Sample records for multiple regression equations

  1. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  2. Using Regression Equations Built from Summary Data in the Psychological Assessment of the Individual Case: Extension to Multiple Regression

    ERIC Educational Resources Information Center

    Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.

    2012-01-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…

  3. Estimating air drying times of lumber with multiple regression

    Treesearch

    William T. Simpson

    2004-01-01

    In this study, the applicability of a multiple regression equation for estimating air drying times of red oak, sugar maple, and ponderosa pine lumber was evaluated. The equation allows prediction of estimated air drying times from historic weather records of temperature and relative humidity at any desired location.

  4. Decreasing Multicollinearity: A Method for Models with Multiplicative Functions.

    ERIC Educational Resources Information Center

    Smith, Kent W.; Sasaki, M. S.

    1979-01-01

    A method is proposed for overcoming the problem of multicollinearity in multiple regression equations where multiplicative independent terms are entered. The method is not a ridge regression solution. (JKS)

  5. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    ERIC Educational Resources Information Center

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  6. Development of Multiple Regression Equations To Predict Fourth Graders' Achievement in Reading and Selected Content Areas.

    ERIC Educational Resources Information Center

    Hafner, Lawrence E.

    A study developed a multiple regression prediction equation for each of six selected achievement variables in a popular standardized test of achievement. Subjects, 42 fourth-grade pupils randomly selected across several classes in a large elementary school in a north Florida city, were administered several standardized tests to determine predictor…

  7. A Modified Double Multiple Nonlinear Regression Constitutive Equation for Modeling and Prediction of High Temperature Flow Behavior of BFe10-1-2 Alloy

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying

    2018-01-01

    Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.

  8. Estimation of premorbid general fluid intelligence using traditional Chinese reading performance in Taiwanese samples.

    PubMed

    Chen, Ying-Jen; Ho, Meng-Yang; Chen, Kwan-Ju; Hsu, Chia-Fen; Ryu, Shan-Jin

    2009-08-01

    The aims of the present study were to (i) investigate if traditional Chinese word reading ability can be used for estimating premorbid general intelligence; and (ii) to provide multiple regression equations for estimating premorbid performance on Raven's Standard Progressive Matrices (RSPM), using age, years of education and Chinese Graded Word Reading Test (CGWRT) scores as predictor variables. Four hundred and twenty-six healthy volunteers (201 male, 225 female), aged 16-93 years (mean +/- SD, 41.92 +/- 18.19 years) undertook the tests individually under supervised conditions. Seventy percent of subjects were randomly allocated to the derivation group (n = 296), and the rest to the validation group (n = 130). RSPM score was positively correlated with CGWRT score and years of education. RSPM and CGWRT scores and years of education were also inversely correlated with age, but the declining trend for RSPM performance against age was steeper than that for CGWRT performance. Separate multiple regression equations were derived for estimating RSPM scores using different combinations of age, years of education, and CGWRT score for both groups. The multiple regression coefficient of each equation ranged from 0.71 to 0.80 with the standard error of estimate between 7 and 8 RSPM points. When fitting the data of one group to the equations derived from its counterpart group, the cross-validation multiple regression coefficients ranged from 0.71 to 0.79. There were no significant differences in the 'predicted-obtained' RSPM discrepancies between any equations. The regression equations derived in the present study may provide a basis for estimating premorbid RSPM performance.

  9. Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei

    2016-10-01

    Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.

  10. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  11. General Nature of Multicollinearity in Multiple Regression Analysis.

    ERIC Educational Resources Information Center

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  12. Use of Thematic Mapper for water quality assessment

    NASA Technical Reports Server (NTRS)

    Horn, E. M.; Morrissey, L. A.

    1984-01-01

    The evaluation of simulated TM data obtained on an ER-2 aircraft at twenty-five predesignated sample sites for mapping water quality factors such as conductivity, pH, suspended solids, turbidity, temperature, and depth, is discussed. Using a multiple regression for the seven TM bands, an equation is developed for the suspended solids. TM bands 1, 2, 3, 4, and 6 are used with logarithm conductivity in a multiple regression. The assessment of regression equations for a high coefficient of determination (R-squared) and statistical significance is considered. Confidence intervals about the mean regression point are calculated in order to assess the robustness of the regressions used for mapping conductivity, turbidity, and suspended solids, and by regressing random subsamples of sites and comparing the resultant range of R-squared, cross validation is conducted.

  13. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    DTIC Science & Technology

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  14. Using regression equations built from summary data in the psychological assessment of the individual case: extension to multiple regression.

    PubMed

    Crawford, John R; Garthwaite, Paul H; Denham, Annie K; Chelune, Gordon J

    2012-12-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because (a) not all psychologists are aware that regression equations can be built not only from raw data but also using only basic summary data for a sample, and (b) the computations involved are tedious and prone to error. In an attempt to overcome these barriers, Crawford and Garthwaite (2007) provided methods to build and apply simple linear regression models using summary statistics as data. In the present study, we extend this work to set out the steps required to build multiple regression models from sample summary statistics and the further steps required to compute the associated statistics for drawing inferences concerning an individual case. We also develop, describe, and make available a computer program that implements these methods. Although there are caveats associated with the use of the methods, these need to be balanced against pragmatic considerations and against the alternative of either entirely ignoring a pertinent data set or using it informally to provide a clinical "guesstimate." Upgraded versions of earlier programs for regression in the single case are also provided; these add the point and interval estimates of effect size developed in the present article.

  15. Flood characteristics of Alaskan streams

    USGS Publications Warehouse

    Lamke, R.D.

    1979-01-01

    Peak discharge data for Alaskan streams are summarized and analyzed. Multiple-regression equations relating peak discharge magnitude and frequency to climatic and physical characteristics of 260 gaged basins were determined in order to estimate average recurrence interval of floods at ungaged sites. These equations are for 1.25-, 2-, 5-, 10-, 25-, and 50-year average recurrence intervals. In this report, Alaska was divided into two regions, one having a maritime climate with fall and winter rains and floods, the other having spring and summer floods of a variety or combinations of causes. Average standard errors of the six multiple-regression equations for these two regions were 48 and 74 percent, respectively. Maximum recorded floods at more than 400 sites throughout Alaska are tabulated. Maps showing lines of equal intensity of the principal climatic variables found to be significant (mean annual precipitation and mean minimum January temperature), and location of the 260 sites used in the multiple-regression analyses are included. Little flood data have been collected in western and arctic Alaska, and the predictive equations are therefore less reliable for those areas. (Woodard-USGS)

  16. Mean annual runoff and peak flow estimates based on channel geometry of streams in northeastern and western Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.

    1983-01-01

    Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)

  17. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  18. The Use of Multiple Regression and Trend Analysis to Understand Enrollment Fluctuations. AIR Forum 1979 Paper.

    ERIC Educational Resources Information Center

    Campbell, S. Duke; Greenberg, Barry

    The development of a predictive equation capable of explaining a significant percentage of enrollment variability at Florida International University is described. A model utilizing trend analysis and a multiple regression approach to enrollment forecasting was adapted to investigate enrollment dynamics at the university. Four independent…

  19. Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.

    ERIC Educational Resources Information Center

    Rowell, R. Kevin

    In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…

  20. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  1. A method for the selection of a functional form for a thermodynamic equation of state using weighted linear least squares stepwise regression

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.

    1976-01-01

    A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.

  2. A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.

    PubMed

    Bersabé, Rosa; Rivas, Teresa

    2010-05-01

    The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.

  3. Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast-iron brake shoes manufacturing

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.

    2018-01-01

    Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.

  4. Bankfull characteristics of Ohio streams and their relation to peak streamflows

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.

    2005-01-01

    Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and statistical techniques. The logarithms of the annual peak discharges for the 40 gaged study sites were fit by a Pearson Type III frequency distribution to develop flood-peak discharges associated with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The peak-frequency data were related to geomorphic, basin, and climatic variables by multiple-regression analysis. Simple-regression equations were developed to estimate 2-, 5-, 10-, 25-, 50-, and 100-year flood-peak discharges of rural, unregulated streams in Ohio from bankfull channel cross-sectional area. The average standard errors of prediction are 31.6, 32.6, 35.9, 41.5, 46.2, and 51.2 percent, respectively. The study and methods developed are intended to improve understanding of the relations between geomorphic, basin, and flood characteristics of streams in Ohio and to aid in the design of hydraulic structures, such as culverts and bridges, where stability of the stream and structure is an important element of the design criteria. The study was done in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

  5. Silanols, a New Class of Antimicrobial Agent

    DTIC Science & Technology

    2006-04-01

    carbinols against the four bacteria was log (1/MLC) = 0.670 log P + 0.0035 ∆ν -1.836, n = 282, r = 0.96, s = 0.22. This equation and a significantly...activity relationship of antimicrobial agents by means of equations [8] based on a method proposed by Hansch and Fujita in 1964 [1]. This multiple...correlation equations between their antimicrobial activities and structural properties, log P and H-bond acidity, were created by a multiple regression

  6. Criteria for the use of regression analysis for remote sensing of sediment and pollutants

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R.

    1982-01-01

    An examination of limitations, requirements, and precision of the linear multiple-regression technique for quantification of marine environmental parameters is conducted. Both environmental and optical physics conditions have been defined for which an exact solution to the signal response equations is of the same form as the multiple regression equation. Various statistical parameters are examined to define a criteria for selection of an unbiased fit when upwelled radiance values contain error and are correlated with each other. Field experimental data are examined to define data smoothing requirements in order to satisfy the criteria of Daniel and Wood (1971). Recommendations are made concerning improved selection of ground-truth locations to maximize variance and to minimize physical errors associated with the remote sensing experiment.

  7. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  8. Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.

    NASA Technical Reports Server (NTRS)

    Ohring, G.

    1972-01-01

    Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.

  9. Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.

    ERIC Educational Resources Information Center

    Algina, James; Olejnik, Stephen

    2000-01-01

    Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)

  10. Estimating peak discharges, flood volumes, and hydrograph shapes of small ungaged urban streams in Ohio

    USGS Publications Warehouse

    Sherwood, J.M.

    1986-01-01

    Methods are presented for estimating peak discharges, flood volumes and hydrograph shapes of small (less than 5 sq mi) urban streams in Ohio. Examples of how to use the various regression equations and estimating techniques also are presented. Multiple-regression equations were developed for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The significant independent variables affecting peak discharge are drainage area, main-channel slope, average basin-elevation index, and basin-development factor. Standard errors of regression and prediction for the peak discharge equations range from +/-37% to +/-41%. An equation also was developed to estimate the flood volume of a given peak discharge. Peak discharge, drainage area, main-channel slope, and basin-development factor were found to be the significant independent variables affecting flood volumes for given peak discharges. The standard error of regression for the volume equation is +/-52%. A technique is described for estimating the shape of a runoff hydrograph by applying a specific peak discharge and the estimated lagtime to a dimensionless hydrograph. An equation for estimating the lagtime of a basin was developed. Two variables--main-channel length divided by the square root of the main-channel slope and basin-development factor--have a significant effect on basin lagtime. The standard error of regression for the lagtime equation is +/-48%. The data base for the study was established by collecting rainfall-runoff data at 30 basins distributed throughout several metropolitan areas of Ohio. Five to eight years of data were collected at a 5-min record interval. The USGS rainfall-runoff model A634 was calibrated for each site. The calibrated models were used in conjunction with long-term rainfall records to generate a long-term streamflow record for each site. Each annual peak-discharge record was fitted to a Log-Pearson Type III frequency curve. Multiple-regression techniques were then used to analyze the peak discharge data as a function of the basin characteristics of the 30 sites. (Author 's abstract)

  11. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  12. Comparison of Different Shrinkage Formulas in Estimating Population Multiple Correlation Coefficients.

    ERIC Educational Resources Information Center

    Carter, David S.

    1979-01-01

    There are a variety of formulas for reducing the positive bias which occurs in estimating R squared in multiple regression or correlation equations. Five different formulas are evaluated in a Monte Carlo study, and recommendations are made. (JKS)

  13. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  14. Data-driven discovery of partial differential equations.

    PubMed

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  15. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.

  16. Regional Regression Equations to Estimate Flow-Duration Statistics at Ungaged Stream Sites in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2010-01-01

    Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.

  17. Statistical summary of selected physical, chemical, and toxicity characteristics and estimates of annual constituent loads in urban stormwater, Maricopa County, Arizona

    USGS Publications Warehouse

    Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.

    2001-01-01

    Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.

  18. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  19. Regression-based pediatric norms for the brief visuospatial memory test: revised and the symbol digit modalities test.

    PubMed

    Smerbeck, A M; Parrish, J; Yeh, E A; Hoogs, M; Krupp, Lauren B; Weinstock-Guttman, B; Benedict, R H B

    2011-04-01

    The Brief Visuospatial Memory Test - Revised (BVMTR) and the Symbol Digit Modalities Test (SDMT) oral-only administration are known to be sensitive to cerebral disease in adult samples, but pediatric norms are not available. A demographically balanced sample of healthy control children (N = 92) ages 6-17 was tested with the BVMTR and SDMT. Multiple regression analysis (MRA) was used to develop demographically controlled normative equations. This analysis provided equations that were then used to construct demographically adjusted z-scores for the BVMTR Trial 1, Trial 2, Trial 3, Total Learning, and Delayed Recall indices, as well as the SDMT total correct score. To demonstrate the utility of this approach, a comparison group of children with acute disseminated encephalomyelitis (ADEM) or multiple sclerosis (MS) were also assessed. We find that these visual processing tests discriminate neurological patients from controls. As the tests are validated in adult multiple sclerosis, they are likely to be useful in monitoring pediatric onset multiple sclerosis patients as they transition into adulthood.

  20. Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Wong, Michael F.

    1994-01-01

    This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.

  1. Depoliticizing Minority Admissions through Predicted Graduation Equations. AIR Forum 1982 Paper.

    ERIC Educational Resources Information Center

    Sanford, Timothy R.

    The way that the University of North Carolina, Chapel Hill, has tried to depoliticize minority admissions through the use of predicted graduation equations that are race specific is examined. Multiple regression and discriminant analyses were used with nine independent variables (primarily academic) to predict graduation status of 1974 entering…

  2. FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors.

    PubMed

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2011-03-01

    We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  3. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults

    PubMed Central

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni

    2015-01-01

    Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960

  4. A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.

    PubMed

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni

    2015-01-01

    Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.

  5. Confidence Intervals for Squared Semipartial Correlation Coefficients: The Effect of Nonnormality

    ERIC Educational Resources Information Center

    Algina, James; Keselman, H. J.; Penfield, Randall D.

    2010-01-01

    The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…

  6. Prediction of hearing outcomes by multiple regression analysis in patients with idiopathic sudden sensorineural hearing loss.

    PubMed

    Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki

    2014-12-01

    This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.

  7. Data-driven discovery of partial differential equations

    PubMed Central

    Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2017-01-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044

  8. Site conditions related to erosion on logging roads

    Treesearch

    R. M. Rice; J. D. McCashion

    1985-01-01

    Synopsis - Data collected from 299 road segments in northwestern California were used to develop and test a procedure for estimating and managing road-related erosion. Site conditions and the design of each segment were described by 30 variables. Equations developed using 149 of the road segments were tested on the other 150. The best multiple regression equation...

  9. Fiber length - fiber strength interrelationship for slash pine and its effect on pulp-sheet properties

    Treesearch

    F.F. Wangaard; George E. Woodson

    1972-01-01

    Based on a model developed for hardwood fiber strength-pulp property relationships, multiple-regression equations involving fiber strength, fiber length, and sheet density were determined to predict the properties of kraft pulps of slash pine (Pinus elliottii). Regressions for breaking length and burst factor accounted for 88 and 90 percent,...

  10. Fiber length strength interrelationship for slash pine and its effect on pulp-sheet properties

    Treesearch

    F. G. Wangaard; G. E. Woodson

    1973-01-01

    Based on a model developed for hardwood fiber strength-pulp property relationships, multiple-regression equations involving fiber strength, fiber length, and sheet density were determined to predict the properties of kraft pulps of slash pine (Pinus elliottii). Regressions for breaking length and burst factor accounted for 88 and 90 percent,...

  11. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Roberts, J.W.

    1990-01-01

    Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)

  12. A rotor optimization using regression analysis

    NASA Technical Reports Server (NTRS)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  13. Multiple regression for physiological data analysis: the problem of multicollinearity.

    PubMed

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  14. Fundamental Analysis of the Linear Multiple Regression Technique for Quantification of Water Quality Parameters from Remote Sensing Data. Ph.D. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H., III

    1977-01-01

    Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.

  15. Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.; Reed, Lloyd A.

    2000-01-01

    Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.

  16. Factor Structure of the Primary Scales of the Inventory of Personality Organization in a Nonclinical Sample Using Exploratory Structural Equation Modeling

    ERIC Educational Resources Information Center

    Ellison, William D.; Levy, Kenneth N.

    2012-01-01

    Using exploratory structural equation modeling and multiple regression, we examined the factor structure and criterion relations of the primary scales of the Inventory of Personality Organization (IPO; Kernberg & Clarkin, 1995) in a nonclinical sample. Participants (N = 1,260) completed the IPO and measures of self-concept clarity, defenses,…

  17. Environment, vegetation, and regeneration after timber harvest in the Hungry-Pickett area of southwest Oregon.

    Treesearch

    Joseph N. Graham; Edward W. Murray; Don Minore

    1982-01-01

    Environmental factors were related to forest regeneration on clearcut and partially cut areas managed by the Bureau of Land Management in the Hungry-Pickett area northwest of Grants Pass, Oregon. The multiple regression equations developed for this study can be used to compare the relative difficulty of regenerating forested sites within the study area. The equations...

  18. Use of Case History Data for the Development of Equations in Predicting High Risk, Reading Disabled Students.

    ERIC Educational Resources Information Center

    Stratton, Beverly D.; And Others

    Demographic data on 92 subjects identified as having reading problems were used to develop equations useful in identifying high risk, reading disabled students. Multiple linear regression analysis of the data indicated that reading disability (1) had a significant positive relationship with birth order and number of siblings; (2) had a positive…

  19. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    PubMed

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  20. Predicting hearing thresholds and occupational hearing loss with multiple-frequency auditory steady-state responses.

    PubMed

    Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng

    2010-10-01

    An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p < .001). Mf-ASSR is a promising tool for objectively evaluating hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.

  1. Evaluation of the magnitude and frequency of floods in urban watersheds in Phoenix and Tucson, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.

    2014-01-01

    Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.

  2. Multiple regression technique for Pth degree polynominals with and without linear cross products

    NASA Technical Reports Server (NTRS)

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  3. Validity of bioelectrical impedance measurement in predicting fat-free mass of Chinese children and adolescents.

    PubMed

    Wang, Lin; Hui, Stanley Sai-chuen; Wong, Stephen Heung-sang

    2014-11-15

    The current study aimed to examine the validity of various published bioelectrical impedance analysis (BIA) equations in estimating FFM among Chinese children and adolescents and to develop BIA equations for the estimation of fat-free mass (FFM) appropriate for Chinese children and adolescents. A total of 255 healthy Chinese children and adolescents aged 9 to 19 years old (127 males and 128 females) from Tianjin, China, participated in the BIA measurement at 50 kHz between the hand and the foot. The criterion measure of FFM was also employed using dual-energy X-ray absorptiometry (DEXA). FFM estimated from 24 published BIA equations was cross-validated against the criterion measure from DEXA. Multiple linear regression was conducted to examine alternative BIA equation for the studied population. FFM estimated from the 24 published BIA equations yielded high correlations with the directly measured FFM from DEXA. However, none of the 24 equations was statistically equivalent with the DEXA-measured FFM. Using multiple linear regression and cross-validation against DEXA measurement, an alternative prediction equation was determined as follows: FFM (kg)=1.613+0.742×height (cm)2/impedance (Ω)+0.151×body weight (kg); R2=0.95; SEE=2.45 kg; CV=6.5, 93.7% of the residuals of all the participants fell within the 95% limits of agreement. BIA was highly correlated with FFM in Chinese children and adolescents. When the new developed BIA equations are applied, BIA can provide a practical and valid measurement of body composition in Chinese children and adolescents.

  4. Validity of Bioelectrical Impedance Measurement in Predicting Fat-Free Mass of Chinese Children and Adolescents

    PubMed Central

    Wang, Lin; Hui, Stanley Sai-chuen; Wong, Stephen Heung-sang

    2014-01-01

    Background The current study aimed to examine the validity of various published bioelectrical impedance analysis (BIA) equations in estimating FFM among Chinese children and adolescents and to develop BIA equations for the estimation of fat-free mass (FFM) appropriate for Chinese children and adolescents. Material/Methods A total of 255 healthy Chinese children and adolescents aged 9 to 19 years old (127 males and 128 females) from Tianjin, China, participated in the BIA measurement at 50 kHz between the hand and the foot. The criterion measure of FFM was also employed using dual-energy X-ray absorptiometry (DEXA). FFM estimated from 24 published BIA equations was cross-validated against the criterion measure from DEXA. Multiple linear regression was conducted to examine alternative BIA equation for the studied population. Results FFM estimated from the 24 published BIA equations yielded high correlations with the directly measured FFM from DEXA. However, none of the 24 equations was statistically equivalent with the DEXA-measured FFM. Using multiple linear regression and cross-validation against DEXA measurement, an alternative prediction equation was determined as follows: FFM (kg)=1.613+0.742×height (cm)2/impedance (Ω)+0.151×body weight (kg); R2=0.95; SEE=2.45kg; CV=6.5, 93.7% of the residuals of all the participants fell within the 95% limits of agreement. Conclusions BIA was highly correlated with FFM in Chinese children and adolescents. When the new developed BIA equations are applied, BIA can provide a practical and valid measurement of body composition in Chinese children and adolescents. PMID:25398209

  5. Estimating annual suspended-sediment loads in the northern and central Appalachian Coal region

    USGS Publications Warehouse

    Koltun, G.F.

    1985-01-01

    Multiple-regression equations were developed for estimating the annual suspended-sediment load, for a given year, from small to medium-sized basins in the northern and central parts of the Appalachian coal region. The regression analysis was performed with data for land use, basin characteristics, streamflow, rainfall, and suspended-sediment load for 15 sites in the region. Two variables, the maximum mean-daily discharge occurring within the year and the annual peak discharge, explained much of the variation in the annual suspended-sediment load. Separate equations were developed employing each of these discharge variables. Standard errors for both equations are relatively large, which suggests that future predictions will probably have a low level of precision. This level of precision, however, may be acceptable for certain purposes. It is therefore left to the user to asses whether the level of precision provided by these equations is acceptable for the intended application.

  6. Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.

    PubMed

    Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T

    2018-05-03

    Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.

  7. Retro-regression--another important multivariate regression improvement.

    PubMed

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  8. Flood-frequency characteristics of Wisconsin streams

    USGS Publications Warehouse

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  9. Forecasting Air Force Logistics Command Second Destination Transportation: An Application of Multiple Regression Analysis and Neural Networks

    DTIC Science & Technology

    1990-09-01

    without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether

  10. Estimating magnitude and frequency of peak discharges for rural, unregulated, streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Atkins, John T.; Tasker, Gary D.

    2000-01-01

    Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).

  11. [The importance of handprint morphometry for determining the human body length].

    PubMed

    Grigor'eva, M A

    2018-01-01

    Handprint morphometry for the purpose of personality identification still remains a relatively novel approach. The methods employed for the measurements are not infrequently difficult to reproduce and therefore cause controversy. The objective of the present study was to introduce the system of methods for the measurement of handprints suitable for the reliable determination of the human body length. The study included the measurement of the size of 40 handprints left by124 adult subjects (52 men and 72 women). Two methods of the regression analysis, stepwise and forced inclusion, were applied to the combined group of handprints to select the equations with the high (R>0.800) coefficients of multiple correlation with the body length. 13 equations of multiple regression were obtained and analyzed. The standard error of estimating (SEE) varied from 4.30 to 5.19 cm. The best results were obtained with the equations constructed from the sizes I, II, and III of the rays without their distal phalanges. It was shown that the body length can be successfully reconstructed within the height range from 168 to 183 cm for men and from 157 to 176 cm for women. The examples of the use of the equations for the purpose of expertise of illegible and incomplete handprints are presented.

  12. Abdominal girth and vertebral column length aid in predicting intrathecal hyperbaric bupivacaine dose for elective cesarean section

    PubMed Central

    Wei, Chang-Na; Zhou, Qing-He; Wang, Li-Zhong

    2017-01-01

    Abstract Currently, there is no consensus on how to determine the optimal dose of intrathecal bupivacaine for an individual undergoing an elective cesarean section. In this study, we developed a regression equation between intrathecal 0.5% hyperbaric bupivacaine volume and abdominal girth and vertebral column length, to determine a suitable block level (T5) for elective cesarean section patients. In phase I, we analyzed 374 parturients undergoing an elective cesarean section that received a suitable dose of intrathecal 0.5% hyperbaric bupivacaine after a combined spinal-epidural (CSE) was performed at the L3/4 interspace. Parturients with T5 blockade to pinprick were selected for establishing the regression equation between 0.5% hyperbaric bupivacaine volume and vertebral column length and abdominal girth. Six parturient and neonatal variables, intrathecal 0.5% hyperbaric bupivacaine volume, and spinal anesthesia spread were recorded. Bivariate line correlation analyses, multiple line regression analyses, and 2-tailed t tests or chi-square test were performed, as appropriate. In phase II, another 200 parturients with CSE for elective cesarean section were enrolled to verify the accuracy of the regression equation. In phase I, a total of 143 parturients were selected to establish the following regression equation: YT5 = 0.074X1 − 0.022X2 − 0.017 (YT5 = 0.5% hyperbaric bupivacaine volume for T5 block level; X1 = vertebral column length; and X2 = abdominal girth). In phase II, a total of 189 participants were enrolled in the study to verify the accuracy of the regression equation, and 155 parturients with T5 blockade were deemed eligible, which accounted for 82.01% of all participants. This study evaluated parturients with T5 blockade to pinprick after a CSE for elective cesarean section to establish a regression equation between parturient vertebral column length and abdominal girth and 0.5% hyperbaric intrathecal bupivacaine volume. This equation can accurately predict the suitable intrathecal hyperbaric bupivacaine dose for elective cesarean section. PMID:28834913

  13. Abdominal girth and vertebral column length aid in predicting intrathecal hyperbaric bupivacaine dose for elective cesarean section.

    PubMed

    Wei, Chang-Na; Zhou, Qing-He; Wang, Li-Zhong

    2017-08-01

    Currently, there is no consensus on how to determine the optimal dose of intrathecal bupivacaine for an individual undergoing an elective cesarean section. In this study, we developed a regression equation between intrathecal 0.5% hyperbaric bupivacaine volume and abdominal girth and vertebral column length, to determine a suitable block level (T5) for elective cesarean section patients.In phase I, we analyzed 374 parturients undergoing an elective cesarean section that received a suitable dose of intrathecal 0.5% hyperbaric bupivacaine after a combined spinal-epidural (CSE) was performed at the L3/4 interspace. Parturients with T5 blockade to pinprick were selected for establishing the regression equation between 0.5% hyperbaric bupivacaine volume and vertebral column length and abdominal girth. Six parturient and neonatal variables, intrathecal 0.5% hyperbaric bupivacaine volume, and spinal anesthesia spread were recorded. Bivariate line correlation analyses, multiple line regression analyses, and 2-tailed t tests or chi-square test were performed, as appropriate. In phase II, another 200 parturients with CSE for elective cesarean section were enrolled to verify the accuracy of the regression equation.In phase I, a total of 143 parturients were selected to establish the following regression equation: YT5 = 0.074X1 - 0.022X2 - 0.017 (YT5 = 0.5% hyperbaric bupivacaine volume for T5 block level; X1 = vertebral column length; and X2 = abdominal girth). In phase II, a total of 189 participants were enrolled in the study to verify the accuracy of the regression equation, and 155 parturients with T5 blockade were deemed eligible, which accounted for 82.01% of all participants.This study evaluated parturients with T5 blockade to pinprick after a CSE for elective cesarean section to establish a regression equation between parturient vertebral column length and abdominal girth and 0.5% hyperbaric intrathecal bupivacaine volume. This equation can accurately predict the suitable intrathecal hyperbaric bupivacaine dose for elective cesarean section.

  14. Statistical research using the multiple regression analysis in areas of the cast hipereutectoid steel rolls manufacturing

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Alexa, V.; Serban, S.; Rackov, M.; Čavić, M.

    2018-01-01

    The cast hipereutectoid steel (usually named Adamite) is a roll manufacturing destined material, having mechanical, chemical properties and Carbon [C] content of which stands between steelandiron, along-withitsalloyelements such as Nickel [Ni], Chrome [Cr], Molybdenum [Mo] and/or other alloy elements. Adamite Rolls are basically alloy steel rolls (a kind of high carbon steel) having hardness ranging from 40 to 55 degrees Shore C, with Carbon [C] percentage ranging from 1.35% until to 2% (usually between 1.2˜2.3%), the extra Carbon [C] and the special alloying element giving an extra wear resistance and strength. First of all the Adamite roll’s prominent feature is the small variation in hardness of the working surface, and has a good abrasion resistance and bite performance. This paper reviews key aspects of roll material properties and presents an analysis of the influences of chemical composition upon the mechanical properties (hardness) of the cast hipereutectoid steel rolls (Adamite). Using the multiple regression analysis (the double and triple regression equations), some mathematical correlations between the cast hipereutectoid steel rolls’ chemical composition and the obtained hardness are presented. In this work several results and evidence obtained by actual experiments are presented. Thus, several variation boundaries for the chemical composition of cast hipereutectoid steel rolls, in view the obtaining the proper values of the hardness, are revealed. For the multiple regression equations, correlation coefficients and graphical representations the software Matlab was used.

  15. Prediction of anthropometric foot characteristics in children.

    PubMed

    Morrison, Stewart C; Durward, Brian R; Watt, Gordon F; Donaldson, Malcolm D C

    2009-01-01

    The establishment of growth reference values is needed in pediatric practice where pathologic conditions can have a detrimental effect on the growth and development of the pediatric foot. This study aims to use multiple regression to evaluate the effects of multiple predictor variables (height, age, body mass, and gender) on anthropometric characteristics of the peripubescent foot. Two hundred children aged 9 to 12 years were recruited, and three anthropometric measurements of the pediatric foot were recorded (foot length, forefoot width, and navicular height). Multiple regression analysis was conducted, and coefficients for gender, height, and body mass all had significant relationships for the prediction of forefoot width and foot length (P < or = .05, r > or = 0.7). The coefficients for gender and body mass were not significant for the prediction of navicular height (P > or = .05), whereas height was (P < or = .05). Normative growth reference values and prognostic regression equations are presented for the peripubescent foot.

  16. The multiple imputation method: a case study involving secondary data analysis.

    PubMed

    Walani, Salimah R; Cleland, Charles M

    2015-05-01

    To illustrate with the example of a secondary data analysis study the use of the multiple imputation method to replace missing data. Most large public datasets have missing data, which need to be handled by researchers conducting secondary data analysis studies. Multiple imputation is a technique widely used to replace missing values while preserving the sample size and sampling variability of the data. The 2004 National Sample Survey of Registered Nurses. The authors created a model to impute missing values using the chained equation method. They used imputation diagnostics procedures and conducted regression analysis of imputed data to determine the differences between the log hourly wages of internationally educated and US-educated registered nurses. The authors used multiple imputation procedures to replace missing values in a large dataset with 29,059 observations. Five multiple imputed datasets were created. Imputation diagnostics using time series and density plots showed that imputation was successful. The authors also present an example of the use of multiple imputed datasets to conduct regression analysis to answer a substantive research question. Multiple imputation is a powerful technique for imputing missing values in large datasets while preserving the sample size and variance of the data. Even though the chained equation method involves complex statistical computations, recent innovations in software and computation have made it possible for researchers to conduct this technique on large datasets. The authors recommend nurse researchers use multiple imputation methods for handling missing data to improve the statistical power and external validity of their studies.

  17. Aspects of porosity prediction using multivariate linear regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, A.P.; Wilson, M.D.

    1991-03-01

    Highly accurate multiple linear regression models have been developed for sandstones of diverse compositions. Porosity reduction or enhancement processes are controlled by the fundamental variables, Pressure (P), Temperature (T), Time (t), and Composition (X), where composition includes mineralogy, size, sorting, fluid composition, etc. The multiple linear regression equation, of which all linear porosity prediction models are subsets, takes the generalized form: Porosity = C{sub 0} + C{sub 1}(P) + C{sub 2}(T) + C{sub 3}(X) + C{sub 4}(t) + C{sub 5}(PT) + C{sub 6}(PX) + C{sub 7}(Pt) + C{sub 8}(TX) + C{sub 9}(Tt) + C{sub 10}(Xt) + C{sub 11}(PTX) + C{submore » 12}(PXt) + C{sub 13}(PTt) + C{sub 14}(TXt) + C{sub 15}(PTXt). The first four primary variables are often interactive, thus requiring terms involving two or more primary variables (the form shown implies interaction and not necessarily multiplication). The final terms used may also involve simple mathematic transforms such as log X, e{sup T}, X{sup 2}, or more complex transformations such as the Time-Temperature Index (TTI). The X term in the equation above represents a suite of compositional variable and, therefore, a fully expanded equation may include a series of terms incorporating these variables. Numerous published bivariate porosity prediction models involving P (or depth) or Tt (TTI) are effective to a degree, largely because of the high degree of colinearity between p and TTI. However, all such bivariate models ignore the unique contributions of P and Tt, as well as various X terms. These simpler models become poor predictors in regions where colinear relations change, were important variables have been ignored, or where the database does not include a sufficient range or weight distribution for the critical variables.« less

  18. [Stature estimation for Sichuan Han nationality female based on X-ray technology with measurement of lumbar vertebrae].

    PubMed

    Qing, Si-han; Chang, Yun-feng; Dong, Xiao-ai; Li, Yuan; Chen, Xiao-gang; Shu, Yong-kang; Deng, Zhen-hua

    2013-10-01

    To establish the mathematical models of stature estimation for Sichuan Han female with measurement of lumbar vertebrae by X-ray to provide essential data for forensic anthropology research. The samples, 206 Sichuan Han females, were divided into three groups including group A, B and C according to the ages. Group A (206 samples) consisted of all ages, group B (116 samples) were 20-45 years old and 90 samples over 45 years old were group C. All the samples were examined lumbar vertebrae through CR technology, including the parameters of five centrums (L1-L5) as anterior border, posterior border and central heights (x1-x15), total central height of lumbar spine (x16), and the real height of every sample. The linear regression analysis was produced using the parameters to establish the mathematical models of stature estimation. Sixty-two trained subjects were tested to verify the accuracy of the mathematical models. The established mathematical models by hypothesis test of linear regression equation model were statistically significant (P<0.05). The standard errors of the equation were 2.982-5.004 cm, while correlation coefficients were 0.370-0.779 and multiple correlation coefficients were 0.533-0.834. The return tests of the highest correlation coefficient and multiple correlation coefficient of each group showed that the highest accuracy of the multiple regression equation, y = 100.33 + 1.489 x3 - 0.548 x6 + 0.772 x9 + 0.058 x12 + 0.645 x15, in group A were 80.6% (+/- lSE) and 100% (+/- 2SE). The established mathematical models in this study could be applied for the stature estimation for Sichuan Han females.

  19. Are Predictive Equations for Estimating Resting Energy Expenditure Accurate in Asian Indian Male Weightlifters?

    PubMed

    Joseph, Mini; Gupta, Riddhi Das; Prema, L; Inbakumari, Mercy; Thomas, Nihal

    2017-01-01

    The accuracy of existing predictive equations to determine the resting energy expenditure (REE) of professional weightlifters remains scarcely studied. Our study aimed at assessing the REE of male Asian Indian weightlifters with indirect calorimetry and to compare the measured REE (mREE) with published equations. A new equation using potential anthropometric variables to predict REE was also evaluated. REE was measured on 30 male professional weightlifters aged between 17 and 28 years using indirect calorimetry and compared with the eight formulas predicted by Harris-Benedicts, Mifflin-St. Jeor, FAO/WHO/UNU, ICMR, Cunninghams, Owen, Katch-McArdle, and Nelson. Pearson correlation coefficient, intraclass correlation coefficient, and multiple linear regression analysis were carried out to study the agreement between the different methods, association with anthropometric variables, and to formulate a new prediction equation for this population. Pearson correlation coefficients between mREE and the anthropometric variables showed positive significance with suprailiac skinfold thickness, lean body mass (LBM), waist circumference, hip circumference, bone mineral mass, and body mass. All eight predictive equations underestimated the REE of the weightlifters when compared with the mREE. The highest mean difference was 636 kcal/day (Owen, 1986) and the lowest difference was 375 kcal/day (Cunninghams, 1980). Multiple linear regression done stepwise showed that LBM was the only significant determinant of REE in this group of sportspersons. A new equation using LBM as the independent variable for calculating REE was computed. REE for weightlifters = -164.065 + 0.039 (LBM) (confidence interval -1122.984, 794.854]. This new equation reduced the mean difference with mREE by 2.36 + 369.15 kcal/day (standard error = 67.40). The significant finding of this study was that all the prediction equations underestimated the REE. The LBM was the sole determinant of REE in this population. In the absence of indirect calorimetry, the REE equation developed by us using LBM is a better predictor for calculating REE of professional male weightlifters of this region.

  20. Preliminary bioelectrical impedance analysis (BIA) equation for body composition assessment in young females from Colombia

    NASA Astrophysics Data System (ADS)

    Caicedo-Eraso, J. C.; González-Correa, C. H.; González-Correa, C. A.

    2013-04-01

    A previous study showed that reported BIA equations for body composition are not suitable for Colombian population. The purpose of this study was to develop and validate a preliminary BIA equation for body composition assessment in young females from Colombia, using hydrodensitometry as reference method. A sample of 30 young females was evaluated. Inclusion and exclusion criteria were defined to minimize the variability of BIA. Height, weight, BIA, residual lung volume (RV) and underwater weight (UWW) were measured. A preliminary BIA equation was developed (r2 = 0.72, SEE = 2.48 kg) by stepwise multiple regression with fat-free mass (FFM) as dependent variable and weight, height and impedance measurements as independent variables. The quality of regression was evaluated and a cross-validation against 50% of sample confirmed that results obtained with the preliminary BIA equation is interchangeable with results obtained with hydrodensitometry (r2 = 0.84, SEE = 2.62 kg). The preliminary BIA equation can be used for body composition assessment in young females from Colombia until a definitive equation is developed. The next step will be increasing the sample, including a second reference method, as deuterium oxide dilution (D2O), and using multi-frequency BIA (MF-BIA). It would also be desirable to develop equations for males and other ethnic groups in Colombia.

  1. Assessing Spurious Interaction Effects in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming

    2015-01-01

    Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…

  2. Simple models for estimating local removals of timber in the northeast

    Treesearch

    David N. Larsen; David A. Gansner

    1975-01-01

    Provides a practical method of estimating subregional removals of timber and demonstrates its application to a typical problem. Stepwise multiple regression analysis is used to develop equations for estimating removals of softwood, hardwood, and all timber from selected characteristics of socioeconomic structure.

  3. Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach.

    PubMed

    Demidenko, Eugene

    2017-09-01

    The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.

  4. Validation of equations and proposed reference values to estimate fat mass in Chilean university students.

    PubMed

    Gómez Campos, Rossana; Pacheco Carrillo, Jaime; Almonacid Fierro, Alejandro; Urra Albornoz, Camilo; Cossío-Bolaños, Marco

    2018-03-01

    (i) To propose regression equations based on anthropometric measures to estimate fat mass (FM) using dual energy X-ray absorptiometry (DXA) as reference method, and (ii)to establish population reference standards for equation-derived FM. A cross-sectional study on 6,713 university students (3,354 males and 3,359 females) from Chile aged 17.0 to 27.0years. Anthropometric measures (weight, height, waist circumference) were taken in all participants. Whole body DXA was performed in 683 subjects. A total of 478 subjects were selected to develop regression equations, and 205 for their cross-validation. Data from 6,030 participants were used to develop reference standards for FM. Equations were generated using stepwise multiple regression analysis. Percentiles were developed using the LMS method. Equations for men were: (i) FM=-35,997.486 +232.285 *Weight +432.216 *CC (R 2 =0.73, SEE=4.1); (ii)FM=-37,671.303 +309.539 *Weight +66,028.109 *ICE (R2=0.76, SEE=3.8), while equations for women were: (iii)FM=-13,216.917 +461,302 *Weight+91.898 *CC (R 2 =0.70, SEE=4.6), and (iv) FM=-14,144.220 +464.061 *Weight +16,189.297 *ICE (R 2 =0.70, SEE=4.6). Percentiles proposed included p10, p50, p85, and p95. The developed equations provide valid and accurate estimation of FM in both sexes. The values obtained using the equations may be analyzed from percentiles that allow for categorizing body fat levels by age and sex. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Estimating the magnitude of annual peak discharges with recurrence intervals between 1.1 and 3.0 years for rural, unregulated streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Atkins, John T.; Newell, Dawn A.

    2002-01-01

    Multiple and simple least-squares regression models for the log10-transformed 1.5- and 2-year recurrence intervals of peak discharges with independent variables describing the basin characteristics (log10-transformed and untransformed) for 236 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions in West Virginia designated as East, North, and South. Regional equations for the 1.1-, 1.2-, 1.3-, 1.4-, 1.5-, 1.6-, 1.7-, 1.8-, 1.9-, 2.0-, 2.5-, and 3-year recurrence intervals of peak discharges were determined by generalized least-squares regression. Log10-transformed drainage area was the most significant independent variable for all regions. Equations developed in this study are applicable only to rural, unregulated streams within the boundaries of West Virginia. The accuracies of estimating equations are quantified by measuring the average prediction error (from 27.4 to 52.4 percent) and equivalent years of record (from 1.1 to 3.4 years).

  6. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    USGS Publications Warehouse

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  7. Validating the absolute reliability of a fat free mass estimate equation in hemodialysis patients using near-infrared spectroscopy.

    PubMed

    Kono, Kenichi; Nishida, Yusuke; Moriyama, Yoshihumi; Taoka, Masahiro; Sato, Takashi

    2015-06-01

    The assessment of nutritional states using fat free mass (FFM) measured with near-infrared spectroscopy (NIRS) is clinically useful. This measurement should incorporate the patient's post-dialysis weight ("dry weight"), in order to exclude the effects of any change in water mass. We therefore used NIRS to investigate the regression, independent variables, and absolute reliability of FFM in dry weight. The study included 47 outpatients from the hemodialysis unit. Body weight was measured before dialysis, and FFM was measured using NIRS before and after dialysis treatment. Multiple regression analysis was used to estimate the FFM in dry weight as the dependent variable. The measured FFM before dialysis treatment (Mw-FFM), and the difference between measured and dry weight (Mw-Dw) were independent variables. We performed Bland-Altman analysis to detect errors between the statistically estimated FFM and the measured FFM after dialysis treatment. The multiple regression equation to estimate the FFM in dry weight was: Dw-FFM = 0.038 + (0.984 × Mw-FFM) + (-0.571 × [Mw-Dw]); R(2)  = 0.99). There was no systematic bias between the estimated and the measured values of FFM in dry weight. Using NIRS, FFM in dry weight can be calculated by an equation including FFM in measured weight and the difference between the measured weight and the dry weight. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  8. Analysis of Binary Adherence Data in the Setting of Polypharmacy: A Comparison of Different Approaches

    PubMed Central

    Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.

    2009-01-01

    Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358

  9. A Solution to Separation and Multicollinearity in Multiple Logistic Regression

    PubMed Central

    Shen, Jianzhao; Gao, Sujuan

    2010-01-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286

  10. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    PubMed

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  11. Commitment Predictors: Long-Distance versus Geographically Close Relationships

    ERIC Educational Resources Information Center

    Pistole, M. Carole; Roberts, Amber; Mosko, Jonathan E.

    2010-01-01

    In this web-based study, the authors examined long-distance relationships (LDRs) and geographically close relationships (GCRs). Two hierarchical multiple regressions (N = 138) indicated that attachment predicted LDR and GCR commitment in Step 1. Final equations indicated that high satisfaction and investments predicted LDR commitment, whereas low…

  12. Assessment of power output in jump tests for applicants to a sports sciences degree.

    PubMed

    Lara, A J; Abián, J; Alegre, L M; Jiménez, L; Aguado, X

    2006-09-01

    Our study aimed: 1) to describe the jump performance in a population of male applicants to a Faculty of Sports Sciences, 2) to apply different power equations from the literature to assess their accuracy, and 3) to develop a new regression equation from this population. The push off phases of the counter-movement jumps (CMJ) on a force platform of 161 applicants (age: 19+/-2.9 years; weight: 70.4+/-8.3 kg) to a Spanish Faculty of Sports Sciences were recorded and subsequently analyzed. Their hands had to be placed on the hips and the knee angle during the counter movement was not controlled. Each subject had 2 trials to reach a minimum of 29 cm of jump height, and when 2 jumps were performed the best trial was analyzed. Multiple regression analysis was performed to develop a new regression equation. Mean jump height was 34.6+/-4.3 cm, peak vertical force 1 663.9+/-291.1 N and peak power 3524.4+/-562 W. All the equations underestimated power, from 74% (Lewis) to 8% (Sayers). However, there were high and significant correlations between peak power measured on the force platform, and those assessed by the equations. The results of the present study support the development of power equations for specific populations, to achieve more accurate assessments. The power equation from this study [Power = (62.5 x jump height (cm)) + (50.3 x body mass (kg)) 2184.7] can be used accurately in populations of male physical education students.

  13. Modeling The Skeleton Weight of an Adult Caucasian Man.

    PubMed

    Avtandilashvili, Maia; Tolmachev, Sergei Y

    2018-05-17

    The reference value for the skeleton weight of an adult male (10.5 kg) recommended by the International Commission on Radiological Protection in Publication 70 is based on weights of dissected skeletons from 44 individuals, including two U.S. Transuranium and Uranium Registries whole-body donors. The International Commission on Radiological Protection analysis of anatomical data from 31 individuals with known values of body height demonstrated significant correlation between skeleton weight and body height. The corresponding regression equation, Wskel (kg) = -10.7 + 0.119 × H (cm), published in International Commission on Radiological Protection Publication 70 is typically used to estimate the skeleton weight from body height. Currently, the U.S. Transuranium and Uranium Registries holds data on individual bone weights from a total of 40 male whole-body donors, which has provided a unique opportunity to update the International Commission on Radiological Protection skeleton weight vs. body height equation. The original International Commission on Radiological Protection Publication 70 and the new U.S. Transuranium and Uranium Registries data were combined in a set of 69 data points representing a group of 33- to 95-y-old individuals with body heights and skeleton weights ranging from 155 to 188 cm and 6.5 to 13.4 kg, respectively. Data were fitted with a linear least-squares regression. A significant correlation between the two parameters was observed (r = 0.28), and an updated skeleton weight vs. body height equation was derived: Wskel (kg) = -6.5 + 0.093 × H (cm). In addition, a correlation of skeleton weight with multiple variables including body height, body weight, and age was evaluated using multiple regression analysis, and a corresponding fit equation was derived: Wskel (kg) = -0.25 + 0.046 × H (cm) + 0.036 × Wbody (kg) - 0.012 × A (y). These equations will be used to estimate skeleton weights and, ultimately, total skeletal actinide activities for biokinetic modeling of U.S. Transuranium and Uranium Registries partial-body donation cases.

  14. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory variable in estimating these bankfull characteristics. The use of drainage area as an explanatory variable is also the most commonly published method for estimating these bankfull characteristics. Regional curves (graphic plots) of bankfull channel geometry and discharge by drainage area are presented. The regional curves are based on the simple regression equations and can be used to estimate bankfull characteristics from drainage area. Multiple regression analysis, which includes basin characteristics in addition to drainage area, also was used to develop equations. Variability in bankfull width, mean depth, cross-sectional area, and discharge was more fully explained by the multiple regression equations that include mean-basin slope and drainage area than was explained by equations based on drainage area alone. The Massachusetts regional curves and equations developed in this study are similar, in terms of values of slopes and intercepts, to those developed for other parts of the northeastern United States. Limitations associated with site selection and development of the equations resulted in some constraints for the application of equations and regional curves presented in this report. The curves and equations are applicable to stream sites that have (1) less than about 25 percent of their drainage basin area occupied by urban land use (commercial, industrial, transportation, and high-density residential), (2) little to no streamflow regulation, especially from flood-control structures, (3) drainage basin areas greater than 0.60 mi2 and less than 329 mi2, and (4) a mean basin slope greater than 2.2 percent and less than 23.9 percent. The equations may not be applicable where streams flow through extensive wetlands. The equations also may not apply in areas of Cape Cod and the Islands and the area of southeastern Massachusetts close to Cape Cod with extensive areas of coarse-grained glacial deposits where none of the study sites are located. Regardless of the setting, the regression equations are not intended for use as the sole method of estimating bankfull characteristics; however, they may supplement field identification of the bankfull channel when used in conjunction with field verified bankfull indicators, flood-frequency analysis, or other supporting evidence.

  15. Estimating basin lagtime and hydrograph-timing indexes used to characterize stormflows for runoff-quality analysis

    USGS Publications Warehouse

    Granato, Gregory E.

    2012-01-01

    A nationwide study to better define triangular-hydrograph statistics for use with runoff-quality and flood-flow studies was done by the U.S. Geological Survey (USGS) in cooperation with the Federal Highway Administration. Although the triangular hydrograph is a simple linear approximation, the cumulative distribution of stormflow with a triangular hydrograph is a curvilinear S-curve that closely approximates the cumulative distribution of stormflows from measured data. The temporal distribution of flow within a runoff event can be estimated using the basin lagtime, (which is the time from the centroid of rainfall excess to the centroid of the corresponding runoff hydrograph) and the hydrograph recession ratio (which is the ratio of the duration of the falling limb to the rising limb of the hydrograph). This report documents results of the study, methods used to estimate the variables, and electronic files that facilitate calculation of variables. Ten viable multiple-linear regression equations were developed to estimate basin lagtimes from readily determined drainage basin properties using data published in 37 stormflow studies. Regression equations using the basin lag factor (BLF, which is a variable calculated as the main-channel length, in miles, divided by the square root of the main-channel slope in feet per mile) and two variables describing development in the drainage basin were selected as the best candidates, because each equation explains about 70 percent of the variability in the data. The variables describing development are the USGS basin development factor (BDF, which is a function of the amount of channel modifications, storm sewers, and curb-and-gutter streets in a basin) and the total impervious area variable (IMPERV) in the basin. Two datasets were used to develop regression equations. The primary dataset included data from 493 sites that have values for the BLF, BDF, and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and BDF variables. The secondary dataset included data from 896 sites that have values for the BLF and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and IMPERV variables. Analysis of hydrograph recession ratios and basin characteristics for 41 sites indicated that recession ratios are random variables. Thus, recession ratios cannot be estimated quantitatively using multiple linear regression equations developed using the data available for these sites. The minimums of recession ratios for different streamgages are well characterized by a value of one. The most probable values and maximum values of recession ratios for different streamgages are, however, more variable than the minimums. The most probable values of recession ratios for the 41 streamgages analyzed ranged from 1.0 to 3.52 and had a median of 1.85. The maximum values ranged from 2.66 to 11.3 and had a median of 4.36.

  16. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.

  17. A Comparison of Various MRA Methods Applied to Longitudinal Evaluation Studies in Vocational Education.

    ERIC Educational Resources Information Center

    Kapes, Jerome T.; And Others

    Three models of multiple regression analysis (MRA): single equation, commonality analysis, and path analysis, were applied to longitudinal data from the Pennsylvania Vocational Development Study. Variables influencing weekly income of vocational education students one year after high school graduation were examined: grade point averages (grades…

  18. A Computer Program for Preliminary Data Analysis

    Treesearch

    Dennis L. Schweitzer

    1967-01-01

    ABSTRACT. -- A computer program written in FORTRAN has been designed to summarize data. Class frequencies, means, and standard deviations are printed for as many as 100 independent variables. Cross-classifications of an observed dependent variable and of a dependent variable predicted by a multiple regression equation can also be generated.

  19. Biomass estimates of eastern red cedar tree components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnell, R.L.

    1976-02-01

    Fresh and dry-weight relationships of species of the eastern red cedar (Juniperus virginiana L.) found in the Tennessee Valley are presented. Both wood and bark were analyzed. All fresh and dry weights tabulated were computed from predicting equations developed by multiple regression analysis of field data. (JGB)

  20. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    NASA Astrophysics Data System (ADS)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  1. Prediction of Maximal Aerobic Capacity in Severely Burned Children

    PubMed Central

    Porro, Laura; Rivero, Haidy G.; Gonzalez, Dante; Tan, Alai; Herndon, David N.; Suman, Oscar E.

    2011-01-01

    Introduction Maximal oxygen uptake (VO2 peak) is an indicator of cardiorespiratory fitness, but requires expensive equipment and a relatively high technical skill level. Purpose The aim of this study is to provide a formula for estimating VO2 peak in burned children, using information obtained without expensive equipment. Methods Children, with ≥40% total surface area burned (TBSA), underwent a modified Bruce treadmill test to asses VO2 peak at 6 months after injury. We recorded gender, age, %TBSA, %3rd degree burn, height, weight, treadmill time, maximal speed, maximal grade, and peak heart rate, and applied McHenry’s select algorithm to extract important independent variables and Robust multiple regression to establish prediction equations. Results 42 children; 7 to 17 years old were tested. Robust multiple regression model provided the equation: VO2=10.33 – 0.62 *Age (years) + 1.88 * Treadmill Time (min) + 2.3 (gender; Females = 0, Males = 1). The correlation between measured and estimated VO2 peak was R=0.80. We then validated the equation with a group of 33 burned children, which yielded a correlation between measured and estimated VO2 peak of R=0.79. Conclusions Using only a treadmill and easily gathered information, VO2 peak can be estimated in children with burns. PMID:21316155

  2. Skinfold Prediction Equations Fail to Provide an Accurate Estimate of Body Composition in Elite Rugby Union Athletes of Caucasian and Polynesian Ethnicity.

    PubMed

    Zemski, Adam J; Broad, Elizabeth M; Slater, Gary J

    2018-01-01

    Body composition in elite rugby union athletes is routinely assessed using surface anthropometry, which can be utilized to provide estimates of absolute body composition using regression equations. This study aims to assess the ability of available skinfold equations to estimate body composition in elite rugby union athletes who have unique physique traits and divergent ethnicity. The development of sport-specific and ethnicity-sensitive equations was also pursued. Forty-three male international Australian rugby union athletes of Caucasian and Polynesian descent underwent surface anthropometry and dual-energy X-ray absorptiometry (DXA) assessment. Body fat percent (BF%) was estimated using five previously developed equations and compared to DXA measures. Novel sport and ethnicity-sensitive prediction equations were developed using forward selection multiple regression analysis. Existing skinfold equations provided unsatisfactory estimates of BF% in elite rugby union athletes, with all equations demonstrating a 95% prediction interval in excess of 5%. The equations tended to underestimate BF% at low levels of adiposity, whilst overestimating BF% at higher levels of adiposity, regardless of ethnicity. The novel equations created explained a similar amount of variance to those previously developed (Caucasians 75%, Polynesians 90%). The use of skinfold equations, including the created equations, cannot be supported to estimate absolute body composition. Until a population-specific equation is established that can be validated to precisely estimate body composition, it is advocated to use a proven method, such as DXA, when absolute measures of lean and fat mass are desired, and raw anthropometry data routinely to derive an estimate of body composition change.

  3. Estimation of Flood-Frequency Discharges for Rural, Unregulated Streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Atkins, John T.

    2010-01-01

    Flood-frequency discharges were determined for 290 streamgage stations having a minimum of 9 years of record in West Virginia and surrounding states through the 2006 or 2007 water year. No trend was determined in the annual peaks used to calculate the flood-frequency discharges. Multiple and simple least-squares regression equations for the 100-year (1-percent annual-occurrence probability) flood discharge with independent variables that describe the basin characteristics were developed for 290 streamgage stations in West Virginia and adjacent states. The regression residuals for the models were evaluated and used to define three regions of the State, designated as Eastern Panhandle, Central Mountains, and Western Plateaus. Exploratory data analysis procedures identified 44 streamgage stations that were excluded from the development of regression equations representative of rural, unregulated streams in West Virginia. Regional equations for the 1.1-, 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flood discharges were determined by generalized least-squares regression using data from the remaining 246 streamgage stations. Drainage area was the only significant independent variable determined for all equations in all regions. Procedures developed to estimate flood-frequency discharges on ungaged streams were based on (1) regional equations and (2) drainage-area ratios between gaged and ungaged locations on the same stream. The procedures are applicable only to rural, unregulated streams within the boundaries of West Virginia that have drainage areas within the limits of the stations used to develop the regional equations (from 0.21 to 1,461 square miles in the Eastern Panhandle, from 0.10 to 1,619 square miles in the Central Mountains, and from 0.13 to 1,516 square miles in the Western Plateaus). The accuracy of the equations is quantified by measuring the average prediction error (from 21.7 to 56.3 percent) and equivalent years of record (from 2.0 to 70.9 years).

  4. Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015

    USGS Publications Warehouse

    Kohn, Michael S.; Stevens, Michael R.; Harden, Tessa M.; Godaire, Jeanne E.; Klinger, Ralph E.; Mommandi, Amanullah

    2016-09-09

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, developed regional-regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, 0.2-percent annual exceedance-probability discharge (AEPD) for natural streamflow in eastern Colorado. A total of 188 streamgages, consisting of 6,536 years of record and a mean of approximately 35 years of record per streamgage, were used to develop the peak-streamflow regional-regression equations. The estimated AEPDs for each streamgage were computed using the USGS software program PeakFQ. The AEPDs were determined using systematic data through water year 2013. Based on previous studies conducted in Colorado and neighboring States and on the availability of data, 72 characteristics (57 basin and 15 climatic characteristics) were evaluated as candidate explanatory variables in the regression analysis. Paleoflood and non-exceedance bound ages were established based on reconnaissance-level methods. Multiple lines of evidence were used at each streamgage to arrive at a conclusion (age estimate) to add a higher degree of certainty to reconnaissance-level estimates. Paleoflood or nonexceedance bound evidence was documented at 41 streamgages, and 3 streamgages had previously collected paleoflood data.To determine the peak discharge of a paleoflood or non-exceedanc bound, two different hydraulic models were used.The mean standard error of prediction (SEP) for all 8 AEPDs was reduced approximately 25 percent compared to the previous flood-frequency study. For paleoflood data to be effective in reducing the SEP in eastern Colorado, a larger ratio than 44 of 188 (23 percent) streamgages would need paleoflood data and that paleoflood data would need to increase the record length by more than 25 years for the 1-percent AEPD. The greatest reduction in SEP for the peak-streamflow regional-regression equations was observed when additional new basin characteristics were included in the peak-streamflow regional-regression equations and when eastern Colorado was divided into two separate hydrologic regions. To make further reductions in the uncertainties of the peak-streamflow regional-regression equations in the Foothills and Plains hydrologic regions, additional streamgages or crest-stage gages are needed to collect peak-streamflow data on natural streams in eastern Colorado.Generalized-Least Squares regression was used to compute the final peak-streamflow regional-regression equations for peak-streamflow. Dividing eastern Colorado into two new individual regions at –104° longitude resulted in peak-streamflow regional-regression equations with the smallest SEP. The new hydrologic region located between –104° longitude and the Kansas-Nebraska State line will be designated the Plains hydrologic region and the hydrologic region comprising the rest of eastern Colorado located west of the –104° longitude and east of the Rocky Mountains and below 7,500 feet in the South Platte River Basin and below 9,000 feet in the Arkansas River Basin will be designated the Foothills hydrologic region.

  5. Regional equations for estimation of peak-streamflow frequency for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, Raymond M.

    1997-01-01

    Peak-streamflow frequency for 559 Texas stations with natural (unregulated and rural or nonurbanized) basins was estimated with annual peak-streamflow data through 1993. The peak-streamflow frequency and drainage-basin characteristics for the Texas stations were used to develop 16 sets of equations to estimate peak-streamflow frequency for ungaged natural stream sites in each of 11 regions in Texas. The relation between peak-streamflow frequency and contributing drainage area for 5 of the 11 regions is curvilinear, requiring that one set of equations be developed for drainage areas less than 32 square miles and another set be developed for drainage areas greater than 32 square miles. These equations, developed through multiple-regression analysis using weighted least squares, are based on the relation between peak-streamflow frequency and basin characteristics for streamflow-gaging stations. The regions represent areas with similar flood characteristics. The use and limitations of the regression equations also are discussed. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent confidence limits for any estimation from the equations. Also, supplemental peak-streamflow frequency and basin characteristics for 105 selected stations bordering Texas are included in the report. This supplemental information will aid in interpretation of flood characteristics for sites near the state borders of Texas.

  6. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  7. A mass transfer model of ethanol emission from thin layers of corn silage

    USDA-ARS?s Scientific Manuscript database

    A mass transfer model of ethanol emission from thin layers of corn silage was developed and validated. The model was developed based on data from wind tunnel experiments conducted at different temperatures and air velocities. Multiple regression analysis was used to derive an equation that related t...

  8. Modeling critical habitat for Flammulated Owls (Otus flammeolus)

    Treesearch

    David A. Christie; Astrid M. van Woudenberg

    1997-01-01

    Multiple logistic regression analysis was used to produce a prediction model for Flammulated Owl (Otus flammeolus) breeding habitat within the Kamloops Forest Region in south-central British Columbia. Using the model equation, a pilot habitat prediction map was created within a Geographic Information System (GIS) environment that had a 75.7 percent...

  9. Family Income and Parenting: The Role of Parental Depression and Social Support

    ERIC Educational Resources Information Center

    Lee, Chih-Yuan S.; Anderson, Jared R.; Horowitz, Jason L.; August, Gerald J.

    2009-01-01

    This study examined the relations among family income, social support, parental depression, and parenting among 290 predominantly rural families with children at risk for disruptive or socially withdrawn behaviors. Structural equation modeling and multiple regression were used, and the results showed that low family income was related to high…

  10. A Course Specific Perspective in the Prediction of Academic Success.

    ERIC Educational Resources Information Center

    Beaulieu, R. P.

    1990-01-01

    Students (N=94) enrolled in a senior-level management course over six semesters were used to investigate the ability of four measures from two industrial tests to predict course performance. The resulting multiple regression equation with four predictors could accurately predict achievement of males, but not of females. (Author/TE)

  11. Pre-Service Teacher Self-Efficacy for Teaching Students with Disabilities: What Knowledge Matters?

    ERIC Educational Resources Information Center

    Browarnik, Brooke; Bell, Sherry Mee; McCallum, R. Steve; Smyth, Kelly; Martin, Melissa

    2017-01-01

    The relation between items assessing knowledge about educating students with disabilities and the Tschannen-Moran and Hoy's Teachers' Sense of Efficacy Scale (TSES; 2001) was explored for 140 preservice, general education teachers using biserial correlation coefficients and a multiple regression equation. From the data collected, 8 correlations…

  12. Identifying Pedophiles "Eligible" for Community Notification under Megan's Law: A Multivariate Model for Actuarially Anchored Decisions.

    ERIC Educational Resources Information Center

    Pallone, Nathaniel J.; Hennessy, James J.; Voelbel, Gerald T.

    1998-01-01

    A scientifically sound methodology for identifying offenders about whose presence the community should be notified is demonstrated. A stepwise multiple regression was calculated among incarcerated pedophiles (N=52) including both psychological and legal data; a precision-weighted equation produced 90.4% "true positives." This methodology can be…

  13. The ties that bind what is known to the recall of what is new.

    PubMed

    Nelson, D L; Zhang, N

    2000-12-01

    Cued recall success varies with what people know and with what they do during an episode. This paper focuses on prior knowledge and disentangles the relative effects of 10 features of words and their relationships on cued recall. Results are reported for correlational and multiple regression analyses of data obtained from free association norms and from 29 experiments. The 10 features were only weakly correlated with each other in the norms and, with notable exceptions, in the experiments. The regression analysis indicated that forward cue-to-target strength explained the most variance, followed by backward target-to-cue strength. Target connectivity and set size explained the next most variance, along with mediated cue-to-target strength. Finally, frequency, concreteness, shared associate strength, and cue set size also contributed significantly to recall. Taken together, indices of prior word knowledge explain 49% of the recall variance. Theoretically driven equations that use free association to predict cued recall were also evaluated. Each equation was designed to condense multiple indices of word interconnectivity into a single predictor.

  14. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  15. Spectral regression and correlation coefficients of some benzaldimines and salicylaldimines in different solvents

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; Ghannoum, Amer; Masoud, Mamdouh S.

    2006-02-01

    Sixteen Schiff bases obtained from the condensation of benzaldehyde or salicylaldehyde with various amines (aniline, 4-carboxyaniline, phenylhydrazine, 2,4-dinitrophenylhydrazine, ethylenediamine, hydrazine, o-phenylenediamine and 2,6-pyridinediamine) are studied with UV-vis spectroscopy to observe the effect of solvents, substituents and other structural factors on the spectra. The bands involving different electronic transitions are interpreted. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index and dielectric constant of solvents.

  16. Prediction of Maximal Oxygen Uptake by Six-Minute Walk Test and Body Mass Index in Healthy Boys.

    PubMed

    Jalili, Majid; Nazem, Farzad; Sazvar, Akbar; Ranjbar, Kamal

    2018-05-14

    To develop an equation to predict maximal oxygen uptake (VO2max) based on the 6-minute walk test (6MWT) and body composition in healthy boys. Direct VO2max, 6-minute walk distance, and anthropometric characteristics were measured in 349 healthy boys (12.49 ± 2.72 years). Multiple regression analysis was used to generate VO2max prediction equations. Cross-validation of the VO2max prediction equations was assessed with predicted residual sum of squares statistics. Pearson correlation was used to assess the correlation between measured and predicted VO2max. Objectively measured VO2max had a significant correlation with demographic and 6MWT characteristics (R = 0.11-0.723, P < .01). Multiple regression analysis revealed the following VO2max prediction equation: VO2max (mL/kg/min) = 12.701 + (0.06 × 6-minute walk distance m ) - (0.732 × body mass index kg/m2 ) (R 2 = 0.79, standard error of the estimate [SEE] = 2.91 mL/kg/min, %SEE = 6.9%). There was strong correlation between measured and predicted VO2max (r = 0.875, P < .001). Cross-validation revealed minimal shrinkage (R 2 p = 0.78 and predicted residual sum of squares SEE = 2.99 mL/kg/min). This study provides a relatively accurate and convenient VO2max prediction equation based on the 6MWT and body mass index in healthy boys. This model can be used for evaluation of cardiorespiratory fitness of boys in different settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. New equations improve NIR prediction of body fat among high school wrestlers.

    PubMed

    Oppliger, R A; Clark, R R; Nielsen, D H

    2000-09-01

    Methodologic study to derive prediction equations for percent body fat (%BF). To develop valid regression equations using NIR to assess body composition among high school wrestlers. Clinicians need a portable, fast, and simple field method for assessing body composition among wrestlers. Near-infrared photospectrometry (NIR) meets these criteria, but its efficacy has been challenged. Subjects were 150 high school wrestlers from 2 Midwestern states with mean +/- SD age of 16.3 +/- 1.1 yrs, weight of 69.5 +/- 11.7 kg, and height of 174.4 +/- 7.0 cm. Relative body fatness (%BF) determined from hydrostatic weighing was the criterion measure, and NIR optical density (OD) measurements at multiple sites, plus height, weight, and body mass index (BMI) were the predictor variables. Four equations were developed with multiple R2s that varied from .530 to .693, root mean squared errors varied from 2.8% BF to 3.4% BF, and prediction errors varied from 2.9% BF to 3.1% BF. The best equation used OD measurements at the biceps, triceps, and thigh sites, BMI, and age. The root mean squared error and prediction error for all 4 equations were equal to or smaller than for a skinfold equation commonly used with wrestlers. The results substantiate the validity of NIR for predicting % BF among high school wrestlers. Cross-validation of these equations is warranted.

  18. Magnitude and frequency of floods in small drainage basins in Idaho

    USGS Publications Warehouse

    Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.

    1973-01-01

    A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.

  19. Diameter and height growth of suppressed grand fir saplings after overstory removal.

    Treesearch

    K.W. Seidel

    1980-01-01

    The 2- and 5-year diameter and height growth of suppressed grand fir (Abies grandis (Dougl. ex D. Don) Lindl.) advance reproduction was measured in central Oregon after the overstory was removed. Multiple regression analyses were used to predict growth response as a function of individual tree variables. The resulting equations, although highly...

  20. Effects of Model Choice and Forest Structure on Inventory-Based Estimations of Puerto Rican Forest Biomass.

    Treesearch

    THOMAS J. BRANDEIS; MARIA DEL ROCIO SUAREZ ROZO

    2005-01-01

    Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...

  1. Effects of model choice and forest structure on inventory-based estimations of Puerto Rican forest biomass

    Treesearch

    Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo

    2005-01-01

    Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...

  2. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    USGS Publications Warehouse

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari

  3. Peak oxygen consumption measured during the stair-climbing test in lung resection candidates.

    PubMed

    Brunelli, Alessandro; Xiumé, Francesco; Refai, Majed; Salati, Michele; Di Nunzio, Luca; Pompili, Cecilia; Sabbatini, Armando

    2010-01-01

    The stair-climbing test is commonly used in the preoperative evaluation of lung resection candidates, but it is difficult to standardize and provides little physiologic information on the performance. To verify the association between the altitude and the V(O2peak) measured during the stair-climbing test. 109 consecutive candidates for lung resection performed a symptom-limited stair-climbing test with direct breath-by-breath measurement of V(O2peak) by a portable gas analyzer. Stepwise logistic regression and bootstrap analyses were used to verify the association of several perioperative variables with a V(O2peak) <15 ml/kg/min. Subsequently, multiple regression analysis was also performed to develop an equation to estimate V(O2peak) from stair-climbing parameters and other patient-related variables. 56% of patients climbing <14 m had a V(O2peak) <15 ml/kg/min, whereas 98% of those climbing >22 m had a V(O2peak) >15 ml/kg/min. The altitude reached at stair-climbing test resulted in the only significant predictor of a V(O2peak) <15 ml/kg/min after logistic regression analysis. Multiple regression analysis yielded an equation to estimate V(O2peak) factoring altitude (p < 0.0001), speed of ascent (p = 0.005) and body mass index (p = 0.0008). There was an association between altitude and V(O2peak) measured during the stair-climbing test. Most of the patients climbing more than 22 m are able to generate high values of V(O2peak) and can proceed to surgery without any additional tests. All others need to be referred for a formal cardiopulmonary exercise test. In addition, we were able to generate an equation to estimate V(O2peak), which could assist in streamlining the preoperative workup and could be used across different settings to standardize this test. Copyright (c) 2010 S. Karger AG, Basel.

  4. Estimating Dbh of Trees Employing Multiple Linear Regression of the best Lidar-Derived Parameter Combination Automated in Python in a Natural Broadleaf Forest in the Philippines

    NASA Astrophysics Data System (ADS)

    Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.

    2016-06-01

    Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).

  5. Multiple regression based imputation for individualizing template human model from a small number of measured dimensions.

    PubMed

    Nohara, Ryuki; Endo, Yui; Murai, Akihiko; Takemura, Hiroshi; Kouchi, Makiko; Tada, Mitsunori

    2016-08-01

    Individual human models are usually created by direct 3D scanning or deforming a template model according to the measured dimensions. In this paper, we propose a method to estimate all the necessary dimensions (full set) for the human model individualization from a small number of measured dimensions (subset) and human dimension database. For this purpose, we solved multiple regression equation from the dimension database given full set dimensions as the objective variable and subset dimensions as the explanatory variables. Thus, the full set dimensions are obtained by simply multiplying the subset dimensions to the coefficient matrix of the regression equation. We verified the accuracy of our method by imputing hand, foot, and whole body dimensions from their dimension database. The leave-one-out cross validation is employed in this evaluation. The mean absolute errors (MAE) between the measured and the estimated dimensions computed from 4 dimensions (hand length, breadth, middle finger breadth at proximal, and middle finger depth at proximal) in the hand, 2 dimensions (foot length, breadth, and lateral malleolus height) in the foot, and 1 dimension (height) and weight in the whole body are computed. The average MAE of non-measured dimensions were 4.58% in the hand, 4.42% in the foot, and 3.54% in the whole body, while that of measured dimensions were 0.00%.

  6. Prediction of rectal temperature using non-invasive physiologic variable measurements in hair pregnant ewes subjected to natural conditions of heat stress.

    PubMed

    Vicente-Pérez, Ricardo; Avendaño-Reyes, Leonel; Mejía-Vázquez, Ángel; Álvarez-Valenzuela, F Daniel; Correa-Calderón, Abelardo; Mellado, Miguel; Meza-Herrera, Cesar A; Guerra-Liera, Juan E; Robinson, P H; Macías-Cruz, Ulises

    2016-01-01

    Rectal temperature (RT) is the foremost physiological variable indicating if an animal is suffering hyperthermia. However, this variable is traditionally measured by invasive methods, which may compromise animal welfare. Models to predict RT have been developed for growing pigs and lactating dairy cows, but not for pregnant heat-stressed ewes. Our aim was to develop a prediction equation for RT using non-invasive physiological variables in pregnant ewes under heat stress. A total of 192 records of respiratory frequency (RF) and hair coat temperature in various body regions (i.e., head, rump, flank, shoulder, and belly) obtained from 24 Katahdin × Pelibuey pregnant multiparous ewes were collected during the last third of gestation (i.e., d 100 to lambing) with a 15 d sampling interval. Hair coat temperatures were taken using infrared thermal imaging technology. Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equations. All predictor variables were positively correlated (P<0.01; r=0.59-0.67) with RT. The adjusted equation which best predicted RT (P<0.01; Radj(2)=56.15%; CV=0.65%) included as predictors RF and head and belly temperatures. Comparison of predicted and observed values for RT indicates a suitable agreement (P<0.01) between them with moderate accuracy (Radj(2)=56.15%) when RT was calculated with the adjusted equation. In general, the final equation does not violate any assumption of multiple regression analysis. The RT in heat-stressed pregnant ewes can be predicted with an adequate accuracy using non-invasive physiologic variables, and the final equation was: RT=35.57+0.004 (RF)+0.067 (heat temperature)+0.028 (belly temperature). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Factors of psychiatric treatment satisfaction in inpatients with neurotic and depressive disorders].

    PubMed

    Tsygankov, B D; Malygin, Ya V; Gatin, F F

    2015-01-01

    Factors of patients' satisfaction with medical care vary depending on the level of care and medical specialty. Patient's satisfaction with psychiatric care is understudied. An aim of the present study is to find out the factors of satisfaction with psychiatric care in inpatients with neurotic and depressive disorders. The sample included 356 inpatients suffering from neurotic or depressive disorders. The patients were questioned using PAPI questionnaire designed for this study. Statistical analysis was performed using multiple regression. Key factors of satisfaction with medical care included quality of work of nurses and psychiatrists, hospital ward comfort, the number and quality of psychotherapeutic sessions, psychiatrists' empathy and aptitude to provide the patient with information about the disease and treatment. Multiple regression equation explained 81% of the variance of patients' satisfaction.

  8. Quantifying components of the hydrologic cycle in Virginia using chemical hydrograph separation and multiple regression analysis

    USGS Publications Warehouse

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2012-01-01

    This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.

  9. Modelling of capital asset pricing by considering the lagged effects

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Bon, A. Talib bin; Supian, S.

    2017-01-01

    In this paper the problem of modelling the Capital Asset Pricing Model (CAPM) with the effect of the lagged is discussed. It is assumed that asset returns are analysed influenced by the market return and the return of risk-free assets. To analyse the relationship between asset returns, the market return, and the return of risk-free assets, it is conducted by using a regression equation of CAPM, and regression equation of lagged distributed CAPM. Associated with the regression equation lagged CAPM distributed, this paper also developed a regression equation of Koyck transformation CAPM. Results of development show that the regression equation of Koyck transformation CAPM has advantages, namely simple as it only requires three parameters, compared with regression equation of lagged distributed CAPM.

  10. Forecasting models for sugi (Cryptomeria japonica D. Don) pollen count showing an alternate dispersal rhythm.

    PubMed

    Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru

    2008-12-01

    Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.

  11. Evaluation of drainage-area ratio method used to estimate streamflow for the Red River of the North Basin, North Dakota and Minnesota

    USGS Publications Warehouse

    Emerson, Douglas G.; Vecchia, Aldo V.; Dahl, Ann L.

    2005-01-01

    The drainage-area ratio method commonly is used to estimate streamflow for sites where no streamflow data were collected. To evaluate the validity of the drainage-area ratio method and to determine if an improved method could be developed to estimate streamflow, a multiple-regression technique was used to determine if drainage area, main channel slope, and precipitation were significant variables for estimating streamflow in the Red River of the North Basin. A separate regression analysis was performed for streamflow for each of three seasons-- winter, spring, and summer. Drainage area and summer precipitation were the most significant variables. However, the regression equations generally overestimated streamflows for North Dakota stations and underestimated streamflows for Minnesota stations. To correct the bias in the residuals for the two groups of stations, indicator variables were included to allow both the intercept and the coefficient for the logarithm of drainage area to depend on the group. Drainage area was the only significant variable in the revised regression equations. The exponents for the drainage-area ratio were 0.85 for the winter season, 0.91 for the spring season, and 1.02 for the summer season.

  12. Evaluation and application of regional turbidity-sediment regression models in Virginia

    USGS Publications Warehouse

    Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James S.; Chanat, Jeffrey G.

    2015-01-01

    Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.

  13. Accounting for Multiple Births in Neonatal and Perinatal Trials: Systematic Review and Case Study

    PubMed Central

    Hibbs, Anna Maria; Black, Dennis; Palermo, Lisa; Cnaan, Avital; Luan, Xianqun; Truog, William E; Walsh, Michele C; Ballard, Roberta A

    2010-01-01

    Objectives To determine the prevalence in the neonatal literature of statistical approaches accounting for the unique clustering patterns of multiple births. To explore the sensitivity of an actual trial to several analytic approaches to multiples. Methods A systematic review of recent perinatal trials assessed the prevalence of studies accounting for clustering of multiples. The NO CLD trial served as a case study of the sensitivity of the outcome to several statistical strategies. We calculated odds ratios using non-clustered (logistic regression) and clustered (generalized estimating equations, multiple outputation) analyses. Results In the systematic review, most studies did not describe the randomization of twins and did not account for clustering. Of those studies that did, exclusion of multiples and generalized estimating equations were the most common strategies. The NO CLD study included 84 infants with a sibling enrolled in the study. Multiples were more likely than singletons to be white and were born to older mothers (p<0.01). Analyses that accounted for clustering were statistically significant; analyses assuming independence were not. Conclusions The statistical approach to multiples can influence the odds ratio and width of confidence intervals, thereby affecting the interpretation of a study outcome. A minority of perinatal studies address this issue. PMID:19969305

  14. Accounting for multiple births in neonatal and perinatal trials: systematic review and case study.

    PubMed

    Hibbs, Anna Maria; Black, Dennis; Palermo, Lisa; Cnaan, Avital; Luan, Xianqun; Truog, William E; Walsh, Michele C; Ballard, Roberta A

    2010-02-01

    To determine the prevalence in the neonatal literature of statistical approaches accounting for the unique clustering patterns of multiple births and to explore the sensitivity of an actual trial to several analytic approaches to multiples. A systematic review of recent perinatal trials assessed the prevalence of studies accounting for clustering of multiples. The Nitric Oxide to Prevent Chronic Lung Disease (NO CLD) trial served as a case study of the sensitivity of the outcome to several statistical strategies. We calculated odds ratios using nonclustered (logistic regression) and clustered (generalized estimating equations, multiple outputation) analyses. In the systematic review, most studies did not describe the random assignment of twins and did not account for clustering. Of those studies that did, exclusion of multiples and generalized estimating equations were the most common strategies. The NO CLD study included 84 infants with a sibling enrolled in the study. Multiples were more likely than singletons to be white and were born to older mothers (P < .01). Analyses that accounted for clustering were statistically significant; analyses assuming independence were not. The statistical approach to multiples can influence the odds ratio and width of confidence intervals, thereby affecting the interpretation of a study outcome. A minority of perinatal studies address this issue. Copyright 2010 Mosby, Inc. All rights reserved.

  15. Accounting for estimated IQ in neuropsychological test performance with regression-based techniques.

    PubMed

    Testa, S Marc; Winicki, Jessica M; Pearlson, Godfrey D; Gordon, Barry; Schretlen, David J

    2009-11-01

    Regression-based normative techniques account for variability in test performance associated with multiple predictor variables and generate expected scores based on algebraic equations. Using this approach, we show that estimated IQ, based on oral word reading, accounts for 1-9% of the variability beyond that explained by individual differences in age, sex, race, and years of education for most cognitive measures. These results confirm that adding estimated "premorbid" IQ to demographic predictors in multiple regression models can incrementally improve the accuracy with which regression-based norms (RBNs) benchmark expected neuropsychological test performance in healthy adults. It remains to be seen whether the incremental variance in test performance explained by estimated "premorbid" IQ translates to improved diagnostic accuracy in patient samples. We describe these methods, and illustrate the step-by-step application of RBNs with two cases. We also discuss the rationale, assumptions, and caveats of this approach. More broadly, we note that adjusting test scores for age and other characteristics might actually decrease the accuracy with which test performance predicts absolute criteria, such as the ability to drive or live independently.

  16. Methods for determining magnitude and frequency of floods in California, based on data through water year 2006

    USGS Publications Warehouse

    Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles

    2012-01-01

    Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the log-Pearson Type III distribution. The regional estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final regional regression equations are functions of drainage area. Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent. Annual peak-flow data through water year 2006 were analyzed for eight streamgages in California having 10 or more years of data considered to be affected by urbanization. Flood-frequency estimates were computed for the urban streamgages by fitting a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Regression analysis could not be used to develop flood-frequency estimation equations for urban streams because of the limited number of sites. Flood-frequency estimates for the eight urban sites were graphically compared to flood-frequency estimates for 630 non-urban sites. The regression equations developed from this study will be incorporated into the U.S. Geological Survey (USGS) StreamStats program. The StreamStats program is a Web-based application that provides streamflow statistics and basin characteristics for USGS streamgages and ungaged sites of interest. StreamStats can also compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in California.

  17. Multidimensional Predictors of Fatigue among Octogenarians and Centenarians

    PubMed Central

    Cho, Jinmyoung; Martin, Peter; Margrett, Jennifer; MacDonald, Maurice; Johnson, Mary Ann; Poon, Leonard W.

    2012-01-01

    Background Fatigue is a common and frequently observed complaint among older adults. However, knowledge about the nature and correlates of fatigue in old age is very limited. Objective: This study examined the relationship of functional indicators, psychological and situational factors and fatigue for 210 octogenarians and centenarians from the Georgia Centenarian Study. Methods Three indicators of functional capacity (self-rated health, instrumental activities of daily living, physical activities of daily living), two indicators of psychological well-being (positive and negative affect), two indicators of situational factors (social network and social support), and a multidimensional fatigue scale were used. Blocked multiple regression analyses were computed to examine significant factors related to fatigue. In addition, multi-group analysis in structural equation modeling was used to investigate residential differences (i.e., long-term care facilities vs. private homes) in the relationship between significant factors and fatigue. Results Blocked multiple regression analyses indicated that two indicators of functional capacity, self-rated health and instrumental activities of daily living, both positive and negative affect, and social support were significant predictors of fatigue among oldest-old adults. The multiple group analysis in structural equation modeling revealed a significant difference among oldest-old adults based on residential status. Conclusion The results suggest that we should not consider fatigue as merely an unpleasant physical symptom, but rather adopt a perspective that different factors such as psychosocial aspects can influence fatigue in advanced later life. PMID:22094445

  18. Multidimensional predictors of fatigue among octogenarians and centenarians.

    PubMed

    Cho, Jinmyoung; Martin, Peter; Margrett, Jennifer; MacDonald, Maurice; Johnson, Mary Ann; Poon, Leonard W; Jazwinski, S M; Green, R C; Gearing, M; Woodard, J L; Tenover, J S; Siegler, I C; Rott, C; Rodgers, W L; Hausman, D; Arnold, J; Davey, A

    2012-01-01

    Fatigue is a common and frequently observed complaint among older adults. However, knowledge about the nature and correlates of fatigue in old age is very limited. This study examined the relationship of functional indicators, psychological and situational factors and fatigue for 210 octogenarians and centenarians from the Georgia Centenarian Study. Three indicators of functional capacity (self-rated health, instrumental activities of daily living, physical activities of daily living), two indicators of psychological well-being (positive and negative affect), two indicators of situational factors (social network and social support), and a multidimensional fatigue scale were used. Blocked multiple regression analyses were computed to examine significant factors related to fatigue. In addition, multi-group analysis in structural equation modeling was used to investigate residential differences (i.e., long-term care facilities vs. private homes) in the relationship between significant factors and fatigue. Blocked multiple regression analyses indicated that two indicators of functional capacity, self-rated health and instrumental activities of daily living, both positive and negative affect, and social support were significant predictors of fatigue among oldest-old adults. The multiple group analysis in structural equation modeling revealed a significant difference among oldest-old adults based on residential status. The results suggest that we should not consider fatigue as merely an unpleasant physical symptom, but rather adopt a perspective that different factors such as psychosocial aspects can influence fatigue in advanced later life. Copyright © 2011 S. Karger AG, Basel.

  19. The allometric relationship between resting metabolic rate and body mass in wild waterfowl (Anatidae) and an application to estimation of winter habitat requirements

    USGS Publications Warehouse

    Miller, M.R.; Eadie, J. McA

    2006-01-01

    We examined the allometric relationship between resting metabolic rate (RMR; kJ day-1) and body mass (kg) in wild waterfowl (Anatidae) by regressing RMR on body mass using species means from data obtained from published literature (18 sources, 54 measurements, 24 species; all data from captive birds). There was no significant difference among measurements from the rest (night; n = 37), active (day; n = 14), and unspecified (n = 3) phases of the daily cycle (P > 0.10), and we pooled these measurements for analysis. The resulting power function (aMassb) for all waterfowl (swans, geese, and ducks) had an exponent (b; slope of the regression) of 0.74, indistinguishable from that determined with commonly used general equations for nonpasserine birds (0.72-0.73). In contrast, the mass proportionality coefficient (b; y-intercept at mass = 1 kg) of 422 exceeded that obtained from the nonpasserine equations by 29%-37%. Analyses using independent contrasts correcting for phylogeny did not substantially alter the equation. Our results suggest the waterfowl equation provides a more appropriate estimate of RMR for bioenergetics analyses of waterfowl than do the general nonpasserine equations. When adjusted with a multiple to account for energy costs of free living, the waterfowl equation better estimates daily energy expenditure. Using this equation, we estimated that the extent of wetland habitat required to support wintering waterfowl populations could be 37%-50% higher than previously predicted using general nonpasserine equations. ?? The Cooper Ornithological Society 2006.

  20. Peak-flow characteristics of Wyoming streams

    USGS Publications Warehouse

    Miller, Kirk A.

    2003-01-01

    Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.

  1. Probabilistic lifetime strength of aerospace materials via computational simulation

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.

    1991-01-01

    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.

  2. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA

    PubMed Central

    Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian

    2014-01-01

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487

  3. Prediction of fat-free body mass from bioelectrical impedance and anthropometry among 3-year-old children using DXA.

    PubMed

    Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian

    2014-01-27

    For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.

  4. Anthropometric Survey of US Army Personnel (1988): Correlation Coefficients and Regression Equations. Part 5. Stepwise and Standard Multiple Regression Tables

    DTIC Science & Technology

    1990-05-01

    0.759 0.744 0.768 0.753 106 (THUMBBR) THUMB BREADTH -0.652 -0.673 -0.539 -0.663 217 (LIPLGTHH) LIP LENGTH HEADBOARD 0.017 0.019 0.020 51 (FTBRHOR) FOOT...DEPENDENT VARIABLE: (106) THUMB BREADTH (THUBBR) MODEL INDEPENDENT VARIABLE 1 2 3 4 5 INTERCEPT 6.621 5.016 6.267 5.697 4.528 59 (HANDCIRC) HAND...95 (SLLSPEL) SLEEVE LENGTH: SPINE-ELBOW -0.020 -0.019 -C.018 9 (BLFTCIRC) BALL OF FOOT CIRCUMFERENCE -0.032 -0.039 106 (THUMBBR) THUMB BREADTH 0.228

  5. Adjustment of regional regression equations for urban storm-runoff quality using at-site data

    USGS Publications Warehouse

    Barks, C.S.

    1996-01-01

    Regional regression equations have been developed to estimate urban storm-runoff loads and mean concentrations using a national data base. Four statistical methods using at-site data to adjust the regional equation predictions were developed to provide better local estimates. The four adjustment procedures are a single-factor adjustment, a regression of the observed data against the predicted values, a regression of the observed values against the predicted values and additional local independent variables, and a weighted combination of a local regression with the regional prediction. Data collected at five representative storm-runoff sites during 22 storms in Little Rock, Arkansas, were used to verify, and, when appropriate, adjust the regional regression equation predictions. Comparison of observed values of stormrunoff loads and mean concentrations to the predicted values from the regional regression equations for nine constituents (chemical oxygen demand, suspended solids, total nitrogen as N, total ammonia plus organic nitrogen as N, total phosphorus as P, dissolved phosphorus as P, total recoverable copper, total recoverable lead, and total recoverable zinc) showed large prediction errors ranging from 63 percent to more than several thousand percent. Prediction errors for 6 of the 18 regional regression equations were less than 100 percent and could be considered reasonable for water-quality prediction equations. The regression adjustment procedure was used to adjust five of the regional equation predictions to improve the predictive accuracy. For seven of the regional equations the observed and the predicted values are not significantly correlated. Thus neither the unadjusted regional equations nor any of the adjustments were appropriate. The mean of the observed values was used as a simple estimator when the regional equation predictions and adjusted predictions were not appropriate.

  6. Methods for estimating low-flow statistics for Massachusetts streams

    USGS Publications Warehouse

    Ries, Kernell G.; Friesz, Paul J.

    2000-01-01

    Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The streamgaging stations had from 2 to 81 years of record, with a mean record length of 37 years. The low-flow partial-record stations had from 8 to 36 streamflow measurements, with a median of 14 measurements. All basin characteristics were determined from digital map data. The basin characteristics that were statistically significant in most of the final regression equations were drainage area, the area of stratified-drift deposits per unit of stream length plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the western region of Massachusetts. The equations were developed by use of weighted-least-squares regression analyses, with weights assigned proportional to the years of record and inversely proportional to the variances of the streamflow statistics for the stations. Standard errors of prediction ranged from 70.7 to 17.5 percent for the equations to predict the 7-day, 10-year low flow and 50-percent duration flow, respectively. The equations are not applicable for use in the Southeast Coastal region of the State, or where basin characteristics for the selected ungaged site are outside the ranges of those for the stations used in the regression analyses. A World Wide Web application was developed that provides streamflow statistics for data collection stations from a data base and for ungaged sites by measuring the necessary basin characteristics for the site and solving the regression equations. Output provided by the Web application for ungaged sites includes a map of the drainage-basin boundary determined for the site, the measured basin characteristics, the estimated streamflow statistics, and 90-percent prediction intervals for the estimates. An equation is provided for combining regression and correlation estimates to obtain improved estimates of the streamflow statistics for low-flow partial-record stations. An equation is also provided for combining regression and drainage-area ratio estimates to obtain improved e

  7. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the detection of multiple potentially influential low outliers. Streamgage basin characteristics were determined using geographical information system techniques. Initial ordinary least squares regression simulations reduced the number of basin characteristics on the basis of such factors as statistical significance, coefficient of determination, Mallow’s Cp statistic, and ease of measurement of the explanatory variable. Application of generalized least squares regression techniques produced final predictive (regression) equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions (HR1, Piedmont–Ridge and Valley; HR3, Sand Hills; and HR4, Coastal Plain), which previously had been defined from exploratory regression analysis in the Southeast rural flood-frequency investigation. Because of the limited availability of urban streamgages in the Coastal Plain of Georgia, South Carolina, and North Carolina, additional urban streamgages in Florida and New Jersey were used in the regression analysis for this region. Including the urban streamgages in New Jersey allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 3.5 to 53.5 square miles. Average standard error of prediction for the predictive equations, which is a measure of the average accuracy of the regression equations when predicting flood estimates for ungaged sites, range from 25.0 percent for the 10-percent annual exceedance probability regression equation for the Piedmont–Ridge and Valley region to 73.3 percent for the 0.2-percent annual exceedance probability regression equation for the Sand Hills region.

  8. Accounting for measurement error in log regression models with applications to accelerated testing.

    PubMed

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  9. Family and spacing affect stem profile of loblolly pine at age 19

    Treesearch

    Joshua P. Adams; Samuel B. Land; Thomas G. Matney

    2006-01-01

    Profile measurements were taken on a stratified sample of 19-year-old trees from 8 North Carolina families and a commercial Mississippi-Alabama check established at 3 spacings (5 x 5, 8 x 8, and 10 x 10 feet). Measurements were first fitted on a single profile equation using multiple-regression. Data were also segregated by family, spacing, and family-byspacing and...

  10. Mortality rates in OECD countries converged during the period 1990-2010.

    PubMed

    Bremberg, Sven G

    2017-06-01

    Since the scientific revolution of the 18th century, human health has gradually improved, but there is no unifying theory that explains this improvement in health. Studies of macrodeterminants have produced conflicting results. Most studies have analysed health at a given point in time as the outcome; however, the rate of improvement in health might be a more appropriate outcome. Twenty-eight OECD member countries were selected for analysis in the period 1990-2010. The main outcomes studied, in six age groups, were the national rates of decrease in mortality in the period 1990-2010. The effects of seven potential determinants on the rates of decrease in mortality were analysed in linear multiple regression models using least squares, controlling for country-specific history constants, which represent the mortality rate in 1990. The multiple regression analyses started with models that only included mortality rates in 1990 as determinants. These models explained 87% of the intercountry variation in the children aged 1-4 years and 51% in adults aged 55-74 years. When added to the regression equations, the seven determinants did not seem to significantly increase the explanatory power of the equations. The analyses indicated a decrease in mortality in all nations and in all age groups. The development of mortality rates in the different nations demonstrated significant catch-up effects. Therefore an important objective of the national public health sector seems to be to reduce the delay between international research findings and the universal implementation of relevant innovations.

  11. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    NASA Astrophysics Data System (ADS)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  12. Estimation of basal metabolic rate in Chinese: are the current prediction equations applicable?

    PubMed

    Camps, Stefan G; Wang, Nan Xin; Tan, Wei Shuan Kimberly; Henry, C Jeyakumar

    2016-08-31

    Measurement of basal metabolic rate (BMR) is suggested as a tool to estimate energy requirements. Therefore, BMR prediction equations have been developed in multiple populations because indirect calorimetry is not always feasible. However, there is a paucity of data on BMR measured in overweight and obese adults living in Asia and equations developed for this group of interest. The aim of this study was to develop a new BMR prediction equation for Chinese adults applicable for a large BMI range and compare it with commonly used prediction equations. Subjects were 121 men and 111 women (age: 21-67 years, BMI: 16-41 kg/m(2)). Height, weight, and BMR were measured. Continuous open-circuit indirect calorimetry using a ventilated hood system for 30 min was used to measure BMR. A regression equation was derived using stepwise regression and accuracy was compared to 6 existing equations (Harris-Benedict, Henry, Liu, Yang, Owen and Mifflin). Additionally, the newly derived equation was cross-validated in a separate group of 70 Chinese subjects (26 men and 44 women, age: 21-69 years, BMI: 17-39 kg/m(2)). The equation developed from our data was: BMR (kJ/d) = 52.6 x weight (kg) + 828 x gender + 1960 (women = 0, men = 1; R(2) = 0.81). The accuracy rate (within 10 % accurate) was 78 % which compared well to Owen (70 %), Henry (67 %), Mifflin (67 %), Liu (58 %), Harris-Benedict (45 %) and Yang (37 %) for the whole range of BMI. For a BMI greater than 23, the Singapore equation reached an accuracy rate of 76 %. Cross-validation proved an accuracy rate of 80 %. To date, the newly developed Singapore equation is the most accurate BMR prediction equation in Chinese and is applicable for use in a large BMI range including those overweight and obese.

  13. Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014

    USGS Publications Warehouse

    Mastin, Mark C.; Konrad, Christopher P.; Veilleux, Andrea G.; Tecca, Alison E.

    2016-09-20

    An investigation into the magnitude and frequency of floods in Washington State computed the annual exceedance probability (AEP) statistics for 648 U.S. Geological Survey unregulated streamgages in and near the borders of Washington using the recorded annual peak flows through water year 2014. This is an updated report from a previous report published in 1998 that used annual peak flows through the water year 1996. New in this report, a regional skew coefficient was developed for the Pacific Northwest region that includes areas in Oregon, Washington, Idaho and western Montana within the Columbia River drainage basin south of the United States-Canada border, the coastal areas of Oregon and western Washington, and watersheds draining into Puget Sound, Washington. The skew coefficient is an important term in the Log Pearson Type III equation used to define the distribution of the log-transformed annual peaks. The Expected Moments Algorithm was used to fit historical and censored peak-flow data to the log Pearson Type III distribution. A Multiple Grubb-Beck test was employed to censor low outliers of annual peak flows to improve on the frequency distribution. This investigation also includes a section on observed trends in annual peak flows that showed significant trends (p-value < 0.05) in 21 of 83 long-term sites, but with small magnitude Kendall tau values suggesting a limited monotonic trend in the time series of annual peaks. Most of the sites with a significant trend in western Washington were positive and all the sites with significant trends (three sites) in eastern Washington were negative.Multivariate regression analysis with measured basin characteristics and the AEP statistics at long-term, unregulated, and un-urbanized (defined as drainage basins with less than 5 percent impervious land cover for this investigation) streamgages within Washington and some in Idaho and Oregon that are near the Washington border was used to develop equations to estimate AEP statistics at ungaged basins. Washington was divided into four regions to improve the accuracy of the regression equations; a set of equations for eight selected AEPs and for each region were constructed. Selected AEP statistics included the annual peak flows that equaled or exceeded 50, 20, 10, 4, 2, 1, 0.5 and 0.2 percent of the time equivalent to peak flows for peaks with a 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively. Annual precipitation and drainage area were the significant basin characteristics in the regression equations for all four regression regions in Washington and forest cover was significant for the two regression regions in eastern Washington. Average standard error of prediction for the regional regression equations ranged from 70.19 to 125.72 percent for Regression Regions 1 and 2 on the eastern side of the Cascade Mountains and from 43.22 to 58.04 percent for Regression Regions 3 and 4 on the western side of the Cascade Mountains. The pseudo coefficient of determination (where a value of 100 signifies a perfect regression model) ranged from 68.39 to 90.68 for Regression Regions 1 and 2, and 92.35 to 95.44 for Regions 3 and 4.The calculated AEP statistics for the streamgages and the regional regression equations are expected to be incorporated into StreamStats after the publication of this report. StreamStats is the interactive Web-based map tool created by the U.S. Geological Survey to allow the user to choose a streamgage and obtain published statistics or choose ungaged locations where the program automatically applies the regional regression equations and computes the estimates of the AEP statistics.

  14. Optimum pelvic incidence minus lumbar lordosis value can be determined by individual pelvic incidence.

    PubMed

    Inami, Satoshi; Moridaira, Hiroshi; Takeuchi, Daisaku; Shiba, Yo; Nohara, Yutaka; Taneichi, Hiroshi

    2016-11-01

    Adult spinal deformity (ASD) classification showing that ideal pelvic incidence minus lumbar lordosis (PI-LL) value is within 10° has been received widely. But no study has focused on the optimum level of PI-LL value that reflects wide variety in PI among patients. This study was conducted to determine the optimum PI-LL value specific to an individual's PI in postoperative ASD patients. 48 postoperative ASD patients were recruited. Spino-pelvic parameters and Oswestry Disability Index (ODI) were measured at the final follow-up. Factors associated with good clinical results were determined by stepwise multiple regression model using the ODI. The patients with ODI under the 75th percentile cutoff were designated into the "good" health related quality of life (HRQOL) group. In this group, the relationship between the PI-LL and PI was assessed by regression analysis. Multiple regression analysis revealed PI-LL as significant parameters associated with ODI. Thirty-six patients with an ODI <22 points (75th percentile cutoff) were categorized into a good HRQOL group, and linear regression models demonstrated the following equation: PI-LL = 0.41PI-11.12 (r = 0.45, P = 0.0059). On the basis of this equation, in the patients with a PI = 50°, the PI-LL is 9°. Whereas in those with a PI = 30°, the optimum PI-LL is calculated to be as low as 1°. In those with a PI = 80°, PI-LL is estimated at 22°. Consequently, an optimum PI-LL is inconsistent in that it depends on the individual PI.

  15. Alternative Regression Equations for Estimation of Annual Peak-Streamflow Frequency for Undeveloped Watersheds in Texas using PRESS Minimization

    USGS Publications Warehouse

    Asquith, William H.; Thompson, David B.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.

  16. Use of streamflow data to estimate base flowground-water recharge for Wisconsin

    USGS Publications Warehouse

    Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L.

    2007-01-01

    The average annual base flow/recharge was determined for streamflow-gaging stations throughout Wisconsin by base-flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970-99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow-gaging stations that had long-term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple-regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low-flow partial-record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base-flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. ?? 2007 American Water Resources Association.

  17. Statistical analysis of water-level, springflow, and streamflow data for the Edwards Aquifer in south-central Texas

    USGS Publications Warehouse

    Puente, Celso

    1976-01-01

    Water-level, springflow, and streamflow data were used to develop simple and multiple linear-regression equations for use in estimating water levels in wells and the flow of three major springs in the Edwards aquifer in the eastern San Antonio area. The equations provide daily, monthly, and annual estimates that compare very favorably with observed data. Analyses of geologic and hydrologic data indicate that the water discharged by the major springs is supplied primarily by regional underflow from the west and southwest and by local recharge in the infiltration area in northern Bexar, Comal, and Hays Counties.

  18. Methods for estimating annual exceedance-probability discharges for streams in Iowa, based on data through water year 2010

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; Veilleux, Andrea G.

    2013-01-01

    A statewide study was performed to develop regional regression equations for estimating selected annual exceedance-probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedance-probability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized least-squares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.

  19. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  20. [Correlation of retinol binding protein 4 with 
metabolic indexes of glucose and 
lipid, bile cholesterol saturation index].

    PubMed

    Wang, Wen; Li, Nianfeng

    2015-06-01

    To measure retinol binding protein 4 (RBP4) levels in serum and bile and to analyze their relationship with insulin resistance, dyslipidemia or cholesterol saturation index (CSI).
 A total of 60 patients with gallstone were divided into a diabetes group (n=30) and a control group (n=30). The concentrations of RBP4 in serum and bile were detected by enzyme-linked immunosorbent assay (ELISA). Enzyme colorimetric method was used to measure the concentration of biliary cholesterol, bile acid and phospholipid. Biliary CSI was calculated by Carey table. Partial correlation and multiple linear regression analysis were used to evaluate the correlation between the RBP4 levels in serum or bile and the above indexes.
 The RBP4 concentrations in serum and bile in the diabetes group were significantly elevated compared with those in the control group (both P<0.01). There was no significant difference in the serum total bile acid (TBA), serum triglyceride (TG), serum high-density lipoprotein (HDL), bile TBA, bile total cholesterol (TC) , bile phospholipids and bile CSI between the 2 groups (all P>0.05); but the serum TC, low density lipoprotein (LDL), fasting blood glucose (FBG), fasting insulin (FINS), and homeostasis model assessment for insulin resistance (HOMA-IR) in the diabetes group were significantly increased compared to those in the control group (all P<0.05). The partial correlation analysis, which was adjusted by age, showed that the bile RBP4 was positively correlated with body mass index (BMI), waist circumference (WC), FINS, FBG, TC, LDL and HOMA-IR (r=0.283, 0.405, 0.685, 0.667, 0.553, 0.424 and 0.735, respectively), and the serum RBP4 was also positively correlated with the WC, FINS, FBG, TC, LDL and HOMA-IR (r=0.317, 0.734, 0.609, 0.528, 0.386 and 0.751, respectively). Stepwise multivariate linear regression analysis suggested that the HOMA-IR, BMI and WC were independently correlated with the level of bile RBP4 (multiple regression equation: Ybile RBP4=2.372XHOMA-IR+0.420XBMI+0.178XWC-26.813), and the serum RBP4 level was correlated with the HOMA-IR and WC independently (multiple regression equation: Yserum RBP4=2.832XHOMA-IR +0.235XWC-20.128). Multiple regression equations showed that HOMA-IR was the strongest correlation factor with RBP4.
 RBP4 concentrations in serum and bile in the diabetes group are significantly higher than those in the control group. HOMA-IR, BMI and WC are independently correlated with the level of bile RBP4. HOMA-IR and WC are independently correlated with the serum RBP4 level. HOMA-IR is the strongest correlation factor with RBP4. RBP4 might play an important role in the course of gallstone formation in Type 2 diabetes mellitus.

  1. Techniques for estimating flood-depth frequency relations for streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1987-01-01

    Multiple regression analyses are applied to data from 119 U.S. Geological Survey streamflow stations to develop equations that estimate baseline depth (depth of 50% flow duration) and 100-yr flood depth on unregulated streams in West Virginia. Drainage basin characteristics determined from the 100-yr flood depth analysis were used to develop 2-, 10-, 25-, 50-, and 500-yr regional flood depth equations. Two regions with distinct baseline depth equations and three regions with distinct flood depth equations are delineated. Drainage area is the most significant independent variable found in the central and northern areas of the state where mean basin elevation also is significant. The equations are applicable to any unregulated site in West Virginia where values of independent variables are within the range evaluated for the region. Examples of inapplicable sites include those in reaches below dams, within and directly upstream from bridge or culvert constrictions, within encroached reaches, in karst areas, and where streams flow through lakes or swamps. (Author 's abstract)

  2. Dry season mean monthly flow and harmonic mean flow regression equations for selected ungaged basins in Arkansas

    USGS Publications Warehouse

    Breaker, Brian K.

    2015-01-01

    Equations for two regions were found to be statistically significant for developing regression equations for estimating harmonic mean flows at ungaged basins; thus, equations are applicable only to streams in those respective regions in Arkansas. Regression equations for dry season mean monthly flows are applicable only to streams located throughout Arkansas. All regression equations are applicable only to unaltered streams where flows were not significantly affected by regulation, diversion, or urbanization. The median number of years used for dry season mean monthly flow calculation was 43, and the median number of years used for harmonic mean flow calculations was 34 for region 1 and 43 for region 2.

  3. Estimation of stature from radiologic anthropometry of the lumbar vertebral dimensions in Chinese.

    PubMed

    Zhang, Kui; Chang, Yun-feng; Fan, Fei; Deng, Zhen-hua

    2015-11-01

    The recent study was to assess the relationship between the radiologic anthropometry of the lumbar vertebral dimensions and stature in Chinese and to develop regression formulae to estimate stature from these dimensions. A total of 412 normal, healthy volunteers, comprising 206 males and 206 females, were recruited. The linear regression analysis were performed to assess the correlation between the stature and lengths of various segments of the lumbar vertebral column. Among the regression equations created for single variable, the predictive value was greatest for the reconstruction of stature from the lumbar segment in both sexes and subgroup analysis. When individual vertebral body was used, the heights of posterior vertebral body of L3 gave the most accurate results for male group, the heights of central vertebral body of L1 provided the most accurate results for female group and female group with age above 45 years, the heights of central vertebral body of L3 gave the most accurate results for the groups with age from 20-45 years for both sexes and the male group with age above 45 years. The heights of anterior vertebral body of L5 gave the less accurate results except for the heights of anterior vertebral body of L4 provided the less accurate result for the male group with age above 45 years. As expected, multiple regression equations were more successful than equations derived from a single variable. The research observations suggest lumbar vertebral dimensions to be useful in stature estimation among Chinese population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. A reference equation for maximal aerobic power for treadmill and cycle ergometer exercise testing: Analysis from the FRIEND registry.

    PubMed

    de Souza E Silva, Christina G; Kaminsky, Leonard A; Arena, Ross; Christle, Jeffrey W; Araújo, Claudio Gil S; Lima, Ricardo M; Ashley, Euan A; Myers, Jonathan

    2018-05-01

    Background Maximal oxygen uptake (VO 2 max) is a powerful predictor of health outcomes. Valid and portable reference values are integral to interpreting measured VO 2 max; however, available reference standards lack validation and are specific to exercise mode. This study was undertaken to develop and validate a single equation for normal standards for VO 2 max for the treadmill or cycle ergometer in men and women. Methods Healthy individuals ( N = 10,881; 67.8% men, 20-85 years) who performed a maximal cardiopulmonary exercise test on either a treadmill or a cycle ergometer were studied. Of these, 7617 and 3264 individuals were randomly selected for development and validation of the equation, respectively. A Brazilian sample (1619 individuals) constituted a second validation cohort. The prediction equation was determined using multiple regression analysis, and comparisons were made with the widely-used Wasserman and European equations. Results Age, sex, weight, height and exercise mode were significant predictors of VO 2 max. The regression equation was: VO 2 max (ml kg -1  min -1 ) = 45.2 - 0.35*Age - 10.9*Sex (male = 1; female = 2) - 0.15*Weight (pounds) + 0.68*Height (inches) - 0.46*Exercise Mode (treadmill = 1; bike = 2) ( R = 0.79, R 2  = 0.62, standard error of the estimate = 6.6 ml kg -1  min -1 ). Percentage predicted VO 2 max for the US and Brazilian validation cohorts were 102.8% and 95.8%, respectively. The new equation performed better than traditional equations, particularly among women and individuals ≥60 years old. Conclusion A combined equation was developed for normal standards for VO 2 max for different exercise modes derived from a US national registry. The equation provided a lower average error between measured and predicted VO 2 max than traditional equations even when applied to an independent cohort. Additional studies are needed to determine its portability.

  5. A Study of the Effect of the Front-End Styling of Sport Utility Vehicles on Pedestrian Head Injuries

    PubMed Central

    Qin, Qin; Chen, Zheng; Bai, Zhonghao; Cao, Libo

    2018-01-01

    Background The number of sport utility vehicles (SUVs) on China market is continuously increasing. It is necessary to investigate the relationships between the front-end styling features of SUVs and head injuries at the styling design stage for improving the pedestrian protection performance and product development efficiency. Methods Styling feature parameters were extracted from the SUV side contour line. And simplified finite element models were established based on the 78 SUV side contour lines. Pedestrian headform impact simulations were performed and validated. The head injury criterion of 15 ms (HIC15) at four wrap-around distances was obtained. A multiple linear regression analysis method was employed to describe the relationships between the styling feature parameters and the HIC15 at each impact point. Results The relationship between the selected styling features and the HIC15 showed reasonable correlations, and the regression models and the selected independent variables showed statistical significance. Conclusions The regression equations obtained by multiple linear regression can be used to assess the performance of SUV styling in protecting pedestrians' heads and provide styling designers with technical guidance regarding their artistic creations.

  6. Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.

    2006-01-01

    Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.

  7. Comparing methods of analysing datasets with small clusters: case studies using four paediatric datasets.

    PubMed

    Marston, Louise; Peacock, Janet L; Yu, Keming; Brocklehurst, Peter; Calvert, Sandra A; Greenough, Anne; Marlow, Neil

    2009-07-01

    Studies of prematurely born infants contain a relatively large percentage of multiple births, so the resulting data have a hierarchical structure with small clusters of size 1, 2 or 3. Ignoring the clustering may lead to incorrect inferences. The aim of this study was to compare statistical methods which can be used to analyse such data: generalised estimating equations, multilevel models, multiple linear regression and logistic regression. Four datasets which differed in total size and in percentage of multiple births (n = 254, multiple 18%; n = 176, multiple 9%; n = 10 098, multiple 3%; n = 1585, multiple 8%) were analysed. With the continuous outcome, two-level models produced similar results in the larger dataset, while generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) produced divergent estimates using the smaller dataset. For the dichotomous outcome, most methods, except generalised least squares multilevel modelling (ML GH 'xtlogit' in Stata) gave similar odds ratios and 95% confidence intervals within datasets. For the continuous outcome, our results suggest using multilevel modelling. We conclude that generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) should be used with caution when the dataset is small. Where the outcome is dichotomous and there is a relatively large percentage of non-independent data, it is recommended that these are accounted for in analyses using logistic regression with adjusted standard errors or multilevel modelling. If, however, the dataset has a small percentage of clusters greater than size 1 (e.g. a population dataset of children where there are few multiples) there appears to be less need to adjust for clustering.

  8. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.

  9. Meteorological adjustment of yearly mean values for air pollutant concentration comparison

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Neustadter, H. E.

    1976-01-01

    Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.

  10. Estimation of sex and stature using anthropometry of the upper extremity in an Australian population.

    PubMed

    Howley, Donna; Howley, Peter; Oxenham, Marc F

    2018-06-01

    Stature and a further 8 anthropometric dimensions were recorded from the arms and hands of a sample of 96 staff and students from the Australian National University and The University of Newcastle, Australia. These dimensions were used to create simple and multiple logistic regression models for sex estimation and simple and multiple linear regression equations for stature estimation of a contemporary Australian population. Overall sex classification accuracies using the models created were comparable to similar studies. The stature estimation models achieved standard errors of estimates (SEE) which were comparable to and in many cases lower than those achieved in similar research. Generic, non sex-specific models achieved similar SEEs and R 2 values to the sex-specific models indicating stature may be accurately estimated when sex is unknown. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-06-27

    The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west-central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow users to estimate basin and climatic characteristics and peak-flow statistics at ungaged locations of interest. StreamStats estimates peak-flow statistics with quantifiable certainty only when used at sites with basin and climatic characteristics within the range of input variables used to develop the regional regression equations. Both the regional regression equations and StreamStats should be used to estimate peak-flow statistics only in naturally flowing, relatively unregulated streams without substantial local influences to flow, such as large seeps, springs, or other groundwater-surface water interactions that are not widespread or characteristic of the respective region.

  12. Nationwide summary of US Geological Survey regional regression equations for estimating magnitude and frequency of floods for ungaged sites, 1993

    USGS Publications Warehouse

    Jennings, M.E.; Thomas, W.O.; Riggs, H.C.

    1994-01-01

    For many years, the U.S. Geological Survey (USGS) has been involved in the development of regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally these equations have been developed on a statewide or metropolitan area basis as part of cooperative study programs with specific State Departments of Transportation or specific cities. The USGS, in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency, has compiled all the current (as of September 1993) statewide and metropolitan area regression equations into a micro-computer program titled the National Flood Frequency Program.This program includes regression equations for estimating flood-peak discharges and techniques for estimating a typical flood hydrograph for a given recurrence interval peak discharge for unregulated rural and urban watersheds. These techniques should be useful to engineers and hydrologists for planning and design applications. This report summarizes the statewide regression equations for rural watersheds in each State, summarizes the applicable metropolitan area or statewide regression equations for urban watersheds, describes the National Flood Frequency Program for making these computations, and provides much of the reference information on the extrapolation variables needed to run the program.

  13. Prediction equations for maximal respiratory pressures of Brazilian adolescents.

    PubMed

    Mendes, Raquel E F; Campos, Tania F; Macêdo, Thalita M F; Borja, Raíssa O; Parreira, Verônica F; Mendonça, Karla M P P

    2013-01-01

    The literature emphasizes the need for studies to provide reference values and equations able to predict respiratory muscle strength of Brazilian subjects at different ages and from different regions of Brazil. To develop prediction equations for maximal respiratory pressures (MRP) of Brazilian adolescents. In total, 182 healthy adolescents (98 boys and 84 girls) aged between 12 and 18 years, enrolled in public and private schools in the city of Natal-RN, were evaluated using an MVD300 digital manometer (Globalmed®) according to a standardized protocol. Statistical analysis was performed using SPSS Statistics 17.0 software, with a significance level of 5%. Data normality was verified using the Kolmogorov-Smirnov test, and descriptive analysis results were expressed as the mean and standard deviation. To verify the correlation between the MRP and the independent variables (age, weight, height and sex), the Pearson correlation test was used. To obtain the prediction equations, stepwise multiple linear regression was used. The variables height, weight and sex were correlated to MRP. However, weight and sex explained part of the variability of MRP, and the regression analysis in this study indicated that these variables contributed significantly in predicting maximal inspiratory pressure, and only sex contributed significantly to maximal expiratory pressure. This study provides reference values and two models of prediction equations for maximal inspiratory and expiratory pressures and sets the necessary normal lower limits for the assessment of the respiratory muscle strength of Brazilian adolescents.

  14. Modeling the energy content of combustible ship-scrapping waste at Alang-Sosiya, India, using multiple regression analysis.

    PubMed

    Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K

    2005-01-01

    Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.

  15. Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.

    2016-09-19

    A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the three low-flow regions were developed using two types of regression analyses—left-censored and generalized-least-squares regression analyses. A total of 211 streamgages were included in the development of nine spring regression equations—three equations for each of the three low-flow regions. A total of 208 streamgages were included in the development of nine fall regression equations—three equations for each of the three low-flow regions. A censoring threshold was used to develop 15 left-censored regression equations to estimate the three fall low-flow frequency statistics for each of the three low-flow regions and to estimate the three spring low-flow frequency statistics for the southern and northwest regions. For the northeast region, generalized-least-squares regression was used to develop three equations to estimate the three spring low-flow frequency statistics. For the northeast region, average standard errors of prediction range from 32.4 to 48.4 percent for the spring equations and average standard errors of estimate range from 56.4 to 73.8 percent for the fall equations. For the northwest region, average standard errors of estimate range from 58.9 to 62.1 percent for the spring equations and from 83.2 to 109.4 percent for the fall equations. For the southern region, average standard errors of estimate range from 43.2 to 64.0 percent for the spring equations and from 78.1 to 78.7 percent for the fall equations.The regression equations are applicable only to stream sites in Iowa with low flows not substantially affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. The regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system application. StreamStats allows users to click on any ungaged stream site and compute estimates of the six selected spring and fall low-flow statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged site are provided. StreamStats also allows users to click on any Iowa streamgage to obtain computed estimates for the six selected spring and fall low-flow statistics.

  16. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression.

    PubMed

    Meng, Yilin; Roux, Benoît

    2015-08-11

    The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.

  17. Efficient Determination of Free Energy Landscapes in Multiple Dimensions from Biased Umbrella Sampling Simulations Using Linear Regression

    PubMed Central

    2015-01-01

    The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost. PMID:26574437

  18. Techniques for estimating magnitude and frequency of floods in Minnesota

    USGS Publications Warehouse

    Guetzkow, Lowell C.

    1977-01-01

     Estimating relations have been developed to provide engineers and designers with improved techniques for defining flow-frequency characteristics to satisfy hydraulic planning and design requirements. The magnitude and frequency of floods up to the 100-year recurrence interval can be determined for most streams in Minnesota by methods presented. By multiple regression analysis, equations have been developed for estimating flood-frequency relations at ungaged sites on natural flow streams. Eight distinct hydrologic regions are delineated within the State with boundaries defined generally by river basin divides. Regression equations are provided for each region which relate selected frequency floods to significant basin parameters. For main-stem streams, graphs are presented showing floods for selected recurrence intervals plotted against contributing drainage area. Flow-frequency estimates for intervening sites along the Minnesota River, Mississippi River, and the Red River of the North can be derived from these graphs. Flood-frequency characteristics are tabulated for 201 paging stations having 10 or more years of record.

  19. Technique for estimating depth of 100-year floods in Tennessee

    USGS Publications Warehouse

    Gamble, Charles R.; Lewis, James G.

    1977-01-01

    Preface: A method is presented for estimating the depth of the loo-year flood in four hydrologic areas in Tennessee. Depths at 151 gaging stations on streams that were not significantly affected by man made changes were related to basin characteristics by multiple regression techniques. Equations derived from the analysis can be used to estimate the depth of the loo-year flood if the size of the drainage basin is known.

  20. Calibration of diatom-pH-alkalinity methodology for the interpretation of the sedimentary record in Emerald Lake Integrated watershed study. Final report, 6 May 1985-10 October 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, R.W.

    1986-10-10

    The present study was designed to establish quantitative relationships between lake air-equilibrated pH, alkalinity, and diatoms occurring in the surface sediments in high-elevation Sierra Nevada Lakes. These relationships provided the necessary information to develop predictive equations relating lake pH to the composition of surface-sediment diatom assemblages in 27 study lakes. Using the Hustedt diatom pH classification system, Index B of Renberg and Hellberg, and multiple linear regression analysis, two equations were developed which predict lake pH from the relative abundance of sediment diatoms occurring in each of four diatom pH groupings.

  1. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  2. The mechanical properties of high speed GTAW weld and factors of nonlinear multiple regression model under external transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou

    2013-05-01

    A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.

  3. Flood quantile estimation at ungauged sites by Bayesian networks

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Santillán, D.; Garrote, L.

    2012-04-01

    Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.

  4. Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.

    2010-01-01

    Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.

  5. Solid precipitation measurement intercomparison in Bismarck, North Dakota, from 1988 through 1997

    USGS Publications Warehouse

    Ryberg, Karen R.; Emerson, Douglas G.; Macek-Rowland, Kathleen M.

    2009-01-01

    A solid precipitation measurement intercomparison was recommended by the World Meteorological Organization (WMO) and was initiated after approval by the ninth session of the Commission for Instruments and Methods of Observation. The goal of the intercomparison was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. A field study was started in Bismarck, N. Dak., during the 1988-89 winter as part of the intercomparison. The last official field season of the WMO intercomparison was 1992-93; however, the Bismarck site continued to operate through the winter of 1996-97. Precipitation events at Bismarck were categorized as snow, mixed, or rain on the basis of descriptive notes recorded as part of the solid precipitation intercomparison. The rain events were not further analyzed in this study. Catch ratios (CRs) - the ratio of the precipitation catch at each gage to the true precipitation measurement (the corrected double fence intercomparison reference) - were calculated. Then, regression analysis was used to develop equations that model the snow and mixed precipitation CRs at each gage as functions of wind speed and temperature. Wind speed at the gages, functions of temperature, and upper air conditions (wind speed and air temperature at 700 millibars pressure) were used as possible explanatory variables in the multiple regression analysis done for this study. The CRs were modeled by using multiple regression analysis for the Tretyakov gage, national shielded gage, national unshielded gage, AeroChem gage, national gage with double fence, and national gage with Wyoming windshield. As in earlier studies by the WMO, wind speed and air temperature were found to influence the CR of the Tretyakov gage. However, in this study, the temperature variable represented the average upper air temperature over the duration of the event. The WMO did not use upper air conditions in its analysis. The national shielded and unshielded gages where found to be influenced by functions of wind speed only, as in other studies, but the upper air wind speed was used as an explanatory variable in this study. The AeroChem gage was not used in the WMO intercomparison study for 1987-93. The AeroChem gage had a highly varied CR at Bismarck, and a number of variables related to wind speed and temperature were used in the model for the CR. Despite extensive efforts to find a model for the national gage with double fence, no statistically significant regression model was found at the 0.05 level of statistical significance. The national gage with Wyoming windshield had a CR modeled by temperature and wind speed variables, and the regression relation had the highest coefficient of determination (R2 = 0.572) and adjusted coefficient of multiple determination (R2a = 0.476) of all of the models identified for any gage. Three of the gage CRs evaluated could be compared with those in the WMO intercomparison study for 1987-93. The WMO intercomparison had the advantage of a much larger dataset than this study. However, the data in this study represented a longer time period. Snow precipitation catch is highly varied depending on the equipment used and the weather conditions. Much of the variation is not accounted for in the WMO equations or in the equations developed in this study, particularly for unshielded gages. Extensive attempts at regression analysis were made with the mixed precipitation data, but it was concluded that the sample sizes were not large enough to model the CRs. However, the data could be used to test the WMO intercomparison equations. The mixed precipitation equations for the Tretyakov and national shielded gages are similar to those for snow in that they are more likely to underestimate precipitation when observed amounts were small and overestimate precipitation when observed amounts were relatively large. Mixed precipitation is underestimated by the WMO adjustment and t

  6. Crime prediction modeling

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study of techniques for the prediction of crime in the City of Los Angeles was conducted. Alternative approaches to crime prediction (causal, quasicausal, associative, extrapolative, and pattern-recognition models) are discussed, as is the environment within which predictions were desired for the immediate application. The decision was made to use time series (extrapolative) models to produce the desired predictions. The characteristics of the data and the procedure used to choose equations for the extrapolations are discussed. The usefulness of different functional forms (constant, quadratic, and exponential forms) and of different parameter estimation techniques (multiple regression and multiple exponential smoothing) are compared, and the quality of the resultant predictions is assessed.

  7. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged sites and to improve flood-quantile estimates at and near a gaged site; (2) the urbanization-adjusted annual maximum peak discharges and peak discharge quantile estimates at streamgages from 181 watersheds including the 117 study watersheds and 64 additional watersheds in the study region that were originally considered for use in the study but later deemed to be redundant.The urbanization-adjustment equations, spatial regression equations, and peak discharge quantile estimates developed in this study will be made available in the web application StreamStats, which provides automated regression-equation solutions for user-selected stream locations. Figures and tables comparing the observed and urbanization-adjusted annual maximum peak discharge records by streamgage are provided at https://doi.org/10.3133/sir20165050 for download.

  8. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2008-01-01

    Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.

  9. Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers

    USGS Publications Warehouse

    Bjerklie, David M.; Dingman, S. Lawrence; Bolster, Carl H.

    2005-01-01

    A set of conceptually derived in‐bank river discharge–estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site‐specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope‐area discharge estimates, and (3) large‐scale river modeling.

  10. Resistance of nickel-chromium-aluminum alloys to cyclic oxidation at 1100 C and 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1976-01-01

    Nickel-rich alloys in the Ni-Cr-Al system were evaluated for cyclic oxidation resistance in still air at 1,100 and 1,200 C. A first approximation oxidation attack parameter Ka was derived from specific weight change data involving both a scaling growth constant and a spalling constant. An estimating equation was derived with Ka as a function of the Cr and Al content by multiple linear regression and translated into countour ternary diagrams showing regions of minimum attack. An additional factor inferred from the regression analysis was that alloys melted in zirconia crucibles had significantly greater oxidation resistance than comparable alloys melted otherwise.

  11. Time-resolved flow reconstruction with indirect measurements using regression models and Kalman-filtered POD ROM

    NASA Astrophysics Data System (ADS)

    Leroux, Romain; Chatellier, Ludovic; David, Laurent

    2018-01-01

    This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.

  12. Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.

    PubMed

    Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana

    2012-02-01

    In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P < 0.05 and P < 0.01) between the parameters of wheat dough studied by the Mixolab and its rheological properties measured with the Alveograph. A number of six predictive linear equations were obtained. Linear regression models gave multiple regression coefficients with R²(adjusted) > 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.

  13. Application of factor analysis of infrared spectra for quantitative determination of beta-tricalcium phosphate in calcium hydroxylapatite.

    PubMed

    Arsenyev, P A; Trezvov, V V; Saratovskaya, N V

    1997-01-01

    This work represents a method, which allows to determine phase composition of calcium hydroxylapatite basing on its infrared spectrum. The method uses factor analysis of the spectral data of calibration set of samples to determine minimal number of factors required to reproduce the spectra within experimental error. Multiple linear regression is applied to establish correlation between factor scores of calibration standards and their properties. The regression equations can be used to predict the property value of unknown sample. The regression model was built for determination of beta-tricalcium phosphate content in hydroxylapatite. Statistical estimation of quality of the model was carried out. Application of the factor analysis on spectral data allows to increase accuracy of beta-tricalcium phosphate determination and expand the range of determination towards its less concentration. Reproducibility of results is retained.

  14. Reference equation for prediction of a total distance during six-minute walk test using Indonesian anthropometrics.

    PubMed

    Nusdwinuringtyas, Nury; Widjajalaksmi; Yunus, Faisal; Alwi, Idrus

    2014-04-01

    to develop a reference equation for prediction of the total distance walk using Indonesian anthropometrics of sedentary healthy subjects. Subsequently, the prediction obtained was compared to those calculated by the Caucasian-based Enright prediction equation. the cross-sectional study was conducted among 123 healthy Indonesian adults with sedentary life style (58 male and 65 female subjects in an age range between 18 and 50 years). Heart rate was recorded using Polar with expectation in the sub-maximal zone (120-170 beats per minute). The subjects performed two six-minute walk tests, the first one on a 15-meter track according to the protocol developed by the investigator. The second walk was carried out on Biodex®gait trainer as gold standard. an average total distance of 547±54.24 m was found, not significantly different from the gold standard of 544.72±54.11 m (p>0.05). Multiple regression analysis was performed to develop the new equation. the reference equation for prediction of the total distance using Indonesian anthropometrics is more applicable in Indonesia.

  15. Application of remotely sensed land-use information to improve estimates of streamflow characteristics, volume 8. [Maryland, Virginia, and Delaware

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Land use data derived from high altitude photography and satellite imagery were studied for 49 basins in Delaware, and eastern Maryland and Virginia. Applying multiple regression techniques to a network of gaging stations monitoring runoff from 39 of the basins, demonstrated that land use data from high altitude photography provided an effective means of significantly improving estimates of stream flow. Forty stream flow characteristic equations for incorporating remotely sensed land use information, were compared with a control set of equations using map derived land cover. Significant improvement was detected in six equations where level 1 data was added and in five equations where level 2 information was utilized. Only four equations were improved significantly using land use data derived from LANDSAT imagery. Significant losses in accuracy due to the use of remotely sensed land use information were detected only in estimates of flood peaks. Losses in accuracy for flood peaks were probably due to land cover changes associated with temporal differences among the primary land use data sources.

  16. Regression equations to estimate seasonal flow duration, n-day high-flow frequency, and n-day low-flow frequency at sites in North Dakota using data through water year 2009

    USGS Publications Warehouse

    Williams-Sether, Tara; Gross, Tara A.

    2016-02-09

    Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.

  17. Reforming the Military Health Care System

    DTIC Science & Technology

    1988-01-01

    Population Model and its Application ," International Journal of Health Services, vol. 10, no. 4 (1980). 7. "Understanding Variations in the Use of... Financial Management (November 1986), pp. 26- 34. 21. Based on the following multiple regression equation: OP/NOR= 0.51 + 0.35x(POP/NOR)-6.84x(CIV/NORxPOP) (t...Military Beneficiary Health Care Survey 95 B Actual and Expected Admission Rates 99 C The Statistical Model of Family Use 103 D The Capitation Budgeting

  18. Estimating Commute Distances of U.S. Army Reservists by Regional and Unit Characteristics

    DTIC Science & Technology

    1990-09-01

    multiple regression equation is used to estimate the parameters of the commute distance distribution as a function of reserve center and market ...used to estimate the parameters of the commute distance distribution as a function of reserve center and market characteristics. The results of the...recruiting personnel to meet unit fill rates. An important objective of the USAREC is to identify market areas that will support new reserve units [Ref. 2:p

  19. Associations of sleep bruxism with age, sleep apnea, and daytime problematic behaviors in children.

    PubMed

    Tachibana, M; Kato, T; Kato-Nishimura, K; Matsuzawa, S; Mohri, I; Taniike, M

    2016-09-01

    The aims of this study were to investigate the prevalence of sleep bruxism in children in Japan, and its relationships with sleep-related factors and daytime problematic behavior. Guardians of 6023 children aged 2-12 years completed the Japanese Sleep Questionnaire. Multiple regression analysis and structural equation modeling were performed. Sleep bruxism was reported in 21.0% children (n = 1263): the prevalence was highest in the age group of 5-7 years (27.4%). Multiple regression analysis showed that sleep bruxism had significant correlations with age 5-7 years (OR: 1.72; P < 0.0001), 'Moves a lot during sleep' (OR: 1.47; P < 0.0001), 'sleeps with mouth open' (OR: 1.56; P < 0.0001), and 'snores loudly' (OR: 1.80; P < 0.0001). In structural equation modeling, sleep bruxism had a significant but weak direct effect on daytime problematic behavior, while sleep bruxism significantly correlated with obstructive sleep apnea, which had a higher direct effect on daytime problematic behavior. Sleep bruxism was reported in 21.0% of Japanese children and had independent relationships with age, movements during sleep, and snoring. A comorbidity of sleep-disordered breathing might be related to daytime problematic behavior in children with sleep bruxism. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Analysis of methods to estimate spring flows in a karst aquifer

    USGS Publications Warehouse

    Sepulveda, N.

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer. ?? 2008 National Ground Water Association.

  1. Analysis of methods to estimate spring flows in a karst aquifer.

    PubMed

    Sepúlveda, Nicasio

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.

  2. Parameter estimation method and updating of regional prediction equations for ungaged sites in the desert region of California

    USGS Publications Warehouse

    Barth, Nancy A.; Veilleux, Andrea G.

    2012-01-01

    The U.S. Geological Survey (USGS) is currently updating at-site flood frequency estimates for USGS streamflow-gaging stations in the desert region of California. The at-site flood-frequency analysis is complicated by short record lengths (less than 20 years is common) and numerous zero flows/low outliers at many sites. Estimates of the three parameters (mean, standard deviation, and skew) required for fitting the log Pearson Type 3 (LP3) distribution are likely to be highly unreliable based on the limited and heavily censored at-site data. In a generalization of the recommendations in Bulletin 17B, a regional analysis was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the LP3 distribution. A regional skew value of zero from a previously published report was used with a new estimated mean squared error (MSE) of 0.20. A weighted least squares (WLS) regression method was used to develop both a regional standard deviation and a mean model based on annual peak-discharge data for 33 USGS stations throughout California’s desert region. At-site standard deviation and mean values were determined by using an expected moments algorithm (EMA) method for fitting the LP3 distribution to the logarithms of annual peak-discharge data. Additionally, a multiple Grubbs-Beck (MGB) test, a generalization of the test recommended in Bulletin 17B, was used for detecting multiple potentially influential low outliers in a flood series. The WLS regression found that no basin characteristics could explain the variability of standard deviation. Consequently, a constant regional standard deviation model was selected, resulting in a log-space value of 0.91 with a MSE of 0.03 log units. Yet drainage area was found to be statistically significant at explaining the site-to-site variability in mean. The linear WLS regional mean model based on drainage area had a Pseudo- 2 R of 51 percent and a MSE of 0.32 log units. The regional parameter estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final equations are functions of drainage area.Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent.

  3. Resting Energy Expenditure Prediction in Recreational Athletes of 18–35 Years: Confirmation of Cunningham Equation and an Improved Weight-Based Alternative

    PubMed Central

    ten Haaf, Twan; Weijs, Peter J. M.

    2014-01-01

    Introduction Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. Methods 90 (53M, 37F) adult athletes, exercising on average 9.1±5.0 hours a week and 5.0±1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results The Cunningham equation and the new weight-based equation and the new FFM-based equation performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. Conclusion For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition. PMID:25275434

  4. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    PubMed

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, <30 m 2 to full-pitch, match). Variables provided by the systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  5. Estimation of health effects of prenatal methylmercury exposure using structural equation models.

    PubMed

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe; Weihe, Pal

    2002-10-14

    Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets.

  6. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  7. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  8. Investigation of predictors affecting food mixing ability in mandibulectomy and/or glossectomy patients.

    PubMed

    Otomaru, Takafumi; Sumita, Yuka I; Chang, Qingan; Fueki, Kenji; Igarashi, Yoshimasa; Taniguchi, Hisashi

    2009-07-01

    Several previous reports have described factors that affect masticatory function. However, there are no known predictors that affect the food mixing ability of the masticatory function, and it has been impossible to predict masticatory function in mandibulectomy and/or glossectomy patients. The purpose of the present study was to develop a numerical formula that could predict the food mixing ability of the masticatory function among mandibulectomy and/or glossectomy patients. The null hypothesis of the study was that five predictors, namely mandibulectomy, mandibular continuity, number of residual mandibular teeth, occlusal units and tongue movement score, were unable to account for the mixing ability index (MAI) in mandibulectomy and/or glossectomy patients. The subjects were 20 patients who had undergone mandibulectomy and/or glossectomy. The above-described five predictors were assessed. Tongue movement was evaluated with a tongue movement test and the MAI was evaluated with a mixing ability test. Multiple regression analysis was used to examine whether the five predictors affected the MAI after prosthetic treatment. A regression equation was determined for the five predictors (R(2)=0.83; adjusted R(2)=0.77; p<0.001). The obtained regression equation could successfully account for the MAI in mandibulectomy and/or glossectomy patients.

  9. Preoperative Biometric Parameters Predict the Vault after ICL Implantation: A Retrospective Clinical Study.

    PubMed

    Zheng, Qian-Yin; Xu, Wen; Liang, Guan-Lu; Wu, Jing; Shi, Jun-Ting

    2016-01-01

    To investigate the correlation between the preoperative biometric parameters of the anterior segment and the vault after implantable Collamer lens (ICL) implantation via this retrospective study. Retrospective clinical study. A total of 78 eyes from 41 patients who underwent ICL implantation surgery were included in this study. Preoperative biometric parameters, including white-to-white (WTW) diameter, central corneal thickness, keratometer, pupil diameter, anterior chamber depth, sulcus-to-sulcus diameter, anterior chamber area (ACA) and central curvature radius of the anterior surface of the lens (Lenscur), were measured. Lenscur and ACA were measured with Rhinoceros 5.0 software on the image scanned with ultrasound biomicroscopy (UBM). The vault was assessed by UBM 3 months after surgery. Multiple stepwise regression analysis was employed to identify the variables that were correlated with the vault. The results showed that the vault was correlated with 3 variables: ACA (22.4 ± 4.25 mm2), WTW (11.36 ± 0.29 mm) and Lenscur (9.15 ± 1.21 mm). The regressive equation was: vault (mm) = 1.785 + 0.017 × ACA + 0.051 × Lenscur - 0.203 × WTW. Biometric parameters of the anterior segment (ACA, WTW and Lenscur) can predict the vault after ICL implantation using a new regression equation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. A Landsat study of water quality in Lake Okeechobee

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Marshall, M. L.

    1976-01-01

    This paper uses multiple regression techniques to investigate the relationship between Landsat radiance values and water quality measurements. For a period of over one year, the Central and Southern Florida Flood Control District sampled the water of Lake Okeechobee for chlorophyll, carotenoids, turbidity, and various nutrients at the time of Landsat overpasses. Using an overlay map of the sampling stations, Landsat radiance values were measured from computer compatible tapes using a GE image 100 and averaging over a 22-acre area at each station. These radiance values in four bands were used to form a number of functions (powers, logarithms, exponentials, and ratios), which were then compared with the ground measurements using multiple linear regression techniques. Several dates were used to provide generality and to study possible seasonal variations. Individual correlations were presented for the various water quality parameters and best fit equations were examined for chlorophyll and turbidity. The results and their relationship to past hydrological research were discussed.

  11. Estimating carcass fat and protein in northern pintails during the nonbreeding season

    USGS Publications Warehouse

    Miller, M.R.

    1989-01-01

    I used northern pintails (Anas acuta) collected from August through March 1979-82 in the Sacramento Valley, California to derive equations to predict ether-extracted carcass fat, carcass protein, and skeletal lean dry weight. Ether-extracted carcass fat was best predicted by total fat depot weight (wet skin, abdominal fat, and intestinal fat) (r2 = 0.94) and estimates based on carcass water content (r2 = 0.93-0.98). Measured carcass protein was best predicted by a multiple regression including total protein depot weight (breast muscles, leg muscles, and gizzard) and tarsus length (R2 = 0.79). I predicted skeletal lean dry weight by a multiple regression incorporating culmen, tarsus, and wing length (R2 = 0.77). Predicted carcass fat agreed well with measured carcass fat in an independent data set of 30 pintails using total fat depot (r2 = 0.92-0.96) and carcass water (r2 = 0.97-0.99), but predicted carcass protein agreed less well with measured protein.

  12. Pulmonary Hypertension and Computed Tomography Measurement of Small Pulmonary Vessels in Severe Emphysema

    PubMed Central

    Matsuoka, Shin; Washko, George R.; Yamashiro, Tsuneo; Estepar, Raul San Jose; Diaz, Alejandro; Silverman, Edwin K.; Hoffman, Eric; Fessler, Henry E.; Criner, Gerard J.; Marchetti, Nathaniel; Scharf, Steven M.; Martinez, Fernando J.; Reilly, John J.; Hatabu, Hiroto

    2010-01-01

    Rationale: Vascular alteration of small pulmonary vessels is one of the characteristic features of pulmonary hypertension in chronic obstructive pulmonary disease. The in vivo relationship between pulmonary hypertension and morphological alteration of the small pulmonary vessels has not been assessed in patients with severe emphysema. Objectives: We evaluated the correlation of total cross-sectional area of small pulmonary vessels (CSA) assessed on computed tomography (CT) scans with the degree of pulmonary hypertension estimated by right heart catheterization. Methods: In 79 patients with severe emphysema enrolled in the National Emphysema Treatment Trial (NETT), we measured CSA less than 5 mm2 (CSA<5) and 5 to 10 mm2 (CSA5−10), and calculated the percentage of total CSA for the lung area (%CSA<5 and %CSA5–10, respectively). The correlations of %CSA<5 and %CSA5–10 with pulmonary arterial mean pressure (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document}) obtained by right heart catheterization were evaluated. Multiple linear regression analysis using \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} as the dependent outcome was also performed. Measurements and Main Results: The %CSA<5 had a significant negative correlation with \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} (r = −0.512, P < 0.0001), whereas the correlation between %CSA5–10 and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} did not reach statistical significance (r = −0.196, P = 0.083). Multiple linear regression analysis showed that %CSA<5 and diffusing capacity of carbon monoxide (DlCO) % predicted were independent predictors of \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} (r2 = 0.541): %CSA <5 (P < 0.0001), and DlCO % predicted (P = 0.022). Conclusions: The %CSA<5 measured on CT images is significantly correlated to \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} in severe emphysema and can estimate the degree of pulmonary hypertension. PMID:19875683

  13. Regression Simulation Model. Appendix X. Users Manual,

    DTIC Science & Technology

    1981-03-01

    change as the prediction equations become refined. Whereas no notice will be provided when the changes are made, the programs will be modified such that...NATIONAL BUREAU Of STANDARDS 1963 A ___,_ __ _ __ _ . APPENDIX X ( R4/ EGRESSION IMULATION ’jDEL. Ape’A ’) 7 USERS MANUA submitted to The Great River...regression analysis and to establish a prediction equation (model). The prediction equation contains the partial regression coefficients (B-weights) which

  14. Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions

    PubMed Central

    Fernandes, Bruno J. T.; Roque, Alexandre

    2018-01-01

    Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366

  15. Drainage basin characteristics from ERTS data

    NASA Technical Reports Server (NTRS)

    Hollyday, E. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. ERTS-derived measurements of forests, riparian vegetation, open water, and combined agricultural and urban land use were added to an available matrix of map-derived basin characteristics. The matrix of basin characteristics was correlated with 40 stream flow characteristics by multiple regression techniques. Fifteen out of the 40 equations were improved. If the technique can be transferred to other physiographic regions in the nation, the opportunity exists for a potential annual savings in operations of about $250,000.

  16. A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty

    USGS Publications Warehouse

    Friedel, Michael J.

    2011-01-01

    This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.

  17. A non-destructive selection criterion for fibre content in jute : II. Regression approach.

    PubMed

    Arunachalam, V; Iyer, R D

    1974-01-01

    An experiment with ten populations of jute, comprising varieties and mutants of the two species Corchorus olitorius and C.capsularis was conducted at two different locations with the object of evolving an effective criterion for selecting superior single plants for fibre yield. At Delhi, variation existed only between varieties as a group and mutants as a group, while at Pusa variation also existed among the mutant populations of C. capsularis.A multiple regression approach was used to find the optimum combination of characters for prediction of fibre yield. A process of successive elimination of characters based on the coefficient of determination provided by individual regression equations was employed to arrive at the optimal set of characters for predicting fibre yield. It was found that plant height, basal and mid-diameters and basal and mid-dry fibre weights would provide such an optimal set.

  18. Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.

    2017-01-01

    A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic characteristics, landform regions, and soil regions. A comparison of root mean square errors and average standard errors of prediction for the statewide, regional, and region-of-influence regressions determined that the regional regression provided the best estimates of the seven selected statistics at ungaged sites in Iowa. Because a significant number of streams in Iowa reach zero flow as their minimum flow during low-flow years, four different types of regression analyses were used: left-censored, logistic, generalized-least-squares, and weighted-least-squares regression. A total of 192 streamgages were included in the development of 27 regression equations for the three low-flow regions. For the northeast and northwest regions, a censoring threshold was used to develop 12 left-censored regression equations to estimate the 6 low-flow frequency statistics for each region. For the southern region a total of 12 regression equations were developed; 6 logistic regression equations were developed to estimate the probability of zero flow for the 6 low-flow frequency statistics and 6 generalized least-squares regression equations were developed to estimate the 6 low-flow frequency statistics, if nonzero flow is estimated first by use of the logistic equations. A weighted-least-squares regression equation was developed for each region to estimate the harmonic-mean-flow statistic. Average standard errors of estimate for the left-censored equations for the northeast region range from 64.7 to 88.1 percent and for the northwest region range from 85.8 to 111.8 percent. Misclassification percentages for the logistic equations for the southern region range from 5.6 to 14.0 percent. Average standard errors of prediction for generalized least-squares equations for the southern region range from 71.7 to 98.9 percent and pseudo coefficients of determination for the generalized-least-squares equations range from 87.7 to 91.8 percent. Average standard errors of prediction for weighted-least-squares equations developed for estimating the harmonic-mean-flow statistic for each of the three regions range from 66.4 to 80.4 percent. The regression equations are applicable only to stream sites in Iowa with low flows not significantly affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. If the equations are used at ungaged sites on regulated streams, or on streams affected by water-supply and agricultural withdrawals, then the estimates will need to be adjusted by the amount of regulation or withdrawal to estimate the actual flow conditions if that is of interest. Caution is advised when applying the equations for basins with characteristics near the applicable limits of the equations and for basins located in karst topography. A test of two drainage-area ratio methods using 31 pairs of streamgages, for the annual 7-day mean low-flow statistic for a recurrence interval of 10 years, indicates a weighted drainage-area ratio method provides better estimates than regional regression equations for an ungaged site on a gaged stream in Iowa when the drainage-area ratio is between 0.5 and 1.4. These regression equations will be implemented within the U.S. Geological Survey StreamStats web-based geographic-information-system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the seven selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these seven selected statistics are provided for the streamgage.

  19. Cooperation without culture? The null effect of generalized trust on intentional homicide: a cross-national panel analysis, 1995-2009.

    PubMed

    Robbins, Blaine

    2013-01-01

    Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation.

  20. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1975-01-01

    A model was developed for predicting the day 50 percent of the wheat crop is planted in North Dakota. This model incorporates location as an independent variable. The Julian date when 50 percent of the crop was planted for the nine divisions of North Dakota for seven years was regressed on the 49 variables through the step-down multiple regression procedure. This procedure begins with all of the independent variables and sequentially removes variables that are below a predetermined level of significance after each step. The prediction equation was tested on daily data. The accuracy of the model is considered satisfactory for finding the historic dates on which to initiate yield prediction model. Growth prediction models were also developed for spring wheat.

  1. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    NASA Astrophysics Data System (ADS)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  2. Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon

    USGS Publications Warehouse

    Risley, John; Stonewall, Adam J.; Haluska, Tana

    2008-01-01

    Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.

  3. Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Arihood, Leslie D.

    2010-01-01

    This report provides estimates of, and presents methods for estimating, selected low-flow frequency statistics for unregulated streams in Kentucky including the 30-day mean low flows for recurrence intervals of 2 and 5 years (30Q2 and 30Q5) and the 7-day mean low flows for recurrence intervals of 5, 10, and 20 years (7Q2, 7Q10, and 7Q20). Estimates of these statistics are provided for 121 U.S. Geological Survey streamflow-gaging stations with data through the 2006 climate year, which is the 12-month period ending March 31 of each year. Data were screened to identify the periods of homogeneous, unregulated flows for use in the analyses. Logistic-regression equations are presented for estimating the annual probability of the selected low-flow frequency statistics being equal to zero. Weighted-least-squares regression equations were developed for estimating the magnitude of the nonzero 30Q2, 30Q5, 7Q2, 7Q10, and 7Q20 low flows. Three low-flow regions were defined for estimating the 7-day low-flow frequency statistics. The explicit explanatory variables in the regression equations include total drainage area and the mapped streamflow-variability index measured from a revised statewide coverage of this characteristic. The percentage of the station low-flow statistics correctly classified as zero or nonzero by use of the logistic-regression equations ranged from 87.5 to 93.8 percent. The average standard errors of prediction of the weighted-least-squares regression equations ranged from 108 to 226 percent. The 30Q2 regression equations have the smallest standard errors of prediction, and the 7Q20 regression equations have the largest standard errors of prediction. The regression equations are applicable only to stream sites with low flows unaffected by regulation from reservoirs and local diversions of flow and to drainage basins in specified ranges of basin characteristics. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features.

  4. Regression Equations for Monthly and Annual Mean and Selected Percentile Streamflows for Ungaged Rivers in Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2015-12-03

    The largest average errors of prediction are associated with regression equations for the lowest streamflows derived for months during which the lowest streamflows of the year occur (such as the 5 and 1 monthly percentiles for August and September). The regression equations have been derived on the basis of streamflow and basin characteristics data for unregulated, rural drainage basins without substantial streamflow or drainage modifications (for example, diversions and (or) regulation by dams or reservoirs, tile drainage, irrigation, channelization, and impervious paved surfaces), therefore using the equations for regulated or urbanized basins with substantial streamflow or drainage modifications will yield results of unknown error. Input basin characteristics derived using techniques or datasets other than those documented in this report or using values outside the ranges used to develop these regression equations also will yield results of unknown error.

  5. Comparative evaluation of urban storm water quality models

    NASA Astrophysics Data System (ADS)

    Vaze, J.; Chiew, Francis H. S.

    2003-10-01

    The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.

  6. Determination of saleable product in finished cattle and beef carcasses utilizing bioelectrical impedance technology.

    PubMed

    Marchello, M J; McLennan, J E; Dhuyvetter, D V; Slanger, W D

    1999-11-01

    Two experiments were performed to develop prediction equations of saleable beef and to validate the prediction equations. In Exp. 1, 50 beef cattle were finished to typical slaughter weights, and multiple linear regression equations were developed to predict kilograms of trimmed boneless, retail product of live cattle, and hot and cold carcasses. A four-terminal bioelectrical impedance analyzer (BIA) was used to measure resistance (Rs) and reactance (Xc) on each animal and processed carcass. The IMPS cuts plus trim were weighed and recorded. Distance between detector terminals (Lg) and carcass temperature (Tp) at time of BIA readings were recorded. Other variables included live weight (BW), hot carcass weight (HCW), cold carcass weight (CCW), and volume (Lg2/Rs). Regression equations for predicting kilograms of saleable product were [11.87 + (.409 x BW) - (.335 x Lg) + (.0518 x volume)] for live (R2 = .80); [-58.83 + (.589 x HCW) - (.846 x Rs) + (1.152 x Xc) + (.142 x Lg) + (2.608 x Tp)] for hot carcass (R2 = .95); and [32.15 + (.633 x CCW) + (.33 x Xc) - (.83 x Lg) + (.677 x volume)] for cold carcass (R2 = .93). In Exp. 2, 27 beef cattle were finished in a manner similar to Exp. 1, and the prediction equations from Exp. 1 were used to predict the saleable product of these animals. The Pearson correlations between actual saleable product and the predictions based on live and cold carcass data were .91 and .95, respectively. The Spearman and Kendall rank correlations were .95 and .83, respectively, for the cold carcass data. These results provide a practical application of bioelectrical impedance for market-based pricing. They complement previous studies that assessed fat-free mass.

  7. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method.

    PubMed

    Peng, Ying; Li, Su-Ning; Pei, Xuexue; Hao, Kun

    2018-03-01

    Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.

  8. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression.

    PubMed

    Beckstead, Jason W

    2012-03-30

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic strategy to isolate, examine, and remove suppression effects has been offered. In this article such an approach, rooted in confirmatory factor analysis theory and employing matrix algebra, is developed. Suppression is viewed as the result of criterion-irrelevant variance operating among predictors. Decomposition of predictor variables into criterion-relevant and criterion-irrelevant components using structural equation modeling permits derivation of regression weights with the effects of criterion-irrelevant variance omitted. Three examples with data from applied research are used to illustrate the approach: the first assesses child and parent characteristics to explain why some parents of children with obsessive-compulsive disorder accommodate their child's compulsions more so than do others, the second examines various dimensions of personal health to explain individual differences in global quality of life among patients following heart surgery, and the third deals with quantifying the relative importance of various aptitudes for explaining academic performance in a sample of nursing students. The approach is offered as an analytic tool for investigators interested in understanding predictor-criterion relationships when complex patterns of intercorrelation among predictors are present and is shown to augment dominance analysis.

  9. Predicting basal metabolic rates in Malaysian adult elite athletes.

    PubMed

    Wong, Jyh Eiin; Poh, Bee Koon; Nik Shanita, Safii; Izham, Mohd Mohamad; Chan, Kai Quin; Tai, Meng De; Ng, Wei Wei; Ismail, Mohd Noor

    2012-11-01

    This study aimed to measure the basal metabolic rate (BMR) of elite athletes and develop a gender specific predictive equation to estimate their energy requirements. 92 men and 33 women (aged 18-31 years) from 15 sports, who had been training six hours daily for at least one year, were included in the study. Body composition was measured using the bioimpedance technique, and BMR by indirect calorimetry. The differences between measured and estimated BMR using various predictive equations were calculated. The novel equation derived from stepwise multiple regression was evaluated using Bland and Altman analysis. The predictive equations of Cunningham and the Food and Agriculture Organization/World Health Organization/United Nations University either over- or underestimated the measured BMR by up to ± 6%, while the equations of Ismail et al, developed from the local non-athletic population, underestimated the measured BMR by 14%. The novel predictive equation for the BMR of athletes was BMR (kcal/day) = 669 + 13 (weight in kg) + 192 (gender: 1 for men and 0 for women) (R2 0.548; standard error of estimates 163 kcal). Predicted BMRs of elite athletes by this equation were within 1.2% ± 9.5% of the measured BMR values. The novel predictive equation presented in this study can be used to calculate BMR for adult Malaysian elite athletes. Further studies may be required to validate its predictive capabilities for other sports, nationalities and age groups.

  10. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran

    NASA Astrophysics Data System (ADS)

    Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran

    2018-03-01

    This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).

  11. Estimation of selected flow and water-quality characteristics of Alaskan streams

    USGS Publications Warehouse

    Parks, Bruce; Madison, R.J.

    1985-01-01

    Although hydrologic data are either sparse or nonexistent for large areas of Alaska, the drainage area, area of lakes, glacier and forest cover, and average precipitation in a hydrologic basin of interest can be measured or estimated from existing maps. Application of multiple linear regression techniques indicates that statistically significant correlations exist between properties of basins determined from maps and measured streamflow characteristics. This suggests that corresponding characteristics of ungaged basins can be estimated. Streamflow frequency characteristics can be estimated from regional equations developed for southeast, south-central and Yukon regions. Statewide or modified regional equations must be used, however, for the southwest, northwest, and Arctic Slope regions where there is a paucity of data. Equations developed from basin characteristics are given to estimate suspended-sediment values for glacial streams and, with less reliability, for nonglacial streams. Equations developed from available specific conductance data are given to estimate concentrations of major dissolved inorganic constituents. Suggestions are made for expanding the existing data base and thus improving the ability to estimate hydrologic characteristics for Alaskan streams. (USGS)

  12. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    ERIC Educational Resources Information Center

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  13. Reaeration equations derived from U.S. geological survey database

    USGS Publications Warehouse

    Melching, C.S.; Flores, H.E.

    1999-01-01

    Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the date set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the data set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.

  14. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-09-06

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.

  15. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

    USGS Publications Warehouse

    Southard, Rodney E.

    2013-01-01

    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical estimates on one of these streams can be calculated at an ungaged location that has a drainage area that is between 40 percent of the drainage area of the farthest upstream streamgage and within 150 percent of the drainage area of the farthest downstream streamgage along the stream of interest. The second method may be used on any stream with a streamgage that has operated for 10 years or longer and for which anthropogenic effects have not changed the low-flow characteristics at the ungaged location since collection of the streamflow data. A ratio of drainage area of the stream at the ungaged location to the drainage area of the stream at the streamgage was computed to estimate the statistic at the ungaged location. The range of applicability is between 40- and 150-percent of the drainage area of the streamgage, and the ungaged location must be located on the same stream as the streamgage. The third method uses regional regression equations to estimate selected low-flow frequency statistics for unregulated streams in Missouri. This report presents regression equations to estimate frequency statistics for the 10-year recurrence interval and for the N-day durations of 1, 2, 3, 7, 10, 30, and 60 days. Basin and climatic characteristics were computed using geographic information system software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses based on existing digital geospatial data and previous studies. Spatial analyses for geographical bias in the predictive accuracy of the regional regression equations defined three low-flow regions with the State representing the three major physiographic provinces in Missouri. Region 1 includes the Central Lowlands, Region 2 includes the Ozark Plateaus, and Region 3 includes the Mississippi Alluvial Plain. A total of 207 streamgages were used in the regression analyses for the regional equations. Of the 207 U.S. Geological Survey streamgages, 77 were located in Region 1, 120 were located in Region 2, and 10 were located in Region 3. Streamgages located outside of Missouri were selected to extend the range of data used for the independent variables in the regression analyses. Streamgages included in the regression analyses had 10 or more years of record and were considered to be affected minimally by anthropogenic activities or trends. Regional regression analyses identified three characteristics as statistically significant for the development of regional equations. For Region 1, drainage area, longest flow path, and streamflow-variability index were statistically significant. The range in the standard error of estimate for Region 1 is 79.6 to 94.2 percent. For Region 2, drainage area and streamflow variability index were statistically significant, and the range in the standard error of estimate is 48.2 to 72.1 percent. For Region 3, drainage area and streamflow-variability index also were statistically significant with a range in the standard error of estimate of 48.1 to 96.2 percent. Limitations on the use of estimating low-flow frequency statistics at ungaged locations are dependent on the method used. The first method outlined for use in Missouri, power curve equations, were developed to estimate the selected statistics for ungaged locations on 28 selected streams with multiple streamgages located on the same stream. A second method uses a drainage-area ratio to compute statistics at an ungaged location using data from a single streamgage on the same stream with 10 or more years of record. Ungaged locations on these streams may use the ratio of the drainage area at an ungaged location to the drainage area at a streamgage location to scale the selected statistic value from the streamgage location to the ungaged location. This method can be used if the drainage area of the ungaged location is within 40 to 150 percent of the streamgage drainage area. The third method is the use of the regional regression equations. The limits for the use of these equations are based on the ranges of the characteristics used as independent variables and that streams must be affected minimally by anthropogenic activities.

  16. Technique for estimating the 2- to 500-year flood discharges on unregulated streams in rural Missouri

    USGS Publications Warehouse

    Alexander, Terry W.; Wilson, Gary L.

    1995-01-01

    A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.

  17. Major controlling factors and prediction models for arsenic uptake from soil to wheat plants.

    PubMed

    Dai, Yunchao; Lv, Jialong; Liu, Ke; Zhao, Xiaoyan; Cao, Yingfei

    2016-08-01

    The application of current Chinese agriculture soil quality standards fails to evaluate the land utilization functions appropriately due to the diversity of soil properties and plant species. Therefore, the standards should be amended. A greenhouse experiment was conducted to investigate arsenic (As) enrichment in various soils from 18 Chinese provinces in parallel with As transfer to 8 wheat varieties. The goal of the study was to build and calibrate soil-wheat threshold models to forecast the As threshold of wheat soils. In Shaanxi soils, Wanmai and Jimai were the most sensitive and insensitive wheat varieties, respectively; and in Jiangxi soils, Zhengmai and Xumai were the most sensitive and insensitive wheat varieties, respectively. Relationships between soil properties and the bioconcentration factor (BCF) were built based on stepwise multiple linear regressions. Soil pH was the best predictor of BCF, and after normalizing the regression equation (Log BCF=0.2054 pH- 3.2055, R(2)=0.8474, n=14, p<0.001), we obtained a calibrated model. Using the calibrated model, a continuous soil-wheat threshold equation (HC5=10((-0.2054 pH+2.9935))+9.2) was obtained for the species-sensitive distribution curve, which was built on Chinese food safety standards. The threshold equation is a helpful tool that can be applied to estimate As uptake from soil to wheat. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Estimation of peak-discharge frequency of urban streams in Jefferson County, Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Ruhl, Kevin J.; Moore, Brian L.; Rose, Martin F.

    1997-01-01

    An investigation of flood-hydrograph characteristics for streams in urban Jefferson County, Kentucky, was made to obtain hydrologic information needed for waterresources management. Equations for estimating peak-discharge frequencies for ungaged streams in the county were developed by combining (1) long-term annual peakdischarge data and rainfall-runoff data collected from 1991 to 1995 in 13 urban basins and (2) long-term annual peak-discharge data in four rural basins located in hydrologically similar areas of neighboring counties. The basins ranged in size from 1.36 to 64.0 square miles. The U.S. Geological Survey Rainfall- Runoff Model (RRM) was calibrated for each of the urban basins. The calibrated models were used with long-term, historical rainfall and pan-evaporation data to simulate 79 years of annual peak-discharge data. Peak-discharge frequencies were estimated by fitting the logarithms of the annual peak discharges to a Pearson-Type III frequency distribution. The simulated peak-discharge frequencies were adjusted for improved reliability by application of bias-correction factors derived from peakdischarge frequencies based on local, observed annual peak discharges. The three-parameter and the preferred seven-parameter nationwide urban-peak-discharge regression equations previously developed by USGS investigators provided biased (high) estimates for the urban basins studied. Generalized-least-square regression procedures were used to relate peakdischarge frequency to selected basin characteristics. Regression equations were developed to estimate peak-discharge frequency by adjusting peak-dischargefrequency estimates made by use of the threeparameter nationwide urban regression equations. The regression equations are presented in equivalent forms as functions of contributing drainage area, main-channel slope, and basin development factor, which is an index for measuring the efficiency of the basin drainage system. Estimates of peak discharges for streams in the county can be made for the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals by use of the regression equations. The average standard errors of prediction of the regression equations ranges from ? 34 to ? 45 percent. The regression equations are applicable to ungaged streams in the county having a specific range of basin characteristics.

  19. Estimating flood magnitude and frequency at gaged and ungaged sites on streams in Alaska and conterminous basins in Canada, based on data through water year 2012

    USGS Publications Warehouse

    Curran, Janet H.; Barth, Nancy A.; Veilleux, Andrea G.; Ourso, Robert T.

    2016-03-16

    Estimates of the magnitude and frequency of floods are needed across Alaska for engineering design of transportation and water-conveyance structures, flood-insurance studies, flood-plain management, and other water-resource purposes. This report updates methods for estimating flood magnitude and frequency in Alaska and conterminous basins in Canada. Annual peak-flow data through water year 2012 were compiled from 387 streamgages on unregulated streams with at least 10 years of record. Flood-frequency estimates were computed for each streamgage using the Expected Moments Algorithm to fit a Pearson Type III distribution to the logarithms of annual peak flows. A multiple Grubbs-Beck test was used to identify potentially influential low floods in the time series of peak flows for censoring in the flood frequency analysis.For two new regional skew areas, flood-frequency estimates using station skew were computed for stations with at least 25 years of record for use in a Bayesian least-squares regression analysis to determine a regional skew value. The consideration of basin characteristics as explanatory variables for regional skew resulted in improvements in precision too small to warrant the additional model complexity, and a constant model was adopted. Regional Skew Area 1 in eastern-central Alaska had a regional skew of 0.54 and an average variance of prediction of 0.45, corresponding to an effective record length of 22 years. Regional Skew Area 2, encompassing coastal areas bordering the Gulf of Alaska, had a regional skew of 0.18 and an average variance of prediction of 0.12, corresponding to an effective record length of 59 years. Station flood-frequency estimates for study sites in regional skew areas were then recomputed using a weighted skew incorporating the station skew and regional skew. In a new regional skew exclusion area outside the regional skew areas, the density of long-record streamgages was too sparse for regional analysis and station skew was used for all estimates. Final station flood frequency estimates for all study streamgages are presented for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities.Regional multiple-regression analysis was used to produce equations for estimating flood frequency statistics from explanatory basin characteristics. Basin characteristics, including physical and climatic variables, were updated for all study streamgages using a geographical information system and geospatial source data. Screening for similar-sized nested basins eliminated hydrologically redundant sites, and screening for eligibility for analysis of explanatory variables eliminated regulated peaks, outburst peaks, and sites with indeterminate basin characteristics. An ordinary least‑squares regression used flood-frequency statistics and basin characteristics for 341 streamgages (284 in Alaska and 57 in Canada) to determine the most suitable combination of basin characteristics for a flood-frequency regression model and to explore regional grouping of streamgages for explaining variability in flood-frequency statistics across the study area. The most suitable model for explaining flood frequency used drainage area and mean annual precipitation as explanatory variables for the entire study area as a region. Final regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability discharge in Alaska and conterminous basins in Canada were developed using a generalized least-squares regression. The average standard error of prediction for the regression equations for the various annual exceedance probabilities ranged from 69 to 82 percent, and the pseudo-coefficient of determination (pseudo-R2) ranged from 85 to 91 percent.The regional regression equations from this study were incorporated into the U.S. Geological Survey StreamStats program for a limited area of the State—the Cook Inlet Basin. StreamStats is a national web-based geographic information system application that facilitates retrieval of streamflow statistics and associated information. StreamStats retrieves published data for gaged sites and, for user-selected ungaged sites, delineates drainage areas from topographic and hydrographic data, computes basin characteristics, and computes flood frequency estimates using the regional regression equations.

  20. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2003-01-01

    Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.

  1. Role of anthropometric data in the prediction of 4-stranded hamstring graft size in anterior cruciate ligament reconstruction.

    PubMed

    Ho, Sean Wei Loong; Tan, Teong Jin Lester; Lee, Keng Thiam

    2016-03-01

    To evaluate whether pre-operative anthropometric data can predict the optimal diameter and length of hamstring tendon autograft for anterior cruciate ligament (ACL) reconstruction. This was a cohort study that involved 169 patients who underwent single-bundle ACL reconstruction (single surgeon) with 4-stranded MM Gracilis and MM Semi-Tendinosus autografts. Height, weight, body mass index (BMI), gender, race, age and -smoking status were recorded pre-operatively. Intra-operatively, the diameter and functional length of the 4-stranded autograft was recorded. Multiple regression analysis was used to determine the relationship between the anthropometric measurements and the length and diameter of the implanted autografts. The strongest correlation between 4-stranded hamstring autograft diameter was height and weight. This correlation was stronger in females than males. BMI had a moderate correlation with the diameter of the graft in females. Females had a significantly smaller graft both in diameter and length when compared with males. Linear regression models did not show any significant correlation between hamstring autograft length with height and weight (p>0.05). Simple regression analysis demonstrated that height and weight can be used to predict hamstring graft diameter. The following regression equation was obtained for females: Graft diameter=0.012+0.034*Height+0.026*Weight (R2=0.358, p=0.004) The following regression equation was obtained for males: Graft diameter=5.130+0.012*Height+0.007*Weight (R2=0.086, p=0.002). Pre-operative anthropometric data has a positive correlation with the diameter of 4 stranded hamstring autografts but no significant correlation with the length. This data can be utilised to predict the autograft diameter and may be useful for pre-operative planning and patient counseling for graft selection.

  2. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Estimating verbal fluency and naming ability from the test of premorbid functioning and demographic variables: Regression equations derived from a regional UK sample.

    PubMed

    Jenkinson, Toni-Marie; Muncer, Steven; Wheeler, Miranda; Brechin, Don; Evans, Stephen

    2018-06-01

    Neuropsychological assessment requires accurate estimation of an individual's premorbid cognitive abilities. Oral word reading tests, such as the test of premorbid functioning (TOPF), and demographic variables, such as age, sex, and level of education, provide a reasonable indication of premorbid intelligence, but their ability to predict other related cognitive abilities is less well understood. This study aimed to develop regression equations, based on the TOPF and demographic variables, to predict scores on tests of verbal fluency and naming ability. A sample of 119 healthy adults provided demographic information and were tested using the TOPF, FAS, animal naming test (ANT), and graded naming test (GNT). Multiple regression analyses, using the TOPF and demographics as predictor variables, were used to estimate verbal fluency and naming ability test scores. Change scores and cases of significant impairment were calculated for two clinical samples with diagnosed neurological conditions (TBI and meningioma) using the method in Knight, McMahon, Green, and Skeaff (). Demographic variables provided a significant contribution to the prediction of all verbal fluency and naming ability test scores; however, adding TOPF score to the equation considerably improved prediction beyond that afforded by demographic variables alone. The percentage of variance accounted for by demographic variables and/or TOPF score varied from 19 per cent (FAS), 28 per cent (ANT), and 41 per cent (GNT). Change scores revealed significant differences in performance in the clinical groups, particularity the TBI group. Demographic variables, particularly education level, and scores on the TOPF should be taken into consideration when interpreting performance on tests of verbal fluency and naming ability. © 2017 The British Psychological Society.

  4. Flood-Frequency Estimates for Streams on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i, State of Hawai`i

    USGS Publications Warehouse

    Oki, Delwyn S.; Rosa, Sarah N.; Yeung, Chiu W.

    2010-01-01

    This study provides an updated analysis of the magnitude and frequency of peak stream discharges in Hawai`i. Annual peak-discharge data collected by the U.S. Geological Survey during and before water year 2008 (ending September 30, 2008) at stream-gaging stations were analyzed. The existing generalized-skew value for the State of Hawai`i was retained, although three methods were used to evaluate whether an update was needed. Regional regression equations were developed for peak discharges with 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated streams (those for which peak discharges are not affected to a large extent by upstream reservoirs, dams, diversions, or other structures) in areas with less than 20 percent combined medium- and high-intensity development on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i. The generalized-least-squares (GLS) regression equations relate peak stream discharge to quantified basin characteristics (for example, drainage-basin area and mean annual rainfall) that were determined using geographic information system (GIS) methods. Each of the islands of Kaua`i,O`ahu, Moloka`i, Maui, and Hawai`i was divided into two regions, generally corresponding to a wet region and a dry region. Unique peak-discharge regression equations were developed for each region. The regression equations developed for this study have standard errors of prediction ranging from 16 to 620 percent. Standard errors of prediction are greatest for regression equations developed for leeward Moloka`i and southern Hawai`i. In general, estimated 100-year peak discharges from this study are lower than those from previous studies, which may reflect the longer periods of record used in this study. Each regression equation is valid within the range of values of the explanatory variables used to develop the equation. The regression equations were developed using peak-discharge data from streams that are mainly unregulated, and they should not be used to estimate peak discharges in regulated streams. Use of a regression equation beyond its limits will produce peak-discharge estimates with unknown error and should therefore be avoided. Improved estimates of the magnitude and frequency of peak discharges in Hawai`i will require continued operation of existing stream-gaging stations and operation of additional gaging stations for areas such as Moloka`i and Hawai`i, where limited stream-gaging data are available.

  5. Techniques for estimating streamflow characteristics in the Eastern and Interior coal provinces of the United States

    USGS Publications Warehouse

    Wetzel, Kim L.; Bettandorff, J.M.

    1986-01-01

    Techniques are presented for estimating various streamflow characteristics, such as peak flows, mean monthly and annual flows, flow durations, and flow volumes, at ungaged sites on unregulated streams in the Eastern Coal region. Streamflow data and basin characteristics for 629 gaging stations were used to develop multiple-linear-regression equations. Separate equations were developed for the Eastern and Interior Coal Provinces. Drainage area is an independent variable common to all equations. Other variables needed, depending on the streamflow characteristic, are mean annual precipitation, mean basin elevation, main channel length, basin storage, main channel slope, and forest cover. A ratio of the observed 50- to 90-percent flow durations was used in the development of relations to estimate low-flow frequencies in the Eastern Coal Province. Relations to estimate low flows in the Interior Coal Province are not presented because the standard errors were greater than 0.7500 log units and were considered to be of poor reliability.

  6. Bone mineral density and correlation factor analysis in normal Taiwanese children.

    PubMed

    Shu, San-Ging

    2007-01-01

    Our aim was to establish reference data and linear regression equations for lumbar bone mineral density (BMD) in normal Taiwanese children. Several influencing factors of lumbar BMD were investigated. Two hundred fifty-seven healthy children were recruited from schools, 136 boys and 121 girls, aged 4-18 years were enrolled on a voluntary basis with written consent. Their height, weight, blood pressure, puberty stage, bone age and lumbar BMD (L2-4) by dual energy x-ray absorptiometry (DEXA) were measured. Data were analyzed using Pearson correlation and stepwise regression tests. All measurements increased with age. Prior to age 8, there was no gender difference. Parameters such as height, weight, and bone age (BA) in girls surpassed boys between ages 8-13 without statistical significance (p> or =0.05). This was reversed subsequently after age 14 in height (p<0.05). BMD difference had the same trend but was not statistically significant either. The influencing power of puberty stage and bone age over BMD was almost equal to or higher than that of height and weight. All the other factors correlated with BMD to variable powers. Multiple linear regression equations for boys and girls were formulated. BMD reference data is provided and can be used to monitor childhood pathological conditions. However, BMD in those with abnormal bone age or pubertal development could need modifications to ensure accuracy.

  7. Production of Selected Key Ductile Iron Castings Used in Large-Scale Windmills

    NASA Astrophysics Data System (ADS)

    Pan, Yung-Ning; Lin, Hsuan-Te; Lin, Chi-Chia; Chang, Re-Mo

    Both the optimal alloy design and microstructures that conform to the mechanical properties requirements of selected key components used in large-scale windmills have been established in this study. The target specifications in this study are EN-GJS-350-22U-LT, EN-GJS-350-22U-LT and EN-GJS-700-2U. In order to meet the impact requirement of spec. EN-GJS-350-22U-LT, the Si content should be kept below 1.97%, and also the maximum pearlite content shouldn't exceed 7.8%. On the other hand, Si content below 2.15% and pearlite content below 12.5% were registered for specification EN-GJS-400-18U-LT. On the other hand, the optimal alloy designs that can comply with specification EN-GJS-700-2U include 0.25%Mn+0.6%Cu+0.05%Sn, 0.25%Mn+0.8%Cu+0.01%Sn and 0.45%Mn+0.6%Cu+0.01%Sn. Furthermore, based upon the experimental results, multiple regression analyses have been performed to correlate the mechanical properties with chemical compositions and microstructures. The derived regression equations can be used to attain the optimal alloy design for castings with target specifications. Furthermore, by employing these regression equations, the mechanical properties can be predicted based upon the chemical compositions and microstructures of cast irons.

  8. Cooperation without Culture? The Null Effect of Generalized Trust on Intentional Homicide: A Cross-National Panel Analysis, 1995–2009

    PubMed Central

    Robbins, Blaine

    2013-01-01

    Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation. PMID:23527211

  9. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

    PubMed

    Ding, A Adam; Wu, Hulin

    2014-10-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

  10. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression

    PubMed Central

    Ding, A. Adam; Wu, Hulin

    2015-01-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093

  11. Londrina Activities of Daily Living Protocol: Reproducibility, Validity, and Reference Values in Physically Independent Adults Age 50 Years and Older.

    PubMed

    Paes, Thaís; Belo, Letícia Fernandes; da Silva, Diego Rodrigues; Morita, Andrea Akemi; Donária, Leila; Furlanetto, Karina Couto; Sant'Anna, Thaís; Pitta, Fabio; Hernandes, Nidia Aparecida

    2017-03-01

    It is important to assess activities of daily living (ADL) in older adults due to impairment of independence and quality of life. However, there is no objective and standardized protocol available to assess this outcome. Thus, the aim of this study was to verify the reproducibility and validity of a new protocol for ADL assessment applied in physically independent adults age ≥50 y, the Londrina ADL protocol, and to establish an equation to predict reference values of the Londrina ADL protocol. Ninety-three physically independent adults age ≥50 y had their performance in ADL evaluated by registering the time spent to conclude the protocol. The protocol was performed twice. The 6-min walk test, which assesses functional exercise capacity, was used as a validation criterion. A multiple linear regression model was applied, including anthropometric and demographic variables that correlated with the protocol, to establish an equation to predict the protocol's reference values. In general, the protocol was reproducible (intraclass correlation coefficient 0.91). The average difference between the first and second protocol was 5.3%. The new protocol was valid to assess ADL performance in the studied subjects, presenting a moderate correlation with the 6-min walk test (r = -0.53). The time spent to perform the protocol correlated significantly with age (r = 0.45) but neither with weight (r = -0.17) nor with height (r = -0.17). A model of stepwise multiple regression including sex and age showed that age was the only determinant factor to the Londrina ADL protocol, explaining 21% ( P < .001) of its variability. The derived reference equation was: Londrina ADL protocol pred (s) = 135.618 + (3.102 × age [y]). The Londrina ADL protocol was reproducible and valid in physically independent adults age ≥50 y. A reference equation for the protocol was established including only age as an independent variable (r 2 = 0.21), allowing a better interpretation of the protocol's results in clinical practice. Copyright © 2017 by Daedalus Enterprises.

  12. Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2017-01-13

    The U.S. Geological Survey, in cooperation with the Georgia Department of Natural Resources, Environmental Protection Division, developed regional regression equations for estimating selected low-flow frequency and mean annual flow statistics for ungaged streams in north Georgia that are not substantially affected by regulation, diversions, or urbanization. Selected low-flow frequency statistics and basin characteristics for 56 streamgage locations within north Georgia and 75 miles beyond the State’s borders in Alabama, Tennessee, North Carolina, and South Carolina were combined to form the final dataset used in the regional regression analysis. Because some of the streamgages in the study recorded zero flow, the final regression equations were developed using weighted left-censored regression analysis to analyze the flow data in an unbiased manner, with weights based on the number of years of record. The set of equations includes the annual minimum 1- and 7-day average streamflow with the 10-year recurrence interval (referred to as 1Q10 and 7Q10), monthly 7Q10, and mean annual flow. The final regional regression equations are functions of drainage area, mean annual precipitation, and relief ratio for the selected low-flow frequency statistics and drainage area and mean annual precipitation for mean annual flow. The average standard error of estimate was 13.7 percent for the mean annual flow regression equation and ranged from 26.1 to 91.6 percent for the selected low-flow frequency equations.The equations, which are based on data from streams with little to no flow alterations, can be used to provide estimates of the natural flows for selected ungaged stream locations in the area of Georgia north of the Fall Line. The regression equations are not to be used to estimate flows for streams that have been altered by the effects of major dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, or wastewater discharges. The regression equations should be used only for ungaged sites with drainage areas between 1.67 and 576 square miles, mean annual precipitation between 47.6 and 81.6 inches, and relief ratios between 0.146 and 0.607; these are the ranges of the explanatory variables used to develop the equations. An attempt was made to develop regional regression equations for the area of Georgia south of the Fall Line by using the same approach used during this study for north Georgia; however, the equations resulted with high average standard errors of estimates and poorly predicted flows below 0.5 cubic foot per second, which may be attributed to the karst topography common in that area.The final regression equations developed from this study are planned to be incorporated into the U.S. Geological Survey StreamStats program. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. The StreamStats program provides streamflow statistics and basin characteristics for U.S. Geological Survey streamgage locations and ungaged sites of interest. StreamStats also can compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in Georgia.

  13. Validity of one-repetition maximum predictive equations in men with spinal cord injury.

    PubMed

    Ribeiro Neto, F; Guanais, P; Dornelas, E; Coutinho, A C B; Costa, R R G

    2017-10-01

    Cross-sectional study. The study aimed (a) to test the cross-validation of current one-repetition maximum (1RM) predictive equations in men with spinal cord injury (SCI); (b) to compare the current 1RM predictive equations to a newly developed equation based on the 4- to 12-repetition maximum test (4-12RM). SARAH Rehabilitation Hospital Network, Brasilia, Brazil. Forty-five men aged 28.0 years with SCI between C6 and L2 causing complete motor impairment were enrolled in the study. Volunteers were tested, in a random order, in 1RM test or 4-12RM with 2-3 interval days. Multiple regression analysis was used to generate an equation for predicting 1RM. There were no significant differences between 1RM test and the current predictive equations. ICC values were significant and were classified as excellent for all current predictive equations. The predictive equation of Lombardi presented the best Bland-Altman results (0.5 kg and 12.8 kg for mean difference and interval range around the differences, respectively). The two created equation models for 1RM demonstrated the same and a high adjusted R 2 (0.971, P<0.01), but different SEE of measured 1RM (2.88 kg or 5.4% and 2.90 kg or 5.5%). All 1RM predictive equations are accurate to assess individuals with SCI at the bench press exercise. However, the predictive equation of Lombardi presented the best associated cross-validity results. A specific 1RM prediction equation was also elaborated for individuals with SCI. The created equation should be tested in order to verify whether it presents better accuracy than the current ones.

  14. Resting energy expenditure prediction in recreational athletes of 18-35 years: confirmation of Cunningham equation and an improved weight-based alternative.

    PubMed

    ten Haaf, Twan; Weijs, Peter J M

    2014-01-01

    Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. 90 (53 M, 37 F) adult athletes, exercising on average 9.1 ± 5.0 hours a week and 5.0 ± 1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results: The Cunningham equation and the new weight-based equation REE(kJ / d) = 49.940* weight(kg) + 2459.053* height(m) - 34.014* age(y) + 799.257* sex(M = 1,F = 0) + 122.502 and the new FFM-based equation REE(kJ / d) = 95.272*FFM(kg) + 2026.161 performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition.

  15. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    PubMed

    Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert

    2009-10-27

    Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.

  16. Hydrology and trout populations of cold-water rivers of Michigan and Wisconsin

    USGS Publications Warehouse

    Hendrickson, G.E.; Knutilla, R.L.

    1974-01-01

    Statistical multiple-regression analyses showed significant relationships between trout populations and hydrologic parameters. Parameters showing the higher levels of significance were temperature, hardness of water, percentage of gravel bottom, percentage of bottom vegetation, variability of streamflow, and discharge per unit drainage area. Trout populations increase with lower levels of annual maximum water temperatures, with increase in water hardness, and with increase in percentage of gravel and bottom vegetation. Trout populations also increase with decrease in variability of streamflow, and with increase in discharge per unit drainage area. Most hydrologic parameters were significant when evaluated collectively, but no parameter, by itself, showed a high degree of correlation with trout populations in regression analyses that included all the streams sampled. Regression analyses of stream segments that were restricted to certain limits of hardness, temperature, or percentage of gravel bottom showed improvements in correlation. Analyses of trout populations, in pounds per acre and pounds per mile and hydrologic parameters resulted in regression equations from which trout populations could be estimated with standard errors of 89 and 84 per cent, respectively.

  17. Estimation of magnitude and frequency of floods for streams in Puerto Rico : new empirical models

    USGS Publications Warehouse

    Ramos-Gines, Orlando

    1999-01-01

    Flood-peak discharges and frequencies are presented for 57 gaged sites in Puerto Rico for recurrence intervals ranging from 2 to 500 years. The log-Pearson Type III distribution, the methodology recommended by the United States Interagency Committee on Water Data, was used to determine the magnitude and frequency of floods at the gaged sites having 10 to 43 years of record. A technique is presented for estimating flood-peak discharges at recurrence intervals ranging from 2 to 500 years for unregulated streams in Puerto Rico with contributing drainage areas ranging from 0.83 to 208 square miles. Loglinear multiple regression analyses, using climatic and basin characteristics and peak-discharge data from the 57 gaged sites, were used to construct regression equations to transfer the magnitude and frequency information from gaged to ungaged sites. The equations have contributing drainage area, depth-to-rock, and mean annual rainfall as the basin and climatic characteristics in estimating flood peak discharges. Examples are given to show a step-by-step procedure in calculating a 100-year flood at a gaged site, an ungaged site, a site near a gaged location, and a site between two gaged sites.

  18. Lagtime relations for urban streams in Georgia

    USGS Publications Warehouse

    Inman, Ernest J.

    2000-01-01

    Urban flood hydrographs are needed for the design of many highway drainage structures, embankments, and entrances to detention ponds. The three components that are needed to simulate urban flood hydrographs at ungaged sites are the design flood, the dimensionless hydrograph, and lagtime. The design flood and the dimensionless hydrograph have been presented in earlier studies for urban streams in Georgia. The objective of this study was to develop equations for estimating lagtime for urban streams in Georgia. Lagtimes were computed for 329 floods at 69 urban gaging stations in 11 cities in Georgia. These data were used to compute an average lagtime for each gaging station. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics, of which drainage area, slope, and impervious area were found to be significant. A qualitative variable was used to account for a geographical bias in flood-frequency region 4, a small area of southwestern Georgia. Information from this report can be used to simulate a flood hydrograph using a dimensionless hydrograph, the design flood, and the lagtime obtained from regression equations for any urban site with less than a 25-square-mile drainage area in Georgia.

  19. Validation of Core Temperature Estimation Algorithm

    DTIC Science & Technology

    2016-01-29

    plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.

  20. A local equation for differential diagnosis of β-thalassemia trait and iron deficiency anemia by logistic regression analysis in Southeast Iran.

    PubMed

    Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim

    2014-01-01

    The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.

  1. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.

  2. Flood-frequency prediction methods for unregulated streams of Tennessee, 2000

    USGS Publications Warehouse

    Law, George S.; Tasker, Gary D.

    2003-01-01

    Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.

  3. Estimation of flood discharges at selected annual exceedance probabilities for unregulated, rural streams in Vermont, with a section on Vermont regional skew regression

    USGS Publications Warehouse

    Olson, Scott A.; with a section by Veilleux, Andrea G.

    2014-01-01

    This report provides estimates of flood discharges at selected annual exceedance probabilities (AEPs) for streamgages in and adjacent to Vermont and equations for estimating flood discharges at AEPs of 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent (recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-years, respectively) for ungaged, unregulated, rural streams in Vermont. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 145 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, percentage of wetland area, and the basin-wide mean of the average annual precipitation. The average standard errors of prediction for estimating the flood discharges at the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEP with these equations are 34.9, 36.0, 38.7, 42.4, 44.9, 47.3, 50.7, and 55.1 percent, respectively. Flood discharges at selected AEPs for streamgages were computed by using the Expected Moments Algorithm. To improve estimates of the flood discharges for given exceedance probabilities at streamgages in Vermont, a new generalized skew coefficient was developed. The new generalized skew for the region is a constant, 0.44. The mean square error of the generalized skew coefficient is 0.078. This report describes a technique for using results from the regression equations to adjust an AEP discharge computed from a streamgage record. This report also describes a technique for using a drainage-area adjustment to estimate flood discharge at a selected AEP for an ungaged site upstream or downstream from a streamgage. The final regression equations and the flood-discharge frequency data used in this study will be available in StreamStats. StreamStats is a World Wide Web application providing automated regression-equation solutions for user-selected sites on streams.

  4. Do dual-route models accurately predict reading and spelling performance in individuals with acquired alexia and agraphia?

    PubMed

    Rapcsak, Steven Z; Henry, Maya L; Teague, Sommer L; Carnahan, Susan D; Beeson, Pélagie M

    2007-06-18

    Coltheart and co-workers [Castles, A., Bates, T. C., & Coltheart, M. (2006). John Marshall and the developmental dyslexias. Aphasiology, 20, 871-892; Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256] have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper, we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult neurological patients with acquired alexia and agraphia. These findings provide empirical support for dual-route theories of written language processing.

  5. Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)

    PubMed Central

    Churchill, Morgan; Clementz, Mark T; Kohno, Naoki

    2014-01-01

    Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814

  6. The National Flood Frequency Program, version 3 : a computer program for estimating magnitude and frequency of floods for ungaged sites

    USGS Publications Warehouse

    Ries, Kernell G.; Crouse, Michele Y.

    2002-01-01

    For many years, the U.S. Geological Survey (USGS) has been developing regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, these equations have been developed on a Statewide or metropolitan-area basis as part of cooperative study programs with specific State Departments of Transportation. In 1994, the USGS released a computer program titled the National Flood Frequency Program (NFF), which compiled all the USGS available regression equations for estimating the magnitude and frequency of floods in the United States and Puerto Rico. NFF was developed in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency. Since the initial release of NFF, the USGS has produced new equations for many areas of the Nation. A new version of NFF has been developed that incorporates these new equations and provides additional functionality and ease of use. NFF version 3 provides regression-equation estimates of flood-peak discharges for unregulated rural and urban watersheds, flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals. The Program also provides weighting techniques to improve estimates of flood-peak discharges for gaging stations and ungaged sites. The information provided by NFF should be useful to engineers and hydrologists for planning and design applications. This report describes the flood-regionalization techniques used in NFF and provides guidance on the applicability and limitations of the techniques. The NFF software and the documentation for the regression equations included in NFF are available at http://water.usgs.gov/software/nff.html.

  7. No evidence of reaction time slowing in autism spectrum disorder.

    PubMed

    Ferraro, F Richard

    2016-01-01

    A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n = 964) and controls (n = 1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as a way to examine any generalized simple reaction time/choice reaction time slowing exhibited by the autism spectrum disorder group. The resulting regression equation was Y (autism spectrum disorder) = 0.99 × (control) + 87.93, which accounted for 92.3% of the variance. These results suggest that there are little if any simple reaction time/choice reaction time slowing in this sample of individual with autism spectrum disorder, in comparison with controls. While many cognitive and information processing domains are compromised in autism spectrum disorder, it appears that simple reaction time/choice reaction time remain relatively unaffected in autism spectrum disorder. © The Author(s) 2014.

  8. Empirical models based on the universal soil loss equation fail to predict sediment discharges from Chesapeake Bay catchments.

    PubMed

    Boomer, Kathleen B; Weller, Donald E; Jordan, Thomas E

    2008-01-01

    The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.

  9. Does the Aristotle Score predict outcome in congenital heart surgery?

    PubMed

    Kang, Nicholas; Tsang, Victor T; Elliott, Martin J; de Leval, Marc R; Cole, Timothy J

    2006-06-01

    The Aristotle Score has been proposed as a measure of 'complexity' in congenital heart surgery, and a tool for comparing performance amongst different centres. To date, however, it remains unvalidated. We examined whether the Basic Aristotle Score was a useful predictor of mortality following open-heart surgery, and compared it to the Risk Adjustment in Congenital Heart Surgery (RACHS-1) system. We also examined the ability of the Aristotle Score to measure performance. The Basic Aristotle Score and RACHS-1 risk categories were assigned retrospectively to 1085 operations involving cardiopulmonary bypass in children less than 18 years of age. Multiple logistic regression analysis was used to determine the significance of the Aristotle Score and RACHS-1 category as independent predictors of in-hospital mortality. Operative performance was calculated using the Aristotle equation: performance = complexity x survival. Multiple logistic regression identified RACHS-1 category to be a powerful predictor of mortality (Wald 17.7, p < 0.0001), whereas Aristotle Score was only weakly associated with mortality (Wald 4.8, p = 0.03). Age at operation and bypass time were also highly significant predictors of postoperative death (Wald 13.7 and 33.8, respectively, p < 0.0001 for both). Operative performance was measured at 7.52 units. The Basic Aristotle Score was only weakly associated with postoperative mortality in this series. Operative performance appeared to be inflated by the fact that the overall complexity of cases was relatively high in this series. An alternative equation (performance = complexity/mortality) is proposed as a fairer and more logical method of risk-adjustment.

  10. Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks

    NASA Astrophysics Data System (ADS)

    Smith, Eric; Krishnamurthy, Supriya

    2017-12-01

    Stochastic chemical reaction networks (CRNs) are complex systems that combine the features of concurrent transformation of multiple variables in each elementary reaction event and nonlinear relations between states and their rates of change. Most general results concerning CRNs are limited to restricted cases where a topological characteristic known as deficiency takes a value 0 or 1, implying uniqueness and positivity of steady states and surprising, low-information forms for their associated probability distributions. Here we derive equations of motion for fluctuation moments at all orders for stochastic CRNs at general deficiency. We show, for the standard base case of proportional sampling without replacement (which underlies the mass-action rate law), that the generator of the stochastic process acts on the hierarchy of factorial moments with a finite representation. Whereas simulation of high-order moments for many-particle systems is costly, this representation reduces the solution of moment hierarchies to a complexity comparable to solving a heat equation. At steady states, moment hierarchies for finite CRNs interpolate between low-order and high-order scaling regimes, which may be approximated separately by distributions similar to those for deficiency-zero networks and connected through matched asymptotic expansions. In CRNs with multiple stable or metastable steady states, boundedness of high-order moments provides the starting condition for recursive solution downward to low-order moments, reversing the order usually used to solve moment hierarchies. A basis for a subset of network flows defined by having the same mean-regressing property as the flows in deficiency-zero networks gives the leading contribution to low-order moments in CRNs at general deficiency, in a 1 /n expansion in large particle numbers. Our results give a physical picture of the different informational roles of mean-regressing and non-mean-regressing flows and clarify the dynamical meaning of deficiency not only for first-moment conditions but for all orders in fluctuations.

  11. Prediction of the true digestible amino acid contents from the chemical composition of sorghum grain for poultry.

    PubMed

    Ebadi, M R; Sedghi, M; Golian, A; Ahmadi, H

    2011-10-01

    Accurate knowledge of true digestible amino acid (TDAA) contents of feedstuffs is necessary to accurately formulate poultry diets for profitable production. Several experimental approaches that are highly expensive and time consuming have been used to determine available amino acids. Prediction of the nutritive value of a feed ingredient from its chemical composition via regression methodology has been attempted for many years. The artificial neural network (ANN) model is a powerful method that may describe the relationship between digestible amino acid contents and chemical composition. Therefore, multiple linear regressions (MLR) and ANN models were developed for predicting the TDAA contents of sorghum grain based on chemical composition. A precision-fed assay trial using cecectomized roosters was performed to determine the TDAA contents in 48 sorghum samples from 12 sorghum varieties differing in chemical composition. The input variables for both MLR and ANN models were CP, ash, crude fiber, ether extract, and total phenols whereas the output variable was each individual TDAA for every sample. The results of this study revealed that it is possible to satisfactorily estimate the TDAA of sorghum grain through its chemical composition. The chemical composition of sorghum grain seems to highly influence the TDAA contents when considering components such as CP, crude fiber, ether extract, ash and total phenols. It is also possible to estimate the TDAA contents through multiple regression equations with reasonable accuracy depending on composition. However, a more satisfactory prediction may be achieved via ANN for all amino acids. The R(2) values for the ANN model corresponding to testing and training parameters showed a higher accuracy of prediction than equations established by the MLR method. In addition, the current data confirmed that chemical composition, often considered in total amino acid prediction, could be also a useful predictor of true digestible values of selected amino acids for poultry.

  12. A New Multi-Basin Calibration for Estimating Paleo-Temperature Using Mg/Ca from Tests of Neogloboquadrina dutertrei

    NASA Astrophysics Data System (ADS)

    Collins, M. S.; Hertzberg, J. E.; Mekik, F.; Schmidt, M. W.

    2017-12-01

    Based on the thermodynamics of solid-solution substitution of Mg for Ca in biogenic calcite, magnesium to calcium ratios in planktonic foraminifera have been proposed as a means by which variations in habitat water temperatures can be reconstructed. Doing this accurately has been a problem, however, as we demonstrate that various calibration equations provide disparate temperature estimates from the same Mg/Ca dataset. We examined both new and published data to derive a globally applicable temperature-Mg/Ca relationship and from this relationship to accurately predict habitat depth for Neogloboquadrina dutertrei - a deep chlorophyll maximum dweller. N. dutertrei samples collected from Atlantic core tops were analyzed for trace element compositions at Texas A&M University, and the measured Mg/Ca ratios were used to predict habitat temperatures using multiple pre-existing calibration equations. When combining Atlantic and previously published Pacific Mg/Ca datasets for N. dutertrei, a notable dissolution effect was evident. To overcome this issue, we used the G. menardii Fragmentation Index (MFI) to account for dissolution and generated a multi-basin temperature equation using multiple linear regression to predict habitat temperature. However, the correlations between Mg/Ca and temperature, as well as the calculated MFI percent dissolved, suggest that N. dutertrei Mg/Ca ratios are affected equally by both variables. While correcting for dissolution makes habitat depth estimation more accurate, the lack of a definitively strong correlation between Mg/Ca and temperature is likely an effect of variable habitat depth for this species because most calibration equations have assumed a uniform habitat depth for this taxon.

  13. Age Estimation of Infants Through Metric Analysis of Developing Anterior Deciduous Teeth.

    PubMed

    Viciano, Joan; De Luca, Stefano; Irurita, Javier; Alemán, Inmaculada

    2018-01-01

    This study provides regression equations for estimation of age of infants from the dimensions of their developing deciduous teeth. The sample comprises 97 individuals of known sex and age (62 boys, 35 girls), aged between 2 days and 1,081 days. The age-estimation equations were obtained for the sexes combined, as well as for each sex separately, thus including "sex" as an independent variable. The values of the correlations and determination coefficients obtained for each regression equation indicate good fits for most of the equations obtained. The "sex" factor was statistically significant when included as an independent variable in seven of the regression equations. However, the "sex" factor provided an advantage for age estimation in only three of the equations, compared to those that did not include "sex" as a factor. These data suggest that the ages of infants can be accurately estimated from measurements of their developing deciduous teeth. © 2017 American Academy of Forensic Sciences.

  14. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  15. The first reference equations for the 6-minute walk distance over a 10 m course.

    PubMed

    Beekman, Emmylou; Mesters, Ilse; Gosselink, Rik; Klaassen, Mariska P M; Hendriks, Erik J M; Van Schayck, Onno C P; de Bie, Rob A

    2014-09-01

    As primary care practice space is mostly limited to 10 m, the 6-minute walk test (6MWT) over a 10 m course is a frequently used alternative to evaluate patients' performance in COPD. Considering that course length significantly affects distance walked in 6 minutes (6MWD), this study aims to develop appropriate reference equations for the 10 m 6MWT. 181 healthy subjects, aged 40-90 years, performed two standardised 6MWTs over a straight 10 m course in a cross-sectional study. Average distance achieved was 578±108 m and differed between males and females (p<0.001). Resulting sex-specific reference equations from multiple regression analysis included age, body mass index and change in heart rate, explaining 62% of the variance in 6MWD for males and 71% for females. The presented reference equations are the first to evaluate 6MWD over a 10 m course and expand the usefulness of the 6MWT. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    1997-01-01

    Statewide regression equations for Oklahoma were determined for estimating peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years for ungaged sites on natural unregulated streams. The most significant independent variables required to estimate peak-streamflow frequency for natural unregulated streams in Oklahoma are contributing drainage area, main-channel slope, and mean-annual precipitation. The regression equations are applicable for watersheds with drainage areas less than 2,510 square miles that are not affected by regulation from manmade works. Limitations on the use of the regression relations and the reliability of regression estimates for natural unregulated streams are discussed. Log-Pearson Type III analysis information, basin and climatic characteristics, and the peak-stream-flow frequency estimates for 251 gaging stations in Oklahoma and adjacent states are listed. Techniques are presented to make a peak-streamflow frequency estimate for gaged sites on natural unregulated streams and to use this result to estimate a nearby ungaged site on the same stream. For ungaged sites on urban streams, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. For ungaged sites on streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. The statewide regression equations are adjusted by substituting the drainage area below the floodwater retarding structures, or drainage area that represents the percentage of the unregulated basin, in the contributing drainage area parameter to obtain peak-streamflow frequency estimates.

  17. An Analysis of Some Observations of Thermal Comfort in an Equatorial Climate

    PubMed Central

    Webb, C. G.

    1959-01-01

    The analysis is introduced by a brief account of the development of work on thermal comfort. The observations, which are fully described in relation to the interior climates which were experienced, were made in Singapore in 1949-50. The climate of Singapore is typical of the equator, being warm, damp and windless; and the annual variation is almost negligible. Buildings are unheated, of an open type, and shaded from the sun and sky. A multiple regression equation has been derived, giving the thermal effect on a number of subjects of variations in the air temperature, the water vapour pressure, and the air velocity within the ranges experienced. The implications of the equation are discussed, and a climatic index is derived from it which is similar in definition to the widely used “effective temperature” scale, but shows a better correlation with thermal sensation. The new index is named the Singapore index. At a further stage the thermal sensation scale is simplified for the purpose of probit analysis. The probit regressions of discomfort due to warmth and cold are separately given in relation to the new index, and are combined to yield a thermal comfort graph from which the optimum is obtained and explored. A comfort chart for the rapid assessment of these humid climates is supplied, and an alternative form of the index equation is given which is more suitable for rapid calculation. It appears desirable in an equatorial climate to attempt to minimize discomfort by allowing to some extent for individual thermal requirements, and the benefits of a suitable climatic spread within a room are described. PMID:13843256

  18. Speciation distribution and mass balance of copper and zinc in urban rain, sediments, and road runoff.

    PubMed

    Zuo, Xiaojun; Fu, Dafang; Li, He

    2012-11-01

    Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.

  19. The Bland-Altman Method Should Not Be Used in Regression Cross-Validation Studies

    ERIC Educational Resources Information Center

    O'Connor, Daniel P.; Mahar, Matthew T.; Laughlin, Mitzi S.; Jackson, Andrew S.

    2011-01-01

    The purpose of this study was to demonstrate the bias in the Bland-Altman (BA) limits of agreement method when it is used to validate regression models. Data from 1,158 men were used to develop three regression equations to estimate maximum oxygen uptake (R[superscript 2] = 0.40, 0.61, and 0.82, respectively). The equations were evaluated in a…

  20. Arterial blood gas reference values for sea level and an altitude of 1,400 meters.

    PubMed

    Crapo, R O; Jensen, R L; Hegewald, M; Tashkin, D P

    1999-11-01

    Blood gas measurements were collected on healthy lifetime nonsmokers at sea level (n = 96) and at an altitude of 1,400 meters (n = 243) to establish reference equations. At each study site, arterial blood samples were analyzed in duplicate on two separate blood gas analyzers and CO-oximeters. Arterial blood gas variables included Pa(O(2)), Pa(CO(2)), pH, and calculated alveolar-arterial PO(2) difference (AaPO(2)). CO-oximeter variables were Hb, COHb, MetHb, and Sa(O(2)). Subjects were 18 to 81 yr of age with 166 male and 173 female. Outlier data were excluded from multiple regression analysis, and reference equations were fitted to the data in two ways: (1) best fit using linear, squared, and cross-product terms; (2) simple equations, including only the variables that explained at least 3% of the variance. Two sets of equations were created: (1) using only the sea level data and (2) using the combined data with barometric pressure as an independent variable. Comparisons with earlier studies revealed small but significant differences; the decline in Pa(O(2)) with age at each altitude was consistent with most previous studies. At sea level, the equation that included barometric pressure predicted Pa(O(2)) slightly better than the sea level specific equation. The inclusion of barometric pressure in the equations allows better prediction of blood gas reference values at sea level and at altitudes as high as 1,400 meters.

  1. Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.; Veilleux, Andrea G.

    2014-01-01

    Regression equations, which allow predictions of n-day flood-duration flows for selected annual exceedance probabilities at ungaged sites, were developed using generalized least-squares regression and flood-duration flow frequency estimates at 56 streamgaging stations within a single, relatively uniform physiographic region in the central part of Arizona, between the Colorado Plateau and Basin and Range Province, called the Transition Zone. Drainage area explained most of the variation in the n-day flood-duration annual exceedance probabilities, but mean annual precipitation and mean elevation were also significant variables in the regression models. Standard error of prediction for the regression equations varies from 28 to 53 percent and generally decreases with increasing n-day duration. Outside the Transition Zone there are insufficient streamgaging stations to develop regression equations, but flood-duration flow frequency estimates are presented at select streamgaging stations.

  2. Systolic time interval v heart rate regression equations using atropine: reproducibility studies.

    PubMed Central

    Kelman, A W; Sumner, D J; Whiting, B

    1981-01-01

    1. Systolic time intervals (STI) were recorded in six normal male subjects over a period of 3 weeks. On one day per week, each subject received incremental doses of atropine intravenously to increase heart rate, allowing the determination of individual STI v HR regression equations. On the other days STI were recorded with the subjects resting, in the supine position. 2. There were highly significant regression relationships between heart rate and both LVET and QS2, but not between heart rate and PEP. 3. The regression relationships showed little intra-subject variability, but a large degree of inter-subject variability: they proved adequate to correct the STI for the daily fluctuations in heart rate. 4. Administration of small doses of atropine intravenously provides a satisfactory and convenient method of deriving individual STI v HR regression equations which can be applied over a period of weeks. PMID:7248136

  3. Systolic time interval v heart rate regression equations using atropine: reproducibility studies.

    PubMed

    Kelman, A W; Sumner, D J; Whiting, B

    1981-07-01

    1. Systolic time intervals (STI) were recorded in six normal male subjects over a period of 3 weeks. On one day per week, each subject received incremental doses of atropine intravenously to increase heart rate, allowing the determination of individual STI v HR regression equations. On the other days STI were recorded with the subjects resting, in the supine position. 2. There were highly significant regression relationships between heart rate and both LVET and QS2, but not between heart rate and PEP. 3. The regression relationships showed little intra-subject variability, but a large degree of inter-subject variability: they proved adequate to correct the STI for the daily fluctuations in heart rate. 4. Administration of small doses of atropine intravenously provides a satisfactory and convenient method of deriving individual STI v HR regression equations which can be applied over a period of weeks.

  4. A new predictive indicator for development of pressure ulcers in bedridden patients based on common laboratory tests results.

    PubMed

    Hatanaka, N; Yamamoto, Y; Ichihara, K; Mastuo, S; Nakamura, Y; Watanabe, M; Iwatani, Y

    2008-04-01

    Various scales have been devised to predict development of pressure ulcers on the basis of clinical and laboratory data, such as the Braden Scale (Braden score), which is used to monitor activity and skin conditions of bedridden patients. However, none of these scales facilitates clinically reliable prediction. To develop a clinical laboratory data-based predictive equation for the development of pressure ulcers. Subjects were 149 hospitalised patients with respiratory disorders who were monitored for the development of pressure ulcers over a 3-month period. The proportional hazards model (Cox regression) was used to analyse the results of 12 basic laboratory tests on the day of hospitalisation in comparison with Braden score. Pressure ulcers developed in 38 patients within the study period. A Cox regression model consisting solely of Braden scale items showed that none of these items contributed to significantly predicting pressure ulcers. Rather, a combination of haemoglobin (Hb), C-reactive protein (CRP), albumin (Alb), age, and gender produced the best model for prediction. Using the set of explanatory variables, we created a new indicator based on a multiple logistic regression equation. The new indicator showed high sensitivity (0.73) and specificity (0.70), and its diagnostic power was higher than that of Alb, Hb, CRP, or the Braden score alone. The new indicator may become a more useful clinical tool for predicting presser ulcers than Braden score. The new indicator warrants verification studies to facilitate its clinical implementation in the future.

  5. Weather adjustment using seemingly unrelated regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noll, T.A.

    1995-05-01

    Seemingly unrelated regression (SUR) is a system estimation technique that accounts for time-contemporaneous correlation between individual equations within a system of equations. SUR is suited to weather adjustment estimations when the estimation is: (1) composed of a system of equations and (2) the system of equations represents either different weather stations, different sales sectors or a combination of different weather stations and different sales sectors. SUR utilizes the cross-equation error values to develop more accurate estimates of the system coefficients than are obtained using ordinary least-squares (OLS) estimation. SUR estimates can be generated using a variety of statistical software packagesmore » including MicroTSP and SAS.« less

  6. Chronic atrophic gastritis in association with hair mercury level.

    PubMed

    Xue, Zeyun; Xue, Huiping; Jiang, Jianlan; Lin, Bing; Zeng, Si; Huang, Xiaoyun; An, Jianfu

    2014-11-01

    The objective of this study was to explore hair mercury level in association with chronic atrophic gastritis, a precancerous stage of gastric cancer (GC), and thus provide a brand new angle of view on the timely intervention of precancerous stage of GC. We recruited 149 healthy volunteers as controls and 152 patients suffering from chronic gastritis as cases. The controls denied upper gastrointestinal discomforts, and the cases were diagnosed as chronic superficial gastritis (n=68) or chronic atrophic gastritis (n=84). We utilized Mercury Automated Analyzer (NIC MA-3000) to detect hair mercury level of both healthy controls and cases of chronic gastritis. The statistic of measurement data was expressed as mean ± standard deviation, which was analyzed using Levene variance equality test and t test. Pearson correlation analysis was employed to determine associated factors affecting hair mercury levels, and multiple stepwise regression analysis was performed to deduce regression equations. Statistical significance is considered if p value is less than 0.05. The overall hair mercury level was 0.908949 ± 0.8844490 ng/g [mean ± standard deviation (SD)] in gastritis cases and 0.460198 ± 0.2712187 ng/g (mean±SD) in healthy controls; the former level was significantly higher than the latter one (p=0.000<0.01). The hair mercury level in chronic atrophic gastritis subgroup was 1.155220 ± 0.9470246 ng/g (mean ± SD) and that in chronic superficial gastritis subgroup was 0.604732 ± 0.6942509 ng/g (mean ± SD); the former level was significantly higher than the latter level (p<0.01). The hair mercury level in chronic superficial gastritis cases was significantly higher than that in healthy controls (p<0.05). The hair mercury level in chronic atrophic gastritis cases was significantly higher than that in healthy controls (p<0.01). Stratified analysis indicated that the hair mercury level in healthy controls with eating seafood was significantly higher than that in healthy controls without eating seafood (p<0.01) and that the hair mercury level in chronic atrophic gastritis cases was significantly higher than that in chronic superficial gastritis cases (p<0.01). Pearson correlation analysis indicated that eating seafood was most correlated with hair mercury level and positively correlated in the healthy controls and that the severity of gastritis was most correlated with hair mercury level and positively correlated in the gastritis cases. Multiple stepwise regression analysis indicated that the regression equation of hair mercury level in controls could be expressed as 0.262 multiplied the value of eating seafood plus 0.434, the model that was statistically significant (p<0.01). Multiple stepwise regression analysis also indicated that the regression equation of hair mercury level in gastritis cases could be expressed as 0.305 multiplied the severity of gastritis, the model that was also statistically significant (p<0.01). The graphs of regression standardized residual for both controls and cases conformed to normal distribution. The main positively correlated factor affecting the hair mercury level is eating seafood in healthy people whereas the predominant positively correlated factor affecting the hair mercury level is the severity of gastritis in chronic gastritis patients. That is to say, the severity of chronic gastritis is positively correlated with the level of hair mercury. The incessantly increased level of hair mercury possibly reflects the development of gastritis from normal stomach to superficial gastritis and to atrophic gastritis. The detection of hair mercury is potentially a means to predict the severity of chronic gastritis and possibly to insinuate the environmental mercury threat to human health in terms of gastritis or even carcinogenesis.

  7. Development of prediction equations for estimating appendicular skeletal muscle mass in Japanese men and women.

    PubMed

    Furushima, Taishi; Miyachi, Motohiko; Iemitsu, Motoyuki; Murakami, Haruka; Kawano, Hiroshi; Gando, Yuko; Kawakami, Ryoko; Sanada, Kiyoshi

    2017-08-29

    This study aimed to develop and cross-validate prediction equations for estimating appendicular skeletal muscle mass (ASM) and to examine the relationship between sarcopenia defined by the prediction equations and risk factors for cardiovascular diseases (CVD) or osteoporosis in Japanese men and women. Subjects were healthy men and women aged 20-90 years, who were randomly allocated to the following two groups: the development group (D group; 257 men, 913 women) and the cross-validation group (V group; 119 men, 112 women). To develop prediction equations, stepwise multiple regression analyses were performed on data obtained from the D group, using ASM measured by dual-energy X-ray absorptiometry (DXA) as a dependent variable and five easily obtainable measures (age, height, weight, waist circumference, and handgrip strength) as independent variables. When the prediction equations for ASM estimation were applied to the V group, a significant correlation was found between DXA-measured ASM and predicted ASM in both men and women (R 2  = 0.81 and R 2  = 0.72). Our prediction equations had higher R 2 values compared to previously developed equations (R 2  = 0.75-0.59 and R 2  = 0.69-0.40) in both men and women. Moreover, sarcopenia defined by predicted ASM was related to risk factors for osteoporosis and CVD, as well as sarcopenia defined by DXA-measured ASM. In this study, novel prediction equations were developed and cross-validated in Japanese men and women. Our analyses validated the clinical significance of these prediction equations and showed that previously reported equations were not applicable in a Japanese population.

  8. Predicting course performance in freshman and sophomore physics courses: Women are more predictable than men

    NASA Astrophysics Data System (ADS)

    McCammon, Susan; Golden, Jeannie; Wuensch, Karl L.

    This study investigated the extent to which thinking skills and mathematical competency would predict the course performance of freshman and sophomore science majors enrolled in physics courses. Multiple-regression equations revealed that algebra and critical thinking skills were the best overall predictors across several physics courses. Although arithmetic skills, math anxiety, and primary mental abilities scores also correlated with performance, they were redundant with the algebra and critical thinking. The most surprising finding of the study was the differential validity by sex; predictor variables were successful in predicting course performance for women but not for men.

  9. Estimation of instantaneous heat transfer coefficients for a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.

    1987-01-01

    The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.

  10. Analysis of cohort studies with multivariate and partially observed disease classification data.

    PubMed

    Chatterjee, Nilanjan; Sinha, Samiran; Diver, W Ryan; Feigelson, Heather Spencer

    2010-09-01

    Complex diseases like cancers can often be classified into subtypes using various pathological and molecular traits of the disease. In this article, we develop methods for analysis of disease incidence in cohort studies incorporating data on multiple disease traits using a two-stage semiparametric Cox proportional hazards regression model that allows one to examine the heterogeneity in the effect of the covariates by the levels of the different disease traits. For inference in the presence of missing disease traits, we propose a generalization of an estimating equation approach for handling missing cause of failure in competing-risk data. We prove asymptotic unbiasedness of the estimating equation method under a general missing-at-random assumption and propose a novel influence-function-based sandwich variance estimator. The methods are illustrated using simulation studies and a real data application involving the Cancer Prevention Study II nutrition cohort.

  11. Restoration of acidic mine spoils with sewage sludge: II measurement of solids applied

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stucky, D.J.; Zoeller, A.L.

    1980-01-01

    Sewage sludge was incorporated in acidic strip mine spoils at rates equivalent to 0, 224, 336, and 448 dry metric tons (dmt)/ha and placed in pots in a greenhouse. Spoil parameters were determined 48 hours after sludge incorporation, Time Planting (P), and five months after orchardgrass (Dactylis glomerata L.) was planted, Time Harvest (H), in the pots. Parameters measured were: pH, organic matter content (OM), cation exchange capacity (CEC), electrical conductivity (EC) and yield. Values for each parameter were significantly different at the two sampling times. Correlation coefficient values were calculated for all parameters versus rates of applied sewage sludgemore » and all parameters versus each other. Multiple regressions were performed, stepwise, for all parameters versus rates of applied sewage sludge. Equations to predict amounts of sewage sludge incorporated in spoils were derived for individual and multiple parameters. Generally, measurements made at Time P achieved the highest correlation coefficient and multiple correlation coefficient values; therefore, the authors concluded data from Time P had the greatest predictability value. The most important value measured to predict rate of applied sewage sludge was pH and some additional accuracy was obtained by including CEC in equation. This experiment indicated that soil properties can be used to estimate amounts of sewage sludge solids required to reclaim acidic mine spoils and to estimate quantities incorporated.« less

  12. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, M.J.; Addis, R.P.

    1991-04-04

    The Department of Energy (DOE) Environment, Safety and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0--25 mph regression equations than 0--50 mphmore » regression equations. Higher wind speeds were slightly overpredicted by the 0--25 mph regression equations when compared to 0--50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweight the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0--25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.« less

  13. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    NASA Astrophysics Data System (ADS)

    Parker, M. J.; Addis, R. P.

    1991-04-01

    The Department of Energy (DOE) Environment, Safety, and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0-25 mph regression equations than 0-50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0-25 mph regression equations when compared to 0-50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweigh the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0-25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  14. National scale biomass estimators for United States tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2003-01-01

    Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...

  15. Relationship between body composition and postural control in prepubertal overweight/obese children: A cross-sectional study.

    PubMed

    Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier

    2018-02-01

    Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparison of methods for the prediction of human clearance from hepatocyte intrinsic clearance for a set of reference compounds and an external evaluation set.

    PubMed

    Yamagata, Tetsuo; Zanelli, Ugo; Gallemann, Dieter; Perrin, Dominique; Dolgos, Hugues; Petersson, Carl

    2017-09-01

    1. We compared direct scaling, regression model equation and the so-called "Poulin et al." methods to scale clearance (CL) from in vitro intrinsic clearance (CL int ) measured in human hepatocytes using two sets of compounds. One reference set comprised of 20 compounds with known elimination pathways and one external evaluation set based on 17 compounds development in Merck (MS). 2. A 90% prospective confidence interval was calculated using the reference set. This interval was found relevant for the regression equation method. The three outliers identified were justified on the basis of their elimination mechanism. 3. The direct scaling method showed a systematic underestimation of clearance in both the reference and evaluation sets. The "Poulin et al." and the regression equation methods showed no obvious bias in either the reference or evaluation sets. 4. The regression model equation was slightly superior to the "Poulin et al." method in the reference set and showed a better absolute average fold error (AAFE) of value 1.3 compared to 1.6. A larger difference was observed in the evaluation set were the regression method and "Poulin et al." resulted in an AAFE of 1.7 and 2.6, respectively (removing the three compounds with known issues mentioned above). A similar pattern was observed for the correlation coefficient. Based on these data we suggest the regression equation method combined with a prospective confidence interval as the first choice for the extrapolation of human in vivo hepatic metabolic clearance from in vitro systems.

  17. q-Gaussian distributions and multiplicative stochastic processes for analysis of multiple financial time series

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2010-12-01

    This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.

  18. Improving estimates of streamflow characteristics by using Landsat-1 imagery

    USGS Publications Warehouse

    Hollyday, Este F.

    1976-01-01

    Imagery from the first Earth Resources Technology Satellite (renamed Landsat-1) was used to discriminate physical features of drainage basins in an effort to improve equations used to estimate streamflow characteristics at gaged and ungaged sites. Records of 20 gaged basins in the Delmarva Peninsula of Maryland, Delaware, and Virginia were analyzed for 40 statistical streamflow characteristics. Equations relating these characteristics to basin characteristics were obtained by a technique of multiple linear regression. A control group of equations contains basin characteristics derived from maps. An experimental group of equations contains basin characteristics derived from maps and imagery. Characteristics from imagery were forest, riparian (streambank) vegetation, water, and combined agricultural and urban land use. These basin characteristics were isolated photographically by techniques of film-density discrimination. The area of each characteristic in each basin was measured photometrically. Comparison of equations in the control group with corresponding equations in the experimental group reveals that for 12 out of 40 equations the standard error of estimate was reduced by more than 10 percent. As an example, the standard error of estimate of the equation for the 5-year recurrence-interval flood peak was reduced from 46 to 32 percent. Similarly, the standard error of the equation for the mean monthly flow for September was reduced from 32 to 24 percent, the standard error for the 7-day, 2-year recurrence low flow was reduced from 136 to 102 percent, and the standard error for the 3-day, 2-year flood volume was reduced from 30 to 12 percent. It is concluded that data from Landsat imagery can substantially improve the accuracy of estimates of some streamflow characteristics at sites in the Delmarva Peninsula.

  19. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    USGS Publications Warehouse

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.

  20. Isotonic Regression Based-Method in Quantitative High-Throughput Screenings for Genotoxicity

    PubMed Central

    Fujii, Yosuke; Narita, Takeo; Tice, Raymond Richard; Takeda, Shunich

    2015-01-01

    Quantitative high-throughput screenings (qHTSs) for genotoxicity are conducted as part of comprehensive toxicology screening projects. The most widely used method is to compare the dose-response data of a wild-type and DNA repair gene knockout mutants, using model-fitting to the Hill equation (HE). However, this method performs poorly when the observed viability does not fit the equation well, as frequently happens in qHTS. More capable methods must be developed for qHTS where large data variations are unavoidable. In this study, we applied an isotonic regression (IR) method and compared its performance with HE under multiple data conditions. When dose-response data were suitable to draw HE curves with upper and lower asymptotes and experimental random errors were small, HE was better than IR, but when random errors were big, there was no difference between HE and IR. However, when the drawn curves did not have two asymptotes, IR showed better performance (p < 0.05, exact paired Wilcoxon test) with higher specificity (65% in HE vs. 96% in IR). In summary, IR performed similarly to HE when dose-response data were optimal, whereas IR clearly performed better in suboptimal conditions. These findings indicate that IR would be useful in qHTS for comparing dose-response data. PMID:26673567

  1. Estimation of abbreviated mycophenolic acid area under the concentration-time curve during early posttransplant period by limited sampling strategy.

    PubMed

    Mohammadpour, A-H; Nazemian, F; Abtahi, B; Naghibi, M; Gholami, K; Rezaee, S; Nazari, M-R A; Rajabi, O

    2008-12-01

    Area under the concentration curve (AUC) of mycophenolic acid (MPA) could help to optimize therapeutic drug monitoring during the early post-renal transplant period. The aim of this study was to develop a limited sampling strategy to estimate an abbreviated MPA AUC within the first month after renal transplantation. In this study we selected 19 patients in the early posttransplant period with normal renal graft function (glomerular filtration rate > 70 mL/min). Plasma MPA concentrations were measured using reverse-phase high-performance liquid chromatography. MPA AUC(0-12h) was calculated using the linear trapezoidal rule. Multiple stepwise regression analysis was used to determine the minimal and convenient time points of MPA levels that could be used to derive model equations best fitted to MPA AUC(0-12h). The regression equation for AUC estimation that gave the best performance was AUC = 14.46 C(10) + 15.547 (r(2) = .882). The validation of the method was performed using the jackknife method. Mean prediction error of this model was not different from zero (P > .05) and had a high root mean square prediction error (8.06). In conclusion, this limited sampling strategy provided an effective approach for therapeutic drug monitoring during the early posttransplant period.

  2. On the relation between personality and job performance of airline pilots.

    PubMed

    Hormann, H J; Maschke, P

    1996-01-01

    The validity of a personality questionnaire for the prediction of job success of airline pilots is compared to validities of a simulator checkflight and of flying experience data. During selection, 274 pilots applying for employment with a European charter airline were examined with a multidimensional personality questionnaire (Temperature Structure Scales; TSS). Additionally, the applicants were graded in a simulator checkflight. On the basis of training records, the pilots were classified as performing at standard or below standard after about 3 years of employment in the hiring company. In a multiple-regression model, this dichotomous criterion for job success can be predicted with 73.8% accuracy through the simulator checkflight and flying experience prior to employment. By adding the personality questionnaire to the regression equation, the number of correct classifications increases to 79.3%. On average, successful pilots score substantially higher on interpersonal scales and lower on emotional scales of the TSS.

  3. New 1,6-heptadienes with pyrimidine bases attached: Syntheses and spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; Ghannoum, Amer M.; Fares, Fares A.; Abramian, Lara K.; Bouhadir, Kamal H.

    2008-06-01

    A simple, high yielding synthesis leading to the functionalization of some pyrimidine bases with a 1,6-heptadienyl moiety spaced from the N - 1 position by a methylene group is described. A key step in this synthesis involves a Mitsunobu reaction by coupling 3N-benzoyluracil and 3N-benzoylthymine to 2-allyl-pent-4-en-1-ol followed by alkaline hydrolysis of the 3N-benzoyl protecting groups. This protocol should eventually lend itself to the synthesis of a host of N-alkylated nucleoside analogs. The absorption and emission properties of these pyrimidine derivatives ( 3- 6) were studied in solvents of different physical properties. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index, and dielectric constant of solvents.

  4. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less

  5. Quantitative analysis of aircraft multispectral-scanner data and mapping of water-quality parameters in the James River in Virginia

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Bahn, G. S.

    1977-01-01

    Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.

  6. Development and Validation of the Work-Related Well-Being Index: Analysis of the Federal Employee Viewpoint Survey.

    PubMed

    Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M

    2018-02-01

    To describe development and validation of the work-related well-being (WRWB) index. Principal components analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. Principal Components Analysis identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all three employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.

  7. Development and Validation of the Work-Related Well-Being Index: Analysis of the Federal Employee Viewpoint Survey (FEVS).

    PubMed

    Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M

    2017-10-11

    To describe development and validation of the Work-Related Well-Being (WRWB) Index. Principal Components Analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. PCA identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all 3 employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.

  8. Prediction of kinase-inhibitor binding affinity using energetic parameters

    PubMed Central

    Usha, Singaravelu; Selvaraj, Samuel

    2016-01-01

    The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052

  9. A Model for Oil-Gas Pipelines Cost Prediction Based on a Data Mining Process

    NASA Astrophysics Data System (ADS)

    Batzias, Fragiskos A.; Spanidis, Phillip-Mark P.

    2009-08-01

    This paper addresses the problems associated with the cost estimation of oil/gas pipelines during the elaboration of feasibility assessments. Techno-economic parameters, i.e., cost, length and diameter, are critical for such studies at the preliminary design stage. A methodology for the development of a cost prediction model based on Data Mining (DM) process is proposed. The design and implementation of a Knowledge Base (KB), maintaining data collected from various disciplines of the pipeline industry, are presented. The formulation of a cost prediction equation is demonstrated by applying multiple regression analysis using data sets extracted from the KB. Following the methodology proposed, a learning context is inductively developed as background pipeline data are acquired, grouped and stored in the KB, and through a linear regression model provide statistically substantial results, useful for project managers or decision makers.

  10. Measurement of lung volumes from supine portable chest radiographs.

    PubMed

    Ries, A L; Clausen, J L; Friedman, P J

    1979-12-01

    Lung volumes in supine nonambulatory patients are physiological parameters often difficult to measure with current techniques (plethysmograph, gas dilution). Existing radiographic methods for measuring lung volumes require standard upright chest radiographs. Accordingly, in 31 normal supine adults, we determined helium-dilution functional residual and total lung capacities and measured planimetric lung field areas (LFA) from corresponding portable anteroposterior and lateral radiographs. Low radiation dose methods, which delivered less than 10% of that from standard portable X-ray technique, were utilized. Correlation between lung volume and radiographic LFA was highly significant (r = 0.96, SEE = 10.6%). Multiple-step regressions using height and chest diameter correction factors reduced variance, but weight and radiographic magnification factors did not. In 17 additional subjects studied for validation, the regression equations accurately predicted radiographic lung volume. Thus, this technique can provide accurate and rapid measurement of lung volume in studies involving supine patients.

  11. Body composition by hydrometry (deuterium oxide dilution) and bioelectrical impedance in subjects aged >60 y from rural regions of Cuba, Chile and Mexico.

    PubMed

    Valencia, M E; Alemán-Mateo, H; Salazar, G; Hernández Triana, M

    2003-07-01

    In Latin American and Caribbean countries such as Chile, Mexico and Cuba, the population over 60 y has increased steadily. In this age group, there is scarce information about body composition, particularly for those living in rural areas. The purpose of this study was to determine body composition in free-living and healthy elderly subjects >60 y from rural areas of Chile, Cuba and Mexico using deuterium oxide dilution and bioelectrical impedance (BIA) and to develop and cross-validate a predictive equation for this group of subjects by BIA for future use as a field technique. The study included 133 healthy subjects (73 males and 60 females) >60 y from rural regions of Cuba, Chile and Mexico. Total body water, body weight, height and other anthropometric and BIA variables (resistance and reactance) were measured. Total body water was determined by deuterium oxide dilution, and fat-free mass (FFM)/fat mass were derived from this measurement. The total sample was used in a split-sample internal cross-validation. BIA and other anthropometric variables were integrated to multiple regression model to design the best predictive equation, which was validated in the other sample. ANOVA, multiple regression and Bland and Altman's procedure were used to analyze the data. Body weight, percentage of fat and fat-free mass were lower in the Cuban men and women compared with Chilean and Mexican men and women. The best predictive equation of the FFM was: FFM kg=(-7.71+(H(2)/R x 0.49)+(country or ethnicity x 1.12)+(body weight x 0.27)+(sex x 3.49)+(Xc x 0.13)), where H(2) is height(2) (cm); R is resistance (Omega); country: Chile=1, Mexico=2 and Cuba=3; sex: women=0 and men=1; body weight (kg) and Xc is reactance (Omega). R(2) was 0.944 and the root mean square error (RMSE) was 2.08 kg. The mean+/-s.d. of FFM prediction was 44.2+/-9.2 vs 44.6+/-10.1. The results of cross-validation showed no significant difference with the line of identity, showing that the predicted equation was accurate. The intercept (=-0.32) was not significantly different from zero (P=0.89) and the slope (=1.02) not significantly different from 1.0 (P>0.9). The R(2) was 0.86, RMSE=3.86 kg of FFM and the pure error was 3.83. The new BIA equation is accurate, precise and showed good agreement. The use of this equation could improve the estimates of body composition for the elderly population for these regions, as well as enhancing the opportunity to conduct studies in the elderly population from Latin America.

  12. Assimilation of GOES-Derived Cloud Fields Into MM5

    NASA Astrophysics Data System (ADS)

    Biazar, A. P.; Doty, K. G.; McNider, R.

    2007-12-01

    This approach for the assimilation of GOES-derived cloud data into an atmospheric model (the Fifth-Generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model, or MM5) was performed in two steps. In the first step, multiple linear regression equations were developed using a control MM5 simulation to develop relationships for several dependent variables in model columns that had one or more layers of clouds. In the second step, the regression equations were applied during an MM5 simulation with assimilation in which the hourly GOES satellite data were used to determine the cloud locations and some of the cloud properties, but with all the other variables being determined by the model data. The satellite-derived fields used were shortwave cloud albedo and cloud top pressure. Ten multiple linear regression equations were developed for the following dependent variables: total cloud depth, number of cloud layers, depth of the layer that contains the maximum vertical velocity, the maximum vertical velocity, the height of the maximum vertical velocity, the estimated 1-h stable (i.e., grid scale) precipitation rate, the estimated 1-h convective precipitation rate, the height of the level with the maximum positive diabatic heating, the magnitude of the maximum positive diabatic heating, and the largest continuous layer of upward motion. The horizontal components of the divergent wind were adjusted to be consistent with the regression estimate of the maximum vertical velocity. The new total horizontal wind field with these new divergent components was then used to nudge an ongoing MM5 model simulation towards the target vertical velocity. Other adjustments included diabatic heating and moistening at specified levels. Where the model simulation had clouds when the satellite data indicated clear conditions, procedures were taken to remove or diminish the errant clouds. The results for the period of 0000 UTC 28 June - 0000 UTC 16 July 1999 for both a continental 32-km grid and an 8-km grid over the Southeastern United States indicate a significant improvement in the cloud bias statistics. The main improvement was the reduction of high bias values that indicated times and locations in the control run when there were model clouds but when the satellite indicated clear conditions. The importance of this technique is that it has been able to assimilate the observed clouds in the model in a dynamically sustainable manner. Acknowledgments. This work was partially funded by the following grants: a GEWEX grant from NASA , the Cooperative Agreement between the University of Alabama in Huntsville and the Minerals Management Service on Gulf of Mexico Issues, a NASA applications grant, and a NSF grant.

  13. Structural equation model of factors related to quality of life for community-dwelling schizophrenic patients in Japan

    PubMed Central

    2014-01-01

    Background This study aimed to clarify how community mental healthcare systems can be improved. Methods We included 79 schizophrenic patients, aged 20 to 80 years, residing in the Tokyo metropolitan area who regularly visited rehabilitation facilities offering assistance to psychiatric patients and were receiving treatment on an outpatient basis. No subjects had severe cognitive disorders or were taking medication with side effects that could prevent the completion of questionnaires. Questionnaires included items related to quality of life, self-efficacy, self-esteem, psychosis based on the Behavior and Symptom Identification Scale, health locus of control, and socio-demographic factors. We performed multiple linear regression analysis with quality of life as the dependent variable and, based on covariance structural analysis, evaluated the goodness of fit of the resulting structural equations models. Results Self-efficacy, self-esteem, and degree of psychosis significantly impacted quality of life. Marital status, age, and types of medications also influenced quality of life. Multiple linear regression analysis revealed psychiatric symptoms (Behavior and Symptom Identification Scale-32 [daily living and role functioning] (Beta = −0.537, p < 0.001) and self-efficacy (Beta = 0.249, p < 0.05) to be predictors of total quality of life score. Based on covariance structural analysis, the resulting model was found to exhibit reasonable goodness of fit. Conclusions Self-efficacy had an especially strong and direct impact on QOL. Therefore, it is important to provide more positive feedback to patients, provide social skills training based on cognitive behavioral therapy, and engage patients in role playing to improve self-efficacy and self-concept. PMID:25101143

  14. TLR4 Methylation Moderates the Relationship Between Alcohol Use Severity and Gray Matter Loss.

    PubMed

    Karoly, Hollis C; Thayer, Rachel E; Hagerty, Sarah L; Hutchison, Kent E

    2017-09-01

    Alcohol use disorders (AUDs) are associated with decreased gray matter, and neuroinflammation is one mechanism through which alcohol may confer such damage, given that heavy alcohol use may promote neural damage via activation of toll-like receptor 4 (TLR4)-mediated inflammatory signaling cascades. We previously demonstrated that TLR4 is differentially methylated in AUD compared with control subjects, and the present study aims to extend this work by examining whether TLR4 methylation moderates the relationship between alcohol use and gray matter. We examined TLR4 methylation and gray matter thickness in a large sample (N = 707; 441 males) of adults (ages 18-56) reporting a range of AUD severity (mean Alcohol Use Disorders Identification Test score = 13.18; SD = 8.02). We used a series of ordinary least squares multiple regression equations to regress gray matter in four bilateral brain regions (precuneus, lateral orbitofrontal, inferior parietal, and superior temporal) on alcohol use, TLR4 methylation, and their interaction, controlling for demographic, psychological, and other substance use variables. After we corrected for multiple tests, a significant Alcohol × TLR4 Methylation interaction emerged in the equations modeling left precuneus and right inferior parietal gray matter. Follow-up analyses examining the nature of these interactions demonstrated a significant negative association between alcohol and precuneus and inferior parietal gray matter in individuals with low TLR4 methylation, but no relationship between alcohol and gray matter in the high methylation group. These findings suggest that TLR4 methylation may be protective against the damage conferred by alcohol on precuneus and inferior parietal gray matter, thereby implicating TLR4 for further investigation as a possible AUD treatment target.

  15. Are traditional body fat equations and anthropometry valid to estimate body fat in children and adolescents living with HIV?

    PubMed

    Lima, Luiz Rodrigo Augustemak de; Martins, Priscila Custódio; Junior, Carlos Alencar Souza Alves; Castro, João Antônio Chula de; Silva, Diego Augusto Santos; Petroski, Edio Luiz

    The aim of this study was to assess the validity of traditional anthropometric equations and to develop predictive equations of total body and trunk fat for children and adolescents living with HIV based on anthropometric measurements. Forty-eight children and adolescents of both sexes (24 boys) aged 7-17 years, living in Santa Catarina, Brazil, participated in the study. Dual-energy X-ray absorptiometry was used as the reference method to evaluate total body and trunk fat. Height, body weight, circumferences and triceps, subscapular, abdominal and calf skinfolds were measured. The traditional equations of Lohman and Slaughter were used to estimate body fat. Multiple regression models were fitted to predict total body fat (Model 1) and trunk fat (Model 2) using a backward selection procedure. Model 1 had an R 2 =0.85 and a standard error of the estimate of 1.43. Model 2 had an R 2 =0.80 and standard error of the estimate=0.49. The traditional equations of Lohman and Slaughter showed poor performance in estimating body fat in children and adolescents living with HIV. The prediction models using anthropometry provided reliable estimates and can be used by clinicians and healthcare professionals to monitor total body and trunk fat in children and adolescents living with HIV. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Evaluating the relationship between wildfire extent and nitrogen dry deposition in a boreal forest in interior Alaska

    NASA Astrophysics Data System (ADS)

    Nagano, Hirohiko; Iwata, Hiroki

    2017-03-01

    Alaska wildfires may play an important role in nitrogen (N) dry deposition in Alaskan boreal forests. Here we used annual N dry deposition data measured by CASTNET at Denali National Park (DEN417) during 1999-2013, to evaluate the relationships between wildfire extent and N dry deposition in Alaska. We established six potential factors for multiple regression analysis, including burned area within 100 km of DEN417 (BA100km) and in other distant parts of Alaska (BAAK), the sum of indexes of North Atlantic Oscillation and Arctic Oscillation (OI), number of days with negative OI (OIday), precipitation (PRCP), and number of days with PRCP (PRCPday). Multiple regression analysis was conducted for both time scales, annual (using only annual values of factors) and six-month (using annual values of BAAK and BA100km, and fire and non-fire seasons' values of other four factors) time scales. Together, BAAK, BA100km, and OIday, along with PRCPday in the case of the six-month scale, explained more than 92% of the interannual variation in N dry deposition. The influence of BA100km on N dry deposition was ten-fold greater than from BAAK; the qualitative contribution was almost zero, however, due to the small BA100km. BAAK was the leading explanatory factor, with a 15 ± 14% contribution. We further calculated N dry deposition during 1950-2013 using the obtained regression equation and long-term records for the factors. The N dry deposition calculated for 1950-2013 revealed that an increased occurrence of wildfires during the 2000s led to the maximum N dry deposition exhibited during this decade. As a result, the effect of BAAK on N dry deposition remains sufficiently large, even when large possible uncertainties (>40%) in the measurement of N dry deposition are taken into account for the multiple regression analysis.

  17. Evaluation of AUC(0-4) predictive methods for cyclosporine in kidney transplant patients.

    PubMed

    Aoyama, Takahiko; Matsumoto, Yoshiaki; Shimizu, Makiko; Fukuoka, Masamichi; Kimura, Toshimi; Kokubun, Hideya; Yoshida, Kazunari; Yago, Kazuo

    2005-05-01

    Cyclosporine (CyA) is the most commonly used immunosuppressive agent in patients who undergo kidney transplantation. Dosage adjustment of CyA is usually based on trough levels. Recently, trough levels have been replacing the area under the concentration-time curve during the first 4 h after CyA administration (AUC(0-4)). The aim of this study was to compare the predictive values obtained using three different methods of AUC(0-4) monitoring. AUC(0-4) was calculated from 0 to 4 h in early and stable renal transplant patients using the trapezoidal rule. The predicted AUC(0-4) was calculated using three different methods: the multiple regression equation reported by Uchida et al.; Bayesian estimation for modified population pharmacokinetic parameters reported by Yoshida et al.; and modified population pharmacokinetic parameters reported by Cremers et al. The predicted AUC(0-4) was assessed on the basis of predictive bias, precision, and correlation coefficient. The predicted AUC(0-4) values obtained using three methods through measurement of three blood samples showed small differences in predictive bias, precision, and correlation coefficient. In the prediction of AUC(0-4) measurement of one blood sample from stable renal transplant patients, the performance of the regression equation reported by Uchida depended on sampling time. On the other hand, the performance of Bayesian estimation with modified pharmacokinetic parameters reported by Yoshida through measurement of one blood sample, which is not dependent on sampling time, showed a small difference in the correlation coefficient. The prediction of AUC(0-4) using a regression equation required accurate sampling time. In this study, the prediction of AUC(0-4) using Bayesian estimation did not require accurate sampling time in the AUC(0-4) monitoring of CyA. Thus Bayesian estimation is assumed to be clinically useful in the dosage adjustment of CyA.

  18. Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.

  19. A Comparison of Regional and SiteSpecific Volume Estimation Equations

    Treesearch

    Joe P. McClure; Jana Anderson; Hans T. Schreuder

    1987-01-01

    Regression equations for volume by region and site class were examined for lobiolly pine. The regressions for the Coastal Plain and Piedmont regions had significantly different slopes. The results shared important practical differences in percentage of confidence intervals containing the true total volume and in percentage of estimates within a specific proportion of...

  20. Poisson-Nernst-Planck equations with steric effects - non-convexity and multiple stationary solutions

    NASA Astrophysics Data System (ADS)

    Gavish, Nir

    2018-04-01

    We study the existence and stability of stationary solutions of Poisson-Nernst-Planck equations with steric effects (PNP-steric equations) with two counter-charged species. We show that within a range of parameters, steric effects give rise to multiple solutions of the corresponding stationary equation that are smooth. The PNP-steric equation, however, is found to be ill-posed at the parameter regime where multiple solutions arise. Following these findings, we introduce a novel PNP-Cahn-Hilliard model, show that it is well-posed and that it admits multiple stationary solutions that are smooth and stable. The various branches of stationary solutions and their stability are mapped utilizing bifurcation analysis and numerical continuation methods.

  1. Clinical Decision Support Model to Predict Occlusal Force in Bruxism Patients.

    PubMed

    Thanathornwong, Bhornsawan; Suebnukarn, Siriwan

    2017-10-01

    The aim of this study was to develop a decision support model for the prediction of occlusal force from the size and color of articulating paper markings in bruxism patients. We used the information from the datasets of 30 bruxism patients in which digital measurements of the size and color of articulating paper markings (12-µm Hanel; Coltene/Whaledent GmbH, Langenau, Germany) on canine protected hard stabilization splints were measured in pixels (P) and in red (R), green (G), and blue (B) values using Adobe Photoshop software (Adobe Systems, San Jose, CA, USA). The occlusal force (F) was measured using T-Scan III (Tekscan Inc., South Boston, MA, USA). The multiple regression equation was applied to predict F from the P and RGB. Model evaluation was performed using the datasets from 10 new patients. The patient's occlusal force measured by T-Scan III was used as a 'gold standard' to compare with the occlusal force predicted by the multiple regression model. The results demonstrate that the correlation between the occlusal force and the pixels and RGB of the articulating paper markings was positive (F = 1.62×P + 0.07×R -0.08×G + 0.08×B + 4.74; R 2 = 0.34). There was a high degree of agreement between the occlusal force of the patient measured using T-Scan III and the occlusal force predicted by the model (kappa value = 0.82). The results obtained demonstrate that the multiple regression model can predict the occlusal force using the digital values for the size and color of the articulating paper markings in bruxism patients.

  2. Malignant testicular tumour incidence and mortality trends

    PubMed Central

    Wojtyła-Buciora, Paulina; Więckowska, Barbara; Krzywinska-Wiewiorowska, Małgorzata; Gromadecka-Sutkiewicz, Małgorzata

    2016-01-01

    Aim of the study In Poland testicular tumours are the most frequent cancer among men aged 20–44 years. Testicular tumour incidence since the 1980s and 1990s has been diversified geographically, with an increased risk of mortality in Wielkopolska Province, which was highlighted at the turn of the 1980s and 1990s. The aim of the study was the comparative analysis of the tendencies in incidence and death rates due to malignant testicular tumours observed among men in Poland and in Wielkopolska Province. Material and methods Data from the National Cancer Registry were used for calculations. The incidence/mortality rates among men due to malignant testicular cancer as well as the tendencies in incidence/death ratio observed in Poland and Wielkopolska were established based on regression equation. The analysis was deepened by adopting the multiple linear regression model. A p-value < 0.05 was arbitrarily adopted as the criterion of statistical significance, and for multiple comparisons it was modified according to the Bonferroni adjustment to a value of p < 0.0028. Calculations were performed with the use of PQStat v1.4.8 package. Results The incidence of malignant testicular neoplasms observed among men in Poland and in Wielkopolska Province indicated a significant rising tendency. The multiple linear regression model confirmed that the year variable is a strong incidence forecast factor only within the territory of Poland. A corresponding analysis of mortality rates among men in Poland and in Wielkopolska Province did not show any statistically significant correlations. Conclusions Late diagnosis of Polish patients calls for undertaking appropriate educational activities that would facilitate earlier reporting of the patients, thus increasing their chances for recovery. Introducing preventive examinations in the regions of increased risk of testicular tumour may allow earlier diagnosis. PMID:27095941

  3. Clinical Decision Support Model to Predict Occlusal Force in Bruxism Patients

    PubMed Central

    Thanathornwong, Bhornsawan

    2017-01-01

    Objectives The aim of this study was to develop a decision support model for the prediction of occlusal force from the size and color of articulating paper markings in bruxism patients. Methods We used the information from the datasets of 30 bruxism patients in which digital measurements of the size and color of articulating paper markings (12-µm Hanel; Coltene/Whaledent GmbH, Langenau, Germany) on canine protected hard stabilization splints were measured in pixels (P) and in red (R), green (G), and blue (B) values using Adobe Photoshop software (Adobe Systems, San Jose, CA, USA). The occlusal force (F) was measured using T-Scan III (Tekscan Inc., South Boston, MA, USA). The multiple regression equation was applied to predict F from the P and RGB. Model evaluation was performed using the datasets from 10 new patients. The patient's occlusal force measured by T-Scan III was used as a ‘gold standard’ to compare with the occlusal force predicted by the multiple regression model. Results The results demonstrate that the correlation between the occlusal force and the pixels and RGB of the articulating paper markings was positive (F = 1.62×P + 0.07×R –0.08×G + 0.08×B + 4.74; R2 = 0.34). There was a high degree of agreement between the occlusal force of the patient measured using T-Scan III and the occlusal force predicted by the model (kappa value = 0.82). Conclusions The results obtained demonstrate that the multiple regression model can predict the occlusal force using the digital values for the size and color of the articulating paper markings in bruxism patients. PMID:29181234

  4. Stratifying empiric risk of schizophrenia among first degree relatives using multiple predictors in two independent Indian samples.

    PubMed

    Bhatia, Triptish; Gettig, Elizabeth A; Gottesman, Irving I; Berliner, Jonathan; Mishra, N N; Nimgaonkar, Vishwajit L; Deshpande, Smita N

    2016-12-01

    Schizophrenia (SZ) has an estimated heritability of 64-88%, with the higher values based on twin studies. Conventionally, family history of psychosis is the best individual-level predictor of risk, but reliable risk estimates are unavailable for Indian populations. Genetic, environmental, and epigenetic factors are equally important and should be considered when predicting risk in 'at risk' individuals. To estimate risk based on an Indian schizophrenia participant's family history combined with selected demographic factors. To incorporate variables in addition to family history, and to stratify risk, we constructed a regression equation that included demographic variables in addition to family history. The equation was tested in two independent Indian samples: (i) an initial sample of SZ participants (N=128) with one sibling or offspring; (ii) a second, independent sample consisting of multiply affected families (N=138 families, with two or more sibs/offspring affected with SZ). The overall estimated risk was 4.31±0.27 (mean±standard deviation). There were 19 (14.8%) individuals in the high risk group, 75 (58.6%) in the moderate risk and 34 (26.6%) in the above average risk (in Sample A). In the validation sample, risks were distributed as: high (45%), moderate (38%) and above average (17%). Consistent risk estimates were obtained from both samples using the regression equation. Familial risk can be combined with demographic factors to estimate risk for SZ in India. If replicated, the proposed stratification of risk may be easier and more realistic for family members. Copyright © 2016. Published by Elsevier B.V.

  5. Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).

    PubMed

    Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires

    2008-01-01

    The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.

  6. [Establishment of cervical vertebral skeletal maturation of female children in Shanghai].

    PubMed

    Sun, Yan; Chen, Rong-jing; Yu, Quan; Fan, Li; Chen, Wei; Shen, Gang

    2009-06-01

    To establish a method for quantitatively evaluating skeletal maturation of cervical vertebrae of female children in Shanghai. The samples were selected from lateral cephalometric radiographs of 240 Shanghai girls, aged 8 to 15 years. The parameters were measured to indicate the morphological changes of the third (C3) and fourth (C4) vertebrae in width, height and the depth of the inferior curvature. The independent-sample t test and stepwise multiple regression analysis were used to estimate the growth status and the ratios of C3, C4 cervical vertebrae by SPSS 15.0 software package. The physical and morphological contour of C3, C4 cervical vertebrae increased proportionately with the increment of age. The regression formula for indicating cervical vertebral skeletal age of female children in Shanghai was expressed by the equation Y= -5.696+8.010 AH3/AP3+6.654 AH3/H3+6.045AH4/PH4 (r=0.912). The regression formula resulted from morphological measurements quantitatively indicates the skeletal maturation of cervical vertebrae of female children in Shanghai.

  7. Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane and nonpurgeable total organic-halide formation potentials were determined for the chlorination of water samples from the Mississippi, Ohio and Missouri Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at twelve locations on the Mississippi from New Orleans to Minneapolis, and on the Ohio and Missouri 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH, initial free-chlorine concentration, and reaction time. Multiple linear regression analysis of the data indicated that pH, reaction time, and the dissolved organic carbon concentration and/or the ultraviolet absorbance of the water were the most significant variables. The initial free-chlorine concentration had less significance and bromide concentration had little or no significance. Analysis of combinations of the dissolved organic carbon concentration and the ultraviolet absorbance indicated that use of the ultraviolet absorbance alone provided the best prediction of the experimental data. Regression coefficients for the variables were generally comparable to coefficients previously presented in the literature for waters from other parts of the United States.

  8. Methods for estimating magnitude and frequency of floods in Montana based on data through 1983

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1986-01-01

    Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)

  9. Selected Streamflow Statistics and Regression Equations for Predicting Statistics at Stream Locations in Monroe County, Pennsylvania

    USGS Publications Warehouse

    Thompson, Ronald E.; Hoffman, Scott A.

    2006-01-01

    A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.

  10. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  11. An evaluation of regression methods to estimate nutritional condition of canvasbacks and other water birds

    USGS Publications Warehouse

    Sparling, D.W.; Barzen, J.A.; Lovvorn, J.R.; Serie, J.R.

    1992-01-01

    Regression equations that use mensural data to estimate body condition have been developed for several water birds. These equations often have been based on data that represent different sexes, age classes, or seasons, without being adequately tested for intergroup differences. We used proximate carcass analysis of 538 adult and juvenile canvasbacks (Aythya valisineria ) collected during fall migration, winter, and spring migrations in 1975-76 and 1982-85 to test regression methods for estimating body condition.

  12. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    USGS Publications Warehouse

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.

  13. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  14. Validation of prediction equations for estimating resting energy expenditure in obese Chinese children.

    PubMed

    Chan, Dorothy F Y; Li, Albert M; Chan, Michael H M; So, Hung Kwan; Chan, Iris H S; Yin, Jane A T; Lam, Christopher W K; Fok, Tai Fai; Nelson, Edmund A S

    2009-01-01

    (1) To examine the validity of existing prediction equations (PREE) for estimating resting energy expenditure (REE) in obese Chinese children, (2) to correlate the measured REE (MREE) with anthropometric and biochemical parameters and (3) to derive a new PREE for local use. Cross-sectional study. 100 obese children (71 boys) were studied. All subjects underwent physical examination and anthropometric measurement. Upper and central body fat distribution was signified by centrality and conicity index respectively, and REE was measured by indirect calorimetry. Fat free mass (FFM) were measured by DEXA scan. Thirteen existing prediction equations for estimating REE were compared with MREE among these obese children. Fasting blood for glucose, lipid profile and insulin were obtained. The overall, male and female median MREEs were 7.1 mJ/d (IR 6.2-8.4), 7.3 mJ/d (IR 6.3-9.7) and 6.9 mJ/d (IR 5.6-8.1) respectively. No sex difference was noted in MREE (p=0.203). Most of the equations except Schofield equation underestimated REE of our children. By multiple linear regression, MREE was positively correlated with FFM (p<0.0001), conicity index (p<0.001) and centrality index (p=0.001). A new equation for estimating REE for local use was derived as: REE=(17.4*logFFM)+(11.4*conicity index)-(2.4*centrality index)-31.3. The mean difference of new PREE-MREE was -0.011 mJ/d (SD 1.51) with an interclass correlation coefficient of 0.91. None of the existing prediction equations were accurate in their estimation of REE, when applied to obese Chinese children. A new prediction equation has been derived for local use.

  15. Flood characteristics of urban watersheds in the United States

    USGS Publications Warehouse

    Sauer, Vernon B.; Thomas, W.O.; Stricker, V.A.; Wilson, K.V.

    1983-01-01

    A nationwide study of flood magnitude and frequency in urban areas was made for the purpose of reviewing available literature, compiling an urban flood data base, and developing methods of estimating urban floodflow characteristics in ungaged areas. The literature review contains synopses of 128 recent publications related to urban floodflow. A data base of 269 gaged basins in 56 cities and 31 States, including Hawaii, contains a wide variety of topographic and climatic characteristics, land-use variables, indices of urbanization, and flood-frequency estimates. Three sets of regression equations were developed to estimate flood discharges for ungaged sites for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Two sets of regression equations are based on seven independent parameters and the third is based on three independent parameters. The only difference in the two sets of seven-parameter equations is the use of basin lag time in one and lake and reservoir storage in the other. Of primary importance in these equations is an independent estimate of the equivalent rural discharge for the ungaged basin. The equations adjust the equivalent rural discharge to an urban condition. The primary adjustment factor, or index of urbanization, is the basin development factor, a measure of the extent of development of the drainage system in the basin. This measure includes evaluations of storm drains (sewers), channel improvements, and curb-and-gutter streets. The basin development factor is statistically very significant and offers a simple and effective way of accounting for drainage development and runoff response in urban areas. Percentage of impervious area is also included in the seven-parameter equations as an additional measure of urbanization and apparently accounts for increased runoff volumes. This factor is not highly significant for large floods, which supports the generally held concept that imperviousness is not a dominant factor when soils become more saturated during large storms. Other parameters in the seven-parameter equations include drainage area size, channel slope, rainfall intensity, lake and reservoir storage, and basin lag time. These factors are all statistically significant and provide logical indices of basin conditions. The three-parameter equations include only the three most significant parameters: rural discharge, basin-development factor, and drainage area size. All three sets of regression equations provide unbiased estimates of urban flood frequency. The seven-parameter regression equations without basin lag time have average standard errors of regression varying from ? 37 percent for the 5-year flood to ? 44 percent for the 100-year flood and ? 49 percent for the 500-year flood. The other two sets of regression equations have similar accuracy. Several tests for bias, sensitivity, and hydrologic consistency are included which support the conclusion that the equations are useful throughout the United States. All estimating equations were developed from data collected on drainage basins where temporary in-channel storage, due to highway embankments, was not significant. Consequently, estimates made with these equations do not account for the reducing effect of this temporary detention storage.

  16. Regression equations for estimation of annual peak-streamflow frequency for undeveloped watersheds in Texas using an L-moment-based, PRESS-minimized, residual-adjusted approach

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.

    2009-01-01

    Annual peak-streamflow frequency estimates are needed for flood-plain management; for objective assessment of flood risk; for cost-effective design of dams, levees, and other flood-control structures; and for design of roads, bridges, and culverts. Annual peak-streamflow frequency represents the peak streamflow for nine recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common methods for estimation of peak-streamflow frequency for ungaged or unmonitored watersheds are regression equations for each recurrence interval developed for one or more regions; such regional equations are the subject of this report. The method is based on analysis of annual peak-streamflow data from U.S. Geological Survey streamflow-gaging stations (stations). Beginning in 2007, the U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, began a 3-year investigation concerning the development of regional equations to estimate annual peak-streamflow frequency for undeveloped watersheds in Texas. The investigation focuses primarily on 638 stations with 8 or more years of data from undeveloped watersheds and other criteria. The general approach is explicitly limited to the use of L-moment statistics, which are used in conjunction with a technique of multi-linear regression referred to as PRESS minimization. The approach used to develop the regional equations, which was refined during the investigation, is referred to as the 'L-moment-based, PRESS-minimized, residual-adjusted approach'. For the approach, seven unique distributions are fit to the sample L-moments of the data for each of 638 stations and trimmed means of the seven results of the distributions for each recurrence interval are used to define the station specific, peak-streamflow frequency. As a first iteration of regression, nine weighted-least-squares, PRESS-minimized, multi-linear regression equations are computed using the watershed characteristics of drainage area, dimensionless main-channel slope, and mean annual precipitation. The residuals of the nine equations are spatially mapped, and residuals for the 10-year recurrence interval are selected for generalization to 1-degree latitude and longitude quadrangles. The generalized residual is referred to as the OmegaEM parameter and represents a generalized terrain and climate index that expresses peak-streamflow potential not otherwise represented in the three watershed characteristics. The OmegaEM parameter was assigned to each station, and using OmegaEM, nine additional regression equations are computed. Because of favorable diagnostics, the OmegaEM equations are expected to be generally reliable estimators of peak-streamflow frequency for undeveloped and ungaged stream locations in Texas. The mean residual standard error, adjusted R-squared, and percentage reduction of PRESS by use of OmegaEM are 0.30log10, 0.86, and -21 percent, respectively. Inclusion of the OmegaEM parameter provides a substantial reduction in the PRESS statistic of the regression equations and removes considerable spatial dependency in regression residuals. Although the OmegaEM parameter requires interpretation on the part of analysts and the potential exists that different analysts could estimate different values for a given watershed, the authors suggest that typical uncertainty in the OmegaEM estimate might be about +or-0.1010. Finally, given the two ensembles of equations reported herein and those in previous reports, hydrologic design engineers and other analysts have several different methods, which represent different analytical tracks, to make comparisons of peak-streamflow frequency estimates for ungaged watersheds in the study area.

  17. Determination of the spectral values of the real part of the relative refractive index of human blood erythrocytes from the measured directional scattering coefficients

    NASA Astrophysics Data System (ADS)

    Kugeiko, M. M.; Lisenko, S. A.

    2008-07-01

    An easily automated method for determining the real part of the refractive index of human blood erythrocytes in the range 0.3 1.2 μm is proposed. The method is operationally and metrologically reliable and is based on the measurement of the coefficients of light scattering from forward and backward hemisphere by two pairs of angles and on the use of multiple regression equations. An engineering solution for constructing a measurement system according to this method is proposed, which makes it possible to maximally reduce the calibration errors and effects of destabilizing factors.

  18. Mapping of fluoride endemic areas and correlation studies of fluoride with other quality parameters of drinking water of Veppanapalli block of Dharmapuri district in Tamil Nadu.

    PubMed

    Karthikeyan, G; Sundarraj, A Shunmuga; Elango, K P

    2003-10-01

    193 drinking water samples from water sources of 27 panchayats of Veppanapalli block of Dharmapuri district of Tamil Nadu were analysed for chemical quality parameters. Based on the fluoride content of the water sources, fluoride maps differentiating regions with high / low fluoride levels were prepared using Isopleth mapping technique. The interdependence among the important chemical quality parameters were assessed using correlation studies. The experimental results of the application of linear and multiple regression equations on the influence of hardness, alkalinity, total dissolved solids and pH on fluoride are discussed.

  19. Analysis of the thermal comfort model in an environment of metal mechanical branch.

    PubMed

    Pinto, N M; Xavier, A A P; do Amaral, Regiane T

    2012-01-01

    This study aims to identify the correlation between the Predicted Mean Vote (PMV) with the thermal sensation (S) of 55 employees, establishing a linear multiple regression equation. The measurement of environmental variables followed established standards. The survey was conducted in a metal industry located in Ponta Grossa of the State of Parana in Brazil. It was applied the physical model of thermal comfort to the environmental variables and also to the subjective data on the thermal sensations of employees. The survey was conducted from May to November, 2010, with 48 measurements. This study will serve as the basis for a dissertation consisting of 72 measurements.

  20. Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005

    USGS Publications Warehouse

    Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.

    2010-01-01

    Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow-gaging stations, similarity and proximity, can be used for the region of influence regression technique. The regional regression equation technique is the preferred technique as an estimate of peak flow in all six regions for ungaged sites. The region of influence regression technique is not appropriate for regions C, E, and F because the interrelations of some characteristics of those regions do not agree with the interrelations throughout the rest of the State. Both the similarity and proximity methods for the region of influence technique can be used in the other regions (A, B, and D) to provide additional estimates of peak flow. The peak-flow-frequency estimates and basin characteristics for selected streamflow-gaging stations and regional peak-flow regression equations are included in this report.

  1. Inflammation, homocysteine and carotid intima-media thickness.

    PubMed

    Baptista, Alexandre P; Cacdocar, Sanjiva; Palmeiro, Hugo; Faísca, Marília; Carrasqueira, Herménio; Morgado, Elsa; Sampaio, Sandra; Cabrita, Ana; Silva, Ana Paula; Bernardo, Idalécio; Gome, Veloso; Neves, Pedro L

    2008-01-01

    Cardiovascular disease is the main cause of morbidity and mortality in chronic renal patients. Carotid intima-media thickness (CIMT) is one of the most accurate markers of atherosclerosis risk. In this study, the authors set out to evaluate a population of chronic renal patients to determine which factors are associated with an increase in intima-media thickness. We included 56 patients (F=22, M=34), with a mean age of 68.6 years, and an estimated glomerular filtration rate of 15.8 ml/min (calculated by the MDRD equation). Various laboratory and inflammatory parameters (hsCRP, IL-6 and TNF-alpha) were evaluated. All subjects underwent measurement of internal carotid artery intima-media thickness by high-resolution real-time B-mode ultrasonography using a 10 MHz linear transducer. Intima-media thickness was used as a dependent variable in a simple linear regression model, with the various laboratory parameters as independent variables. Only parameters showing a significant correlation with CIMT were evaluated in a multiple regression model: age (p=0.001), hemoglobin (p=00.3), logCRP (p=0.042), logIL-6 (p=0.004) and homocysteine (p=0.002). In the multiple regression model we found that age (p=0.001) and homocysteine (p=0.027) were independently correlated with CIMT. LogIL-6 did not reach statistical significance (p=0.057), probably due to the small population size. The authors conclude that age and homocysteine correlate with carotid intima-media thickness, and thus can be considered as markers/risk factors in chronic renal patients.

  2. Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data.

    PubMed

    Wilderjans, Tom Frans; Vande Gaer, Eva; Kiers, Henk A L; Van Mechelen, Iven; Ceulemans, Eva

    2017-03-01

    In the behavioral sciences, many research questions pertain to a regression problem in that one wants to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first, multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a few summary variables, on which one regresses the criterion and which at the same time yields insight into the predictor structure. Second, the population under study may consist of a few unknown subgroups that are characterized by different regression models. Third, the obtained data are often hierarchically structured, with for instance, observations being nested into persons or participants within groups or countries. Although some methods have been developed that partially meet these challenges (i.e., principal covariates regression (PCovR), clusterwise regression (CR), and structural equation models), none of these methods adequately deals with all of them simultaneously. To fill this gap, we propose the principal covariates clusterwise regression (PCCR) method, which combines the key idea's behind PCovR (de Jong & Kiers in Chemom Intell Lab Syst 14(1-3):155-164, 1992) and CR (Späth in Computing 22(4):367-373, 1979). The PCCR method is validated by means of a simulation study and by applying it to cross-cultural data regarding satisfaction with life.

  3. Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New Hampshire

    USGS Publications Warehouse

    Olson, Scott A.

    2009-01-01

    This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively. Flood discharges at selected recurrence intervals for selected streamgages were computed following the guidelines in Bulletin 17B of the U.S. Interagency Advisory Committee on Water Data. To determine the flood-discharge exceedence probabilities at streamgages in New Hampshire, a new generalized skew coefficient map covering the State was developed. The standard error of the data on new map is 0.298. To improve estimates of flood discharges at selected recurrence intervals for 20 streamgages with short-term records (10 to 15 years), record extension using the two-station comparison technique was applied. The two-station comparison method uses data from a streamgage with long-term record to adjust the frequency characteristics at a streamgage with a short-term record. A technique for adjusting a flood-discharge frequency curve computed from a streamgage record with results from the regression equations is described in this report. Also, a technique is described for estimating flood discharge at a selected recurrence interval for an ungaged site upstream or downstream from a streamgage using a drainage-area adjustment. The final regression equations and the flood-discharge frequency data used in this study will be available in StreamStats. StreamStats is a World Wide Web application providing automated regression-equation solutions for user-selected sites on streams.

  4. Accurate prediction of cardiorespiratory fitness using cycle ergometry in minimally disabled persons with relapsing-remitting multiple sclerosis.

    PubMed

    Motl, Robert W; Fernhall, Bo

    2012-03-01

    To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Predicting in ungauged basins using a parsimonious rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Olav Peerebom, Ivar; Nilsson, Anna

    2015-04-01

    Prediction in ungauged basins is a demanding, but necessary test for hydrological model structures. Ideally, the relationship between model parameters and catchment characteristics (CC) should be hydrologically justifiable. Many studies, however, report on failure to obtain significant correlations between model parameters and CCs. Under the hypothesis that the lack of correlations stems from non-identifiability of model parameters caused by overparameterization, the relatively new parameter parsimonious DDD (Distance Distribution Dynamics) model was tested for predictions in ungauged basins in Norway. In DDD, the capacity of the subsurface water reservoir M is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than, for example, the well-known Swedish HBV model. In this study, multiple regression equations relating CCs and model parameters were trained from 84 calibrated catchments located all over Norway and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p- value < 0.05) ranged from 0.22-0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For 10 of the 17 catchments, deviations in Nash-Suthcliffe Efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1. The median NSE for the regionalised DDD for the 17 catchments, for two different time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt, respectively. This latter result indicates the topic for further improvements in the model structure of DDD.

  6. The catechol-O-methyltransferase gene (COMT) and cognitive function from childhood through adolescence

    PubMed Central

    Gaysina, Darya; Xu, Man K.; Barnett, Jennifer H.; Croudace, Tim J.; Wong, Andrew; Richards, Marcus; Jones, Peter B.

    2013-01-01

    Genetic variation in the catechol-O-methyltransferase gene (COMT) can influence cognitive function, and this effect may depend on developmental stage. Using a large representative British birth cohort, we investigated the effect of COMT on cognitive function (verbal and non-verbal) at ages 8 and 15 years taking into account the possible modifying effect of pubertal stage. Five functional COMT polymorphisms, rs6269, rs4818, rs4680, rs737865 and rs165599 were analysed. Associations between COMT polymorphisms and cognition were tested using regression and latent variable structural equation modelling (SEM). Before correction for multiple testing, COMT rs737865 showed association with reading comprehension, verbal ability and global cognition at age 15 years in pubescent boys only. Although there was some evidence for age- and sex-specific effects of the COMT rs737865 none remained significant after correction for multiple testing. Further studies are necessary in order to make firmer conclusions. PMID:23178897

  7. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  8. Predicting Diameter at Breast Height from Stump Diameters for Northeastern Tree Species

    Treesearch

    Eric H. Wharton; Eric H. Wharton

    1984-01-01

    Presents equations to predict diameter at breast height from stump diameter measurements for 17 northeastern tree species. Simple linear regression was used to develop the equations. Application of the equations is discussed.

  9. Estimation of Fat-free Mass at Discharge in Preterm Infants Fed With Optimized Feeding Regimen.

    PubMed

    Larcade, Julie; Pradat, Pierre; Buffin, Rachel; Leick-Courtois, Charline; Jourdes, Emilie; Picaud, Jean-Charles

    2017-01-01

    The purpose of the present study was to validate a previously calculated equation (E1) that estimates infant fat-free mass (FFM) at discharge using data from a population of preterm infants receiving an optimized feeding regimen. Preterm infants born before 33 weeks of gestation between April 2014 and November 2015 in the tertiary care unit of Croix-Rousse Hospital in Lyon, France, were included in the study. At discharge, FFM was assessed by air displacement plethysmography (PEA POD) and was compared with FFM estimated by E1. FFM was estimated using a multiple linear regression model. Data on 155 preterm infants were collected. There was a strong correlation between the FFM estimated by E1 and FFM assessed by the PEA POD (r = 0.939). E1, however, underestimated the FFM (average difference: -197 g), and this underestimation increased as FFM increased. A new, more predictive equation is proposed (r = 0.950, average difference: -12 g). Although previous estimation methods were useful for estimating FFM at discharge, an equation adapted to present populations of preterm infants with "modern" neonatal care and nutritional practices is required for accuracy.

  10. Improving estimates of streamflow characteristics using LANDSAT-1 (ERTS-1) imagery. [Delmarva Peninsula

    NASA Technical Reports Server (NTRS)

    Hollyday, E. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Streamflow characteristics in the Delmarva Peninsula derived from the records of daily discharge of 20 gaged basins are representative of the full range in flow conditions and include all of those commonly used for design or planning purposes. They include annual flood peaks with recurrence intervals of 2, 5, 10, 25, and 50 years, mean annual discharge, standard deviation of the mean annual discharge, mean monthly discharges, standard deviation of the mean monthly discharges, low-flow characteristics, flood volume characteristics, and the discharge equalled or exceeded 50 percent of the time. Streamflow and basin characteristics were related by a technique of multiple regression using a digital computer. A control group of equations was computed using basin characteristics derived from maps and climatological records. An experimental group of equations was computed using basin characteristics derived from LANDSAT imagery as well as from maps and climatological records. Based on a reduction in standard error of estimate equal to or greater than 10 percent, the equations for 12 stream flow characteristics were substantially improved by adding to the analyses basin characteristics derived from LANDSAT imagery.

  11. [Retrospective Cytogenetic Dose Evaluation. II. Computer Data Processing in Persons Irradiated in Different Radiation Accidents].

    PubMed

    Nugis, V Yu; Khvostunov, I K; Goloub, E V; Kozlova, M G; Nadejinal, N M; Galstian, I A

    2015-01-01

    The method for retrospective dose assessment based on the analysis of cell distribution by the number of dicentrics and unstable aberrations using a special computer program was earlier developed based on the data about the persons irradiated as a result of the accident at the Chernobyl nuclear power plant. This method was applied for the same purpose for data processing of repeated cytogenetic studies of the patients exposed to γ-, γ-β- or γ-neutron radiation in various situations. As a whole, this group was followed up in more distant periods (17-50 years) after exposure than Chernobyl patients (up to 25 years). The use for retrospective dose assessment of the multiple regression equations obtained for the Chernobyl cohort showed that the equation, which includes computer recovered estimate of the dose and the time elapsed after irradiation, was generally unsatisfactory (r = 0.069 at p = 0.599). Similar equations with recovered estimate of the dose and frequency of abnormal chromosomes in a distant period or with all three parameters as variables gave better results (r = 0.686 at p = 0.000000001 and r = 0.542 at p = 0.000008, respectively).

  12. Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013

    USGS Publications Warehouse

    Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.

    2016-08-04

    In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor < 2.5) and statistical significance at the 95-percent confidence level (p ≤ 0.05). Generalized least-squares regression was used to develop the final regression models for each flood region. Average standard errors of prediction of the generalized least-squares models ranged from 32.76 to 59.53 percent, with the largest range in flood region D. Pseudo coefficients of determination of the generalized least-squares models ranged from 90.29 to 97.28 percent, with the largest range also in flood region D. The regional regression equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization. The applicability and accuracy of the regional regression equations depend on the basin characteristics measured for an ungaged location on a stream being within range of those used to develop the equations.

  13. Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington

    USGS Publications Warehouse

    Williams, John R.

    1987-01-01

    Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)

  14. Effects of urban development on stormwater runoff characteristics for the Houston, Texas, metropolitan area

    USGS Publications Warehouse

    Liscum, Fred

    2001-01-01

    A study was done to estimate the effects of urban development in the Houston, Texas, metropolitan area on nine stormwater runoff characteristics. Three of the nine characteristics define the magnitude of stormwater runoff, and the remaining six characteristics describe the shape and duration of a storm hydrograph. Multiple linear regression was used to develop equations to estimate the nine stormwater runoff characteristics from basin and rainfall characteristics. Five basin characteristics and five rainfall characteristics were tested in the regressions to determine which basin and rainfall characteristics significantly affect stormwater runoff characteristics. Basin development factor was found to be significant in equations for eight of the nine stormwater runoff characteristics. Two sets of equations were developed, one for each of two regions based on soil type, from a database containing 1,089 storm discharge hydrographs for 42 sites compiled during 1964–89.The effects of urban development on the eight stormwater runoff characteristics were quantified by varying basin development factor in the equations and recomputing the stormwater runoff characteristics. The largest observed increase in basin development factor for region 1 (north of Buffalo Bayou) during the study resulted in corresponding increases in the characteristics that define magnitude of stormwater runoff ranging from about 40 percent (for direct runoff) to 235 percent (for peak yield); and corresponding decreases in the characteristics that describe hydrograph shape and duration ranging from about 22 percent (for direct runoff duration) to about 58 percent (for basin lag). The largest observed increase in basin development factor for region 2 (south of Buffalo Bayou) during the study resulted in corresponding increases in the characteristics that define magnitude of stormwater runoff ranging from about 33 percent (for direct runoff) to about 210 percent (for both peak flow and peak yield); and corresponding decreases in the characteristics that describe hydrograph shape and duration ranging from about 38 percent (for direct runoff duration) to about 64 percent (for basin lag). 

  15. Reference equations for the six-minute walk distance in the healthy Chinese population aged 18–59 years

    PubMed Central

    Zou, He; Zhu, Xiuruo; Zhang, Jia; Wang, Yi; Wu, Xiaozhen; Liu, Fang; Xie, Xiaofeng

    2017-01-01

    Background The six-minute walk test (6MWT) is a safe, simple, inexpensive tool for evaluating the functional exercise capacity of patients with chronic respiratory disease. However, there is a lack of standard reference equations for the six-minute walk distance (6MWD) in the healthy Chinese population aged 18–59 years. Aims The purposes of the present study were as follows: 1) to measure the anthropometric data and walking distance of a sample of healthy Chinese Han people aged 18–59 years; 2) to construct reference equations for the 6MWD; 3) to compare the measured 6MWD with previously published equations. Method The anthropometric data, demographic information, lung function, and walking distance of Chinese adults aged 18–59 years were prospectively measured using a standardized protocol. We obtained verbal consent from all the subjects before the test, and the study design was approved by the ethics committee of Wenzhou People's Hospital. The 6MWT was performed twice, and the longer distance was used for further analysis. Results A total of 643 subjects (319 females and 324 males) completed the 6MWT, and average walking distance was 601.6±55.51 m. The walking distance was compared between females and males (578±49.85 m vs. 623±52.53 m; p < 0.0001) and between physically active subjects and sedentary subjects (609.3±56.17 m vs. 592±53.23 m; p < 0.0001). Pearson’s correlation indicated that the 6MWD was significantly correlated with various demographic and the 6MWT variables, such as age, height, weight, body mass index (BMI), heart rate after the test and the difference in the heart rate before and after the test. Stepwise multiple regression analysis showed that age and height were independent predictors associated with the 6MWD. The reference equations from white, Canadian and Chilean populations tended to overestimate the walking distance in our subjects, while Brazilian and Arabian equations tended to underestimate the walking distance. There was no significant difference in the walking distance between Korean reference equations and the results of the current study. Conclusion In summary, age and height were the most significant predictors of the 6MWD, and regression equations could explain approximately 34% and 28% of the distance variance in the female and male groups, respectively. PMID:28910353

  16. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis

    PubMed Central

    Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng

    2016-01-01

    The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in independent Western cohort. A total of 173 neonates at birth and 140 at week-2 of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations were assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week-2 but not at birth. Compared to the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0.01kg with 2SD limits of agreement (LOA) (0.18, −0.20). Prediction explained 88.9% of variation but not beyond that of anthropometry. Applying these equations to Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared to simple anthropometry in Asian populations. There is a need for population and age appropriate FFM prediction equations. PMID:26856420

  17. Estimation of height and body mass index from demi-span in elderly individuals.

    PubMed

    Weinbrenner, Tanja; Vioque, Jesús; Barber, Xavier; Asensio, Laura

    2006-01-01

    Obtaining accurate height and, consequently, body mass index (BMI) measurements in elderly subjects can be difficult due to changes in posture and loss of height during ageing. Measurements of other body segments can be used as an alternative to estimate standing height, but population- and age-specific equations are necessary. Our objectives were to validate existing equations, to develop new simple equations to predict height in an elderly Spanish population and to assess the accuracy of the BMI calculated by estimated height from the new equations. We measured height and demi-span in a representative sample of 592 individuals, 271 men and 321 women, 65 years and older (mean +/- SD, 73.8 +/- 6.3 years). We suggested equations to predict height from demi-span by multiple regression analyses and performed an agreement analysis between measured and estimated indices. Height estimated from demi-span correlated significantly (p < 0.001) with measured height (men: r = 0.708, women: r = 0.625). The best prediction equations were as follows: men, height (in cm) = 77.821 + (1.132 x demi-span in cm) + (-0.215 x 5-year age category); women: height (in cm) = 88.854 + (0.899 x demi-span in cm) + (-0.692 x 5-year age category). No significant differences between the mean values of estimated and measured heights were found for men (-0.03 +/- 4.6 cm) or women (-0.02 +/- 4.1 cm). The BMI derived from measured height did not differ significantly from the BMI derived from estimated height either. Predicted height values from equations based on demi-span and age may be acceptable surrogates to derive accurate nutritional indices such as the BMI, particularly in elderly populations, where height may be difficult to measure accurately.

  18. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis.

    PubMed

    Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng

    2016-03-28

    The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air-displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in an independent Western cohort. A total of 173 neonates at birth and 140 at two weeks of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable, and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations was assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week two but not at birth. Compared with the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0·01 kg with 2 sd limits of agreement (LOA) (0·18, -0·20). Prediction explained 88·9 % of variation but not beyond that of anthropometry. Applying these equations to the Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared with simple anthropometry in Asian populations. There is a need for population- and age-appropriate FFM prediction equations.

  19. Downscaling Land Surface Temperature in Complex Regions by Using Multiple Scale Factors with Adaptive Thresholds

    PubMed Central

    Yang, Yingbao; Li, Xiaolong; Pan, Xin; Zhang, Yong; Cao, Chen

    2017-01-01

    Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in urban areas with several mixed surface types. In this study, LST was downscaled by a multiple linear regression model between LST and multiple scale factors in mixed areas with three or four surface types. The correlation coefficients (CCs) between LST and the scale factors were used to assess the importance of the scale factors within a moving window. CC thresholds determined which factors participated in the fitting of the regression equation. The proposed downscaling approach, which involves an adaptive selection of the scale factors, was evaluated using the LST derived from four Landsat 8 thermal imageries of Nanjing City in different seasons. Results of the visual and quantitative analyses show that the proposed approach achieves relatively satisfactory downscaling results on 11 August, with coefficient of determination and root-mean-square error of 0.87 and 1.13 °C, respectively. Relative to other approaches, our approach shows the similar accuracy and the availability in all seasons. The best (worst) availability occurred in the region of vegetation (water). Thus, the approach is an efficient and reliable LST downscaling method. Future tasks include reliable LST downscaling in challenging regions and the application of our model in middle and low spatial resolutions. PMID:28368301

  20. Optimization of selective breeding through analysis of morphological traits in Chinese sea bass (Lateolabrax maculatus).

    PubMed

    Wang, W; Ma, C Y; Chen, W; Ma, H Y; Zhang, H; Meng, Y Y; Ni, Y; Ma, L B

    2016-08-19

    Determining correlations between certain traits of economic importance constitutes an essential component of selective activities. In this study, our aim was to provide effective indicators for breeding programs of Lateolabrax maculatus, an important aquaculture species in China. We analyzed correlations between 20 morphometric traits and body weight, using correlation and path analyses. The results indicated that the correlations among all 21 traits were highly significant, with the highest correlation coefficient identified between total length and body weight. The path analysis indicated that total length (X 1 ), body width (X 5 ), distance from first dorsal fin origin to anal fin origin (X 10 ), snout length (X 16 ), eye diameter (X 17 ), eye cross (X 18 ), and slanting distance from snout tip to first dorsal fin origin (X 19 ) significantly affected body weight (Y) directly. The following multiple-regression equation was obtained using stepwise multiple-regression analysis: Y = -472.108 + 1.065X 1 + 7.728X 5 + 1.973X 10 - 7.024X 16 - 4.400X 17 - 3.338X 18 + 2.138X 19 , with an adjusted multiple-correlation coefficient of 0.947. Body width had the largest determinant coefficient, as well as the highest positive direct correlation with body weight. At the same time, high indirect effects with six other morphometric traits on L. maculatus body weight, through body width, were identified. Hence, body width could be a key factor that efficiently indicates significant effects on body weight in L. maculatus.

  1. Estimating the magnitude of peak discharges for selected flood frequencies on small streams in South Carolina (1975)

    USGS Publications Warehouse

    Whetstone, B.H.

    1982-01-01

    A program to collect and analyze flood data from small streams in South Carolina was conducted from 1967-75, as a cooperative research project with the South Carolina Department of Highways and Public Transportation and the Federal Highway Administration. As a result of that program, a technique is presented for estimating the magnitude and frequency of floods on small streams in South Carolina with drainage areas ranging in size from 1 to 500 square miles. Peak-discharge data from 74 stream-gaging stations (25 small streams were synthesized, whereas 49 stations had long-term records) were used in multiple regression procedures to obtain equations for estimating magnitude of floods having recurrence intervals of 10, 25, 50, and 100 years on small natural streams. The significant independent variable was drainage area. Equations were developed for the three physiographic provinces of South Carolina (Coastal Plain, Piedmont, and Blue Ridge) and can be used for estimating floods on small streams. (USGS)

  2. A statistical analysis of elevated temperature gravimetric cyclic oxidation data of 36 Ni- and Co-base superalloys based on an oxidation attack parameter

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1992-01-01

    A large body of high temperature cyclic oxidation data generated from tests at NASA Lewis Research Center involving gravimetric/time values for 36 Ni- and Co-base superalloys was reduced to a single attack parameter, K(sub a), for each run. This K(sub a) value was used to rank the cyclic oxidation resistance of each alloy at 1000, 1100, and 1150 C. These K(sub a) values were also used to derive an estimating equation using multiple linear regression involving log(sub 10)K(sub a) as a function of alloy chemistry and test temperature. This estimating equation has a high degree of fit and could be used to predict cyclic oxidation behavior for similar alloys and to design an optimum high strength Ni-base superalloy with maximum high temperature cyclic oxidation resistance. The critical alloy elements found to be beneficial were Al, Cr, and Ta.

  3. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  4. A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions

    NASA Astrophysics Data System (ADS)

    Wazwaz, Abdul-Majid

    2018-07-01

    A new third-order integrable equation is constructed via combining the recursion operator of the modified KdV equation (MKdV) and its inverse recursion operator. The developed equation will be termed the modified KdV-negative order modified KdV equation (MKdV-nMKdV). The complete integrability of this equation is confirmed by showing that it nicely possesses the Painlevé property. We obtain multiple soliton solutions for the newly developed integrable equation. Moreover, this equation enjoys a variety of solutions which include solitons, peakons, cuspons, negaton, positon, complexiton and other solutions.

  5. Objective Lightning Forecasting at Kennedy Space Center/Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Wheeler, Mark

    2004-01-01

    The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation activities on Kennedy Space Center (KSC)/CCAFS. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a lightning probability forecast tool based on statistical analysis of historical warm-season (May - September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical lightning forecast equations that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to develop the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground Lightning Surveillance System (CGLSS) data were used to determine lightning occurrence for each day. The CGLSS data have been found to be more reliable indicators of lightning in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to develop logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) developed lightning distributions over the Florida peninsula based on specific flow regimes. The flow regimes were inferred from the average wind direction in the 1000-700 mb layer at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), Florida, and the lightning data were from the National Lightning Detection Network. The results suggested that the daily flow regime may be an important predictor of lightning occurrence on KSC/CCAFS.

  6. [Correlation between body fat percentage and general obesity indexes in middle aged and old people in Guangzhou].

    PubMed

    Hu, Q; Jiang, C Q; Zhang, W S; Cheng, J J; Xu, L; Jin, Y L; Rao, S L; Zheng, H Q; Lam, D Q

    2016-10-10

    Objective: To examine the correlation between body fat percentage (BFP) and general obesity indexes, including body mass index (BMI), waist circumference (WC) and waist to hip ratio (WHR) and calculate the corresponding BFP cutoff values in the middle aged and old people in Guangzhou. The corresponding cut-point of optimal body fat percentage for Guangzhou older population. Methods: Based on the Guangzhou Biobank Cohort Study (GBCS), 3 490 relatively healthy Guangzhou residents aged ≥50 years were selected and were randomly divided into 2 groups. The equations between BFP and BMI, WC, WHR were set up with Curve fitting analysis in one group. The multiple regression analysis was undertaken to establish predictive equations between BFP and BMI, WC, WHR with stepwise model for adding gender, age, physical activity, drinking and smoking. Then, the optimal cut-points of BFP corresponding to BMI, WC and WHR to reflect the degree of obesity were calculated. The equations were then validated with another group. Results: BFP increased with the increase of WHR, WC and BMI. BMI was a better predictor of body fat percentage than WC and WHR. The final regression equation was BFP=(-23.47 -8.87×sex) +2.94× (BMI) - 0.024 × (BMI) 2 ,the coefficient of determination was 0.805. Based on the equation, the BFP corresponding to overweight/obesity (24 kg/m 2 ≤BMI<28 kg/m 2 ) were 24.3 % ≤BFP<31.1 % in men and 33.2 % ≤BFP<40.0 % in women, respectively. BMI had a better consistency with BFP in identify obesity compared with WC and WHR, obtained the area of ROC 0.909 in men and 0.919 in women respectively. The sensitivity and specificity were 70.3 % and 85.5 % in men; and 75.2 % and 93.0 % in women respectively. Conclusion: BFP has a better correlation with BMI. The study results indicated that BFP for middle aged and old males and females in Guangzhou corresponding to overweight/obesity (BMI≥24 kg/m 2 ) were <24.0 % and <33.0 % respectively.

  7. Estimating body weight and body composition of chickens by using noninvasive measurements.

    PubMed

    Latshaw, J D; Bishop, B L

    2001-07-01

    The major objective of this research was to develop equations to estimate BW and body composition using measurements taken with inexpensive instruments. We used five groups of chickens that were created with different genetic stocks and feeding programs. Four of the five groups were from broiler genetic stock, and one was from sex-linked heavy layers. The goal was to sample six males from each group when the group weight was 1.20, 1.75, and 2.30 kg. Each male was weighed and measured for back length, pelvis width, circumference, breast width, keel length, and abdominal skinfold thickness. A cloth tape measure, calipers, and skinfold calipers were used for measurement. Chickens were scanned for total body electrical conductivity (TOBEC) before being euthanized and frozen. Six females were selected at weights similar to those for males and were measured in the same way. Each whole chicken was ground, and a portion of ground material of each was used to measure water, fat, ash, and energy content. Multiple linear regression was used to estimate BW from body measurements. The best single measurement was pelvis width, with an R2 = 0.67. Inclusion of three body measurements in an equation resulted in R2 = 0.78 and the following equation: BW (g) = -930.0 + 68.5 (breast, cm) + 48.5 (circumference, cm) + 62.8 (pelvis, cm). The best single measurement to estimate body fat was abdominal skinfold thickness, expressed as a natural logarithm. Inclusion of weight and skinfold thickness resulted in R2 = 0.63 for body fat according to the following equation: fat (%) = 24.83 + 6.75 (skinfold, ln cm) - 3.87 (wt, kg). Inclusion of the result of TOBEC and the effect of sex improved the R2 to 0.78 for body fat. Regression analysis was used to develop additional equations, based on fat, to estimate water and energy contents of the body. The body water content (%) = 72.1 - 0.60 (body fat, %), and body energy (kcal/g) = 1.097 + 0.080 (body fat, %). The results of the present study indicated that the composition of a chicken's body could be estimated from the models that were developed.

  8. Prostate Cancer Predictive Simulation Modelling, Assessing the Risk Technique (PCP-SMART): Introduction and Initial Clinical Efficacy Evaluation Data Presentation of a Simple Novel Mathematical Simulation Modelling Method, Devised to Predict the Outcome of Prostate Biopsy on an Individual Basis.

    PubMed

    Spyropoulos, Evangelos; Kotsiris, Dimitrios; Spyropoulos, Katherine; Panagopoulos, Aggelos; Galanakis, Ioannis; Mavrikos, Stamatios

    2017-02-01

    We developed a mathematical "prostate cancer (PCa) conditions simulating" predictive model (PCP-SMART), from which we derived a novel PCa predictor (prostate cancer risk determinator [PCRD] index) and a PCa risk equation. We used these to estimate the probability of finding PCa on prostate biopsy, on an individual basis. A total of 371 men who had undergone transrectal ultrasound-guided prostate biopsy were enrolled in the present study. Given that PCa risk relates to the total prostate-specific antigen (tPSA) level, age, prostate volume, free PSA (fPSA), fPSA/tPSA ratio, and PSA density and that tPSA ≥ 50 ng/mL has a 98.5% positive predictive value for a PCa diagnosis, we hypothesized that correlating 2 variables composed of 3 ratios (1, tPSA/age; 2, tPSA/prostate volume; and 3, fPSA/tPSA; 1 variable including the patient's tPSA and the other, a tPSA value of 50 ng/mL) could operate as a PCa conditions imitating/simulating model. Linear regression analysis was used to derive the coefficient of determination (R 2 ), termed the PCRD index. To estimate the PCRD index's predictive validity, we used the χ 2 test, multiple logistic regression analysis with PCa risk equation formation, calculation of test performance characteristics, and area under the receiver operating characteristic curve analysis using SPSS, version 22 (P < .05). The biopsy findings were positive for PCa in 167 patients (45.1%) and negative in 164 (44.2%). The PCRD index was positively signed in 89.82% positive PCa cases and negative in 91.46% negative PCa cases (χ 2 test; P < .001; relative risk, 8.98). The sensitivity was 89.8%, specificity was 91.5%, positive predictive value was 91.5%, negative predictive value was 89.8%, positive likelihood ratio was 10.5, negative likelihood ratio was 0.11, and accuracy was 90.6%. Multiple logistic regression revealed the PCRD index as an independent PCa predictor, and the formulated risk equation was 91% accurate in predicting the probability of finding PCa. On the receiver operating characteristic analysis, the PCRD index (area under the curve, 0.926) significantly (P < .001) outperformed other, established PCa predictors. The PCRD index effectively predicted the prostate biopsy outcome, correctly identifying 9 of 10 men who were eventually diagnosed with PCa and correctly ruling out PCa for 9 of 10 men who did not have PCa. Its predictive power significantly outperformed established PCa predictors, and the formulated risk equation accurately calculated the probability of finding cancer on biopsy, on an individual patient basis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm.

    PubMed

    Fraysse, François; Thewlis, Dominic

    2014-11-07

    Numerous methods exist to estimate the pose of the axes of rotation of the forearm. These include anatomical definitions, such as the conventions proposed by the ISB, and functional methods based on instantaneous helical axes, which are commonly accepted as the modelling gold standard for non-invasive, in-vivo studies. We investigated the validity of a third method, based on regression equations, to estimate the rotation axes of the forearm. We also assessed the accuracy of both ISB methods. Axes obtained from a functional method were considered as the reference. Results indicate a large inter-subject variability in the axes positions, in accordance with previous studies. Both ISB methods gave the same level of accuracy in axes position estimations. Regression equations seem to improve estimation of the flexion-extension axis but not the pronation-supination axis. Overall, given the large inter-subject variability, the use of regression equations cannot be recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield

    NASA Astrophysics Data System (ADS)

    Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan

    2018-04-01

    In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.

  11. Effects of homogenization process parameters on physicochemical properties of astaxanthin nanodispersions prepared using a solvent-diffusion technique

    PubMed Central

    Anarjan, Navideh; Jafarizadeh-Malmiri, Hoda; Nehdi, Imededdine Arbi; Sbihi, Hassen Mohamed; Al-Resayes, Saud Ibrahim; Tan, Chin Ping

    2015-01-01

    Nanodispersion systems allow incorporation of lipophilic bioactives, such as astaxanthin (a fat soluble carotenoid) into aqueous systems, which can improve their solubility, bioavailability, and stability, and widen their uses in water-based pharmaceutical and food products. In this study, response surface methodology was used to investigate the influences of homogenization time (0.5–20 minutes) and speed (1,000–9,000 rpm) in the formation of astaxanthin nanodispersions via the solvent-diffusion process. The product was characterized for particle size and astaxanthin concentration using laser diffraction particle size analysis and high performance liquid chromatography, respectively. Relatively high determination coefficients (ranging from 0.896 to 0.969) were obtained for all suggested polynomial regression models. The overall optimal homogenization conditions were determined by multiple response optimization analysis to be 6,000 rpm for 7 minutes. In vitro cellular uptake of astaxanthin from the suggested individual and multiple optimized astaxanthin nanodispersions was also evaluated. The cellular uptake of astaxanthin was found to be considerably increased (by more than five times) as it became incorporated into optimum nanodispersion systems. The lack of a significant difference between predicted and experimental values confirms the suitability of the regression equations connecting the response variables studied to the independent parameters. PMID:25709435

  12. The mediator effect of personality traits on the relationship between childhood abuse and depressive symptoms in schizophrenia.

    PubMed

    Okubo, Ryo; Inoue, Takeshi; Hashimoto, Naoki; Suzukawa, Akio; Tanabe, Hajime; Oka, Matsuhiko; Narita, Hisashi; Ito, Koki; Kako, Yuki; Kusumi, Ichiro

    2017-11-01

    Previous studies indicated that personality traits have a mediator effect on the relationship between childhood abuse and depressive symptoms in major depressive disorder and nonclinical general adult subjects. In the present study, we aimed to test the hypothesis that personality traits mediate the relationship between childhood abuse and depressive symptoms in schizophrenia. We used the following questionnaires to evaluate 255 outpatients with schizophrenia: the Child Abuse and Trauma Scale, temperament and character inventory, and Patients Health Questionnire-9. Univariate analysis, multiple regression analysis, and structured equation modeling (SEM) were used to analyze the data. The relationship between neglect and sexual abuse and the severity of depressive symptoms was mostly mediated by the personality traits of high harm avoidance, low self-directedness, and low cooperativeness. This finding was supported by the results of stepwise multiple regression analysis and the acceptable fit indices of SEM. Thus, our results suggest that personality traits mediate the relationship between childhood abuse and depressive symptoms in schizophrenia. The present study and our previous studies also suggest that this mediator effect could occur independent of the presence or type of mental disorder. Clinicians should routinely assess childhood abuse history, personality traits, and their effects in schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  13. Process optimization by use of design of experiments: Application for liposomalization of FK506.

    PubMed

    Toyota, Hiroyasu; Asai, Tomohiro; Oku, Naoto

    2017-05-01

    Design of experiments (DoE) can accelerate the optimization of drug formulations, especially complexed formulas such as those of drugs, using delivery systems. Administration of FK506 encapsulated in liposomes (FK506 liposomes) is an effective approach to treat acute stroke in animal studies. To provide FK506 liposomes as a brain protective agent, it is necessary to manufacture these liposomes with good reproducibility. The objective of this study was to confirm the usefulness of DoE for the process-optimization study of FK506 liposomes. The Box-Behnken design was used to evaluate the effect of the process parameters on the properties of FK506 liposomes. The results of multiple regression analysis showed that there was interaction between the hydration temperature and the freeze-thaw cycle on both the particle size and encapsulation efficiency. An increase in the PBS hydration volume resulted in an increase in encapsulation efficiency. Process parameters had no effect on the ζ-potential. The multiple regression equation showed good predictability of the particle size and the encapsulation efficiency. These results indicated that manufacturing conditions must be taken into consideration to prepare liposomes with desirable properties. DoE would thus be promising approach to optimize the conditions for the manufacturing of liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Equations for predicting biomass in 2- to 6-year-old Eucalyptus saligna in Hawaii

    Treesearch

    Craig D. Whitesell; Susan C. Miyasaka; Robert F. Strand; Thomas H. Schubert; Katharine E. McDuffie

    1988-01-01

    Eucalyptus saligna trees grown in short-rotation plantations on the island of Hawaii were measured, harvested, and weighed to provide data for developing regression equations using non-destructive stand measurements. Regression analysis of the data from 190 trees in the 2.0- to 3.5-year range and 96 trees in the 4- to 6-year range related stem-only...

  15. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions

    Treesearch

    Charles E. Rose; Thomas B. Lynch

    2001-01-01

    A method was developed for estimating parameters in an individual tree basal area growth model using a system of equations based on dbh rank classes. The estimation method developed is a compromise between an individual tree and a stand level basal area growth model that accounts for the correlation between trees within a plot by using seemingly unrelated regression (...

  16. Regression Levels of Selected Affective Factors on Science Achievement: A Structural Equation Model with TIMSS 2011 Data

    ERIC Educational Resources Information Center

    Akilli, Mustafa

    2015-01-01

    The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…

  17. T56. AN EXPLORATORY ANALYSIS CONVERTING SCORES BETWEEN THE PANSS AND BNSS

    PubMed Central

    Kott, Alan; Daniel, David

    2018-01-01

    Abstract Background The Brief Negative Symptom Scale is a relatively new instrument designed specifically to measure the negative symptoms in schizophrenia. Recently more clinical trials include the BNSS scale as a secondary or exploratory outcome, typically along with the PANSS. In the current analysis we aimed at establishing the equations that would allow conversion between the BNSS scale total score and the PANSS negative subscale and PANSS negative factors score as well as conversion equations between the expressive deficits and avolition/apathy factors of the scales. (Kirkpatrick, 2011; Strauss, 2012) Methods Data from 518 schizophrenia clinical trials subjects with both PANSS and BNSS data available were used. Regression analyses predicting the BNSS total score with the PANSS negative subscale score, and the BNSS total score with the PANSS Negative factor (NFS) score were performed on data from all subjects. Regression analyses predicting the BNSS avolition/apathy factor (items 1, 2, 3, 5, 6, 7, and 8) with the PANSS avolition/apathy factor (items N2, N4 and G16) and the BNSS expressive deficits factor (items 4, 9, 10, 11, 12, and 13)with the expressive deficits factor (items N1, N3, N6, G5, G7, and G13)of the PANSS were performed on a sample of 318 subjects with individual BNSS item scores available. In addition to estimating the equations we as well calculated the Pearson’s correlations between the scales. Results The PANSS and BNSS avolition/apathy factors were highly correlated (r=0.70) as were the expressive deficit factors r=0.83). The following equations predicting the BNSS total score were obtained from regression analyses performed on 2,560 data points: BNSS_total = -11.64 + 2.10*PANSS_negative_subscale BNSS_total = -9.26 + 2.11*PANSS_NFS The following equations predicting the BNSS factor scores from the PANSS factor scores were obtained from regression analyses performed on 1,634 data points: BNSS_avolition/apathy = -2.40 + 2.38 * PANSS_avolition/apathy BNSS_expressive_deficit_factor = -4.21 + 1.27 * PANSS_expressive_deficit_factor Discussion The BNSS differs from the PANSS negative factor because it addresses all five currently recognized domains of negative symptoms including anhedonia and attempts to differentiate anticipatory from consummatory states. In our analysis we have replicated the strong correlation between the BNSS total score and PANSS negative subscale and newly identified strong correlations between the BNSS total score and NFS as well as strong correlations between the avolotion/apathy and expressive deficit factors of the BNSS and the PANSS scales. (Kirkpatrick, 2011)The provided equations offer a useful tool allowing researchers and clinicians to easily convert the data between the instruments for reasons such as pooling data from multiple trials using one of the instruments, to allow interpretation of results within the context of previously conducted research, etc. but as well offer a framework for risk based monitoring to identify data deviating from the expected relationship and allow for a targeted exploration of the causes for such a disagreement. The data used for analysis included not only subjects with predominantly negative symptoms but as well acutely psychotic subjects as well as subjects in stable conditions allowing therefore to generalize the results across the majority of schizophrenic subjects. This post-hoc analysis is exploratory. We plan to further explore the potential utility of equations addressing the relationships among schizophrenia measures of symptom severity in an iterative manner with larger datasets.

  18. Low-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.

  19. Serum complement C3 strongly correlates with whole-body insulin sensitivity in rheumatoid arthritis.

    PubMed

    Ursini, Francesco; D'Angelo, Salvatore; Russo, Emilio; Arturi, Franco; D'Antona, Lucia; Bruno, Caterina; Naty, Saverio; De Sarro, Giovambattista; Olivieri, Ignazio; Grembiale, Rosa Daniela

    2017-01-01

    Rheumatoid arthritis (RA) is characterised by an excess of cardiovascular diseases (CVD) risk, attributable to a synergy between under-diagnosed traditional risk factors (i.e. insulin resistance) and inflammatory disease activity. The aim of the present study was to evaluate the correlation between inflammatory measures and insulin sensitivity in RA patients. Forty non-diabetic RA patients (19 males) were recruited. All patients underwent anthropometric measurements, laboratory evaluation and oral glucose tolerance test (OGTT). Insulin sensitivity index (ISI) was calculated with the equation proposed by Matsuda et al., from dynamic values of glucose and insulin obtained during OGTT. In the univariate analysis, lnISI correlated inversely with age, BMI, waist circumference, sBP, ESR, lnCRP and complement C3, but not with disease duration, dBP or complement C4. In non-obese patients (BMI <30 kg/m2, n=28), only age, BMI, lnCRP and C3 maintained their correlation with lnISI. In a stepwise multiple regression using lnISI as the dependent variable and BMI, age, lnCRP and complement C3 as predictors, only BMI and C3 entered the equation and accounted for 38.2% of the variance in lnISI. In non-obese patients, only C3 entered the regression equation, accounting for 32.2% of the variance in lnISI. Using a ROC curve, we identified the best cut-off for complement C3 of 1.22 g/L that yielded a sensitivity of 67% and a specificity of 79% for classification of insulin resistant patients. In RA patients, complement C3 correlates strongly with insulin sensitivity, in both obese and non-obese individuals.

  20. Simulation of flood hydrographs for Georgia streams

    USGS Publications Warehouse

    Inman, Ernest J.

    1987-01-01

    Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at ungaged sites in Georgia is presented in this report. The O'Donnell method was used to compute unit hydrographs and lagtimes for 355 floods at 80 gaging stations. An average unit hydrograph and an average lagtime were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lagtime, then reduced to dimensionless terms by dividing the time by lagtime and the discharge by peak discharge. Hydrographs were simulated for these 355 floods and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. The dimensionless hydrograph based on one-half lagtime duration provided the best fit of the observed data. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics; of these characteristics, drainage area and slope were found to be significant for the rural-stream equations and drainage area, slope, and impervious area were found to be significant for the Atlanta urban-stream equation. A hydrograph can be simulated from the dimensionless hydrograph, the peak discharge of a specific recurrence interval, and the lagtime obtained from regression equations for any site in Georgia having a drainage area of less than 500 square miles. For simulating hydrographs at sites having basins larger than 500 square miles, the U.S. Geological Survey computer model CONROUT can be used. This model routes streamflow from an upstream channel location to a user-defined location downstream. The product of CONROUT is a simulated discharge hydrograph for the downstream site that has a peak discharge of a specific recurrence interval.

  1. Regression equations for estimating concentrations of selected water-quality constituents for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota

    USGS Publications Warehouse

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act, passed by the U.S. Congress on December 15, 2000, authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. Previous Red River of the North Basin studies conducted by the Bureau of Reclamation used streamflow and water-quality data bases developed by the U.S. Geological Survey that included data for 1931-84. As a result of the recent congressional authorization and results of previous studies by the Bureau of Reclamation, redevelopment of the streamflow and water-quality data bases with current data through 1999 are needed in order to evaluate and predict the water-quantity and quality effects within the Red River of the North Basin. This report provides updated statistical summaries of selected water-quality constituents and streamflow and the regression relations between them.  Available data for 1931-99 were used to develop regression equations between 5 selected water-quality constituents and streamflow for 38 gaging stations in the Red River of the North Basin. The water-quality constituents that were regressed against streamflow were hardness (as CaCO3), sodium, chloride, sulfate, and dissolved solids. Statistical summaries of the selected water-quality constituents and streamflow for the gaging stations used in the regression equations development and the applications and limitations of the regression equations are presented in this report.

  2. Multiple-Relaxation-Time Lattice Boltzmann Models in 3D

    NASA Technical Reports Server (NTRS)

    dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.

  3. Linear models for calculating digestibile energy for sheep diets.

    PubMed

    Fonnesbeck, P V; Christiansen, M L; Harris, L E

    1981-05-01

    Equations for estimating the digestible energy (DE) content of sheep diets were generated from the chemical contents and a factorial description of diets fed to lambs in digestion trials. The diet factors were two forages (alfalfa and grass hay), harvested at three stages of maturity (late vegetative, early bloom and full bloom), fed in two ingredient combinations (all hay or a 50:50 hay and corn grain mixture) and prepared by two forage texture processes (coarsely chopped or finely chopped and pelleted). The 2 x 3 x 2 x 2 factorial arrangement produced 24 diet treatments. These were replicated twice, for a total of 48 lamb digestion trials. In model 1 regression equations, DE was calculated directly from chemical composition of the diet. In model 2, regression equations predicted the percentage of digested nutrient from the chemical contents of the diet and then DE of the diet was calculated as the sum of the gross energy of the digested organic components. Expanded forms of model 1 and model 2 were also developed that included diet factors as qualitative indicator variables to adjust the regression constant and regression coefficients for the diet description. The expanded forms of the equations accounted for significantly more variation in DE than did the simple models and more accurately estimated DE of the diet. Information provided by the diet description proved as useful as chemical analyses for the prediction of digestibility of nutrients. The statistics indicate that, with model 1, neutral detergent fiber and plant cell wall analyses provided as much information for the estimation of DE as did model 2 with the combined information from crude protein, available carbohydrate, total lipid, cellulose and hemicellulose. Regression equations are presented for estimating DE with the most currently analyzed organic components, including linear and curvilinear variables and diet factors that significantly reduce the standard error of the estimate. To estimate De of a diet, the user utilizes the equation that uses the chemical analysis information and diet description most effectively.

  4. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    PubMed

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  5. Prediction of Fat-Free Mass in Kidney Transplant Recipients.

    PubMed

    Størset, Elisabet; von Düring, Marit Elizabeth; Godang, Kristin; Bergan, Stein; Midtvedt, Karsten; Åsberg, Anders

    2016-08-01

    Individualization of drug doses is essential in kidney transplant recipients. For many drugs, the individual dose is better predicted when using fat-free mass (FFM) as a scaling factor. Multiple equations have been developed to predict FFM based on healthy subjects. These equations have not been evaluated in kidney transplant recipients. The objectives of this study were to develop a kidney transplant specific equation for FFM prediction and to evaluate its predictive performance compared with previously published equations. Ten weeks after transplantation, FFM was measured by dual-energy X-ray absorptiometry. Data from a consecutive cohort of 369 kidney transplant recipients were randomly assigned to an equation development data set (n = 245) or an evaluation data set (n = 124). Prediction equations were developed using linear and nonlinear regression analysis. The predictive performance of the developed equation and previously published equations in the evaluation data set was assessed. The following equation was developed: FFM (kg) = {FFMmax × body weight (kg)/[81.3 + body weight (kg)]} × [1 + height (cm) × 0.052] × [1-age (years) × 0.0007], where FFMmax was estimated to be 11.4 in males and 10.2 in females. This equation provided an unbiased, precise prediction of FFM in the evaluation data set: mean error (ME) (95% CI), -0.71 kg (-1.60 to 0.19 kg) in males and -0.36 kg (-1.52 to 0.80 kg) in females, root mean squared error 4.21 kg (1.65-6.77 kg) in males and 3.49 kg (1.15-5.84 kg) in females. Using previously published equations, FFM was systematically overpredicted in kidney-transplanted males [ME +1.33 kg (0.40-2.25 kg) to +5.01 kg (4.06-5.95 kg)], but not in females [ME -2.99 kg (-4.07 to -1.90 kg) to +3.45 kg (2.29-4.61) kg]. A new equation for FFM prediction in kidney transplant recipients has been developed. The equation may be used for population pharmacokinetic modeling and clinical dose selection in kidney transplant recipients.

  6. Validity and reliability of dental age estimation of teeth root translucency based on digital luminance determination.

    PubMed

    Ramsthaler, Frank; Kettner, Mattias; Verhoff, Marcel A

    2014-01-01

    In forensic anthropological casework, estimating age-at-death is key to profiling unknown skeletal remains. The aim of this study was to examine the reliability of a new, simple, fast, and inexpensive digital odontological method for age-at-death estimation. The method is based on the original Lamendin method, which is a widely used technique in the repertoire of odontological aging methods in forensic anthropology. We examined 129 single root teeth employing a digital camera and imaging software for the measurement of the luminance of the teeth's translucent root zone. Variability in luminance detection was evaluated using statistical technical error of measurement analysis. The method revealed stable values largely unrelated to observer experience, whereas requisite formulas proved to be camera-specific and should therefore be generated for an individual recording setting based on samples of known chronological age. Multiple regression analysis showed a highly significant influence of the coefficients of the variables "arithmetic mean" and "standard deviation" of luminance for the regression formula. For the use of this primer multivariate equation for age-at-death estimation in casework, a standard error of the estimate of 6.51 years was calculated. Step-by-step reduction of the number of embedded variables to linear regression analysis employing the best contributor "arithmetic mean" of luminance yielded a regression equation with a standard error of 6.72 years (p < 0.001). The results of this study not only support the premise of root translucency as an age-related phenomenon, but also demonstrate that translucency reflects a number of other influencing factors in addition to age. This new digital measuring technique of the zone of dental root luminance can broaden the array of methods available for estimating chronological age, and furthermore facilitate measurement and age classification due to its low dependence on observer experience.

  7. The prediction of resting energy expenditure in type 2 diabetes mellitus is improved by factoring for glycemia.

    PubMed

    Gougeon, R; Lamarche, M; Yale, J-F; Venuta, T

    2002-12-01

    Predictive equations have been reported to overestimate resting energy expenditure (REE) for obese persons. The presence of hyperglycemia results in elevated REE in obese persons with type 2 diabetes, and its effect on the validity of these equations is unknown. We tested whether (1) indicators of diabetes control were independent associates of REE in type 2 diabetes and (2) their inclusion would improve predictive equations. A cross-sectional study of 65 (25 men, 40 women) obese type 2 diabetic subjects. Variables measured were: REE by ventilated-hood indirect calorimetry, body composition by bioimpedance analysis, body circumferences, fasting plasma glucose (FPG) and hemoglobin A(1c). Data were analyzed using stepwise multiple linear regression. REE, corrected for weight, fat-free mass, age and gender, was significantly greater with FPG>10 mmol/l (P=0.017) and correlated with FPG (P=0.013) and hemoglobin A(1c) as percentage upper limit of normal (P=0.02). Weight was the main determinant of REE. Together with hip circumference and FPG, it explained 81% of the variation. FPG improved the predictability of the equation by >3%. With poor glycemic control, it can represent an increase in REE of up to 8%. Our data indicate that in a population of obese subjects with type 2 diabetes mellitus, REE is better predicted when fasting plasma glucose is included as a variable.

  8. Optimization of Paclitaxel Containing pH-Sensitive Liposomes By 3 Factor, 3 Level Box-Behnken Design.

    PubMed

    Rane, Smita; Prabhakar, Bala

    2013-07-01

    The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of paclitaxel containing pH-sensitive liposomes. A 3 factor, 3 levels Box-Behnken design was used to derive a second order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio phosphatidylcholine:diolylphosphatidylethanolamine (X1), molar concentration of cholesterylhemisuccinate (X2), and amount of drug (X3). Fifteen batches were prepared by thin film hydration method and evaluated for percent drug entrapment, vesicle size, and pH sensitivity. The transformed values of the independent variables and the percent drug entrapment were subjected to multiple regression to establish full model second order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full model equation to derive a reduced model polynomial equation to predict the dependent variables. Contour plots were constructed to show the effects of X1, X2, and X3 on the percent drug entrapment. A model was validated for accurate prediction of the percent drug entrapment by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X1, X2, and X3 (0.99, -0.06, 0, respectively), for maximized response of percent drug entrapment with constraints on vesicle size and pH sensitivity.

  9. Regional regression equations for estimation of natural streamflow statistics in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Stephens, Verlin C.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Department of Transportation, developed regional regression equations for estimation of various streamflow statistics that are representative of natural streamflow conditions at ungaged sites in Colorado. The equations define the statistical relations between streamflow statistics (response variables) and basin and climatic characteristics (predictor variables). The equations were developed using generalized least-squares and weighted least-squares multilinear regression reliant on logarithmic variable transformation. Streamflow statistics were derived from at least 10 years of streamflow data through about 2007 from selected USGS streamflow-gaging stations in the study area that are representative of natural-flow conditions. Basin and climatic characteristics used for equation development are drainage area, mean watershed elevation, mean watershed slope, percentage of drainage area above 7,500 feet of elevation, mean annual precipitation, and 6-hour, 100-year precipitation. For each of five hydrologic regions in Colorado, peak-streamflow equations that are based on peak-streamflow data from selected stations are presented for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year instantaneous-peak streamflows. For four of the five hydrologic regions, equations based on daily-mean streamflow data from selected stations are presented for 7-day minimum 2-, 10-, and 50-year streamflows and for 7-day maximum 2-, 10-, and 50-year streamflows. Other equations presented for the same four hydrologic regions include those for estimation of annual- and monthly-mean streamflow and streamflow-duration statistics for exceedances of 10, 25, 50, 75, and 90 percent. All equations are reported along with salient diagnostic statistics, ranges of basin and climatic characteristics on which each equation is based, and commentary of potential bias, which is not otherwise removed by log-transformation of the variables of the equations from interpretation of residual plots. The predictor-variable ranges can be used to assess equation applicability for ungaged sites in Colorado.

  10. Equations for estimating synthetic unit-hydrograph parameter values for small watersheds in Lake County, Illinois

    USGS Publications Warehouse

    Melching, C.S.; Marquardt, J.S.

    1997-01-01

    Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area had multiple correlation coefficients of 0.873, 0.961, 0.968, and 0.963 for TC, R, UL, and TL, respectively, and the estimation equations utilizing main channel length had multiple correlation coefficients of 0.845, 0.957, 0.961, and 0.963 for TC, R, UL, and TL, respectively. Simulation of the measured hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results without calibration. The peak discharge for 8 of the 11 storms was estimated within 25 percent and the time-to-peak discharge for 10 of the 11 storms was estimated within 20 percent. Thus, application of the estimation equations to determine synthetic unit-hydrograph parameters for design-storm simulation may result in reliable design hydrographs; as long as the physical characteristics of the watersheds under consideration are within the range of those for the watersheds in this study (area: 0.06-37 mi2, main channel length: 0.33-16.6 miles, main channel slope: 3.13-55.3 feet per mile, and percentage of impervious cover: 7.32-40.6 percent). The estimation equations are most reliable when applied to watersheds with areas less than 25 mi2.

  11. Development of regression equations to revise estimates of historical streamflows for the St. Croix River at Stillwater, Minnesota (water years 1910-2011), and Prescott, Wisconsin (water years 1910-2007)

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Magdalene, Suzanne

    2015-01-01

    The new regression equations were used to calculate revised estimates of historical streamflows for Stillwater and Prescott starting in 1910 and ending when index-velocity streamgages were installed. Monthly, annual, 30-year, and period of record statistics were examined between previous and revised estimates of historical streamflows. The abilities of the new regression equations to estimate historical streamflows were evaluated by using percent differences to compare new estimates of historical daily streamflows to discrete streamflow measurements made at Stillwater and Prescott before the installation of index-velocity streamgages. Although less variability was observed between estimated and measured streamflows at Stillwater compared to Prescott, the percent difference data indicated that the new estimates closely approximated measured streamflows at both locations.

  12. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  13. Ballistic limit regression analysis for Space Station Freedom meteoroid and space debris protection system

    NASA Technical Reports Server (NTRS)

    Jolly, William H.

    1992-01-01

    Relationships defining the ballistic limit of Space Station Freedom's (SSF) dual wall protection systems have been determined. These functions were regressed from empirical data found in Marshall Space Flight Center's (MSFC) Hypervelocity Impact Testing Summary (HITS) for the velocity range between three and seven kilometers per second. A stepwise linear least squares regression was used to determine the coefficients of several expressions that define a ballistic limit surface. Using statistical significance indicators and graphical comparisons to other limit curves, a final set of expressions is recommended for potential use in Probability of No Critical Flaw (PNCF) calculations for Space Station. The three equations listed below represent the mean curves for normal, 45 degree, and 65 degree obliquity ballistic limits, respectively, for a dual wall protection system consisting of a thin 6061-T6 aluminum bumper spaced 4.0 inches from a .125 inches thick 2219-T87 rear wall with multiple layer thermal insulation installed between the two walls. Normal obliquity is d(sub c) = 1.0514 v(exp 0.2983 t(sub 1)(exp 0.5228). Forty-five degree obliquity is d(sub c) = 0.8591 v(exp 0.0428) t(sub 1)(exp 0.2063). Sixty-five degree obliquity is d(sub c) = 0.2824 v(exp 0.1986) t(sub 1)(exp -0.3874). Plots of these curves are provided. A sensitivity study on the effects of using these new equations in the probability of no critical flaw analysis indicated a negligible increase in the performance of the dual wall protection system for SSF over the current baseline. The magnitude of the increase was 0.17 percent over 25 years on the MB-7 configuration run with the Bumper II program code.

  14. The influence of changes in land use and landscape patterns on soil erosion in a watershed.

    PubMed

    Zhang, Shanghong; Fan, Weiwei; Li, Yueqiang; Yi, Yujun

    2017-01-01

    It is very important to have a good understanding of the relation between soil erosion and landscape patterns so that soil and water conservation in river basins can be optimized. In this study, this relationship was explored, using the Liusha River Watershed, China, as a case study. A distributed water and sediment model based on the Soil and Water Assessment Tool (SWAT) was developed to simulate soil erosion from different land use types in each sub-basin of the Liusha River Watershed. Observed runoff and sediment data from 1985 to 2005 and land use maps from 1986, 1995, and 2000 were used to calibrate and validate the model. The erosion modulus for each sub-basin was calculated from SWAT model results using the different land use maps and 12 landscape indices were chosen and calculated to describe the land use in each sub-basin for the different years. The variations in instead of the absolute amounts of the erosion modulus and the landscape indices for each sub-basin were used as the dependent and independent variables, respectively, for the regression equations derived from multiple linear regression. The results indicated that the variations in the erosion modulus were closely related to changes in the large patch index, patch cohesion index, modified Simpson's evenness index, and the aggregation index. From the regression equation and the corresponding landscape indices, it was found that watershed erosion can be reduced by decreasing the physical connectivity between patches, improving the evenness of the landscape patch types, enriching landscape types, and enhancing the degree of aggregation between the landscape patches. These findings will be useful for water and soil conservation and for optimizing the management of watershed landscapes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands.

    PubMed

    Janssen, René P T; Verweij, Wilko

    2003-03-01

    Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands.

  16. Ballistic limit regression analysis for Space Station Freedom meteoroid and space debris protection system

    NASA Astrophysics Data System (ADS)

    Jolly, William H.

    1992-05-01

    Relationships defining the ballistic limit of Space Station Freedom's (SSF) dual wall protection systems have been determined. These functions were regressed from empirical data found in Marshall Space Flight Center's (MSFC) Hypervelocity Impact Testing Summary (HITS) for the velocity range between three and seven kilometers per second. A stepwise linear least squares regression was used to determine the coefficients of several expressions that define a ballistic limit surface. Using statistical significance indicators and graphical comparisons to other limit curves, a final set of expressions is recommended for potential use in Probability of No Critical Flaw (PNCF) calculations for Space Station. The three equations listed below represent the mean curves for normal, 45 degree, and 65 degree obliquity ballistic limits, respectively, for a dual wall protection system consisting of a thin 6061-T6 aluminum bumper spaced 4.0 inches from a .125 inches thick 2219-T87 rear wall with multiple layer thermal insulation installed between the two walls. Normal obliquity is d(sub c) = 1.0514 v(exp 0.2983 t(sub 1)(exp 0.5228). Forty-five degree obliquity is d(sub c) = 0.8591 v(exp 0.0428) t(sub 1)(exp 0.2063). Sixty-five degree obliquity is d(sub c) = 0.2824 v(exp 0.1986) t(sub 1)(exp -0.3874). Plots of these curves are provided. A sensitivity study on the effects of using these new equations in the probability of no critical flaw analysis indicated a negligible increase in the performance of the dual wall protection system for SSF over the current baseline. The magnitude of the increase was 0.17 percent over 25 years on the MB-7 configuration run with the Bumper II program code.

  17. Maxillary arch dimensions associated with acoustic parameters in prepubertal children.

    PubMed

    Hamdan, Abdul-Latif; Khandakji, Mohannad; Macari, Anthony Tannous

    2018-04-18

    To evaluate the association between maxillary arch dimensions and fundamental frequency and formants of voice in prepubertal subjects. Thirty-five consecutive prepubertal patients seeking orthodontic treatment were recruited (mean age = 11.41 ± 1.46 years; range, 8 to 13.7 years). Participants with a history of respiratory infection, laryngeal manipulation, dysphonia, congenital facial malformations, or history of orthodontic treatment were excluded. Dental measurements included maxillary arch length, perimeter, depth, and width. Voice parameters comprising fundamental frequency (f0_sustained), Habitual pitch (f0_count), Jitter, Shimmer, and different formant frequencies (F1, F2, F3, and F4) were measured using acoustic analysis prior to initiation of any orthodontic treatment. Pearson's correlation coefficients were used to measure the strength of associations between different dental and voice parameters. Multiple linear regressions were computed for the predictions of different dental measurements. Arch width and arch depth had moderate significant negative correlations with f0 ( r = -0.52; P = .001 and r = -0.39; P = .022, respectively) and with habitual frequency ( r = -0.51; P = .0014 and r = -0.34; P = .04, respectively). Arch depth and arch length were significantly correlated with formant F3 and formant F4, respectively. Predictors of arch depth included frequencies of F3 vowels, with a significant regression equation ( P-value < .001; R 2 = 0.49). Similarly, fundamental frequency f0 and frequencies of formant F3 vowels were predictors of arch width, with a significant regression equation ( P-value < .001; R 2 = 0.37). There is a significant association between arch dimensions, particularly arch length and depth, and voice parameters. The formant most predictive of arch depth and width is the third formant, along with fundamental frequency of voice.

  18. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  19. [Development of an automatic pneumatic tourniquet system that determines pressures in synchrony with systolic blood pressure].

    PubMed

    Liu, Hongyun; Li, Kaiyuan; Zhang, Zhengbo; Guo, Junyan; Wang, Weidong

    2012-11-01

    The correlation coefficients between arterial occlusion pressure and systolic blood pressure, diastolic blood pressure, limb circumference, body mass etc were obtained through healthy volunteer experiments, in which tourniquet were applied on upper/lower extremities. The prediction equations were derived from the data of experiments by multiple regression analysis. Based on the microprocessor C8051F340, a new pneumatic tourniquet system that can determine tourniquet pressure in synchrony with systolic blood pressure was developed and verified the function and stability of designed system. Results showed that the pneumatic tourniquet which automatically adjusts occlusion pressure in accordance with systolic blood pressure could stop the flow of blood to get a bloodless field.

  20. Age as a moderator of relations of physical self-concept and mood changes associated with 10 weeks of programmed exercise in women.

    PubMed

    Annesi, James J; Westcott, Wayne L

    2005-12-01

    Significant correlations were found between reported changes in scores on the Physical Self-concept scale of the Tennessee Self-concept Scale, with those on the Depression (r=-.34) and Total Mood Disturbance (r=-.38) scales of the Profile of Mood States, for 35 women who initiated a structured exercise program. Accounting for age in simultaneous multiple regression equations added to the explained variance in changes in both Depression (R2=.29) and Total Mood Disturbance (R2=.18) scores. Findings supported propositions of social cognitive theory and self-efficacy theory. Limitations and the need for replication and extension were discussed.

  1. Premorbid personality characteristics and attachment style moderate the effect of injury severity on occupational outcome in traumatic brain injury: another aspect of reserve.

    PubMed

    Sela-Kaufman, Michal; Rassovsky, Yuri; Agranov, Eugenia; Levi, Yifat; Vakil, Eli

    2013-01-01

    The concept of "reserve" has been proposed to account for the mismatch between brain pathology and its clinical expression. Prior efforts to characterize this concept focused mostly on brain or cognitive reserve measures. The present study was a preliminary attempt to evaluate premorbid personality and emotional aspects as potential moderators in moderate-to-severe traumatic brain injury. Using structural equation modeling and multiple regression analyses, we found that premorbid personality characteristics provided the most robust moderator of injury severity on occupational outcome. Findings offer preliminary support for premorbid personality features as another relevant reserve construct in predicting outcome in this population.

  2. Characteristics of low-slope streams that affect O2 transfer rates

    USGS Publications Warehouse

    Parker, Gene W.; Desimone, Leslie A.

    1991-01-01

    Multiple-regression techniques were used to derive the reaeration coefficients estimating equation for low sloped streams: K2 = 3.83 MBAS-0.41 SL0.20 H-0.76, where K2 is the reaeration coefficient in base e units per day; MBAS is the methylene blue active substances concentration in milligrams per liter; SL is the water-surface slope in foot per foot; and H is the mean-flow depth in feet. Fourteen hydraulic, physical, and water-quality characteristics were regressed against 29 measured-reaeration coefficients for low-sloped (water surface slopes less than 0.002 foot per foot) streams in Massachusetts and New York. Reaeration coefficients measured from May 1985 to October 1988 ranged from 0.2 to 11.0 base e units per day for 29 low-sloped tracer studies. Concentration of methylene blue active substances is significant because it is thought to be an indicator of concentration of surfactants which could change the surface tension at the air-water interface.

  3. Estimating a child's age from an image using whole body proportions.

    PubMed

    Lucas, Teghan; Henneberg, Maciej

    2017-09-01

    The use and distribution of child pornography is an increasing problem. Forensic anthropologists are often asked to estimate a child's age from a photograph. Previous studies have attempted to estimate the age of children from photographs using ratios of the face. Here, we propose to include body measurement ratios into age estimates. A total of 1603 boys and 1833 girls aged 5-16 years were measured over a 10-year period. They are 'Cape Coloured' children from South Africa. Their age was regressed on ratios derived from anthropometric measurements of the head as well as the body. Multiple regression equations including four ratios for each sex (head height to shoulder and hip width, knee width, leg length and trunk length) have a standard error of 1.6-1.7 years. The error is of the same order as variation of differences between biological and chronological ages of the children. Thus, the error cannot be minimised any further as it is a direct reflection of a naturally occurring phenomenon.

  4. Efficient design of gain-flattened multi-pump Raman fiber amplifiers using least squares support vector regression

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao

    2018-02-01

    An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.

  5. Calibration of an M L scale for South Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009

    NASA Astrophysics Data System (ADS)

    Saunders, Ian; Ottemöller, Lars; Brandt, Martin B. C.; Fourie, Christoffel J. S.

    2013-04-01

    A relation to determine local magnitude ( M L) based on the original Richter definition is empirically derived from synthetic Wood-Anderson seismograms recorded by the South African National Seismograph Network. In total, 263 earthquakes in the distance range 10 to 1,000 km, representing 1,681 trace amplitudes measured in nanometers from synthesized Wood-Anderson records on the vertical channel were considered to derive an attenuation relation appropriate for South Africa through multiple regression analysis. Additionally, station corrections were determined for 26 stations during the regression analysis resulting in values ranging between -0.31 and 0.50. The most appropriate M L scale for South Africa from this study satisfies the equation: {M_{{{L}}}} = {{lo}}{{{g}}_{{10}}}(A) + 1.149{{lo}}{{{g}}_{{10}}}(R) + 0.00063R + 2.04 - S The anelastic attenuation term derived from this study indicates that ground motion attenuation is significantly different from Southern California but comparable with stable continental regions.

  6. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction.

    PubMed

    Kang, Jae-Hyun; Kim, Suna; Moon, BoKyung

    2016-08-15

    In this study, we used response surface methodology (RSM) to optimize the extraction conditions for recovering lutein from paprika leaves using accelerated solvent extraction (ASE). The lutein content was quantitatively analyzed using a UPLC equipped with a BEH C18 column. A central composite design (CCD) was employed for experimental design to obtain the optimized combination of extraction temperature (°C), static time (min), and solvent (EtOH, %). The experimental data obtained from a twenty sample set were fitted to a second-order polynomial equation using multiple regression analysis. The adjusted coefficient of determination (R(2)) for the lutein extraction model was 0.9518, and the probability value (p=0.0000) demonstrated a high significance for the regression model. The optimum extraction conditions for lutein were temperature: 93.26°C, static time: 5 min, and solvent: 79.63% EtOH. Under these conditions, the predicted extraction yield of lutein was 232.60 μg/g. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.

    1978-01-01

    A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.

  8. Estimating the magnitude of peak flows at selected recurrence intervals for streams in Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    2002-01-01

    The region-of-influence method is not recommended for use in determining flood-frequency estimates for ungaged sites in Idaho because the results, overall, are less accurate and the calculations are more complex than those of regional regression equations. The regional regression equations were considered to be the primary method of estimating the magnitude and frequency of peak flows for ungaged sites in Idaho.

  9. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  10. Temperature-viscosity models reassessed.

    PubMed

    Peleg, Micha

    2017-05-04

    The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.

  11. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    ERIC Educational Resources Information Center

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  12. Estimating the magnitude and frequency of floods in urban basins in Missouri

    USGS Publications Warehouse

    Southard, Rodney E.

    2010-01-01

    Streamgage flood-frequency analyses were done for 35 streamgages on urban streams in and adjacent to Missouri for estimation of the magnitude and frequency of floods in urban areas of Missouri. A log-Pearson Type-III distribution was fitted to the annual series of peak flow data retrieved from the U.S. Geological Survey National Water Information System. For this report, the flood frequency estimates are expressed in terms of percent annual exceedance probabilities of 50, 20, 10, 4, 2, 1, and 0.2. Of the 35 streamgages, 30 are located in Missouri. The remaining five non-Missouri streamgages were added to the dataset to improve the range and applicability of the regression analyses from the streamgage frequency analyses. Ordinary least-squares was used to determine the best set of independent variables for the regression equations. Basin characteristics selected for independent variables into the ordinary least-squares regression analyses were based on theoretical relation to flood flows, literature review of possible basin characteristics, and the ability to measure the basin characteristics using digital datasets and geographic information system technology. Results of the ordinary least-squares were evaluated on the basis of Mallow's Cp statistic, the adjusted coefficient of determination, and the statistical significance of the independent variables. The independent variables of drainage area and percent impervious area were determined to be statistically significant and readily determined from existing digital datasets. The drainage area variable was computed using the best elevation data available, either from a statewide 10-meter grid or high-resolution elevation data from urban areas. The impervious area variable was computed from the National Land Cover Dataset 2001 impervious area dataset. The National Land Cover Dataset 2001 impervious area data for each basin was compared to historical imagery and 7.5-minute topographic maps to verify the national dataset represented the urbanization of the basin at the time streamgage data were collected. Eight streamgages had less urbanization during the period of time streamflow data were collected than was shown on the 2001 dataset. The impervious area values for these eight urban basins were adjusted downward as much as 23 percent to account for the additional urbanization since the streamflow data were collected. Weighted least-squares regression techniques were used to determine the final regression equations for the statewide urban flood-frequency equations. Weighted least-squares techniques improve regression equations by adjusting for different and varying lengths in streamflow records. The final flood-frequency equations for the 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent annual exceedance probability floods for Missouri provide a technique for estimating peak flows on urban streams at gaged and ungaged sites. The applicability of the equations is limited by the range in basin characteristics used to develop the regression equations. The range in drainage area is 0.28 to 189 square miles; range in impervious area is 2.3 to 46.0 percent. Seven of the 35 selected streamgages were used to compare the results of the existing rural and urban equations to the urban equations presented in this report for the 1-percent annual exceedance probability. Results of the comparison indicate that the estimated peak flows for the urban equation in this report ranged from 3 to 52 percent higher than the results from the rural equations. Comparing the estimated urban peak flows from this report to the existing urban equation developed in 1986 indicated the range was 255 percent lower to 10 percent higher. The overall comparison between the current (2010) and 1986 urban equations indicates a reduction in estimated peak flow values for the 1-percent annual exceedance probability flood.

  13. Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model.

    PubMed

    Ma, Jing; Yu, Jiong; Hao, Guangshu; Wang, Dan; Sun, Yanni; Lu, Jianxin; Cao, Hongcui; Lin, Feiyan

    2017-02-20

    The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.

  14. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.

  15. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    PubMed

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  16. Multiple Correlation versus Multiple Regression.

    ERIC Educational Resources Information Center

    Huberty, Carl J.

    2003-01-01

    Describes differences between multiple correlation analysis (MCA) and multiple regression analysis (MRA), showing how these approaches involve different research questions and study designs, different inferential approaches, different analysis strategies, and different reported information. (SLD)

  17. Modeling animal movements using stochastic differential equations

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  18. Determination of streamflow of the Arkansas River near Bentley in south-central Kansas

    USGS Publications Warehouse

    Perry, Charles A.

    2012-01-01

    The Kansas Department of Agriculture, Division of Water Resources, requires that the streamflow of the Arkansas River just upstream from Bentley in south-central Kansas be measured or calculated before groundwater can be pumped from the well field. When the daily streamflow of the Arkansas River near Bentley is less than 165 cubic feet per second (ft3/s), pumping must be curtailed. Daily streamflow near Bentley was calculated by determining the relations between streamflow data from two reference streamgages with a concurrent record of 24 years, one located 17.2 miles (mi) upstream and one located 10.9 mi downstream, and streamflow at a temporary gage located just upstream from Bentley (Arkansas River near Bentley, Kansas). Flow-duration curves for the two reference streamgages indicate that during 1988?2011, the mean daily streamflow was less than 165 ft3/s 30 to 35 percent of the time. During extreme low-flow (drought) conditions, the reach of the Arkansas River between Hutchinson and Maize can lose flow to the adjacent alluvial aquifer, with streamflow losses as much as 1.6 cubic feet per second per mile. Three models were developed to calculate the streamflow of the Arkansas River near Bentley, Kansas. The model chosen depends on the data available and on whether the reach of the Arkansas River between Hutchinson and Maize is gaining or losing groundwater from or to the adjacent alluvial aquifer. The first model was a pair of equations developed from linear regressions of the relation between daily streamflow data from the Bentley streamgage and daily streamflow data from either the Arkansas River near Hutchinson, Kansas, station (station number 07143330) or the Arkansas River near Maize, Kansas, station (station number 07143375). The standard error of the Hutchinson-only equation was 22.8 ft3/s, and the standard error of the Maize-only equation was 22.3 ft3/s. The single-station model would be used if only one streamgage was available. In the second model, the flow gradient between the streamflow near Hutchinson and the streamflow near Maize was used to calculate the streamflow at the Bentley streamgage. This equation resulted in a standard error of 26.7 ft3/s. In the third model, a multiple regression analysis between both the daily streamflow of the Arkansas River near Hutchinson, Kansas, and the daily streamflow of the Arkansas River near Maize, Kansas, was used to calculate the streamflow at the Bentley streamgage. The multiple regression equation had a standard error of 21.2 ft3/s, which was the smallest of the standard errors for all the models. An analysis of the number of low-flow days and the number of days when the reach between Hutchinson and Maize loses flow to the adjacent alluvial aquifer indicates that the long-term trend is toward fewer days of losing conditions. This trend may indicate a long-term increase in water levels in the alluvial aquifer, which could be caused by one or more of several conditions, including an increase in rainfall, a decrease in pumping, a decrease in temperature, and an increase in streamflow upstream from the Hutchinson-to-Maize reach of the Arkansas River.

  19. Heuristic approach to capillary pressures averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coca, B.P.

    1980-10-01

    Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.

  20. Regional regression equations to estimate peak-flow frequency at sites in North Dakota using data through 2009

    USGS Publications Warehouse

    Williams-Sether, Tara

    2015-08-06

    Annual peak-flow frequency data from 231 U.S. Geological Survey streamflow-gaging stations in North Dakota and parts of Montana, South Dakota, and Minnesota, with 10 or more years of unregulated peak-flow record, were used to develop regional regression equations for exceedance probabilities of 0.5, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 using generalized least-squares techniques. Updated peak-flow frequency estimates for 262 streamflow-gaging stations were developed using data through 2009 and log-Pearson Type III procedures outlined by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. An average generalized skew coefficient was determined for three hydrologic zones in North Dakota. A StreamStats web application was developed to estimate basin characteristics for the regional regression equation analysis. Methods for estimating a weighted peak-flow frequency for gaged sites and ungaged sites are presented.

  1. Validation of bioelectrical impedance analysis for total body water assessment against the deuterium dilution technique in Asian children.

    PubMed

    Liu, A; Byrne, N M; Ma, G; Nasreddine, L; Trinidad, T P; Kijboonchoo, K; Ismail, M N; Kagawa, M; Poh, B K; Hills, A P

    2011-12-01

    To develop and cross-validate bioelectrical impedance analysis (BIA) prediction equations of total body water (TBW) and fat-free mass (FFM) for Asian pre-pubertal children from China, Lebanon, Malaysia, Philippines and Thailand. Height, weight, age, gender, resistance and reactance measured by BIA were collected from 948 Asian children (492 boys and 456 girls) aged 8-10 years from the five countries. The deuterium dilution technique was used as the criterion method for the estimation of TBW and FFM. The BIA equations were developed using stepwise multiple regression analysis and cross-validated using the Bland-Altman approach. The BIA prediction equation for the estimation of TBW was as follows: TBW=0.231 × height(2)/resistance+0.066 × height+0.188 × weight+0.128 × age+0.500 × sex-0.316 × Thais-4.574 (R (2)=88.0%, root mean square error (RMSE)=1.3 kg), and for the estimation of FFM was as follows: FFM=0.299 × height(2)/resistance+0.086 × height+0.245 × weight+0.260 × age+0.901 × sex-0.415 × ethnicity (Thai ethnicity =1, others = 0)-6.952 (R (2)=88.3%, RMSE=1.7 kg). No significant difference between measured and predicted values for the whole cross-validation sample was found. However, the prediction equation for estimation of TBW/FFM tended to overestimate TBW/FFM at lower levels whereas underestimate at higher levels of TBW/FFM. Accuracy of the general equation for TBW and FFM was also valid at each body mass index category. Ethnicity influences the relationship between BIA and body composition in Asian pre-pubertal children. The newly developed BIA prediction equations are valid for use in Asian pre-pubertal children.

  2. The Detection and Interpretation of Interaction Effects between Continuous Variables in Multiple Regression.

    ERIC Educational Resources Information Center

    Jaccard, James; And Others

    1990-01-01

    Issues in the detection and interpretation of interaction effects between quantitative variables in multiple regression analysis are discussed. Recent discussions associated with problems of multicollinearity are reviewed in the context of the conditional nature of multiple regression with product terms. (TJH)

  3. Biomass equations for major tree species of the Northeast

    Treesearch

    Louise M. Tritton; James W. Hornbeck

    1982-01-01

    Regression equations are used in both forestry and ecosystem studies to estimate tree biomass from field measurements of dbh (diameter at breast height) or a combination of dbh and height. Literature on biomass is reviewed, and 178 sets of publish equation for 25 species common to the Northeastern Unites States are listed. On the basis of these equations, estimates of...

  4. Impact of national smoke-free legislation on home smoking bans: findings from the International Tobacco Control Policy Evaluation Project Europe Surveys.

    PubMed

    Mons, Ute; Nagelhout, Gera E; Allwright, Shane; Guignard, Romain; van den Putte, Bas; Willemsen, Marc C; Fong, Geoffrey T; Brenner, Hermann; Pötschke-Langer, Martina; Breitling, Lutz P

    2013-05-01

    To measure changes in prevalence and predictors of home smoking bans (HSBs) among smokers in four European countries after the implementation of national smoke-free legislation. Two waves of the International Tobacco Control Policy Evaluation Project Europe Surveys, which is a prospective panel study. Pre- and post-legislation data were used from Ireland, France, Germany and the Netherlands. Two pre-legislation waves from the UK were used as control. 4634 respondents from the intervention countries and 1080 from the control country completed both baseline and follow-up and were included in the present analyses. Multiple logistic regression models to identify predictors of having or of adopting a total HSB, and Generalised Estimating Equation models to compare patterns of change after implementation of smoke-free legislation to a control country without such legislation. Most smokers had at least partial smoking restrictions in their home, but the proportions varied significantly between countries. After implementation of national smoke-free legislation, the proportion of smokers with a total HSB increased significantly in all four countries. Among continuing smokers, the number of cigarettes smoked per day either remained stable or decreased significantly. Multiple logistic regression models indicated that having a young child in the household and supporting smoking bans in bars were important correlates of having a pre-legislation HSB. Prospective predictors of imposing a HSB between survey waves were planning to quit smoking, supporting a total smoking ban in bars and the birth of a child. Generalised Estimating Equation models indicated that the change in total HSB in the intervention countries was greater than that in the control country. The findings suggest that smoke-free legislation does not lead to more smoking in smokers' homes. On the contrary, our findings demonstrate that smoke-free legislation may stimulate smokers to establish total smoking bans in their homes.

  5. Infant Formula Feeding at Birth Is Common and Inversely Associated with Subsequent Breastfeeding Behavior in Vietnam123

    PubMed Central

    Nguyen, Tuan T; Withers, Mellissa; Hajeebhoy, Nemat; Frongillo, Edward A

    2016-01-01

    Background: The association between infant formula feeding at birth and subsequent feeding patterns in a low- or middle-income context is not clear. Objective: We examined the association of infant formula feeding during the first 3 d after birth with subsequent infant formula feeding and early breastfeeding cessation in Vietnam. Methods: In a cross-sectional survey, we interviewed 10,681 mothers with children aged 0−23 mo (mean age: 8.2 mo; 52% boys) about their feeding practices during the first 3 d after birth and on the previous day. We used stratified analysis, multiple logistic regression, propensity score-matching analysis, and structural equation modeling to minimize the limitation of the cross-sectional design and to ensure the consistency of the findings. Results: Infant formula feeding during the first 3 d after birth (50%) was associated with a higher prevalence of subsequent infant formula feeding [stratified analysis: 7−28% higher (nonoverlapping 95% CIs for most comparisons); propensity score-matching analysis: 13% higher (P < 0.001); multiple logistic regression: OR: 1.47 (95% CI: 1.30, 1.67)]. This practice was also associated with a higher prevalence of early breastfeeding cessation (e.g., <24 mo) [propensity score-matching analysis: 2% (P = 0.08); OR: 1.33 (95% CI: 1.12, 1.59)]. Structural equation modeling showed that infant formula feeding during the first 3 d after birth was associated with a higher prevalence of subsequent infant formula feeding (β: 0.244; P < 0.001), which in turn was linked to early breastfeeding cessation (β: 0.285; P < 0.001). Conclusions: Infant formula feeding during the first 3 d after birth was associated with increased subsequent infant formula feeding and the early cessation of breastfeeding, which underscores the need to make early, exclusive breastfeeding normative and to create environments that support it. PMID:27605404

  6. Analysis of the streamflow-gaging station network in Ohio for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Straub, D.E.

    1998-01-01

    The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.

  7. Beyond Multiple Regression: Using Commonality Analysis to Better Understand R[superscript 2] Results

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2011-01-01

    Multiple regression is one of the most common statistical methods used in quantitative educational research. Despite the versatility and easy interpretability of multiple regression, it has some shortcomings in the detection of suppressor variables and for somewhat arbitrarily assigning values to the structure coefficients of correlated…

  8. A regularization of the Burgers equation using a filtered convective velocity

    NASA Astrophysics Data System (ADS)

    Norgard, Greg; Mohseni, Kamran

    2008-08-01

    This paper examines the properties of a regularization of the Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as the convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation which are shown to be shared with the viscous and inviscid Burgers equations. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of the inviscid Burgers equation with the correct wave speed. Numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness and kinetic energy decay are examined. Energy spectra are also examined and are shown to be related to the smoothness of the solutions. This approach is presented with the hope of being extended to shock regularization of compressible Euler equations.

  9. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Estimation of body density based on hydrostatic weighing without head submersion in young Japanese adults.

    PubMed

    Demura, S; Sato, S; Kitabayashi, T

    2006-06-01

    This study examined a method of predicting body density based on hydrostatic weighing without head submersion (HWwithoutHS). Donnelly and Sintek (1984) developed a method to predict body density based on hydrostatic weight without head submersion. This method predicts the difference (D) between HWwithoutHS and hydrostatic weight with head submersion (HWwithHS) from anthropometric variables (head length and head width), and then calculates body density using D as a correction factor. We developed several prediction equations to estimate D based on head anthropometry and differences between the sexes, and compared their prediction accuracy with Donnelly and Sintek's equation. Thirty-two males and 32 females aged 17-26 years participated in the study. Multiple linear regression analysis was performed to obtain the prediction equations, and the systematic errors of their predictions were assessed by Bland-Altman plots. The best prediction equations obtained were: Males: D(g) = -164.12X1 - 125.81X2 - 111.03X3 + 100.66X4 + 6488.63, where X1 = head length (cm), X2 = head circumference (cm), X3 = head breadth (cm), X4 = head thickness (cm) (R = 0.858, R2 = 0.737, adjusted R2 = 0.687, standard error of the estimate = 224.1); Females: D(g) = -156.03X1 - 14.03X2 - 38.45X3 - 8.87X4 + 7852.45, where X1 = head circumference (cm), X2 = body mass (g), X3 = head length (cm), X4 = height (cm) (R = 0.913, R2 = 0.833, adjusted R2 = 0.808, standard error of the estimate = 137.7). The effective predictors in these prediction equations differed from those of Donnelly and Sintek's equation, and head circumference and head length were included in both equations. The prediction accuracy was improved by statistically selecting effective predictors. Since we did not assess cross-validity, the equations cannot be used to generalize to other populations, and further investigation is required.

  11. Determining beef carcass retail product and fat yields within 1 hour postmortem.

    PubMed

    Apple, J K; Dikeman, M E; Cundiff, L V; Wise, J W

    1991-12-01

    Hot carcasses from 220 steers (progeny of Hereford or Angus dams mated to Angus, Charolais, Galloway, Gelbvieh, Hereford, Longhorn, Nellore, Piedmontese, Pinzgauer, Salers, or Shorthorn sires) were used to develop equations to estimate weights and percentages of retail product (RP) and trimmable fat (TF) yields. Independent variables examined were 1) 12-13th rib fat probe (12RFD), 2) 10-11th rib fat probe (10RFD), 3) external fat score (EFS), 4) percentage of internal fat estimated hot (H%KPH), 5) hindquarter muscling score (HQMS), and 6) hot carcass weight (HCW). Right sides of the carcasses were fabricated into boneless retail cuts, trimmed to .76 cm of subcutaneous and visible intermuscular fat, and weighed. Cuts were trimmed to 0 cm of subcutaneous and visible intermuscular fat and reweighed. Multiple linear regression equations containing 12RFD, EFS, H%KPH, and HCW accounted for 95 and 89% of the variation in weight of total RP at .76 and 0 cm of fat trim, respectively. When weights of RP from the four primal cuts (.76 and 0 cm of fat trim) were the dependent variables, equations consisting of 12RFD, EFS, H%KPH, and HCW accounted for 93 to 84% of the variation. Hot carcass equations accounted for 83% of the variation in weight of total TF at both .76 and 0 cm of fat trim. Furthermore, equations from hot carcass data accounted for 54 and 51% of the variation in percentage of total RP and 57 and 50% of the variation in percentage of RP from the four primal cuts at .76 and 0 cm of fat trim, respectively. Hot carcass prediction equations accounted for 72% of the variation in percentage of total TF at both fat trim levels. Hot carcass equations were equivalent or superior to equations formulated from chilled carcass traits.

  12. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    USGS Publications Warehouse

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.

  13. Allometric Biomass Equations for 98 Species of Herbs, Shrubs, and Small Trees

    Treesearch

    W. Brad Smith; Gary J. Brand

    1983-01-01

    Biomass regression coefficients from the literature for the allometric equation form are presented for 98 species of shrubs and herbs in the northern U.S. and Canada. The equation and coeffients provide estimates of grams of biomass (oven-dry weight) for foliage, woody stem and total biomass.

  14. Methods for Adjusting U.S. Geological Survey Rural Regression Peak Discharges in an Urban Setting

    USGS Publications Warehouse

    Moglen, Glenn E.; Shivers, Dorianne E.

    2006-01-01

    A study was conducted of 78 U.S. Geological Survey gaged streams that have been subjected to varying degrees of urbanization over the last three decades. Flood-frequency analysis coupled with nonlinear regression techniques were used to generate a set of equations for converting peak discharge estimates determined from rural regression equations to a set of peak discharge estimates that represent known urbanization. Specifically, urban regression equations for the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year return periods were calibrated as a function of the corresponding rural peak discharge and the percentage of impervious area in a watershed. The results of this study indicate that two sets of equations, one set based on imperviousness and one set based on population density, performed well. Both sets of equations are dependent on rural peak discharges, a measure of development (average percentage of imperviousness or average population density), and a measure of homogeneity of development within a watershed. Average imperviousness was readily determined by using geographic information system methods and commonly available land-cover data. Similarly, average population density was easily determined from census data. Thus, a key advantage to the equations developed in this study is that they do not require field measurements of watershed characteristics as did the U.S. Geological Survey urban equations developed in an earlier investigation. During this study, the U.S. Geological Survey PeakFQ program was used as an integral tool in the calibration of all equations. The scarcity of historical land-use data, however, made exclusive use of flow records necessary for the 30-year period from 1970 to 2000. Such relatively short-duration streamflow time series required a nonstandard treatment of the historical data function of the PeakFQ program in comparison to published guidelines. Thus, the approach used during this investigation does not fully comply with the guidelines set forth in U.S. Geological Survey Bulletin 17B, and modifications may be needed before it can be applied in practice.

  15. Effectiveness of the New Hampshire stream-gaging network in providing regional streamflow information

    USGS Publications Warehouse

    Olson, Scott A.

    2003-01-01

    The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.

  16. Retrieving relevant factors with exploratory SEM and principal-covariate regression: A comparison.

    PubMed

    Vervloet, Marlies; Van den Noortgate, Wim; Ceulemans, Eva

    2018-02-12

    Behavioral researchers often linearly regress a criterion on multiple predictors, aiming to gain insight into the relations between the criterion and predictors. Obtaining this insight from the ordinary least squares (OLS) regression solution may be troublesome, because OLS regression weights show only the effect of a predictor on top of the effects of other predictors. Moreover, when the number of predictors grows larger, it becomes likely that the predictors will be highly collinear, which makes the regression weights' estimates unstable (i.e., the "bouncing beta" problem). Among other procedures, dimension-reduction-based methods have been proposed for dealing with these problems. These methods yield insight into the data by reducing the predictors to a smaller number of summarizing variables and regressing the criterion on these summarizing variables. Two promising methods are principal-covariate regression (PCovR) and exploratory structural equation modeling (ESEM). Both simultaneously optimize reduction and prediction, but they are based on different frameworks. The resulting solutions have not yet been compared; it is thus unclear what the strengths and weaknesses are of both methods. In this article, we focus on the extents to which PCovR and ESEM are able to extract the factors that truly underlie the predictor scores and can predict a single criterion. The results of two simulation studies showed that for a typical behavioral dataset, ESEM (using the BIC for model selection) in this regard is successful more often than PCovR. Yet, in 93% of the datasets PCovR performed equally well, and in the case of 48 predictors, 100 observations, and large differences in the strengths of the factors, PCovR even outperformed ESEM.

  17. Deletion Diagnostics for Alternating Logistic Regressions

    PubMed Central

    Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.

    2013-01-01

    Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960

  18. Application of tristimulus colorimetry to estimate the carotenoids content in ultrafrozen orange juices.

    PubMed

    Meléndez-Martínez, Antonio J; Vicario, Isabel M; Heredia, Francisco J

    2003-12-03

    Tristimulus Colorimetry was applied to characterize the color of Valencia late orange juices. Color measurements were made against white background and black background. The profile of the main carotenoids related to the color of the juices was determined by HPLC. Significant correlations (p < 0.05) between b*, Cab* and h(ab) and the content of beta-cryptoxanthin, lutein + zeaxanthin and beta-carotene were found. The correlations between the color parameters L*, a*, b*, Cab* and h(ab) and the carotenoids content were also explored by partial least squares. The results obtained have shown that it is possible to obtain equations, by means of multiple regression models, which allow the determination of the individual carotenoid levels from the CIELAB color parameters, with R2 values always over 0.9. In this sense, equations have been proposed to calculate the retinol equivalents (1 RE = 1 microgram retinol = 12 micrograms beta-carotene = 24 micrograms alpha-carotene = 24 micrograms beta-cryptoxanthin) of the orange juice analyzed as a function of the color parameters calculated from measurement made against white and black backgrounds. The average RE per liter of juice obtained by HPLC was 51.07 +/- 18.89, whereas employing these equations, average RE values obtained were 51.16 +/- 1.36 and 51.21 +/- 1.70 for white background and black background, respectively.

  19. Mean annual runoff and peak flow estimates based on channel geometry of streams in southeastern Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)

  20. Improved assessment of body cell mass by segmental bioimpedance analysis in malnourished subjects and acromegaly.

    PubMed

    Pirlich, M; Schütz, T; Ockenga, J; Biering, H; Gerl, H; Schmidt, B; Ertl, S; Plauth, M; Lochs, H

    2003-04-01

    Estimation of body cell mass (BCM) has been regarded valuable for the assessment of malnutrition. To investigate the value of segmental bioelectrical impedance analysis (BIA) for BCM estimation in malnourished subjects and acromegaly. Nineteen controls and 63 patients with either reduced (liver cirrhosis without and with ascites, Cushing's disease) or increased BCM (acromegaly) were included. Whole-body and segmental BIA (separately measuring arm, trunk, leg) at 50 kHz was compared with BCM measured by total-body potassium. Multiple regression analysis was used to develop specific equations for BCM in each subgroup. Compared to whole-body BIA equations, the inclusion of arm resistance improved the specific equation in cirrhotic patients without ascites and in Cushing's disease resulting in excellent prediction of BCM (R(2) = 0.93 and 0.92, respectively; both P<0.001). In acromegaly, inclusion of resistance and reactance of the trunk best described BCM (R(2) = 0.94, P<0.001). In controls and in cirrhotic patients with ascites, segmental impedance parameters did not improve BCM prediction (best values obtained by whole-body measurements: R(2)=0.88 and 0.60; P<0.001 and <0.003, respectively). Segmental BIA improves the assessment of BCM in malnourished patients and acromegaly, but not in patients with severe fluid overload. Copyright 2003 Elsevier Science Ltd.

  1. Exploring Equity Properties in Equating Using AP® Examinations. Research Report No. 2012-4

    ERIC Educational Resources Information Center

    Lee, Eunjung; Lee, Won-Chan; Brennan, Robert L.

    2012-01-01

    In almost all high-stakes testing programs, test equating is necessary to ensure that test scores across multiple test administrations are equivalent and can be used interchangeably. Test equating becomes even more challenging in mixed-format tests, such as Advanced Placement Program® (AP®) Exams, that contain both multiple-choice and constructed…

  2. Limited Sampling Strategy for Estimating Mycophenolic Acid Exposure on Day 7 Post-Transplant for Two Mycophenolate Mofetil Formulations Derived From 20 Chinese Renal Transplant Recipients.

    PubMed

    Cai, W; Cai, Q; Xiong, N; Qin, Y; Lai, L; Sun, X; Hu, Y

    2018-06-01

    To assess the pharmacokinetic properties of mycophenolate mofetil (MMF) dispersible tablets and capsules by the enzyme multiplied immunoassay technique (EMIT) in Chinese kidney transplant recipients in the early post-transplantation phase and to develop the equations to predict mycophenolic acid (MPA) area under the 12-hour concentration-time curve (AUC 0-12h ) using a limited sampling strategy (LSS). Forty patients who underwent renal transplantation from brain-dead donors were randomly divided into dispersible tablets (Sai KE Ping; Hangzhou Zhongmei Huadong Pharma) and capsules (Cellcept; Roche Pharma, Why, NSW, Australia) groups, and treated with MMF combined with combination tacrolimus and prednisone as a basic immunosuppressive regimen. Blood samples were collected before treatment (0) and at 0.5,1, 1.5, 2, 4, 6, 8, 10, and 12 hours post-treatment and 7 days after renal transplantation. Plasma MPA concentrations were measured using EMIT. LSS equations were identified using multiple stepwise linear regression analysis. The peak concentration (C max ) in the MMF dispersible tablets (MMFdt) group (7.0 ± 2.8) mg/L was reduced compared with that in the MMF capsules (MMFc) group (10.8 ± 6.2 mg/L; P = .012); time to peak concentration in the MMFdt group was 3.2 ± 2.3 hours, which was nonsignificantly elevated compared with that of the MMFc group (2.2 ± 1.7 hours). Three-point estimation formulas were generated by multiple linear regression for both groups: MPA-AUC MMFdt  = 3.542 + 3.332C 0.5h  + 1.117C 1.5h  + 3.946C 4h (adjusted r 2  = 0.90, P < .001); MPA-AUC MMFc  = 8.149 + 1.442C 2h  + 1.056C 4h  + 7.133C 6h (adjusted r 2  = 0.88, P < .001). Both predicted and measured AUCs showed good consistency. After treatment with MMF dispersible tables or MMF capsules, the C max of MPA for the MMFdt group was significantly lower than that of the MMFc group; there was no significant difference in other pharmacokinetic parameters. Three-time point equations can be used as a predictable measure of the AUC 0-12h of MPA. Copyright © 2018. Published by Elsevier Inc.

  3. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  4. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    PubMed

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    PubMed

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  6. The discovery of indicator variables for QSAR using inductive logic programming

    NASA Astrophysics Data System (ADS)

    King, Ross D.; Srinivasan, Ashwin

    1997-11-01

    A central problem in forming accurate regression equations in QSAR studies isthe selection of appropriate descriptors for the compounds under study. Wedescribe a novel procedure for using inductive logic programming (ILP) todiscover new indicator variables (attributes) for QSAR problems, and show thatthese improve the accuracy of the derived regression equations. ILP techniqueshave previously been shown to work well on drug design problems where thereis a large structural component or where clear comprehensible rules arerequired. However, ILP techniques have had the disadvantage of only being ableto make qualitative predictions (e.g. active, inactive) and not to predictreal numbers (regression). We unify ILP and linear regression techniques togive a QSAR method that has the strength of ILP at describing stericstructure, with the familiarity and power of linear regression. We evaluatedthe utility of this new QSAR technique by examining the prediction ofbiological activity with and without the addition of new structural indicatorvariables formed by ILP. In three out of five datasets examined the additionof ILP variables produced statistically better results (P < 0.01) over theoriginal description. The new ILP variables did not increase the overallcomplexity of the derived QSAR equations and added insight into possiblemechanisms of action. We conclude that ILP can aid in the process of drugdesign.

  7. Relation of dietary inorganic arsenic exposure and urinary inorganic arsenic metabolites excretion in Japanese subjects.

    PubMed

    Oguri, Tomoko; Yoshinaga, Jun; Suzuki, Yayoi; Tao, Hiroaki; Nakazato, Tetsuya

    2017-06-03

    Inorganic arsenic (InAs) is a ubiquitous metalloid that has been shown to exert multiple adverse health outcomes. Urinary InAs and its metabolite concentration has been used as a biomarker of arsenic (As) exposure in some epidemiological studies, however, quantitative relationship between daily InAs exposure and urinary InAs metabolites concentration has not been well characterized. We collected a set of 24-h duplicated diet and spot urine sample of the next morning of diet sampling from 20 male and 19 female subjects in Japan from August 2011 to October 2012. Concentrations of As species in duplicated diet and urine samples were determined by using liquid chromatography-ICP mass spectrometry with a hydride generation system. Sum of the concentrations of urinary InAs and methylarsonic acid (MMA) was used as a measure of InAs exposure. Daily dietary InAs exposure was estimated to be 0.087 µg kg -1 day -1 (Geometric mean, GM), and GM of urinary InAs+MMA concentrations was 3.5 ng mL -1 . Analysis of covariance did not find gender-difference in regression coefficients as significant (P > 0.05). Regression equation Log 10 [urinary InAs+MMA concentration] = 0.570× Log 10 [dietary InAs exposure level per body weight] + 1.15 was obtained for whole data set. This equation would be valuable in converting urinary InAs concentration to daily InAs exposure, which will be important information in risk assessment.

  8. Is complex allometry in field metabolic rates of mammals a statistical artifact?

    PubMed

    Packard, Gary C

    2017-01-01

    Recent reports indicate that field metabolic rates (FMRs) of mammals conform to a pattern of complex allometry in which the exponent in a simple, two-parameter power equation increases steadily as a dependent function of body mass. The reports were based, however, on indirect analyses performed on logarithmic transformations of the original data. I re-examined values for FMR and body mass for 114 species of mammal by the conventional approach to allometric analysis (to illustrate why the approach is unreliable) and by linear and nonlinear regression on untransformed variables (to illustrate the power and versatility of newer analytical methods). The best of the regression models fitted directly to untransformed observations is a three-parameter power equation with multiplicative, lognormal, heteroscedastic error and an allometric exponent of 0.82. The mean function is a good fit to data in graphical display. The significant intercept in the model may simply have gone undetected in prior analyses because conventional allometry assumes implicitly that the intercept is zero; or the intercept may be a spurious finding resulting from bias introduced by the haphazard sampling that underlies "exploratory" analyses like the one reported here. The aforementioned issues can be resolved only by gathering new data specifically intended to address the question of scaling of FMR with body mass in mammals. However, there is no support for the concept of complex allometry in the relationship between FMR and body size in mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. CO diffusing capacity in a general population sample: relationships with cigarette smoking and airflow obstruction.

    PubMed

    Viegi, G; Paoletti, P; Carrozzi, L; Baldacci, S; Modena, P; Pedreschi, M; Di Pede, F; Mammini, U; Giuntini, C

    1993-01-01

    The single-breath carbon monoxide diffusing capacity (DLCOsb) was measured together with ventilatory lung function tests as part of a survey of a general population sample living in Northern Italy (n = 2,481). Based on answers to an interviewer-administered questionnaire, subjects free of respiratory symptoms or diseases were identified. Data from subjects who had never regularly smoked cigarettes were used to derive reference equations for the test indexes, and data from the remaining subjects who had smoked were used to derive regression equations incorporating a term expressing cigarette consumption (cube root of pack-years) and a term indicating current smoking decrement, in order to obtain expected DLCOsb percent predicted. Neither number of cigarettes smoked daily or duration of smoking, in smokers, nor duration of smoking or years since quitting smoking, in ex-smokers, entered significantly the multiple-regression model. The mean values of DLCOsb were only slightly affected by the increasing degree of airway obstruction. When subjects with confirmed asthma were analyzed, after stratifying for different levels of FEV1/FVC ratio, increased mean value of DLCOsb (over 100%) was found in those with an FEV1/FVC ratio between 75 and 65%. This cross-sectional analysis suggests that there is a decrease in DLCOsb with cumulative cigarette consumption even in healthy subjects. Further, it confirms the clinical observations of high DLCOsb values in asthmatic patients, at least in those with an initial degree of chronic airflow obstruction.

  10. Optimization of sample preparation variables for wedelolactone from Eclipta alba using Box-Behnken experimental design followed by HPLC identification.

    PubMed

    Patil, A A; Sachin, B S; Shinde, D B; Wakte, P S

    2013-07-01

    Coumestan wedelolactone is an important phytocomponent from Eclipta alba (L.) Hassk. It possesses diverse pharmacological activities, which have prompted the development of various extraction techniques and strategies for its better utilization. The aim of the present study is to develop and optimize supercritical carbon dioxide assisted sample preparation and HPLC identification of wedelolactone from E. alba (L.) Hassk. The response surface methodology was employed to study the optimization of sample preparation using supercritical carbon dioxide for wedelolactone from E. alba (L.) Hassk. The optimized sample preparation involves the investigation of quantitative effects of sample preparation parameters viz. operating pressure, temperature, modifier concentration and time on yield of wedelolactone using Box-Behnken design. The wedelolactone content was determined using validated HPLC methodology. The experimental data were fitted to second-order polynomial equation using multiple regression analysis and analyzed using the appropriate statistical method. By solving the regression equation and analyzing 3D plots, the optimum extraction conditions were found to be: extraction pressure, 25 MPa; temperature, 56 °C; modifier concentration, 9.44% and extraction time, 60 min. Optimum extraction conditions demonstrated wedelolactone yield of 15.37 ± 0.63 mg/100 g E. alba (L.) Hassk, which was in good agreement with the predicted values. Temperature and modifier concentration showed significant effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Factors of the Development of Water Erosion in the Zone of Recreation Activity in the Ol'khon Region

    NASA Astrophysics Data System (ADS)

    Znamenskaya, T. I.; Vanteeva, J. V.; Solodyankina, S. V.

    2018-02-01

    Specific features of water erosion of thin soils under conditions of nonpercolative water regime and intense recreational loads were studied in the Ol'khon region (Irkutsk oblast). An experiment on the transfer of terrigenous particles under the impact of rainfall simulation was performed. A thorough description of landscape characteristics affecting water erosion development was made. As a result, a multiple regression equation linking the transported matter with the slope steepness, projective cover of vegetation, the degree of vegetation degradation, and the fine sand content in the upper soil horizon was developed; the multiple correlation coefficient R reached 0.86. On this basis, the map of water erosion assessment for the study area was compiled with the use of landscape and topographic maps. The maximum intensity of water erosion is typical of the anthropogenically transformed landscapes on steep slopes with the low vegetative cover on the mountainous noncalcareous steppe soils and on thin loamy sandy surface-gravelly chestnut-like soils.

  12. Predictive equations for central obesity via anthropometrics, stereovision imaging, and MRI in adults

    PubMed Central

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2013-01-01

    Objective Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Design and Methods Participants (67 men and 55 women) were measured for anthropometrics, and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. Results The final total abdominal adiposity prediction equation was –470.28+7.10waist circumference–91.01gender+5.74sagittal diameter (R²=89.9%); subcutaneous adiposity was –172.37+8.57waist circumference–62.65gender–450.16stereovision waist-to-hip ratio (R²=90.4%); and visceral adiposity was –96.76+11.48central obesity depth–5.09 central obesity width+204.74stereovision waist-to-hip ratio–18.59gender (R²=71.7%). R² significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. Conclusions SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. PMID:23613161

  13. Predictive equations for central obesity via anthropometrics, stereovision imaging and MRI in adults.

    PubMed

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2014-03-01

    Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Participants (67 men and 55 women) were measured for anthropometrics and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. The final total abdominal adiposity prediction equation was -470.28 + 7.10 waist circumference - 91.01 gender + 5.74 sagittal diameter (R2 = 89.9%), subcutaneous adiposity was -172.37 + 8.57 waist circumference - 62.65 gender - 450.16 stereovision waist-to-hip ratio (R2 =90.4%), and visceral adiposity was -96.76 + 11.48 central obesity depth - 5.09 central obesity width + 204.74 stereovision waist-to-hip ratio - 18.59 gender (R2 = 71.7%). R2 significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. Copyright © 2013 The Obesity Society.

  14. Imputation method for lifetime exposure assessment in air pollution epidemiologic studies

    PubMed Central

    2013-01-01

    Background Environmental epidemiology, when focused on the life course of exposure to a specific pollutant, requires historical exposure estimates that are difficult to obtain for the full time period due to gaps in the historical record, especially in earlier years. We show that these gaps can be filled by applying multiple imputation methods to a formal risk equation that incorporates lifetime exposure. We also address challenges that arise, including choice of imputation method, potential bias in regression coefficients, and uncertainty in age-at-exposure sensitivities. Methods During time periods when parameters needed in the risk equation are missing for an individual, the parameters are filled by an imputation model using group level information or interpolation. A random component is added to match the variance found in the estimates for study subjects not needing imputation. The process is repeated to obtain multiple data sets, whose regressions against health data can be combined statistically to develop confidence limits using Rubin’s rules to account for the uncertainty introduced by the imputations. To test for possible recall bias between cases and controls, which can occur when historical residence location is obtained by interview, and which can lead to misclassification of imputed exposure by disease status, we introduce an “incompleteness index,” equal to the percentage of dose imputed (PDI) for a subject. “Effective doses” can be computed using different functional dependencies of relative risk on age of exposure, allowing intercomparison of different risk models. To illustrate our approach, we quantify lifetime exposure (dose) from traffic air pollution in an established case–control study on Long Island, New York, where considerable in-migration occurred over a period of many decades. Results The major result is the described approach to imputation. The illustrative example revealed potential recall bias, suggesting that regressions against health data should be done as a function of PDI to check for consistency of results. The 1% of study subjects who lived for long durations near heavily trafficked intersections, had very high cumulative exposures. Thus, imputation methods must be designed to reproduce non-standard distributions. Conclusions Our approach meets a number of methodological challenges to extending historical exposure reconstruction over a lifetime and shows promise for environmental epidemiology. Application to assessment of breast cancer risks will be reported in a subsequent manuscript. PMID:23919666

  15. Updated generalized biomass equations for North American tree species

    Treesearch

    David C. Chojnacky; Linda S. Heath; Jennifer C. Jenkins

    2014-01-01

    Historically, tree biomass at large scales has been estimated by applying dimensional analysis techniques and field measurements such as diameter at breast height (dbh) in allometric regression equations. Equations often have been developed using differing methods and applied only to certain species or isolated areas. We previously had compiled and combined (in meta-...

  16. Comprehensive database of diameter-based biomass regressions for North American tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2004-01-01

    A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation,...

  17. Biomass equations for shrub species of Tamualipan thornscrub of North-Eastern Mexico

    Treesearch

    J. Navar; E. Mendez; A. Najera; J. Graciano; V. Dale; B. Parresol

    2004-01-01

    Nine additive allometric equations for computing above-ground, standing biomass were developed for the plant community and for each of 18 single species typical of the Tamaulipan thornscrub of north-eastern Mexico. Equations developed using additive procedures in seemingly unrelated linear regression provided statistical efficiency in total biomass estimates at the...

  18. Mathematics beliefs and achievement of adolescent students in Japan: results from the TIMSS 1999 assessment.

    PubMed

    House, J Daniel

    2005-12-01

    A recent study (1) of undergraduate students in a precalculus course indicated that they expressed slightly positive attitudes toward mathematics. It is important, however, to examine relationships between students' initial attitudes and achievement outcomes. The present purpose was to assess the relationship between self-beliefs and mathematics achievement for a large national sample of students from the TIMSS 1999 international sample (eighth graders) from Japan. Several significant relationships between mathematics beliefs and test scores were noted. In addition, the overall multiple regression equation that assessed the joint significance of the complete set of self-belief variables was significant (F7.65 = 159.48, p < .001) and explained 20.6% of the variance in mathematics achievement test scores.

  19. Memory for self-generated narration in the elderly.

    PubMed

    Drevenstedt, J; Bellezza, F S

    1993-06-01

    The story mnemonic technique, an effective encoding and retrieval strategy for young adults, was used as a procedure to study encoding and recall in elderly women. Experiment 1 (15 undergraduate and 14 elderly women) showed the technique to be reliable over 3 weeks and without practice effects in both age groups. In Experiment 2, 67 elderly women (mean age = 72 years) were found to make up 3 distinctive subgroupings in patterns of narration cohesiveness and recall accuracy, consistent with pilot data on the technique. A stepwise multiple regression equation found narration cohesiveness, an adaptation of the Daneman-Carpenter (1980) working-memory measure and vocabulary to predict word recall. Results suggested that a general memory factor differentiated the 3 elderly subgroups.

  20. Early Childhood Adversity and Pregnancy Outcomes

    PubMed Central

    Smith, Megan V.; Gotman, Nathan; Yonkers, Kimberly A.

    2016-01-01

    Objectives To examine the association between adverse childhood experiences (ACEs) and pregnancy outcomes; to explore mediators of this association including psychiatric illness and health habits. Methods Exposure to ACEs was determined by the Early Trauma Inventory Self Report Short Form; psychiatric diagnoses were generated by the Composite International Diagnostic Interview administered in a cohort of 2303 pregnant women. Linear regression and structural equation modeling bootstrapping approaches tested for multiple mediators. Results Each additional ACE decreased birth weight by 16.33 g and decreased gestational age by 0.063. Smoking was the strongest mediator of the effect on gestational age. Conclusions ACEs have an enduring effect on maternal reproductive health, as manifested by mothers’ delivery of offspring that were of reduced birth weight and shorter gestational age. PMID:26762511

  1. A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narlesky, Joshua Edward; Kelly, Elizabeth J.

    2015-09-10

    This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because themore » variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.« less

  2. Methods for estimating annual exceedance-probability discharges and largest recorded floods for unregulated streams in rural Missouri

    USGS Publications Warehouse

    Southard, Rodney E.; Veilleux, Andrea G.

    2014-01-01

    Regression analysis techniques were used to develop a set of equations for rural ungaged stream sites for estimating discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. Basin and climatic characteristics were computed using geographic information software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses. Annual exceedance-probability discharge estimates were computed for 278 streamgages by using the expected moments algorithm to fit a log-Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data from water year 1844 to 2012. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized multiple Grubbs-Beck test was used to detect potentially influential low floods. Annual peak flows less than a minimum recordable discharge at a streamgage were incorporated into the at-site station analyses. An updated regional skew coefficient was determined for the State of Missouri using Bayesian weighted least-squares/generalized least squares regression analyses. At-site skew estimates for 108 long-term streamgages with 30 or more years of record and the 35 basin characteristics defined for this study were used to estimate the regional variability in skew. However, a constant generalized-skew value of -0.30 and a mean square error of 0.14 were determined in this study. Previous flood studies indicated that the distinct physical features of the three physiographic provinces have a pronounced effect on the magnitude of flood peaks. Trends in the magnitudes of the residuals from preliminary statewide regression analyses from previous studies confirmed that regional analyses in this study were similar and related to three primary physiographic provinces. The final regional regression analyses resulted in three sets of equations. For Regions 1 and 2, the basin characteristics of drainage area and basin shape factor were statistically significant. For Region 3, because of the small amount of data from streamgages, only drainage area was statistically significant. Average standard errors of prediction ranged from 28.7 to 38.4 percent for flood region 1, 24.1 to 43.5 percent for flood region 2, and 25.8 to 30.5 percent for region 3. The regional regression equations are only applicable to stream sites in Missouri with flows not significantly affected by regulation, channelization, backwater, diversion, or urbanization. Basins with about 5 percent or less impervious area were considered to be rural. Applicability of the equations are limited to the basin characteristic values that range from 0.11 to 8,212.38 square miles (mi2) and basin shape from 2.25 to 26.59 for Region 1, 0.17 to 4,008.92 mi2 and basin shape 2.04 to 26.89 for Region 2, and 2.12 to 2,177.58 mi2 for Region 3. Annual peak data from streamgages were used to qualitatively assess the largest floods recorded at streamgages in Missouri since the 1915 water year. Based on existing streamgage data, the 1983 flood event was the largest flood event on record since 1915. The next five largest flood events, in descending order, took place in 1993, 1973, 2008, 1994 and 1915. Since 1915, five of six of the largest floods on record occurred from 1973 to 2012.

  3. False Positives in Multiple Regression: Unanticipated Consequences of Measurement Error in the Predictor Variables

    ERIC Educational Resources Information Center

    Shear, Benjamin R.; Zumbo, Bruno D.

    2013-01-01

    Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…

  4. Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis

    ERIC Educational Resources Information Center

    Williams, Ryan T.

    2012-01-01

    Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…

  5. Use of Multiple Regression and Use-Availability Analyses in Determining Habitat Selection by Gray Squirrels (Sciurus Carolinensis)

    Treesearch

    John W. Edwards; Susan C. Loeb; David C. Guynn

    1994-01-01

    Multiple regression and use-availability analyses are two methods for examining habitat selection. Use-availability analysis is commonly used to evaluate macrohabitat selection whereas multiple regression analysis can be used to determine microhabitat selection. We compared these techniques using behavioral observations (n = 5534) and telemetry locations (n = 2089) of...

  6. The Variance Normalization Method of Ridge Regression Analysis.

    ERIC Educational Resources Information Center

    Bulcock, J. W.; And Others

    The testing of contemporary sociological theory often calls for the application of structural-equation models to data which are inherently collinear. It is shown that simple ridge regression, which is commonly used for controlling the instability of ordinary least squares regression estimates in ill-conditioned data sets, is not a legitimate…

  7. Building Regression Models: The Importance of Graphics.

    ERIC Educational Resources Information Center

    Dunn, Richard

    1989-01-01

    Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)

  8. Testing Different Model Building Procedures Using Multiple Regression.

    ERIC Educational Resources Information Center

    Thayer, Jerome D.

    The stepwise regression method of selecting predictors for computer assisted multiple regression analysis was compared with forward, backward, and best subsets regression, using 16 data sets. The results indicated the stepwise method was preferred because of its practical nature, when the models chosen by different selection methods were similar…

  9. Radon anomaly in soil gas as an earthquake precursor.

    PubMed

    Miklavcić, I; Radolić, V; Vuković, B; Poje, M; Varga, M; Stanić, D; Planinić, J

    2008-10-01

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M>or=3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T.

  10. Relationship between long working hours and depression in two working populations: a structural equation model approach.

    PubMed

    Amagasa, Takashi; Nakayama, Takeo

    2012-07-01

    To test the hypothesis that relationship reported between long working hours and depression was inconsistent in previous studies because job demand was treated as a confounder. Structural equation modeling was used to construct five models, using work-related factors and depressive mood scale obtained from 218 clerical workers, to test for goodness of fit and was externally validated with data obtained from 1160 sales workers. Multiple logistic regression analysis was also performed. The model that showed that long working hours increased depression risk when job demand was regarded as an intermediate variable was the best fitted model (goodness-of-fit index/root-mean-square error of approximation: 0.981 to 0.996/0.042 to 0.044). The odds ratio for depression risk with work that was high demand and 60 hours or more per week was estimated at 2 to 4 versus work that was low demand and less than 60 hours per week. Long working hours increased depression risk, with job demand being an intermediate variable.

  11. On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature

    PubMed Central

    Zhang, Lei; Feng, Xiao; Wang, Xin; Liu, Changyong

    2014-01-01

    The nitrogen-containing austenitic stainless steel 316LN has been chosen as the material for nuclear main-pipe, which is one of the key parts in 3rd generation nuclear power plants. In this research, a constitutive model of nitrogen-containing austenitic stainless steel is developed. The true stress-true strain curves obtained from isothermal hot compression tests over a wide range of temperatures (900–1250°C) and strain rates (10−3–10 s−1), were employed to study the dynamic deformational behavior of and recrystallization in 316LN steels. The constitutive model is developed through multiple linear regressions performed on the experimental data and based on an Arrhenius-type equation and Zener-Hollomon theory. The influence of strain was incorporated in the developed constitutive equation by considering the effect of strain on the various material constants. The reliability and accuracy of the model is verified through the comparison of predicted flow stress curves and experimental curves. Possible reasons for deviation are also discussed based on the characteristics of modeling process. PMID:25375345

  12. A fully distributed implementation of mean annual streamflow regional regression equations

    USGS Publications Warehouse

    Verdin, K.L.; Worstell, B.

    2008-01-01

    Estimates of mean annual streamflow are needed for a variety of hydrologic assessments. Away from gage locations, regional regression equations that are a function of upstream area, precipitation, and temperature are commonly used. Geographic information systems technology has facilitated their use for projects, but traditional approaches using the polygon overlay operator have been too inefficient for national scale applications. As an alternative, the Elevation Derivatives for National Applications (EDNA) database was used as a framework for a fully distributed implementation of mean annual streamflow regional regression equations. The raster “flow accumulation” operator was used to efficiently achieve spatially continuous parameterization of the equations for every 30 m grid cell of the conterminous United States (U.S.). Results were confirmed by comparing with measured flows at stations of the Hydro-Climatic Data Network, and their applications value demonstrated in the development of a national geospatial hydropower assessment. Interactive tools at the EDNA website make possible the fast and efficient query of mean annual streamflow for any location in the conterminous U.S., providing a valuable complement to other national initiatives (StreamStats and the National Hydrography Dataset Plus).

  13. [Relation between Body Height and Combined Length of Manubrium and Mesosternum of Sternum Measured by CT-VRT in Southwest Han Population].

    PubMed

    Luo, Ying-zhen; Tu, Meng; Fan, Fei; Zheng, Jie-qian; Yang, Ming; Li, Tao; Zhang, Kui; Deng, Zhen-hua

    2015-06-01

    To establish the linear regression equation between body height and combined length of manubrium and mesostenum of sternum measured by CT volume rendering technique (CT-VRT) in southwest Han population. One hundred and sixty subjects, including 80 males and 80 females were selected from southwest Han population for routine CT-VRT (reconstruction thickness 1 mm) examination. The lengths of both manubrium and mesosternum were recorded, and the combined length of manubrium and mesosternum was equal to the algebraic sum of them. The sex-specific linear regression equations between the combined length of manubrium and mesosternum and the real body height of each subject were deduced. The sex-specific simple linear regression equations between the combined length of manubrium and mesostenum (x3) and body height (y) were established (male: y = 135.000+2.118 x3 and female: y = 120.790+2.808 x3). Both equations showed statistical significance (P < 0.05) with a 100% predictive accuracy. CT-VRT is an effective method for measurement of the index of sternum. The combined length of manubrium and mesosternum from CT-VRT can be used for body height estimation in southwest Han population.

  14. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    USGS Publications Warehouse

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is representative of the increased development of the last 20 years (1989–2008). The two different land- and water-use conditions were used as surrogates for development to determine whether there have been changes in low-flow statistics as a result of changes in development over time. The State was divided into two low-flow regression regions, the Coastal Plain and the non-coastal region, in order to improve the accuracy of the regression equations. The left-censored parametric survival regression method was used for the analyses to account for streamgages and partial-record stations that had zero flow values for some of the statistics. The average standard error of estimate for the 348 regression equations ranged from 16 to 340 percent. These regression equations and basin characteristics are presented in the U.S. Geological Survey (USGS) StreamStats Web-based geographic information system application. This tool allows users to click on an ungaged site on a stream in New Jersey and get the estimated flow-duration and low-flow frequency statistics. Additionally, the user can click on a streamgage or partial-record station and get the “at-site” streamflow statistics. The low-flow characteristics of a stream ultimately affect the use of the stream by humans. Specific information on the low-flow characteristics of streams is essential to water managers who deal with problems related to municipal and industrial water supply, fish and wildlife conservation, and dilution of wastewater.

  15. Maine StreamStats: a water-resources web application

    USGS Publications Warehouse

    Lombard, Pamela J.

    2015-01-01

    Reports referenced in this fact sheet present the regression equations used to estimate the flow statistics, describe the errors associated with the estimates, and describe the methods used to develop the equations and to measure the basin characteristics used in the equations. Limitations of the methods are also described in the reports; for example, all of the equations are appropriate only for ungaged, unregulated, rural streams in Maine.

  16. Estimation of left ventricular mass in conscious dogs

    NASA Technical Reports Server (NTRS)

    Coleman, Bernell; Cothran, Laval N.; Ison-Franklin, E. L.; Hawthorne, E. W.

    1986-01-01

    A method for the assessment of the development or the regression of left ventricular hypertrophy (LVH) in a conscious instrumented animal is described. First, the single-slice short-axis area-length method for estimating the left-ventricular mass (LVM) and volume (LVV) was validated in 24 formaldehyde-fixed canine hearts, and a regression equation was developed that could be used in the intact animal to correct the sonomicrometrically estimated LVM. The LVM-assessment method, which uses the combined techniques of echocardiography and sonomicrometry (in conjunction with the regression equation), was shown to provide reliable and reproducible day-to-day estimates of LVM and LVV, and to be sensitive enough to detect serial changes during the development of LVH.

  17. A secure distributed logistic regression protocol for the detection of rare adverse drug events

    PubMed Central

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-01-01

    Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models. PMID:22871397

  18. A secure distributed logistic regression protocol for the detection of rare adverse drug events.

    PubMed

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-05-01

    There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models.

  19. Evaluating Upper-Body Strength and Power From a Single Test: The Ballistic Push-up.

    PubMed

    Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R

    2017-05-01

    Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Evaluating upper-body strength and power from a single test: the ballistic push-up. J Strength Cond Res 31(5): 1338-1345, 2017-The purpose of this study was to examine the reliability of the ballistic push-up (BPU) exercise and to develop a prediction model for both maximal strength (1 repetition maximum [1RM]) in the bench press exercise and upper-body power. Sixty recreationally active men completed a 1RM bench press and 2 BPU assessments in 3 separate testing sessions. Peak and mean force, peak and mean rate of force development, net impulse, peak velocity, flight time, and peak and mean power were determined. Intraclass correlation coefficients were used to examine the reliability of the BPU. Stepwise linear regression was used to develop 1RM bench press and power prediction equations. Intraclass correlation coefficient's ranged from 0.849 to 0.971 for the BPU measurements. Multiple regression analysis provided the following 1RM bench press prediction equation: 1RM = 0.31 × Mean Force - 1.64 × Body Mass + 0.70 (R = 0.837, standard error of the estimate [SEE] = 11 kg); time-based power prediction equation: Peak Power = 11.0 × Body Mass + 2012.3 × Flight Time - 338.0 (R = 0.658, SEE = 150 W), Mean Power = 6.7 × Body Mass + 1004.4 × Flight Time - 224.6 (R = 0.664, SEE = 82 W); and velocity-based power prediction equation: Peak Power = 8.1 × Body Mass + 818.6 × Peak Velocity - 762.0 (R = 0.797, SEE = 115 W); Mean Power = 5.2 × Body Mass + 435.9 × Peak Velocity - 467.7 (R = 0.838, SEE = 57 W). The BPU is a reliable test for both upper-body strength and power. Results indicate that the mean force generated from the BPU can be used to predict 1RM bench press, whereas peak velocity and flight time measured during the BPU can be used to predict upper-body power. These findings support the potential use of the BPU as a valid method to evaluate upper-body strength and power.

  20. Probabilistic estimates of number of undiscovered deposits and their total tonnages in permissive tracts using deposit densities

    USGS Publications Warehouse

    Singer, Donald A.; Kouda, Ryoichi

    2011-01-01

    Empirical evidence indicates that processes affecting number and quantity of resources in geologic settings are very general across deposit types. Sizes of permissive tracts that geologically could contain the deposits are excellent predictors of numbers of deposits. In addition, total ore tonnage of mineral deposits of a particular type in a tract is proportional to the type’s median tonnage in a tract. Regressions using size of permissive tracts and median tonnage allow estimation of number of deposits and of total tonnage of mineralization. These powerful estimators, based on 10 different deposit types from 109 permissive worldwide control tracts, generalize across deposit types. Estimates of number of deposits and of total tonnage of mineral deposits are made by regressing permissive area, and mean (in logs) tons in deposits of the type, against number of deposits and total tonnage of deposits in the tract for the 50th percentile estimates. The regression equations (R2 = 0.91 and 0.95) can be used for all deposit types just by inserting logarithmic values of permissive area in square kilometers, and mean tons in deposits in millions of metric tons. The regression equations provide estimates at the 50th percentile, and other equations are provided for 90% confidence limits for lower estimates and 10% confidence limits for upper estimates of number of deposits and total tonnage. Equations for these percentile estimates along with expected value estimates are presented here along with comparisons with independent expert estimates. Also provided are the equations for correcting for the known well-explored deposits in a tract. These deposit-density models require internally consistent grade and tonnage models and delineations for arriving at unbiased estimates.

  1. Methods for estimating streamflow at mountain fronts in southern New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1994-01-01

    The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.

  2. Body Composition of Bangladeshi Children: Comparison and Development of Leg-to-Leg Bioelectrical Impedance Equation

    PubMed Central

    Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal

    2012-01-01

    The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630

  3. Applicability of the Tanaka-Johnston and Moyers mixed dentition analyses in Northeast Han Chinese.

    PubMed

    Sherpa, Jangbu; Sah, Gopal; Rong, Zeng; Wu, Lipeng

    2015-06-01

    To assess applicability of the Tanaka-Johnston and Moyers prediction methods in a Han ethnic group from Northeast China and to develop prediction equations for this same population. Cross-sectional study. Department of Orthodontics, School of Stomatology, Jiamusi University, Heilongjiang, China. A total of 130 subjects (65 male and 65 female) aged 16-21 years from a Han ethnic group of Northeast China were recruited from dental students and patients seeking orthodontic treatment. Ethnicity was verified by questionnaire. Mesio-distal tooth width was measured using Digital Vernier calipers. Predicted values were obtained from the Tanaka-Johnston and Moyers methods in both arches were compared with the actual measured widths. Based on regression analysis, prediction equations were developed. Tanaka-Johnston equations were not precise, except for the upper arch in males. However, the Moyers 85th percentile in the upper arch and 75th percentile in the lower arch predicted the sum precisely in males. For females, the Moyers 75th percentile predicted the sum precisely for the upper arch, but none of the Moyers percentiles predicted in the lower arch. Both the Tanaka-Johnston and Moyers method may not be applied universally without question. Hence, it may be safer to develop regression equations for specific populations. Validating studies must be conducted to confirm the precision of these newly developed regression equations.

  4. A logistic regression equation for estimating the probability of a stream in Vermont having intermittent flow

    USGS Publications Warehouse

    Olson, Scott A.; Brouillette, Michael C.

    2006-01-01

    A logistic regression equation was developed for estimating the probability of a stream flowing intermittently at unregulated, rural stream sites in Vermont. These determinations can be used for a wide variety of regulatory and planning efforts at the Federal, State, regional, county and town levels, including such applications as assessing fish and wildlife habitats, wetlands classifications, recreational opportunities, water-supply potential, waste-assimilation capacities, and sediment transport. The equation will be used to create a derived product for the Vermont Hydrography Dataset having the streamflow characteristic of 'intermittent' or 'perennial.' The Vermont Hydrography Dataset is Vermont's implementation of the National Hydrography Dataset and was created at a scale of 1:5,000 based on statewide digital orthophotos. The equation was developed by relating field-verified perennial or intermittent status of a stream site during normal summer low-streamflow conditions in the summer of 2005 to selected basin characteristics of naturally flowing streams in Vermont. The database used to develop the equation included 682 stream sites with drainage areas ranging from 0.05 to 5.0 square miles. When the 682 sites were observed, 126 were intermittent (had no flow at the time of the observation) and 556 were perennial (had flowing water at the time of the observation). The results of the logistic regression analysis indicate that the probability of a stream having intermittent flow in Vermont is a function of drainage area, elevation of the site, the ratio of basin relief to basin perimeter, and the areal percentage of well- and moderately well-drained soils in the basin. Using a probability cutpoint (a lower probability indicates the site has perennial flow and a higher probability indicates the site has intermittent flow) of 0.5, the logistic regression equation correctly predicted the perennial or intermittent status of 116 test sites 85 percent of the time.

  5. A statistical methodology for estimating transport parameters: Theory and applications to one-dimensional advectivec-dispersive systems

    USGS Publications Warehouse

    Wagner, Brian J.; Gorelick, Steven M.

    1986-01-01

    A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.

  6. Comparison of energy expenditure to walk or run a mile in adult normal weight and overweight men and women.

    PubMed

    Loftin, Mark; Waddell, Dwight E; Robinson, James H; Owens, Scott G

    2010-10-01

    We compared the energy expenditure to walk or run a mile in adult normal weight walkers (NWW), overweight walkers (OW), and marathon runners (MR). The sample consisted of 19 NWW, 11 OW, and 20 MR adults. Energy expenditure was measured at preferred walking speed (NWW and OW) and running speed of a recently completed marathon. Body composition was assessed via dual-energy x-ray absorptiometry. Analysis of variance was used to compare groups with the Scheffe's procedure used for post hoc analysis. Multiple regression analysis was used to predict energy expenditure. Results that indicated OW exhibited significantly higher (p < 0.05) mass and fat weight than NWW or MR. Similar values were found between NWW and MR. Absolute energy expenditure to walk or run a mile was similar between groups (NWW 93.9 ± 15.0, OW 98.4 ± 29.9, MR 99.3 ± 10.8 kcal); however, significant differences were noted when energy expenditure was expressed relative to mass (MR > NWW > OW). When energy expenditure was expressed per kilogram of fat-free mass, similar values were found across groups. Multiple regression analysis yielded mass and gender as significant predictors of energy expenditure (R = 0.795, SEE = 10.9 kcal). We suggest that walking is an excellent physical activity for energy expenditure in overweight individuals that are capable of walking without predisposed conditions such as osteoarthritis or cardiovascular risk factors. Moreover, from a practical perspective, our regression equation (kcal = mass (kg) × 0.789 - gender (men = 1, women = 2) × 7.634 + 51.109) allows for the prediction of energy expenditure for a given distance (mile) rather than predicting energy expenditure for a given time (minutes).

  7. [Application of R-based multiple seasonal ARIMA model, in predicting the incidence of hand, foot and mouth disease in Shaanxi province].

    PubMed

    Liu, F; Zhu, N; Qiu, L; Wang, J J; Wang, W H

    2016-08-10

    To apply the ' auto-regressive integrated moving average product seasonal model' in predicting the number of hand, foot and mouth disease in Shaanxi province. In Shaanxi province, the trend of hand, foot and mouth disease was analyzed and tested, under the use of R software, between January 2009 and June 2015. Multiple seasonal ARIMA model was then fitted under time series to predict the number of hand, foot and mouth disease in 2016 and 2017. Seasonal effect was seen in hand, foot and mouth disease in Shaanxi province. A multiple seasonal ARIMA (2,1,0)×(1,1,0)12 was established, with the equation as (1 -B)(1 -B12)Ln (Xt) =((1-1.000B)/(1-0.532B-0.363B(2))*(1-0.644B12-0.454B12(2)))*Epsilont. The mean of absolute error and the relative error were 531.535 and 0.114, respectively when compared to the simulated number of patients from Jun to Dec in 2015. RESULTS under the prediction of multiple seasonal ARIMA model showed that the numbers of patients in both 2016 and 2017 were similar to that of 2015 in Shaanxi province. Multiple seasonal ARIMA (2,1,0)×(1,1,0)12 model could be used to successfully predict the incidence of hand, foot and mouth disease in Shaanxi province.

  8. Multiple-Instance Regression with Structured Data

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Lane, Terran; Roper, Alex

    2008-01-01

    We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.

  9. Annual peak streamflow and ancillary data for small watersheds in central and western Texas

    USGS Publications Warehouse

    Harwell, Glenn R.; Asquith, William H.

    2011-01-01

    Estimates of annual peak-streamflow frequency are needed for flood-plain management, assessment of flood risk, and design of structures, such as roads, bridges, culverts, dams, and levees. Regional regression equations have been developed and are used extensively to estimate annual peak-streamflow frequency for ungaged sites in natural (unregulated and rural or nonurbanized) watersheds in Texas (Asquith and Slade, 1997; Asquith and Thompson, 2008; Asquith and Roussel, 2009). The most recent regional regression equations were developed by using data from 638 Texas streamflow-gaging stations throughout the State with eight or more years of data by using drainage area, channel slope, and mean annual precipitation as predictor variables (Asquith and Roussel, 2009). However, because of a lack of sufficient historical streamflow data from small, rural watersheds in certain parts of the State (central and western), substantial uncertainity exists when using the regional regression equations for the purpose of estimating annual peak-streamflow frequency.

  10. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.

    PubMed

    Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan

    2017-04-01

    L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1  day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.

  11. Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling.

    PubMed

    Nock, Nl; Zhang, Lx

    2011-11-29

    Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error.

  12. Estimating Dbh from Stump Diameter for 15 Southern Species

    Treesearch

    Carl V. Bylin

    1982-01-01

    Regression equations for predicting dbh from tree stump diameter inside and outside bark are presented for 15 southern species. Equations were certified on idependent test subsets using the F distrubution statistic with signigicance level of .05.

  13. The study of correlation among different scattering parameters in an aggregate dust model

    NASA Astrophysics Data System (ADS)

    Mazarbhuiya, A. M.; Das, H. S.

    2017-09-01

    We study the light scattering properties of aggregate particles in a wide range of complex refractive indices (m = n + i k, where 1.4 ≤ n ≤ 2.0, 0.001 ≤ k ≤1.0) and wavelengths (0.45 ≤ λ≤1.25 μ m) to investigate the correlation among different parameters e.g., the positive polarization maximum (P_{max}), the amplitude of the negative polarization (P_{min}), geometric albedo (A), (n,k) and λ. Numerical computations are performed by the Superposition T-matrix code with Ballistic Cluster-Cluster Aggregate (BCCA) particles of 128 monomers and Ballistic Aggregates (BA) particles of 512 monomers, where monomer's radius of aggregates is considered to be 0.1 μm. At a fixed value of k, P_{max} and n are correlated via a quadratic regression equation and this nature is observed at all wavelengths. Further, P_{max} and k are found to be related via a polynomial regression equation when n is taken to be fixed. The degree of the equation depends on the wavelength, higher the wavelength lower is the degree. We find that A and P_{max} are correlated via a cubic regression at λ= 0.45 μ m whereas this correlation is quadratic at higher wavelengths. We notice that |P_{min}| increases with the decrease of P_{max} and a strong linear correlation between them is observed when n is fixed at some value and k is changed from higher to lower value. Further, at a fix value of k, P_{min} and P_{max} can be fitted well via a quartic regression equation when n is changed from higher to lower value. We also find that P_{max} increases with λ and they are correlated via a quartic regression.

  14. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.

    PubMed

    Xie, Yanmei; Zhang, Biao

    2017-04-20

    Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).

  15. Methods for estimating the magnitude and frequency of peak discharges of rural, unregulated streams in Virginia

    USGS Publications Warehouse

    Bisese, James A.

    1995-01-01

    Methods are presented for estimating the peak discharges of rural, unregulated streams in Virginia. A Pearson Type III distribution is fitted to the logarithms of the unregulated annual peak-discharge records from 363 stream-gaging stations in Virginia to estimate the peak discharge at these stations for recurrence intervals of 2 to 500 years. Peak-discharge characteristics for 284 unregulated stations are divided into eight regions based on physiographic province, and regressed on basin characteristics, including drainage area, main channel length, main channel slope, mean basin elevation, percentage of forest cover, mean annual precipitation, and maximum rainfall intensity. Regression equations for each region are computed by use of the generalized least-squares method, which accounts for spatial and temporal correlation between nearby gaging stations. This regression technique weights the significance of each station to the regional equation based on the length of records collected at each cation, the correlation between annual peak discharges among the stations, and the standard deviation of the annual peak discharge for each station.Drainage area proved to be the only significant explanatory variable in four regions, while other regions have as many as three significant variables. Standard errors of the regression equations range from 30 to 80 percent. Alternate equations using drainage area only are provided for the five regions with more than one significant explanatory variable.Methods and sample computations are provided to estimate peak discharges at gaged and engaged sites in Virginia for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, and to adjust the regression estimates for sites on gaged streams where nearby gaging-station records are available.

  16. Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams

    USGS Publications Warehouse

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia

    2016-01-01

    Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.

  17. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  18. An Evaluation of Statistical Strategies for Making Equating Function Selections. Research Report. ETS RR-08-60

    ERIC Educational Resources Information Center

    Moses, Tim

    2008-01-01

    Nine statistical strategies for selecting equating functions in an equivalent groups design were evaluated. The strategies of interest were likelihood ratio chi-square tests, regression tests, Kolmogorov-Smirnov tests, and significance tests for equated score differences. The most accurate strategies in the study were the likelihood ratio tests…

  19. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  20. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

Top