Remote observing environment using a KVM-over-IP for the OAO 188 cm telescope
NASA Astrophysics Data System (ADS)
Yanagisawa, Kenshi; Inoue, Goki; Kuroda, Daisuke; Ukita, Nobuharu; Mizumoto, Yoshihiko; Izumiura, Hideyuki
2016-08-01
We have prepared remote observing environment for the 188 cm telescope at Okayama Astrophysical Observatory. A KVM-over-IP and a VPN gateway are employed as core devices, which offer reliable, secure and fast link between on site and remote sites. We have confirmed the KVM-over-IP has ideal characteristics for serving the remote observing environment; the use is simple for both users and maintainer; access from any platform is available; multiple and simultaneous access is possible; and maintenance load is small. We also demonstrated that the degradation of observing efficiency specific to the remote observing is negligibly small. The remote observing environment has fully opened since the semester 2016A, about 30% of the total observing time in the last semester was occupied by remote observing.
Zhang, Shuangyou; Zhao, Jianye
2015-01-01
In this letter, we demonstrate frequency-comb-based multiple-access ultrastable frequency dissemination over a 10-km single-mode fiber link. First, we synchronize optical pulse trains from an Er-fiber frequency comb to the remote site by using a simple and robust phase-conjugate stabilization method. The fractional frequency-transfer instability at the remote site is 2.6×10(-14) and 4.9×10(-17) for averaging times of 1 and 10,000 s, respectively. Then, we reproduce the harmonic of the repetition rate from the disseminated optical pulse trains at an arbitrary point along the fiber link to test comb-based multiple-access performance, and demonstrate frequency instability of 4×10(-14) and 7×10(-17) at 1 and 10,000 s averaging time, respectively. The proposed comb-based multiple-access frequency dissemination can easily achieve highly stable wideband microwave extraction along the whole link.
A strategy for health promotion at multiple corporate sites.
Alexy, B; Eynon, D
1991-02-01
1. The logistical problems associated with delivery of health promotion programs at multiple corporate sites can be addressed through the use of health education packets. 2. The role of the nurse or health coordinator is critical in assisting and guiding the employee as the health plan is executed. 3. Problematic areas related to implementation of programs at remote sites can be alleviated through careful planning and extensive communication. 4. Advertising, input from employees and staff, and follow up are important in the success of a program.
2010-04-01
frequency monitoring, target control, and electronic warfare and networked operations. Kokee supports tracking radars, telemetry, communications, and...owned island of Niihau provide support and sites for a remotely operated PMRF surveillance radar, a Test Vehicle Recovery Site, an electronic warfare...site, multiple electronic warfare portable simulator sites, a marker for aircraft mining exercise programs, and a helicopter terrain-following
Method for Identifying Probable Archaeological Sites from Remotely Sensed Data
NASA Technical Reports Server (NTRS)
Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel
2011-01-01
Archaeological sites are being compromised or destroyed at a catastrophic rate in most regions of the world. The best solution to this problem is for archaeologists to find and study these sites before they are compromised or destroyed. One way to facilitate the necessary rapid, wide area surveys needed to find these archaeological sites is through the generation of maps of probable archaeological sites from remotely sensed data. We describe an approach for identifying probable locations of archaeological sites over a wide area based on detecting subtle anomalies in vegetative cover through a statistically based analysis of remotely sensed data from multiple sources. We further developed this approach under a recent NASA ROSES Space Archaeology Program project. Under this project we refined and elaborated this statistical analysis to compensate for potential slight miss-registrations between the remote sensing data sources and the archaeological site location data. We also explored data quantization approaches (required by the statistical analysis approach), and we identified a superior data quantization approached based on a unique image segmentation approach. In our presentation we will summarize our refined approach and demonstrate the effectiveness of the overall approach with test data from Santa Catalina Island off the southern California coast. Finally, we discuss our future plans for further improving our approach.
Fluid sampling apparatus and method
Yeamans, David R.
1998-01-01
Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.
Fluid sampling apparatus and method
Yeamans, D.R.
1998-02-03
Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.
Portable Power And Digital-Communication Units
NASA Technical Reports Server (NTRS)
Levin, Richard R.; Henry, Paul K.; Rosenberg, Leigh S.
1992-01-01
Conceptual network of electronic-equipment modules provides electrical power and digital radio communications at multiple sites not served by cables. System includes central communication unit and portable units powered by solar photovoltaic arrays. Useful to serve equipment that must be set up quickly at remote sites or buildings that cannot be modified to provide cable connections.
NASA Astrophysics Data System (ADS)
Messerotti, Mauro; Otruba, Wolfgang; Hanslmeier, Arnold
2000-06-01
The Kanzelhoehe Solar Observatory is an observing facility located in Carinthia (Austria) and operated by the Institute of Geophysics, Astrophysics and Meteorology of the Karl- Franzens University Graz. A set of instruments for solar surveillance at different wavelengths bands is continuously operated in automatic mode and is presently being upgraded to be used in supplying near-real-time solar activity indexes for space weather applications. In this frame, we tested a low-end software/hardware architecture running on the PC platform in a non-homogeneous, remotely distributed environment that allows efficient or moderately efficient application sharing at the Intranet and Extranet (i.e., Wide Area Network) levels respectively. Due to the geographical distributed of participating teams (Trieste, Italy; Kanzelhoehe and Graz, Austria), we have been using such features for collaborative remote software development and testing, data analysis and calibration, and observing run emulation from multiple sites as well. In this work, we describe the used architecture and its performances based on a series of application sharing tests we carried out to ascertain its effectiveness in real collaborative remote work, observations and data exchange. The system proved to be reliable at the Intranet level for most distributed tasks, limited to less demanding ones at the Extranet level, but quite effective in remote instrument control when real time response is not needed.
CommServer: A Communications Manager For Remote Data Sites
NASA Astrophysics Data System (ADS)
Irving, K.; Kane, D. L.
2012-12-01
CommServer is a software system that manages making connections to remote data-gathering stations, providing a simple network interface to client applications. The client requests a connection to a site by name, and the server establishes the connection, providing a bidirectional channel between the client and the target site if successful. CommServer was developed to manage networks of FreeWave serial data radios with multiple data sites, repeaters, and network-accessed base stations, and has been in continuous operational use for several years. Support for Iridium modems using RUDICS will be added soon, and no changes to the application interface are anticipated. CommServer is implemented on Linux using programs written in bash shell, Python, Perl, AWK, under a set of conventions we refer to as ThinObject.
Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng
2016-01-01
Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286
Modeling, simulation, and high-autonomy control of a Martian oxygen production plant
NASA Technical Reports Server (NTRS)
Schooley, L. C.; Cellier, F. E.; Wang, F.-Y.; Zeigler, B. P.
1992-01-01
Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.
Remote site-selective C–H activation directed by a catalytic bifunctional template
Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan
2017-01-01
Converting C–H bonds directly into carbon-carbon and carbon-heteroatom bonds can significantly improve step-economy in synthesis by providing alternative disconnections to traditional functional group manipulations. In this context, directed C–H activation reactions have been extensively explored for regioselective functionalization1-5. Though applicability can be severely curtailed by distance from the directing group and the shape of the molecule, a number of approaches have been developed to overcome this limitation6-12. For instance, recognition of the distal and geometric relationship between an existing functional group and multiple C–H bonds has recently been exploited to achieve meta-selective C–H activation by use of a covalently attached U-shaped template13-17. However, stoichiometric installation of the template is not feasible in the absence of an appropriate functional group handle. Here we report the design of a catalytic, bifunctional template that binds heterocyclic substrate via reversible coordination instead of covalent linkage, allowing remote site-selective C–H olefination of heterocycles. The two metal centers coordinated to this template play different roles; anchoring substrates to the proximity of catalyst and cleaving the remote C–H bonds respectively. Using this strategy, we demonstrate remote site-selective C–H olefination of heterocyclic substrates which do not have functional group handles for covalently attaching templates. PMID:28273068
NASA Astrophysics Data System (ADS)
Mahmud, M. R.; Reba, M. N. M.; Jaw, S. W.; Arsyad, A.; Ibrahim, M. A. M.
2017-05-01
This paper developed a conceptual framework in determining the suitable location in installing the earth station for Ka-band satellite communication in Malaysia. This current evolution of high throughput satellites experienced major challenge due to Malaysian climate. Because Ka-band frequency is highly attenuated by the rainfall; it is an enormous challenge to define the most appropriate site for the static communication. Site diversity, a measure to anticipate this conflict by choosing less attenuated region and geographically change the transmission strategy on season basis require accurate spatio-temporal information on the geographical, environmental and hydro-climatology at local scale. Prior to that request, this study developed a conceptual framework to cater the needs. By using the digital spatial data, acquired from site measurement and remote sensing, the proposed framework applied a multiple criteria analysis to perform the tasks of site selection. With the advancement of high resolution remotely sensed data, site determination can be conducted as in Malaysia; accommodating a new, fast, and effective satellite communication. The output of this study is one of the pioneer contributions to create a high tech-society.
NASA Astrophysics Data System (ADS)
Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.
2005-05-01
Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with the system. We are currently testing the system at two sites on the Colorado River in Grand Canyon and at one critical monitoring site on the Paria River where we have deployed suites of instruments for monitoring flow, sediment concentration, temperature, and conductivity. One aspect of the system that may be particularly useful for ecohydrological applications is the ability to remotely control on-site pump samplers, which allows for the collection of a water sample by the press of a button in the office.
Rodway-Dyer, Sue; Ellis, Nicola
2018-06-01
Footpaths are a prominent consequence of natural area tourism and reflect damage caused to valuable, sensitive habitats by people pressure. Degradation impacts on vegetation, wildlife, on and off-site soil movement and loss, creation of additional informal off-path footpaths (desire lines), and visual destruction of landscapes. Impacts need to be measured and monitored on a large temporal and spatial scale to aid in land management to maintain access and preserve natural environments. This study combined remote sensing (Light Detection and Ranging [LiDAR] and aerial photography) with on-site measurement of footpaths within a sensitive heathland habitat (Land's End, Cornwall, UK). Soil loss, slope angle change, vegetation damage and a hydrology model were combined to comprehensively study the site. Results showed 0.09 m mean soil loss over five years, footpath widening, increasing grass cover into heathland, and water channelling on the footpaths exacerbating erosion. The environments surrounding the footpaths were affected with visitors walking off path, requiring further management and monitoring. Multiple remote sensing techniques were highly successful in comprehensively assessing the area, particularly the hydrology model, demonstrating the potential of providing a valuable objective and quantitative monitoring and management tool. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coupling fine-scale root and canopy structure using ground-based remote sensing
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...
2017-02-21
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
Coupling fine-scale root and canopy structure using ground-based remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
NASA Astrophysics Data System (ADS)
Zhao, Chun-yan; Li, Xin; Wei, Wei; Zheng, Xiao-bing
2016-10-01
With the progress of quantitative remote sensing, the acquisition of surface BRDF becomes more and more important. In order to improve the accuracy of the surface BRDF measurements, a VNIR-SWIR Bidirectional Reflectance Automatic Measurement System, which was developed by Hefei Institutes of Physical Science (HIPS), is introduced that allows in situ measurements of hyperspectral bidirectional reflectance data. Hyperspectral bidirectional reflectance distribution function data sets taken with the BRDF automatic measurement system nominally cover the spectral range between 390 and 2390 nm in 971 bands. In July 2007, September 2008, June 2011, we acquired a series of the BRDF data covered Dunhuang radiometric calibration test site in terms of the BRDF measurement system. We have not obtained such comprehensive and accurate data as they are, since 1990s when the site was built up. These data are applied to calibration for FY-2 and other satellites sensors. Field BRDF data of a Dunhuang site surface reveal a strong spectral variability. An anisotropy factor (ANIF), defined as the ratio between the directional reflectance and nadir reflectance over the hemisphere, is introduced as a surrogate measurement for the extent of spectral BRDF effects. The ANIF data show a very high correlation with the solar zenith angle due to multiple scattering effects over a desert site. Since surface geometry, multiple scattering, and BRDF effects are related, these findings may help to derive BRDF model parameters from the in-situ BRDF measurement remotely sensed hyperspectral data sets.
NASA Technical Reports Server (NTRS)
Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.
2000-01-01
Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.
Remote observing capability with Subaru Telescope
NASA Astrophysics Data System (ADS)
Kosugi, George; Sasaki, Toshiyuki; Yagi, Masafumi; Ogasawara, Ryusuke; Mizumoto, Yoshihiko; Noumaru, Junichi; Kawai, Jun A.; Koura, Norikazu; Kusumoto, Toyoaki; Yamamoto, Tadahiro; Watanabe, Noboru; Ukawa, Kentaro
2004-09-01
We've implemented remote observing function to Subaru telescope Observation Software system (SOSs). Subaru telescope has three observing-sites, i.e., a telescope local-site and two remote observing-sites, Hilo base facility in Hawaii and Mitaka NAOJ headquarter in Japan. Our remote observing system is designed to allow operations not only from one of three observing-sites, but also from more than two sites concurrently or simultaneously. Considering allowance for delay in observing operations and a bandwidth of the network between the telescope-site and the remote observing-sites, three types of interfaces (protocols) have been implemented. In the remote observing mode, we use socket interface for the command and the status communication, vnc for ready-made applications and pop-up windows, and ftp for the actual data transfer. All images taken at the telescope-site are transferred to both of two remote observing-sites immediately after the acquisition to enable the observers' evaluation of the data. We present the current status of remote observations with Subaru telescope.
Sutherland, R J; Lehmann, H
2011-06-01
We discuss very recent experiments with rodents addressing the idea that long-term memories initially depending on the hippocampus, over a prolonged period, become independent of it. No unambiguous recent evidence exists to substantiate that this occurs. Most experiments find that recent and remote memories are equally affected by hippocampus damage. Nearly all experiments that report spared remote memories suffer from two problems: retrieval could be based upon substantial regions of spared hippocampus and recent memory is tested at intervals that are of the same order of magnitude as cellular consolidation. Accordingly, we point the way beyond systems consolidation theories, both the Standard Model of Consolidation and the Multiple Trace Theory, and propose a simpler multiple storage site hypothesis. On this view, with event reiterations, different memory representations are independently established in multiple networks. Many detailed memories always depend on the hippocampus; the others may be established and maintained independently. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrinan, Thomas; Leigh, Jason; Renambot, Luc
Mixed presence collaboration involves remote collaboration between multiple collocated groups. This paper presents the design and results of a user study that focused on mixed presence collaboration using large-scale tiled display walls. The research was conducted in order to compare data synchronization schemes for multi-user visualization applications. Our study compared three techniques for sharing data between display spaces with varying constraints and affordances. The results provide empirical evidence that using data sharing techniques with continuous synchronization between the sites lead to improved collaboration for a search and analysis task between remotely located groups. We have also identified aspects of synchronizedmore » sessions that result in increased remote collaborator awareness and parallel task coordination. It is believed that this research will lead to better utilization of large-scale tiled display walls for distributed group work.« less
NASA Astrophysics Data System (ADS)
Horii, Steven C.; Muraki, Alan; Mallon-Ingeholm, Mary L.; Mun, Seong K.; Clark, Letitia; Schellinger, Dieter
1989-05-01
A complete image management and communications system has been installed at Georgetown University Hospital (GUH). The network is based on the A T & T CommView System. In the Neuroradiology Division, this comprehensive network supports a multiscreen workstation with access to multiple imaging modalities such as CT and MRI from both the hospital and a remote imaging center. In addition, the radiologist can access these images from various workstations located throughout the hospital as well as from remote sites such as the home. Among the radiology services supported by the network, neuroradiology has the greatest need for such a system with extensive daily requirements involving the remote imaging center and on-line consultation around the clock. By providing neuroradiology with all available communication links, the radiologist can monitor, diagnose, and consult. The remote site has a subsystem capable of acquiring images and transmitting them over a high speed T1 data circuit. The GUH neuroradiologist can view these images on the neuro workstation or any of the workstations available in the Hospital. Fast and easy access to the images allows a radiologist to monitor multiple examinations as well as to utilize the workstation for diagnosis. To provide the neuroradiologist quick access to images at all times, a PC-based Results Viewing Station (RVS) has been placed in a doctor's home. Images may be sent to the RVS, or the user may request images from the central database at the hospital. Images can be viewed at home either as they are transmitted, or following transfer of a whole study. The efficiency and effectiveness of the system's capabilities with special regard to remote and teleradiology (RVS) operations have been studied for the neuroradiology service. This paper will discuss the current clinical acceptance and use, problems in implementation, and ways these difficulties are being surmounted.
Constraints and Approach for Selecting the Mars Surveyor '01 Landing Site
NASA Technical Reports Server (NTRS)
Golombek, M.; Bridges, N.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Weitz, C.
1999-01-01
There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.
Constraints, Approach and Present Status for Selecting the Mars Surveyor 2001 Landing Site
NASA Technical Reports Server (NTRS)
Golombek, M.; Anderson, F.; Bridges, N.; Briggs, G.; Gilmore, M.; Gulick, V.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.;
1999-01-01
There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough, defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities.
A Browser-Server-Based Tele-audiology System That Supports Multiple Hearing Test Modalities
Yao, Daoyuan; Givens, Gregg
2015-01-01
Abstract Introduction: Millions of global citizens suffering from hearing disorders have limited or no access to much needed hearing healthcare. Although tele-audiology presents a solution to alleviate this problem, existing remote hearing diagnosis systems support only pure-tone tests, leaving speech and other test procedures unsolved, due to the lack of software and hardware to enable communication required between audiologists and their remote patients. This article presents a comprehensive remote hearing test system that integrates the two most needed hearing test procedures: a pure-tone audiogram and a speech test. Materials and Methods: This enhanced system is composed of a Web application server, an embedded smart Internet-Bluetooth® (Bluetooth SIG, Kirkland, WA) gateway (or console device), and a Bluetooth-enabled audiometer. Several graphical user interfaces and a relational database are hosted on the application server. The console device has been designed to support the tests and auxiliary communication between the local site and the remote site. Results: The study was conducted at an audiology laboratory. Pure-tone audiogram and speech test results from volunteers tested with this tele-audiology system are comparable with results from the traditional face-to-face approach. Conclusions: This browser-server–based comprehensive tele-audiology offers a flexible platform to expand hearing services to traditionally underserved groups. PMID:25919376
A Browser-Server-Based Tele-audiology System That Supports Multiple Hearing Test Modalities.
Yao, Jianchu Jason; Yao, Daoyuan; Givens, Gregg
2015-09-01
Millions of global citizens suffering from hearing disorders have limited or no access to much needed hearing healthcare. Although tele-audiology presents a solution to alleviate this problem, existing remote hearing diagnosis systems support only pure-tone tests, leaving speech and other test procedures unsolved, due to the lack of software and hardware to enable communication required between audiologists and their remote patients. This article presents a comprehensive remote hearing test system that integrates the two most needed hearing test procedures: a pure-tone audiogram and a speech test. This enhanced system is composed of a Web application server, an embedded smart Internet-Bluetooth(®) (Bluetooth SIG, Kirkland, WA) gateway (or console device), and a Bluetooth-enabled audiometer. Several graphical user interfaces and a relational database are hosted on the application server. The console device has been designed to support the tests and auxiliary communication between the local site and the remote site. The study was conducted at an audiology laboratory. Pure-tone audiogram and speech test results from volunteers tested with this tele-audiology system are comparable with results from the traditional face-to-face approach. This browser-server-based comprehensive tele-audiology offers a flexible platform to expand hearing services to traditionally underserved groups.
ERIC Educational Resources Information Center
Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee
2012-01-01
Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…
A centralized platform for geo-distributed PACS management.
Silva, Luís A Bastião; Pinho, Renato; Ribeiro, Luís S; Costa, Carlos; Oliveira, José Luís
2014-04-01
Picture Archive and Communication System (PACS) is a globally adopted concept and plays a fundamental role in patient care flow within healthcare institutions. However, the deployment of medical imaging repositories over multiple sites still brings several practical challenges namely related to operation and management (O&M). This paper describes a Web-based centralized console that provides remote monitoring, testing, and management over multiple geo-distributed PACS. The system allows the PACS administrator to define any kind of service or operation, reducing the need for local technicians and providing a 24/7 monitoring solution.
On validating remote sensing simulations using coincident real data
NASA Astrophysics Data System (ADS)
Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan
2016-05-01
The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.
Tunnel-Site Selection by Remote Sensing Techniques
A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave
Technology for Waste Treatment at Remote Army Sites
1986-09-01
Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by
Wang, Kai; Mao, Jiafu; Dickinson, Robert; ...
2013-06-05
This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR ’s seasonal cycle, diurnal cycle, long-term trends and spatial patterns. These findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns,more » but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. Here, we identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process.« less
Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin
NASA Technical Reports Server (NTRS)
Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei
2017-01-01
Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.
Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin
de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei
2017-01-01
Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics. PMID:29375895
Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin.
de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei
2017-01-01
Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r 2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.
Registration and Fusion of Multiple Source Remotely Sensed Image Data
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline
2004-01-01
Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.
Constraints, Approach, and Status of Mars Surveyor 2001 Landing Site Selection
NASA Technical Reports Server (NTRS)
Golombek, M.; Bridges, N.; Briggs, G.; Gilmore, M.; Haldemann, A.; Parker, T.; Saunders, R.; Spencer, D.; Smith, J.; Soderblom, L.
1999-01-01
There are many similarities between the Mars Surveyor '01 (MS '01) landing site selection process and that of Mars Pathfinder. The selection process includes two parallel activities in which engineers define and refine the capabilities of the spacecraft through design, testing and modeling and scientists define a set of landing site constraints based on the spacecraft design and landing scenario. As for Pathfinder, the safety of the site is without question the single most important factor, for the simple reason that failure to land safely yields no science and exposes the mission and program to considerable risk. The selection process must be thorough and defensible and capable of surviving multiple withering reviews similar to the Pathfinder decision. On Pathfinder, this was accomplished by attempting to understand the surface properties of sites using available remote sensing data sets and models based on them. Science objectives are factored into the selection process only after the safety of the site is validated. Finally, as for Pathfinder, the selection process is being done in an open environment with multiple opportunities for community involvement including open workshops, with education and outreach opportunities. Additional information is contained in the original extended abstract.
Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee
2012-09-19
Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or retrieval. To investigate this possibility, we systematically imaged the brain activity patterns in the lateral amygdala, MGm/PIN, and AuV/TeA using activity-dependent induction of immediate early gene zif268 after recent and remote memory retrieval of auditory conditioned fear. Consistent with the critical role of the amygdala in fear memory, the zif268 activity in the lateral amygdala was significantly increased after both recent and remote memory retrieval. Interesting, however, the density of zif268 (+) neurons in both MGm/PIN and AuV/TeA, particularly in layers IV and VI, was increased only after remote but not recent fear memory retrieval compared to control groups. Further analysis of zif268 signals in AuV/TeA revealed that conditioned tone induced stronger zif268 induction compared to familiar tone in each individual zif268 (+) neuron after recent memory retrieval. Taken together, our results support that the lateral amygdala is a key brain site for permanent fear memory storage and suggest that MGm/PIN and AuV/TeA might play a role for remote memory storage or retrieval of auditory conditioned fear, or, alternatively, that these auditory brain regions might have a different way of processing for familiar or conditioned tone information at recent and remote time phases.
BOREAS RSS-3 Reflectance Measured from a Helicopter-Mounted SE-590
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Walthall, Charles L.; Loechel, Sara
2000-01-01
The BOREAS RSS-3 team collected multiple remotely sensed data sets from the NASA UH-1 helicopter. This data set includes helicopter-based radiometric measurements of forested sites acquired during BOREAS made with an SE-590 processed to reflectance factors. The data used in this analysis were collected in 1994 during the three BOREAS IFCs at numerous tower and auxiliary sites in both the NSA and the SSA. The 15-degree FOV of the SE-590 yielded a ground resolution of approximately 79 m at the 300-m nominal altitude. The data are provided in tabular ASCII files.
Simple and Multiple Endmember Mixture Analysis in the Boreal Forest
NASA Technical Reports Server (NTRS)
Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie
2000-01-01
A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.
NASA Astrophysics Data System (ADS)
Zhang, Jinqiang; Li, Zhanqing; Chen, Hongbin; Cribb, Maureen
2013-01-01
Cloud vertical structure is a key quantity in meteorological and climate studies, but it is also among the most difficult quantities to observe. In this study, we develop a long-term (10 years) radiosonde-based cloud profile product for the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA) sites and a shorter-term product for the ARM Mobile Facility (AMF) deployed in Shouxian, Anhui Province, China (AMF-China). The AMF-China site was in operation from 14 May to 28 December 2008; the ARM sites have been collecting data for over 15 years. The Active Remote Sensing of Cloud (ARSCL) value-added product (VAP), which combines data from the 95-GHz W-band ARM Cloud Radar (WACR) and/or the 35-GHz Millimeter Microwave Cloud Radar (MMCR), is used in this study to validate the radiosonde-based cloud layer retrieval method. The performance of the radiosonde-based cloud layer retrieval method applied to data from different climate regimes is evaluated. Overall, cloud layers derived from the ARSCL VAP and radiosonde data agree very well at the SGP and AMF-China sites. At the TWP and NSA sites, the radiosonde tends to detect more cloud layers in the upper troposphere.
46 CFR 160.151-49 - Approval of servicing facilities at remote sites.
Code of Federal Regulations, 2011 CFR
2011-10-01
... remote site, equipment needed for repair does not need to be available at that site. A facility must be... 46 Shipping 6 2011-10-01 2011-10-01 false Approval of servicing facilities at remote sites. 160.151-49 Section 160.151-49 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
NASA Astrophysics Data System (ADS)
Noda, H. M.; Muraoka, H.
2014-12-01
Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.
Integrating multiple distribution models to guide conservation efforts of an endangered toad
Treglia, Michael L.; Fisher, Robert N.; Fitzgerald, Lee A.
2015-01-01
Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
Overview (northeast to southwest) of remote sprint launch site #4. ...
Overview (northeast to southwest) of remote sprint launch site #4. In center is limited area sentry station, just behind it can be seen the exhaust and intake shafts for the remote launch operations building, and to the far right is the exclusion area sentry station - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND
NASA Technical Reports Server (NTRS)
Hughes, T. H.; Dillion, A. C., III; White, J. R., Jr.; Drummond, S. E., Jr.; Hooks, W. G.
1975-01-01
Because of the volume of coal produced by strip mining, the proximity of mining operations, and the diversity of mining methods (e.g. contour stripping, area stripping, multiple seam stripping, and augering, as well as underground mining), the Warrior Coal Basin seemed best suited for initial studies on the physical impact of strip mining in Alabama. Two test sites, (Cordova and Searles) representative of the various strip mining techniques and environmental problems, were chosen for intensive studies of the correlation between remote sensing and ground truth data. Efforts were eventually concentrated in the Searles Area, since it is more accessible and offers a better opportunity for study of erosional and depositional processes than the Cordova Area.
High speed polling protocol for multiple node network
NASA Technical Reports Server (NTRS)
Kirkham, Harold (Inventor)
1995-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by transmitting a poll-answering informational message and by relaying the polling message to other adjacent remote nodes.
Protocol for multiple node network
NASA Technical Reports Server (NTRS)
Kirkham, Harold (Inventor)
1995-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.
Protocol for multiple node network
NASA Technical Reports Server (NTRS)
Kirkham, Harold (Inventor)
1994-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.
CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research
Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C.
2014-01-01
The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction. PMID:24904400
CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.
Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C
2014-01-01
The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.
An Integrated Hydrologic Monitoring Network
NASA Astrophysics Data System (ADS)
Tedesco, L. P.; Baker, M. P.; Hall, B. E.
2004-12-01
Ecological studies depend on the ability to monitor an environment, collect data at appropriate spatial and temporal scales, and analyze that data from the diverse viewpoints of many relevant disciplines. Historically, environmental studies have been conducted by small teams of researchers, usually collecting data by hand at some set but low frequency, and organizing it according to ad hoc, project-specific goals. Recent years have seen dramatic advancement in the ability to gather environmental data remotely and therefore at much higher frequency. We are working to create a dynamic and integrated network of environmental sensors in natural environments to acquire real time data and create tools for visualization appropriate for different audiences to promote scientific exploration. Instrumentation includes an array of water quality and water level sondes and probes distributed throughout three Central Indiana counties. Instrument platforms currently include five river monitoring platforms utilizing YSI water quality and level probes; a lake buoy array that includes three YSI sonde packages monitoring physical, chemical and biological parameters; and over fifteen YSI and Solinist groundwater probes recording both level and water quality. Many sites are providing real-time data and several additional sites are scheduled to be online in the coming months. Visualization of this real time data from remote sensors distributed throughout Central Indiana provides numerous challenges. The benefits of successfully integrating remotely deployed environmental sensors in a post 9-11 world is obvious. We are working to bridge both the extremes associated with the frequency of data collection and the lack of data coordination by creating techniques for data networking and retrieval, and data management, analysis, and visualization capabilities that operate across a range of computing platforms to make this data immediately accessible and useful to a range of interested parties, across multiple disciplines. We are working to integrate multiple data streams into a coherent data base and create applications that allow users to view data from multiple instruments at different sites. Creating visualizations of real time, dynamic data from the everyday world and delivering it via web applications as well as through innovative display spaces will be a key outcome of this program. On-line tools for QA/QC, data queries, graphing, and sensitivity analysis are under development. Our goal is to use the instrumented sites to create analysis and presentation applications to foster a community of learners interested in understanding these ecosystems, and the larger environmental issues that they represent. This broad-based community will include environmental researchers, university faculty in lecture halls, math and science teachers, university and K-12 students, civic leaders, and educators at informal learning centers.
ChinaSpec: a network of SIF observations to bridge flux measurements and remote sensing data
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wang, S.; Liu, L.; Ju, W.; Zhu, X.
2017-12-01
Accurately quantifying atmosphere-biosphere interactions across multiple scale still remains a challenge. Remote sensing, especially satellite data, has been widely used as a solution to resolve the broad scale estimation of carbon flux by upscaling the point measurements of eddy covariance (EC) technique. However, critical gaps remain between the EC observations and coarse satellite data due to the scale mismatch. In this regard, it is necessary to build a network of in situ optical observations to bridge the scale-mismatch between EC measurements and satellite remote sensing data. Internationally, a few networks have already been established (e.g., SpecNet and EuroSpec), but still at its early stage. ChinaSpec is a network of linking in situ spectral measurements, especially sun-induce chlorophyll fluorescence (SIF), with point EC observations for better understanding the interactions of atmosphere-biosphere. One main focus of ChinsSpec is to conduct continuous field SIF measurements at multiple EC sites across the mainland of China. This will help us better understand the mechanics of SIF and photosynthesis, and resolve the missing gaps between recent SIF retrievals from coarse satellite data and EC observations. In this presentation, we introduce the background, current stage, and the development of ChinaSpec network.
Virtual Planetary Analysis Environment for Remote Science
NASA Technical Reports Server (NTRS)
Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David
2009-01-01
All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.
Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data
NASA Astrophysics Data System (ADS)
Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.
Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions
Desert Research and Technology Studies (RATS) 2007 Field Campaign Objectives and Results
NASA Technical Reports Server (NTRS)
Kosmo, Joseph; Romig, Barbara
2008-01-01
Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
Refinement of a Method for Identifying Probable Archaeological Sites from Remotely Sensed Data
NASA Technical Reports Server (NTRS)
Tilton, James C.; Comer, Douglas C.; Priebe, Carey E.; Sussman, Daniel; Chen, Li
2012-01-01
To facilitate locating archaeological sites before they are compromised or destroyed, we are developing approaches for generating maps of probable archaeological sites, through detecting subtle anomalies in vegetative cover, soil chemistry, and soil moisture by analyzing remotely sensed data from multiple sources. We previously reported some success in this effort with a statistical analysis of slope, radar, and Ikonos data (including tasseled cap and NDVI transforms) with Student's t-test. We report here on new developments in our work, performing an analysis of 8-band multispectral Worldview-2 data. The Worldview-2 analysis begins by computing medians and median absolute deviations for the pixels in various annuli around each site of interest on the 28 band difference ratios. We then use principle components analysis followed by linear discriminant analysis to train a classifier which assigns a posterior probability that a location is an archaeological site. We tested the procedure using leave-one-out cross validation with a second leave-one-out step to choose parameters on a 9,859x23,000 subset of the WorldView-2 data over the western portion of Ft. Irwin, CA, USA. We used 100 known non-sites and trained one classifier for lithic sites (n=33) and one classifier for habitation sites (n=16). We then analyzed convex combinations of scores from the Archaeological Predictive Model (APM) and our scores. We found that that the combined scores had a higher area under the ROC curve than either individual method, indicating that including WorldView-2 data in analysis improved the predictive power of the provided APM.
Zhao, Yan; Bai, Linyan; Feng, Jianzhong; Lin, Xiaosong; Wang, Li; Xu, Lijun; Ran, Qiyun; Wang, Kui
2016-04-19
Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province.
Zhao, Yan; Bai, Linyan; Feng, Jianzhong; Lin, Xiaosong; Wang, Li; Xu, Lijun; Ran, Qiyun; Wang, Kui
2016-01-01
Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province. PMID:27104536
Ohta, Kunio; Kurosawa, Hiroshi; Shiima, Yuko; Ikeyama, Takanari; Scott, James; Hayes, Scott; Gould, Michael; Buchanan, Newton; Nadkarni, Vinay; Nishisaki, Akira
2017-08-01
To assess the effectiveness of pediatric simulation by remote facilitation. We hypothesized that simulation by remote facilitation is more effective compared to simulation by an on-site facilitator. We defined remote facilitation as a facilitator remotely (1) introduces simulation-based learning and simulation environment, (2) runs scenarios, and (3) performs debriefing with an on-site facilitator. A remote simulation program for medical students during pediatric rotation was implemented. Groups were allocated to either remote or on-site facilitation depending on the availability of telemedicine technology. Both groups had identical 1-hour simulation sessions with 2 scenarios and debriefing. Their team performance was assessed with behavioral assessment tool by a trained rater. Perception by students was evaluated with Likert scale (1-7). Fifteen groups with 89 students participated in a simulation by remote facilitation, and 8 groups with 47 students participated in a simulation by on-site facilitation. Participant demographics and previous simulation experience were similar. Both groups improved their performance from first to second scenario: groups by remote simulation (first [8.5 ± 4.2] vs second [13.2 ± 6.2], P = 0.003), and groups by on-site simulation (first [6.9 ± 4.1] vs second [12.4 ± 6.4], P = 0.056). The performance improvement was not significantly different between the 2 groups (P = 0.94). Faculty evaluation by students was equally high in both groups (7 vs 7; P = 0.65). A pediatric acute care simulation by remote facilitation significantly improved students' performance. In this pilot study, remote facilitation seems as effective as a traditional, locally facilitated simulation. The remote simulation can be a strong alternative method, especially where experienced facilitators are limited.
NASA Astrophysics Data System (ADS)
Okalebo, J. A.; Das Choudhury, S.; Awada, T.; Suyker, A.; LeBauer, D.; Newcomb, M.; Ward, R.
2017-12-01
The Long-term Agroecosystem Research (LTAR) network is a USDA-ARS effort that focuses on conducting research that addresses current and emerging issues in agriculture related to sustainability and profitability of agroecosystems in the face of climate change and population growth. There are 18 sites across the USA covering key agricultural production regions. In Nebraska, a partnership between the University of Nebraska - Lincoln and ARD/USDA resulted in the establishment of the Platte River - High Plains Aquifer LTAR site in 2014. The site conducts research to sustain multiple ecosystem services focusing specifically on Nebraska's main agronomic production agroecosystems that comprise of abundant corn, soybeans, managed grasslands and beef production. As part of the national LTAR network, PR-HPA participates and contributes near-surface remotely sensed imagery of corn, soybean and grassland canopy phenology to the PhenoCam Network through high-resolution digital cameras. This poster highlights the application, advantages and usefulness of near-surface remotely sensed imagery in agroecosystem studies and management. It demonstrates how both Infrared and Red-Green-Blue imagery may be applied to monitor phenological events as well as crop abiotic stresses. Computer-based algorithms and analytic techniques proved very instrumental in revealing crop phenological changes such as green-up and tasseling in corn. This poster also reports the suitability and applicability of corn-derived computer based algorithms for evaluating phenological development of sorghum since both crops have similarities in their phenology; with sorghum panicles being similar to corn tassels. This later assessment was carried out using a sorghum dataset obtained from the Transportation Energy Resources from Renewable Agriculture Phenotyping Reference Platform project, Maricopa Agricultural Center, Arizona.
Hydro-Piezoelectricity: A Renewable Energy Source for Autonomous Underwater Vehicles
1999-09-30
having capacities of a few watts to hundreds of kW. Based on a unique Wave Energy Converter ( WEC ) buoy and intelligent power take-off algorithms, the... environmental monitoring. In addition, there will be significant dual use in the commercial sector for power generation in remote locations where the...2.5 meter by 6.5 meter long WEC at the LEO 15 site of Rutgers University. b. Multiple sensor outputs and performance data were reliably
Can we reliably estimate managed forest carbon dynamics using remotely sensed data?
NASA Astrophysics Data System (ADS)
Smallman, Thomas Luke; Exbrayat, Jean-Francois; Bloom, A. Anthony; Williams, Mathew
2015-04-01
Forests are an important part of the global carbon cycle, serving as both a large store of carbon and currently as a net sink of CO2. Forest biomass varies significantly in time and space, linked to climate, soils, natural disturbance and human impacts. This variation means that the global distribution of forest biomass and their dynamics are poorly quantified. Terrestrial ecosystem models (TEMs) are rarely evaluated for their predictions of forest carbon stocks and dynamics, due to a lack of knowledge on site specific factors such as disturbance dates and / or managed interventions. In this regard, managed forests present a valuable opportunity for model calibration and improvement. Spatially explicit datasets of planting dates, species and yield classification, in combination with remote sensing data and an appropriate data assimilation (DA) framework can reduce prediction uncertainty and error. We use a Baysian approach to calibrate the data assimilation linked ecosystem carbon (DALEC) model using a Metropolis Hastings-Markov Chain Monte Carlo (MH-MCMC) framework. Forest management information is incorporated into the data assimilation framework as part of ecological and dynamic constraints (EDCs). The key advantage here is that DALEC simulates a full carbon balance, not just the living biomass, and that both parameter and prediction uncertainties are estimated as part of the DA analysis. DALEC has been calibrated at two managed forests, in the USA (Pinus taeda; Duke Forest) and UK (Picea sitchensis; Griffin Forest). At each site DALEC is calibrated twice (exp1 & exp2). Both calibrations (exp1 & exp2) assimilated MODIS LAI and HWSD estimates of soil carbon stored in soil organic matter, in addition to common management information and prior knowledge included in parameter priors and the EDCs. Calibration exp1 also utilises multiple site level estimates of carbon storage in multiple pools. By comparing simulations we determine the impact of site-level observations on uncertainty and error on predictions, and which observations are key to constraining ecosystem processes. Preliminary simulations indicate that DALEC calibration exp1 accurately simulated the assimilated observations for forest and soil carbon stock estimates including, critically for forestry, standing wood stocks (R2 = 0.92, bias = -4.46 MgC ha-1, RMSE = 5.80 MgC ha-1). The results from exp1 indicate the model is able to find parameters that are both consistent with EDC and observations. In the absence of site-level stock observations (exp2) DALEC accurately estimates foliage and fine root pools, while the median estimate of above ground litter and wood stocks (R2 = 0.92, bias = -48.30 MgC ha-1, RMSE = 50.30 MgC ha-1) are over- and underestimated respectively, site-level observations are within model uncertainty. These results indicate that we can estimate managed forests dynamics using remotely sensed data, particularly as remotely sensed above ground biomass maps become available to provide constraint to correct biases in woody accumulation.
ERIC Educational Resources Information Center
Stokes, Alison; Collins, Trevor; Maskall, John; Lea, John; Lunt, Paul; Davies, Sarah
2012-01-01
This study considers the pedagogical effectiveness of remote access to fieldwork locations. Forty-one students from across the GEES disciplines (geography, earth and environmental sciences) undertook a fieldwork exercise, supported by two lecturers. Twenty students accessed the field site directly and the remainder accessed the site remotely using…
NASA Astrophysics Data System (ADS)
Basavarajappa, T. H.
2012-07-01
Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering a suitable methodology was developed. The feasibility of site selection in the study area based on different criteria was used to obtain the layered data by integrating Remote Sensing and GIS. This methodology is suitable for all practical applications in other cities, also.
Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long
2013-10-01
Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.
Overall view from south to north of remote sprint launch ...
Overall view from south to north of remote sprint launch sprint launch site #3. Remote launch operations building on left, exclusion area sentry station at distant center, and limited area sentry station on right - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 3, North of State Route 5, approximately 10 miles Southwest of Walhalla, ND, Nekoma, Cavalier County, ND
Remote telescope control of site testing with ASCOM
NASA Astrophysics Data System (ADS)
Ji, Kaifan; Liang, Bo; Peng, Yajie; Wang, Feng
2012-04-01
Remote telescope control is significant important for the astronomical site testing. Basing on ASCOM standard, a prototype of remote telescope control system has been implemented. In this paper, the details of the system design, both server end and client end, are introduced. We tested the prototype on a narrow-band dial-up networking and controlled a real remote telescope successfully. The result indicates that it is effective to control remote telescope and other devices with ASCOM.
Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)
NASA Astrophysics Data System (ADS)
Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.
2016-04-01
Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution
Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska.
Ramey, Andrew M; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D; Schmutz, Joel A; Atterby, Clara; Järhult, Josef D; Bonnedahl, Jonas
2017-12-11
We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.
An evolutionary communications scenario for Mars exploration
NASA Technical Reports Server (NTRS)
Stevenson, Steven M.
1987-01-01
As Mars exploration grows in complexity with time, the corresponding communication needs will grow in variety and complexity also. From initial Earth/Mars links, further needs will arise for complete surface connectivity for the provision of navigation, position location, and voice, data, and video communications services among multiple Mars bases and remote exploration sites. This paper addresses the likely required communication functions over the first few decades of Martian exploration and postulates systems for providing these services. Required technologies are identified and development requirements indicated.
Shimizu, Shuji; Ohtsuka, Takao; Takahata, Shunichi; Nagai, Eishi; Nakashima, Naoki; Tanaka, Masao
2016-01-01
Live demonstration of endoscopy is one of the most attractive and useful methods for education and is often organized locally in hospitals. However, problems have been apparent in terms of cost, preparation, and potential risks to patients. Our aim was to evaluate a new approach to live endoscopy whereby remote hospitals are connected by the Internet for live endoscopic demonstrations. Live endoscopy was transmitted to the Congress of the Japan Gastroenterological Endoscopic Society by 13 domestic and international hospitals. Patients with upper and lower gastrointestinal diseases and with pancreatobiliary disorders were the subjects of a live demonstration. Questionnaires were distributed to the audience and were sent to the demonstrators. Questions concerned the quality of transmitted images and sound, cost, preparations, programs, preference of style, and adverse events. Of the audience, 91.2% (249/273) answered favorably regarding the transmitted image quality and 93.8% (259/276) regarding the sound quality. All demonstrators answered favorably regarding image quality and 93% (13/14) regarding sound quality. Preparations were completed without any outsourcing at 11 sites (79%) and were evaluated as 'very easy' or 'easy' at all but one site (92.3%). Preparation cost was judged as 'very cheap' or 'cheap' at 12 sites (86%). Live endoscopy connecting multiple international centers was satisfactory in image and sound quality for both audience and demonstrators, with easy and inexpensive preparation. The remote transmission of live endoscopy from demonstrators' own hospitals was preferred to the conventional style of locally organized live endoscopy. © 2015 The Authors Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.
NASA Technical Reports Server (NTRS)
Hilbert, Kent; Pagnutti, Mary; Ryan, Robert; Zanoni, Vicki
2002-01-01
This paper discusses a method for detecting spatially uniform sites need for radiometric characterization of remote sensing satellites. Such information is critical for scientific research applications of imagery having moderate to high resolutions (<30-m ground sampling distance (GSD)). Previously published literature indicated that areas with the African Saharan and Arabian deserts contained extremely uniform sites with respect to spatial characteristics. We developed an algorithm for detecting site uniformity and applied it to orthorectified Landsat Thematic Mapper (TM) imagery over eight uniform regions of interest. The algorithm's results were assessed using both medium-resolution (30-m GSD) Landsat 7 ETM+ and fine-resolution (<5-m GSD) IKONOS multispectral data collected over sites in Libya and Mali. Fine-resolution imagery over a Libyan site exhibited less than 1 percent nonuniformity. The research shows that Landsat TM products appear highly useful for detecting potential calibration sites for system characterization. In particular, the approach detected spatially uniform regions that frequently occur at multiple scales of observation.
Semantics-based distributed I/O with the ParaMEDIC framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaji, P.; Feng, W.; Lin, H.
2008-01-01
Many large-scale applications simultaneously rely on multiple resources for efficient execution. For example, such applications may require both large compute and storage resources; however, very few supercomputing centers can provide large quantities of both. Thus, data generated at the compute site oftentimes has to be moved to a remote storage site for either storage or visualization and analysis. Clearly, this is not an efficient model, especially when the two sites are distributed over a wide-area network. Thus, we present a framework called 'ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing' which uses application-specific semantic information to convert the generatedmore » data to orders-of-magnitude smaller metadata at the compute site, transfer the metadata to the storage site, and re-process the metadata at the storage site to regenerate the output. Specifically, ParaMEDIC trades a small amount of additional computation (in the form of data post-processing) for a potentially significant reduction in data that needs to be transferred in distributed environments.« less
NASA Astrophysics Data System (ADS)
Mundava, C.; Helmholz, P.; Schut, A. G. T.; Corner, R.; McAtee, B.; Lamb, D. W.
2014-09-01
The objective of this paper is to test the relationships between Above Ground Biomass (AGB) and remotely sensed vegetation indices for AGB assessments in the Kimberley area in Western Australia. For 19 different sites, vegetation indices were derived from eight Landsat ETM+ scenes over a period of two years (2011-2013). The sites were divided into three groups (Open plains, Bunch grasses and Spinifex) based on similarities in dominant vegetation types. Dry and green biomass fractions were measured at these sites. Single and multiple regression relationships between vegetation indices and green and total AGB were calibrated and validated using a "leave site out" cross validation. Four tests were compared: (1) relationships between AGB and vegetation indices combining all sites; (2) separate relationships per site group; (3) multiple regressions including selected vegetation indices per site group; and (4) as in 3 but including rainfall and elevation data. Results indicate that relationships based on single vegetation indices are moderately accurate for green biomass in wide open plains covered with annual grasses. The cross-validation results for green AGB improved for a combination of indices for the Open plains and Bunch grasses sites, but not for Spinifex sites. When rainfall and elevation data are included, cross validation improved slightly with a Q2 of 0.49-0.72 for Open plains and Bunch grasses sites respectively. Cross validation results for total AGB were moderately accurate (Q2 of 0.41) for Open plains but weak or absent for other site groups despite good calibration results, indicating strong influence of site-specific factors.
Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.
Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael
2013-01-01
Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor influence.
Bilevel Shared Control Of A Remote Robotic Manipulator
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Venkataraman, Subramanian T.
1992-01-01
Proposed concept blends autonomous and teleoperator control modes, each overcoming deficiencies of the other. Both task-level and execution-level functions performed at local and remote sites. Applicable to systems with long communication delay between local and remote sites or systems intended to function partly autonomously.
NASA Technical Reports Server (NTRS)
Spruce, Joe; Warner, Amanda; Terrie, Greg; Davis, Bruce
2001-01-01
GIS technology and ground reference data often play vital roles in assessing land cover maps derived from remotely sensed data. This poster illustrates these roles, using results from a study done in Northeast Yellowstone National Park. This area holds many forest, range, and wetland cover types of interest to park managers. Several recent studies have focused on this locale, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project performed by Yellowstone Ecosystems Studies (YES) on riparian and in-stream habitat mapping. This poster regards a spin-off to the EOCAP project in which YES and NASA's Earth Science Applications Directorate explored the potential for synergistic use of hyperspecral, synthetic aperture radar, and multiband thermal imagery in mapping land cover types. The project included development of a ground reference GIS for site-specific data needed to evaluate maps from remotely sensed imagery. Field survey data included reflectance of plant communities, native and exotic plant species, and forest health conditions. Researchers also collected GPS points, annotated aerial photographs, and took hand held photographs of reference sites. The use of ESRI, ERDAS, and ENVI software enabled reference data entry into a GIS for comparision to georeferenced imagery and thematic maps. The GIS-based ground reference data layers supported development and assessment of multiple maps from remotely sensed data sets acquired over the study area.
Mobile Telemetry Van Remote Control Upgrade
2012-05-17
Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far
Apollo 16 landing site: Summary of earth based remote sensing data, part W
NASA Technical Reports Server (NTRS)
Zisk, S. H.; Masursky, H.; Milton, D. J.; Schaber, G. G.; Shorthill, R. W.; Thompson, T. W.
1972-01-01
Infrared and radar studies of the Apollo 16 landing site are summarized. Correlations and comparisons between earth based remote sensing data, IR observations, and other data are discussed in detail. Remote sensing studies were devoted to solving two problems: (1) determining the physical difference between Cayley and Descartes geologic units near the landing site; and (2) determining the nature of the bright unit of Descartes mountain material.
Antibiotic-resistant Escherichia coli in migratory birds inhabiting remote Alaska
Ramey, Andy M.; Hernandez, Jorge; Tyrlöv, Veronica; Uher-Koch, Brian D.; Schmutz, Joel A.; Atterby, Clara; Järhult, Josef D.; Bonnedahl, Jonas
2018-01-01
We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
Desert Research and Technology Studies (RATS) Local and Remote Test Sites
NASA Technical Reports Server (NTRS)
Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean
2007-01-01
Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.
Remote video assessment for missile launch facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, G.G.; Stewart, W.A.
1995-07-01
The widely dispersed, unmanned launch facilities (LFs) for land-based ICBMs (intercontinental ballistic missiles) currently do not have visual assessment capability for existing intrusion alarms. The security response force currently must assess each alarm on-site. Remote assessment will enhance manpower, safety, and security efforts. Sandia National Laboratories was tasked by the USAF Electronic Systems Center to research, recommend, and demonstrate a cost-effective remote video assessment capability at missile LFs. The project`s charter was to provide: system concepts; market survey analysis; technology search recommendations; and operational hardware demonstrations for remote video assessment from a missile LF to a remote security center viamore » a cost-effective transmission medium and without using visible, on-site lighting. The technical challenges of this project were to: analyze various video transmission media and emphasize using the existing missile system copper line which can be as long as 30 miles; accentuate and extremely low-cost system because of the many sites requiring system installation; integrate the video assessment system with the current LF alarm system; and provide video assessment at the remote sites with non-visible lighting.« less
Millimeter wave sensor for monitoring effluents
Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.
1995-01-01
A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.
NASA Technical Reports Server (NTRS)
Marvit, Maclen (Inventor); Kirkham, Harold (Inventor)
1995-01-01
The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by sequentially flooding the network with a poll-answering informational message and with the polling message.
NASA Astrophysics Data System (ADS)
Hufkens, K.; Richardson, A. D.; Migliavacca, M.; Frolking, S. E.; Braswell, B. H.; Milliman, T.; Friedl, M. A.
2010-12-01
In recent years several studies have used digital cameras and webcams to monitor green leaf phenology. Such "near-surface" remote sensing has been shown to be a cost effective means of accurately capturing phenology. Specifically, it allows for accurate tracking of intra- and inter-annual phenological dynamics at high temporal frequency and over broad spatial scales compared to visual observations or tower-based fAPAR and broadband NDVI measurements. Near surface remote sensing measurements therefore show promise for bridging the gap between traditional in-situ measurements of phenology and satellite remote sensing data. For this work, we examined the relationship between phenophase estimates derived from satellite remote sensing (MODIS) and near-earth remote sensing derived from webcams for a select set of sites with high-quality webcam data. A logistic model was used to characterize phenophases for both the webcam and MODIS data. We documented model fit accuracy, phenophase estimates, and model biases for both data sources. Our results show that different vegetation indices (VI's) derived from MODIS produce significantly different phenophase estimates compared to corresponding estimates derived from webcam data. Different VI's showed markedly different radiometric properties, and as a result, influenced phenophase estimates. The study shows that phenophase estimates are not only highly dependent on the algorithm used but also depend on the VI used by the phenology retrieval algorithm. These results highlight the need for a better understanding of how near-earth and satellite remote data relate to eco-physiological and canopy changes during different parts of the growing season.
Liu, Liang-Ying; Salamova, Amina; Venier, Marta; Hites, Ronald A
2016-01-01
Air (vapor and particle phase) samples were collected every 12days at five sites near the North American Great Lakes from 1 January 2005 to 31 December 2013 as a part of the Integrated Atmospheric Deposition Network (IADN). The concentrations of 35 polybrominated diphenyl ethers (PBDEs) and eight other halogenated flame retardants were measured in each of the ~1,300 samples. The levels of almost all of these flame retardants, except for pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), and Dechlorane Plus (DP), were significantly higher in Chicago, Cleveland, and Sturgeon Point. The concentrations of PBEB and HBB were relatively high at Eagle Harbor and Sturgeon Point, respectively, and the concentrations of DP were relatively high at Cleveland and Sturgeon Point, the two sites closest to this compound's production site. The data were analyzed using a multiple linear regression model to determine significant temporal trends in these atmospheric concentrations. The concentrations of PBDEs were decreasing at the urban sites, Chicago and Cleveland, but were generally unchanging at the remote sites, Sleeping Bear Dunes and Eagle Harbor. The concentrations of PBEB were decreasing at almost all sites except for Eagle Harbor, where the highest PBEB levels were observed. HBB concentrations were decreasing at all sites except for Sturgeon Point, where HBB levels were the highest. DP concentrations were increasing with doubling times of 3-9years at all sites except those closest to its source (Cleveland and Sturgeon Point). The levels of 1,2-bis(2,4,6-tribromophenoxy)ethane (TBE) were unchanging at the urban sites, Chicago and Cleveland, but decreasing at the suburban and remote sites, Sturgeon Point and Eagle Harbor. The atmospheric concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) and bis(2-ethylhexyl)-tetrabromophthalate (BEHTBP) were increasing at almost every site with doubling times of 3-6years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Real-time Data Access From Remote Observatories
NASA Astrophysics Data System (ADS)
Detrick, D. L.; Lutz, L. F.; Etter, J. E.; Rosenberg, T. J.; Weatherwax, A. T.
2006-12-01
Real-time access to solar-terrestrial data is becoming increasingly important, not only because it is now possible to acquire and access data rapidly via the internet, but also because of the need for timely publication of real-time data for analysis and modeling efforts. Currently, engineering-scaled summary data are available routinely on a daily basis from many observatories, but only when the observatories have continuous, or at least daily network access. Increasingly, the upgrading of remote data acquisition hardware makes it possible to provide data in real-time, and it is becoming normal to expect timely access to data products. The NSF- supported PENGUIn/AGO constellation of autonomous Antarctic research observatories has provided real-time data since December, 2002, when Iridium satellite modems were installed at three sites. The Iridium telecommunications links are maintained continuously, transferring data between the remote observatories and a U.S.-based data acquisition site. The time-limiting factor with this scenario is now the delay in completing a data record before transmission, which can be as short as minutes depending on the sampling rate. The single-channel data throughput of the current systems is 20-MB/day (megabytes per day), but planned installations will be capable of operating with multiple modem channels. The data records are currently posted immediately to a web site accessible by anonymous FTP client software, for use by the instruments' principal investigators, and survey plots of selected signals are published daily. The web publication facilities are being upgraded, in order to allow other interested researchers rapid access to engineering-scaled data products, in several common formats, as well as providing interactive plotting capabilities. The web site will provide access to data from other collaborating observatories (including South Pole and McMurdo Stations), as well as ancillary data accessible from public sites (e.g., Kp, AE, Dst). The site will be accessible via common HTML interface protocols, enabling access to the data products by browsers or other compatible application software. We describe details of the hardware and software components of the Iridium telecommunications linkage, as well as details of the current and planned web publication capabilities.
NASA Astrophysics Data System (ADS)
Cowie, B. R.; Lim, D. S.; Pendery, R.; Laval, B.; Slater, G. F.; Brady, A. L.; Dearing, W. L.; Downs, M.; Forrest, A.; Lees, D. S.; Lind, R. A.; Marinova, M.; Reid, D.; Seibert, M. A.; Shepard, R.; Williams, D.
2009-12-01
The Pavilion Lake Research Project (PLRP) is an international multi-disciplinary science and exploration effort to explain the origin and preservation potential of freshwater microbialites in Pavilion Lake, British Columbia, Canada. Using multiple exploration platforms including one person DeepWorker submersibles, Autonomous Underwater Vehicles, and SCUBA divers, the PLRP acts as an analogue research site for conducting science in extreme environments, such as the Moon or Mars. In 2009, the PLRP integrated several Web 2.0 technologies to provide a pilot-scale Education and Public Outreach (EPO) program targeting the internet savvy generation. The seamless integration of multiple technologies including Google Earth, Wordpress, Youtube, Twitter and Facebook, facilitated the rapid distribution of exciting and accessible science and exploration information over multiple channels. Field updates, science reports, and multimedia including videos, interactive maps, and immersive visualization were rapidly available through multiple social media channels, partly due to the ease of integration of these multiple technologies. Additionally, the successful application of videoconferencing via a readily available technology (Skype) has greatly increased the capacity of our team to conduct real-time education and public outreach from remote locations. The improved communication afforded by Web 2.0 has increased the quality of EPO provided by the PLRP, and has enabled a higher level of interaction between the science team and the community at large. Feedback from these online interactions suggest that remote communication via Web 2.0 technologies were effective tools for increasing public discourse and awareness of the science and exploration activity at Pavilion Lake.
The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)
NASA Astrophysics Data System (ADS)
Keel, William C.; Oswalt, Terry; Mack, Peter; Henson, Gary; Hillwig, Todd; Batcheldor, Daniel; Berrington, Robert; De Pree, Chris; Hartmann, Dieter; Leake, Martha; Licandro, Javier; Murphy, Brian; Webb, James; Wood, Matt A.
2017-01-01
We describe the remote facilities operated by the Southeastern Association for Research in Astronomy (SARA) , a consortium of colleges and universities in the US partnered with Lowell Observatory, the Chilean National Telescope Allocation Committee, and the Instituto de Astrofísica de Canarias. SARA observatories comprise a 0.96 m telescope at Kitt Peak, Arizona; one of 0.6 m aperture on Cerro Tololo, Chile; and the 1 m Jacobus Kapteyn Telescope at the Roque de los Muchachos, La Palma, Spain. All are operated using standard VNC or Radmin protocols communicating with on-site PCs. Remote operation offers considerable flexibility in scheduling, allowing long-term observational cadences difficult to achieve with classical observing at remote facilities, as well as obvious travel savings. Multiple observers at different locations can share a telescope for training, educational use, or collaborative research programs. Each telescope has a CCD system for optical imaging, using thermoelectric cooling to avoid the need for frequent local service, and a second CCD for offset guiding. The Arizona and Chile telescopes also have fiber-fed echelle spectrographs. Switching between imaging and spectroscopy is very rapid, so a night can easily accommodate mixed observing modes. We present some sample observational programs. For the benefit of other groups organizing similar consortia, we describe the operating structure and principles of SARA, as well as some lessons learned from almost 20 years of remote operations.
NASA Technical Reports Server (NTRS)
Miller, W. Frank; Sever, Thomas L.; Lee, C. Daniel
1991-01-01
The concept of integrating ecological perspectives on early man's settlement patterns with advanced remote sensing technologies shows promise for predictive site modeling. Early work with aerial imagery and ecosystem analysis is discussed with respect to the development of a major project in Maya archaeology supported by NASA and the National Geographic Society with technical support from the Mississippi State Remote Sensing Center. A preliminary site reconnaissance model will be developed for testing during the 1991 field season.
NASA Technical Reports Server (NTRS)
Grant, W. B.; Hinkley, E. D.
1984-01-01
Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... johnstonii will be implemented for 9 years, and will include habitat evaluation using remote sensing of 20 populations and on-site monitoring of 10 populations. Habitat assessments with remote sensing will occur about... site visit will be triggered from remote sensing analysis when a 30 percent loss of habitat is detected...
Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)
NASA Technical Reports Server (NTRS)
Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke
2004-01-01
The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.
Robust Multiple-Range Coherent Quantum State Transfer.
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-07-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise.
2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.
2003-08-28
Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less
Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment
NASA Technical Reports Server (NTRS)
Rutledge, Charles K.; Schuster, Gregory L.; Charlock, Thomas P.; Denn, Frederick M.; Smith, William L., Jr.; Fabbri, Bryan E.; Madigan, James J., Jr.; Knapp, Robert J.
2006-01-01
When radiometers on a satellite are pointed towards the planet with the goal of understanding a phenomenon quantitatively, rather than just creating a pleasing image, the task at hand is often problematic. The signal at the detector can be affected by scattering, absorption, and emission; and these can be due to atmospheric constituents (gases, clouds, and aerosols), the earth's surface, and subsurface features. When targeting surface phenomena, the remote sensing algorithm needs to account for the radiation associated with the atmospheric constituents. Likewise, one needs to correct for the radiation leaving the surface, when atmospheric phenomena are of interest. Rigorous validation of such remote sensing products is a real challenge. In visible and near infrared wavelengths, the jumble of effects on atmospheric radiation are best accomplished over dark surfaces with fairly uniform reflective properties (spatial homogeneity) in the satellite instrument's field of view (FOV). The ocean's surface meets this criteria; land surfaces - which are brighter, more spatially inhomogeneous, and more changeable with time - generally do not. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has used this backdrop to establish a radiation monitoring site in Virginia's coastal Atlantic Ocean. The project, called the CERES Ocean Validation Experiment (COVE), is located on a rigid ocean platform allowing the accurate measurement of radiation parameters that require precise leveling and pointing unavailable from ships or buoys. The COVE site is an optimal location for verifying radiative transfer models and remote sensing algorithms used in climate research; because of the platform's small size, there are no island wake effects; and suites of sensors can be simultaneously trained both on the sky and directly on ocean itself. This paper describes the site, the types of measurements made, multiple years of atmospheric and ocean surface radiation observations, and satellite validation results.
Monitoring system including an electronic sensor platform and an interrogation transceiver
Kinzel, Robert L.; Sheets, Larry R.
2003-09-23
A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.
A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN
NASA Astrophysics Data System (ADS)
Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.
2015-12-01
In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.
Single transmission line interrogated multiple channel data acquisition system
Fasching, George E.; Keech, Jr., Thomas W.
1980-01-01
A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.
NASA Technical Reports Server (NTRS)
Reeves, R. G. (Compiler)
1972-01-01
Recent studies conducted in the Bonanza Test Site, Colorado, area indicated that: (1) more geologic structural information is available from remote sensing data than from conventional techniques; (2) greater accuracy results from using remote sensing data; (3) all major structural features were detected; (4) of all structural interpretations, about 75% were correct; and (5) interpretation of remote sensing data will not supplant field work, but it enables field work to be done much more efficiently.
Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
Gross, G W
1992-10-01
The highlight of recent articles published on pediatric chest imaging is the potential advantage of digital imaging of the infant's chest. Digital chest imaging allows accurate determination of functional residual capacity as well as manipulation of the image to highlight specific anatomic features. Reusable photostimulable phosphor imaging systems provide wide imaging latitude and lower patient dose. In addition, digital radiology permits multiple remote-site viewing on monitor displays. Several excellent reviews of the imaging features of various thoracic abnormalities and the application of newer imaging modalities, such as ultrafast CT and MR imaging to the pediatric chest, are additional highlights.
Improved Interactive Medical-Imaging System
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Twombly, Ian A.; Senger, Steven
2003-01-01
An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.
Satellite Remote Sensing of Harmful Algal Blooms (HABs) and a Potential Synthesized Framework
Shen, Li; Xu, Huiping; Guo, Xulin
2012-01-01
Harmful algal blooms (HABs) are severe ecological disasters threatening aquatic systems throughout the World, which necessitate scientific efforts in detecting and monitoring them. Compared with traditional in situ point observations, satellite remote sensing is considered as a promising technique for studying HABs due to its advantages of large-scale, real-time, and long-term monitoring. The present review summarizes the suitability of current satellite data sources and different algorithms for detecting HABs. It also discusses the spatial scale issue of HABs. Based on the major problems identified from previous literature, including the unsystematic understanding of HABs, the insufficient incorporation of satellite remote sensing, and a lack of multiple oceanographic explanations of the mechanisms causing HABs, this review also attempts to provide a comprehensive understanding of the complicated mechanism of HABs impacted by multiple oceanographic factors. A potential synthesized framework can be established by combining multiple accessible satellite remote sensing approaches including visual interpretation, spectra analysis, parameters retrieval and spatial-temporal pattern analysis. This framework aims to lead to a systematic and comprehensive monitoring of HABs based on satellite remote sensing from multiple oceanographic perspectives. PMID:22969372
NASA Technical Reports Server (NTRS)
Howell, Charles T., III; Jones, Frank; Thorson, Taylor; Grube, Richard; Mellanson, Cecil; Joyce, Lee; Coggin, John; Kennedy, Jack
2016-01-01
The first government sanctioned delivery of medical supplies by UAS occurred at Wise, Virginia, on July 17, 2015. The "Let's Fly Wisely" event was a demonstration of the humanitarian use of UAS to facilitate delivery of medical supplies to remote or otherwise difficult-to-reach areas. The event was the result of coordinated efforts by a partnership which included the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), Virginia Polytechnic Institute, the Mid-Atlantic Aviation Partnership (MAAP), Flirtey Corporation, Lonesome Pine Airport, Remote Area Medical (RAM), Health Wagon, SEESPAN Aerial Interactive, Rx Partnership, and Wise County, Virginia. The historic event occurred during the annual Remote Area Medical clinic at the Wise County Fairgrounds. The medical supplies in small packages were delivered to the Wise County Fairgrounds from the Lonesome Pine Airport by UAS operated by Firtey. A larger supply of medical supplies were delivered to the Lonesome Pine Airport from the Tazewell County Airport by NASA Langley's SR22 UAS Surrogate Research aircraft. The UAS Surrogate aircraft was remotely controlled for most of the flight by a UAS Ground Control Station located at the Lonesome Pine Airport. The medical supplies were delivered from the UAS Surrogate to Flirtey for final delivery by Hex Multi-Rotor UAS in smaller packages and multiple trips to the fairgrounds. A Certificate of Authorization (COA) issued by the Federal Aviation Administration (FAA) designated the site as an authorized UAS test site. The paper will present additional details of the historic delivery of pharmaceuticals by UAS during the "Let's Fly Wisely" event. The paper will also provide details of NASA's SR22 UAS Surrogate Research aircraft. The UAS Surrogate was designed to investigate the procedures, aircraft sensors and other systems that may be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS).
NASA Astrophysics Data System (ADS)
Kibrick, Robert I.; Wirth, Gregory D.; Allen, Steven L.; Deich, William T. S.; Goodrich, Robert W.; Lanclos, Kyle; Lyke, James E.
2011-03-01
For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 9 years, WMKO remote observing has expanded to allow observing teams at dedicated sites located across California to observe via the Internet either in collaboration with colleagues in Waimea or entirely from California; this capability was extended to Swinburne University in Melbourne, Australia in 2010 and to Yale University in New Haven, Connecticut in early 2011. All Keck facility science instruments are currently supported. Observers distributed between as many as four sites can collaborate in the interactive operation of each instrument by means of shared VNC desktops and multipoint video and/or telephone conferencing. Automated routers at primary remote observing sites ensure continued connectivity during Internet outages. Each Keck remote observing facility is similarly equipped and configured so observers have the same operating environment. This architecture provides observers the flexibility to conduct observations from the location best suited to their needs and to adapt to last-minute changes. It also enhances the ability of off-site technical staff to provide remote support.
Barord, Gregory J; Dooley, Frederick; Dunstan, Andrew; Ilano, Anthony; Keister, Karen N; Neumeister, Heike; Preuss, Thomas; Schoepfer, Shane; Ward, Peter D
2014-01-01
The extant species of Nautilus and Allonautilus (Cephalopoda) inhabit fore-reef slope environments across a large geographic area of the tropical western Pacific and eastern Indian Oceans. While many aspects of their biology and behavior are now well-documented, uncertainties concerning their current populations and ecological role in the deeper, fore-reef slope environments remain. Given the historical to current day presence of nautilus fisheries at various locales across the Pacific and Indian Oceans, a comparative assessment of the current state of nautilus populations is critical to determine whether conservation measures are warranted. We used baited remote underwater video systems (BRUVS) to make quantitative photographic records as a means of estimating population abundance of Nautilus sp. at sites in the Philippine Islands, American Samoa, Fiji, and along an approximately 125 km transect on the fore reef slope of the Great Barrier Reef from east of Cairns to east of Lizard Island, Australia. Each site was selected based on its geography, historical abundance, and the presence (Philippines) or absence (other sites) of Nautilus fisheries The results from these observations indicate that there are significantly fewer nautiluses observable with this method in the Philippine Islands site. While there may be multiple possibilities for this difference, the most parsimonious is that the Philippine Islands population has been reduced due to fishing. When compared to historical trap records from the same site the data suggest there have been far more nautiluses at this site in the past. The BRUVS proved to be a valuable tool to measure Nautilus abundance in the deep sea (300-400 m) while reducing our overall footprint on the environment.
Terrestrial reference standard sites for postlaunch sensor calibration
Teillet, P.M.; Chander, G.
2010-01-01
In an era when the number of Earth observation satellites is rapidly growing and measurements from satellite sensors are used to address increasingly urgent global issues, often through synergistic and operational combinations of data from multiple sources, it is imperative that scientists and decision-makers are able to rely on the accuracy of Earth observation data products. The characterization and calibration of these sensors, particularly their relative biases, are vital to the success of the developing integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of the Earth. This can only reliably be achieved in the postlaunch environment through the careful use of observations by multiple sensor systems over common, well-characterized terrestrial targets (i.e., on or near the Earth's surface). Through greater access to and understanding of these vital reference standard sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. This paper provides a brief overview of the use of reference standard sites for postlaunch sensor radiometric calibration from historical, current, and future perspectives. Emphasis is placed on optical sensors operating in the visible, near-infrared, and shortwave infrared spectral regions.
McBeth, Paul B; Crawford, Innes; Blaivas, Michael; Hamilton, Trevor; Musselwhite, Kimberly; Panebianco, Nova; Melniker, Lawrence; Ball, Chad G; Gargani, Luna; Gherdovich, Carlotta; Kirkpatrick, Andrew W
2011-12-01
Apnea (APN) and pneumothorax (PTX) are common immediately life-threatening conditions. Ultrasound is a portable tool that captures anatomy and physiology as digital information allowing it to be readily transferred by electronic means. Both APN and PTX are simply ruled out by visualizing respiratory motion at the visceral-parietal pleural interface known as lung sliding (LS), corroborated by either the M-mode or color-power Doppler depiction of LS. We thus assessed how economically and practically this information could be obtained remotely over a cellular network. Ultrasound images were obtained on handheld ultrasound machines streamed to a standard free internet service (Skype) using an iPhone. Remote expert sonographers directed remote providers (with variable to no ultrasound experience) to obtain images by viewing the transmitted ultrasound signal and by viewing the remote examiner over a head-mounted webcam. Examinations were conducted between a series of remote sites and a base station. Remote sites included two remote on-mountain sites, a small airplane in flight, and a Calgary household, with base sites located in Pisa, Rome, Philadelphia, and Calgary. In all lung fields (20/20) on all occasions, LS could easily and quickly be seen. LS was easily corroborated and documented through capture of color-power Doppler and M-mode images. Other ultrasound applications such as the Focused Assessment with Sonography for Trauma examination, vascular anatomy, and a fetal wellness assessment were also demonstrated. The emergent exclusion of APN-PTX can be immediately accomplished by a remote expert economically linked to almost any responder over cellular networks. Further work should explore the range of other physiologic functions and anatomy that could be so remotely assessed.
NASA Astrophysics Data System (ADS)
Prueger, J. H.; Hatfield, J. L.
2015-09-01
Remotely sensed reflectance parameters from corn and soybean surfaces can be correlated to crop production. Surface reflectance of a typical Upper Midwest corn /soybean region in central Iowa across multiple years reveal subtle dynamics in vegetative surface response to a continually varying climate. From 2006 through 2014 remotely sensed data have been acquired over production fields of corn and soybeans in central IA, U.S.A. with the fields alternating between corn and soybeans. The data have been acquired using ground-based radiometers with 16 wavebands covering the visible, near infrared, shortwave infrared wavebands and combined into a series of vegetative indices. These data were collected on clear days with the goal of collecting data at a minimum of once per week from prior to planting until after fall tillage operations. Within each field, five sites were established and sampled during the year to reduce spatial variation and allow for an assessment of changes in the vegetative indices throughout the growing season. Ancillary data collected for each crop included the phenological stage at each sampling date along with biomass sampled at the onset of the reproductive stage and at physiological maturity. Evaluation of the vegetative indices for the different years revealed that patterns were related to weather effects on corn and soybean growth. Remote sensing provides a method to evaluate changes within and among growing seasons to assess crop growth and development as affected by differences in weather variability.
Warmington, Kelly; Flewelling, Carol; Kennedy, Carol A; Shupak, Rachel; Papachristos, Angelo; Jones, Caroline; Linton, Denise; Beaton, Dorcas E; Lineker, Sydney
2017-01-01
Telemedicine-based approaches to health care service delivery improve access to care. It was recognized that adults with inflammatory arthritis (IA) living in remote areas had limited access to patient education and could benefit from the 1-day Prescription for Education (RxEd) program. The program was delivered by extended role practitioners with advanced training in arthritis care. Normally offered at one urban center, RxEd was adapted for videoconference delivery through two educator development workshops that addressed telemedicine and adult education best practices. This study explores the feasibility of and participant satisfaction with telemedicine delivery of the RxEd program in remote communities. Participants included adults with IA attending the RxEd program at one of six rural sites. They completed post-course program evaluations and follow-up interviews. Educators provided post-course feedback to identify program improvements that were later implemented. In total, 123 people (36 in-person and 87 remote, across 6 sites) participated, attending one of three RxEd sessions. Remote participants were satisfied with the quality of the video-conference (% agree/strongly agree): could hear the presenter (92.9%) and discussion between sites (82.4%); could see who was speaking at other remote sites (85.7%); could see the slides (95.3%); and interaction between sites adequately facilitated (94.0%). Educator and participant feedback were consistent. Suggested improvements included: use of two screens (speaker and slides); frontal camera angles; equal interaction with remote sites; and slide modifications to improve the readability on screen. Interview data included similar constructive feedback but highlighted the educational and social benefits of the program, which participants noted would have been inaccessible if not offered via telemedicine. Study findings confirm the feasibility of delivering the RxEd program to remote communities by using telemedicine. Future research with a focus on the sustainability of this and other models of technology-supported patient education for adults with IA across Ontario is warranted.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was…
Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path
Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.
2018-01-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352
Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R
2016-04-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Katz, Daniel; Prince, Thomas; Berriman, Graham; Good, John; Laity, Anastasia
2006-01-01
The final version (3.0) of the Montage software has been released. To recapitulate from previous NASA Tech Briefs articles about Montage: This software generates custom, science-grade mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. This software can be executed on single-processor computers, multi-processor computers, and such networks of geographically dispersed computers as the National Science Foundation s TeraGrid or NASA s Information Power Grid. The primary advantage of running Montage in a grid environment is that computations can be done on a remote supercomputer for efficiency. Multiple computers at different sites can be used for different parts of a computation a significant advantage in cases of computations for large mosaics that demand more processor time than is available at any one site. Version 3.0 incorporates several improvements over prior versions. The most significant improvement is that this version is accessible to scientists located anywhere, through operational Web services that provide access to data from several large astronomical surveys and construct mosaics on either local workstations or remote computational grids as needed.
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
Gu, Lianhong; Huang, Ni; Black, T. Andrew; ...
2015-11-23
Soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).
Estimating patterns in Spartina alterniflora belowground biomass within salt marshes
NASA Astrophysics Data System (ADS)
O'Connell, J. L.; Mishra, D. R.; Alber, M.; Byrd, K. B.
2017-12-01
Belowground biomass of marsh plants, such as Spartina alterniflora, help prevent marsh loss because they promote soil accretion, stabilize soils and add organic matter. However, site-wide estimates of belowground biomass are difficult to obtain because root:shoot ratios vary considerably both within species and across sites. We are working to develop a data fusion tool that can predict key characteristics of S. alterniflora, including belowground biomass and plant canopy N, based on satellite imagery. We used field observations from four salt marsh locations along the Georgia Coast, including one that is studied as part of the Georgia Coastal Ecosystems LTER project. From field and remote-sensing data, we developed a hybrid modeling approach to estimate % foliar N (a surrogate for plant assimilated nutrients). Partial Least squares (PLS) regression analysis of Landsat-8 spectral bands could predict variation in foliar N and belowground biomass, suggesting this public data source might be utilized for site-wide assessment of plant biophysical variables in salt marshes. Spectrally estimated foliar N and aboveground biomass were associated with belowground biomass and root:shoot ratio in S. alterniflora. This mirrors results from a previous study from the Sacramento-San Joaquin Delta, CA, on Scheonoplectus acutus, a marsh plant found in some tidal freshwater marshes. Therefore remote sensing may be a useful tool for measuring whole plant productivity among multiple coastal marsh species.
Cervical lymph node metastases from remote primary tumor sites
López, Fernando; Rodrigo, Juan P.; Silver, Carl E.; Haigentz, Missak; Bishop, Justin A.; Strojan, Primož; Hartl, Dana M.; Bradley, Patrick J.; Mendenhall, William M.; Suárez, Carlos; Takes, Robert P.; Hamoir, Marc; Robbins, K. Thomas; Shaha, Ashok R.; Werner, Jochen A.; Rinaldo, Alessandra; Ferlito, Alfio
2016-01-01
Although most malignant lymphadenopathy in the neck represent lymphomas or metastases from head and neck primary tumors, occasionally, metastatic disease from remote, usually infraclavicular, sites presents as cervical lymphadenopathy with or without an obvious primary tumor. In general, these tumors metastasize to supraclavicular lymph nodes, but occasionally may present at an isolated higher neck level. A search for the primary tumor includes information gained by histology, immunohistochemistry, and evaluation of molecular markers that may be unique to the primary tumor site. In addition, 18F-fluoro-2-deoxyglocose positron emission tomography combined with CT (FDG-PET/CT) has greatly improved the ability to detect the location of an unknown primary tumor, particularly when in a remote location. Although cervical metastatic disease from a remote primary site is often incurable, there are situations in which meaningful survival can be achieved with appropriate local treatment. Management is quite complex and requires a truly multidisciplinary approach. PMID:26713674
Designing minimal space telerobotics systems for maximum performance
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Long, Mark K.; Steele, Robert D.
1992-01-01
The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.
Distributed observing facility for remote access to multiple telescopes
NASA Astrophysics Data System (ADS)
Callegari, Massimo; Panciatici, Antonio; Pasian, Fabio; Pucillo, Mauro; Santin, Paolo; Aro, Simo; Linde, Peter; Duran, Maria A.; Rodriguez, Jose A.; Genova, Francoise; Ochsenbein, Francois; Ponz, J. D.; Talavera, Antonio
2000-06-01
The REMOT (Remote Experiment Monitoring and conTrol) project was financed by 1996 by the European Community in order to investigate the possibility of generalizing the remote access to scientific instruments. After the feasibility of this idea was demonstrated, the DYNACORE (DYNAmically, COnfigurable Remote Experiment monitoring and control) project was initiated as a REMOT follow-up. Its purpose is to develop software technology to support scientists in two different domains, astronomy and plasma physics. The resulting system allows (1) simultaneous multiple user access to different experimental facilities, (2) dynamic adaptability to different kinds of real instruments, (3) exploitation of the communication infrastructures features, (4) ease of use through intuitive graphical interfaces, and (5) additional inter-user communication using off-the-shelf projects such as video-conference tools, chat programs and shared blackboards.
Energy and remote sensing. [satellite exploration, monitoring, siting
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.
NASA Astrophysics Data System (ADS)
Pisek, Jan; Chen, Jing M.; Alikas, Krista; Deng, Feng
2010-09-01
A new leaf area index (LAI) data set in 10 day intervals with consideration of the understory reflectance and foliage clumping effects over North America for 1 year is developed. The data set brings effectively together measurements from multiple sensors with complementary capabilities (SPOT-VEGETATION, Multiangle Imaging Spectroradiometer, POLDER). First, the temporal consistency analysis indicated the new product is on par with other available LAI data sets currently used by the community. Second, with the removal of the background (understory in forests, moss, litter, and soil) effect on the forest overstory LAI retrieval, slightly different LAI reductions were found between needleleaf and broadleaf forests. This is caused by the more clumped nature of needleleaf forests, especially at higher LAI values, which allows more light to penetrate through the overstory canopy, making the understory more visible for equal LAI as compared to broadleaf forests. This is found over a representative set of 105 CEOS Benchmark Land Multisite Analysis and Intercomparison of Products sites in North America used for indirect validation. Third, the data set was directly validated and compared with Moderate Resolution Imaging Spectroradiometer Collection 5 LAI product using results from the BigFoot project for available forest test sites. This study demonstrates that the fusion of data inputs between multiple sensors can indeed lead to improved products and that multiangle remote sensing can help us to address effectively the issues (separating the signal from the understory and overstory, foliage clumping) that could not be solved via the means of the conventional mono-angle remote sensing.
NASA Astrophysics Data System (ADS)
Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.
2017-12-01
Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Hillman, C. E., Jr.
1977-01-01
Automated self-contained portable device can be used by technicians with minimal training. Data acquired from patient at remote site are transmitted to centralized interpretation center using conventional telephone equipment. There, diagnostic information is analyzed, and results are relayed back to remote site.
A low cost, high performance remotely controlled backhoe/excavator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, J.
1995-12-31
This paper addresses a state of the art, low cost, remotely controlled backhoe/excavator system for remediation use at hazardous waste sites. The all weather, all terrain, Remote Dig-It is based on a simple, proven construction platform and incorporates state of the art sensors, control, telemetry and other subsystems derived from advanced underwater remotely operated vehicle systems. The system can be towed to a site without the use of a trailer, manually operated by an on board operator or operated via a fiber optic or optional RF communications link by a remotely positioned operator. A proportional control system is piggy backedmore » onto the standard manual control system. The control system improves manual operation, allows rapid manual/remote mode selection and provides fine manual or remote control of all functions. The system incorporates up to 4 separate video links, acoustic obstacle proximity sensors, and stereo audio pickups and an optional differential GPS navigation. Video system options include electronic panning and tilting within a distortion-corrected wide angle field of view. The backhoe/excavator subsystem has a quick disconnect interface feature which allows its use as a manipulator with a wide variety of end effectors and tools. The Remote Dig-It was developed to respond to the need for a low-cost, effective remediation system for use at sites containing hazardous materials. The prototype system was independently evaluated for this purpose by the Army at the Jefferson Proving Ground where it surpassed all performance goals. At the time of this writing, the Remote Dig-It system is currently the only backhoe/excavator which met the Army`s goals for remediation systems for use at hazardous waste sites and it costs a fraction of any known competing offerings.« less
Point detection of bacterial and viral pathogens using oral samples
NASA Astrophysics Data System (ADS)
Malamud, Daniel
2008-04-01
Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.
Robust Multiple-Range Coherent Quantum State Transfer
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-01-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891
NASA Astrophysics Data System (ADS)
Baud, Isa; Kuffer, Monika; Pfeffer, Karin; Sliuzas, Richard; Karuppannan, Sadasivam
2010-10-01
Analyzing the heterogeneity in metropolitan areas of India utilizing remote sensing data can help to identify more precise patterns of sub-standard residential areas. Earlier work analyzing inequalities in Indian cities employed a constructed index of multiple deprivations (IMDs) utilizing data from the Census of India 2001 ( http://censusindia.gov.in). While that index, described in an earlier paper, provided a first approach to identify heterogeneity at the citywide scale, it neither provided information on spatial variations within the geographical boundaries of the Census database, nor about physical characteristics, such as green spaces and the variation in housing density and quality. In this article, we analyze whether different types of sub-standard residential areas can be identified through remote sensing data, combined, where relevant, with ground-truthing and local knowledge. The specific questions address: (1) the extent to which types of residential sub-standard areas can be drawn from remote sensing data, based on patterns of green space, structure of layout, density of built-up areas, size of buildings and other site characteristics; (2) the spatial diversity of these residential types for selected electoral wards; and (3) the correlation between different types of sub-standard residential areas and the results of the index of multiple deprivations utilized at electoral ward level found previously. The results of a limited number of test wards in Delhi showed that it was possible to extract different residential types matching existing settlement categories using the physical indicators structure of layout, built-up density, building size and other site characteristics. However, the indicator 'amount of green spaces' was not useful to identify informal areas. The analysis of heterogeneity showed that wards with higher IMD scores displayed more or less the full range of residential types, implying that visual image interpretation is able to zoom in on clusters of deprivation of varying size. Finally, the visual interpretation of the diversity of residential types matched the results of the IMD analysis quite well, although the limited number of test wards would need to be expanded to strengthen this statement. Visual image analysis strengthens the robustness of the IMD, and in addition, gives a better idea of the degree of heterogeneity in deprivations within a ward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The system is developed to collect, process, store and present the information provided by the radio frequency identification (RFID) devices. The system contains three parts, the application software, the database and the web page. The application software manages multiple RFID devices, such as readers and portals, simultaneously. It communicates with the devices through application programming interface (API) provided by the device vendor. The application software converts data collected by the RFID readers and portals to readable information. It is capable of encrypting data using 256 bits advanced encryption standard (AES). The application software has a graphical user interface (GUI). Themore » GUI mimics the configurations of the nucler material storage sites or transport vehicles. The GUI gives the user and system administrator an intuitive way to read the information and/or configure the devices. The application software is capable of sending the information to a remote, dedicated and secured web and database server. Two captured screen samples, one for storage and transport, are attached. The database is constructed to handle a large number of RFID tag readers and portals. A SQL server is employed for this purpose. An XML script is used to update the database once the information is sent from the application software. The design of the web page imitates the design of the application software. The web page retrieves data from the database and presents it in different panels. The user needs a user name combined with a password to access the web page. The web page is capable of sending e-mail and text messages based on preset criteria, such as when alarm thresholds are excceeded. A captured screen sample is attached. The application software is designed to be installed on a local computer. The local computer is directly connected to the RFID devices and can be controlled locally or remotely. There are multiple local computers managing different sites or transport vehicles. The control from remote sites and information transmitted to a central database server is through secured internet. The information stored in the central databaser server is shown on the web page. The users can view the web page on the internet. A dedicated and secured web and database server (https) is used to provide information security.« less
Geographic analysis of multiple sensor data from the NASA/USGS earth resources program
NASA Technical Reports Server (NTRS)
Pascucci, R. F.; North, G. W.; Albrizio, R. A.; Shelkin, B. D.
1969-01-01
Qualitative and quantitative analyses were made of multi-sensor data acquired during aircraft missions. While the principal analysis effort was concentrated on imagery taken over test sites in Southern California, data were also studied from records acquired on missions over test sites at Phoenix, Chicago, Asheville, and New Orleans. The objectives of the analyses were: (1) to determine the capabilities of ten remote sensors in identifying the elements of information necessary in conducting geographic investigations in land use analysis, urban problems, surface energy budget, and soil moisture; (2) to determine the feasibility of using these sensors for these purposes at orbital altitudes; and (3) to collate and analyze ground and air data previously collected and assemble it in a format useful in the accomplishment of cost effectiveness studies.
Remote terminal system evaluation
NASA Technical Reports Server (NTRS)
Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.
1975-01-01
An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.
Anisotropic energy flow and allosteric ligand binding in albumin
NASA Astrophysics Data System (ADS)
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin.
Li, Guifeng; Magana, Donny; Dyer, R Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures.
Anisotropic energy flow and allosteric ligand binding in albumin
Li, Guifeng; Magana, Donny; Dyer, R. Brian
2014-01-01
Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. PMID:24445265
Challenges faced in implementation of a telehealth enabled chronic wound care system.
Barrett, M; Larson, A; Carville, K; Ellis, I
2009-01-01
In the rural Midwest region of Western Australia (WA), wound care is a major burden on the healthcare system. Optimal wound care was found to be impeded by issues that included the involvement of multiple healthcare providers, incomplete and inconsistent documentation, and limited access to expert review. A telehealth solution was trailed in 2007. To describe the systemic barriers encountered in implementing a telehealth program in rural WA and to provide recommendations for future telehealth initiatives. This study trialled the use of a shared electronic wound imaging and reporting system in combination with an expert remote wound consultation service for the management of patients with chronic wounds in the Midwest of WA. The trial sites included rural hospital out-patient clinics, a private domiciliary nursing service, residential aged care facilities, general practices and a podiatry clinic. The implementation conformed to accepted best practice in introducing telehealth initiatives. During the trial 12 sites had the relevant software installed and were able to access a central server. Although a total of 41 patients with chronic wounds were enrolled, four sites did not enroll any patients and only two sites successfully incorporated the system into regular practice. Major obstacles were workforce issues and significant delays in installing the software at some sites. Only 47% of the healthcare providers trained to use the software at the beginning of the trial were still employed when the trial ended. Prolonged periods of vacant positions at one remote clinic and an aged care facility made it impossible for the remaining providers to allocate time for using the wound care software. The disease burden of the patient group, funding models and workforce shortages frustrated the successful adoption of an evidence based strategy that was known to improve health outcomes.
Kowalewski, Martin M; Salzer, Johanna S; Deutsch, Joseph C; Raño, Mariana; Kuhlenschmidt, Mark S; Gillespie, Thomas R
2011-01-01
Exponential expansion of human populations and human activities within primate habitats has resulted in high potential for pathogen exchange creating challenges for biodiversity conservation and global health. Under such conditions, resilient habitat generalists such as black and gold howler monkeys (Alouatta caraya) may act as effective sentinels to overall ecosystem health and alert us to impending epidemics in the human population. To better understand this potential, we examined noninvasively collected fecal samples from black and gold howler monkeys from remote, rural, and village populations in Northern Argentina. We examined all samples (n=90) for the zoonotic protozoa Cryptosporidium sp. and Giardia sp. via immunofluorescent antibody (IFA) detection. All samples were negative for Cryptosporidium sp. The prevalence of Giardia sp. was significantly higher at the rural site (67%) compared with the remote forest (57%) and village (40%) sites. A lack of Cryptosporidium sp. in all samples examined suggests that this pathogen is not a natural component of the howler parasite communities at these sites and that current land-use patterns and livestock contact are not exposing Argentine howler monkeys to this pathogen. High prevalence of Giardia sp. at all sites suggests that howler monkeys may serve as a viable reservoir for Giardia. Significantly higher prevalence of Giardia sp. at the rural site, where primate-livestock contact is highest, suggests the presence of multiple Giardia clades or increased exposure to Giardia through repeated zoonotic transmission among nonhuman primates, livestock, and/or people. These results highlight the need for future research into the epidemiology, cross-species transmission ecology, and clinical consequences of Giardia and other infectious agents not only in humans and livestock, but also in the wild animals that share their environments. © 2010 Wiley-Liss, Inc.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.
Mobile inductively coupled plasma system
D'Silva, Arthur P.; Jaselskis, Edward J.
1999-03-30
A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.
Slonecker, E. Terrence; Fisher, Gary B.
2014-01-01
This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Salamova, Amina; Peverly, Angela A; Venier, Marta; Hites, Ronald A
2016-12-20
The concentrations of six organophosphate esters (OPEs) in atmospheric particle phase samples collected once every 12 days at five sites in the North American Great Lakes basin over the period of March 2012 to December 2014, inclusive, are reported. These OPEs include tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloroisopropyl) phosphate (TDCIPP), tri-n-butyl phosphate (TNBP), triphenyl phosphate (TPHP), and 2-ethylhexyl diphenyl phosphate (EHDP). Median total OPE concentrations (∑OPE) ranged from 93 pg/m 3 at Sleeping Bear Dunes to 1046 pg/m 3 at Chicago. The ∑OPE levels were significantly (P < 0.05) higher at Chicago and Cleveland, our urban sites, than at our rural and remote sites. The composition profiles were dominated by chlorinated OPEs at the urban and rural sites and by nonchlorinated OPEs at the remote sites. The concentrations of all OPEs were significantly (P < 0.001) correlated to one another, suggesting that these compounds share similar sources. Most atmospheric ∑OPE concentrations were significantly (P < 0.05) decreasing over time, with halving times of about 3.5 years at the urban sites and about 1.5 years at the rural and remote sites. Interestingly, TCEP and EHDP concentrations were increasing over time at the rural and remote sites with doubling times of 2.2 and 3.7 years, respectively.
Wade, John J.; McDaid, Liam J.; Harkin, Jim; Crunelli, Vincenzo; Kelso, J. A. Scott
2011-01-01
In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model) which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a “learning signal” to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy may be extended to coordination among remote neuron clusters. PMID:22242121
Operating a wide-area remote observing system for the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.
2008-07-01
For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.
NASA Astrophysics Data System (ADS)
Kim, Min-Kook; Daigle, John J.
2012-11-01
Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P < 0.001). Research implications are explored that relate to the spatial extent of the radial patterns of impact of trampling on vegetation at the site level. Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.
Kim, Min-Kook; Daigle, John J
2012-11-01
Cadillac Mountain--the highest peak along the eastern seaboard of the United States--is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies--based on placing physical barriers and educational messages for visitors--have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P < 0.001). Research implications are explored that relate to the spatial extent of the radial patterns of impact of trampling on vegetation at the site level. Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.
Mapping ecological states in a complex environment
NASA Astrophysics Data System (ADS)
Steele, C. M.; Bestelmeyer, B.; Burkett, L. M.; Ayers, E.; Romig, K.; Slaughter, A.
2013-12-01
The vegetation of northern Chihuahuan Desert rangelands is sparse, heterogeneous and for most of the year, consists of a large proportion of non-photosynthetic material. The soils in this area are spectrally bright and variable in their reflectance properties. Both factors provide challenges to the application of remote sensing for estimating canopy variables (e.g., leaf area index, biomass, percentage canopy cover, primary production). Additionally, with reference to current paradigms of rangeland health assessment, remotely-sensed estimates of canopy variables have limited practical use to the rangeland manager if they are not placed in the context of ecological site and ecological state. To address these challenges, we created a multifactor classification system based on the USDA-NRCS ecological site schema and associated state-and-transition models to map ecological states on desert rangelands in southern New Mexico. Applying this system using per-pixel image processing techniques and multispectral, remotely sensed imagery raised other challenges. Per-pixel image classification relies upon the spectral information in each pixel alone, there is no reference to the spatial context of the pixel and its relationship with its neighbors. Ecological state classes may have direct relevance to managers but the non-unique spectral properties of different ecological state classes in our study area means that per-pixel classification of multispectral data performs poorly in discriminating between different ecological states. We found that image interpreters who are familiar with the landscape and its associated ecological site descriptions perform better than per-pixel classification techniques in assigning ecological states. However, two important issues affect manual classification methods: subjectivity of interpretation and reproducibility of results. An alternative to per-pixel classification and manual interpretation is object-based image analysis. Object-based image analysis provides a platform for classification that more closely resembles human recognition of objects within a remotely sensed image. The analysis presented here compares multiple thematic maps created for test locations on the USDA-ARS Jornada Experimental Range ranch. Three study sites in different pastures, each 300 ha in size, were selected for comparison on the basis of their ecological site type (';Clayey', ';Sandy' and a combination of both) and the degree of complexity of vegetation cover. Thematic maps were produced for each study site using (i) manual interpretation of digital aerial photography (by five independent interpreters); (ii) object-oriented, decision-tree classification of fine and moderate spatial resolution imagery (Quickbird; Landsat Thematic Mapper) and (iii) ground survey. To identify areas of uncertainty, we compared agreement in location, areal extent and class assignation between 5 independently produced, manually-digitized ecological state maps and with the map created from ground survey. Location, areal extent and class assignation of the map produced by object-oriented classification was also assessed with reference to the ground survey map.
NASA Remote Sensing Research as Applied to Archaeology
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Thomas, Michael R.
2002-01-01
The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.
Remote presence proctoring by using a wireless remote-control videoconferencing system.
Smith, C Daniel; Skandalakis, John E
2005-06-01
Remote presence in an operating room to allow an experienced surgeon to proctor a surgeon has been promised through robotics and telesurgery solutions. Although several such systems have been developed and commercialized, little progress has been made using telesurgery for anything more than live demonstrations of surgery. This pilot project explored the use of a new videoconferencing capability to determine if it offers advantages over existing systems. The video conferencing system used is a PC-based system with a flat screen monitor and an attached camera that is then mounted on a remotely controlled platform. This device is controlled from a remotely placed PC-based videoconferencing system computer outfitted with a joystick. Using the public Internet and a wireless router at the client site, a surgeon at the control station can manipulate the videoconferencing system. Controls include navigating the unit around the room and moving the flat screen/camera portion like a head looking up/down and right/left. This system (InTouch Medical, Santa Barbara, CA) was used to proctor medical students during an anatomy class cadaver dissection. The ability of the remote surgeon to effectively monitor the students' dissections and direct their activities was assessed subjectively by students and surgeon. This device was very effective at providing a controllable and interactive presence in the anatomy lab. Students felt they were interacting with a person rather than a video screen and quickly forgot that the surgeon was not in the room. The ability to move the device within the environment rather than just observe the environment from multiple fixed camera angles gave the surgeon a similar feel of true presence. A remote-controlled videoconferencing system provides a more real experience for both student and proctor. Future development of such a device could greatly facilitate progress in implementation of remote presence proctoring.
Real-time, interactive, visually updated simulator system for telepresence
NASA Technical Reports Server (NTRS)
Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.
1991-01-01
Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.
Weeks, Douglas L; Molsberry, Dianne M
2009-03-01
This study determined inter-rater agreement between skill assessments provided by on-site PALS evaluators with ratings from evaluators at a remote site viewing the same skill performance over a videoconferencing network. Judgments about feasibility of remote evaluation were also obtained from the evaluators and PALS course participants. Two remote and two on-site instructors independently rated performance of 27 course participants who performed cardiac and shock/respiratory emergency core cases. Inter-rater reliability was assessed with the intraclass correlation coefficient (ICC). Feasibility was assessed with surveys of evaluators and course participants. Core cases were under the direction of the remote evaluators. The ICC for overall agreement on pass/fail decisions was 0.997 for the cardiac cases and 0.998 for the shock/respiratory cases. Perfect agreement was reached on 52 of 54 pass/fail decisions. Across all evaluators, all core cases, and all participants, 2584 ratings of individual skill criteria were provided, of which 21 (0.8%) were ratings in which a single evaluator disagreed with the other three evaluators. No trends emerged for location of the disagreeing evaluator. Survey responses indicated that remote evaluation was acceptable and feasible to course participants and to the evaluators. Videoconferencing technology was shown to provide adequate spatial and temporal resolution for PALS evaluators at-a-distance from course participants to agree with ratings of on-site evaluators.
NASA Technical Reports Server (NTRS)
Perrier, R. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The General Electric DCP has proven to be a versatile, rugged piece of hardware and has surpassed original expectation; it is very simple to use and does not require skilled staff for its use, installation, and operation. It is well suited for use in remote sites where no power is available. From this experience, it is concluded that the data collection system will be very useful in operating a network of hydrometeorological stations situated in sites remote from normal communication links.
Integrated Geospatial Education and Technology Training (iGETT) for Workforce Development
NASA Astrophysics Data System (ADS)
Allen, J. E.; Johnson, A.; Headley, R. K.
2009-12-01
The increasing availability of no-cost remote sensing data and improvements in analysis software have presented an unprecedented opportunity for the integration of geospatial technologies into a wide variety of disciplines for learning and teaching at community colleges and Tribal colleges. These technologies magnify the effectiveness of problem solving in agriculture, disaster management, environmental sciences, urbanization monitoring, and multiple other domains for societal benefit. This session will demonstrate the approach and lessons learned by federal and private industry partners leading a professional development program, “Integrated Geospatial Education and Technology Training” (iGETT; http://igett.delmar.edu), 2007-2010. iGETT is funded by the National Science Foundation’s Advanced Technological Education Program, (NSF DUE 0703185). 40 participants were selected from a nationwide pool and received training in how to understand, identify, download, and integrate federal land remote sensing data into existing Geographic Information Systems programs to address specific issues of concern to the local workforce. Each participant has authored a “Learning Unit” that covers at least two weeks of class time. All training resources and Learning Units are publicly available on the iGETT Web site. A follow-on project is under consideration to develop core competencies for the remote sensing technician. Authors: Jeannie Allen, Sigma Space Corp. for NASA Landsat, at Goddard Space Flight Center; Ann Johnson, ESRI Higher Education; Rachel Headley, USGS EROS Land Remote Sensing Program
AVIRIS Land-Surface Mapping in Support of the Boreal Ecosystem-Atmosphere Study (BOREAS)
NASA Technical Reports Server (NTRS)
Roberts, Dar A.; Gamon, John; Keightley, Keir; Prentiss, Dylan; Reith, Ernest; Green, Robert
2001-01-01
A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely-sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS follow-on program is concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has the potential of contributing to BOREAS through: (1) accurate retrieved apparent surface reflectance; (2) improved landcover classification; and (3) direct assessment of biochemical/biophysical information such as canopy liquid water and chlorophyll concentration through pigment fits. In this paper, we present initial products for major flux tower sites including: (1) surface reflectance of dominant cover types; (2) a land-cover classification developed using spectral mixture analysis (SMA) and Multiple Endmember Spectral Mixture Analysis (MESMA); and (3) liquid water maps. Our goal is to compare these land-cover maps to existing maps and to incorporate AVIRIS image products into models of photosynthetic flux.
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.
2000-01-01
The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.
NASA Astrophysics Data System (ADS)
Corwin, D. L.; Scudiero, E.
2016-12-01
Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
Geologic evaluation of remote sensing data, site 157, Awza-Borrego Desert, California
NASA Technical Reports Server (NTRS)
Wolfe, E. W.
1969-01-01
Remote sensing data were obtained at site 157 in May 1968 under mission 73 of the NASA aircraft program. The site is located in an area of high temperatures and extreme aridity immediately west of the Imperial Valley, Southern California. Site 157 is partially surrounded by pre-Cenozoic crystalline rocks exposed in the Fish Creek, Vallecito, and Tierra Blanca Mountains. The study area itself is underlain by more than 20,000 feet of sedimentary strata of late Cenozoic age.
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites
Karl, Jason W.
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral ‘fingerprint’ of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches. PMID:28414731
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
Maynard, Jonathan J; Karl, Jason W
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.
Mobile inductively coupled plasma system
D`Silva, A.P.; Jaselskis, E.J.
1999-03-30
A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.
Documentation of archaeological sites in northern iraq using remote sensing methods
NASA Astrophysics Data System (ADS)
Matoušková, E.; Pavelka, K.; Nováček, K.; Starková, L.
2015-08-01
The MULINEM (The Medieval Urban Landscape in Northeastern Mesopotamia) project is aiming to investigate a Late Sasanian and Islamic urban network in the land of Erbil, historic province of Hidyab (Adiabene) that is located in the northern Iraq. The research of the hierarchical urban network in a defined area belongs to approaches rarely used in the study of the Islamic urbanism. The project focuses on the cluster of urban sites of the 6th-17th centuries A.D. This paper focuses on remote sensing analysis of historical sites with special interest of FORMOSAT-2 data that have been gained through a research announcement: Free FORMOSAT-2 satellite Imagery. Documentation of two archaeological sites (Makhmúr al-Qadima and Kushaf) are introduced. FORMOSAT-2 data results have been compared to historic CORONA satellite data of mentioned historical sites purchased earlier by the University of West Bohemia. Remote sensing methods were completed using in-situ measurements.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.
PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT
This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...
Audiographics for Distance Education: An Alternative Technology.
ERIC Educational Resources Information Center
Fredrickson, Scott
Audiographics is the merging of microcomputer graphics, telephone communications systems, and teaching strategies into a cost effective method of delivering distance education classes. The teacher creates visual images that are sent to and stored on computers at the remote sites. At the appropriate time the teacher and the remote site assistants…
Applying secret sharing for HIS backup exchange.
Kuroda, Tomohiro; Kimura, Eizen; Matsumura, Yasushi; Yamashita, Yoshinori; Hiramatsu, Haruhiko; Kume, Naoto; Sato, Atsushi
2013-01-01
To secure business continuity is indispensable for hospitals to fulfill its social responsibility under disasters. Although to back up the data of the hospital information system (HIS) at multiple remote sites is a key strategy of business continuity plan (BCP), the requirements to treat privacy sensitive data jack up the cost for the backup. The secret sharing is a method to split an original secret message up so that each individual piece is meaningless, but putting sufficient number of pieces together to reveal the original message. The secret sharing method eases us to exchange HIS backups between multiple hospitals. This paper evaluated the feasibility of the commercial secret sharing solution for HIS backup through several simulations. The result shows that the commercial solution is feasible to realize reasonable HIS backup exchange platform when template of contract between participating hospitals is ready.
Photographic copy of photograph, dated September 1971, (original print in ...
Photographic copy of photograph, dated September 1971, (original print in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view looking north of remote sprint launch site #2, during construction. In the foreground is the remote launch operations building (RLOB); sprint silos are being installed in the background - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND
Quantifying soil moisture impacts on light use efficiency across biomes.
Stocker, Benjamin D; Zscheischler, Jakob; Keenan, Trevor F; Prentice, I Colin; Peñuelas, Josep; Seneviratne, Sonia I
2018-06-01
Terrestrial primary productivity and carbon cycle impacts of droughts are commonly quantified using vapour pressure deficit (VPD) data and remotely sensed greenness, without accounting for soil moisture. However, soil moisture limitation is known to strongly affect plant physiology. Here, we investigate light use efficiency, the ratio of gross primary productivity (GPP) to absorbed light. We derive its fractional reduction due to soil moisture (fLUE), separated from VPD and greenness changes, using artificial neural networks trained on eddy covariance data, multiple soil moisture datasets and remotely sensed greenness. This reveals substantial impacts of soil moisture alone that reduce GPP by up to 40% at sites located in sub-humid, semi-arid or arid regions. For sites in relatively moist climates, we find, paradoxically, a muted fLUE response to drying soil, but reduced fLUE under wet conditions. fLUE identifies substantial drought impacts that are not captured when relying solely on VPD and greenness changes and, when seasonally recurring, are missed by traditional, anomaly-based drought indices. Counter to common assumptions, fLUE reductions are largest in drought-deciduous vegetation, including grasslands. Our results highlight the necessity to account for soil moisture limitation in terrestrial primary productivity data products, especially for drought-related assessments. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Automated Finite State Workflow for Distributed Data Production
NASA Astrophysics Data System (ADS)
Hajdu, L.; Didenko, L.; Lauret, J.; Amol, J.; Betts, W.; Jang, H. J.; Noh, S. Y.
2016-10-01
In statistically hungry science domains, data deluges can be both a blessing and a curse. They allow the narrowing of statistical errors from known measurements, and open the door to new scientific opportunities as research programs mature. They are also a testament to the efficiency of experimental operations. However, growing data samples may need to be processed with little or no opportunity for huge increases in computing capacity. A standard strategy has thus been to share resources across multiple experiments at a given facility. Another has been to use middleware that “glues” resources across the world so they are able to locally run the experimental software stack (either natively or virtually). We describe a framework STAR has successfully used to reconstruct a ~400 TB dataset consisting of over 100,000 jobs submitted to a remote site in Korea from STAR's Tier 0 facility at the Brookhaven National Laboratory. The framework automates the full workflow, taking raw data files from tape and writing Physics-ready output back to tape without operator or remote site intervention. Through hardening we have demonstrated 97(±2)% efficiency, over a period of 7 months of operation. The high efficiency is attributed to finite state checking with retries to encourage resilience in the system over capricious and fallible infrastructure.
Allosteric Ligand Binding and Anisotropic Energy Flow in Albumin
NASA Astrophysics Data System (ADS)
Dyer, Brian
2014-03-01
Protein allostery usually involves propagation of local structural changes through the protein to a remote site. Coupling of structural changes at remote sites is thought to occur through anisotropic energy transport, but the nature of this process is poorly understood. We have studied the relationship between allosteric interactions of remote ligand binding sites of the protein and energy flow through the structure of bovine serum albumin (BSA). We applied ultrafast infrared spectroscopy to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic flow through the protein structure following input of thermal energy into the flexible ligand binding sites. We also observe anisotropic heat flow through the structure, without local heating of the rigid helix bundles that connect these sites. We will discuss the implications of this efficient energy transport mechanism with regard to the allosteric propagation of binding energy through the connecting helix structures.
Elison-Bowers, P; Snelson, Chareen; Casa de Calvo, Mario; Thompson, Heather
2008-02-05
This study compared the responses of on-site, remote-site, and traditional classroom students on measures of student/teacher interaction, course structure, physical learning environment, and overall course enjoyment/satisfaction. The sample population consisted of students taking undergraduate courses in medical terminology at two western colleges. The survey instrument was derived from Thomerson's questionnaire, which included closed- and open-ended questions assessing perceptions of students toward their courses. Controlling for grade expectations, results revealed no significant differences among the on-site, remote-site, and traditional classroom students in any of the four cluster domains. However, a nonsignificant (and continuing) trend suggested that students preferred the traditional classroom environment. When results were controlled for age, significant differences emerged between traditional and nontraditional students on measures of student/teacher interaction, physical learning environment, and overall enjoyment/satisfaction, as nontraditional students exhibited higher scores. Students' responses to open-ended questions indicated they enjoyed the convenience of online instruction, but reported finding frustration with technology itself.
NASA Astrophysics Data System (ADS)
Deo, Ram K.
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.
2012-12-01
In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance and remote sensing-based methods. Here we present an overview of the experiment and a summary of preliminary findings described in this special issue of AWR. Our understanding of the role of advection in the measurement and modeling of ET is advanced by these papers integrating measurements and model estimates.
NASA Astrophysics Data System (ADS)
Vargas Zesati, Sergio A.
The Arctic is being impacted by climate change more than any other region on Earth. Impacts to terrestrial ecosystems have the potential to manifest through feedbacks with other components of the Earth System. Of particular concern is the potential for the massive store of soil organic carbon to be released from arctic permafrost to the atmosphere where it could exacerbate greenhouse warming and impact global climate and biogeochemical cycles. Even though substantial gains to our understanding of the changing Arctic have been made, especially over the past decade, linking research results from plot to regional scales remains a challenge due to the lack of adequate low/mid-altitude sampling platforms, logistic constraints, and the lack of cross-scale validation of research methodologies. The prime motivation of this study is to advance observational capacities suitable for documenting multi-scale environmental change in arctic terrestrial landscapes through the development and testing of novel ground-based and low altitude remote sensing methods. Specifically this study addressed the following questions: • How well can low-cost kite aerial photography and advanced computer vision techniques model the microtopographic heterogeneity of changing tundra surfaces? • How does imagery from kite aerial photography and fixed time-lapse digital cameras (pheno-cams) compare in their capacity to monitor plot-level phenological dynamics of arctic vegetation communities? • Can the use of multi-scale digital imaging systems be scaled to improve measurements of ecosystem properties and processes at the landscape level? • How do results from ground-based and low altitude digital remote sensing of the spatiotemporal variability in ecosystem processes compare with those from satellite remote sensing platforms? Key findings from this study suggest that cost-effective alternative digital imaging and remote sensing methods are suitable for monitoring and quantifying plot to landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).
Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals
NASA Astrophysics Data System (ADS)
Roy, Ananda; Jiang, Liang; Stone, A. Douglas; Devoret, Michel
2015-10-01
Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.
Exploring Pacific Seamounts through Telepresence Mapping on the NOAA Ship Okeanos Explorer
NASA Astrophysics Data System (ADS)
Lobecker, E.; Malik, M.; Sowers, D.; Kennedy, B. R.
2016-12-01
Telepresence utilizes modern computer networks and a high bandwidth satellite connection to enable remote users to participate virtually in ocean research and exploration cruises. NOAA's Office of Ocean Exploration and Research (OER) has been leveraging telepresence capabilities since the early 2000s. Through telepresence, remote users have provided support for operations planning and execution, troubleshooting hardware and software, and data interpretation during exploratory ocean mapping and remotely operated vehicle missions conducted by OER. The potential for this technology's application to immersive data acquisition and processing during mapping missions, however, has not yet been fully realized. We report the results of the application of telepresence to an 18-day 24 hour / day seafloor mapping expedition with the NOAA Ship Okeanos Explorer. The mapping team was split between shipboard and shore-based mission team members based at the Exploration Command Center at the University of New Hampshire. This cruise represented the third dedicated mapping cruise in a multi-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean Needs (CAPSTONE). Cruise objectives included mapping several previously unmapped seamounts in the Wake Atoll Unit of the recently expanded Pacific Remote Islands Marine National Monument, and mapping of prominent seamount, ridge, and fracture zone features during transits. We discuss (1) expanded shore-based data processing of multiple sonar data streams leading to enhanced, rapid, initial site characterization, (2) remote access control of shipboard sonar data acquisition and processing computers, and (3) potential for broadening multidisciplinary applications of ocean mapping cruises including outreach, education, and communications efforts focused on expanding societal cognition and benefits of ocean exploration.
Enabling Remote Activity: Using mobile technology for remote participation in geoscience fieldwork
NASA Astrophysics Data System (ADS)
Davies, Sarah; Collins, Trevor; Gaved, Mark; Bartlett, Jessica; Valentine, Chris; McCann, Lewis
2010-05-01
Field-based activities are regarded as essential to the development of a range of professional and personal skills within the geosciences. Students enjoy field activities, preferring these to learning with simulations (Spicer and Stratford 2001), and these improve deeper learning and understanding (Kern and Carpenter, 1984; Elkins and Elkins, 2007). However, some students find it difficult to access these field-based learning opportunities. Field sites may be remote and often require travel across uneven, challenging or potentially dangerous terrain. Mobility-impaired students are particularly limited in their opportunities to participate in field-based learning activities and, as higher education institutions have a responsibility to provide inclusive opportunities for students (UK Disability Discrimination Act 1995, UK Special Education Needs and Disability Rights Act 2001), the need for inclusive fieldwork learning is being increasingly recognised. The Enabling Remote Activity (ERA) project has been investigating how mobile communications technologies might allow field learning experiences to be brought to students who would otherwise find it difficult to participate, and also to enhance activities for all participants. It uses a rapidly deployable, battery-powered wireless network to transmit video, audio, and high resolution still images to connect participants at an accessible location with participants in the field. Crucially, the system uses a transient wireless network, allowing multiple locations to be explored during a field visit, and for plans to be changed dynamically if required. Central to the concept is the requirement for independent investigative learning: students are enabled to participate actively in the learning experience and to direct the investigations, as opposed to being simply remote viewers of the experience. Two ways of using the ERA system have been investigated: remote access and collaborative groupwork. In 2006 and 2008 remote access was used to enable mobility-impaired students to take part in and complete a field course. This involved connecting the student in an accessible vehicle located close to the field site, via a wireless network, to a geologist in the field. The geologist worked alongside the general body of students and the field tutor as each geological site was investigated. Two-way communications allowed the student to guide the geologist to provide video panoramas of the area, to select areas of interest for further study and to obtain high resolution images of specific points. The students were able to work through the field activities alongside the rest of the student group. A collaborative groupwork trial (2007) was used to connect two groups of students; one in an accessible laboratory, the other at a field site. Traditionally, students collect data in the field and analyze it on return to the laboratory; this system proposes a more rapid collection and analysis procedure, with information being transmitted between sites with field and laboratory participants having their own distinct, significant roles within the learning activity. This project recently received an award at the 2008 Handheld Learning Conference and a HEFCE sponsored Open University Teaching Award. In contrast to the use of ‘virtual fieldwork' that aims to provide simulations or a resource for a student to use, the focus of this project is on how technology can be used to support actual fieldwork activities. This approach has been trialled now over three field seasons, with students using the system to remotely participate in fieldwork activities. Interviews with tutors and students have shown that this was perceived as valuable and allowed participants to achieve the learning objectives of the course alongside their peers. The challenges of remote fieldwork concern the co-ordination of students' activities, the integration of remote and field activities and practical issues of lightweight, easy-to-use, robust technologies and the provision of a reliable communications network. References Elkins, J.T. & Elkins, N.M.L. (2007) Teaching geology in the field: significant geoscience concept gains in entirely field-based introductory geology courses. Journal of Geoscience Education, 55 (2), 126-132. Kern, E. and Carpenter, J. (2004). Enhancement of student values, interests and attitudes in Earth Science through a field-oriented approach. Journal of Geological Education, 32 (5), 299-305. Spicer, J. I. and Stratford, J. (2001) Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17(4), 345-354.
Analysis of Bright Harvest Remote Analysis for Residential Solar Installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangle, John; Simon, Joseph
Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.
NASA Technical Reports Server (NTRS)
Schwarz, D. E.; Ellefsen, R. E.
1981-01-01
Several general guidelines should be kept in mind when considering the selection of field sites for teaching remote sensing fundamentals. Proximity and vantage point are two very practical considerations. Only through viewing a broad enough area to place the site in context can one make efficient use of a site. The effects of inclement weather when selecting sites should be considered. If field work is to be an effective tool to illustrate remote sensing principles, the following criteria are critical: (1) the site must represent the range of class interest; (2) the site must have a theme or add something no other site offers; (3) there should be intrasite variation within the theme; (4) ground resolution and spectral signature distinction should be illustrated; and (5) the sites should not be ordered sequentially.
The Cooking and Pneumonia Study (CAPS) in Malawi: Implementation of Remote Source Data Verification
Weston, William; Smedley, James; Bennett, Andrew; Mortimer, Kevin
2016-01-01
Background Source data verification (SDV) is a data monitoring procedure which compares the original records with the Case Report Form (CRF). Traditionally, on-site SDV relies on monitors making multiples visits to study sites requiring extensive resources. The Cooking And Pneumonia Study (CAPS) is a 24- month village-level cluster randomized controlled trial assessing the effectiveness of an advanced cook-stove intervention in preventing pneumonia in children under five in rural Malawi (www.capstudy.org). CAPS used smartphones to capture digital images of the original records on an electronic CRF (eCRF). In the present study, descriptive statistics are used to report the experience of electronic data capture with remote SDV in a challenging research setting in rural Malawi. Methods At three monthly intervals, fieldworkers, who were employed by CAPS, captured pneumonia data from the original records onto the eCRF. Fieldworkers also captured digital images of the original records. Once Internet connectivity was available, the data captured on the eCRF and the digital images of the original records were uploaded to a web-based SDV application. This enabled SDV to be conducted remotely from the UK. We conducted SDV of the pneumonia data (occurrence, severity, and clinical indicators) recorded in the eCRF with the data in the digital images of the original records. Result 664 episodes of pneumonia were recorded after 6 months of follow-up. Of these 664 episodes, 611 (92%) had a finding of pneumonia in the original records. All digital images of the original records were clear and legible. Conclusion Electronic data capture using eCRFs on mobile technology is feasible in rural Malawi. Capturing digital images of the original records in the field allows remote SDV to be conducted efficiently and securely without requiring additional field visits. We recommend these approaches in similar settings, especially those with health endpoints. PMID:27355447
The Cooking and Pneumonia Study (CAPS) in Malawi: Implementation of Remote Source Data Verification.
Weston, William; Smedley, James; Bennett, Andrew; Mortimer, Kevin
2016-01-01
Source data verification (SDV) is a data monitoring procedure which compares the original records with the Case Report Form (CRF). Traditionally, on-site SDV relies on monitors making multiples visits to study sites requiring extensive resources. The Cooking And Pneumonia Study (CAPS) is a 24- month village-level cluster randomized controlled trial assessing the effectiveness of an advanced cook-stove intervention in preventing pneumonia in children under five in rural Malawi (www.capstudy.org). CAPS used smartphones to capture digital images of the original records on an electronic CRF (eCRF). In the present study, descriptive statistics are used to report the experience of electronic data capture with remote SDV in a challenging research setting in rural Malawi. At three monthly intervals, fieldworkers, who were employed by CAPS, captured pneumonia data from the original records onto the eCRF. Fieldworkers also captured digital images of the original records. Once Internet connectivity was available, the data captured on the eCRF and the digital images of the original records were uploaded to a web-based SDV application. This enabled SDV to be conducted remotely from the UK. We conducted SDV of the pneumonia data (occurrence, severity, and clinical indicators) recorded in the eCRF with the data in the digital images of the original records. 664 episodes of pneumonia were recorded after 6 months of follow-up. Of these 664 episodes, 611 (92%) had a finding of pneumonia in the original records. All digital images of the original records were clear and legible. Electronic data capture using eCRFs on mobile technology is feasible in rural Malawi. Capturing digital images of the original records in the field allows remote SDV to be conducted efficiently and securely without requiring additional field visits. We recommend these approaches in similar settings, especially those with health endpoints.
Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.
The Most Remote Point Method for the Site Selection of the Future VGOS Network
NASA Astrophysics Data System (ADS)
Hase, Hayo; Pedreros, Felipe
2014-12-01
The VLBI Global Observing System (VGOS) will be part of the Global Geodetic Observing System (GGOS) and will consist of globally well distributed geodetic observatories. The most remote point (MRP) method is used to identify gaps in the network geometry. In each iteration step the identified most remote points are assumed to become new observatory sites improving the homogeneity of the global network. New locations for VGOS observatories have been found in La Plata, Tahiti, O'Higgins, Galapagos, Colombo, and Syowa. This contribution is an excerpt of a work published in Journal of Geodesy (DOI: 10.1007/s00190-014-0731-y) covering the site selection for the GGOS.%
Neu, Heather M; Jung, Jieun; Baglia, Regina A; Siegler, Maxime A; Ohkubo, Kei; Fukuzumi, Shunichi; Goldberg, David P
2015-04-15
The visible light-driven, catalytic aerobic oxidation of benzylic C-H bonds was mediated by a Mn(III) corrolazine complex. To achieve catalytic turnovers, a strict selective requirement for the addition of protons was established. The resting state of the catalyst was unambiguously characterized by X-ray diffraction as [Mn(III)(H2O)(TBP8Cz(H))](+), in which a single, remote site on the ligand is protonated. If two remote sites are protonated, however, reactivity with O2 is shut down. Spectroscopic methods revealed that the related Mn(V)(O) complex is also protonated at the same remote site at -60 °C, but undergoes valence tautomerization upon warming.
Description of a Remote Ionospheric Scintillation Data Collection Facility
DOT National Transportation Integrated Search
1973-03-01
An experimental technique is described which measures L-band ionospheric scintillation at a remote, unmanned site. Details of an automatic data collection facility are presented. The remote facility comprises an L-band receiver, and a complete VHF co...
Hyperspectral Remote Sensing of Terrestrial Ecosystem Productivity from ISS
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Campbell, P. K. E.; Gao, B. C.; Flanagan, L. B.; Goulden, M.
2017-12-01
Data from the Hyperspectral Imager for Coastal Ocean (HICO), mounted on the International Space Station (ISS), were used to develop and test algorithms for remotely retrieving ecosystem productivity. The ISS orbit introduces both limitations and opportunities for observing ecosystem dynamics. Twenty six HICO images were used from four study sites representing different vegetation types: grasslands, shrubland, and forest. Gross ecosystem production (GEP) data from eddy covariance were matched with HICO-derived spectra. Multiple algorithms were successful relating spectral reflectance with GEP, including: Spectral Vegetation Indices (SVI), SVI in a light use efficiency model framework, spectral shape characteristics through spectral derivatives and absorption feature analysis, and statistical models leading to Multiband Hyperspectral Indices (MHI) from stepwise regressions and Partial Least Squares Regression (PLSR). Algorithms were able to achieve r2 better than 0.7 for both GEP at the overpass time and daily GEP. These algorithms were successful using a diverse set of observations combining data from multiple years, multiple times during growing season, different times of day, with different view angles, and different vegetation types. The demonstrated robustness of the algorithms presented in this study over these conditions provides some confidence in mapping spatial patterns of GEP, describing variability within fields as well as the regional patterns based only on spectral reflectance information. The ISS orbit provides periods with multiple observations collected at different times of the day within a period of a few days. Diurnal GEP patterns were estimated comparing the half-hourly average GEP from the flux tower against HICO estimates of GEP (r2=0.87) if morning, midday, and afternoon observations were available for average fluxes in the time period.
Ecosystem functioning is enveloped by hydrometeorological variability.
Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris
2017-09-01
Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.
NASA Technical Reports Server (NTRS)
Talley, Tom
2003-01-01
Johnson Space Center (JSC) is designing a small, remotely controlled vehicle that will carry two color and one black and white video cameras in space. The device will launch and retrieve from the Space Vehicle and be used for remote viewing. Off the shelf cellular technology is being used as the basis for communication system design. Existing plans include using multiple antennas to make simultaneous estimates of the azimuth of the MiniAERCam from several sites on the Space Station and use triangulation to find the location of the device. Adding range detection capability to each of the nodes on the Space Vehicle would allow an estimate of the location of the MiniAERCam to be made at each Communication And Telemetry Box (CATBox) independent of all the other communication nodes. This project will investigate the techniques used by the Global Positioning System (GPS) to achieve accurate positioning information and adapt those strategies that are appropriate to the design of the CATBox range determination system.
Shearn-Bochsler, Valerie I.; Lance, Ellen W.; Corcoran, Robin; Piatt, John F.; Bodenstein, Barbara; Frame, Elizabeth; Lawonn, James
2014-01-01
Paralytic shellfish poisoning (PSP) is an acute toxic illness in humans resulting from ingestion of shellfish contaminated with a suite of neurotoxins (saxitoxins) produced by marine dinoflagellates, most commonly in the genus Alexandrium. Poisoning also has been sporadically suspected and, less often, documented in marine wildlife, often in association with an outbreak in humans. Kittlitz's Murrelet (Brachyramphus brevirostris) is a small, rare seabird of the Northern Pacific with a declining population. From 2008 to 2012, as part of a breeding ecology study, multiple Kittlitz's Murrelet nests on Kodiak Island, Alaska, were monitored by remote cameras. During the 2011 and 2012 breeding seasons, nestlings from several sites died during mild weather conditions. Remote camera observations revealed that the nestlings died shortly after consuming sand lance (Ammodytes hexapterus), a fish species known to biomagnify saxitoxin. High levels of saxitoxin were subsequently documented in crop content in 87% of nestling carcasses. Marine bird deaths from PSP may be underreported.
Unmanned and Unattended Response Capability for Homeland Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENNETT, PHIL C.
2002-11-01
An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less
Robotic Telepresence: Perception, Performance, and User Experience
2012-02-01
defined as “a human-computer-machine condition in which a user receives sufficient information about a remote, real-world site through a machine so...that the user feels physically present at the remote, real-world site ” (Aliberti and Bruen, 2006). Telepresence often includes capabilities for a more...outdoor route reconnaissance course (figures 4 and 5) was located at the Molnar MOUT (Military Operations in Urban Terrain) site in Fort Benning, GA. It
Clinical Training at Remote Sites Using Mobile Technology: An India-USA Partnership
ERIC Educational Resources Information Center
Vyas, R.; Albright, S.; Walker, D.; Zachariah, A.; Lee, M. Y.
2010-01-01
Christian Medical College (CMC), India, and Tufts University School of Medicine, USA, have developed an "institutional hub and spokes" model (campus-based e-learning supporting m-learning in the field) to facilitate clinical education and training at remote secondary hospital sites across India. Iterative research, design, development,…
NASA Technical Reports Server (NTRS)
Graff, W. J. (Compiler)
1973-01-01
Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.
Concealed Accessory Pathways with a Single Ventricular and Two Discrete Atrial Insertion Sites.
Kipp, Ryan T; Abu Sham'a, Raed; Hiroyuki, Ito; Han, Frederick T; Refaat, Marwan; Hsu, Jonathan C; Field, Michael E; Kopp, Douglas E; Marcus, Gregory M; Scheinman, Melvin M; Hoffmayer, Kurt S
2017-03-01
Atrioventricular reciprocating tachycardia (AVRT) utilizing a concealed accessory pathway is common. It is well appreciated that some patients may have multiple accessory pathways with separate atrial and ventricular insertion sites. We present three cases of AVRT utilizing concealed pathways with evidence that each utilizing a single ventricular insertion and two discrete atrial insertion sites. In case one, two discrete atrial insertion sites were mapped in two separate procedures, and only during the second ablation was the Kent potential identified. Ablation of the Kent potential at this site remote from the two atrial insertion sites resulted in the termination of the retrograde conduction in both pathways. Case two presented with supraventricular tachycardia (SVT) with alternating eccentric atrial activation patterns without alteration in the tachycardia cycle length. The two distinct atrial insertion sites during orthodromic AVRT and ventricular pacing were targeted and each of the two atrial insertion sites were successfully mapped and ablated. In case three, retrograde decremental conduction utilizing both atrial insertion sites was identified prior to ablation. After mapping and ablation of the first discrete atrial insertion site, tachycardia persisted utilizing the second atrial insertion site. Only after ablation of the second atrial insertion site was SVT noninducible, and VA conduction was no longer present. Concealed retrograde accessory pathways with discrete atrial insertion sites may have a common ventricular insertion site. Identification and ablation of the ventricular insertion site or the separate discrete atrial insertion sites result in successful treatment. © 2017 Wiley Periodicals, Inc.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2005-01-01
Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas.
Campbell, Stuart J; Edgar, Graham J; Stuart-Smith, Rick D; Soler, German; Bates, Amanda E
2018-04-01
Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing-gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no-take, hook-and-line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no-take zones) most benefited community- and family-level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community-level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing-gear types that affect biomass of a diverse set of reef fish families. © 2017 Society for Conservation Biology.
Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.
2004-01-01
The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.
Knapp, Herschel; Chan, Kee; Anaya, Henry D; Goetz, Matthew B
2011-06-01
We successfully created and implemented an effective HIV rapid testing training and certification curriculum using traditional in-person training at multiple sites within the U.S. Department of Veterans Affairs (VA) Healthcare System. Considering the multitude of geographically remote facilities in the nationwide VA system, coupled with the expansion of HIV diagnostics, we developed an alternate training method that is affordable, efficient, and effective. Using materials initially developed for in-person HIV rapid test in-services, we used a distance learning model to offer this training via live audiovisual online technology to educate clinicians at a remote outpatient primary care VA facility. Participants' evaluation metrics showed that this form of remote education is equivalent to in-person training; additionally, HIV testing rates increased considerably in the months following this intervention. Although there is a one-time setup cost associated with this remote training protocol, there is potential cost savings associated with the point-of-care nurse manager's time productivity by using the Internet in-service learning module for teaching HIV rapid testing. If additional in-service training modules are developed into Internet-based format, there is the potential for additional cost savings. Our cost analysis demonstrates that the remote in-service method provides a more affordable and efficient alternative compared with in-person training. The online in-service provided training that was equivalent to in-person sessions based on first-hand supervisor observation, participant satisfaction surveys, and follow-up results. This method saves time and money, requires fewer personnel, and affords access to expert trainers regardless of geographic location. Further, it is generalizable to training beyond HIV rapid testing. Based on these consistent implementation successes, we plan to expand use of online training to include remote VA satellite facilities spanning several states for a variety of diagnostic devices. Ultimately, Internet-based training has the potential to provide "big city" quality of care to patients at remote (rural) clinics.
Jacob, Benjamin G; Novak, Robert J; Toe, Laurent D; Sanfo, Moussa; Griffith, Daniel A; Lakwo, Thomson L; Habomugisha, Peace; Katabarwa, Moses N; Unnasch, Thomas R
2013-01-01
Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites. Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature. This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement.
Jacob, Benjamin G.; Novak, Robert J.; Toe, Laurent D.; Sanfo, Moussa; Griffith, Daniel A.; Lakwo, Thomson L.; Habomugisha, Peace; Katabarwa, Moses N.; Unnasch, Thomas R.
2013-01-01
Background Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites. Methodology/Principal Findings Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature. Conclusions/Significance This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement. PMID:23936571
Robotic positioning of standard electrophysiology catheters: a novel approach to catheter robotics.
Knight, Bradley; Ayers, Gregory M; Cohen, Todd J
2008-05-01
Robotic systems have been developed to manipulate and position electrophysiology (EP) catheters remotely. One limitation of existing systems is their requirement for specialized catheters or sheaths. We evaluated a system (Catheter Robotics Remote Catheter Manipulation System [RCMS], Catheter Robotics, Inc., Budd Lake, New Jersey) that manipulates conventional EP catheters placed through standard introducer sheaths. The remote controller functions much like the EP catheter handle, and the system permits repeated catheter disengagement for manual manipulation without requiring removal of the catheter from the body. This study tested the hypothesis that the RCMS would be able to safely and effectively position catheters at various intracardiac sites and obtain thresholds and electrograms similar to those obtained with manual catheter manipulation. Two identical 7 Fr catheters (Blazer II; Boston Scientific Corp., Natick, Massachusetts) were inserted into the right femoral veins of 6 mongrel dogs through separate, standard 7 Fr sheaths. The first catheter was manually placed at a right ventricular endocardial site. The second catheter handle was placed in the mating holder of the RCMS and moved to approximately the same site as the first catheter using the Catheter Robotics RCMS. The pacing threshold was determined for each catheter. This sequence was performed at 2 right atrial and 2 right ventricular sites. The distance between the manually and robotically placed catheters tips was measured, and pacing thresholds and His-bundle recordings were compared. The heart was inspected at necropsy for signs of cardiac perforation or injury. Compared to manual positioning, remote catheter placement produced the same pacing threshold at 7/24 sites, a lower threshold at 11/24 sites, and a higher threshold at only 6/24 sites (p > 0.05). The average distance between catheter tips was 0.46 +/- 0.32 cm (median 0.32, range 0.13-1.16 cm). There was no difference between right atrial and right ventricular sites (p > 0.05). His-bundle electrograms were equal in amplitude and timing. Further, the remote navigation catheter was able to be disengaged, manually manipulated, then reengaged in the robot without issue. There was no evidence of perforation. The Catheter Robotics remote catheter manipulation system, which uses conventional EP catheters and introducer sheaths, appears to be safe and effective at directing EP catheters to intracardiac sites and achieving pacing thresholds and electrograms equivalent to manually placed catheters. Further clinical studies are needed to confirm these observations.
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
Remotely Operating a Fourier Transform Spectrometer for Atmospheric Remote Sensing
NASA Technical Reports Server (NTRS)
Blavier, J.-F.; Toon, G. C.; Sen, B.
2000-01-01
This paper describes how the MkIV instrument was adapted for remote operation from the Barcroft site, where the harsh winter conditions make access difficult. Some of the main technical challenges will be discussed including, (i) operation from solar panels and batteries, (ii) cooling the detectors with LN2, (iii) instrument control and monitoring over a cellular phone, and (iv) data storage, processing and analysis. Finally, MkIV spectra measured from Barcroft and compared with those measured from JPL to highlight the advantages of the higher altitude site.
Photographic copy of photograph, dated September 1973 (original in possession ...
Photographic copy of photograph, dated September 1973 (original in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view (northwest to southeast) of remote sprint launch site #4 during construction. In the background are the waste stabilization ponds. In the foreground, left to right, are the remote launch operations building, the exclusion area sentry stations, and the sprint launch cells - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND
Analysis of laser fluorosensor systems for remote algae detection and quantification
NASA Technical Reports Server (NTRS)
Browell, E. V.
1977-01-01
The development and performance of single- and multiple-wavelength laser fluorosensor systems for use in the remote detection and quantification of algae are discussed. The appropriate equation for the fluorescence power received by a laser fluorosensor system is derived in detail. Experimental development of a single wavelength system and a four wavelength system, which selectively excites the algae contained in the four primary algal color groups, is reviewed, and test results are presented. A comprehensive error analysis is reported which evaluates the uncertainty in the remote determination of the chlorophyll a concentration contained in algae by single- and multiple-wavelength laser fluorosensor systems. Results of the error analysis indicate that the remote quantification of chlorophyll a by a laser fluorosensor system requires optimum excitation wavelength(s), remote measurement of marine attenuation coefficients, and supplemental instrumentation to reduce uncertainties in the algal fluorescence cross sections.
Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2016-01-01
An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.
Synchronized computational architecture for generalized bilateral control of robot arms
NASA Technical Reports Server (NTRS)
Szakaly, Zoltan F. (Inventor)
1991-01-01
A master six degree of freedom Force Reflecting Hand Controller (FRHC) is available at a master site where a received image displays, in essentially real time, a remote robotic manipulator which is being controlled in the corresponding six degree freedom by command signals which are transmitted to the remote site in accordance with the movement of the FRHC at the master site. Software is user-initiated at the master site in order to establish the basic system conditions, and then a physical movement of the FRHC in Cartesean space is reflected at the master site by six absolute numbers that are sensed, translated and computed as a difference signal relative to the earlier position. The change in position is then transmitted in that differential signal form over a high speed synchronized bilateral communication channel which simultaneously returns robot-sensed response information to the master site as forces applied to the FRHC so that the FRHC reflects the feel of what is taking place at the remote site. A system wide clock rate is selected at a sufficiently high rate that the operator at the master site experiences the Force Reflecting operation in real time.
Automated training site selection for large-area remote-sensing image analysis
NASA Astrophysics Data System (ADS)
McCaffrey, Thomas M.; Franklin, Steven E.
1993-11-01
A computer program is presented to select training sites automatically from remotely sensed digital imagery. The basic ideas are to guide the image analyst through the process of selecting typical and representative areas for large-area image classifications by minimizing bias, and to provide an initial list of potential classes for which training sites are required to develop a classification scheme or to verify classification accuracy. Reducing subjectivity in training site selection is achieved by using a purely statistical selection of homogeneous sites which then can be compared to field knowledge, aerial photography, or other remote-sensing imagery and ancillary data to arrive at a final selection of sites to be used to train the classification decision rules. The selection of the homogeneous sites uses simple tests based on the coefficient of variance, the F-statistic, and the Student's i-statistic. Comparisons of site means are conducted with a linear growing list of previously located homogeneous pixels. The program supports a common pixel-interleaved digital image format and has been tested on aerial and satellite optical imagery. The program is coded efficiently in the C programming language and was developed under AIX-Unix on an IBM RISC 6000 24-bit color workstation.
Measurement Sets and Sites Commonly Used for Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
Measurement Sets and Sites Commonly used for Characterizations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.
Fundamentals and advances in the development of remote welding fabrication systems
NASA Technical Reports Server (NTRS)
Agapakis, J. E.; Masubuchi, K.; Von Alt, C.
1986-01-01
Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.
Remote sensing for site characterization
Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.
2000-01-01
This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.
An Experimental Remote Question-Answer Scan Television and Student Evaluation System.
ERIC Educational Resources Information Center
Rigas, Anthony L.
Presented is a description of the development and use of a technical system designed to provide students (in this case, engineering students) situated at remote sites a means for better interaction with their instructors. For example, students at such sites cannot get their immediate questions answered because of the physical location of their…
The report describes automobile exhaust remote sensing data collected by EPA at a number of sites in the Research Triangle Park, NC area during 1997. Data were also collected at one site in Raleigh, NC from 1998 through 2001 for the Coordinating Research Council (CRC) study of re...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Paul; Skeehan, Kirsten; Smith, Jerome
Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.
2017-12-01
Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning
Application of airborne remote sensing to the ancient Pompeii site
NASA Astrophysics Data System (ADS)
Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi
1996-12-01
The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.
NASA Astrophysics Data System (ADS)
Palumbo, Gaetano; Powlesland, Dominic
1996-12-01
The Getty Conservation Institute is exploring the feasibility of using remote sensing associated with a geographic database management system (GDBMS) in order to provide archaeological and historic site managers with sound evaluations of the tools available for site and information management. The World Heritage Site of Chaco Canyon, New Mexico, a complex of archeological sites dating to the 10th to the 13th centuries AD, was selected as a test site. Information from excavations conducted there since the 1930s, and a range of documentation generated by the National Park Service was gathered. NASA's John C. Stennis Space Center contributed multispectral data of the area, and the Jet Propulsion Laboratory contributed data from ATLAS (airborne terrestrial applications sensor) and CAMS (calibrated airborne multispectral scanner) scanners. Initial findings show that while 'automatic monitoring systems' will probably never be a reality, with careful comparisons of historic and modern photographs, and performing digital analysis of remotely sensed data, excellent results are possible.
Assessment of Mars Exploration Rover Landing Site Predictions
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Arvidson, R. E.; Bell, J. F., III; Christensen, P. R.; Crisp, J. A.; Ehlmann, B. L.; Fergason, R. L.; Grant, J. A.; Haldemann, A. F. C.; Parker, T. J.;
2005-01-01
The Mars Exploration Rover (MER) landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong indicators of liquid water. The engineering constraints critical for safe landing were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing and targeted remote sensing data and models that resulted in a number of predictions of the surface characteristics of the sites, which are tested more fully herein than a preliminary assessment. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data and is essential for selecting and validating landing sites for future missions.
Designing for Learning Engagement in Remote Communities: Narratives from North of Sixty
ERIC Educational Resources Information Center
Doering, Aaron; Henrickson, Jeni
2014-01-01
There are multiple challenges to designing learning experiences for schools in remote communities, including technology and infrastructure limitations, high teacher and administrator turnover, and conflicting interests between local culture and school curricula. In this paper, we offer a brief history of educational initiatives in remote Arctic…
Elison-Bowers, P.; Snelson, Chareen; Casa de Calvo, Mario; Thompson, Heather
2008-01-01
This study compared the responses of on-site, remote-site, and traditional classroom students on measures of student/teacher interaction, course structure, physical learning environment, and overall course enjoyment/satisfaction. The sample population consisted of students taking undergraduate courses in medical terminology at two western colleges. The survey instrument was derived from Thomerson's questionnaire, which included closed- and open-ended questions assessing perceptions of students toward their courses. Controlling for grade expectations, results revealed no significant differences among the on-site, remote-site, and traditional classroom students in any of the four cluster domains. However, a nonsignificant (and continuing) trend suggested that students preferred the traditional classroom environment. When results were controlled for age, significant differences emerged between traditional and nontraditional students on measures of student/teacher interaction, physical learning environment, and overall enjoyment/satisfaction, as nontraditional students exhibited higher scores. Students' responses to open-ended questions indicated they enjoyed the convenience of online instruction, but reported finding frustration with technology itself. PMID:18311326
NASA Astrophysics Data System (ADS)
Rouini, N.; Lepley, K. S.; Messaoudene, M.
2017-12-01
Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.
Using robotic telecommunications to triage pediatric disaster victims.
Burke, Rita V; Berg, Bridget M; Vee, Paul; Morton, Inge; Nager, Alan; Neches, Robert; Wetzel, Randall; Upperman, Jeffrey S
2012-01-01
During a disaster, hospitals may be overwhelmed and have an insufficient number of pediatric specialists available to care for injured children. The aim of this study was to determine the feasibility of remotely providing pediatric expertise via a robot to treat pediatric victims. In 2008, Los Angeles County held 2 drills involving telemedicine. The first was the Tri-Hospital drill in which 3 Los Angeles County hospitals, one being a pediatric hospital, participated. The disaster scenario involved a Metrolink train crash, resulting in a large surge of traumatic injuries. The second drill involved multiple agencies and was called the Great California Shakeout, a simulated earthquake exercise. The telemedicine equipment installed is an InTouch Health, Inc, Santa Barbara, CA robotic telecommunications system. We used mixed-methods to evaluate the use of telemedicine during these drills. Pediatric specialists successfully provided remote triage and treatment consults of victims via the robot. The robot proved to be a useful means to extend resources and provide expert consult if pediatric specialists were unable to physically be at the site. Telemedicine can be used in the delayed treatment areas as well as for training first receivers to collaborate with specialists in remote locations to triage and treat seriously injured pediatric victims. Copyright © 2012 Elsevier Inc. All rights reserved.
Linking Fine-Scale Observations and Model Output with Imagery at Multiple Scales
NASA Astrophysics Data System (ADS)
Sadler, J.; Walthall, C. L.
2014-12-01
The development and implementation of a system for seasonal worldwide agricultural yield estimates is underway with the international Group on Earth Observations GeoGLAM project. GeoGLAM includes a research component to continually improve and validate its algorithms. There is a history of field measurement campaigns going back decades to draw upon for ways of linking surface measurements and model results with satellite observations. Ground-based, in-situ measurements collected by interdisciplinary teams include yields, model inputs and factors affecting scene radiation. Data that is comparable across space and time with careful attention to calibration is essential for the development and validation of agricultural applications of remote sensing. Data management to ensure stewardship, availability and accessibility of the data are best accomplished when considered an integral part of the research. The expense and logistical challenges of field measurement campaigns can be cost-prohibitive and because of short funding cycles for research, access to consistent, stable study sites can be lost. The use of a dedicated staff for baseline data needed by multiple investigators, and conducting measurement campaigns using existing measurement networks such as the USDA Long Term Agroecosystem Research network can fulfill these needs and ensure long-term access to study sites.
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
Reactive oxygen species-dependent wound responses in animals and plants.
Suzuki, Nobuhiro; Mittler, Ron
2012-12-15
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed. Published by Elsevier Inc.
ELF Transients and Q-bursts Detected Around the Globe: First results from Palmer Station, Antarctica
NASA Astrophysics Data System (ADS)
Flint, Q. A.; Moore, R. C.
2016-12-01
We present the first analysis of data from the recently deployed broadband ELF (5-500 Hz) B-field receiver at Palmer Station, Antarctica together with observations at similar receivers located at Sondrestromfjord, Greenland and Arrival Heights, Antarctica. Such remote locations afford the unique opportunity to record signals that are essentially unperturbed by power line noise. As a result, using this multi-site global network of ELF/VLF receivers, we are able to easily detect a particular type of ELF transient that propagates around the world multiple times, known as the Q-burst. The Q-burst is characterized by a large increase in amplitude above the background at the Schumann Resonance modes and is believed to result from especially powerful cloud-to-ground lightning discharges. These powerful lightning discharges are likely responsible for a significant level of energetic coupling between the troposphere, the ionosphere, and the magnetosphere. The ELF and VLF waves excited by the lightning discharge propagate to great distances in the earth-ionosphere waveguide, and in fact propagate around the Earth multiple times. By measuring the received waveform at multiple distant sites around the globe, we can pinpoint the source lightning location, compare the changes in field strength and spectrum as a function of distance from the source, and evaluate modal propagation effects in the VLF range (that are not apparent in the ELF range).
Assessment of remote sensing technologies to discover and characterize waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-03-11
This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.
Using Unmanned Aerial Vehicles (UAVs) to Modeling Tornado Impacts
NASA Astrophysics Data System (ADS)
Wagner, M.; Doe, R. K.
2017-12-01
Using Unmanned Aerial Vehicles (UAVs) to assess storm damage is a useful research tool. Benefits include their ability to access remote or impassable areas post-storm, identify unknown damages and assist with more detailed site investigations and rescue efforts. Technological advancement of UAVs mean that they can capture high resolution images often at an affordable price. These images can be used to create 3D environments to better interpret and delineate damages from large areas that would have been difficult in ground surveys. This research presents the results of a rapid response site investigation of the 29 April 2017 Canton, Texas, USA, tornado using low cost UAVs. This was a multiple, high impact tornado event measuring EF4 at maximum. Rural farmland was chosen as a challenging location to test both equipment and methodology. Such locations provide multiple impacts at a variety of scales including structural and vegetation damage and even animal fatalities. The 3D impact models allow for a more comprehensive study prior to clean-up. The results show previously unseen damages and better quantify damage impacts at the local level. 3D digital track swaths were created allowing for a more accurate track width determination. These results demonstrate how effective the use of low cost UAVs can be for rapid response storm damage assessments, the high quality of data they can achieve, and how they can help us better visualize tornado site investigations.
Murante, Lori J.; Moffett, Lisa M.
2014-01-01
Abstract Objectives: This retrospective cross-sectional study evaluated a telepharmacy service model using a conceptual framework to compare documented remote pharmacist interventions by year, hospital, and remote pharmacist and across rural hospitals with or without an on-site rural hospital pharmacist. Materials and Methods: Documented remote pharmacist interventions for patients at eight rural hospitals in the Midwestern United States during prospective prescription order review/entry from 2008 to 2011 were extracted from RxFusion® database (a home-grown system, i.e., internally developed program at The Nebraska Medical Center (TNMC) for capturing remote pharmacist-documented intervention data). The study authors conceptualized an analytical framework, mapping the 37 classes of remote pharmacist interventions to three broader-level definitions: (a) intervention, eight categories (interaction/potential interaction, contraindication, adverse effects, anticoagulation monitoring, drug product selection, drug regimen, summary, and recommendation), (b) patient medication management, two categories (therapy review and action), and (c) health system-centered medication use process, four categories (prescribing, transcribing and documenting, administering, and monitoring). Frequencies of intervention levels were compared by year, hospital, remote pharmacist, and hospital pharmacy status (with a remote pharmacist and on-site pharmacist or with a remote pharmacist only) using chi-squared test and univariate logistic regression analyses, as appropriate. Results: For 450,000 prescription orders 19,222 remote pharmacist interventions were documented. Frequency of interventions significantly increased each year (36% in 2009, 55% in 2010, and 7% in 2011) versus the baseline year (2008, 3%) when service started. The frequency of interventions also differed significantly across the eight hospitals and 16 remote pharmacists for the three defined intervention levels and categories. Remote pharmacist interventions at hospitals with an on-site and remote pharmacist (n=12,141) versus those with a remote pharmacist alone (n=7,081) were significantly more likely to be (1) patient-centered, (2) related to “actionable” medication management recommendations (unadjusted odds ratio [OR]=1.12), and (3) related to the “transcribing” (OR=1.47) and “prescribing” (OR=1.40) steps of the health system-centered medication use process level (all p<0.01). Conclusions: This is one of the first studies to demonstrate the patient- and health system-centered nature of pharmaceutical care delivered via a telepharmacy service model by evaluating documented remote pharmacist interventions with an analytical framework. PMID:24611489
Application of remote sensor data to geologic analysis of the Bonanza test site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.
1973-01-01
Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.
NASA Astrophysics Data System (ADS)
Thompson Alves de Souza, Carlos Eduardo
Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR Carlos Eduardo Thompson Alves de Souza cethompsoniii@hotmail.com Archaeologist Member of the European Association of Archaeologists B.A.Archaeology MA.Remote Sensing Abstract The Archaeological Research in Urban Environment with the Air Light Detection and Ranging is problematic for the Overlay Layers mixed with contexts concerning the Interpretation of Archaeological Data. However, in the Underwater Archaeology the results are excellent. This paper considers the application of Remote Sensing and Air Light Detection and Ranging (LIDAR) as separate things as well as Land Archaeology and the Underwater Archaeology. European Archaeologists know very little about Brazil and the article presents an Overview of Research in Brazil with Remote Sensing in Archaeology and Light Detection and Ranging in Land Archaeology and Underwater Archaeology, because Brazil has Continental Dimensions. Braziliańs Methodology for Location, Analysis and Monitoring of Archaeological Sites is necessarily more Complex and Innovative and therefore can serve as a New Paradigm for other archaeologists involved in the Advanced Management Heritage.
NASA Astrophysics Data System (ADS)
Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.
2014-12-01
Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.
Asciutto, Eliana K; Pochapsky, Thomas C
2018-04-27
Cytochrome P450 cam (CYP101A1) catalyzes the stereospecific 5-exo hydroxylation of d-camphor by molecular oxygen. Previously, residual dipolar couplings measured for backbone amide 1 H- 15 N correlations in both substrate-free and bound forms of CYP101A1 were used as restraints in soft annealing molecular dynamic simulations in order to identify average conformations of the enzyme with and without substrate bound. Multiple substrate-dependent conformational changes remote from the enzyme active site were identified, and site-directed mutagenesis and activity assays confirmed the importance of these changes in substrate recognition. The current work makes use of perturbation response scanning (PRS) and umbrella sampling molecular dynamic of the residual dipolar coupling-derived CYP101A1 structures to probe the roles of remote structural features in enforcing the regio- and stereospecific nature of the hydroxylation reaction catalyzed by CYP101A1. An improper dihedral angle Ψ was defined and used to maintain substrate orientation in the CYP101A1 active site, and it was observed that different values of Ψ result in different PRS response maps. Umbrella sampling methods show that the free energy of the system is sensitive to Ψ, and bound substrate forms an important mechanical link in the transmission of mechanical coupling through the enzyme structure. Finally, a qualitative approach to interpreting PRS maps in terms of the roles of secondary structural features is proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparison of remote sensing indices for monitoring of desert cienegas
Wilson, Natalie R.; Norman, Laura M.; Villarreal, Miguel; Gass, Leila; Tiller, Ron; Salywon, Andrew
2016-01-01
This research considers the applicability of different vegetation indices at 30 m resolution for mapping and monitoring desert wetland (cienega) health and spatial extent through time at Cienega Creek in southeastern Arizona, USA. Multiple stressors including the risk of decadal-scale drought, the effects of current and predicted global warming, and continued anthropogenic pressures threaten aquatic habitats in the southwest and cienegas are recognized as important sites for conservation and restoration efforts. However, cienegas present a challenge to satellite-imagery based analysis due to their small size and mixed surface cover of open water, exposed soils, and vegetation. We created time series of five well-known vegetation indices using annual Landsat Thematic Mapper (TM) images retrieved during the April–June dry season, from 1984 to 2011 to map landscape-level distribution of wetlands and monitor the temporal dynamics of individual sites. Indices included the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Infrared Index (NDII). One topographic index, the Topographic Wetness Index (TWI), was analyzed to examine the utility of topography in mapping distribution of cienegas. Our results indicate that the NDII, calculated using Landsat TM band 5, outperforms the other indices at differentiating cienegas from riparian and upland sites, and was the best means to analyze change. As such, it offers a critical baseline for future studies that seek to extend the analysis of cienegas to other regions and time scales, and has broader applicability to the remote sensing of wetland features in arid landscapes.
Andrew D. George; Frank R. Thompson; John. Faaborg
2015-01-01
A spatial mismatch exists between regional climate models and conditions experienced by individual organisms. We demonstrate an approach to downscaling air temperatures for site-level studies using airborne LiDAR data and remote microclimate loggers. In 2012-2013, we established a temperature logger network in the forested region of central Missouri, USA, and obtained...
We used a combination of data from USDA Forest Service inventories, intensive
chronosequences, extensive sites, and satellite remote sensing, to estimate biomass
and net primary production (NPP) for the forested region of western Oregon. The
study area was divided int...
Remote sensing for grassland management in the arid Southwest
Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R.
2006-01-01
We surveyed a group of rangeland managers in the Southwest about vegetation monitoring needs on grassland. Based on their responses, the objective of the RANGES (Rangeland Analysis Utilizing Geospatial Information Science) project was defined to be the accurate conversion of remotely sensed data (satellite imagery) to quantitative estimates of total (green and senescent) standing cover and biomass on grasslands and semidesert grasslands. Although remote sensing has been used to estimate green vegetation cover, in arid grasslands herbaceous vegetation is senescent much of the year and is not detected by current remote sensing techniques. We developed a ground truth protocol compatible with both range management requirements and Landsat's 30 m resolution imagery. The resulting ground-truth data were then used to develop image processing algorithms that quantified total herbaceous vegetation cover, height, and biomass. Cover was calculated based on a newly developed Soil Adjusted Total Vegetation Index (SATVI), and height and biomass were estimated based on reflectance in the near infrared (NIR) band. Comparison of the remotely sensed estimates with independent ground measurements produced r2 values of 0.80, 0.85, and 0.77 and Nash Sutcliffe values of 0.78, 0.70, and 0.77 for the cover, plant height, and biomass, respectively. The approach for estimating plant height and biomass did not work for sites where forbs comprised more than 30% of total vegetative cover. The ground reconnaissance protocol and image processing techniques together offer land managers accurate and timely methods for monitoring extensive grasslands. The time-consuming requirement to collect concurrent data in the field for each image implies a need to share the high fixed costs of processing an image across multiple users to reduce the costs for individual rangeland managers.
Malaria Modeling using Remote Sensing and GIS Technologies
NASA Technical Reports Server (NTRS)
Kiang, Richard
2004-01-01
Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.
Contributing opportunistic resources to the grid with HTCondor-CE-Bosco
NASA Astrophysics Data System (ADS)
Weitzel, Derek; Bockelman, Brian
2017-10-01
The HTCondor-CE [1] is the primary Compute Element (CE) software for the Open Science Grid. While it offers many advantages for large sites, for smaller, WLCG Tier-3 sites or opportunistic clusters, it can be a difficult task to install, configure, and maintain the HTCondor-CE. Installing a CE typically involves understanding several pieces of software, installing hundreds of packages on a dedicated node, updating several configuration files, and implementing grid authentication mechanisms. On the other hand, accessing remote clusters from personal computers has been dramatically improved with Bosco: site admins only need to setup SSH public key authentication and appropriate accounts on a login host. In this paper, we take a new approach with the HTCondor-CE-Bosco, a CE which combines the flexibility and reliability of the HTCondor-CE with the easy-to-install Bosco. The administrators of the opportunistic resource are not required to install any software: only SSH access and a user account are required from the host site. The OSG can then run the grid-specific portions from a central location. This provides a new, more centralized, model for running grid services, which complements the traditional distributed model. We will show the architecture of a HTCondor-CE-Bosco enabled site, as well as feedback from multiple sites that have deployed it.
Spatial and Temporal Scaling of Thermal Infrared Remote Sensing Data
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Goel, Narendra S.
1995-01-01
Although remote sensing has a central role to play in the acquisition of synoptic data obtained at multiple spatial and temporal scales to facilitate our understanding of local and regional processes as they influence the global climate, the use of thermal infrared (TIR) remote sensing data in this capacity has received only minimal attention. This results from some fundamental challenges that are associated with employing TIR data collected at different space and time scales, either with the same or different sensing systems, and also from other problems that arise in applying a multiple scaled approach to the measurement of surface temperatures. In this paper, we describe some of the more important problems associated with using TIR remote sensing data obtained at different spatial and temporal scales, examine why these problems appear as impediments to using multiple scaled TIR data, and provide some suggestions for future research activities that may address these problems. We elucidate the fundamental concept of scale as it relates to remote sensing and explore how space and time relationships affect TIR data from a problem-dependency perspective. We also describe how linearity and non-linearity observation versus parameter relationships affect the quantitative analysis of TIR data. Some insight is given on how the atmosphere between target and sensor influences the accurate measurement of surface temperatures and how these effects will be compounded in analyzing multiple scaled TIR data. Last, we describe some of the challenges in modeling TIR data obtained at different space and time scales and discuss how multiple scaled TIR data can be used to provide new and important information for measuring and modeling land-atmosphere energy balance processes.
Multiple node remote messaging
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos
2010-08-31
A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).
Kokaly, R.F.; Clark, R.N.
1999-01-01
We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.301 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.
Effect of Forest Canopy on Remote Sensing Soil Moisture at L-band
NASA Technical Reports Server (NTRS)
LeVine, D. M.; Lang, R. H.; Jackson, T. J.; Haken, M.
2005-01-01
Global maps of soil moisture are needed to improve understanding and prediction of the global water and energy cycles. Accuracy requirements imply the use of lower frequencies (L-band) to achieve adequate penetration into the soil and to minimize attenuation by the vegetation canopy and effects of surface roughness. Success has been demonstrated over agricultural areas, but canopies with high biomass (e.g. forests) still present a challenge. Examples from recent measurements over forests with the L-band radiometer, 2D-STAR, and its predecessor, ESTAR, will be presented to illustrate the problem. ESTAR and 2D-STAR are aircraft-based synthetic aperture radiometers developed to help resolve both the engineering and algorithm issues associated with future remote sensing of soil moisture. ESTAR, which does imaging across track, was developed to demonstrate the viability of aperture synthesis for remote sensing. The instrument has participated several soil moisture experiments (e.g. at the Little Washita Watershed in 1992 and the Southern Great Plains experiments in 1997 and 1999). In addition, measurements have been made at a forest site near Waverly, VA which contains conifer forests with a variety of biomass. These data have demonstrated the success of retrieving soil moisture at L-band over agricultural areas and the response of passive observations at L-band to biomass over forests. 2D-STAR is a second generation instrument that does aperture synthesis in two dimensions (along track and cross track) and is dual polarized. This instrument has the potential to provide measurements at L-band that simulate the measurements that will be made by the two L-band sensors currently being developed for future remote sensing of soil moisture from space: Hydros (conical scan and real aperture) and SMOS (multiple incidence angle and synthetic aperture). 2D-STAR participated in the SMEX-03 soil moisture experiment, providing images from the NASA P-3 aircraft. Preliminary results include images of the experiment site area near Huntsville, AL that included a mixture of forest and agriculture. Changes during a rain event further illustrate the issues presented by forests. Work is continuing to reduce the 2D-STAR data and to support the two future remote sensing missions. Among the goals is to process the 2D-STAR data to create multiple looks (at the same pixel) with different incidence angles. Data in this format can be used to test algorithms for retrieving soil moisture and biomass such as are planned for SMOS. Also, the data are being processed to provide images at constant incidence angles such as will be obtained by Hydros. Although Hydros will have only one incidence angle, it will also carry an L-band radar, The goal is to use the radar to improve spatial resolution, an issue for remote sensing from space at the long wavelengths. Simultaneous observations with active and passive sensors also offers interesting prospects for treating areas of high biomass (forests) and irregular terrain and may be the challenge for the future.
Virtual Computing Laboratories: A Case Study with Comparisons to Physical Computing Laboratories
ERIC Educational Resources Information Center
Burd, Stephen D.; Seazzu, Alessandro F.; Conway, Christopher
2009-01-01
Current technology enables schools to provide remote or virtual computing labs that can be implemented in multiple ways ranging from remote access to banks of dedicated workstations to sophisticated access to large-scale servers hosting virtualized workstations. This paper reports on the implementation of a specific lab using remote access to…
NASA Astrophysics Data System (ADS)
Qiu, Xiang; Dai, Ming; Yin, Chuan-li
2017-09-01
Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.
NASA Astrophysics Data System (ADS)
Iqbal, M.; Islam, A.; Hossain, A.; Mustaque, S.
2016-12-01
Multi-Criteria Decision Making(MCDM) is advanced analytical method to evaluate appropriate result or decision from multiple criterion environment. Present time in advanced research, MCDM technique is progressive analytical process to evaluate a logical decision from various conflict. In addition, Present day Geospatial approach (e.g. Remote sensing and GIS) also another advanced technical approach in a research to collect, process and analyze various spatial data at a time. GIS and Remote sensing together with the MCDM technique could be the best platform to solve a complex decision making process. These two latest process combined very effectively used in site selection for solid waste management in urban policy. The most popular MCDM technique is Weighted Linear Method (WLC) where Analytical Hierarchy Process (AHP) is another popular and consistent techniques used in worldwide as dependable decision making. Consequently, the main objective of this study is improving a AHP model as MCDM technique with Geographic Information System (GIS) to select a suitable landfill site for urban solid waste management. Here AHP technique used as a MCDM tool to select the best suitable landfill location for urban solid waste management. To protect the urban environment in a sustainable way municipal waste needs an appropriate landfill site considering environmental, geological, social and technical aspect of the region. A MCDM model generate from five class related which related to environmental, geological, social and technical using AHP method and input the result set in GIS for final model location for urban solid waste management. The final suitable location comes out that 12.2% of the area corresponds to 22.89 km2 considering the total study area. In this study, Keraniganj sub-district of Dhaka district in Bangladesh is consider as study area which is densely populated city currently undergoes an unmanaged waste management system especially the suitable landfill sites for waste dumping site.
ERIC Educational Resources Information Center
Heiens, Richard A.; Hulse, Deborah B.
1996-01-01
An organizational behavior course was delivered via two-way interactive television to a campus site (71 students) and three remote locations (48 students). Remote students were slightly older and predominantly female. There were no significant differences in academic performance between on-campus and remote students. (SK)
NASA Technical Reports Server (NTRS)
Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.;
2007-01-01
The lunar architecture for future sortie and outpost missions will require humans to serve on the lunar surface considerably longer than the Apollo moon missions. Although the Apollo crewmembers sustained few injuries during their brief lunar surface activity, injuries did occur and are a concern for the longer lunar stays. Interestingly, lunar medical contingency plans were not developed during Apollo. In order to develop an evidence-base for handling a medical contingency on the lunar surface, a simulation using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic was conducted. Objectives of this study included developing an effective management strategy for dealing with an incapacitated crewmember on the lunar surface, establishing audio/visual and biomedical data connectivity to multiple centers, testing rescue/extraction hardware and procedures, and evaluating in suit increased oxygen consumption. Methods: A review of the Apollo lunar surface activities and personal communications with Apollo lunar crewmembers provided the knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity (EVA). Objectives were established to demonstrate stabilization and transfer of an injured crewmember and communication with ground controllers at multiple mission control centers. Results: The project objectives were successfully achieved during the simulation. Among these objectives were extraction from a sloped terrain by a two-member crew in a 1 g analog environment, establishing real-time communication to multiple centers, providing biomedical data to flight controllers and crewmembers, and establishing a medical diagnosis and treatment plan from a remote site. Discussion: The simulation provided evidence for the types of equipment and methods for performing extraction of an injured crewmember from a sloped terrain. Additionally, the necessary communications infrastructure to connect multiple centers worldwide was established from a remote site. The surface crewmembers were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges during the course of the simulation which provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives will be incorporated into the exploration medical requirements involving an incapacitated astronaut on the lunar surface.
Secure data aggregation in heterogeneous and disparate networks using stand off server architecture
NASA Astrophysics Data System (ADS)
Vimalathithan, S.; Sudarsan, S. D.; Seker, R.; Lenin, R. B.; Ramaswamy, S.
2009-04-01
The emerging global reach of technology presents myriad challenges and intricacies as Information Technology teams aim to provide anywhere, anytime and anyone access, for service providers and customers alike. The world is fraught with stifling inequalities, both from an economic as well as socio-political perspective. The net result has been large capability gaps between various organizational locations that need to work together, which has raised new challenges for information security teams. Similar issues arise, when mergers and acquisitions among and between organizations take place. While integrating remote business locations with mainstream operations, one or more of the issues including the lack of application level support, computational capabilities, communication limitations, and legal requirements cause a serious impediment thereby complicating integration while not violating the organizations' security requirements. Often resorted techniques like IPSec, tunneling, secure socket layer, etc. may not be always techno-economically feasible. This paper addresses such security issues by introducing an intermediate server between corporate central server and remote sites, called stand-off-server. We present techniques such as break-before-make connection, break connection after transfer, multiple virtual machine instances with different operating systems using the concept of a stand-off-server. Our experiments show that the proposed solution provides sufficient isolation for the central server/site from attacks arising out of weak communication and/or computing links and is simple to implement.
NASA Astrophysics Data System (ADS)
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.
2018-03-01
The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.
A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications
Moraleda, Alberto Tapetado; Montero, David Sánchez; Webb, David J.; García, Carmen Vázquez
2014-01-01
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown. PMID:25615736
A self-referenced optical intensity sensor network using POFBGs for biomedical applications.
Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen
2014-12-12
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.
Method of determining forest production from remotely sensed forest parameters
Corey, J.C.; Mackey, H.E. Jr.
1987-08-31
A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.
Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.
1996-01-01
In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used tomore » support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.« less
Ground cover changes resulting from low-level camping stress on a remote site
R. E. Leonard; J. M. McBride; P. W. Conkling; J. L. McMahon
1983-01-01
This study reports the effects of low-level camping stress on vegetation in a remote site. South Big Garden Island in Penobscot Bay, Maine, was studied because (1) it had no prior recreational use; thus, comprehensive base line data could be obtained; and (2) the exact number of campers could be monitored throughout the study period. The continuous line-intercept...
Airborne Remote Sensing of Trafficability in the Coastal Zone
2009-01-01
validation instruments: Analytical Spectral Devices (ASD) full-range spectrometer; light weight deflectometer ( LWD ), which measures dynamic deflection...liquid water absorption features. The corresponding bearing strength measured by the LWD was high at the shoreline site and low at the backdune site...REVIEW REMOTE SENSING FIGURE 7 Correlation of in situ grain size, moisture, and bearing strength measurements. Scatterplot of percent moisture vs LWD
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
The Practical Obstacles of Data Transfer: Why researchers still love scp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Hai Ah; Hill, Jason J; Parete-Koon, Suzanne T
The importance of computing facilities is heralded every six months with the announcement of the new Top500 list, showcasing the world s fastest supercomputers. Unfortu- nately, with great computing capability does not come great long-term data storage capacity, which often means users must move their data to their local site archive, to remote sites where they may be doing future computation or anal- ysis, or back to their home institution, else face the dreaded data purge that most HPC centers employ to keep utiliza- tion of large parallel filesystems low to manage performance and capacity. At HPC centers, data transfermore » is crucial to the scientific workflow and will increase in importance as computing systems grow in size. The Energy Sciences Net- work (ESnet) recently launched its fifth generation network, a 100 Gbps high-performance, unclassified national network connecting more than 40 DOE research sites to support scientific research and collaboration. Despite the tenfold increase in bandwidth to DOE research sites amenable to multiple data transfer streams and high throughput, in prac- tice, researchers often under-utilize the network and resort to painfully-slow single stream transfer methods such as scp to avoid the complexity of using multiple stream tools such as GridFTP and bbcp, and contend with frustration from the lack of consistency of available tools between sites. In this study we survey and assess the data transfer methods pro- vided at several DOE supported computing facilities, includ- ing both leadership-computing facilities, connected through ESnet. We present observed transfer rates, suggested opti- mizations, and discuss the obstacles the tools must overcome to receive wide-spread adoption over scp.« less
Pavlicek, W; Zavalkovskiy, B; Eversman, W G
1999-05-01
Mayo Clinic Scottsdale (MCS) is a busy outpatient facility (150,000 examinations per year) connected via asynchronous transfer mode (ATM; OC-3 155 MB/s) to a new Mayo Clinic Hospital (178 beds) located more than 12 miles distant. A primary care facility staffed by radiology lies roughly halfway between the hospital and clinic connected to both. Installed at each of the three locations is a high-speed star topology image network providing direct fiber connection (160 MB/s) from the local image storage unit (ISU) to the local radiology and clinical workstations. The clinic has 22 workstations in its star, the hospital has 13, and the primary care practice has two. In response to Mayo's request for a seamless service among the three locations, the vendor (GE Medical Systems, Milwaukee, WI) provided enhanced connectivity capability in a two-step process. First, a transfer gateway (TGW) was installed, tested, and implemented to provide the needed communication of the examinations generated at the three sites. Any examinations generated at either the hospital or the primary care facility (specified as the remote stars) automatically transfer their images to the ISU at the clinic. Permanent storage (Kodak optical jukebox, Rochester, NY) is only connected to the hub (Clinic) star. Thus, the hub ISU is provided with a copy of all examinations, while the two remote ISUs maintain local exams. Prefetching from the archive is intelligently accomplished during the off hours only to the hub star, thus providing the remote stars with network dependent access to comparison images. Image transfer is possible via remote log-on. The second step was the installation of an image transfer server (ITS) to replace the slower Digital Imaging and Communications in Medicine (DICOM)-based TGW, and a central higher performance database to replace the multiple database environment. This topology provides an enterprise view of the images at the three locations, while maintaining the high-speed performance of the local star connection to what is now called the short-term storage (STS). Performance was measured and 25 chest examinations (17 MB each) transferred in just over 4 minutes. Integration of the radiology information management system (RIMS) was modified to provide location-specific report and examination interfaces, thereby allowing local filtering of the worklist to remote and near real-time consultation, and remote examination monitoring of modalities are addressed with this technologic approach. The installation of the single database ITS environment has occurred for testing prior to implementation.
NASA Technical Reports Server (NTRS)
Liang, T.; Mcnair, A. J.; Philipson, W. R.
1977-01-01
Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.
A Web Service and Interface for Remote Electronic Device Characterization
ERIC Educational Resources Information Center
Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.
2011-01-01
A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…
A remote laboratory for USRP-based software defined radio
NASA Astrophysics Data System (ADS)
Gandhinagar Ekanthappa, Rudresh; Escobar, Rodrigo; Matevossian, Achot; Akopian, David
2014-02-01
Electrical and computer engineering graduates need practical working skills with real-world electronic devices, which are addressed to some extent by hands-on laboratories. Deployment capacity of hands-on laboratories is typically constrained due to insufficient equipment availability, facility shortages, and lack of human resources for in-class support and maintenance. At the same time, at many sites, existing experimental systems are usually underutilized due to class scheduling bottlenecks. Nowadays, online education gains popularity and remote laboratories have been suggested to broaden access to experimentation resources. Remote laboratories resolve many problems as various costs can be shared, and student access to instrumentation is facilitated in terms of access time and locations. Labs are converted to homeworks that can be done without physical presence in laboratories. Even though they are not providing full sense of hands-on experimentation, remote labs are a viable alternatives for underserved educational sites. This paper studies remote modality of USRP-based radio-communication labs offered by National Instruments (NI). The labs are offered to graduate and undergraduate students and tentative assessments support feasibility of remote deployments.
2013-01-01
Abstract Intraoperative neurophysiological monitoring (IONM) is used as an adjunct for surgeries that pose risk to nervous system structures. IONM is performed by a technologist in the operating room and is overseen by a highly trained fellowship-trained physician clinical neurophysiologist. Telemedicine has allowed the professional oversight component to be done remotely, with reimbursement for multiple simultaneous cases. Recent changes to Current Procedure Terminology coding and Medicare reimbursement policies provide options only for exclusive 1:1 technologist:oversight physician billing. This policy change may create profound repercussions in the practice of telemedicine by actively discouraging the leveraging of highly specialized and scarce expertise through on-site physician extenders. PMID:23952785
Engineering Technical Support Center Annual Report Fiscal ...
The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provides engineering expertise to Agency program and regional offices and remediation teams working at contaminated sites across the country. The ETSC is operated within ORD’s Land Remediation and Pollution Control Division (LRPCD) of the National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio. The ETSC’s mission is to provide site-specific scientific and engineering technical support to Remedial Project Managers, On-Scene Coordinators, and other remediation personnel at contaminated sites. This allows local, regional, or national authorities to work more quickly, efficiently, and cost effectively, while also increasing the technical experience of the remediation team. Since its inception, the ETSC has supported countless projects across all EPA Regions in almost all states and territories. This report highlights significant projects the ETSC supported in fiscal year 2015 (FY15). These projects addressed an array of environmental scenarios, such as remote mining contamination, expansive landfill waste, cumulative impacts from multiple contamination sources, and persistent threats from abandoned industrial sites. Constructing and testing new and innovative treatment technol
The Economics of Remote Sensing for Planning and Construction
ERIC Educational Resources Information Center
Rottweiler, Kurt A.; Wilson, Jerry C.
1971-01-01
Discusses the latest in remote sensing technology including multispectral scanners, thermal scanners, aero magnetometers and side looking radar. Describes the application of this technology to preconstruction site surveys. (JF)
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Gordon, H. H.; Welch, C. S.; Williams, G.
1976-01-01
Projects for sewage outfall siting for pollution control in the lower Chesapeake Bay wetlands are reported. A dye-buoy/photogrammetry and remote sensing technique was employed to gather circulation data used in outfall siting. This technique is greatly favored over alternate methods because it is inexpensive, produces results quickly, and reveals Lagrangian current paths which are preferred in making siting decisions. Wetlands data were obtained by interpretation of color and color infrared photographic imagery from several altitudes. Historical sequences of photographs are shown that were used to document wetlands changes. Sequential infrared photography of inlet basins was employed to determine tidal prisms, which were input to mathematical models to be used by state agencies in pollution control. A direct and crucial link between remote sensing and management decisions was demonstrated in the various projects.
Nuclear power: Siting and safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Openshaw, S.
1986-01-01
By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtainedmore » from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety.« less
Testing a small UAS for mapping artisanal diamond mining sites in Africa
Malpeli, Katherine C.; Chirico, Peter G.
2015-01-01
Remote sensing technology is advancing at an unprecedented rate. At the forefront of the new technological developments are unmanned aircraft systems (UAS). The advent of small, lightweight, low-cost, and user-friendly UAS is greatly expanding the potential applications of remote sensing technology and improving the set of tools available to researchers seeking to map and monitor terrain from above. In this article, we explore the applications of a small UAS for mapping informal diamond mining sites in Africa. We found that this technology provides aerial imagery of unparalleled resolution in a data-sparse, difficult to access, and remote terrain.
Photographic copy of photograph, dated September 1973 (original in the ...
Photographic copy of photograph, dated September 1973 (original in the possession of CSSD-HO, Huntsville AL). Photographer unknown. Aerial photograph (west to 0 east) of remote sprint launch site #1. In background are waste stabilization pounds. On next row are the sprint cells. In foreground are the remote launch operations building on left and the limited area sentry station on right. The view illustrates the relatively flat topography of the SRMSC area Benjamin Halpern, 5-18 October 1992 - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 1, Just South of Ramsey-Cavalier County line & 3 miles West of Hampden, ND, Nekoma, Cavalier County, ND
Assessing bat detectability and occupancy with multiple automated echolocation detectors
Gorresen, P.M.; Miles, A.C.; Todd, C.M.; Bonaccorso, F.J.; Weller, T.J.
2008-01-01
Occupancy analysis and its ability to account for differential detection probabilities is important for studies in which detecting echolocation calls is used as a measure of bat occurrence and activity. We examined the feasibility of remotely acquiring bat encounter histories to estimate detection probability and occupancy. We used echolocation detectors coupled to digital recorders operating at a series of proximate sites on consecutive nights in 2 trial surveys for the Hawaiian hoary bat (Lasiurus cinereus semotus). Our results confirmed that the technique is readily amenable for use in occupancy analysis. We also conducted a simulation exercise to assess the effects of sampling effort on parameter estimation. The results indicated that the precision and bias of parameter estimation were often more influenced by the number of sites sampled than number of visits. Acceptable accuracy often was not attained until at least 15 sites or 15 visits were used to estimate detection probability and occupancy. The method has significant potential for use in monitoring trends in bat activity and in comparative studies of habitat use. ?? 2008 American Society of Mammalogists.
A teleoperated system for remote site characterization
NASA Technical Reports Server (NTRS)
Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon
1994-01-01
The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Ni; Gu, Lianhong; Black, T. Andrew
Here, soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual R s estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zonemore » soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites.« less
NASA Astrophysics Data System (ADS)
Valentic, T. A.
2012-12-01
The Data Transport Network is designed for the delivery of data from scientific instruments located at remote field sites with limited or unreliable communications. Originally deployed at the Sondrestrom Research Facility in Greenland over a decade ago, the system supports the real-time collection and processing of data from large instruments such as incoherent scatter radars and lidars. In recent years, the Data Transport Network has been adapted to small, low-power embedded systems controlling remote instrumentation platforms deployed throughout the Arctic. These projects include multiple buoys from the O-Buoy, IceLander and IceGoat programs, renewable energy monitoring at the Imnavait Creek and Ivotuk field sites in Alaska and remote weather observation stations in Alaska and Greenland. This presentation will discuss the common communications controller developed for these projects. Although varied in their application, each of these systems share a number of common features. Multiple instruments are attached, each of which needs to be power controlled, data sampled and files transmitted offsite. In addition, the power usage of the overall system must be minimized to handle the limited energy available from sources such as solar, wind and fuel cells. The communications links are satellite based. The buoys and weather stations utilize Iridium, necessitating the need to handle the common drop outs and high-latency, low-bandwidth nature of the link. The communications controller is an off-the-shelf, low-power, single board computer running a customized version of the Linux operating system. The Data Transport Network provides a Python-based software framework for writing individual data collection programs and supplies a number of common services for configuration, scheduling, logging, data transmission and resource management. Adding a new instrument involves writing only the necessary code for interfacing to the hardware. Individual programs communicate with the system services using XML-RPC. The scheduling algorithms have access the current position and power levels, allowing for instruments such as cameras to only be run during daylight hours or when sufficient power is available. The resource manager monitors the use of common devices such as the USB bus or Ethernet ports, and can power them down when they are not being used. This management lets us drop the power consumption from an average of 1W to 250mW.
NASA Technical Reports Server (NTRS)
Ledbetter, Kenneth W.
1992-01-01
Four trends in spacecraft flight operations are discussed which will reduce overall program costs. These trends are the use of high-speed, highly reliable data communications systems for distributing operations functions to more convenient and cost-effective sites; the improved capability for remote operation of sensors; a continued rapid increase in memory and processing speed of flight qualified computer chips; and increasingly capable ground-based hardware and software systems, notably those augmented by artificial intelligence functions. Changes reflected by these trends are reviewed starting from the NASA Viking missions of the early 70s, when mission control was conducted at one location using expensive and cumbersome mainframe computers and communications equipment. In the 1980s, powerful desktop computers and modems enabled the Magellan project team to operate the spacecraft remotely. In the 1990s, the Hubble Space Telescope project uses multiple color screens and automated sequencing software on small computers. Given a projection of current capabilities, future control centers will be even more cost-effective.
1982-06-01
usefulness to the Untted States Antarctic mission as managed by the National Science Foundation. Various statistical measures were applied to the reported... statistical procedures that would evolve a general meteorological picture of each of these remote sites. Primary texts used as a basis for...processed by station for monthly, seasonal and annual statistics , as appropriate. The following outlines the evaluations completed for both
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
NASA Astrophysics Data System (ADS)
Nagler, P. L.; Brown, T.; Hultine, K. R.; van Riper, C.; Bean, D. A.; Murray, R.; Pearlstein, S.; Glenn, E. P.
2010-12-01
Tamarix leaf beetles (Diorhabda elongata) have been released in several locations on western U.S. rivers to control the introduced shrub, Tamarix ramosissima and related species. As they are expanding widely throughout the region, information is needed on their impact on Tamarix leaf phenology and water use over multiple cycles of annual defoliation. We used networked digital cameras (phenocams) and ground surveys to monitor the defoliation process from 2008-2010 at multiple sites on the Dolores River, and MODIS satellite imagery from 2000 to 2009 to monitor leaf phenology and evapotranspiration (ET) at beetle release sites on the Dolores, Lower Colorado, Carson, Walker and Bighorn Rivers. Enhanced Vegetation Index (EVI) values for selected MODIS pixels were used to estimate green foliage density before and after beetle releases at each site. EVI values were transformed into estimates of ET using an empirical algorithm relating ET to EVI and potential ET (ETo) at each site. Phenocam and ground observations show that beetle damage is temporary, and plants regenerate new leaves following an eight week defoliation period in summer. The original biocontrol model predicted that Tamarix mortality would reach 75-85% over several years of defoliation due to progressive weakening of the shrubs each year, but over the early stages of leaf beetle-Tamarix interactions studied here (3-8 years), our preliminary findings show actual reductions in EVI and ET of only 13-15% across sites due to the relatively brief period of defoliation and because not all plants at a site were defoliated. Also, baseline ET rates varied across sites but averaged only 329 mm yr-1 (23% of ETo), constraining the possibilities for water salvage through biocontrol of Tamarix. The spatial and temperol resolution of MODIS imagery were too coarse to capture the details of the defoliation process, and high-resolution imagery or expanded phenocam networks are needed for future monitoring programs.
The Thirty Meter Telescope Site Testing Robotic Computer System
NASA Astrophysics Data System (ADS)
Riddle, Reed L.; Schöck, M.; Skidmore, W.; Els, S.; Travouillon, T.
2008-03-01
The Thirty Meter Telescope (TMT) project is currently testing five remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote, they require a control system that can automatically manage the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This is a discussion of the TMT site testing robotic computer system as implemented.
Radiative transfer in multilayered random medium with laminar structure - Green's function approach
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1986-01-01
For a multilayered random medium with a laminar structure a Green's function approach is introduced to obtain the emitted intensity due to an arbitrary point source. It is then shown that the approach is applicable to both active and passive remote sensing. In active remote sensing, the computed radar backscattering cross section for the multilayered medium includes the effects of both volume multiple scattering and surface multiple scattering at the layer boundaries. In passive remote sensing, the brightness temperature is obtained for arbitrary temperature profiles in the layers. As an illustration the brightness temperature and reflectivity are calculated for a bounded layer and compared with results in the literature.
NASA Astrophysics Data System (ADS)
Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.
2017-12-01
A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.
Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound
NASA Astrophysics Data System (ADS)
Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.
2016-02-01
The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Howard A.
This report presents results of multiple research projects, new and ongoing, funded under the Site-Directed Research and Development Program for the Nevada National Security Site during federal fiscal year 2015. The Site's legacy capabilities in remote sensing combined with new paradigms for emergency response and consequence management help drive the need to develop advanced aerial sensor platforms. Likewise, dynamic materials science is a critical area of scientific research for which basic physics issues are still unresolved. New methods of characterizing materials in extreme states are vitally needed, and these efforts are paving the way with new knowledge. Projects selected inmore » FY 2015 for the Exploratory Research portfolio exhibit a strong balance of NNSS mission relevance. Geoscience, seismology, and techniques for detecting underground nuclear events are still essential focus areas. Many of the project reports in the second major section of this annual report are ongoing continuations in multi-year lifecycles. Diagnostic techniques for stockpile and nuclear security science figured prominently as well, with a few key efforts coming to fruition, such as phase transition detection. In other areas, modeling efforts toward better understanding plasma focus physics has also started to pay dividends for major program needs.« less
NASA Remote Sensing Applications for Archaeology and Cultural Resources Management
NASA Technical Reports Server (NTRS)
Giardino, Marco J.
2008-01-01
NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through the use of remote sensing. In 2007, NASA awarded six competitively chosen projects in Space Archaeology through an open solicitation whose purpose, among several, was to addresses the potential benefits to modern society that can be derived through a better understanding of how past cultures succeeded or failed to adapt to local, regional, and global change. A further objective of NASA's space archaeology is the protection and preservation of cultural heritage sites while planning for the sustainable development of cultural resources. NASA s archaeological approach through remote sensing builds on traditional methods of aerial archaeology (i.e. crop marks) and utilizes advanced technologies for collecting and analyzing archaeological data from digital imagery. NASA s archaeological research and application projects using remote sensing have been conducted throughout the world. In North America, NASA has imaged prehistoric mound sites in Mississippi; prehistoric shell middens in Louisiana, Puebloan sites in New Mexico and more recently the sites associated with the Lewis and Clark Corps of Discovery Expedition (1804-1806). In Central America, NASA archaeologists have researched Mayan sites throughout the region, including the Yucatan and Costa Rica, as well as Olmec localities in Veracruz. Other data has been collected over Angkor, Cambodia, Giza in Egypt, the lost city of Ubar on the Arabian Peninsula.
Higgins, William J; Luczynski, Kevin C; Carroll, Regina A; Fisher, Wayne W; Mudford, Oliver C
2017-04-01
Recent advancements in telecommunication technologies make it possible to conduct a variety of healthcare services remotely (e.g., behavioral-analytic intervention services), thereby bridging the gap between qualified providers and consumers in isolated locations. In this study, web-based telehealth technologies were used to remotely train direct-care staff to conduct a multiple-stimulus-without-replacement preference assessment. The training package included three components: (a) a multimedia presentation; (b) descriptive feedback from previously recorded baseline sessions; and (c) scripted role-play with immediate feedback. A nonconcurrent, multiple-baseline-across-participants design was used to demonstrate experimental control. Training resulted in robust and immediate improvements, and these effects maintained during 1- to 2-month follow-up observations. In addition, participants expressed high satisfaction with the web-based materials and the overall remote-training experience. © 2017 Society for the Experimental Analysis of Behavior.
China national space remote sensing infrastructure and its application
NASA Astrophysics Data System (ADS)
Li, Ming
2016-07-01
Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.
Ronald E. McRoberts
2014-01-01
Multiple remote sensing-based approaches to estimating gross afforestation, gross deforestation, and net deforestation are possible. However, many of these approaches have severe data requirements in the form of long time series of remotely sensed data and/or large numbers of observations of land cover change to train classifiers and assess the accuracy of...
NASA Astrophysics Data System (ADS)
Becker, R.; Gebremichael, M.; Marker, M.
2015-12-01
Soil moisture is one of the main input variables for hydrological models. However due to the high spatial and temporal variability of soil properties it is often difficult to obtain accurate soil information at the required resolution. The new satellite SMAP promises to deliver soil moisture information at higher resolutions and could therefore improve the results of hydrological models. Nevertheless it still has to be investigated how precisely the SMAP soil moisture data can be used to delineate rainfall-runoff generation processes and if SMAP imagery can significantly improve the results of surface runoff models. Important parameters to understand the spatiotemporal distribution of soil humidity are infiltration and hydraulic conductivities apart from soil texture and macrostructure. During the SMAPVEX15-field campaign data on hydraulic conductivity and infiltration rates is collected in the Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona in order to analyze the spatiotemporal variability of soil hydraulic properties. A Compact Constant Head Permeameter is used for in situ measurements of saturated hydraulic conductivity within the soil layers and a Hood Infiltrometer is used to determine infiltration rates at the undisturbed soil surface. Sampling sites were adjacent to the USDA-ARS meteorological and soil moisture measuring sites in the WGEW to take advantage of the long-term database of soil and climate data. Furthermore a sample plot of 3x3km was selected, where the spatial variability of soil hydraulic properties within a SMAP footprint was investigated. The results of the ground measurement based analysis are then compared with the remote sensing data derived from SMAP and aircraft-based microwave data to determine how well these spatiotemporal variations are captured by the remotely sensed data with the final goal of evaluating the use of future satellite soil moisture products for the improvement of rainfall runoff models. The results reveal several interesting features on the spatiotemporal variability of soil moisture at multiple scales, and the capabilities and limitations of remote sensing derived products in reproducing them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Roy S.
2015-02-17
New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. Thesemore » remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company will provide the necessary services to make this project succeed.« less
Teletoxicology: Patient Assessment Using Wearable Audiovisual Streaming Technology.
Skolnik, Aaron B; Chai, Peter R; Dameff, Christian; Gerkin, Richard; Monas, Jessica; Padilla-Jones, Angela; Curry, Steven
2016-12-01
Audiovisual streaming technologies allow detailed remote patient assessment and have been suggested to change management and enhance triage. The advent of wearable, head-mounted devices (HMDs) permits advanced teletoxicology at a relatively low cost. A previously published pilot study supports the feasibility of using the HMD Google Glass® (Google Inc.; Mountain View, CA) for teletoxicology consultation. This study examines the reliability, accuracy, and precision of the poisoned patient assessment when performed remotely via Google Glass®. A prospective observational cohort study was performed on 50 patients admitted to a tertiary care center inpatient toxicology service. Toxicology fellows wore Google Glass® and transmitted secure, real-time video and audio of the initial physical examination to a remote investigator not involved in the subject's care. High-resolution still photos of electrocardiograms (ECGs) were transmitted to the remote investigator. On-site and remote investigators recorded physical examination findings and ECG interpretation. Both investigators completed a brief survey about the acceptability and reliability of the streaming technology for each encounter. Kappa scores and simple agreement were calculated for each examination finding and electrocardiogram parameter. Reliability scores and reliability difference were calculated and compared for each encounter. Data were available for analysis of 17 categories of examination and ECG findings. Simple agreement between on-site and remote investigators ranged from 68 to 100 % (median = 94 %, IQR = 10.5). Kappa scores could be calculated for 11/17 parameters and demonstrated slight to fair agreement for two parameters and moderate to almost perfect agreement for nine parameters (median = 0.653; substantial agreement). The lowest Kappa scores were for pupil size and response to light. On a 100-mm visual analog scale (VAS), mean comfort level was 93 and mean reliability rating was 89 for on-site investigators. For remote users, the mean comfort and reliability ratings were 99 and 86, respectively. The average difference in reliability scores between on-site and remote investigators was 2.6, with the difference increasing as reliability scores decreased. Remote evaluation of poisoned patients via Google Glass® is possible with a high degree of agreement on examination findings and ECG interpretation. Evaluation of pupil size and response to light is limited, likely by the quality of streaming video. Users of Google Glass® for teletoxicology reported high levels of comfort with the technology and found it reliable, though as reported reliability decreased, remote users were most affected. Further study should compare patient-centered outcomes when using HMDs for consultation to those resulting from telephone consultation.
Watras, Carl J; Morrow, Michael; Morrison, Ken; Scannell, Sean; Yaziciaglu, Steve; Read, Jordan S; Hu, Yu-Hen; Hanson, Paul C; Kratz, Tim
2014-02-01
Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)-all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Edgett, Kenneth S.
1994-01-01
Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.E. Law; D. Turner; M. Goeckede
GOAL: To develop and apply an approach to quantify and understand the regional carbon balance of the west coast states for the North American Carbon Program. OBJECTIVE: As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on thesemore » multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance. APPROACH: In performing the regional analysis, the research plan for the bottom-up approach uses a nested hierarchy of observations that include AmeriFlux data (i.e., net ecosystem exchange (NEE) from eddy covariance and associated biometric data), intermediate intensity inventories from an extended plot array partially developed from the PI's previous research, Forest Service FIA and CVS inventory data, time since disturbance, disturbance type, and cover type from Landsat developed in this study, and productivity estimates from MODIS algorithms. The BIOME-BGC model is used to integrate information from these sources and quantify C balance across the region. The inverse modeling approach assimilates flux data from AmeriFlux sites, high precision CO2 concentration data from AmeriFlux towers and four new calibrated CO2 sites, reanalysis meteorology and various remote sensing products to generate statewide estimates of biosphere carbon exchange from the atmospheric point of view.« less
Moorman, Veronica R.; Valentine, Kathleen G.; Bédard, Sabrina; Kasinath, Vignesh; Dogan, Jakob; Love, Fiona M.; Wand, A. Joshua
2014-01-01
Human cell division cycle protein 42 (Cdc42Hs) is a small, Rho-type GTPase involved in multiple cellular processes through its interactions with downstream effectors. The binding domain of one such effector, the actin cytoskeleton-regulating p21 activated kinase 3 (PAK3) is known as PBD46. Nitrogen-15 backbone and carbon-13 methyl NMR relaxation were measured to investigate the dynamical changes in activated GMPPCP•Cdc42Hs upon PBD46 binding. Changes in internal motion of the Cdc42Hs, as revealed by methyl axis order parameters, were observed not only near the Cdc42Hs–PBD46 interface but also in remote sites on the Cdc42Hs molecule. The binding-induced changes in side chain dynamics propagate along the long axis of Cdc42Hs away from the site of PBD46 binding with a sharp distance dependence. Overall, the binding of the PBD46 effector domain on the dynamics of methyl bearing side chains of Cdc42Hs results in a modest rigidification, which is estimated to correspond to an unfavorable change in conformational entropy of approximately −10 kcal mol−1 at 298 K. A cluster of methyl probes closest to the nucleotide-binding pocket of Cdc42Hs become more rigid upon binding of PBD46 and is proposed to slow the catalytic hydrolysis of the γ phosphate moiety. An additional cluster of methyl probes surrounding the guanine ring become more flexible on binding of PBD46, presumably facilitating nucleotide exchange mediated by a guanosine exchange factor. In addition, the Rho insert helix, which is located at a site remote from the PBD46 binding interface, shows a significant dynamic response to PBD46 binding. PMID:25109462
The design of remote temperature monitoring system
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao; Wei, Liuren
2017-08-01
This design is made on the basis of the single-chip microcomputer remote temperature monitoring system. STC89C51RC is the main core part, this design use the sensor DHT11 of temperature or humidity and wireless transceiver NRF24L01 the temperature of the test site for long-range wireless measurement and monitoring. The design contains the main system and the small system, of which the main system can show the actual test site temperature and humidity values, voice broadcast, out of control and receive data alarm function; The small system has the function of temperature and humidity, temperature monitoring and sending data. After debugging, the user customizable alarm upper and lower temperature, when the temperature exceeds limit value, the main system of buzzer alarm immediately. The system has simple structure, complete functions and can alarm in time, it can be widely used remote temperature acquisition and monitoring of the site.
Assessment of radioisotope heaters for remote terrestrial applications
NASA Astrophysics Data System (ADS)
Uherka, Kenneth L.
This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold-region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaskan installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radio-isotopic heaters for freeze-up protection of water storage tanks and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.
Controlling mechanisms over the internet
NASA Astrophysics Data System (ADS)
Lumia, Ronald
1997-01-01
The internet, widely available throughout the world, can be used to control robots, machine tools, and other mechanisms. This paper will describe a low-cost virtual collaborative environment (VCE) which will connect users with distant equipment. The system is based on PC technology, and incorporates off-line-programming with on-line execution. A remote user programs the systems graphically and simulates the motions and actions of the mechanism until satisfied with the functionality of the program. The program is then transferred from the remote site to the local site where the real equipment exists. At the local site, the simulation is run again to check the program from a safety standpoint. Then, the local user runs the program on the real equipment. During execution, a camera in the real workspace provides an image back to the remote user through a teleconferencing system. The system costs approximately 12,500 dollars and represents a low-cost alternative to the Sandia National Laboratories VCE.
Greenspan, Joel D.; Slade, Gary D.; Bair, Eric; Dubner, Ronald; Fillingim, Roger B.; Ohrbach, Richard; Knott, Charlie; Mulkey, Flora; Rothwell, Rebecca; Maixner, William
2011-01-01
Many studies report that people with temporomandibular disorders (TMD) are more sensitive to experimental pain stimuli than TMD-free controls. Such differences in sensitivity are observed in remote body sites as well as in the orofacial region, suggesting a generalized upregulation of nociceptive processing in TMD cases. This large case-control study of 185 adults with TMD and 1,633 TMD-free controls measured sensitivity to painful pressure, mechanical cutaneous, and heat stimuli, using multiple testing protocols. Based on an unprecedented 36 experimental pain measures, 28 showed statistically significantly greater pain sensitivity in TMD cases than controls. The largest effects were seen for pressure pain thresholds at multiple body sites and cutaneous mechanical pain threshold. The other mechanical cutaneous pain measures and many of the heat pain measures showed significant differences, but with lesser effect sizes. Principal component analysis (PCA) of the pain measures derived from 1,633 controls identified five components labeled: (1) heat pain ratings, (2) heat pain aftersensations and tolerance, (3) mechanical cutaneous pain sensitivity, (4) pressure pain thresholds, and (5) heat pain temporal summation. These results demonstrate that, compared to TMD-free controls, chronic TMD cases are more sensitive to many experimental noxious stimuli at extra-cranial body sites, and provides for the first time the ability to directly compare the case-control effect sizes of a wide range of pain sensitivity measures. PMID:22074753
2010-07-23
On December 24, 2009, a woman aged 24 years from New Hampshire was confirmed to have gastrointestinal anthrax on the basis of clinical findings and a Bacillus anthracis blood culture isolate. Her symptoms began on December 5. One day before symptom onset, she had participated in a drumming event at a community organization's building where animal-hide drums of multiple ages and origins were played. This report describes the case and subsequent investigation, which identified 84 persons potentially exposed to anthrax, including those persons at the drumming event and those who lived or worked at the event site. Review of New Hampshire disease surveillance data and clinical microbiology records for periods before and after the event identified no additional anthrax cases. Initial qualitative environmental testing of the event site yielded three positive samples (two from drum heads and one composite sample of three electrical outlets in the main drumming room). Wider, targeted, semi-quantitative environmental testing of the site and additional drums yielded six positive samples (two from one drum and four from environmental locations in the building). These results suggested that aerosolization of spores from drumheads had occurred. All isolates obtained from environmental and drum samples matched the patient's isolate by multiple-locus variable-number tandem repeat analysis using eight loci (MLVA-8). Public health agencies and persons with exposure to animal-hide drums should be aware of the potential, although remote, risk for anthrax exposure associated with these drums.
NASA Astrophysics Data System (ADS)
Mohammedshum, A. A.; Gebresilassie, M. A.; Rulinda, C. M.; Kahsay, G. H.; Tesfay, M. S.
2014-11-01
Identifying solid waste disposal sites and appropriately managing them is a challenging task to many developing countries. This is a critical problem too in Ethiopia in general and in Wukro town in particular. The existing site for Wukro town is not sufficient in its capacity and it is damaging the environment due to its location, and the type of waste dumped, while the surrounding area is being irrigated. Due to the swift expansion and urbanization developments in Wukro town, it badly needs to develop controlled solid waste dumping site to prevent several contamination problems. This study was conducted first, to assess the existing waste management strategies in Wukro town; and second, to find out the potential waste disposal sites for the town, using GIS and Remote Sensing techniques. The study exploited the Multi-Criteria Evaluation (MCE) methods to combine necessary factors considered for dumping site selection. The selected method also uses various geographical data including remote sensing data, with GIS spatial analysis tools. Accordingly, site suitability maps for each of the factors were developed in a GIS environment. Results indicate that 12 dumping sites were appropriate and they were further ranked against their suitability in terms of wind direction, proximity to settlement area and distance from the center of the town. Finally, two sites are the best suitable for dumping site. This study indicated that the application of Geographic Information System and Remote Sensing techniques are efficient and low cost tools to study and select appropriate dumping site so as to facilitate decision making processes.
NASA Astrophysics Data System (ADS)
Chinery, G. T.; Wood, J. M.
1985-08-01
This paper describes the Tennessee Valley Authority's (TVA) current photovoltaic (PV) activities. These include four roof-mounted 4 kWp residential arrays (which are also Southeast Residential Station field sites) and two 5-6 kWp commercial sites, all grid connected with no battery storage. Also included are approximately 30 kWp of non-grid-connected remote sites with storage (remote lighting, weather stations, etc.). Monitoring results from the two 'online' residential systems are presented. Finally, TVA's future PV plans are discussed, both with respect to interfacing with a multitude of residential and commercial cogenerators and with regard to possible TVA PV central station plans.
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
NASA Astrophysics Data System (ADS)
Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng
2015-11-01
Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAImax efficiently predicted the spatial and temporal variabilities of Rs. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from Rs were 894-1027 g C m-2 yr-1 at the BC-Campbell River 1949 Douglas-fir site and 818-943 g C m-2 yr-1 at the Missouri Ozark site. The ratio between annual Rs estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual Rs based on remote sensing data products was possible at deciduous and evergreen forest sites.
NASA Astrophysics Data System (ADS)
Lee, G.; Ahn, J. Y.; Chang, L. S.; Kim, J.; Park, R.
2017-12-01
During the KORUS-AQ, extensive sets of chemical measurements for reactive gases and aerosol species were made at 3 major sites on upwind island (Baengyeong Island), urban (Olympic Park in Seoul) and downwind rural forest location (Taewha Forest). Also, intensive aerosol size and composition observations from 5 NIER super sites, 3 NIMR monitoring sites, and 5 other university sites were currently facilitated in the KORUS-AQ data set. In addition, air quality criteria species data from 264 nation-wide ground monitoring sites with 5 minute temporal resolution during the whole campaign period were supplemented to cover mostly in densely populated urban areas, but sparsely in rural areas. The specific objectives of these ground sites were to provide highly comprehensive data set to coordinate the close collaborations among other research platforms including airborne measurements, remote sensing, and model studies. The continuous measurements at ground sites were well compared with repetitive low-level aircraft observations of NASA's DC-8 over Olympic Park and Taewha Forest site. Similarly, many ground measurements enabled the validation of chemical transport models and the remote sensing observations from ground and NASA's King Air. The observed results from inter-comparison studies in many reactive gases and aerosol compositions between different measurement methods and platforms will be presented. Compiling data sets from ground sites, source-wise analysis for ozone and aerosol, their in-situ formations, and transport characteristics by local/regional circulation will be discussed, too.
Woolf, Celia; Caute, Anna; Haigh, Zula; Galliers, Julia; Wilson, Stephanie; Kessie, Awurabena; Hirani, Shashi; Hegarty, Barbara; Marshall, Jane
2016-04-01
To test the feasibility of a randomised controlled trial comparing face to face and remotely delivered word finding therapy for people with aphasia. A quasi-randomised controlled feasibility study comparing remote therapy delivered from a University lab, remote therapy delivered from a clinical site, face to face therapy and an attention control condition. A University lab and NHS outpatient service. Twenty-one people with aphasia following left hemisphere stroke. Eight sessions of word finding therapy, delivered either face to face or remotely, were compared to an attention control condition comprising eight sessions of remotely delivered supported conversation. The remote conditions used mainstream video conferencing technology. Feasibility was assessed by recruitment and attrition rates, participant observations and interviews, and treatment fidelity checking. Effects of therapy on word retrieval were assessed by tests of picture naming and naming in conversation. Twenty-one participants were recruited over 17 months, with one lost at baseline. Compliance and satisfaction with the intervention was good. Treatment fidelity was high for both remote and face to face delivery (1251/1421 therapist behaviours were compliant with the protocol). Participants who received therapy improved on picture naming significantly more than controls (mean numerical gains: 20.2 (remote from University); 41 (remote from clinical site); 30.8 (face to face); 5.8 (attention control); P <.001). There were no significant differences between groups in the assessment of conversation. Word finding therapy can be delivered via mainstream internet video conferencing. Therapy improved picture naming, but not naming in conversation. © The Author(s) 2015.
Analysis of Binding Site Hot Spots on the Surface of Ras GTPase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhrman, Greg; O; #8242
2012-09-17
We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the 'off' and 'on' allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond themore » active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.« less
Kots, Ekaterina D; Lushchekina, Sofya V; Varfolomeev, Sergey D; Nemukhin, Alexander V
2017-08-28
The results of molecular modeling suggest a mechanism of allosteric inhibition upon hydrolysis of N-acetyl-aspartate (NAA), one of the most abundant amino acid derivatives in brain, by human aspartoacylase (hAsp). Details of this reaction are important to suggest the practical ways to control the enzyme activity. Search for allosteric sites using the Allosite web server and SiteMap analysis allowed us to identify substrate binding pockets located at the interface between the subunits of the hAsp dimer molecule. Molecular docking of NAA to the pointed areas at the dimer interface predicted a specific site, in which the substrate molecule interacts with the Gly237, Arg233, Glu290, and Lys292 residues. Analysis of multiple long-scaled molecular dynamics trajectories (the total simulation time exceeded 1.5 μs) showed that binding of NAA to the identified allosteric site induced significant rigidity to the protein loops with the amino acid side chains forming gates to the enzyme active site. Application of the protein dynamical network algorithms showed that substantial reorganization of the signal propagation pathways of intersubunit communication in the dimer occurred upon allosteric NAA binding to the remote site. The modeling approaches provide an explanation to the observed decrease of the reaction rate of NAA hydrolysis by hAsp at high substrate concentrations.
NASA Technical Reports Server (NTRS)
Czaja, Wojciech; Le Moigne-Stewart, Jacqueline
2014-01-01
In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.
Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection
Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.
2015-01-01
The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Chia-Ju; Shih, Ching-Tien
2011-01-01
The latest researches have adopted software technology by applying the Nintendo Wii Remote Controller to the correction of hyperactive limb behavior. This study extended Wii Remote Controller functionality for improper head position (posture) correction (i.e. actively adjusting abnormal head posture) to assess whether two people with multiple…
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Yeh, Jui-Chi; Shih, Ching-Tien; Chang, Man-Ling
2011-01-01
The latest studies have adopted software technology which turns the Wii Remote Controller into a high-performance limb action detector, we assessed whether two persons with multiple disabilities would be able to control an environmental stimulus through limb action. This study extends the functionality of the Wii Remote Controller to the…
The Thirty Meter Telescope site testing robotic computer system
NASA Astrophysics Data System (ADS)
Riddle, Reed L.; Schöck, Matthias; Skidmore, Warren
2006-06-01
The Thirty Meter Telescope (TMT) project is currently testing six remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote (usually hours from the nearest town), they requires a system that can control the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This paper is a discussion of the TMT site testing robotic computer system as implemented.
The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites
1990-12-01
THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to
Assessing indicators of rangeland health with remote sensing in southeast Arizona
Jared Buono; Philip Heilman; David Williams; Phillip Guertin
2005-01-01
The goal of this study was to scale up ground-based range assessments to ranch and landscape scales in southeast Arizona using remote sensing and minimum amount of field data collection. Remotely sensed metrics of canopy cover, biomass, and mesquite composition were used to assess soil and site stability and biotic integrity. Ground-based assessments were conducted on...
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.
Callas, Peter W; Bertsch, Tania F; Caputo, Michael P; Flynn, Brian S; Doheny-Farina, Stephen; Ricci, Michael A
2004-01-01
Interactive videoconferencing may be an effective way for medical students on remote rotations to attend teaching sessions at the main campus. To compare medical student evaluations of lectures for those attending in person and those attending through interactive videoconferencing. Lecture evaluations were completed by medical students on University of Vermont College of Medicine clinical clerkship rotations. Students on clerkships at rural sites attended lectures using our telemedicine network. Responses from in-person and remote attendees were compared. Evaluation forms for 110 lectures were received from 648 in-person and 255 remote attendees. All evaluation items were rated "good" or "excellent" by at least 95% of in-person attendees. Over 90% of remote attendees rated nontelemedicine evaluation items, such as appropriateness of lecture topic for students, as good or excellent. Ratings of telemedicine-specific questions, such as ability to hear the lecturer, were lower. Level of satisfaction was high for most aspects of remote lecture attendance, although not quite as high as for in-person attendance. Improved technical reliability would likely increase remote attendee satisfaction. Overall, lecture attendance using videoconferencing was found to be an acceptable alternative to travel for medical students in rural clerkships.
Scott, C
1988-04-15
Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.
System and method for image registration of multiple video streams
Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton
2018-02-06
Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.
Bringing "Scientific Expeditions" Into the Schools
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as simulations or measurements of fluid dynamics). The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics (CFD) and wind tunnel testing. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualiZation of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: 1. The visual is much higher in resolution (1280xl024 pixels with 24 bits of color) than typical video format transmitted over the network. 2. The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). 3. A rich variety of guided expeditions through the data can be included easily. 4. A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. 5. The scenes can be viewed in 3D using stereo vision. 6. The network bandwidth used for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.)
Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web
NASA Technical Reports Server (NTRS)
Watson, Val; Chancellor, Marisa K. (Technical Monitor)
1996-01-01
Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. (5) The scenes can be viewed in 3D using stereo vision. (6) The network bandwidth for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.) This talk will illustrate the use of these new technologies and present a proposal for using these technologies to improve science education.
Integrating multiple satellite data for crop monitoring
USDA-ARS?s Scientific Manuscript database
Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...
Wang, Shaorui; Salamova, Amina; Hites, Ronald A; Venier, Marta
2018-06-05
The authors analyzed spatial and seasonal variations of current use pesticides (CUPs) levels in the atmospheric particulate phase in the Great Lakes basin. Twenty-four hour air samples were collected at six sites (two urban, two rural, and two remote) in 2015. The concentrations of 15 CUPs, including nine pyrethroid insecticides, four herbicides, one organophosphate insecticide, and one fungicide, were measured. The total CUPs concentrations were higher at the urban sites (0.38-1760 pg/m 3 ) than at the rural and remote sites (0.07-530 pg/m 3 ). The most abundant CUPs were pyrethroid insecticides at the urban sites. The levels of the other CUPs did not vary much among the six sites, except at the most remote site at Eagle Harbor, where the levels were significantly lower. Chlorothalonil was the most frequently detected CUP, which was detected in more than 76% of the samples. The atmospheric concentrations of total pyrethroid insecticides and total herbicides were correlated with local human population and developed land use. Significantly higher concentrations of most CUPs were observed in the warmer months than in the colder months at all sites. In addition to agricultural applications, which occur during the warmer months, the CUPs atmospheric concentrations may also be influenced by nonagricultural activities and the urban development.
Miller, Matthieu B; Fine, Rebekka; Pierce, Ashley M; Gustin, Mae S
2015-10-15
Ozone (O3) is a secondary air pollutant of long standing and increasing concern for environmental and human health, and as such, the US Environmental Protection Agency will revise the National Ambient Air Quality Standard of 75 ppbv to ≤ 70 ppbv. Long term measurements at the Great Basin National Park (GBNP) indicate that O3 in remote areas of Nevada will exceed a revised standard. As part of the Nevada Rural Ozone Initiative, measurements of O3 and other air pollutants were made at 3 remote sites between February 2012 and March 2014, GBNP, Paradise Valley (PAVA), and Echo Peak (ECHO). Exceptionally high concentrations of each air pollutant were defined relative to each site as mixing ratios that exceeded the 90th percentile of all hourly data. Case studies were analyzed for all periods during which mean daily O3 exceeded the 90th percentile concurrently with a maximum 8-h average (MDA8) O3 that was "exceptionally high" for the site (65 ppbv at PAVA, 70 ppbv at ECHO and GBNP), and of potential regulatory significance. An MDA8 ≥ 65 ppbv occurred only five times at PAVA, whereas this occurred on 49 and 65 days at GBNP and ECHO, respectively. The overall correlation between O3 and other pollutants was poor, consistent with the large distance from significant primary emission sources. Mean CO at these locations exceeded concentrations reported for background sites in 2000. Trajectory residence time calculations and air pollutant concentrations indicate that exceedances at GBNP and ECHO were promoted by air masses originating from multiple sources, including wildfires, transport of pollution from southern California and the marine boundary layer, and transport of Asian pollution plumes. Results indicate that the State of Nevada will exceed a revised O3 standard due to sources that are beyond their control. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Imam, Ayman; Roca, Josep
2017-10-01
The term Underused Urban Spaces (UUS) refers to spaces within urban areas that have become unused, or that are being used to a lesser degree than they could or should be such as former industrial zones, abandoned facilities or buildings and Expo or Olympic Games cities. The Islamic pilgrimage sites known as Hajj sites (HS) are considered form of the UUS concept as they are used lesser degree than they should be. However, the emergence of such spaces has therefore encouraged researchers, urban planner, social and local authorities to discuses about the appropriate decision regarding their future towards conversion or alternatively using those spaces in order to achieve positive social, economic and environmental benefits, according to Pagano and Bowman (2000), UUS can be a powerful tool for governments and investors to use during the urban growth (UG) of their cities. Since, remote sensing and GIS technologies are used recently to study and analyze the UG of cities; the main objective of this paper is to demonstrate the efficiency of those technologies in addressing the future decisions regarding the underused status of Hajj sites in relation to UG of the city of Mecca. Tow classified land cover maps of Mecca for two years (1998 and 2013), in addition to entropy index and multiple regression analyses were utilized in order to quantify the relationship between HS and Mecca UG. The results showed that the urban growth of Mecca has increased by approximately 56%, and almost 32% of that increased were around HS in on hand, and on the other hand the entropy and the regression analysis showed that there is 51% probability that the future growth to be also around HS. These findings will better addressing the future decisions regarding the underused status of HS, simultaneously revel that the use of RS and GIS was highly effective to be adopted within similar cases of UUS.
NASA Astrophysics Data System (ADS)
Wullschleger, S. D.; Charsley-Groffman, L.; Baltzer, J. L.; Berg, A. A.; Griffith, P. C.; Jafarov, E. E.; Marsh, P.; Miller, C. E.; Schaefer, K. M.; Siqueira, P.; Wilson, C. J.; Kasischke, E. S.
2017-12-01
There is considerable interest in using L- and P-band Synthetic Aperture Radar (SAR) data to monitor variations in aboveground woody biomass, soil moisture, and permafrost conditions in high-latitude ecosystems. Such information is useful for quantifying spatial heterogeneity in surface and subsurface properties, and for model development and evaluation. To conduct these studies, it is desirable that field studies share a common sampling strategy so that the data from multiple sites can be combined and used to analyze variations in conditions across different landscape geomorphologies and vegetation types. In 2015, NASA launched the decade-long Arctic-Boreal Vulnerability Experiment (ABoVE) to study the sensitivity and resilience of these ecosystems to disturbance and environmental change. NASA is able to leverage its remote sensing strengths to collect airborne and satellite observations to capture important ecosystem properties and dynamics across large spatial scales. A critical component of this effort includes collection of ground-based data that can be used to analyze, calibrate and validate remote sensing products. ABoVE researchers at a large number of sites located in important Arctic and boreal ecosystems in Alaska and western Canada are following common design protocols and strategies for measuring soil moisture, thaw depth, biomass, and wetland inundation. Here we elaborate on those sampling strategies as used in the 2017 summer SAR campaign and address the sampling design and measurement protocols for supporting the ABoVE aerial activities. Plot size, transect length, and distribution of replicates across the landscape systematically allowed investigators to optimally sample a site for soil moisture, thaw depth, and organic layer thickness. Specific examples and data sets are described for the Department of Energy's Next-Generation Ecosystem Experiments (NGEE Arctic) project field sites near Nome and Barrow, Alaska. Future airborne and satellite campaigns will be conducted by the NASA ABoVE team and additional collaboration is encouraged.
Telerobot local-remote control architecture for space flight program applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John
1993-01-01
The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
Impact of ultrasound video transfer on the practice of ultrasound
NASA Astrophysics Data System (ADS)
Duerinckx, Andre J.; Hayrapetian, Alek S.; Grant, Edward G.; Valentino, Daniel J.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh
1996-05-01
Sonography can be highly dependent on real-time imaging and as such is highly physician intensive. Such situations arise mostly during complicated ultrasound radiology studies or echocardiology examinations. Under those circumstances it would be of benefit to transmit real-time images beyond the immediate area of the ultrasound laboratory when a physician is not on location. We undertook this study to determine if both static and dynamic image transfer to remote locations might be accomplished using an ultrafast ATM network and PACS. Image management of the local image files was performed by a commercial PACS from AGFA corporation. The local network was Ethernet based, and the global network was based on Asynchronous Transfer Mode (ATM, rates up to 100 Mbits/sec). Real-time image transfer involved two teaching hospitals, one of which had 2 separate ultrasound facilities. Radiologists consulted with technologists via telephone while the examinations were being performed. The applications of ATM network providing real time video for ultrasound imaging in a clinical environment and its potential impact on health delivery and clinical teaching. This technology increased technologist and physician productivity due to the elimination of commute time for physicians and waiting time for technologists and patients. Physician confidence in diagnosis increased compared to reviewing static images alone. This system provided instant access for radiologists to real-time scans from remote sites. Image quality and frame rate were equivalent to the original. The system increased productivity by allowing physicians to monitor studies at multiple sites simultaneously.
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.
2018-01-01
The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.
2016-01-01
supportive of this work from the start . This research would not have been possible without the contributions made by a number of individuals throughout...and funding structures. We started with these questions in particular based on the primary concerns at AMOS identified in the results of Phase I...from the start . Keck maintains connections with a series of other sites within a remote observing network. Remote observing from the mainland
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-02-27
Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. The following will be a site by site discussion of RH waste handling, placement, and container data. This will be followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that is the most up to date and accurate data available today. 2 figures, 10 tables.
Alternate Hybrid Power Sources for Remote Site Applications.
1981-02-01
Fuel for remote LORAN-C sites is often acquired at higher costs in foreign spot markets . The effective fuel cost including the expense associated with...primary purpose of FPUP is to provide market support for manufacturers of solar cells and systems by encouraging federal agencies to utilize photo...supplied to them. 84 If 10,000 units were manufactured each year for the residential market with 10 kWh peak power and 25 kWh of usable energy stored in
NASA Astrophysics Data System (ADS)
Versteeg, R.; Johnson, D. V.; Rodzianko, A.; Zhou, H.; Dafflon, B.; Leger, E.; de Kleine, M.
2017-12-01
Understanding of processes in the shallow subsurface requires that geophysical, biogeochemical, hydrological and remote sensing datasets are assimilated, processed and interpreted. Multiple enabling software capabilities for process understanding have been developed by the science community. These include information models (ODM2), reactive transport modeling (PFLOTRAN, Modflow, CLM, Landlab), geophysical inversion (E4D, BERT), parameter estimation (PEST, DAKOTA), visualization (ViSiT, Paraview, D3, QGIS) as well as numerous tools written in python and R for petrophysical mapping, stochastic modeling, data analysis and so on. These capabilities use data collected using sensors and analytical tools developed by multiple manufacturers which produce many different measurements. While scientists obviously leverage tools, capabilities and lessons learned from one site at other sites, the current approach to site characterization and monitoring is very labor intensive and does not scale well. Our objective is to be able to monitor many (hundreds - thousands) of sites. This requires that monitoring can be done in a near time, affordable, auditable and essentially autonomous manner. For this we have developed a modular vertically integrated cloud based software framework which was designed from the ground up for effective site and process monitoring. This software framework (PAF - Predictive Assimilation Framework) is multitenant software and provides automation of data ingestion, processing and visualization of hydrological, geochemical and geophysical (ERT/DTS) data. The core organizational element of PAF is a project/user one in which capabilities available to users are controlled by a combination of available data and access permissions. All PAF capabilities are exposed through APIs, making it easy to quickly add new components. PAF is fully integrated with newly developed autonomous electrical geophysical hardware and thus allows for automation of electrical geophysical ingestion and processing and the ability for co analysis and visualization of the raw and processed data with other data of interest (e.g. soil temperature, soil moisture, precipitation). We will demonstrate current PAF capabilities and discuss future efforts.
Mizukawa, Kaoruko; Takada, Hideshige; Ito, Maki; Geok, Yeo Bee; Hosoda, Junki; Yamashita, Rei; Saha, Mahua; Suzuki, Satoru; Miguez, Carlos; Frias, João; Antunes, Joana Cepeda; Sobral, Paula; Santos, Isabelina; Micaelo, Cristina; Ferreira, Ana Maria
2013-05-15
We analyzed polychlorinated biphenyls (PCBs), dichlorodiphenyl dichloroethane and its metabolites, hexachlorocyclohexanes (HCHs), polycyclic aromatic hydrocarbons (PAHs), and hopanes, in plastic resin pellets collected from nine locations along the Portuguese coast. Concentrations of a sum of 13 PCBs were one order of magnitude higher in two major cities (Porto: 307 ng/g-pellet; Lisboa: 273 ng/g-pellet) than in the seven rural sites. Lower chlorinated congeners were more abundant in the rural sites than in the cities, suggesting atmospheric dispersion. At most of the locations, PAH concentrations (sum of 33 PAH species) were ∼100 to ∼300 ng/g-pellet; however, three orders of magnitude higher concentrations of PAHs, with a petrogenic signature, were detected at a small city (Sines). Hopanes were detected in the pellets at all locations. This study demonstrated that multiple sample locations, including locations in both urban and remote areas, are necessary for country-scale pellet watch. Copyright © 2013 Elsevier Ltd. All rights reserved.
Study of geographical trends of polycyclic aromatic hydrocarbons using pine needles
NASA Astrophysics Data System (ADS)
Amigo, José Manuel; Ratola, Nuno; Alves, Arminda
2011-10-01
In this work, pine needles were used as polycyclic aromatic hydrocarbons (PAHs) markers to study the PAHs distribution over several geographical locations in Portugal and over time. Four pine needle sampling campaigns (winter, spring, summer and autumn 2007) were carried out in 29 sites, covering the major urban centres, some industrial points, smaller cities, rural areas and remote locations. Needles from Pinus pinaster Ait. and Pinus pinea L. trees were collected from 2005 and 2006 shoots, corresponding to one up to three years of exposure. Spatial trends of the incidence of PAHs indicate an increase from the remote to the urban and industrial sites. The mean values for the sum of 16 PAHs ranged from 96 ± 30 ng g -1 (dry weight) for remote sites to 866 ± 304 ng g -1 (dw) for industrial sites for P. pinaster needles and from 188 ± 117 ng g -1 (dw) for rural sites to 337 ± 153 ng g -1 (dw) for urban sites for P. pinea. Geographic information system tools and principal component analysis revealed that the contamination patterns of PAHs are somehow related to several socio-geographic parameters of the sampling sites. The geographical trend for the PAHs is similar between seasons in terms of PAH levels, but some diverse behaviour is found on the separation of lighter and heavier PAHs. Differences between P. pinaster and P. pinea needles are stronger in terms of PAH uptake loads than in the site type fingerprints.
Use of telemedicine in the remote programming of cochlear implants.
Ramos, Angel; Rodriguez, Carina; Martinez-Beneyto, Paz; Perez, Daniel; Gault, Alexandre; Falcon, Juan Carlos; Boyle, Patrick
2009-05-01
Remote cochlear implant (CI) programming is a viable, safe, user-friendly and cost-effective procedure, equivalent to standard programming in terms of efficacy and user's perception, which can complement the standard procedures. The potential benefits of this technique are outlined. We assessed the technical viability, risks and difficulties of remote CI programming; and evaluated the benefits for the user comparing the standard on-site CI programming versus the remote CI programming. The Remote Programming System (RPS) basically consists of completing the habitual programming protocol in a regular CI centre, assisted by local staff, although guided by a remote expert, who programs the CI device using a remote programming station that takes control of the local station through the Internet. A randomized prospective study has been designed with the appropriate controls comparing RPS to the standard on-site CI programming. Study subjects were implanted adults with a HiRes 90K(R) CI with post-lingual onset of profound deafness and 4-12 weeks of device use. Subjects underwent two daily CI programming sessions either remote or standard, on 4 programming days separated by 3 month intervals. A total of 12 remote and 12 standard sessions were completed. To compare both CI programming modes we analysed: program parameters, subjects' auditory progress, subjects' perceptions of the CI programming sessions, and technical aspects, risks and difficulties of remote CI programming. Control of the local station from the remote station was carried out successfully and remote programming sessions were achieved completely and without incidents. Remote and standard program parameters were compared and no significant differences were found between the groups. The performance evaluated in subjects who had been using either standard or remote programs for 3 months showed no significant difference. Subjects were satisfied with both the remote and standard sessions. Safety was proven by checking emergency stops in different conditions. A very small delay was noticed that did not affect the ease of the fitting. The oral and video communication between the local and the remote equipment was established without difficulties and was of high quality.
NASA Technical Reports Server (NTRS)
1979-01-01
The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
New York State Police remote communications site small wind energy conversion system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-03-01
This report concludes a year-long demonstration and study of the use of a North Wind Model HR2 wind energy conversion system to supply the power for a remote New York State Police microwave repeater site at Mt. Morris in the Adirondack Mountains. Data were collected on a multi-channel digital strip chart recorder which provided a printout of the real-time relation between windspeed, power output, battery capacity and voltage, and contribution from backup power. These data proved that the site could be run on wind power alone and predictions can now be made on the performance of an HR2 or similarmore » wind system at other sites. 5 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Cushwa, C. T.; Laroche, G.; Dubrock, C. W.
1982-01-01
The U.S. Fish and Wildlife Service developed a statewide fish and wildlife data base for the Pennsylvania Game Commission that includes 125 categories of information on each of the 844 species. This species data base is integrated with geobased and remotely-sensed land use/land cover data from two sites in Pennsylvania. One site is an energy development project; the other is a high-energy use area. Analyses using the combined animal and land use data bases can be demonstrated for a variety of land use/land cover types at both sites. The ability to make "what if" analysis prior to project implementation is presented.
Spectroscopic Results from the Life in the Atacama (LITA) Project 2004 Field Season
NASA Technical Reports Server (NTRS)
Piatek, J. L.; Moersch, J. E.; Wyatt, M.; Rampey, M.; Cabrol, N. A.; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Diaz, G. Chong
2005-01-01
Introduction: The Life in the Atacama (LITA) project includes rover field tests designed to look for life in the arid environment of the Atacama Desert (Chile). Field instruments were chosen to help remote observers identify potential habitats and the presence of life in these habitats, and included two spectrometers for help in identifying the mineralogy of the field sites. Two field trials were undertaken during the 2004 field season. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. Each field trial lasted approximately one week: the sites for these trials were in different locations, and are designated "Site B" and "Site C."
A Study on the Deriving Requirements of ARGO Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk
2009-12-01
Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.
Field Data Collection: an Essential Element in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Pettinger, L. R.
1971-01-01
Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.
Type 1 Adenylyl Cyclase is Essential for Maintenance of Remote Contextual Fear Memory
Shan, Qiang; Chan, Guy C.-K.; Storm, Daniel R.
2008-01-01
Although molecular mechanisms for hippocampus-dependent memory have been extensively studied, much less is known about signaling events important for remote memory. Here we report that mice lacking type 1 adenylyl cyclase (AC1) are able to establish and retrieve remote contextual memory but unable to sustain it as long as wild type mice. Interestingly, mice over-expressing AC1 show superior remote contextual memory even though they exhibit normal hippocampus-dependent contextual memory. These data illustrate that calcium coupling to cAMP contributes to the stability of remote memory and identifies AC1 as a potential drug target site to improve long-term remote memory. PMID:19036980
Progress in the Development of Practical Remote Detection of Icing Conditions
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Politovich, Marcia K.; Zednik, Stephan; Isaac, George A.; Cober, Stewart
2006-01-01
The NASA Icing Remote Sensing System (NIRSS) has been under definition and development at NASA Glenn Research Center since 1997. The goal of this development activity is to produce and demonstrate the required sensing and data processing technologies required to accurately remotely detect and measure icing conditions aloft. As part of that effort NASA has teamed with NCAR to develop software to fuse data from multiple instruments into a single detected icing condition product. The multiple instrument approach utilizes a X-band vertical staring radar, a multifrequency microwave, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled liquid water profile and aircraft hazard depiction. Ground-based, remotely-sensed measurements and in-situ measurements from research aircraft were gathered during the international 2003-2004 Alliance Icing Research Study (AIRS II). Comparisons between the remote sensing system s fused icing product and the aircraft measurements are reviewed here. While there are areas where improvement can be made, the cases examined suggest that the fused sensor remote sensing technique appears to be a valid approach.
Remote focusing for programmable multi-layer differential multiphoton microscopy
Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.
2010-01-01
We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641
ERIC Educational Resources Information Center
Faulkner, Kathryn; McClelland, Linda
2002-01-01
A seminar on menopausal health was presented to a live audience and remote audiences at 10 sites in rural Queensland (Australia) via videoconferencing. Questionnaires completed by 128 audience members indicated positive reception of the content and delivery method. Similar replies from live and remote audience members indicated that the…
Ozone in remote areas of the Southern Rocky Mountains
Robert C. Musselman; John L. Korfmacher
2014-01-01
Ozone (O3) data are sparse for remote, non-urban mountain areas of the western U.S. Ozone was monitored 2007e2011 at high elevation sites in national forests in Colorado and northeastern Utah using a portable battery-powered O3 monitor. The data suggest that many of these remote locations already have O3 concentrations that would contribute to exceedance of the current...
ERIC Educational Resources Information Center
Newton, Robert; Marcella, Rita; Middleton, Iain; McConnell, Michael
This paper reports on ReMOTE (Research Methods Online Teaching Environment), a Robert Gordon University (Scotland) project focusing on the development of a World Wide Web (WWW) site devoted to the teaching of research methods. The aim of ReMOTE is to provide an infrastructure that allows direct links to specialist sources in order to enable the…
Neri, E; Laghi, A; Regge, D; Sacco, P; Gallo, T; Turini, F; Talini, E; Ferrari, R; Mellaro, M; Rengo, M; Marchi, S; Caramella, D; Bartolozzi, C
2008-12-01
The aim of this paper is to describe the Web site of the Italian Project on CT Colonography (Research Project of High National Interest, PRIN No. 2005062137) and present the prototype of the online database. The Web site was created with Microsoft Office Publisher 2003 software, which allows the realisation of multiple Web pages linked through a main menu located on the home page. The Web site contains a database of computed tomography (CT) colonography studies in the Digital Imaging and Communications in Medicine (DICOM) standard, all acquired with multidetector-row CT according to the parameters defined by the European Society of Abdominal and Gastrointestinal Radiology (ESGAR). The cases present different bowel-cleansing and tagging methods, and each case has been anonymised and classified according to the Colonography Reporting and Data System (C-RADS). The Web site is available at http address www.ctcolonography.org and is composed of eight pages. Download times for a 294-Mbyte file were 33 min from a residential ADSL (6 Mbit/s) network, 200 s from a local university network (100 Mbit/s) and 2 h and 50 min from a remote academic site in the USA. The Web site received 256 accesses in the 22 days since it went online. The Web site is an immediate and up-to-date tool for publicising the activity of the research project and a valuable learning resource for CT colonography.
NASA Astrophysics Data System (ADS)
Garg, Saryu; Sinha, Baerbel
2017-10-01
This study uses two newly developed statistical source apportionment models, MuSAM and MuReSAM, to perform quantitative statistical source apportionment of PM10 at multiple receptor sites in South Hessen. MuSAM uses multi-site back trajectory data to quantify the contribution of long-range transport, while MuReSAM uses wind speed and direction as proxy for regional transport and quantifies the contribution of regional source areas. On average, between 7.8 and 9.1 μg/m3 of PM10 (∼50%) at receptor sites in South Hessen is contributed by long-range transport. The dominant source regions are Eastern, South Eastern, and Southern Europe. 32% of the PM10 at receptor sites in South Hessen is contributed by regional source areas (2.8-9.41 μg/m3). This fraction varies from <20% at remote sites to >40% for urban stations. Sources located within a 2 km radius around the receptor site are responsible for 7%-20% of the total PM10 mass (0.7-4.4 μg/m3). The perturbation study of the traffic flow due to the closing and reopening of the Schiersteiner Brücke revealed that the contribution of the bridge to PM10 mass loadings at two nearby receptor sites increased by approximately 120% after it reopened and became a bottleneck, although in absolute terms, the increase is small.
Improving the safety of remote site emergency airway management.
Wijesuriya, Julian; Brand, Jonathan
2014-01-01
Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications. We suggest that this should be the gold standard of airway resource provision and is in line with NAP4 recommendations.
Schutte, Jamie L; McCue, Michael P; Parmanto, Bambang; McGonigle, John; Handen, Benjamin; Lewis, Allen; Pulantara, I Wayan; Saptono, Andi
2015-03-01
The Autism Diagnostic Observation Schedule (ADOS) Module 4 is an autism assessment designed for verbally fluent adolescents and adults. Because of a shortage of available clinical expertise, it can be difficult for adults to receive a proper autism spectrum disorder (ASD) diagnostic assessment. A potential option to address this shortage is remote assessment. The objective of this study was to examine the feasibility, usability, and reliability of administering the ADOS Module 4 remotely using the Versatile and Integrated System for Telerehabilitation (VISYTER). VISYTER consists of computer stations at the client site and clinician site for video communication and a Web portal for managing and coordinating the assessment process. Twenty-three adults with an ASD diagnosis participated in a within-subject crossover design study in which both a remote ADOS and a face-to-face ADOS were administered. After completing the remote ADOS, participants completed a satisfaction survey. Participant satisfaction with the remote ADOS delivery system was high. The kappa value was greater than 0.61 on 21 of 31 ADOS items. There was substantial agreement on ADOS classification (i.e., diagnosis) between assessments delivered face-to-face versus assessments delivered remotely (interclass coefficient=0.92). Non-agreement may have been due to outside factors or practice effect despite a washout period. The results of this study demonstrate that an autism assessment designed to be delivered face to face can be administered remotely using an integrated Web-based system with high levels of usability and reliability.
Mapping wave breaking and residual foam using infrared remote sensing
NASA Astrophysics Data System (ADS)
Carini, R. J.; Jessup, A. T.; Chickadel, C.
2012-12-01
Quantifying wave breaking in the surfzone is important for the advancement of models that seek to accurately predict energy dissipation, near-shore circulation, wave-current interactions, and air-sea gas transfer. Electro-optical remote sensing has been used to try to identify breaking waves. However, the residual foam, left over after the wave has broken, is indistinguishable from active foam in the visible band, which makes identification of active breaking difficult. Here, we explore infrared remote sensing of breaking waves at near-grazing incidence angles to differentiate between active and residual foam in the surfzone. Measurements were made at two field sites: Duck, NC, in September 2010 (Surf Zone Optics) and New River Inlet, NC, in May 2012 (RIVET). At both sites, multiple IR cameras were mounted to a tower onshore, viewing the surfzone at near-grazing incidence angles. For near-grazing incidence angles, small changes in viewing angle, such as those produced by the slope of a wave face, cause large modulations of the infrared signal. Therefore, the passage of waves can be seen in IR imagery. Wave breaking, however, is identified by the resulting foam. Foam has a higher emissivity than undisturbed water and thus appears warmer in an IR image. Residual foam cools quickly [Marmorino and Smith, 2005], thereby making its signal distinct from that of foam produced during active wave breaking. We will use these properties to develop a technique to produce spatial and temporal maps of active breaking and residual foam. These products can then be used to validate current models of surfzone bubbles and foam coverage. From the maps, we can also estimate energy dissipation due to wave breaking in the surfzone and compare this to estimates made with in situ data.; Infrared image of the surfzone at Duck, NC. Examples of actively breaking foam and cool residual foam are labeled.
NASA Astrophysics Data System (ADS)
Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru
2017-08-01
The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be extended to the water balance study of the whole Heihe River basin.
NASA Astrophysics Data System (ADS)
Shirley, S.; Watts, J. D.; Kimball, J. S.; Zhang, Z.; Poulter, B.; Klene, A. E.; Jones, L. A.; Kim, Y.; Oechel, W. C.; Zona, D.; Euskirchen, E. S.
2017-12-01
A warming Arctic climate is contributing to shifts in landscape moisture and temperature regimes, a shortening of the non-frozen season, and increases in the depth of annual active layer. The changing environmental conditions make it difficult to determine whether tundra ecosystems are a carbon sink or source. At present, eddy covariance flux towers and biophysical measurements within the tower footprint provide the most direct assessment of change to the tundra carbon balance. However, these measurements have a limited spatial footprint and exist over relatively short timescales. Thus, terrestrial ecosystem models are needed to provide an improved understanding of how changes in landscape environmental conditions impact regional carbon fluxes. This study examines the primary drivers thought to affect the magnitude and variability of tundra-atmosphere CO2 and CH4 fluxes over the Alaska North Slope. Also investigated is the ability of biophysical models to capture seasonal flux characteristics over the 9 tundra tower sites examined. First, we apply a regression tree approach to ascertain which remotely sensed environmental variables best explain observed variability in the tower fluxes. Next, we compare flux estimates obtained from multiple process models including Terrestrial Carbon Flux (TCF) and the Lund-Potsdam-Jena Wald Schnee und Landschaft (LPJ-wsl), and Soil Moisture Active Passive Level 4 Carbon (SMAP L4_C) products. Our results indicate that out of 7 variables examined vegetation greenness, temperature, and moisture are more significant predictors of carbon flux magnitude over the tundra tower sites. This study found that satellite data-driven models, due to the ability of remote sensing instruments to capture the physical principles and processes driving tundra carbon flux, are more effective at estimating the magnitude and spatiotemporal variability of CO2 and CH4 fluxes in northern high latitude ecosystems.
Los Alamos National Laboratory Research Library Search Site submit Contact Us | Remote Access | Subject Guides Los Alamos National Laboratory Menu Contacts Remote Catalog About Awards Electronic Public Research Library: delivering essential knowledge services for national security sciences since 1947 Los
Remote sensing of rangeland biodiversity
USDA-ARS?s Scientific Manuscript database
Rangelands are managed based on state and transition models for an ecological site. Transitions to alternative ecological states are indicative of degrading rangelands. Three key variables may be remotely sensed to detect transitions between alternative states: amount of bare soil, presence of inva...
Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing
NASA Technical Reports Server (NTRS)
Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.
1985-01-01
The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.
1976-01-01
A self-contained and portable device which permits clinical electroencephalography (EEG) to be conducted in remote locations by minimally trained, nontechnical personnel was developed and tested. The unit accomplishes semiautomatic acquisition of EEG data from the patient, simultaneous transmission of eight data channels to a central hospital facility over conventional telephone equipment, and automatic printing (at the remote site) of the EEG report generated at the central location. Consequently, this system enables the delivery of high-quality EEG diagnostic services in a geographically remote site with the accuracy and speed formerly possible only in certain large medical centers. Beside obvious potential clinical applications, this system serves as an initial prototype of a unit which could provide inflight EEG during future space missions.
NASA Astrophysics Data System (ADS)
Bressler, R. D.
1981-11-01
This quarterly technical report describes work on the development of and experimentation with packet broadcast by satellite; on development of Pluribus Satellite IMPs; on a study of the technology of Remote Site Maintenance; on Internetwork monitoring; on shipboard satellite communications; and on the development of Transmission Control Protocols for the HP3000, TAC, and VAX-UNIX.
Echo the Bat and the Pigeon Adventure
NASA Technical Reports Server (NTRS)
Butcher, Ginger
2000-01-01
A multimedia, CD ROM to teach 2nd graders about remote sensing was created and developed into a web site. Distribution was expanded for Grades K-4 or 5-8. The idea was to have a story introduction, interactive story and a teacher's website. Interactive Multimedia Adventures in Grade School Education using Remote Sensing (I.M.A.G.E.R.S.) was created. The lessons are easy to use, readily available and aligned with national standards. This resource combines hands-on activities with an interactive web site
Applications of remote sensing to estuarine problems. [estuaries of Chesapeake Bay
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.
1975-01-01
A variety of siting problems for the estuaries of the lower Chesapeake Bay have been solved with cost beneficial remote sensing techniques. Principal techniques used were repetitive 1:30,000 color photography of dye emitting buoys to map circulation patterns, and investigation of water color boundaries via color and color infrared imagery to scales of 1:120,000. Problems solved included sewage outfall siting, shoreline preservation and enhancement, oil pollution risk assessment, and protection of shellfish beds from dredge operations.
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Ohlhorst, C. W.
1977-01-01
Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Wallace, J. W.; Gurganus, E. A.
1977-01-01
A remote sensor experiment was conducted at a sewage sludge dump site off the Delaware/Maryland coast. Two aircraft serving as remote sensor platforms flew over the dump site during a sludge dump. One aircraft carried a multispectral scanner and the other aircraft carried a rapid scanning spectrometer. Data from sea-truth stations were collected concurrent with overpasses of the aircraft. All sensors were operational and produced good digital data.
Multiple Scale Remote Sensing for Monitoring Rangelands
USDA-ARS?s Scientific Manuscript database
Based on a land-cover classification from NASA’s MODerate resolution Imaging Spectroradiometer (MODIS), rangelands cover 48% of the Earth’s land surface, not including Antarctica. Nearly all analyses imply the most economical means of monitoring large areas of rangelands worldwide is with remote se...
Strong, James Asa; Elliott, Michael
2017-03-15
The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.
2017-12-01
Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.
NASA Astrophysics Data System (ADS)
Clinton, B.; Vose, J.; Novick, K.; Liu, Y.
2011-12-01
Drier and warmer conditions predicted with climate change models are likely to significantly impact forest ecosystems over the next several decades. The U.S. has experienced significant droughts over the past several years that have increased the susceptibility of forests to insect outbreaks, disease, and wildfire. Weather data collected with traditional approaches provide an indirect measure of drought or temperature stress; however, the significance of short-term or prolonged climate-related stress varies considerably across the landscape as topography, elevations, edaphic condition and antecedent conditions vary. This limits the capacity of land managers to anticipate and initiate management activities that could offset the impacts of climate-related forest stress. Decision support tools are needed that allow fine scale monitoring of stress conditions in forest ecosystems in real time to help land managers evaluate response strategies. To assist land managers in managing the impacts of climate change, we are developing a stress monitoring and decision support system across multiple sites in the eastern U.S. that (1) provides remote data capture of environmental parameters that quantify climate-related forest stress, (2) links remotely captured data with physiologically-based indices of tree water stress, and (3) provides a PC-based analytical tool for land managers to monitor and assess the severity of climate-related stress. Currently the network represents southern coastal plain pine plantation, Atlantic coastal flatwoods mixed pine-hardwood, southern piedmont upland mixed pine-hardwood, southern Appalachian dry ridge and mesic riparian, southern Arkansas managed mature pine, and northern Minnesota mature aspen. The strategy for selecting additional sites for the network will be a focus on at-risk ecosystems deemed particularly vulnerable to the affects of predicted climate change such as those in ecotonal transition regions, or those at the fringes of their ranges. The sensor arrays at each site detect water and temperature stress variables and transmit those data to a field office. Sensors include air and soil temperature, relative humidity, fuel moisture and temperature, xylem sap flux density, soil moisture and matric potential, precipitation, and solar radiation. Data are transmitted in real-time to the NOAA Geostationary Operational Environmental Satellite (GOES). A PC-based software program that downloads monitoring data from the GOES satellite, analyzes the data, and provides the land manager with an assessment of climate-related stress conditions and potential forest health threat levels in real time is under development. Data collection began in early 2010 on most sites, and we have at least one year of data from all nine sites within the network. We are currently comparing estimates of stress levels on our sites with estimates of stress from common drought indices. For this presentation, we are comparing and contrasting four sites representing an environmental gradient within the network.
NASA Astrophysics Data System (ADS)
Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.
2017-04-01
Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)
Optical sampling of the flux tower footprint
NASA Astrophysics Data System (ADS)
Gamon, J. A.
2015-03-01
The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.
Bunting, Daniel P.; Kurc, Shirley A.; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.
2014-01-01
Water resource managers aim to ensure long-term water supplies for increasing human populations. Evapotranspiration (ET) is a key component of the water balance and accurate estimates are important to quantify safe allocations to humans while supporting environmental needs. Scaling up ET measurements from small spatial scales has been problematic due to spatiotemporal variability. Remote sensing products provide spatially distributed data that account for seasonal climate and vegetation variability. We used MODIS products [i.e., Enhanced Vegetation Index (EVI) and nighttime land surface temperatures (LSTn)] to create empirical ET models calibrated using measured ET from three riparian-influenced and two upland, water-limited flux tower sites. Results showed that combining all sites introduced systematic bias, so we developed separate models to estimate riparian and upland ET. While EVI and LSTn were the main drivers for ET in riparian sites, precipitation replaced LSTn as the secondary driver of ET in upland sites. Riparian ET was successfully modeled using an inverse exponential approach (r2 = 0.92) while upland ET was adequately modeled using a multiple linear regression approach (r2 = 0.77). These models can be used in combination to estimate ET at basin scales provided each region is classified and precipitation data is available.
Gupta, Prabodh K
2010-01-01
Background Standard-of-care requires the availability of an efficient, economical and accurate on-site fine needle aspiration (FNA) service. Presence of a trained individual during the procedure ensures an improved patient care. Appropriate selection of the equipment, interaction with the clinicians and compliance with the various regulations during the procedure is essential. This is often done by an on-site FNA service. Organization and implementation of such a system in a large academic center is challenging. Method we reviewed the ambulatory care needs in the new Perelman Center for Advanced Medicine (PeCAM). Multiple (9) FNA sites have been established keeping in view the patient's convenience, clinic demands, various regulatory requirements and laboratory staff. Each location has dedicated FNA station with microscopes and supplies. In addition, state- ofthe -art technologies including a mobile FNA cart (Penn-A- Cart), remote specimen evaluation (TeleCyP) have been incorporated. Results The new set up is extremely efficient and much valued by the patients and the clinicians. It has improved patient care. Conclusion With necessary investments and resources a point-of-care FNA service has been created which has improved patient care. This, albeit with certain modifications may serve as a model for FNA service. PMID:20607093
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb action with a Nintendo Wii Remote Controller and a newly developed limb action detection program (LADP, i.e., a new software program that turns a Wii Remote Controller into a precise limb action detector). This study was carried out according to an ABAB sequence in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased their target response, thus increasing the level of environmental stimulation by activating the control system through limb action, during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Practical lessons in remote connectivity.
Kouroubali, A.; Starren, J.; Barrows, R. C.; Clayton, P. D.
1997-01-01
Community Health Information Networks (CHINs) require the ability to provide computer network connections to many remote sites. During the implementation of the Washington Heights and Inwood Community Health Management Information System (WHICHIS) at the Columbia-Presbyterian Medical Center (CPMC), a number of remote connectivity issues have been encountered. Both technical and non-technical issues were significant during the installation. We developed a work-flow model for this process which may be helpful to any health care institution attempting to provide seamless remote connectivity. This model is presented and implementation lessons are discussed. PMID:9357643
Extending IPsec for Efficient Remote Attestation
NASA Astrophysics Data System (ADS)
Sadeghi, Ahmad-Reza; Schulz, Steffen
When establishing a VPN to connect different sites of a network, the integrity of the involved VPN endpoints is often a major security concern. Based on the Trusted Platform Module (TPM), available in many computing platforms today, remote attestation mechanisms can be used to evaluate the internal state of remote endpoints automatically. However, existing protocols and extensions are either unsuited for use with IPsec or impose considerable additional implementation complexity and protocol overhead.
Vegetation shifts observed in arctic tundra 17 years after fire
Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius
2012-01-01
With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.
American black bear denning behavior: Observations and applications using remote photography
Bridges, A.S.; Fox, J.A.; Olfenbuttel, C.; Vaughan, M.B.
2004-01-01
Researchers examining American black bear (Ursus americanus) denning behavior have relied primarily on den-site visitation and radiotelemetry to gather data. Repeated den-site visits are time-intensive and may disturb denning bears, possibly causing den abandonment, whereas radiotelemetry is sufficient only to provide gross data on den emergence. We used remote cameras to examine black bear denning behavior in the Allegheny Mountains of western Virginia during March-May 2003. We deployed cameras at 10 den sites and used 137 pictures of black bears. Adult female black bears exhibited greater extra-den activity than we expected prior to final den emergence, which occurred between April 12 and May 6, 2003. Our technique provided more accurate den-emergence estimation than previously published methodologies. Additionally, we observed seldom-documented behaviors associated with den exits and estimated cub age at den emergence. Remote cameras can provide unique insights into denning ecology, and we describe their potential application to reproductive, survival, and behavioral research.
Development and demonstration of a telerobotic excavation system
NASA Technical Reports Server (NTRS)
Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.
1994-01-01
Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.
Shannon, Gary William; Buker, Carol Marie
2010-01-01
Teledermatology provides a partial solution to the problem of accessibility to dermatology services in underserved areas, yet methodologies to determine the locations and geographic dimensions of these areas and the locational efficiency of remote teledermatology sites have been found wanting. This article illustrates an innovative Geographic Information Systems approach using dermatologists' addresses, U.S. Census population data, and the Topologically Integrated Geographic Encoding and Referencing System. Travel-time-based service areas were calculated and mapped for each dermatologist in the state of Kentucky and for possible locations of several remote teledermatology sites. Populations within the current and possible remote service areas were determined. These populations and associated maps permit assessment of the locational efficiency of the current distribution of dermatologists, location of underserved areas, and the potential contribution of proposed hypothetical teledermatology sites. This approach is a valuable and practical tool for evaluating access to current distributions of dermatologists as well as planning for and implementing teledermatology.
NASA Technical Reports Server (NTRS)
Ross, Kenton W.; McKellip, Rodney D.
2005-01-01
Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.
ARE AIRBORNE CONTAMINANTS A RISK FACTOR TO AQUATIC ECOSYSTEMS IN REMOTE WESTERN NATIONAL PARKS (USA)
The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...
Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases
Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.; ...
2015-03-25
5'-Methylthioadenosine/S-adenosyl-l-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5'-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. Here, we mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation ofmore » altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. In conclusion, the overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences.« less
Active Site and Remote Contributions to Catalysis in Methylthioadenosine Nucleosidases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Keisha; Cameron, Scott A.; Almo, Steven C.
5'-Methylthioadenosine/S-adenosyl-l-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5'-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar. However, binding of transition-state analogues is dominated by favorable entropy in VcMTAN and by enthalpy in EcMTAN. Catalytic sites of VcMTAN and EcMTAN in contact with reactants differ by two residues; Ala113 and Val153 in VcMTAN are Pro113 and Ile152, respectively, in EcMTAN. Here, we mutated the VcMTAN catalytic site residues to match those of EcMTAN in anticipation ofmore » altering its properties toward EcMTAN. Inhibition of VcMTAN by transition-state analogues required filling both active sites of the homodimer. However, in the Val153Ile mutant or double mutants, transition-state analogue binding at one site caused complete inhibition. Therefore, a single amino acid, Val153, alters the catalytic site cooperativity in VcMTAN. The transition-state analogue affinity and thermodynamics in mutant VcMTAN became even more unlike those of EcMTAN, the opposite of expectations from catalytic site similarity; thus, catalytic site contacts in VcMTAN are unable to recapitulate the properties of EcMTAN. X-ray crystal structures of EcMTAN, VcMTAN, and a multiple-site mutant of VcMTAN most closely resembling EcMTAN in catalytic site contacts show no major protein conformational differences. In conclusion, the overall protein architectures of these closely related proteins are implicated in contributing to the catalytic site differences.« less
NASA Astrophysics Data System (ADS)
McCorkel, J.; Kuester, M. A.; Johnson, B. R.; Krause, K.; Kampe, T. U.; Moore, D. J.
2011-12-01
The National Ecological Observatory Network (NEON) is a research facility under development by the National Science Foundation to improve our understanding of and ability to forecast the impacts of climate change, land-use change, and invasive species on ecology. The infrastructure, designed to operate over 30 years or more, includes site-based flux tower and field measurements, coordinated with airborne remote sensing observations to observe key ecological processes over a broad range of temporal and spatial scales. NEON airborne data on vegetation biochemical, biophysical, and structural properties and on land use and land cover will be captured at 1 to 2 meter resolution by an imaging spectrometer, a small-footprint waveform-LiDAR and a high-resolution digital camera. Annual coverage of the 60 NEON sites and capacity to support directed research flights or respond to unexpected events will require three airborne observation platforms (AOP). The integration of field and airborne data with satellite observations and other national geospatial data for analysis, monitoring and input to ecosystem models will extend NEON observations to regions across the United States not directly sampled by the observatory. The different spatial scales and measurement methods make quantitative comparisons between remote sensing and field data, typically collected over small sample plots (e.g. < 0.2 ha), difficult. New approaches to developing temporal and spatial scaling relationships between these data are necessary to enable validation of airborne and satellite remote sensing data and for incorporation of these data into continental or global scale ecological models. In addition to consideration of the methods used to collect ground-based measurements, careful calibration of the remote sensing instrumentation and an assessment of the accuracy of algorithms used to derive higher-level science data products are needed. Furthermore, long-term consistency of the data collected by all three airborne instrument packages over the NEON sites requires traceability of the calibration to national standards, field-based verification of instrument calibration and stability in the aircraft environment, and an independent assessment of the quality of derived data products. This work describes the development of the calibration laboratory, early evaluation of field-based vicarious calibration, development of scaling relationships, and test flights. Complementary laboratory- and field-based calibration of the AOP in addition to consistency with on-board calibration methods provide confidence that low-level data such as radiance and surface reflectance measurements are accurate and comparable among different sensors. Algorithms that calculate higher-level data products including essential climate variables will be validated against equivalent ground- and satellite-based results. Such a validated data set across multiple spatial and temporal scales is key to enabling ecosystem models to forecast the effects of climate change, land-use change and invasive species on the continental scale.
People, Places and Pixels: Remote Sensing in the Service of Society
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh
2003-01-01
What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.
Development and testing for physical security robots
NASA Astrophysics Data System (ADS)
Carroll, Daniel M.; Nguyen, Chinh; Everett, H. R.; Frederick, Brian
2005-05-01
The Mobile Detection Assessment Response System (MDARS) provides physical security for Department of Defense bases and depots using autonomous unmanned ground vehicles (UGVs) to patrol the site while operating payloads for intruder detection and assessment, barrier assessment, and product assessment. MDARS is in the System Development and Demonstration acquisition phase and is currently undergoing developmental testing including an Early User Appraisal (EUA) at the Hawthorne Army Depot, Nevada-the world's largest army depot. The Multiple Resource Host Architecture (MRHA) allows the human guard force to command and control several MDARS platforms simultaneously. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. The MRHA also interfaces to remote resources to automate legacy physical devices such as fence gate controls, garage doors, and remote power on/off capability for the MDARS patrol units. This paper provides an overview and history of the MDARS program and control station software with details on the installation and operation at Hawthorne Army Depot, including discussions on scenarios for EUA excursions. Special attention is given to the MDARS technical development strategy for spiral evolutions.
Telepathology. Long-distance diagnosis.
Weinstein, R S; Bloom, K J; Rozek, L S
1989-04-01
Telepathology is defined as the practice of pathology at a distance, by visualizing an image on a video monitor rather than viewing a specimen directly through a microscope. Components of a telepathology system include the following: (1) a workstation equipped with a high-resolution video camera attached to a remote-controlled light microscope; (2) a pathologist workstation incorporating controls for manipulating the robotic microscope as well as a high-resolution video monitor; and (3) a telecommunications link. Progress has been made in designing and constructing telepathology workstations and fully motorized, computer-controlled light microscopes suitable for telepathology. In addition, components such as video signal digital encoders and decoders that produce remarkably stable, high-color fidelity, and high-resolution images have been incorporated into the workstations. Resolution requirements for the video microscopy component of telepathology have been formally examined in receiver operator characteristic (ROC) curve analyses. Test-of-concept demonstrations have been completed with the use of geostationary satellites as the broadband communication linkages for 750-line resolution video. Potential benefits of telepathology include providing a means of conveniently delivering pathology services in real-time to remote sites or underserviced areas, time-sharing of pathologists' services by multiple institutions, and increasing accessibility to specialty pathologists.
The Mixed-Phase Arctic Cloud Experiment (M-PACE)
NASA Technical Reports Server (NTRS)
Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.; Yannuzzi, V. T.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M. R.; Mather, J. H.;
2007-01-01
The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.
Using Reflectance Measurements to Determine Ecosystem Light Use Efficiency
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Middleton, E. M.; Hall, F. G.; Knox, R. G.; Walter-Shea, E.; Verma, S. B.
2006-05-01
Understanding the dynamics of the global carbon cycle requires an accurate determination of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Remote sensing observations may provide the spatially extensive observations required for this type of analysis. A light use efficiency model is one approach to modeling carbon fluxes driven by remotely sensed inputs. Photosynthetic down-regulation has been associated with changes in the apparent spectral reflectance of leaves and these responses may permit the estimation of ecosystem photosynthetic light use efficiency (LUE). At a prairie site in Oklahoma, CO2 flux measurements from an eddy covariance system along with biophysical data were collected through 1998 and 1999. During the growing seasons hyperspectral reflectance measurements were collected in nearby plots at multiple times in a day at approximately monthly intervals. LUE is calculated as the ratio of carbon uptake by the ecosystem and the fraction of photosynthetically active radiation (PAR) absorbed by green leaves. The LUE values are compared with reflectance indexes examining how relationships vary over hours, months, and years. For this system a number of different reflectance indexes have been found to correlate with LUE; including the Photochemical Reflectance Index (PRI) and the Structure Independent Pigment Index (SIPI); as well as spectral first derivatives at 460, 550, and 615nm; and second derivatives at 510 and 620nm. This methodology provides a nondestructive, repeatable, direct comparison between ecosystem carbon fluxes and spectral reflectance at scales relevant to remote sensing.
Assessing the use of remotely sensed measurements for characterizing rangeland condition
NASA Astrophysics Data System (ADS)
Folker, Geoffrey P.
There are over 233 million hectares (ha) of nonfederal grazing lands in the United States. Conventional field observation and sampling techniques are insufficient methods to monitor such large areas frequently enough to confidently quantify the biophysical state and assess rangeland condition over large geographic areas. In an attempt to enhance rangeland resource managers' abilities to monitor and assess these factors, remote sensing scientists and land resource managers have worked together to determine whether remotely sensed measurements can improve the ability to measure rangeland response to land management practices. The relationship between spectral reflectance patterns and plant species composition was investigated on six south-central Kansas ranches. Airborne multispectral color infrared images for 2002 through 2004 were collected at multiple times in the growing season over the study area. Concurrent with the image acquisition periods, ground cover estimates of plant species composition and biomass by growth form were collected. Correlation analysis was used to examine relationships among spectral and biophysical field measurements. Results indicate that heavily grazed sites exhibited the highest spectral vegetation index values. This was attributed to increases in low forage quality broadleaf forbs such as annual ragweed (Ambrosia artemisiifolia L.). Although higher vegetation index values have a positive correlation with overall above ground primary productivity, species composition may be the best indicator of healthy rangeland condition. A Weediness Index, which was found to be correlated with range condition, was also strongly linked to spectral reflectance patterns recorded in the airborne imagery.
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Haley, Bryan S.
2005-01-01
Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously unknown features. All of these applications are pertinent to the goals of site discovery and assessment in cultural resource management.
Remote sensing measurements of real world high exhaust emitters
DOT National Transportation Integrated Search
1999-03-12
Remote Sensing measurements were taken at five primary sites in the Denver Area between April 1997 and March 1998 using an RS2000 unit capable of measuring HC, CO, and NO. The RD unit also measures vehicle speed and acceleration to permit determinati...
U.S. EPA High-Field NMR Facility with Remote Accessibility
EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...
Pest measurement and management
USDA-ARS?s Scientific Manuscript database
Pest scouting, whether it is done only with ground scouting methods or using remote sensing with some ground-truthing, is an important tool to aid site-specific crop management. Different pests may be monitored at different times and using different methods. Remote sensing has the potential to provi...
NASA Technical Reports Server (NTRS)
Labovitz, M. L.; Masuoka, E. J.; Bell, R.; Nelson, R. F.; Larsen, C. A.; Hooker, L. K.; Troensegaard, K. W.
1985-01-01
It is pointed out that in many regions of the world, vegetation is the predominant factor influencing variation in reflected energy in the 0.4-2.5 micron region of the spectrum. Studies have, therefore, been conducted regarding the utility of remote sensing for detecting changes in vegetation which could be related to the presence of mineralization. The present paper provides primarily a report on the results of the second year of a multiyear study of geobotanical-remote-sensing relationships as developed over areas of sulfide mineralization. The field study has a strong experimental design basis. It is proceeded by first delineating the boundaries of a large geographic region which satisfied a set of previously enumerated field-site criteria. Within this region, carefully selected pairs of mineralized and nonmineralized test sites were examined over the growing season. The experiment is to provide information about the spectral and temporal resolutions required for remote-sensing-geobotanical exploration. The obtained results are evaluated.
Southwell, Colin; Emmerson, Louise; Newbery, Kym; McKinlay, John; Kerry, Knowles; Woehler, Eric; Ensor, Paul
2015-01-01
Seabirds and other land-breeding marine predators are considered to be useful and practical indicators of the state of marine ecosystems because of their dependence on marine prey and the accessibility of their populations at breeding colonies. Historical counts of breeding populations of these higher-order marine predators are one of few data sources available for inferring past change in marine ecosystems. However, historical abundance estimates derived from these population counts may be subject to unrecognised bias and uncertainty because of variable attendance of birds at breeding colonies and variable timing of past population surveys. We retrospectively accounted for detection bias in historical abundance estimates of the colonial, land-breeding Adélie penguin through an analysis of 222 historical abundance estimates from 81 breeding sites in east Antarctica. The published abundance estimates were de-constructed to retrieve the raw count data and then re-constructed by applying contemporary adjustment factors obtained from remotely operating time-lapse cameras. The re-construction process incorporated spatial and temporal variation in phenology and attendance by using data from cameras deployed at multiple sites over multiple years and propagating this uncertainty through to the final revised abundance estimates. Our re-constructed abundance estimates were consistently higher and more uncertain than published estimates. The re-constructed estimates alter the conclusions reached for some sites in east Antarctica in recent assessments of long-term Adélie penguin population change. Our approach is applicable to abundance data for a wide range of colonial, land-breeding marine species including other penguin species, flying seabirds and marine mammals.
Prediction of health levels by remote sensing
NASA Technical Reports Server (NTRS)
Rush, M.; Vernon, S.
1975-01-01
Measures of the environment derived from remote sensing were compared to census population/housing measures in their ability to discriminate among health status areas in two urban communities. Three hypotheses were developed to explore the relationships between environmental and health data. Univariate and multiple step-wise linear regression analyses were performed on data from two sample areas in Houston and Galveston, Texas. Environmental data gathered by remote sensing were found to equal or surpass census data in predicting rates of health outcomes. Remote sensing offers the advantages of data collection for any chosen area or time interval, flexibilities not allowed by the decennial census.
Development of flight experiments for remote measurement of pollution
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Kopia, L. P.
1973-01-01
The status as of February 1973 of several NASA-sponsored development projects is reported concerning flight experiments for remote measurement of pollution. Eight passive multispectral instruments for remotely sensing air and water pollutants are described, as well as two active (laser radar) measuring techniques. These techniques are expected to add some new dimensions to the remote sensing of water quality, oceanographic parameters, and earth resources. Multiple applications in these fields are generally possible. Successful completion of the flight demonstration tests and comparisons with simultaneously obtained surface truth measurements may establish these techniques as valid water quality monitoring tools.
Outfall siting with dye-buoy remote sensing of coastal circulation
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Welch, C. S.; Gordon, H. H.
1978-01-01
A dye-buoy remote sensing technique has been applied to estuarine siting problems that involve fine-scale circulation. Small hard cakes of sodium fluorescein and polyvinyl alcohol, in anchored buoys and low-windage current followers, dissolve to produce dye marks resolvable in 1:60,000 scale color and color infrared imagery. Lagrangian current vectors are determined from sequential photo coverage. Careful buoy placement reveals surface currents and submergence near fronts and convergence zones. The technique has been used in siting two sewage outfalls in Hampton Roads, Virginia: In case one, the outfall region during flood tide gathered floating materials in a convergence zone, which then acted as a secondary source during ebb; for better dispersion during ebb, the proposed outfall site was moved further offshore. In case two, flow during late flood was found to divide, with one half passing over shellfish beds; the proposed outfall site was consequently moved to keep effluent in the other half.
NDSI products system based on Hadoop platform
NASA Astrophysics Data System (ADS)
Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui
2015-12-01
Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes the index calculation, production tasks submission and monitoring two parts. Read HDF images related to production task in the form of a byte stream, and use Beam library to parse image byte stream to the form of Product; Use MapReduce distributed framework to perform production tasks, at the same time monitoring task status; When the production task complete, calls remote sensing image management module to store NDSI products. (3)System service module: includes both image search and DNSI products download. To image metadata attributes described in JSON format, return to the image sequence ID existing in the HDFS file system; For the given MapReduce task ID, package several task output NDSI products into ZIP format file, and return to the download link (4)System evaluation: download massive remote sensing data and use the system to process it to get the NDSI products testing the performance, and the result shows that the system has high extendibility, strong fault tolerance, fast production speed, and the image processing results with high accuracy.
Training Behavior Modifiers: Videotape Self-Monitoring Versus Remote Auditory Prompting. Draft.
ERIC Educational Resources Information Center
Cone, John D.; And Others
The separate and comparative effectiveness of two procedures, remote auditory prompting (RAP) and videotape self-monitoring (VSM), for training 14 adult aides to use behavior modification with institutionalized retarded children were examined. A two-group, multiple baseline design with baseline, training, and followup phases was employed with…
Cellular phone enabled non-invasive tissue classifier.
Laufer, Shlomi; Rubinsky, Boris
2009-01-01
Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro.
Cellular Phone Enabled Non-Invasive Tissue Classifier
Laufer, Shlomi; Rubinsky, Boris
2009-01-01
Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554
Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostic and toxicity assessment
NASA Astrophysics Data System (ADS)
De Nicola, Flavia; Claudia, Lancellotti; MariaVittoria, Prati; Giulia, Maisto; Anna, Alfani
2011-03-01
Quercus ilex L. leaves were sampled at nineteen urban sites and two remote sites in order to evaluate PAH contamination degree. One-, two- and three-year-old leaves were collected and leaf lipid content was measured to investigate the influence of leaf age and lipids in PAH accumulation. Some PAH diagnostic ratios, such as Ant/Ant + Phen, Flt/Flt + Pyr, B[a]A/B[a]A + Crys and IP/IP + B[g,h,i]P, were calculated. The results suggest that Q. ilex leaves are effective biomonitors of PAH air contamination: in fact, a great PAH accumulation in leaves from the urban areas, until 30-time higher compared to those from the remote sites, has been observed. At each site, the similar total PAH concentrations in leaves of different age, probably due to a canopy effect, indicate an ability of all leaf age classes to monitor local PAH concentrations in air, remarking practical implications for air biomonitoring. The findings suggest that PAH adsorption in Q. ilex leaves does not result limited by leaf lipid content. Moreover, this study demonstrates the source-diagnostic potential of Q. ilex leaves, because, in particular, the Flt/Flt + Pyr and IP/IP + B[g,h,i]P ratios indicate vehicular traffic as the main source of PAHs in the urban areas and wood combustion in the remote areas. Moreover, to distinguish biomass combustion source, a promising tracer PAH as DB[a,h]A could be used. The high contribution of DB[a,h]A to total PAH concentrations at the remote sites determines a high carcinogenic potential in this area, similar to that calculated for the urban area where the carcinogenic PAH concentrations in absolute values are often higher.
Geology of Lunar Landing Sites and Origin of Basin Ejecta from a Clementine Perspective
NASA Technical Reports Server (NTRS)
Jolliff, Bradley L.; Haskin, Larry A.
1998-01-01
The goals of this research were to examine Clementine multispectral data covering the Apollo landing sites in order to: (1) provide ground truth for the remotely sensed observations, (2) extend our understanding of the Apollo landing sites to the surrounding regions using the empirically calibrated Clementine data, and (3) investigate the composition and distribution of impact-basin ejecta using constraints based upon the remotely sensed data and the Apollo samples. Our initial efforts (in collaboration with P. Lucey and coworkers) to use the Apollo soil compositions to "calibrate" information derived from the remotely sensed data resulted in two extremely useful algorithms for computing estimates of the concentrations of FeO and TiO2 from the UV-VIS 5-band data. In this effort, we used the average surface soil compositions from 37 individual Apollo and 3 Luna sample stations that could be resolved using the Clementine data. We followed this work with a detailed investigation of the Apollo 17 landing site, where the sampling traverses were extensive and the spectral and compositional contrast between different soils covers a wide range. We have begun to investigate the nature and composition of basin ejecta by comparing the thick deposits on the rim of Imbrium in the vicinity of the Apollo 15 site and those occurring southeast of the Serenitatis basin, in the Apollo 17 region. We continue this work under NAG5-6784, "Composition, Lithology, and Heterogeneity of the lunar crust using remote sensing of impact-basin uplift structures and ejecta as probes. The main results of our work are given in the following brief summaries of major tasks. Detailed accounts of these results are given in the attached papers, manuscripts, and extended abstracts.
Remote preenrollment checking of consent forms to reduce nonconformity.
Journot, Valérie; Pérusat-Villetorte, Sophie; Bouyssou, Caroline; Couffin-Cadiergues, Sandrine; Tall, Aminata; Chêne, Geneviève
2013-01-01
In biomedical research, the signed consent form must be checked for compliance with regulatory requirements. Checking usually is performed on site, most frequently after a participant's final enrollment. We piloted a procedure for remote preenrollment consent forms checking. We applied it in five trials and assessed its efficiency to reduce form nonconformity before participant enrollment. Our clinical trials unit (CTU) routinely uses a consent form with an additional copy that contains a pattern that partially masks the participant's name and signature. After completion and signatures by the participant and investigator, this masked copy is faxed to the CTU for checking. In case of detected nonconformity, the CTU suspends the participant's enrollment until the form is brought into compliance. We checked nonconformities of consent forms both remotely before enrollment and on site in five trials conducted in our CTU. We tabulated the number and nature of nonconformities by location of detection: at the CTU or on site. We used these data for a pseudo before-and-after analysis and estimated the efficiency of this remote checking procedure in terms of reduction of nonconformities before enrollment as compared to the standard on-site checking procedure. We searched for nonconformity determinants among characteristics of trials, consent forms, investigator sites, and participants through multivariate logistic regression so as to identify opportunities for improvement in our procedure. Five trials, starting sequentially but running concurrently, with remote preenrollment and on-site checking of consent forms from 415 participants screened in 2006-2009 led to 518 consent forms checked; 94 nonconformities were detected in 75 forms, 75 (80%) remotely and 19 more (20%) on site. Nonconformities infrequently concerned dates of signatures (7%) and information about participants (12%). Most nonconformities dealt with investigator information (76%), primarily contact information (54%). The procedure reduced nonconformities by 81% (95% confidence interval (CI): 73%-89%) before enrollment. Nonconforming consent forms dropped from 25% to 0% over the period, indicating a rapid learning effect between trials. Fewer nonconformities were observed for participants screened later in a trial (odds ratio (95% CI): 0.5 (0.3-0.8); p = 0.004), indicating a learning effect within trials. Nonconformities were more common for participants enrolled after screening (2.4 (1.1-5.3); p = 0.03), indicating a stricter scrutiny by form checkers. Although our study had a pseudo before-and-after design, no major bias was identified. Power and generalizability of our findings were sufficient to support implementation in future trials. This procedure substantially limited nonconformity of consent forms with regulatory requirements before enrollment, thus proving a key component of a risk-based monitoring strategy that has been recommended to optimize resources for clinical research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Hydrologic Monitoring in the Deep Subsurface to Support Repository Performance
NASA Astrophysics Data System (ADS)
Hubbell, J. M.; Heath, G. L.; Scott, C. L.
2007-12-01
The INL has installed and operated several vadose and ground water monitoring systems in arid and humid sites to depths of about 200m. Some of these systems have been in continuous operation for over 12 years. It is important that the systems be physically robust, simple, yet versatile enough that it can operate for extended time periods with little or no maintenance. Monitoring instruments are frequently installed and run to characterize the site, collect data during site operation, and continue to run for long-term stewardship, necessitating sensors that can be maintained or serviced. Sensors are carefully chosen based on the perceived data requirements over the life of the site. An emphasis is given on direct measurements such as tensiometers (portable and advanced), neutron probe, drain gauge, temperature, wells or sampling for fluids and gases. Other complementary data can include using TDR/capacitance, radiation detectors, and larger scale geophysical techniques (3-d resistivity and EM) for volumetric measurements. Commercially available instruments may have to be modified for their use at greater depths, to allow multiple instruments in a single borehole or to perform the intended monitoring function. Access tubes (some open at the bottom) can be placed to allow insertion of multiple sensors (radiation, neutron and portable sensors/samplers), future drilling/sampling and to install new instruments at a later time. The installation techniques and backfill materials must be chosen and the measurement technique tested to ensure representative data collection for the parameters of interest. The data collection system can be linked to climatic data (precipitation, barometric pressure, snow depth, runoff, surface water sources) that may influence the site's subsurface hydrology. The instruments are then connected to a real-time automated data collection system that collect, stores, and provides access to the data. These systems have been developed that allow easy access, automatic data quality checks with notification, processing, and presentation of the data in real time through the web. The systems can be designed to manipulate/test the system remotely. Data from several sites will be presented showing that continuous monitoring is necessary to detect rapid changes in the deep vadose zone and ground water at fractured rock sites.
DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D.; Coughlin, Jeffrey
2009-05-05
The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manuallymore » or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. Extensive testing of tooling operation was performed in the DWPF manipulator repair shop. This testing allowed the operators to gain confidence before the equipment was exposed to radioactive contamination. The testing also led to multiple design improvements. On July 17 and 29, 2008 the Remote Gasket Replacement Tooling was successfully demonstrated in the REDC at the DWPF of The Savannah River Site.« less
Marciniuk, Darcy
2016-01-01
The challenges of providing quality respiratory care to persons living in rural or remote communities can be daunting. These populations are often vulnerable in terms of both health status and access to care, highlighting the need for innovation in service delivery. The rapidly expanding options available using telehealthcare technologies have the capacity to allow patients in rural and remote communities to connect with providers at distant sites and to facilitate the provision of diagnostic, monitoring, and therapeutic services. Successful implementation of telehealthcare programs in rural and remote settings is, however, contingent upon accounting for key technical, organizational, social, and legal considerations at the individual, community, and system levels. This review article discusses five types of telehealthcare delivery that can facilitate respiratory care for residents of rural or remote communities: remote monitoring (including wearable and ambient systems; remote consultations (between providers and between patients and providers), remote pulmonary rehabilitation, telepharmacy, and remote sleep monitoring. Current and future challenges related to telehealthcare are discussed. PMID:26902542
Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1973-01-01
A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuli, J.K.; Sonzogni,A.
The National Nuclear Data Center has provided remote access to some of its resources since 1986. The major databases and other resources available currently through NNDC Web site are summarized. The National Nuclear Data Center (NNDC) has provided remote access to the nuclear physics databases it maintains and to other resources since 1986. With considerable innovation access is now mostly through the Web. The NNDC Web pages have been modernized to provide a consistent state-of-the-art style. The improved database services and other resources available from the NNOC site at www.nndc.bnl.govwill be described.
Land cover mapping at sub-pixel scales
NASA Astrophysics Data System (ADS)
Makido, Yasuyo Kato
One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.
Development of a graphical user interface for the global land information system (GLIS)
Alstad, Susan R.; Jackson, David A.
1993-01-01
The process of developing a Motif Graphical User Interface for the Global Land Information System (GLIS) involved incorporating user requirements, in-house visual and functional design requirements, and Open Software Foundation (OSF) Motif style guide standards. Motif user interface windows have been developed using the software to support Motif window functions war written using the C programming language. The GLIS architecture was modified to support multiple servers and remote handlers running the X Window System by forming a network of servers and handlers connected by TCP/IP communications. In April 1993, prior to release the GLIS graphical user interface and system architecture modifications were test by developers and users located at the EROS Data Center and 11 beta test sites across the country.
Ouren, Douglas S.; Coffin, Alisa W.
2013-01-01
The continued growth of off-highway vehicle (OHV) activities – demonstrated by the dramatic increase in OHV sales, number of users, and areas experiencing OHV use – has elevated concerns about their ecological effects, the impacts on wildlife, and the sustainability of OHV use on secondary and tertiary road networks. Conflicts between visitors and wildlife are raising concerns about system resiliency and sustainable management. In order to quantify the spatial and temporal impacts of OHV use it is imperative to know about the timing and patterns of vehicle use. This study tested and used multiple vehicle-counter types to study vehicular OHV use patterns and volume throughout a mountainous road network in western Colorado. OHV counts were analyzed by time of day, day of week, season, and year. While daily use peaked within a two to three hour range for all sites, the overall volume of use varied among sites on an annual basis. The data also showed that there are at least two distinct patterns of OHV use: one dominated by a majority of use on weekends, and the other with continuous use throughout the week. This project provided important, but rarely captured, metrics about patterns of OHV use in a remote, mountainous region of Colorado. The techniques described here can provide land managers with a quantitative evaluation of OHV use across the landscape, an essential foundation for travel management planning. They also provide researchers with robust tools to further investigate the impacts of OHV use.
Maguire, Roma; Fox, Patricia A; McCann, Lisa; Miaskowski, Christine; Kotronoulas, Grigorios; Miller, Morven; Furlong, Eileen; Ream, Emma; Armes, Jo; Patiraki, Elisabeth; Gaiger, Alexander; Berg, Geir V; Flowerday, Adrian; Donnan, Peter; McCrone, Paul; Apostolidis, Kathi; Harris, Jenny; Katsaragakis, Stylianos; Buick, Alison R; Kearney, Nora
2017-01-01
Introduction While some evidence exists that real-time remote symptom monitoring devices can decrease morbidity and prevent unplanned admissions in oncology patients, overall, these studies have significant methodological weaknesses. The electronic Symptom Management using the Advanced Symptom Management System (ASyMS) Remote Technology (eSMART) study is designed to specifically address these weaknesses with an appropriately powered, repeated-measures, parallel-group stratified randomised controlled trial of oncology patients. Methods and analysis A total of 1108 patients scheduled to commence first-line chemotherapy (CTX) for breast, colorectal or haematological cancer will be recruited from multiple sites across five European countries. Patients will be randomised (1:1) to the ASyMS intervention (intervention group) or to standard care currently available at each site (control group). Patients in the control and intervention groups will complete a demographic and clinical questionnaire, as well as a set of valid and reliable electronic patient-reported outcome measures at enrolment, after each of their CTX cycles (up to a maximum of six cycles) and at 3, 6, 9 and 12 months after completion of their sixth cycle of CTX. Outcomes that will be assessed include symptom burden (primary outcome), quality of life, supportive care needs, anxiety, self-care self-efficacy, work limitations and cost effectiveness and, from a health professional perspective, changes in clinical practice (secondary outcomes). Ethics and dissemination Ethical approval will be obtained prior to the implementation of all major study amendments. Applications will be submitted to all of the ethics committees that granted initial approval. eSMART received approval from the relevant ethics committees at all of the clinical sites across the five participating countries. In collaboration with the European Cancer Patient Coalition (ECPC), the trial results will be disseminated through publications in scientific journals, presentations at international conferences, and postings on the eSMART website and other relevant clinician and consumer websites; establishment of an eSMART website (www.esmartproject.eu) with publicly accessible general information; creation of an eSMART Twitter Handle, and production of a toolkit for implementing/utilising the ASyMS technology in a variety of clinical practices and other transferable health care contexts. Trial registration number NCT02356081. PMID:28592577
NASA Astrophysics Data System (ADS)
Kielkopf, John F.; Carter, B.; Brown, C.; Hart, R.; Hay, J.; Waite, I.
2007-12-01
The Digital Science Partnership, a collaboration of the University of Louisville and the University of Southern Queensland, operates a pair of 0.5-meter telescopes for teaching, research, and informal education. The instruments were installed at sites near Toowoomba, Australia, and Louisville, Kentucky in 2006. The Planewave Instruments optical systems employ a unique Dall-Kirkham design incorporating a two-element corrector that demagnifies the image, flattens the focal plane, and reduces coma. These instruments have a moderately fast f/6.8 focal ratio and maintain image quality with little vignetting over a field 42 mm in diameter (0.7 degree). With a 9-micron pixel CCD such as the KAF-6303E, the image scale of 0.55 seconds of arc per pixel typically yields seeing-limited image quality at our sites. The telescopes and their enclosure are operated in a live remote observing mode through Linux-based software, including a dome-control system that uses RFID tags for absolute rotation encoding. After several months of testing and development we have examples of images and photometry from both sites that illustrate the performance of the system. We will discuss image quality, as well as practical matters such as pointing accuracy and field acquisition, auto-guiding, communication latency in large file transfer, and our experience with remote observing assisted by teleconferencing. Time-delay-integration (TDI) imaging, in which the telescope is stationary while the CCD is clocked to track in right ascension, is under study. The technique offers wide fields of view with very high signal-to-noise ratio, and can be implemented in robotically operated instruments used in monitoring, rapid-response, and educational programs. Results for conventional and TDI imaging from the dark site in Australia compared to the brighter suburban site in Kentucky show the benefits of access to dark sites through international partnerships that remote operation technology offers.
Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel
2017-12-18
Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remote sensing of environmental disturbance
NASA Technical Reports Server (NTRS)
Latham, J. P.
1972-01-01
Color, color infrared, and minus-blue films obtained by RB-57 remote sensing aircraft at an altitude of 60,000 feet over Boca Raton and Southeast Florida Earth Resources Test Site were analyzed for nine different types of photographic images of the geographic patterns of the surface. Results of these analyses are briefly described.
Identification of expansive soils using remote sensing and in-situ field measurements : phase I.
DOT National Transportation Integrated Search
2012-10-01
Researchers at the University of Arkansas have conducted research on the suitability of using remote sensing techniques (radar and LIDAR) to monitor the shrink-swell behavior of an expansive clay material in a field test site as part of the Mack Blac...
Archaeology, historical site risk assessment and monitoring by UAV: approaches and case studies
NASA Astrophysics Data System (ADS)
Pecci, Antonio; Masini, Nicola
2016-04-01
Non-invasive methods for archaeological research, like geophysical prospecting, aerial and satellite remote sensing, integrated with field survey activity, can make a large quantity of data essential for both operational uses and scientific purposes: from the detection of buried remains to risk assessment and monitoring (Lasaponara & Masini 2012; 2013; Lasaponara et al. 2016). Among the latest non-invasive methods there are the unmanned air vehicle (UAV) platforms, a real innovation, which proved to be capable for a variety of fields of applications, from the topographic survey to the monitoring of infrastructures. In the field of cultural heritage, for purposes ranging from the documentation to the detection of archaeological features, the use of UAVs is extremely functional, efficient and low-cost. Moreover, UAV flight requires much less time than that required by an Aircraft. A traditional aircraft must take off from an airport, sometimes far from the work area, while a drone, particularly rotary wing, can be transported in the area of interest and take off directly from there in a few minutes. The reason of the success of UAV are also the innovative vision, the very high-resolution of the obtainable products (orthophoto, digital elevations models) and the availability of easy tools of image processing based on Structure from Motion (SfM). (Neitzel & Klonowski 2011; Nex & Remondino 2013). SfM is a range imaging technique which allows to estimate three-dimensional objects from two-dimensional image sequences which may be coupled with local motion signals. Respect to conventional photogrammetry which requires a single stereo-pair, SfM needs multiple, overlapping photographs as input to feature extraction and 3-D reconstruction algorithms. In SfM the geometry of the scene, camera positions and orientation are solved simultaneously using a highly redundant, iterative bundle adjustment procedure, based on a database of features automatically extracted from a set of multiple overlapping images. The usefulness of UAV-based investigations has been given by its integrability with other methods of remote sensing including geophysics, optical and SAR satellite remote sensing. The presentation deals with the methodological approaches and the results in three historical sites for different applications such as: 1) archaeological site discovery, 2) the study and observation of archaeological looting and 3) the 3d reconstruction of building and sites. In the case 1) UAV has been used for the creation of orthophotos and digital elevantion models (DEMs) as well as the identification of archaeological marks and microrelief, as proxy indicators of the presence of archaeological buried remains. The obtained information have been compared and integrated with those provided by georadar and geomagnetic prospections. The investigated site is a medieval settlement, including a benedectine monastery, dated to 12-15th century. It is San Pietro a Cellaria, located in the territory of Calvello, in Basilicata (Southern Italy). The multisensor integrated approach allowed to identify several features referable to buried structures of the monastery (Leucci et al. 2015; Roubis et al. 2015). In the case 2) UAVs have been used for the identification and analysis of traces of grave robbers, in the territory of Anzi (Basilicata). Since the end of the 18th century to the first half of the 20th century, hundreds of tombs of the Archaic, Lucan and Roman age have been destroyed and stolen. The case 3) is related to the ceremonial centre of Pachacamac in Peru, which was investigated for several years by the international mission ITACA (Italian scientific mission for heritage Conservation and Archaeogeophysics) of IBAM/IMAA CNR of Potenza (Italy) (Lasaponara et al. 2016b). For more than 2,000 years, Pachacamac was one of the main centers of religious cult keeping this role unchanged in different historical periods and for different cultures such as Chavin, Lima, Huari, Ychma and Inca. A test site has been selected to assess the capability of SAR satellite data for the identification of earthen archaeological features. UAV surveys have been performed to provide a very detail DEM enabling us to analyze and interpret the radar signal backscattering behaviour of archaeological microrelief and structures. In all the three applications UAV proved to be an effective, user-friendly, less time consuming, flexible tool for a number of applications and aims ranging from from the site detection to the risk evaluation of archaeological interest areas. References Lasaponara R., Masini N. 2012. Remote Sensing in Archaeology: From Visual Data Interpretation to Digital Data Manipulation, In: Lasaponara R., Masini N. (Eds) 2012, Satellite Remote Sensing: a new tool for Archaeology, Springer, Verlag Berlin Heidelberg, ISBN 978-90-481-8800-0, pp. 3-16, doi : 10.1007/978-90-481-8801-7_1. Lasaponara R., Masini N. 2013, Satellite Synthetic Aperture Radar in Archaeology and Cultural Landscape: An Overview. Archaeological Prospection, 20, 71-78, doi: 10.1002/arp.1452 Lasaponara R., Leucci G., Masini N., Persico R., Scardozzi G. 2016a. Towards an operative use of remote sensing for exploring the past using satellite data: The case study of Hierapolis (Turkey), Remote sensing of Environment, 174 (2016) : 148-164, doi:10.1016/j.rse.2015.12.016 Lasaponara R., Masini N., Pecci A., Perciante F., Pozzi Escot D., Rizzo E., Scavone M., Sileo M. 2016b, Qualitative evaluation of COSMO SkyMed in the detection of earthen archaeological remains: the case of Pachamacac (Peru)", Journal of Cultural heritage, 2016, in press. Leucci G., Masini N., Rizzo E., Capozzoli L., De Martino G. et al., Integrated Archaeogeophysical Approach for the Study of a Medieval Monastic Settlement in Basilicata, Open Archaeology 2015; 1: 236-246, doi: 10.1515/opar-2015-0014. F. Neitzel, J. Klonowski, Mobile 3d mapping with a low-cost UAV system, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXVIII-1/C22 (2011) 39-44. F. Nex, F. Remondino, UAV for 3D Mapping Applications: A Review. Applied Geomatics, 6 (2013) 1-15. D. Roubis, F. Sogliani, N Masini, V Vitale, G Leucci, E Rizzo, Archeologia dei paesaggi montani in Basilicata: una ricerca integata nel territorio di Calvello, PZ (Basilicata), "Il capitale Culturale". Studies on the Value of Cultural Heritage, XII (2015), 385-419, ISSN 2039-2362
NASA Astrophysics Data System (ADS)
Dujardin, J.; Boel, S.; Anibas, C.; Batelaan, O.; Canters, F.
2009-04-01
Countries around the world have problems with contaminated brownfield sites as resulting from a relatively anarchic economical and industrial development during the 19th and 20th centuries. Since a few decades policy makers and stakeholders have become more aware of the risk posed by these sites because some of these sites present direct public hazards. Water is often the main vector of the mobility of contaminants. In order to propose remediation measures for the contaminated sites, it is required to describe and to quantify as accurately as possible the surface and subsurface water fluxes in the polluted site. In this research a modelling approach with integrated remote sensing analysis has been developed for accurately calculating water and contaminant fluxes on the polluted sites. Groundwater pollution in urban environments is linked to patterns of land use, so to identify the sources of contamination with great accuracy in urban environments it is essential to characterize the land cover in a detailed way. The use of high resolution spatial information is required because of the complexity of the urban land use. An object-oriented classification approach applied on high resolution satellite data has been adopted. Cluster separability analysis and visual interpretation of the image objects belonging to each cluster resulted in the selection of 8 land-cover categories (water, bare soil, meadow, mixed forest, grey urban surfaces, red roofs, bright roofs and shadow).To assign the image objects to one of the 8 selected classes a multiple layer perceptron (MLP) approach was adopted, using the NeuralWorks Predict software. After a post-classification shadow removal and a rule-based classification enhancement a kappa-value of 0.86 was obtained. Once the land cover was characterized, the groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow was simulated with GMS 6.0 in order to identify and budget the water fluxes on the brownfield. The obtained land use map shows to have a strong impact on the groundwater recharge, resulting in a high spatial variability. Simulated groundwater fluxes from brownfield to a receiving river where independently verified by measurements and simulation of groundwater-surface water interaction based on thermal gradients in the river bed. It is concluded that in order to better quantify total fluxes of contaminants from brownfields in the groundwater, remote sensing imagery can be operationally integrated in a modelling procedure. The developed methodology is applied to a case site in Vilvoorde, Brussels (Belgium).
Single transmission line data acquisition system
Fasching, George E.
1984-01-01
A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.
USDA-ARS?s Scientific Manuscript database
A continuous monitoring of daily evapotranspiration (ET) at field scale can be achieved by combining thermal infrared remote sensing data information from multiple satellite platforms. Here, an integrated approach to field scale ET mapping is described, combining multi-scale surface energy balance e...
Multiply-Constrained Semantic Search in the Remote Associates Test
ERIC Educational Resources Information Center
Smith, Kevin A.; Huber, David E.; Vul, Edward
2013-01-01
Many important problems require consideration of multiple constraints, such as choosing a job based on salary, location, and responsibilities. We used the Remote Associates Test to study how people solve such multiply-constrained problems by asking participants to make guesses as they came to mind. We evaluated how people generated these guesses…
Remote sensing for restoration planning: how the big picture can inform stakeholders
Susan Cordell; Erin J. Questad; Gregory P. Asner; Kealoha M. Kinney; Jarrod M. Thaxton; Amanda Uowolo; Sam Brooks; Mark W. Chynoweth
2016-01-01
The use of remote sensing in ecosystem management has transformed how land managers, practitioners, and policymakers evaluate ecosystem loss, gain, and change at multiple spatial and temporal scales. Less developed is the use of these spatial tools for planning, implementing, and evaluating ecosystem restoration projects and especially so in multifunctional...
DOT National Transportation Integrated Search
2012-03-01
This report introduces the design and implementation of a Web-based bridge information visual analytics system. This : project integrates Internet, multiple databases, remote sensing, and other visualization technologies. The result : combines a GIS ...
Remote sensing of a coupled carbon-water-energy-radiation balances from the Globe to plot scales
NASA Astrophysics Data System (ADS)
Ryu, Y.; Jiang, C.; Huang, Y.; Kim, J.; Hwang, Y.; Kimm, H.; Kim, S.
2016-12-01
Advancements in near-surface and satellite remote sensing technologies have enabled us to monitor the global terrestrial ecosystems at multiple spatial and temporal scales. An emergent challenge is how to formulate a coupled water, carbon, energy, radiation, and nitrogen cycles from remote sensing. Here, we report Breathing Earth System Simulator (BESS), which coupled radiation (shortwave, longwave, PAR, diffuse PAR), carbon (gross primary productivity, ecosystem respiration, net ecosystem exchange), water (evaporation), and energy (latent and sensible heat) balances across the global land at 1 km resolution, 8 daily between 2000 and 2015 using multiple satellite remote sensing. The performance of BESS was tested against field observations (FLUXNET, BSRN) and other independent products (MPI-BGC, MODIS, GLASS). We found that the coupled model, BESS showed on par with, or better performance than the other products which computed land surface fluxes individually. Lastly, we show one plot-level study conducted in a paddy rice to demonstrate how to couple radiation, carbon, water, nitrogen balances with a series of near-surface spectral sensors.
[Use of Remote Sensing for Crop and Soil Analysis
NASA Technical Reports Server (NTRS)
Johannsen, Chris J.
1997-01-01
The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.
Remote sensing for vineyard management
NASA Technical Reports Server (NTRS)
Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.
1980-01-01
Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.
Progress and needs in agricultural research, development, and applications programs
NASA Technical Reports Server (NTRS)
Moore, D. G.; Myers, V. I.
1977-01-01
The dynamic nature of agriculture requires repetitive resource assessments such as those from remote sensing. Until recently, the use of remote sensing in agriculture has been limited primarily to site specific investigations without large-scale evaluations. Examples of successful applications at various user levels are provided. The stage of development for applying remote sensing to many agricultural problems is assessed, and goals for planning future data characteristics for increased use in agriculture are suggested.
Hendy, Jane; Chrysanthaki, Theopisti; Barlow, James; Knapp, Martin; Rogers, Anne; Sanders, Caroline; Bower, Peter; Bowen, Robert; Fitzpatrick, Ray; Bardsley, Martin; Newman, Stanton
2012-11-15
To investigate organisational factors influencing the implementation challenges of redesigning services for people with long term conditions in three locations in England, using remote care (telehealth and telecare). Case-studies of three sites forming the UK Department of Health's Whole Systems Demonstrator (WSD) Programme. Qualitative research techniques were used to obtain data from various sources, including semi-structured interviews, observation of meetings over the course programme and prior to its launch, and document review. Participants were managers and practitioners involved in the implementation of remote care services. The implementation of remote care was nested within a large pragmatic cluster randomised controlled trial (RCT), which formed a core element of the WSD programme. To produce robust benefits evidence, many aspect of the trial design could not be easily adapted to local circumstances. While remote care was successfully rolled-out, wider implementation lessons and levels of organisational learning across the sites were hindered by the requirements of the RCT. The implementation of a complex innovation such as remote care requires it to organically evolve, be responsive and adaptable to the local health and social care system, driven by support from front-line staff and management. This need for evolution was not always aligned with the imperative to gather robust benefits evidence. This tension needs to be resolved if government ambitions for the evidence-based scaling-up of remote care are to be realised.
Light-switchable systems for remotely controlled drug delivery.
Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung
2017-12-10
Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.
2000-01-01
There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.
Remote sensing of the Canadian Arctic: Modelling biophysical variables
NASA Astrophysics Data System (ADS)
Liu, Nanfeng
It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic overestimation of 0.08, which was attributed to PAR absorption by soil that could not be excluded from the fAPAR calculation. This research clearly demonstrates that high spectral and spatial resolution remote sensing VIs can be used to successfully model Arctic biophysical variables. The methods and results presented in this research provided a guide for future studies aiming to model other Arctic biophysical variables through remote sensing data.
New information technology tools for a medical command system for mass decontamination.
Fuse, Akira; Okumura, Tetsu; Hagiwara, Jun; Tanabe, Tomohide; Fukuda, Reo; Masuno, Tomohiko; Mimura, Seiji; Yamamoto, Kaname; Yokota, Hiroyuki
2013-06-01
In a mass decontamination during a nuclear, biological, or chemical (NBC) response, the capability to command, control, and communicate is crucial for the proper flow of casualties at the scene and their subsequent evacuation to definitive medical facilities. Information Technology (IT) tools can be used to strengthen medical control, command, and communication during such a response. Novel IT tools comprise a vehicle-based, remote video camera and communication network systems. During an on-site verification event, an image from a remote video camera system attached to the personal protective garment of a medical responder working in the warm zone was transmitted to the on-site Medical Commander for aid in decision making. Similarly, a communication network system was used for personnel at the following points: (1) the on-site Medical Headquarters; (2) the decontamination hot zone; (3) an on-site coordination office; and (4) a remote medical headquarters of a local government office. A specially equipped, dedicated vehicle was used for the on-site medical headquarters, and facilitated the coordination with other agencies. The use of these IT tools proved effective in assisting with the medical command and control of medical resources and patient transport decisions during a mass-decontamination exercise, but improvements are required to overcome transmission delays and camera direction settings, as well as network limitations in certain areas.
USDA-ARS?s Scientific Manuscript database
The development of ecological sites as management units has emerged as a highly effective land management framework, but its utility has been limited by spatial ambiguity of ecological site locations in the U.S., lack of ecological site concepts in many other parts of the world, and the inability to...
Potential for remote sensing of agriculture from the international space station
NASA Astrophysics Data System (ADS)
Morgenthaler, George W.; Khatib, Nader
1999-01-01
Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make ``precision agriculture,'' i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during ``daylight hours'' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural ``truth'' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural ``truth'' site in eastern Colorado. The ``truth'' site was highly instrumented for measuring trace gas concentrations (NOx, SOx, CO2, O3, organics, and aerosols), ground water contamination via drain-tile catch from the fields, and Leaf Area Index (LAI). Also, a tethered balloon flight sampled the site's vertical air column and both aerial infrared photography and satellite imagery were acquired. This paper summarizes the 1998 activities in establishing and operating the ``truth'' site. The goal of such a ``truth'' site is to develop and validate precision agriculture predictive models to improve farming practices. ISS sensor testing can greatly accelerate development of such systems.
USDA-ARS?s Scientific Manuscript database
The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...
Salinity modeling by remote sensing in central and southern Iraq
NASA Astrophysics Data System (ADS)
Wu, W.; Mhaimeed, A. S.; Platonov, A.; Al-Shafie, W. M.; Abbas, A. M.; Al-Musawi, H. H.; Khalaf, A.; Salim, K. A.; Chrsiten, E.; De Pauw, E.; Ziadat, F.
2012-12-01
Salinization, leading to a significant loss of cultivated land and crop production, is one of the most active land degradation phenomena in the Mesopotamian region in Iraq. The objectives of this study (under the auspices of ACIAR and Italian Government) are to investigate the possibility to use remote sensing technology to establish salinity-sensitive models which can be further applied to local and regional salinity mapping and assessment. Case studies were conducted in three pilot sites namely Musaib, Dujaila and West Garraf in the central and southern Iraq. Fourteen spring (February - April), seven June and four summer Landsat ETM+ images in the period 2009-2012, RapidEye data (April 2012), and 95 field EM38 measurements undertaken in this spring and summer, 16 relevant soil laboratory analysis result (Dujaila) were employed in this study. The procedure we followed includes: (1) Atmospheric correction using FLAASH model; (2) Multispectral transformation of a set of vegetation and non-vegetation indices such as GDVI (Generalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), SARVI (Soil Adjusted and Atmospherically Resistant Vegetation Index), NDII (Normalized Difference Infrared Index), Principal Components and surface temperature (T); (3) Derivation of the spring maximum (Musaib) and annual maximum (Dujaila and West Garraf) value in each pixel of each index of the observed period to avoid problems related to crop rotation (e.g. fallow) and the SLC-Off gaps in ETM+ images; (4) Extraction of the values of each vegetation and non-vegetation index corresponding to the field sampling locations (about 3 to 5 controversial samples very close to the roads or located in fallow were excluded); and (5) Coupling remote sensing indices with the available EM38 and soil electrical conductivity (EC) data using multiple linear least-square regression model at the confidence level of 95% in a stepwise (forward) manner. The results reveal that soil salinity and EM38 readings are negatively correlated with the different vegetation indices, especially, GDVI and NDVI, and positively correlated with T. The models obtained for the pilot sites are presented in Table 1. Although we are still waiting for more laboratory analytical result and satellite imagery for more comprehensive analysis, it is clearly possible to build up salinity models by remote sensing, on which further salinity mapping and assessment can be based. It is also noted that among all the vegetation indices, GDVI is the best salinity indicator followed by NDVI and T. RapidEye image shows lower correlation with EM38 measurements and EC because fallow and crop rotation issue cannot be sorted out by one acquisition image.Table 1: Salinity models obtained from the pilot sitesNote: EMV- Vertical reading of EM38, EC - Electrical conductivity in dS/m
System design package for the solar heating and cooling central data processing system
NASA Technical Reports Server (NTRS)
1978-01-01
The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.
Teleoperated position control of a PUMA robot
NASA Technical Reports Server (NTRS)
Austin, Edmund; Fong, Chung P.
1987-01-01
A laboratory distributed computer control teleoperator system is developed to support NASA's future space telerobotic operation. This teleoperator system uses a universal force-reflecting hand controller in the local iste as the operator's input device. In the remote site, a PUMA controller recieves the Cartesian position commands and implements PID control laws to position the PUMA robot. The local site uses two microprocessors while the remote site uses three. The processors communicate with each other through shared memory. The PUMA robot controller was interfaced through custom made electronics to bypass VAL. The development status of this teleoperator system is reported. The execution time of each processor is analyzed, and the overall system throughput rate is reported. Methods to improve the efficiency and performance are discussed.
DOT National Transportation Integrated Search
1971-06-01
An analysis has been made of the potentialities and problems involved in assigning some computer processing and control functions to the remote sites in an upgraded third generation air traffic control system. Interrogator sites offer the most fruitf...
NASA Astrophysics Data System (ADS)
Kielkopf, John F.; Hart, R.; Carter, B.; Collins, K. A.; Brown, C.; Hay, J.; Hons, A.; Marsden, S.
2014-01-01
The University of Southern Queensland's Mt. Kent Observatory in Queensland, Australia, and the University of Louisville's Moore Observatory in Kentucky, USA, are collaborating in the development of live remote observing for research, student training, and education. With a focus on flexible operation assisted by semi-autonomous controllers, rather than completely robotic data acquisition, the partnership provides interactive hands-on experience to students at all levels, optimized performance based on real-time observations, and flexible scheduling for transient events and targets of opportunity. Two sites on opposites sides of the globe cover the entire sky, and for equatorial regions allow nearly continuous coverage. The facilites include 0.5-m corrected Dall-Kirkham (CDK) telescopes at both sites, a 0.6 m Ritchie-Chretien telescope at Moore, and a new Nasmyth design 0.7-meter CDK at Mt. Kent instrumented for milli-magnitude precision photometry and wide field imaging, with spectrographs under development. We will describe the operational and data acquisition software, recent research results, and how remote access is being made available to students and observers.
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Cabrol, N. A.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Fisher, G.; Hock, A. N.; Ori, G. G.
2005-01-01
The "Life in the Atacama" (LITA) project included two field trials during the 2004 field season, each of which lasted about a week. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. The sites for these trials were in different locations, and are designated "Site B" and "Site C" respectively. The primary objective of the experiment is to develop and test the means to locate, characterize, and identify habitats and life remotely through long-range roving, which included field testing the rover, named Zoe. Zoe has onboard autonomous navigation for long-range roving, a plow to overturn rocks and expose near-surface rock materials, and high-resolution imaging, spectral, and fluorescence sampling capabilities. Highlights from the experiment included characterizing the geology in and near the landing ellipse, assessing pre-mission, satellite-based hypotheses, and improving the approach and procedures used by the remote and field teams for upcoming experiments through combined satellite, field-based, and microscopic perspectives and long-range roving.
a Hyperspectral Based Method to Detect Cannabis Plantation in Inaccessible Areas
NASA Astrophysics Data System (ADS)
Houmi, M.; Mohamadi, B.; Balz, T.
2018-04-01
The increase in drug use worldwide has led to sophisticated illegal planting methods. Most countries depend on helicopters, and local knowledge to identify such illegal plantations. However, remote sensing techniques can provide special advantages for monitoring the extent of illegal drug production. This paper sought to assess the ability of the Satellite remote sensing to detect Cannabis plantations. This was achieved in two stages: 1- Preprocessing of Hyperspectral data EO-1, and testing the capability to collect the spectral signature of Cannabis in different sites of the study area (Morocco) from well-known Cannabis plantation fields. 2- Applying the method of Spectral Angle Mapper (SAM) based on a specific angle threshold on Hyperion data EO-1 in well-known Cannabis plantation sites, and other sites with negative Cannabis plantation in another study area (Algeria), to avoid any false Cannabis detection using these spectra. This study emphasizes the benefits of using hyperspectral remote sensing data as an effective detection tool for illegal Cannabis plantation in inaccessible areas based on SAM classification method with a maximum angle (radians) less than 0.03.
A Systems Analysis of Food Service at Army Remote and Isolated Sites
1985-06-01
operational support such as cleaning supplies , plateware, silverware, and pots and pans. Of these eight sites, one site was supported by the Belgique, one...8217.^ Army TISA Army Commissary AF Local Other (specify) Non-Foo Items Cleaning Supplies Location & % Solvent Resupply schedule NIS -82- "A
ERIC Educational Resources Information Center
Descy, Don E.
1993-01-01
This introduction to the Internet with examples for Macintosh computer users demonstrates the ease of using e-mail, participating on discussion group listservs, logging in to remote sites using Telnet, and obtaining resources using the File Transfer Protocol (FTP). Included are lists of discussion groups, Telnet sites, and FTP Archive sites. (EA)
Software to Facilitate Remote Sensing Data Access for Disease Early Warning Systems
Liu, Yi; Hu, Jiameng; Snell-Feikema, Isaiah; VanBemmel, Michael S.; Lamsal, Aashis; Wimberly, Michael C.
2015-01-01
Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands. PMID:26644779
AXARM: An Extensible Remote Assistance and Monitoring Tool for ND Telerehabilitation
NASA Astrophysics Data System (ADS)
Bueno, Antonio; Marzo, Jose L.; Vallejo, Xavier
AXARM is a multimedia tool for rehabilitation specialists that allow remote assistance and monitoring of patients activities. This tool is the evolution of the work done in 2005-06 between the BCDS research group of UdG and the Multiple Sclerosis Foundation (FEM in Spanish) in Girona under the TRiEM project. Multiple Sclerosis (MS) is a neurodegenerative disease (ND) that can provoke significant exhaustion in patients even just by going to the medical centre for rehabilitation or regular checking visits. The tool presented in this paper allows the medical staff to remotely carry on patient consults and activities from their home, minimizing the displacements to medical consulting. AXARM has a hybrid P2P architecture and consists essentially of a cross-platform videoconference system, with audio/video recording capabilities. The system can easily be extended to include new capabilities like, among others, asynchronous activities whose result can later be analyzed by the medical personnel.
Autonomous Magnetic Microrobots by Navigating Gates for Multiple Biomolecules Delivery.
Hu, Xinghao; Lim, Byeonghwa; Torati, Sri Ramulu; Ding, Junjia; Novosad, Valentine; Im, Mi-Young; Reddy, Venu; Kim, Kunwoo; Jung, Eunjoo; Shawl, Asif Iqbal; Kim, Eunjoo; Kim, CheolGi
2018-05-08
The precise delivery of biofunctionalized matters is of great interest from the fundamental and applied viewpoints. In spite of significant progress achieved during the last decade, a parallel and automated isolation and manipulation of rare analyte, and their simultaneous on-chip separation and trapping, still remain challenging. Here, a universal micromagnet junction for self-navigating gates of microrobotic particles to deliver the biomolecules to specific sites using a remote magnetic field is described. In the proposed concept, the nonmagnetic gap between the lithographically defined donor and acceptor micromagnets creates a crucial energy barrier to restrict particle gating. It is shown that by carefully designing the geometry of the junctions, it becomes possible to deliver multiple protein-functionalized carriers in high resolution, as well as MCF-7 and THP-1 cells from the mixture, with high fidelity and trap them in individual apartments. Integration of such junctions with magnetophoretic circuitry elements could lead to novel platforms without retrieving for the synchronous digital manipulation of particles/biomolecules in microfluidic multiplex arrays for next-generation biochips. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Debnath, Mithu; Iungo, Giacomo Valerio; Brewer, W. Alan; ...
2017-03-29
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign, which was carried out at the Boulder Atmospheric Observatory (BAO) in spring 2015, multiple-Doppler scanning strategies were carried out with scanning wind lidars and Ka-band radars. Specifically, step–stare measurements were collected simultaneously with three scanning Doppler lidars, while two scanning Ka-band radars carried out simultaneous range height indicator (RHI) scans. The XPIA experiment provided the unique opportunity to compare directly virtual-tower measurements performed simultaneously with Ka-band radars and Doppler wind lidars. Furthermore, multiple-Doppler measurements were assessed against sonic anemometer data acquired from the meteorological tower (met-tower) present at the BAOmore » site and a lidar wind profiler. As a result, this survey shows that – despite the different technologies, measurement volumes and sampling periods used for the lidar and radar measurements – a very good accuracy is achieved for both remote-sensing techniques for probing horizontal wind speed and wind direction with the virtual-tower scanning technique.« less
Overview of the NASA Wallops Flight Facility Mobile Range Control System
NASA Technical Reports Server (NTRS)
Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.
1999-01-01
The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
Experience with a proposed teleradiology system for digital mammography
NASA Astrophysics Data System (ADS)
Saulnier, Emilie T.; Mitchell, Robert J.; Abdel-Malek, Aiman A.; Dudding, Kathryn E.
1995-05-01
Teleradiology offers significant improvement in efficiency and effectiveness over current practices in traditional film/screen-based diagnosis. In the context of digital mammography, the increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper describes a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. Experience with a testbed prototype is described. The telemammography architecture is intended to consist of a main mammography diagnostic site serving several remote screening sites. As patient exams become available, they are forwarded by an image server to the diagnostic site over a WAN communications link. A radiologist at the diagnostic site views a patient exam as it arrives, interprets it, and then relays a report back to the technician at the remote site. A secondary future scenario consists of mobile units which forward images to a remote site, which then forwards them to the main diagnostic site. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA). A specification of vendor-independent data formats and data transfer services for digital medical images, DICOM specifies a protocol suite starting at the application layer downward, including the TCP/IP layers. The current DICOM definition does not provide an information element that is specifically tailored to mammography, so we have used the DICOM secondary capture data format for the mammography images. In conclusion, experience with the testbed is described, as is performance analysis related to selection of network components needed to extend this architecture to clinical evaluation. Recommendations are made as to the critical areas for future work.
Regional Drought Monitoring Based on Multi-Sensor Remote Sensing
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Im, Jungho; Park, Seonyoung
2014-05-01
Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety of land cover types. Remote sensing data from the Tropical Rainfall Measuring Mission satellite (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) sensors were obtained for the period from 2000 to 2012, and observation data from 99 weather stations, 441 streamflow gauges, as well as the gridded observation data from Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) were obtained for validation. The objective blends of multiple indicators helped better assessment of various types of drought, and can be useful for drought early warning system. Since the improved SDCI is based on remotely sensed data, it can be easily applied to regions with limited or no observation data for drought assessment and monitoring.
Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1972-01-01
A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.
On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers
NASA Astrophysics Data System (ADS)
Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.
2017-10-01
This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.
Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.
1997-12-16
A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.
Differences Between S/X and VLBI2010 Operation
NASA Technical Reports Server (NTRS)
Hase, Hayo; Himwich, Ed; Neidhardt, Alexander
2010-01-01
The intended VLBI2010 operation has some significant differences to the current S/X operation. The presentation focuses on the problem of extending the operation of a global VLBI network to continuous operation within the frame of the same given amount of human resources. Remote control operation is a suitable solution to minimize operational expenses. The implementation of remote control operation requires more site specific information. A concept of a distributed-centralized remote control of the operation and its implications is presented.
Implementing an Education and Outreach Program for the Gemini Observatory in Chile.
NASA Astrophysics Data System (ADS)
Garcia, M. A.
2006-08-01
Beginning in 2001, the Gemini Observatory began the development of an innovative and aggressive education and outreach program at its Southern Hemisphere site in northern Chile. A principal focus of this effort is centered on local education and outreach to communities surrounding the observatory and its base facility in La Serena Chile. Programs are now established with local schools using two portable StarLab planetaria, an internet-based teacher exchange called StarTeachers and multiple partnerships with local educational institutions. Other elements include a CD-ROM-based virtual tour that allows students, teachers and the public to experience the observatory's sites in Chile and Hawaii. This virtual environment allows interaction using a variety of immersive scenarios such as a simulated observation using real data from Gemini. Pilot projects like "Live from Gemini" are currently being developed which use internet videoconferencing technologies to bring the observatory's facilities into classrooms at universities and remote institutions. Lessons learned from the implementation of these and other programs will be introduced and the challenges of developing educational programming in a developing country will be shared.
Network Extender for MIL-STD-1553 Bus
NASA Technical Reports Server (NTRS)
Marcus, Julius; Hanson, T. David
2003-01-01
An extender system for MIL-STD-1553 buses transparently couples bus components at multiple developer sites. The bus network extender is a relatively inexpensive system that minimizes the time and cost of integration of avionic systems by providing a convenient mechanism for early testing without the need to transport the usual test equipment and personnel to an integration facility. This bus network extender can thus alleviate overloading of the test facility while enabling the detection of interface problems that can occur during the integration of avionic systems. With this bus extender in place, developers can correct and adjust their own hardware and software before products leave a development site. Currently resident at Johnson Space Center, the bus network extender is used to test the functionality of equipment that, although remotely located, is connected through a MILSTD- 1553 bus. Inasmuch as the standard bus protocol for avionic equipment is that of MIL-STD-1553, companies that supply MIL-STD-1553-compliant equipment to government or industry and that need long-distance communication support might benefit from this network bus extender
Dyson, Kate; Kruger, Estie; Tennant, Marc
2012-12-01
This study examines the cost effectiveness of a model of remote area oral health service. Retrospective financial analysis. Rural and remote primary health services. Clinical activity data and associated cost data relating to the provision of a networked visiting oral health service by the Centre for Rural and Remote Oral Health formed the basis of the study data frameset. The cost-effectiveness of the Centre's model of service provision at five rural and remote sites in Western Australia during the calendar years 2006, 2008 and 2010 was examined in the study. Calculations of the service provision costs and value of care provided were made using data records and the Fee Schedule of Dental Services for Dentists. The ratio of service provision costs to the value of care provided was determined for each site and was benchmarked against the equivalent ratios applicable to large scale government sector models of service provision. The use of networked models have been effective in other disciplines but this study is the first to show a networked hub and spoke approach of five spokes to one hub is cost efficient in remote oral health care. By excluding special cost-saving initiatives introduced by the Centre, the study examines easily translatable direct service provision costs against direct clinical care outcomes in some of Australia's most challenging locations. This study finds that networked hub and spoke models of care can be financially efficient arrangements in remote oral health care. © 2012 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.
Doi, Ryoichi
2012-09-01
Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Boyd, T. J.; Anastasiou, C. J.; Thao, P. T. P.; Reid, J. S.
2016-02-01
Optical measurements (absorbance, EEM fluorescence, remote sensing reflectance) and concurrently-collected sensor-based data (CDOM, chlorophyll-a, salinity, turbidity, and temperature) were used to link optical properties to water mass characteristics. Data and samples were collected during four field events in the Philippines (SEP2011, SEP2012 - transects from Manila to Palawan Island), Thailand (MAR2012 - Pattaya Beach area) and Vietnam (MAR2012 - Nha Trang and Ha Long Bay). EEM fluorescence spectra from each site were modeled using PARAFAC to identify representative fluorophores. Remote sensing reflectance was modeled using PCA, determining spectral loadings showing variation in samples from each site. These synthesized model data and sensor-based measurements were collated and ordinated using PCA to determine if optical properties could be linked to water quality and biogeochemical measures. PCA models at each site showed stations nearest to the coastline falling near or outside 95% confidence regions. Initial results indicate protein-like fluorophores were found in lower salinity waters and more heavily-impacted regions (Manila Bay - Philippines, Nha Trang River - Vietnam, Bang Pakong River - Thailand). Spectral slope and an component loading from remote sensing reflectance appeared to co-vary with sensor-derived CDOM fluorescence. Results from intra- and inter-site comparisons and linkages to biogeochemical parameters will be presented.
Richardson, Andrew D; Hufkens, Koen; Milliman, Tom; Frolking, Steve
2018-04-09
Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both "greenness rising" and "greenness falling" transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground.
Kleptoparasitic behavior and species richness at Mt. Graham red squirrel middens
Andrew J. Edelman; John L. Koprowski; Jennifer L. Edelman
2005-01-01
We used remote photography to assess the frequency of inter- and intra-specific kleptoparasitism and species richness at Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis) middens. Remote cameras and conifer cones were placed at occupied and unoccupied middens, and random sites. Species richness of small mammals was higher at red squirrel...
Remote Instrumentation for Teaching Laboratory
ERIC Educational Resources Information Center
Baran, Jit; Currie, Ron; Kennepohl, Dietmar
2004-01-01
The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
ERIC Educational Resources Information Center
Osborne, Sam
2015-01-01
Remote Australian Aboriginal and Torres Strait Islander schools and communities are diverse and complex sites shaped by contrasting geographies, languages, histories and cultures, including historical and ongoing relationships with colonialism, and connected yet contextually unique epistemologies, ontologies and cosmologies. This paper explores…
Engineering Education Using a Remote Laboratory through the Internet
ERIC Educational Resources Information Center
Axaopoulos, Petros J.; Moutsopoulos, Konstantinos N.; Theodoridis, Michael P.
2012-01-01
An experiment using real hardware and under real test conditions can be remotely conducted by engineering students and other interested individuals in the world via the Internet and with the capability of live video streaming from the test site. The presentation of this innovative experiment refers to the determination of the current voltage…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... apply to Streaming Quote Traders (``SQTs''), \\5\\ Remote Streaming Quote Traders (``RSQTs'') \\6\\ and... generate and submit option quotations electronically in options to which such SQT is assigned. \\6\\ A Remote....C. 552, will be available for Web site viewing and printing in the Commission's Public Reference...
USDA-ARS?s Scientific Manuscript database
Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled...
Characterization of water bodies for mosquito habitat using a multi-sensor approach
NASA Astrophysics Data System (ADS)
Midekisa, A.; Wimberly, M. C.; Senay, G. B.
2012-12-01
Malaria is a major health problem in Ethiopia. Anopheles arabiensis, which inhabits and breeds in a variety of aquatic habitats, is the major mosquito vector for malaria transmission in the region. In the Amhara region of Ethiopia, mosquito breeding sites are heterogeneously distributed. Therefore, accurate characterization of aquatic habitats and potential breeding sites can be used as a proxy to measure the spatial distribution of malaria risk. Satellite remote sensing provides the ability to map the spatial distribution and monitor the temporal dynamics of surface water. The objective of this study is to map the probability of surface water accumulation to identify potential vector breeding sites for Anopheles arabiensis using remote sensing data from sensors at multiple spatial and temporal resolutions. The normalized difference water index (NDWI), which is based on reflectance in the green and the near infrared (NIR) bands were used to estimate fractional cover of surface water. Temporal changes in surface water were mapped using NDWI indices derived from MODIS surface reflectance product (MOD09A1) for the period 2001-2012. Landsat TM and ETM+ imagery were used to train and calibrate model results from MODIS. Results highlighted interannual variation and seasonal changes in surface water that were observed from the MODIS time series. Static topographic indices that estimate the potential for water accumulation were generated from 30 meter Shuttle Radar Topography Mission (SRTM) elevation data. Integrated fractional surface water cover was developed by combining the static topographic indices and dynamic NDWI indices using Geographic Information System (GIS) overlay methods. Accuracy of the results was evaluated based on ground truth data that was collected on presence and absence of surface water immediately after the rainy season. The study provided a multi-sensor approach for mapping areas with a high potential for surface water accumulation that are potential breeding habitats for anopheline mosquitoes. The resulting products are useful for public health decision making towards effective prevention and control of the malaria burden in the Amhara region of Ethiopia.
Remote sensing techniques in cultural resource management archaeology
NASA Astrophysics Data System (ADS)
Johnson, Jay K.; Haley, Bryan S.
2003-04-01
Cultural resource management archaeology in the United States concerns compliance with legislation set in place to protect archaeological resources from the impact of modern activities. Traditionally, surface collection, shovel testing, test excavation, and mechanical stripping are used in these projects. These methods are expensive, time consuming, and may poorly represent the features within archaeological sites. The use of remote sensing techniques in cultural resource management archaeology may provide an answer to these problems. Near-surface geophysical techniques, including magnetometry, resistivity, electromagnetics, and ground penetrating radar, have proven to be particularly successful at efficiently locating archaeological features. Research has also indicated airborne and satellite remote sensing may hold some promise in the future for large-scale archaeological survey, although this is difficult in many areas of the world where ground cover reflect archaeological features in an indirect manner. A cost simulation of a hypothetical data recovery project on a large complex site in Mississippi is presented to illustrate the potential advantages of remote sensing in a cultural resource management setting. The results indicate these techniques can save a substantial amount of time and money for these projects.
Control site location and transcriptional regulation in Escherichia coli.
Collado-Vides, J; Magasanik, B; Gralla, J D
1991-01-01
The regulatory regions for 119 Escherichia coli promoters have been analyzed, and the locations of the regulatory sites have been cataloged. The following observations emerge. (i) More than 95% of promoters are coregulated with at least one other promoter. (ii) Virtually all sigma 70 promoters contain at least one regulatory site in a proximal position, touching at least position -65 with respect to the start point of transcription. There are not yet clear examples of upstream regulation in the absence of a proximal site. (iii) Operators within regulons appear in very variable proximal positions. By contrast, the proximal activation sites of regulons are much more fixed. (iv) There is a forbidden zone for activation elements downstream from approximately position -20 with respect to the start of transcription. By contrast, operators can occur throughout the proximal region. When activation elements appear in the forbidden zone, they repress. These latter examples usually involve autoregulation. (v) Approximately 40% of repressible promoters contain operator duplications. These occur either in certain regulons where duplication appears to be a requirement for repressor action or in promoters subject to complex regulation. (vi) Remote operator duplications occur in approximately 10% of repressible promoters. They generally appear when a multiple promoter region is coregulated by cyclic AMP receptor protein. (vii) Sigma 54 promoters do not require proximal or precisely positioned activator elements and are not generally subject to negative regulation. Rationales are presented for all of the above observations. PMID:1943993
Ground Truth Sampling and LANDSAT Accuracy Assessment
NASA Technical Reports Server (NTRS)
Robinson, J. W.; Gunther, F. J.; Campbell, W. J.
1982-01-01
It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types.
Public health applications of remote sensing of vector borne and parasitic diseases
NASA Technical Reports Server (NTRS)
1976-01-01
Results of an investigation of the potential application of remote sensing to various fields of public health are presented. Specific topics discussed include: detection of snail habitats in connection with the epidemiology of schistosomiasis; the detection of certain Anopheles breeding sites, and location of transient human populations, both in connection with malaria eradication programs; and detection of overwintering population sites for the primary screwworm (Cochliomyia americana). Emphasis was placed on the determination of ground truth data on the biological, chemical, and physical characteristics of ground waters which would or would not support the growth of significant populations of mosquitoes.
Slonecker, E. Terrence; Fisher, Gary B.
2009-01-01
This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
This bibliography contains general studies as well as chemical analysis of archaeological specimens. The chemical analysis is mainly activation analysis of articles such as metals, pottery, coins, paintings, soils, glass and paper from Medieval, Grecian, Egyptian, Mayan, and prehistoric times. The general studies include results of excavation from the United States. Also covered is work on preservation of artifacts and remote sensing for the site location. (This updated bibliography contains 237 citations, none of which are new entries to the previous edition.)
NASA Technical Reports Server (NTRS)
Sand, F.; Christie, R.
1975-01-01
Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.
Della Mea, Vincenzo; Carbone, Antonino; Greatti, Ermes; Beltrami, Carlo A
2003-01-01
We used set-top videoconferencing equipment connected by ISDN at 384 kbit/s for six educational seminars held between the University of Udine (the local site) and the National Cancer Institute in Aviano (the remote site), 60 km away. User satisfaction was evaluated by questionnaire. The median length of seminars was 58 min (range 48-61 min), followed by a 20 min (15-26 min) discussion. Eighty-two users answered the questionnaire (a 43% response rate): 56 in Udine (a median of 11 per seminar) and 26 in Aviano (a median of 5 per seminar). Answers to the questions were similar at the two sites. Videoconferencing did not affect the users' experience of attending the seminars, as both interest and clarity were similar at the local and remote site. The results suggested that videoconferencing is a viable method for delivering seminars in oncopathology, where image quality is important.
The HEPiX Virtualisation Working Group: Towards a Grid of Clouds
NASA Astrophysics Data System (ADS)
Cass, Tony
2012-12-01
The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.
The relationship between orbital, earth-based, and sample data for lunar landing sites
NASA Technical Reports Server (NTRS)
Clark, P. E.; Hawke, B. R.; Basu, A.
1990-01-01
Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.
Interactive intelligent remote operations: application to space robotics
NASA Astrophysics Data System (ADS)
Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.
1999-11-01
A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.
Energy Remote Sensing Applications Projects at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Norman, S. D.; Likens, W. C.; Mouat, D. A.
1982-01-01
The NASA Ames Research Center is active in energy projects primarily in the role of providing assistance to users in the solution of a number of problems related to energy. Data bases were produced which can be used, in combination with other sources of information, to solve spatially related energy problems. Six project activities at Ames are described which relate to energy and remote sensing. Two projects involve power demand forecasting and estimations using remote sensing and geographic information systems; two others involve transmission line routing and corridor analysis; one involves a synfuel user needs assessment through remote sensing; and the sixth involves the siting of energy facilities.
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stoiber, R. E. (Principal Investigator)
1983-01-01
Computer classification of LANDSAT data was used for forest type mapping in New England. The ability to classify areas of hardwood, softwood, and mixed tree types was assessed along with determining clearcut regions and gypsy moth defoliation. Applications of the information to forest management and locating potential deer yards were investigated. The principal activities concerned with remote sensing of volcanic emissions centered around the development of remote sensors for SO2 and HCl gas, and their use at appropriate volcanic sites. Two major areas were investigated (Masaya, Nicaragua, and St. Helens, Washington) along with several minor ones.
Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing
NASA Astrophysics Data System (ADS)
Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.
2018-05-01
The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.
Communication network for decentralized remote tele-science during the Spacelab mission IML-2
NASA Technical Reports Server (NTRS)
Christ, Uwe; Schulz, Klaus-Juergen; Incollingo, Marco
1994-01-01
The ESA communication network for decentralized remote telescience during the Spacelab mission IML-2, called Interconnection Ground Subnetwork (IGS), provided data, voice conferencing, video distribution/conferencing and high rate data services to 5 remote user centers in Europe. The combination of services allowed the experimenters to interact with their experiments as they would normally do from the Payload Operations Control Center (POCC) at MSFC. In addition, to enhance their science results, they were able to make use of reference facilities and computing resources in their home laboratory, which typically are not available in the POCC. Characteristics of the IML-2 communications implementation were the adaptation to the different user needs based on modular service capabilities of IGS and the cost optimization for the connectivity. This was achieved by using a combination of traditional leased lines, satellite based VSAT connectivity and N-ISDN according to the simulation and mission schedule for each remote site. The central management system of IGS allows minimization of staffing and the involvement of communications personnel at the remote sites. The successful operation of IGS for IML-2 as a precursor network for the Columbus Orbital Facility (COF) has proven the concept for communications to support the operation of the COF decentralized scenario.
Smolyakov, Boris S; Makarov, Valeriy I; Shinkorenko, Marina P; Popova, Svetlana A; Bizin, Mikhail A
2014-05-01
Extensive forest fires occurred during the summer of 2012 in Siberia. This work presents the influence of long-range atmospheric smoke on the aerosol properties at urban, suburban and background sites, which are located 400-800 km from the fire source. The higher levels of submicron particles (PM1), organic (OC), secondary organic (SOC) and elemental (EC) carbon were observed at all sampling sites, whereas an increase in ionic species HCOO(-), K(+), NO3(-), and Cl(-) and a decrease in pH was higher at the background and suburban sites in comparison with the urban site. Other natural and anthropogenic factors appear to be more significant for ions Ca(2+) + Mg(2+), HCO3(-), NH4(+), SO4(2-) and Na(+). The present study indicates that the impact of remote fires on the aerosol characteristics depends on their background (without fires) levels at the sampling sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Case report: teledermatology and epiluminescence microscopy for the diagnosis of scabies.
Weinstock, M A; Kempton, S A
2000-07-01
We wish to share images from a patient seen in our teledermatology program. Due to the absence of on-site dermatology services at the Togus, Maine, Department of Veterans Affairs, and associated community clinics for veterans in Aroostook, Bangor, Calais, and Rumford, we created a program to provide dermatologic expertise from Providence, Rhode Island. Patients referred for this service were evaluated by a nurse practitioner, who obtained a history, performed a physical examination, and captured digital images of the affected area of skin, including epiluminescence microscopic images where indicated. These data were then retrieved at the Providence (host) site and reviewed by a dermatologist, who formulated an impression and plan that was then implemented by the remote site in Maine. This approach, which involves image capture at the remote site and later review of images at the host site, is the "store-and-forward" method, which appears to be a relatively cost-effective means of providing this service from a distance.
Zhou, Qingtao; Flores, Alejandro; Glenn, Nancy F; Walters, Reggie; Han, Bangshuai
2017-01-01
Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3-0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial ecosystem modeling.