise sources in the system. However, the single-ended architecture of the amplifiers employed for the charge processing channels implies a potential problem with noise contributions from power supply sources. Strict system-level constraints leave very little freedom in selecting a power supply structure optimal with respect to: power efficiency, cooling capabilities and power density on modules, but also noise injection to the front-end via the power supply lines. Design of the power supply and distribution system of the Silicon Tracking System in the CBM experiment together with details on the front-end ASICs (STS -XYTER2) and measurement results of power supply and conditioning electronics (selected DC/DC converter and LDO regulators) are presented.
Measurement of the 6He Decay Produced by the 9Be(n, α) 6 He Reaction
NASA Astrophysics Data System (ADS)
Cook, Katelyn; Coats, Micah; Yuly, Mark; Padalino, Stephen; Sangster, Craig; Regan, Sean
2016-10-01
The OMEGA laser at LLE is routinely used to implode gas-filled capsules to study light ion fusion reaction rates of interest to stellar nucleosynthesis. As a first step toward a possible measurement of the 3H(t,γ)6He radiative capture reaction, a detector system capable of measuring the 801 ms half-life of 6He has been developed and is being tested using 6He nuclei produced via the 9Be(n,α)6He reaction. Deuterons from the SUNY Geneseo tandem Pelletron produce neutrons in a thick deuterated polyethylene target via the 2H(d,n)3He reaction. These neutrons are allowed to strike a beryllium target placed in front of a silicon ΔE-E detector telescope, which is used to identify the β particles from 6He decay. Following an approximately five second long activation period, the beryllium sample is immediately counted for about five seconds. The pulse heights for each detector and the timestamp are recorded using a specially configured femtoDAQ acquision system and used to measure the decay curve. Funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.
Finite element code development for modeling detonation of HMX composites
NASA Astrophysics Data System (ADS)
Duran, Adam V.; Sundararaghavan, Veera
2017-01-01
In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79) and CO+OH⇌CO 2+H (R94), are influenced by H 2O and CO 2 from the pilot and are completely quenched. Hence, the entire radical pool of OH, H and O is affected. Furthermore, the fuel consumption layer remains comparably active and generates heat, mainly via the reaction CH 4+OH⇌CH 3+H 2O (R93).« less
Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.
2017-03-17
In the present work, a direct numerical simulation (DNS) of an experimental high Karlovitz number (Ka) CH 4/air piloted premixed flame was analyzed to study the inner structure and the stabilization mechanism of the turbulent flame. A reduced chemical mechanism for premixed CH 4/air combustion with NO x based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. The evolution of the stretch factor, I0, indicates that the burning rate per unit flame surface area is considerably reduced in the near field and exhibits a minimum at x/D = 8. Downstream, the burning rate gradually increases. Themore » stretch factor is different between different species, suggesting the quenching of some reactions but not others. Comparison between the turbulent flame and strained laminar flames indicates that certain aspects of the mean flame structure can be represented surprisingly well by flamelets if changes in boundary conditions are accounted for and the strain rate of the mean flow is employed; however, the thickening of the flame due to turbulence is not captured. The spatial development of displacement speeds is studied at higher Ka than previous DNS. In contrast to almost all previous studies, the mean displacement speed conditioned on the flame front is negative in the near field, and the dominant contribution to the displacement speed is normal diffusion with the reaction contribution being secondary. Further downstream, reaction overtakes normal diffusion, contributing to a positive displacement speed. The negative displacement speed in the near field implies that the flame front situates itself in the pilot region where the inner structure of the turbulent flame is affected significantly, and the flame stabilizes in balance with the inward flow. Notably, in the upstream region of the turbulent flame, the main reaction contributing to the production of OH, H+O 2⇌O+OH (R35), is weak. Moreover, oxidation reactions, H 2+OH⇌H+H 2O (R79) and CO+OH⇌CO 2+H (R94), are influenced by H 2O and CO 2 from the pilot and are completely quenched. Hence, the entire radical pool of OH, H and O is affected. Furthermore, the fuel consumption layer remains comparably active and generates heat, mainly via the reaction CH 4+OH⇌CH 3+H 2O (R93).« less
Reformulation and solution of the master equation for multiple-well chemical reactions.
Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J
2013-11-21
We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.
Silk suture reaction in thyroid surgery
Soylu, Selen; Teksoz, Serkan; Ozcan, Murat; Bukey, Yusuf
2017-01-01
Silk suture reaction (i.e., a benign granulomatous inflammatory foreign body reaction) is a rare complication of thyroid surgery. Here, two cases of post-thyroidectomy suture reaction are presented. Both of the patients were female, one is 48 and the other is 34 years old. The patients were presented with neck swelling and leakage of serous fluid from the Kocher’s incision. Both patients had normal free T4, free T3, and TSH values. The 48-year-old female patient had a right subtotal and left near-total thyroidectomy 6 years ago and the other had bilateral total thyroidectomy 6 years ago. In the physical examination a mobile, painless, red, swelling was palpated in front of neck. In the ultrasound of both patients, a heterogeneous nodule with hypoechoic rim was seen, however, in scintigraphy no radiopharmaceutical involvement was observed in thyroid region. Due to suspicion of thyroid malignancy, a fine needle aspiration biopsy was performed and foreign body reaction was revealed cytologically. A suture reaction can vary from an erythematous swelling to chronic granulomatous reaction. The time interval between the operation and formation of suture reaction was 6 years in both of the cases thus these patients were considered as chronic patients. Foreign body reaction diagnosis was confirmed with fine needle aspiration biopsy. It is important to diagnose these chronic inflammation cases since these cases can mimic recurrence in thyroid malignancies. A post-thyroidectomy suture reaction is diagnosed cytologically with fine needle aspiration biopsy and by surgical removal of suture, this chronic inflammatory reaction can be cured. PMID:29142853
NASA Astrophysics Data System (ADS)
Stennett, Chris; Cook, Malcolm; Cheese, Philip; Wood, Andrew; White, Nathan; Reeves, Tom
2017-06-01
A high fidelity live camera feed recording RDX and HMX crystals, measuring 1 mm thick and 15 mm in diameter, decomposing while heavily confined and subjected to various heating rates until a reaction occurs has been analysed. Video records reveal unexpected behaviour in both RDX and HMX crystals prior to ignition. Three distinct stages can be observed: phase changes and melting; slow, flameless decomposition with production of gaseous intermediates; and finally burning with a luminous flame of the gaseous intermediates. Tests with pure RDX and HMX crystals reveal pockets of gaseous materials forming above the molten and bubbling nitramine, before a flame appears at one side then burns inwards in an apparent conductive manner at a few metres per second. This causes the remaining bubbling nitramine to be compressed. Violent reaction appears to occur via a bubble collapse mechanism. The violence of this event is dependent on the loss of confinement; if it fails in the first or second phase the reaction is less violent than if the third phase is reached. The third phase burning reaction has associated pressure waves, which is presumed oscillation of the flame front, leading to wave interactions, pressure spikes and ultimately a violent reaction.
Numerical simulations of self-focusing of ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Fibich, Gadi; Ren, Weiqing; Wang, Xiao-Ping
2003-05-01
Simulation of nonlinear propagation of intense ultrafast laser pulses is a hard problem, because of the steep spatial gradients and the temporal shocks that form during the propagation. In this study we adapt the iterative grid distribution method of Ren and Wang [J. Comput. Phys. 159, 246 (2000)] to solve the two-dimensional nonlinear Schrödinger equation with normal time dispersion, space-time focusing, and self-steepening. Our simulations show that, after the asymmetric temporal pulse splitting, the rear peak self-focuses faster than the front one. As a result, the collapse of the rear peak is arrested before that of the front peak. Unlike what has sometimes been conjectured, however, collapse of the two peaks is not arrested through multiple splittings, but rather through temporal dispersion.
High power water load for microwave and millimeter-wave radio frequency sources
Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.
1999-01-01
A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.
NASA Technical Reports Server (NTRS)
Willard, S. A.
1997-01-01
Groups of striations called marker bands generated on a fatigue fracture surface can be used to mark the position of an advancing fatigue crack at known intervals. A technique has been developed that uses the distance between multiple sets of marker bands to obtain a vs. N, crack front shape, and fatigue crack growth rate data for small cracks. This technique is particularly usefull for specimens that require crack length measurements during testing that cannot be obtained because corrosion obscures the surface of the specimen. It is also useful for specimens with unusual or non-symmetric shapes where it is difficult to obtain accurate crack lengths using traditional methods such as compliance or electric potential difference in the early stages of testing.
Thoughts on Multi-sphere Study in the Indo-Pacific Convergent Zone
NASA Astrophysics Data System (ADS)
Wang, F.
2016-12-01
Interactions of the ocean with other components of the earth system, such as atmosphere, lithosphere, and biosphere are the front and hotspot of the ocean and earth sciences. In the Indonesian Archipelago and adjacent western Pacific and eastern Indian Oceans, both the upper oceanic circulation and lower atmospheric circulation convergent and consequently enhance the fresh water and heat fluxes, affecting the East Asian and global climate. This region is considered as the world's center of marine bio-diversity and sediment discharge, as well as the collision center of the Eurasian, Indian and Pacific plates. Why and how the energy and material of multiple spheres convergent toward the region are important scientific issues on the front of earth system science and marine sciences, and need to be investigated through international cooperation.
NASA Astrophysics Data System (ADS)
Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.
2014-07-01
The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.
Analysis of multiple jets in a cross-flow
NASA Astrophysics Data System (ADS)
Isaac, K. M.; Schetz, J. A.
1982-12-01
The analysis of Campbell and Schetz (1973) is extended to the study of multiple jets in a cross flow, where the interaction of two jets is taken into account by a modification of the drag coefficient that is sensed by each jet. Results show that the rear jet trajectory is significantly modified by the presence of the front one even when the jets are spaced far apart. The analysis is applicable to such phenomena as the exhaust of chimney stack smoke into a wind and the lift jets of a V/STOL aircraft during takeoff or landing in strong winds.
Patterns of spiral wave attenuation by low-frequency periodic planar fronts
NASA Astrophysics Data System (ADS)
de la Casa, Miguel A.; de la Rubia, F. Javier; Ivanov, Plamen Ch.
2007-03-01
There is evidence that spiral waves and their breakup underlie mechanisms related to a wide spectrum of phenomena ranging from spatially extended chemical reactions to fatal cardiac arrhythmias [A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 2001); J. Schutze, O. Steinbock, and S. C. Muller, Nature 356, 45 (1992); S. Sawai, P. A. Thomason, and E. C. Cox, Nature 433, 323 (2005); L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988); R. A. Gray et al., Science 270, 1222 (1995); F. X. Witkowski et al., Nature 392, 78 (1998)]. Once initiated, spiral waves cannot be suppressed by periodic planar fronts, since the domains of the spiral waves grow at the expense of the fronts [A. N. Zaikin and A. M. Zhabotinsky, Nature 225, 535 (1970); A. T. Stamp, G. V. Osipov, and J. J. Collins, Chaos 12, 931 (2002); I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170 (1996); K. J. Lee, Phys. Rev. Lett. 79, 2907 (1997); F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel, Phys. Rev. E 59, 2203 (1999)]. Here, we show that introducing periodic planar waves with long excitation duration and a period longer than the rotational period of the spiral can lead to spiral attenuation. The attenuation is not due to spiral drift and occurs periodically over cycles of several fronts, forming a variety of complex spatiotemporal patterns, which fall into two distinct general classes. Further, we find that these attenuation patterns only occur at specific phases of the descending fronts relative to the rotational phase of the spiral. We demonstrate these dynamics of phase-dependent spiral attenuation by performing numerical simulations of wave propagation in the excitable medium of myocardial cells. The effect of phase-dependent spiral attenuation we observe can lead to a general approach to spiral control in physical and biological systems with relevance for medical applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... Dynamic and Quasi-Static Testing in 2008 a. Test Article Design b. Dynamic Testing of a Collision Post c... requirements concerning structural deformation and energy absorption by collision posts and corner posts at the... Testing in 2002 a. Test Article Designs b. Dynamic Impact Testing c. Analysis 2. Industry-Sponsored Quasi...
1983-11-01
spectrum of the linear stability theory has multiple roots with zero real parts. Then the general forms of the amplitude equations may be found for given...76 Dynamical Generation of Eastern Boundary Currents George eronis. .......................... 77 ..Amplitude Equations Edward...Associated Countercurrent. Benoit Cushman-Roisin ....... .................... ... 103 Turbulently Generated Eastern Boundary Currents Roger L. Hughes
Using a Constant Time Delay Procedure to Teach Foundational Swimming Skills to Children with Autism
ERIC Educational Resources Information Center
Rogers, Laura; Hemmeter, Mary Louise; Wolery, Mark
2010-01-01
The purpose of this study was to evaluate the effectiveness of using a constant time delay procedure to teach foundational swimming skills to three children with autism. The skills included flutter kick, front-crawl arm strokes, and head turns to the side. A multiple-probe design across behaviors and replicated across participants was used.…
NASA Astrophysics Data System (ADS)
Smith, Malcolm; Kerley, Dan; Chapin, Edward L.; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi
2016-07-01
Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements.
NASA Astrophysics Data System (ADS)
Wang, Jingtao; Li, Xiaoduan; Wang, Xiaoyong; Guan, Jing
2014-05-01
When a globule with a complete symmetry (such as simple spherical droplets and concentric double emulsions) is transiting in a constriction tube, there is only one pattern of the transition. However, for a multiple-emulsion globule with asymmetric internal structures, there are many possible patterns with different pressure drops Δp due to various initial orientations of the inner droplets. In this paper, a boundary integral method developed recently is employed to investigate numerically the possible oriented transition of a globule with two unequal inner droplets in an axisymmetric microfluidic constriction. The transition is driven by an axisymmetric Poiseuille flow with a fixed volume flow rate, and the rheological behaviors of the globule are observed carefully. When the big inner droplet is initially located in the front of the globule, the maximum pressure drop during the transition is always lower than that when it is initially placed in the rear. Thus, a tropism—whereby a globule more easily gets through the constriction when its bigger inner droplet locates in its front initially—might exist, in which the orientating stimulus is the required pressure drops. The physical explanation of this phenomenon has also been analyzed in this paper.
A Study of the Effect of the Front-End Styling of Sport Utility Vehicles on Pedestrian Head Injuries
Qin, Qin; Chen, Zheng; Bai, Zhonghao; Cao, Libo
2018-01-01
Background The number of sport utility vehicles (SUVs) on China market is continuously increasing. It is necessary to investigate the relationships between the front-end styling features of SUVs and head injuries at the styling design stage for improving the pedestrian protection performance and product development efficiency. Methods Styling feature parameters were extracted from the SUV side contour line. And simplified finite element models were established based on the 78 SUV side contour lines. Pedestrian headform impact simulations were performed and validated. The head injury criterion of 15 ms (HIC15) at four wrap-around distances was obtained. A multiple linear regression analysis method was employed to describe the relationships between the styling feature parameters and the HIC15 at each impact point. Results The relationship between the selected styling features and the HIC15 showed reasonable correlations, and the regression models and the selected independent variables showed statistical significance. Conclusions The regression equations obtained by multiple linear regression can be used to assess the performance of SUV styling in protecting pedestrians' heads and provide styling designers with technical guidance regarding their artistic creations.
Method and apparatus for a catalytic firebox reactor
Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.
2001-01-01
A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.
Cappione, Amedeo; Mabuchi, Masaharu; Briggs, David; Nadler, Timothy
2015-04-01
Protein immuno-detection encompasses a broad range of analytical methodologies, including western blotting, flow cytometry, and microscope-based applications. These assays which detect, quantify, and/or localize expression for one or more proteins in complex biological samples, are reliant upon fluorescent or enzyme-tagged target-specific antibodies. While small molecule labeling kits are available with a range of detection moieties, the workflow is hampered by a requirement for multiple dialysis-based buffer exchange steps that are both time-consuming and subject to sample loss. In a previous study, we briefly described an alternative method for small-scale protein labeling with small molecule dyes whereby all phases of the conjugation workflow could be performed in a single centrifugal diafiltration device. Here, we expand on this foundational work addressing functionality of the device at each step in the workflow (sample cleanup, labeling, unbound dye removal, and buffer exchange/concentration) and the implications for optimizing labeling efficiency. When compared to other common buffer exchange methodologies, centrifugal diafiltration offered superior performance as measured by four key parameters (process time, desalting capacity, protein recovery, retain functional integrity). Originally designed for resin-based affinity purification, the device also provides a platform for up-front antibody purification or albumin carrier removal. Most significantly, by exploiting the rapid kinetics of NHS-based labeling reactions, the process of continuous diafiltration minimizes reaction time and long exposure to excess dye, guaranteeing maximal target labeling while limiting the risks associated with over-labeling. Overall, the device offers a simplified workflow with reduced processing time and hands-on requirements, without sacrificing labeling efficiency, final yield, or conjugate performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Kinematic and ground reaction force accommodation during weighted walking.
James, C Roger; Atkins, Lee T; Yang, Hyung Suk; Dufek, Janet S; Bates, Barry T
2015-12-01
Weighted walking is a functional activity common in daily life and can influence risks for musculoskeletal loading, injury and falling. Much information exists about weighted walking during military, occupational and recreational tasks, but less is known about strategies used to accommodate to weight carriage typical in daily life. The purposes of the study were to examine the effects of weight carriage on kinematics and peak ground reaction force (GRF) during walking, and explore relationships between these variables. Twenty subjects walked on a treadmill while carrying 0, 44.5 and 89 N weights in front of the body. Peak GRF, sagittal plane joint/segment angular kinematics, stride length and center of mass (COM) vertical displacement were measured. Changes in peak GRF and displacement variables between weight conditions represented accommodation. Effects of weight carriage were tested using analysis of variance. Relationships between peak GRF and kinematic accommodation variables were examined using correlation and regression. Subjects were classified into sub-groups based on peak GRF responses and the correlation analysis was repeated. Weight carriage increased peak GRF by an amount greater than the weight carried, decreased stride length, increased vertical COM displacement, and resulted in a more extended and upright posture, with less hip and trunk displacement during weight acceptance. A GRF increase was associated with decreases in hip extension (|r|=.53, p=.020) and thigh anterior rotation (|r|=.57, p=.009) displacements, and an increase in foot anterior rotation displacement (|r|=.58, p=.008). Sub-group analysis revealed that greater GRF increases were associated with changes at multiple sites, while lesser GRF increases were associated with changes in foot and trunk displacement. Weight carriage affected walking kinematics and revealed different accommodation strategies that could have implications for loading and stability. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, N.; Tranter, R. S.; Moshammer, K.
The perturbation of the temperature field caused by a quartz sampling probe has been investigated in a fuel-rich low-pressure premixed ethylene/oxygen/argon/krypton flame using X-ray fluorescence. The experiments were performed at the 7-BM beamline at the Advanced Photon Source (APS) at the Argonne National Laboratory where a continuous beam of X-rays at 15 keV was used to excite krypton atoms that were added to the unburnt flame gases in a concentration of 5% (by volume). The resulting krypton X-ray fluorescence at 12.65 keV was collected and the spatially resolved signal was subsequently converted into the local temperature of the imaged spot.more » One and two dimensional scans of the temperature field were obtained by translating the entire flame chamber through a pre-programmed sequence of positions on high precision translation stages and measuring the X-ray fluorescence at each location. Multiple measurements were performed at various separations between the burner surface and probe tip, representing sampling positions from the preheat, reaction, and postflame zones of the low-pressure flame. Distortions of up to 1000 K of the burner-probe centerline flame temperature were found with the tip of the probe in the preheat zone and distortions of up to 500 K were observed with it in the reaction and postflame zones. Furthermore, perturbations of the temperature field have been revealed that radially reach as far as 20 mm from the burner-probe centerline and about 3 mm in front of the probe tip. Finally, these results clearly reveal the limitations of one-dimensional models for predicting flame-sampling experiments and comments are made with regard to model developments and validations based on quantitative speciation data from low-pressure flames obtained via intrusive sampling techniques.« less
Processes controlling the retreat of the Isles Dernieres, a Louisiana barrier-island chain
Dingler, John R.; Reiss, Thomas E.
1991-01-01
The Isles Dernieres is a low-lying, transgressive barrier-island chain situated about 150 km west of the modern Mississippi delta. Much of the Isles Dernieres consists of highly dissected salt-marsh muds that lie at or slightly above sea level and are covered by a veneer of sand along the shoreline facing the Gulf of Mexico. Maximum berm elevations are generally less than 1.5 m above mean sea level. Since the mid-1800s, the initial island has been fragmented into four islands, and the beach face has retreated landward at a rate of more than 10 m/yr. The dominant processes controlling degradation of the chain are cold fronts that pass through the area several times each year and occasional hurricanes. Beach surveys over a 2-year period on the Isles Dernieres document irreversible beach-face retreat in conjunction with multiple cold fronts and one major hurricane (Gilbert). Although both the hurricane and the cold fronts caused the island to erode, the erosional patterns of the two storm types differed from each other. During the two years, over 60 cold fronts collectively caused about 37 m of beach-face retreat, whereas Gilbert itself produced more than 40 m of retreat. A major difference between the two storm types was in the percentage of washover sand produced by each. Commonly, the cold fronts did not create enough of a storm surge to overtop the berm, so most of the material removed from the beach face must have moved offshore or alongshore. Gilbert, in contrast, inundated the study site, and essentially all the sand removed from the beach face moved to the backshore.
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Berkowitz, Brian
2015-03-01
We develop continuous-time random walk (CTRW) equations governing the transport of two species that annihilate when in proximity to one another. In comparison with catalytic or spontaneous transformation reactions that have been previously considered in concert with CTRW, both species have spatially variant concentrations that require consideration. We develop two distinct formulations. The first treats transport and reaction microscopically, potentially capturing behavior at sharp fronts, but at the cost of being strongly nonlinear. The second, mesoscopic, formulation relies on a separation-of-scales technique we develop to separate microscopic-scale reaction and upscaled transport. This simplifies the governing equations and allows treatment of more general reaction dynamics, but requires stronger smoothness assumptions of the solution. The mesoscopic formulation is easily tractable using an existing solution from the literature (we also provide an alternative derivation), and the generalized master equation (GME) for particles undergoing A +B →0 reactions is presented. We show that this GME simplifies, under appropriate circumstances, to both the GME for the unreactive CTRW and to the advection-dispersion-reaction equation. An additional major contribution of this work is on the numerical side: to corroborate our development, we develop an indirect particle-tracking-partial-integro-differential-equation (PIDE) hybrid verification technique which could be applicable widely in reactive anomalous transport. Numerical simulations support the mesoscopic analysis.
A unified understanding of (γ, n) and (n, γ) reactions and direct neutron-multiplicity sorting
NASA Astrophysics Data System (ADS)
Utsunomiya, Hiroaki; Goriely, Stephane; m, Therese Renstrø; Katayama, Seitaro; Gheorghe, Ioana; Filipescu, Dan; Belyshev, Sergey; Varlamov, Vladimir
2017-09-01
We discuss the γ-ray strength function toward a unified understanding of (γ,n) and (n,γ) reactions and propose a novel technique of direct neutron-multiplicity sorting to resolve the long-standing discrepancy between the Livermore and Scalya data of partial photoneutron cross sections.
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro
2011-01-01
This study involved the evaluation of the efficacy of a planned instructional program to facilitate understanding of the macroscopic, submicroscopic and symbolic representational systems when describing and explaining chemical reactions by sixty-five Grade 9 students in a Singapore secondary school. A two-tier multiple-choice diagnostic instrument…
Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model
NASA Astrophysics Data System (ADS)
Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi
2018-02-01
Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.
Van den Heede, Philip; Van Belleghem, Bjorn; Alderete, Natalia; Van Tittelboom, Kim; De Belie, Nele
2016-01-01
Given their low tensile strength, cement-based materials are very susceptible to cracking. These cracks serve as preferential pathways for corrosion inducing substances. For large concrete infrastructure works, currently available time-consuming manual repair techniques are not always an option. Often, one simply cannot reach the damaged areas and when making those areas accessible anyway (e.g., by redirecting traffic), the economic impacts involved would be enormous. Under those circumstances, it might be useful to have concrete with an embedded autonomous healing mechanism. In this paper, the effectiveness of incorporating encapsulated high and low viscosity polyurethane-based healing agents to ensure (multiple) crack healing has been investigated by means of capillary absorption tests on mortar while monitoring the time-dependent water ingress with neutron radiography. Overall visual interpretation and water front/sample cross-section area ratios as well as water profiles representing the area around the crack and their integrals do not show a preference for the high or low viscosity healing agent. Another observation is that in presence of two cracks, only one is properly healed, especially when using the latter healing agent. Exposure to water immediately after release of the healing agent stimulates the foaming reaction of the polyurethane and ensures a better crack closure. PMID:28773436
Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...
2015-06-17
In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less
Fractional Steps methods for transient problems on commodity computer architectures
NASA Astrophysics Data System (ADS)
Krotkiewski, M.; Dabrowski, M.; Podladchikov, Y. Y.
2008-12-01
Fractional Steps methods are suitable for modeling transient processes that are central to many geological applications. Low memory requirements and modest computational complexity facilitates calculations on high-resolution three-dimensional models. An efficient implementation of Alternating Direction Implicit/Locally One-Dimensional schemes for an Opteron-based shared memory system is presented. The memory bandwidth usage, the main bottleneck on modern computer architectures, is specially addressed. High efficiency of above 2 GFlops per CPU is sustained for problems of 1 billion degrees of freedom. The optimized sequential implementation of all 1D sweeps is comparable in execution time to copying the used data in the memory. Scalability of the parallel implementation on up to 8 CPUs is close to perfect. Performing one timestep of the Locally One-Dimensional scheme on a system of 1000 3 unknowns on 8 CPUs takes only 11 s. We validate the LOD scheme using a computational model of an isolated inclusion subject to a constant far field flux. Next, we study numerically the evolution of a diffusion front and the effective thermal conductivity of composites consisting of multiple inclusions and compare the results with predictions based on the differential effective medium approach. Finally, application of the developed parabolic solver is suggested for a real-world problem of fluid transport and reactions inside a reservoir.
Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie
2014-01-01
Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.
Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.
Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume
2017-09-20
A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.
Delamination modeling of laminate plate made of sublaminates
NASA Astrophysics Data System (ADS)
Kormaníková, Eva; Kotrasová, Kamila
2017-07-01
The paper presents the mixed-mode delamination of plates made of sublaminates. To this purpose an opening load mode of delamination is proposed as failure model. The failure model is implemented in ANSYS code to calculate the mixed-mode delamination response as energy release rate. The analysis is based on interface techniques. Within the interface finite element modeling there are calculated the individual components of damage parameters as spring reaction forces, relative displacements and energy release rates along the lamination front.
Numerical Simulation of Turbulent Combustion Using Vortex Methods
1988-09-27
laminar burning velocity times the flame length measured along the line of maximum reaction rate. Following the burning of the eddy core, the strain...is approximately the same as the flame length at t - 0. In the second stage, and as the eddy starts to roll up, the flame front forms a fold within the...Rp, which is the slope of the curve in Fig. 9, can be approximated by the product of the flame length times the average burning velocity along the
Degradation of Carbon Fiber Reinforced Polymer and Graphite by Laser Heating
2016-08-01
and (d) bare fiber [α + 0.1 (- ⋅ -), α(T) (⎯), and α - 0.1 (- - -)] on front and backside laser center temperatures at 5 W/cm2. The effect is...be limited by the consumption of oxygen by surface reactions and the outflow of volatile epoxy decomposition products. 13 Epoxy Decomposition...adjusted to include the effect of emissivity (at 3.9 µm) by multiplying radiance by ε before converting to temperature . It should also be noted that the
Nguyen, Luan; Tao, Franklin Feng
2016-06-01
Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
Photoneutron cross sections for 59Co : Systematic uncertainties of data from various experiments
NASA Astrophysics Data System (ADS)
Varlamov, V. V.; Davydov, A. I.; Ishkhanov, B. S.
2017-09-01
Data on partial photoneutron reaction cross sections (γ ,1n), (γ ,2n), and (γ ,3n) for 59Co obtained in two experiments carried out at Livermore (USA) were analyzed. The sources of radiation in both experiments were the monoenergetic photon beams from the annihilation in flight of relativistic positrons. The total yield was sorted by the neutron multiplicity, taking into account the difference in the neutron energy spectra for different multiplicity. The two quoted studies differ in the method of determining the neutron. Significant systematic disagreements between the results of the two experiments exist. They are considered to be caused by large systematic uncertainties in partial cross sections, since they do not satisfy physical criteria for reliability of the data. To obtain reliable cross sections of partial and total photoneutron reactions a new method combining experimental data and theoretical evaluation was used. It is based on the experimental neutron yield cross section which is rather independent of neutron multiplicity and the transitional neutron multiplicity functions of the combined photonucleon reaction model (CPNRM). The model transitional multiplicity functions were used for the decomposition of the neutron yield cross section into the contributions of partial reactions. The results of the new evaluation noticeably differ from the partial cross sections obtained in the two experimental studies are under discussion.
Different enzyme kinetic models.
Seibert, Eleanore; Tracy, Timothy S
2014-01-01
As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundy, R.L.; Heiffer, M.H.
1960-09-01
When 100 mg of beta -mercaptoethylamine is administered intravenously to the dog over a period of 5 min a characteristic set of reactions is produced. The most notable of these in the nonanesthetized dog are violent emesis, agitation frequently leading to tonic-clonic convulsions, ataxia and a characteristic swaying movement of the front portion of the body, generalized depression, loss of pain sense, severe hypotension, relative bradycardia, blood- tinged diarrhea, and a mixed stimulation and depression of respiration. Anesthesia prevents the emetic and convulsive components of the reaction but does not affect the cardiovascular changes. The agent produces a delayed, severe,more » prolonged hypotension. The possibility is discussed that the physiological changes produced by this agent may contribute to its radioprotective potential. 27 references. (auth)« less
Comparisons between thermodynamic and one-dimensional combustion models of spark-ignition engines
NASA Technical Reports Server (NTRS)
Ramos, J. I.
1986-01-01
Results from a one-dimensional combustion model employing a constant eddy diffusivity and a one-step chemical reaction are compared with those of one-zone and two-zone thermodynamic models to study the flame propagation in a spark-ignition engine. One-dimensional model predictions are found to be very sensitive to the eddy diffusivity and reaction rate data. The average mixing temperature found using the one-zone thermodynamic model is higher than those of the two-zone and one-dimensional models during the compression stroke, and that of the one-dimensional model is higher than those predicted by both thermodynamic models during the expansion stroke. The one-dimensional model is shown to predict an accelerating flame even when the front approaches the cold cylinder wall.