ERIC Educational Resources Information Center
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2010-01-01
This study investigates students' ability to interpret multiple representations consistently (i.e., representational consistency) in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI), which makes use of nine items from the 1995 version of the Force Concept Inventory…
NASA Astrophysics Data System (ADS)
Nieminen, Pasi; Savinainen, Antti; Viiri, Jouni
2010-07-01
This study investigates students’ ability to interpret multiple representations consistently (i.e., representational consistency) in the context of the force concept. For this purpose we developed the Representational Variant of the Force Concept Inventory (R-FCI), which makes use of nine items from the 1995 version of the Force Concept Inventory (FCI). These original FCI items were redesigned using various representations (such as motion map, vectorial and graphical), yielding 27 multiple-choice items concerning four central concepts underpinning the force concept: Newton’s first, second, and third laws, and gravitation. We provide some evidence for the validity and reliability of the R-FCI; this analysis is limited to the student population of one Finnish high school. The students took the R-FCI at the beginning and at the end of their first high school physics course. We found that students’ (n=168) representational consistency (whether scientifically correct or not) varied considerably depending on the concept. On average, representational consistency and scientifically correct understanding increased during the instruction, although in the post-test only a few students performed consistently both in terms of representations and scientifically correct understanding. We also compared students’ (n=87) results of the R-FCI and the FCI, and found that they correlated quite well.
Representation and presentation of requirements knowledge
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Feather, Martin S.; Harris, David R.
1992-01-01
An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.
ERIC Educational Resources Information Center
Nixon, Ryan S.; Smith, Leigh K.; Wimmer, Jennifer J.
2015-01-01
This quasi-experimental study investigated how explicit instruction about multiple modes of representation (MMR) impacted grades 7 (n = 61) and 8 (n = 141) students' learning and multimodal use on end-of-unit assessments. Half of each teacher's (n = 3) students received an intervention consisting of explicit instruction on MMR in science…
NASA Astrophysics Data System (ADS)
Madden, Sean Patrick
This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most difficult type of representation for students to interpret. Most subjects scored higher on representational competence when engaged in creating graphs and sketches than when evaluating provided representations. This study suggests that students may benefit from an instruction that emphasizes heuristic use of multiple representations in chemistry problem solving. An instructional strategy that makes use of a variety of representations and requires students to create their own representations may have measurable benefits to chemistry students.
NASA Astrophysics Data System (ADS)
Yanti, Y. R.; Amin, S. M.; Sulaiman, R.
2018-01-01
This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.
Effects of Text-Belief Consistency and Reading Task on the Strategic Validation of Multiple Texts
ERIC Educational Resources Information Center
Maier, Johanna; Richter, Tobias
2016-01-01
In the comprehension of multiple controversial scientific texts, readers with strong prior beliefs tend to construct a one-sided mental representation that is biased towards belief-consistent information. In the present study, we examined whether an argument in contrast to a summary task instruction can increase the resource allocation to and…
Development of a representational conceptual evaluation in the first law of thermodynamics
NASA Astrophysics Data System (ADS)
Sriyansyah, S. P.; Suhandi, A.
2016-08-01
As part of an ongoing research to investigate student consistency in understanding the first law of thermodynamics, a representational conceptual evaluation (RCET) has been developed to assess student conceptual understanding, representational consistency, and scientific consistency in the introductory physics course. Previous physics education research findings were used to develop the test. RCET items were 30 items which designed as an isomorphic multiple-choice test with three different representations concerning the concept of work, heat, first law of thermodynamics, and its application in the thermodynamic processes. Here, we present preliminary measures of the validity and reliability of the instrument, including the classical test statistics. This instrument can be used to measure the intended concept in the first law of thermodynamics and it will give the consistent results with the ability to differentiate well between high-achieving students and low-achieving students and also students at different level. As well as measuring the effectiveness of the learning process in the concept of the first law of thermodynamics.
Evidence for multiple, distinct representations of the human body.
Schwoebel, John; Coslett, H Branch
2005-04-01
Previous data from single-case and small group studies have suggested distinctions among structural, conceptual, and online sensorimotor representations of the human body. We developed a battery of tasks to further examine the prevalence and anatomic substrates of these body representations. The battery was administered to 70 stroke patients. Fifty-one percent of the patients were impaired relative to controls on at least one body representation measure. Further, principal components analysis of the patient data as well as direct comparisons of patient and control performance suggested a triple dissociation between measures of the 3 putative body representations. Consistent with previous distinctions between the "what" and "how" pathways, lesions of the left temporal lobe were most consistently associated with impaired performance on tasks assessing knowledge of the shape or lexical-semantic information about the body, whereas lesions of the dorsolateral frontal and parietal regions resulted in impaired performance on tasks requiring on-line coding of body posture.
Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex
Lafer-Sousa, Rosa; Conway, Bevil R.
2014-01-01
Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314
Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric
2005-03-10
Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.
Children's Comprehension Monitoring of Multiple Situational Dimensions of a Narrative
ERIC Educational Resources Information Center
Wassenburg, Stephanie I.; Beker, Katinka; van den Broek, Paul; van der Schoot, Menno
2015-01-01
Narratives typically consist of information on multiple aspects of a situation. In order to successfully create a coherent representation of the described situation, readers are required to monitor all these situational dimensions during reading. However, little is known about whether these dimensions differ in the ease with which they can be…
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
Unified double- and single-sided homogeneous Green’s function representations
van der Neut, Joost; Slob, Evert
2016-01-01
In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983
Unified double- and single-sided homogeneous Green's function representations
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Slob, Evert
2016-06-01
In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.
Multiple representations and free-body diagrams: Do students benefit from using them?
NASA Astrophysics Data System (ADS)
Rosengrant, David R.
2007-12-01
Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an environment which fosters the use of representations for problem solving and for concept development, then the majority of students will consistently construct helpful free-body diagrams and use them on their own to solve problems. Additionally, those that construct correct free-body diagrams are significantly more likely to successfully solve the problem. Finally, those students that are high achieving tend to use diagrams more and for more reasons then students who have low course grades. These findings will have major impacts on how introductory physics instructors run their classes and how curriculums are designed. These results favor a problem solving strategy that is rich with representations.
ERIC Educational Resources Information Center
Morris, Maureen Batza
1995-01-01
The tree drawings of 80 subjects, who were diagnosed with either multiple personality disorder, schizophrenia, or major depression, and a control group, were rated. Patterns were examined and graphs were used to depict results. Certain features were found to distinguish each category. The descriptive statistical findings were both consistent and…
GraDit: graph-based data repair algorithm for multiple data edits rule violations
NASA Astrophysics Data System (ADS)
Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.
Incremental Implicit Learning of Bundles of Statistical Patterns
Qian, Ting; Jaeger, T. Florian; Aslin, Richard N.
2016-01-01
Forming an accurate representation of a task environment often takes place incrementally as the information relevant to learning the representation only unfolds over time. This incremental nature of learning poses an important problem: it is usually unclear whether a sequence of stimuli consists of only a single pattern, or multiple patterns that are spliced together. In the former case, the learner can directly use each observed stimulus to continuously revise its representation of the task environment. In the latter case, however, the learner must first parse the sequence of stimuli into different bundles, so as to not conflate the multiple patterns. We created a video-game statistical learning paradigm and investigated 1) whether learners without prior knowledge of the existence of multiple “stimulus bundles” — subsequences of stimuli that define locally coherent statistical patterns — could detect their presence in the input, and 2) whether learners are capable of constructing a rich representation that encodes the various statistical patterns associated with bundles. By comparing human learning behavior to the predictions of three computational models, we find evidence that learners can handle both tasks successfully. In addition, we discuss the underlying reasons for why the learning of stimulus bundles occurs even when such behavior may seem irrational. PMID:27639552
NASA Technical Reports Server (NTRS)
Kweon, In SO; Hebert, Martial; Kanade, Takeo
1989-01-01
A three-dimensional perception system for building a geometrical description of rugged terrain environments from range image data is presented with reference to the exploration of the rugged terrain of Mars. An intermediate representation consisting of an elevation map that includes an explicit representation of uncertainty and labeling of the occluded regions is proposed. The locus method used to convert range image to an elevation map is introduced, along with an uncertainty model based on this algorithm. Both the elevation map and the locus method are the basis of a terrain matching algorithm which does not assume any correspondences between range images. The two-stage algorithm consists of a feature-based matching algorithm to compute an initial transform and an iconic terrain matching algorithm to merge multiple range images into a uniform representation. Terrain modeling results on real range images of rugged terrain are presented. The algorithms considered are a fundamental part of the perception system for the Ambler, a legged locomotor.
NASA Astrophysics Data System (ADS)
Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke
2018-01-01
The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the other hand, pragmatist theories on how continuity between the purposes of different inquiry activities can be sustained. Data consist of 10 videotaped and transcribed lessons with 14-year-old students (N = 26) in Sweden. The analysis focused instances where meaning of representations was negotiated. Findings indicate that continuity is established in multiple ways, for example, as the use of metaphors articulated as an interlanguage expression that enables the students (and the teacher) to maintain the conversation and explain pressing issues in ways that support of the end-in-view of the immediate action. Continuity is also established between every day and scientific registers and between organisation levels as well as between the smaller parts and the whole system.
Chen, Qi; Mirman, Daniel
2012-04-01
One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.
ERIC Educational Resources Information Center
Rau, Martina A.
2013-01-01
Most learning environments in the STEM disciplines use multiple graphical representations along with textual descriptions and symbolic representations. Multiple graphical representations are powerful learning tools because they can emphasize complementary aspects of complex learning contents. However, to benefit from multiple graphical…
Role of multiple representations in physics problem solving
NASA Astrophysics Data System (ADS)
Maries, Alexandru
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role in the initial stages of conceptual analysis and planning of the problem solution. Findings suggest that students who draw productive diagrams are more successful problem solvers even if their approach is primarily mathematical. Furthermore, students provided with a diagram of the physical situation presented in a problem sometimes exhibited deteriorated performance. Think-aloud interviews suggest that this deteriorated performance is in part due to reduced conceptual planning time which caused students to jump to the implementation stage without fully understanding the problem and planning problem solution. Another study investigated two interventions aimed at improving introductory students' representational consistency between mathematical and graphical representations and revealed that excessive scaffolding can have a detrimental effect. The detrimental effect was partly due to increased cognitive load brought on by the additional steps and instructions. Moreover, students who exhibited representational consistency also showed improved problem solving performance. The final investigation is centered on a problem solving task designed to provide information about the pedagogical content knowledge (PCK) of graduate student teaching assistants (TAs). In particular, the TAs identified what they considered to be the most common difficulties of introductory physics students related to graphical representations of kinematics concepts as they occur in the Test of Understanding Graphs in Kinematics (TUG-K). As an extension, the Force Concept Inventory (FCI) was also used to assess this aspect of PCK related to knowledge of student difficulties of both physics instructors and TAs. We find that teaching an independent course and recent teaching experience do not correlate with improved PCK. In addition, the performance of American TAs, Chinese TAs and other foreign TAs in identifying common student difficulties both in the context of the TUG-K and in the context of the FCI is similar. Moreover, there were many common difficulties of introductory physics students that were not identified by many instructors and TAs.
Assessment of representational competence in kinematics
NASA Astrophysics Data System (ADS)
Klein, P.; Müller, A.; Kuhn, J.
2017-06-01
A two-tier instrument for representational competence in the field of kinematics (KiRC) is presented, designed for a standard (1st year) calculus-based introductory mechanics course. It comprises 11 multiple choice (MC) and 7 multiple true-false (MTF) questions involving multiple representational formats, such as graphs, pictures, and formal (mathematical) expressions (1st tier). Furthermore, students express their answer confidence for selected items, providing additional information (2nd tier). Measurement characteristics of KiRC were assessed in a validation sample (pre- and post-test, N =83 and N =46 , respectively), including usefulness for measuring learning gain. Validity is checked by interviews and by benchmarking KiRC against related measures. Values for item difficulty, discrimination, and consistency are in the desired ranges; in particular, a good reliability was obtained (KR 20 =0.86 ). Confidence intervals were computed and a replication study yielded values within the latter. For practical and research purposes, KiRC as a diagnostic tool goes beyond related extant instruments both for the representational formats (e.g., mathematical expressions) and for the scope of content covered (e.g., choice of coordinate systems). Together with the satisfactory psychometric properties it appears a versatile and reliable tool for assessing students' representational competency in kinematics (and of its potential change). Confidence judgments add further information to the diagnostic potential of the test, in particular for representational misconceptions. Moreover, we present an analytic result for the question—arising from guessing correction or educational considerations—of how the total effect size (Cohen's d ) varies upon combination of two test components with known individual effect sizes, and then discuss the results in the case of KiRC (MC and MTF combination). The introduced method of test combination analysis can be applied to any test comprising two components for the purpose of finding effect size ranges.
Successful Learning with Multiple Graphical Representations and Self-Explanation Prompts
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2015-01-01
Research shows that multiple external representations can significantly enhance students' learning. Most of this research has focused on learning with text and 1 additional graphical representation. However, real instructional materials often employ multiple "graphical" representations (MGRs) in addition to text. An important open…
Human analog tests of the sixth stage of object permanence.
Heishman, M; Conant, M; Pasnak, R
1995-06-01
Two adult cats were tested on multiple invisible displacement. A dowel was established as a secondary reinforcer and hidden in a manner similar to that used to assess the culmination of sensorimotor intelligence in human infants. Three other cats were tested on single invisible displacement, a simpler version of the task. For human infants, this task is used to assess the beginning of mental representation in the sixth and last stage of sensorimotor intelligence. The cats' searches on these tasks were consistent with representation of an unsensed object and fully developed sensorimotor intelligence.
Neural Encoding of Relative Position
ERIC Educational Resources Information Center
Hayworth, Kenneth J.; Lescroart, Mark D.; Biederman, Irving
2011-01-01
Late ventral visual areas generally consist of cells having a significant degree of translation invariance. Such a "bag of features" representation is useful for the recognition of individual objects; however, it seems unable to explain our ability to parse a scene into multiple objects and to understand their spatial relationships. We…
Investigating Psychometric Isomorphism for Traditional and Performance-Based Assessment
ERIC Educational Resources Information Center
Fay, Derek M.; Levy, Roy; Mehta, Vandhana
2018-01-01
A common practice in educational assessment is to construct multiple forms of an assessment that consists of tasks with similar psychometric properties. This study utilizes a Bayesian multilevel item response model and descriptive graphical representations to evaluate the psychometric similarity of variations of the same task. These approaches for…
2009-03-01
model locations, time of day, and video size. The models in the scene consisted of three-dimensional representations of common civilian automobiles in...oats, wheat). Identify automobiles as sedans or station wagons. Identify individual telephone/electric poles in residential neighborhoods. Detect
ERIC Educational Resources Information Center
Panasuk, Regina M.
2010-01-01
Algebra students may often demonstrate a certain degree of proficiency when manipulating algebraic expressions and verbalizing their behaviors. Do these abilities imply conceptual understanding? What is a reliable indicator that would provide educators with a relatively trustworthy and consistent measure to identify whether students learn…
Wang, Dongwen; Peleg, Mor; Tu, Samson W; Boxwala, Aziz A; Greenes, Robert A; Patel, Vimla L; Shortliffe, Edward H
2002-12-18
Representation of clinical practice guidelines in a computer-interpretable format is a critical issue for guideline development, implementation, and evaluation. We studied 11 types of guideline representation models that can be used to encode guidelines in computer-interpretable formats. We have consistently found in all reviewed models that primitives for representation of actions and decisions are necessary components of a guideline representation model. Patient states and execution states are important concepts that closely relate to each other. Scheduling constraints on representation primitives can be modeled as sequences, concurrences, alternatives, and loops in a guideline's application process. Nesting of guidelines provides multiple views to a guideline with different granularities. Integration of guidelines with electronic medical records can be facilitated by the introduction of a formal model for patient data. Data collection, decision, patient state, and intervention constitute four basic types of primitives in a guideline's logic flow. Decisions clarify our understanding on a patient's clinical state, while interventions lead to the change from one patient state to another.
Theory of Mind in the Wild: Toward Tackling the Challenges of Everyday Mental State Reasoning
Wertz, Annie E.; German, Tamsin C.
2013-01-01
A complete understanding of the cognitive systems underwriting theory of mind (ToM) abilities requires articulating how mental state representations are generated and processed in everyday situations. Individuals rarely announce their intentions prior to acting, and actions are often consistent with multiple mental states. In order for ToM to operate effectively in such situations, mental state representations should be generated in response to certain actions, even when those actions occur in the presence of mental state content derived from other aspects of the situation. Results from three experiments with preschool children and adults demonstrate that mental state information is indeed generated based on an approach action cue in situations that contain competing mental state information. Further, the frequency with which participants produced or endorsed explanations that include mental states about an approached object decreased when the competing mental state information about a different object was made explicit. This set of experiments provides some of the first steps toward identifying the observable action cues that are used to generate mental state representations in everyday situations and offers insight into how both young children and adults processes multiple mental state representations. PMID:24069160
Wang, Anran; Wang, Jian; Lin, Hongfei; Zhang, Jianhai; Yang, Zhihao; Xu, Kan
2017-12-20
Biomedical event extraction is one of the most frontier domains in biomedical research. The two main subtasks of biomedical event extraction are trigger identification and arguments detection which can both be considered as classification problems. However, traditional state-of-the-art methods are based on support vector machine (SVM) with massive manually designed one-hot represented features, which require enormous work but lack semantic relation among words. In this paper, we propose a multiple distributed representation method for biomedical event extraction. The method combines context consisting of dependency-based word embedding, and task-based features represented in a distributed way as the input of deep learning models to train deep learning models. Finally, we used softmax classifier to label the example candidates. The experimental results on Multi-Level Event Extraction (MLEE) corpus show higher F-scores of 77.97% in trigger identification and 58.31% in overall compared to the state-of-the-art SVM method. Our distributed representation method for biomedical event extraction avoids the problems of semantic gap and dimension disaster from traditional one-hot representation methods. The promising results demonstrate that our proposed method is effective for biomedical event extraction.
Support Vector Machine-Based Endmember Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Anthony M; Archibald, Richard K
Introduced in this paper is the utilization of Support Vector Machines (SVMs) to automatically perform endmember extraction from hyperspectral data. The strengths of SVM are exploited to provide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality, and hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this Support Vector Machine-Based Endmembermore » Extraction (SVM-BEE) algorithm has the capability of autonomously determining endmembers from multiple clusters with computational speed and accuracy, while maintaining a robust tolerance to noise.« less
Dutta, Shuchismita; Dimitropoulos, Dimitris; Feng, Zukang; Persikova, Irina; Sen, Sanchayita; Shao, Chenghua; Westbrook, John; Young, Jasmine; Zhuravleva, Marina A; Kleywegt, Gerard J; Berman, Helen M
2014-01-01
With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called “group” was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 659–668, 2014. PMID:24173824
The art of seeing and painting.
Grossberg, Stephen
2008-01-01
The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understood paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.
Schermerhorn, Alice C; Cummings, E Mark; Davies, Patrick T
2008-02-01
The authors examine mutual family influence processes at the level of children's representations of multiple family relationships, as well as the structure of those representations. From a community sample with 3 waves, each spaced 1 year apart, kindergarten-age children (105 boys and 127 girls) completed a story-stem completion task, tapping representations of multiple family relationships. Structural equation modeling with autoregressive controls indicated that representational processes involving different family relationships were interrelated over time, including links between children's representations of marital conflict and reactions to conflict, between representations of security about marital conflict and parent-child relationships, and between representations of security in father-child and mother-child relationships. Mixed support was found for notions of increasing stability in representations during this developmental period. Results are discussed in terms of notions of transactional family dynamics, including family-wide perspectives on mutual influence processes attributable to multiple family relationships.
De Visscher, Alice; Noël, Marie-Pascale; De Smedt, Bert
2016-12-01
Arithmetic facts, in particular multiplication tables, are thought to be stored in long-term memory and to be interference prone. At least two representations underpinning these arithmetic facts have been suggested: a physical representation of the digits and a numerical magnitude representation. We hypothesized that both representations are possible sources of interference that could explain individual differences in multiplication fact performance and/or in strategy use. We investigated the specificity of these interferences on arithmetic fact retrieval and explored the relation between interference and performance on the different arithmetic operations and on general mathematics achievement. Participants were 79 fourth-grade children (M age =9.6 years) who completed a products comparison and a multiplication production task with verbal strategy reports. Performances on a speeded calculation test including the four operations and on a general mathematics achievement test were also collected. Only the interference coming from physical representations was a significant predictor of the performance across multiplications. However, both the magnitude and physical representations were unique predictors of individual differences in multiplication. The frequency of the retrieval strategy across multiplication problems and across individuals was determined only by the physical representation, which therefore is suggested as being responsible for memory storage issues. Interestingly, this impact of physical representation was not observed when predicting performance on subtraction or on general mathematical achievement. In contrast, the impact of the numerical magnitude representation was more general in that it was observed across all arithmetic operations and in general mathematics achievement. Copyright © 2016 Elsevier Inc. All rights reserved.
Phonologically driven variability: the case of determiners.
Bürki, Audrey; Laganaro, Marina; Alario, F Xavier
2014-09-01
Speakers usually produce words in connected speech. In such contexts, the form in which many words are uttered is influenced by the phonological properties of neighboring words. The current article examines the representations and processes underlying the production of phonologically constrained word form variations. For this purpose, we consider determiners whose form is sensitive to phonological context (e.g., in English: a car vs. an animal; in French: le chien 'the dog' vs. l'âne 'the donkey'). Two hypotheses have been proposed regarding how these words are processed. Determiners either are thought to have different representations for each of their surface forms, or they are thought to have only 1 representation while other forms are generated online after selection through a rule-based process. We tested the predictions derived from these 2 views in 3 picture naming experiments. Participants named pictures using determiner-adjective-noun phrases (e.g., la nouvelle table 'the new table'). Phonologically consistent or inconsistent conditions were contrasted, based on the phonological onsets of the adjective and the noun. Results revealed shorter naming latencies for consistent than for inconsistent sequences (i.e., a phonological consistency effect) for all the determiner types tested. Our interpretation of these findings converges on the assumption that determiners with varying surface forms are represented in memory with multiple phonological-lexical representations. This conclusion is discussed in relation to models of determiner processing and models of lexical variability.
Two spatial memories are not better than one: evidence of exclusivity in memory for object location.
Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K
2006-05-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.
Awareness is relative: dissociation as the organisation of meaning.
Lesley, Joan
2006-09-01
This essay discusses how the organisation of mental material within the cognitive system can influence consciousness and awareness, and presents a theory of dissociation based on the premise that awareness is relative, contingent on the activated representation of the ongoing event being linked to the activated self-representation. It allows four possible variations of integration: (i) non-integrated experience--perceptions about an object/event are either not perceived or they remain at the sensory level: traditional dissociative states, amnesia, depersonalisation etc; (ii) variably integrated experience--activation of information of a specific valence about an object blocks activation of information of contrasting valence: splitting; (iii) alternatively integrated experience--experience is integrated into a specific, limited active self-representation: fugue and multiple identity states; (iv) dis-integrated experience-the ongoing experience of innate drives and needs is no longer consistently activated in the core self-representation: repression and isolation.
NASA Astrophysics Data System (ADS)
Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.
2017-09-01
This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).
Poisson process stimulation of an excitable membrane cable model.
Goldfinger, M D
1986-01-01
The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505
Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.
Grossberg, S
1997-07-01
This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.
Robust Real-Time Music Transcription with a Compositional Hierarchical Model.
Pesek, Matevž; Leonardis, Aleš; Marolt, Matija
2017-01-01
The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.
NASA Technical Reports Server (NTRS)
Homemdemello, Luiz S.
1992-01-01
An assembly planner for tetrahedral truss structures is presented. To overcome the difficulties due to the large number of parts, the planner exploits the simplicity and uniformity of the shapes of the parts and the regularity of their interconnection. The planning automation is based on the computational formalism known as production system. The global data base consists of a hexagonal grid representation of the truss structure. This representation captures the regularity of tetrahedral truss structures and their multiple hierarchies. It maps into quadratic grids and can be implemented in a computer by using a two-dimensional array data structure. By maintaining the multiple hierarchies explicitly in the model, the choice of a particular hierarchy is only made when needed, thus allowing a more informed decision. Furthermore, testing the preconditions of the production rules is simple because the patterned way in which the struts are interconnected is incorporated into the topology of the hexagonal grid. A directed graph representation of assembly sequences allows the use of both graph search and backtracking control strategies.
Representing Nature of Science in a Science Textbook: Exploring author-editor-publisher interactions
NASA Astrophysics Data System (ADS)
DiGiuseppe, Maurice
2014-05-01
Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science (NOS)-a process in which science textbooks play a significant role. This paper reports on a case study of the development of representations of the NOS in a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of NOS; squared these with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing. As a result, the team developed and incorporated, in the textbook, representations of NOS they believed were the most pedagogically suitable. Analysis of the data in this study indicates that a number of factors significantly influenced the development of representations of NOS, including representational accuracy (the degree to which representations of NOS conformed to informed views of the NOS), representational consistency (the degree to which representations of NOS in different parts of the book conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level appropriateness of the NOS representations), representational alignment (the degree to which NOS representations aligned with mandated curriculum), representational marketability (the degree to which NOS representations would affect sales of the textbook), and 'Workplace Resources' factors including availability of time, relevant expertise, and opportunities for professional development.
ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2018-01-01
Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…
ERIC Educational Resources Information Center
Rau, Martina A.
2015-01-01
Multiple representations are ubiquitous in chemistry education. To benefit from multiple representations, students have to make connections between them. However, connection making is a difficult task for students. Prior research shows that supporting connection making enhances students' learning in math and science domains. Most prior research…
Generating Cognitive Dissonance in Student Interviews through Multiple Representations
ERIC Educational Resources Information Center
Linenberger, Kimberly J.; Bretz, Stacey Lowery
2012-01-01
This study explores what students understand about enzyme-substrate interactions, using multiple representations of the phenomenon. In this paper we describe our use of the 3 Phase-Single Interview Technique with multiple representations to generate cognitive dissonance within students in order to uncover misconceptions of enzyme-substrate…
Students' Difficulties With Multiple Representations in Introductory Mechanics
ERIC Educational Resources Information Center
Nguyen, Dong-Hai; Rebello, N. Sanjay
2011-01-01
Research in physics education indicates that the use of multiple representations in teaching and learning helps students become better problem-solvers. We report on a study to investigate students' difficulties in solving mechanics problems presented in multiple representations. We conducted teaching/learning interviews with 20 students in a…
Interleaved Practice in Multi-Dimensional Learning Tasks: Which Dimension Should We Interleave?
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2013-01-01
Research shows that multiple representations can enhance student learning. Many curricula use multiple representations across multiple task types. The temporal sequence of representations and task types is likely to impact student learning. Research on contextual interference shows that interleaving learning tasks leads to better learning results…
Role of Multiple Representations in Physics Problem Solving
ERIC Educational Resources Information Center
Maries, Alexandru
2013-01-01
This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…
The Array Representation and Primary Children's Understanding and Reasoning in Multiplication
ERIC Educational Resources Information Center
Barmby, Patrick; Harries, Tony; Higgins, Steve; Suggate, Jennifer
2009-01-01
We examine whether the array representation can support children's understanding and reasoning in multiplication. To begin, we define what we mean by understanding and reasoning. We adopt a "representational-reasoning" model of understanding, where understanding is seen as connections being made between mental representations of concepts, with…
ERIC Educational Resources Information Center
Dreher, Anika; Kuntze, Sebastian; Lerman, Stephen
2016-01-01
Dealing with multiple representations and their connections plays a key role for learners to build up conceptual knowledge in the mathematics classroom. Hence, professional knowledge and views of mathematics teachers regarding the use of multiple representations certainly merit attention. In particular, investigating such views of preservice…
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z.
2014-01-01
Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…
Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
Freedman, David J.
2014-01-01
Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703
Multi-instance learning based on instance consistency for image retrieval
NASA Astrophysics Data System (ADS)
Zhang, Miao; Wu, Zhize; Wan, Shouhong; Yue, Lihua; Yin, Bangjie
2017-07-01
Multiple-instance learning (MIL) has been successfully utilized in image retrieval. Existing approaches cannot select positive instances correctly from positive bags which may result in a low accuracy. In this paper, we propose a new image retrieval approach called multiple instance learning based on instance-consistency (MILIC) to mitigate such issue. First, we select potential positive instances effectively in each positive bag by ranking instance-consistency (IC) values of instances. Then, we design a feature representation scheme, which can represent the relationship among bags and instances, based on potential positive instances to convert a bag into a single instance. Finally, we can use a standard single-instance learning strategy, such as the support vector machine, for performing object-based image retrieval. Experimental results on two challenging data sets show the effectiveness of our proposal in terms of accuracy and run time.
ERIC Educational Resources Information Center
Tang, Kok-Sing; Delgado, Cesar; Moje, Elizabeth Birr
2014-01-01
This paper presents an integrative framework for analyzing science meaning-making with representations. It integrates the research on multiple representations and multimodal representations by identifying and leveraging the differences in their units of analysis in two dimensions: timescale and compositional grain size. Timescale considers the…
Prioritizing Information during Working Memory: Beyond Sustained Internal Attention.
Myers, Nicholas E; Stokes, Mark G; Nobre, Anna C
2017-06-01
Working memory (WM) has limited capacity. This leaves attention with the important role of allowing into storage only the most relevant information. It is increasingly evident that attention is equally crucial for prioritizing representations within WM as the importance of individual items changes. Retrospective prioritization has been proposed to result from a focus of internal attention highlighting one of several representations. Here, we suggest an updated model, in which prioritization acts in multiple steps: first orienting towards and selecting a memory, and then reconfiguring its representational state in the service of upcoming task demands. Reconfiguration sets up an optimized perception-action mapping, obviating the need for sustained attention. This view is consistent with recent literature, makes testable predictions, and links WM with task switching and action preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of memory representation in the vigilance decrement.
Caggiano, Daniel M; Parasuraman, Raja
2004-10-01
Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance-sensitivity decrement over time-is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand.
Translation between representation languages
NASA Technical Reports Server (NTRS)
Vanbaalen, Jeffrey
1994-01-01
A capability for translating between representation languages is critical for effective knowledge base reuse. A translation technology for knowledge representation languages based on the use of an interlingua for communicating knowledge is described. The interlingua-based translation process consists of three major steps: translation from the source language into a subset of the interlingua, translation between subsets of the interlingua, and translation from a subset of the interlingua into the target language. The first translation step into the interlingua can typically be specified in the form of a grammar that describes how each top-level form in the source language translates into the interlingua. In cases where the source language does not have a declarative semantics, such a grammar is also a specification of a declarative semantics for the language. A methodology for building translators that is currently under development is described. A 'translator shell' based on this methodology is also under development. The shell has been used to build translators for multiple representation languages and those translators have successfully translated nontrivial knowledge bases.
NASA Astrophysics Data System (ADS)
Namdar, Bahadir; Shen, Ji
2016-05-01
Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based study in order to distill the relationship between these two processes. Specifically, we designed a learning unit on nuclear energy and implemented it with a group of preservice middle school teachers. The participants used a web-based knowledge organization platform that incorporated three representational modes: textual, concept map, and pictorial. The participants organized their knowledge on nuclear energy by searching, sorting, clustering information through the use of these representational modes and argued about the nuclear energy issue. We found that the use of multiple representations and argumentation interacted with each other in a complex way. Based on our findings, we argue that the complexity can be unfolded in two aspects: (a) the use of multiple representations mediates argumentation in different forms and for different purposes; (b) the type of argumentation that leads to refinement of the use of multiple representations is often non-mediated and drawn from personal experience.
ERIC Educational Resources Information Center
Luxford, Cynthia J.; Bretz, Stacey Lowery
2014-01-01
Teachers use multiple representations to communicate the concepts of bonding, including Lewis structures, formulas, space-filling models, and 3D manipulatives. As students learn to interpret these multiple representations, they may develop misconceptions that can create problems in further learning of chemistry. Interviews were conducted with 28…
ERIC Educational Resources Information Center
Chen, Qi; Mirman, Daniel
2012-01-01
One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations ("neighbors") have been shown to…
Memory-Based Attention Capture when Multiple Items Are Maintained in Visual Working Memory
Hollingworth, Andrew; Beck, Valerie M.
2016-01-01
Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search—an index of VWM guidance—is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when two colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. PMID:27123681
Representing delayed force feedback as a combination of current and delayed states.
Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana
2017-10-01
To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the delayed information. Copyright © 2017 the American Physiological Society.
Feature diagnosticity and task context shape activity in human scene-selective cortex.
Lowe, Matthew X; Gallivan, Jason P; Ferber, Susanne; Cant, Jonathan S
2016-01-15
Scenes are constructed from multiple visual features, yet previous research investigating scene processing has often focused on the contributions of single features in isolation. In the real world, features rarely exist independently of one another and likely converge to inform scene identity in unique ways. Here, we utilize fMRI and pattern classification techniques to examine the interactions between task context (i.e., attend to diagnostic global scene features; texture or layout) and high-level scene attributes (content and spatial boundary) to test the novel hypothesis that scene-selective cortex represents multiple visual features, the importance of which varies according to their diagnostic relevance across scene categories and task demands. Our results show for the first time that scene representations are driven by interactions between multiple visual features and high-level scene attributes. Specifically, univariate analysis of scene-selective cortex revealed that task context and feature diagnosticity shape activity differentially across scene categories. Examination using multivariate decoding methods revealed results consistent with univariate findings, but also evidence for an interaction between high-level scene attributes and diagnostic visual features within scene categories. Critically, these findings suggest visual feature representations are not distributed uniformly across scene categories but are shaped by task context and feature diagnosticity. Thus, we propose that scene-selective cortex constructs a flexible representation of the environment by integrating multiple diagnostically relevant visual features, the nature of which varies according to the particular scene being perceived and the goals of the observer. Copyright © 2015 Elsevier Inc. All rights reserved.
Multiple Representations and Connections with the Sierpinski Triangle
ERIC Educational Resources Information Center
Kirwan, J. Vince; Tobias, Jennifer M.
2014-01-01
To understand multiple representations in algebra, students must be able to describe relationships through a variety of formats, such as graphs, tables, pictures, and equations. NCTM indicates that varied representations are "essential elements in supporting students' understanding of mathematical concepts and relationships" (NCTM…
The Golden Ratio: A Golden Opportunity to Investigate Multiple Representations of a Problem.
ERIC Educational Resources Information Center
Dickey, Edwin M.
1993-01-01
This article explores the multiple representations (verbal, algebraic, graphical, and numerical) that can be used to study the golden ratio. Emphasis is placed on using technology (both calculators and computers) to investigate the algebraic, graphical, and numerical representations. (JAF)
A perception system for a planetary explorer
NASA Technical Reports Server (NTRS)
Hebert, M.; Krotkov, E.; Kanade, T.
1989-01-01
To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.
Anger as "seeing red": evidence for a perceptual association.
Fetterman, Adam K; Robinson, Michael D; Meier, Brian P
2012-01-01
Metaphor representation theory contends that people conceptualise their non-perceptual states (e.g., emotion concepts) in perceptual terms. The present research extends this theory to colour manipulations and discrete emotional representations. Two experiments (N = 265) examined whether a red font colour would facilitate anger conceptions, consistent with metaphors referring to anger to "seeing red". Evidence for an implicit anger-red association was robust and emotionally discrete in nature. Further, Experiment 2 examined the directionality of such associations and found that they were asymmetrical: Anger categorisations were faster when a red font colour was involved, but redness categorisations were not faster when an anger-related word was involved. Implications for multiple literatures are discussed.
The role of memory representation in the vigilance decrement
CAGGIANO, DANIEL M.; PARASURAMAN, RAJA
2005-01-01
Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance—sensitivity decrement over time—is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand. PMID:15732706
Nishimura, Mayu; Maurer, Daphne; Gao, Xiaoqing
2009-07-01
We explored differences in the mental representation of facial identity between 8-year-olds and adults. The 8-year-olds and adults made similarity judgments of a homogeneous set of faces (individual hair cues removed) using an "odd-man-out" paradigm. Multidimensional scaling (MDS) analyses were performed to represent perceived similarity of faces in a multidimensional space. Five dimensions accounted optimally for the judgments of both children and adults, with similar local clustering of faces. However, the fit of the MDS solutions was better for adults, in part because children's responses were more variable. More children relied predominantly on a single dimension, namely eye color, whereas adults appeared to use multiple dimensions for each judgment. The pattern of findings suggests that children's mental representation of faces has a structure similar to that of adults but that children's judgments are influenced less consistently by that overall structure.
The neural component-process architecture of endogenously generated emotion
Kanske, Philipp; Singer, Tania
2017-01-01
Abstract Despite the ubiquity of endogenous emotions and their role in both resilience and pathology, the processes supporting their generation are largely unknown. We propose a neural component process model of endogenous generation of emotion (EGE) and test it in two functional magnetic resonance imaging (fMRI) experiments (N = 32/293) where participants generated and regulated positive and negative emotions based on internal representations, usin self-chosen generation methods. EGE activated nodes of salience (SN), default mode (DMN) and frontoparietal control (FPCN) networks. Component processes implemented by these networks were established by investigating their functional associations, activation dynamics and integration. SN activation correlated with subjective affect, with midbrain nodes exclusively distinguishing between positive and negative affect intensity, showing dynamics consistent generation of core affect. Dorsomedial DMN, together with ventral anterior insula, formed a pathway supporting multiple generation methods, with activation dynamics suggesting it is involved in the generation of elaborated experiential representations. SN and DMN both coupled to left frontal FPCN which in turn was associated with both subjective affect and representation formation, consistent with FPCN supporting the executive coordination of the generation process. These results provide a foundation for research into endogenous emotion in normal, pathological and optimal function. PMID:27522089
ERIC Educational Resources Information Center
Kordaki, Maria
2015-01-01
This study focuses on the role of multiple solution tasks (MST) incorporating multiple learning tools and representation systems (MTRS) in encouraging each student to develop multiple perspectives on the learning concepts under study and creativity of thought. Specifically, two types of MST were used, namely tasks that allowed and demanded…
NASA Astrophysics Data System (ADS)
Bakri, F.; Muliyati, D.
2018-05-01
This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.
Learning with Multiple Representations: Extending Multimedia Learning beyond the Lab
ERIC Educational Resources Information Center
Eilam, Billie; Poyas, Yael
2008-01-01
The present study extended multimedia learning principles beyond the lab to an ecologically valid setting (homework). Eighteen information cards were used to perform three homework tasks. The control group students learned from single representation (SR) cards that presented all information as printed text. The multiple representation (MR) group…
Interleaved Practice with Multiple Representations: Analyses with Knowledge Tracing Based Techniques
ERIC Educational Resources Information Center
Rau, Martina A.; Pardos, Zachary A.
2012-01-01
The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…
Memory-based attention capture when multiple items are maintained in visual working memory.
Hollingworth, Andrew; Beck, Valerie M
2016-07-01
Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search, an index of VWM guidance, is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when 2 colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Adadan, Emine
2013-01-01
This study explored two groups of Grade 11 (age 16-17) students' conceptual understandings about aspects of particle theory before, immediately after, and 3 months after instruction with multiple representations (IMR) and instruction with verbal representations (IVR). Data sources included open-ended questionnaires, interviews, and student…
Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex
Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Yacoub, Essa; Formisano, Elia
2015-01-01
Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed—with new data—our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations—but not other cortical populations—harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes. PMID:25479020
Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex.
Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Yacoub, Essa; Formisano, Elia
2015-02-01
Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed--with new data--our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations-but not other cortical populations-harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes. Copyright © 2014 Elsevier Inc. All rights reserved.
The capacity limitations of orientation summary statistics
Attarha, Mouna; Moore, Cathleen M.
2015-01-01
The simultaneous–sequential method was used to test the processing capacity of establishing mean orientation summaries. Four clusters of oriented Gabor patches were presented in the peripheral visual field. One of the clusters had a mean orientation that was tilted either left or right while the mean orientations of the other three clusters were roughly vertical. All four clusters were presented at the same time in the simultaneous condition whereas the clusters appeared in temporal subsets of two in the sequential condition. Performance was lower when the means of all four clusters had to be processed concurrently than when only two had to be processed in the same amount of time. The advantage for establishing fewer summaries at a given time indicates that the processing of mean orientation engages limited-capacity processes (Experiment 1). This limitation cannot be attributed to crowding, low target-distractor discriminability, or a limited-capacity comparison process (Experiments 2 and 3). In contrast to the limitations of establishing multiple summary representations, establishing a single summary representation unfolds without interference (Experiment 4). When interpreted in the context of recent work on the capacity of summary statistics, these findings encourage reevaluation of the view that early visual perception consists of summary statistic representations that unfold independently across multiple areas of the visual field. PMID:25810160
Content Representation in the Human Medial Temporal Lobe
Liang, Jackson C.; Wagner, Anthony D.
2013-01-01
Current theories of medial temporal lobe (MTL) function focus on event content as an important organizational principle that differentiates MTL subregions. Perirhinal and parahippocampal cortices may play content-specific roles in memory, whereas hippocampal processing is alternately hypothesized to be content specific or content general. Despite anatomical evidence for content-specific MTL pathways, empirical data for content-based MTL subregional dissociations are mixed. Here, we combined functional magnetic resonance imaging with multiple statistical approaches to characterize MTL subregional responses to different classes of novel event content (faces, scenes, spoken words, sounds, visual words). Univariate analyses revealed that responses to novel faces and scenes were distributed across the anterior–posterior axis of MTL cortex, with face responses distributed more anteriorly than scene responses. Moreover, multivariate pattern analyses of perirhinal and parahippocampal data revealed spatially organized representational codes for multiple content classes, including nonpreferred visual and auditory stimuli. In contrast, anterior hippocampal responses were content general, with less accurate overall pattern classification relative to MTL cortex. Finally, posterior hippocampal activation patterns consistently discriminated scenes more accurately than other forms of content. Collectively, our findings indicate differential contributions of MTL subregions to event representation via a distributed code along the anterior–posterior axis of MTL that depends on the nature of event content. PMID:22275474
Understanding genetics: Analysis of secondary students' conceptual status
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David F.
2007-02-01
This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.
The current practice of using multiple representations in year 4 science classrooms
NASA Astrophysics Data System (ADS)
Chuenmanee, Chanoknat; Thathong, Kongsak
2018-01-01
Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.
NASA Astrophysics Data System (ADS)
Susac, Ana; Bubic, Andreja; Martinjak, Petra; Planinic, Maja; Palmovic, Marijan
2017-12-01
Developing a better understanding of the measurement process and measurement uncertainty is one of the main goals of university physics laboratory courses. This study investigated the influence of graphical representation of data on student understanding and interpreting of measurement results. A sample of 101 undergraduate students (48 first year students and 53 third and fifth year students) from the Department of Physics, University of Zagreb were tested with a paper-and-pencil test consisting of eight multiple-choice test items about measurement uncertainties. One version of the test items included graphical representations of the measurement data. About half of the students solved that version of the test while the remaining students solved the same test without graphical representations. The results have shown that the students who had the graphical representation of data scored higher than their colleagues without graphical representation. In the second part of the study, measurements of eye movements were carried out on a sample of thirty undergraduate students from the Department of Physics, University of Zagreb while students were solving the same test on a computer screen. The results revealed that students who had the graphical representation of data spent considerably less time viewing the numerical data than the other group of students. These results indicate that graphical representation may be beneficial for data processing and data comparison. Graphical representation helps with visualization of data and therefore reduces the cognitive load on students while performing measurement data analysis, so students should be encouraged to use it.
Guell, Xavier; Gabrieli, John D E; Schmahmann, Jeremy D
2018-05-15
Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?). Copyright © 2018 Elsevier Inc. All rights reserved.
Medendorp, W. P.
2015-01-01
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289
ERIC Educational Resources Information Center
Gebre, Engida
2018-01-01
This paper presents a descriptive case study where infographics--visual representation of data and ideas--have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students' science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools…
ERIC Educational Resources Information Center
Wei, Liew Tze; Sazilah, Salam
2012-01-01
This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…
Students' integration of multiple representations in a titration experiment
NASA Astrophysics Data System (ADS)
Kunze, Nicole M.
A complete understanding of a chemical concept is dependent upon a student's ability to understand the microscopic or particulate nature of the phenomenon and integrate the microscopic, symbolic, and macroscopic representations of the phenomenon. Acid-base chemistry is a general chemistry topic requiring students to understand the topics of chemical reactions, solutions, and equilibrium presented earlier in the course. In this study, twenty-five student volunteers from a second semester general chemistry course completed two interviews. The first interview was completed prior to any classroom instruction on acids and bases. The second interview took place after classroom instruction, a prelab activity consisting of a titration calculation worksheet, a titration computer simulation, or a microscopic level animation of a titration, and two microcomputer-based laboratory (MBL) titration experiments. During the interviews, participants were asked to define and describe acid-base concepts and in the second interview they also drew the microscopic representations of four stages in an acid-base titration. An analysis of the data showed that participants had integrated the three representations of an acid-base titration to varying degrees. While some participants showed complete understanding of acids, bases, titrations, and solution chemistry, other participants showed several alternative conceptions concerning strong acid and base dissociation, the formation of titration products, and the dissociation of soluble salts. Before instruction, participants' definitions of acid, base, and pH were brief and consisted of descriptive terms. After instruction, the definitions were more scientific and reflected the definitions presented during classroom instruction.
ERIC Educational Resources Information Center
Hsu, Yu-Chang
2009-01-01
Students in the Science, Technology, Engineering, and Mathematics (STEM) fields are confronted with multiple external representations (MERs) in their learning materials. The ability to learn from and communicate with these MERs requires not only that students comprehend each representation individually but also that students recognize how the…
ERIC Educational Resources Information Center
Stadtler, Marc; Bromme, Rainer
2007-01-01
Drawing on the theory of documents representation (Perfetti et al., Toward a theory of documents representation. In: H. v. Oostendorp & S. R. Goldman (Eds.), "The construction of mental representations during reading." Mahwah, NJ: Erlbaum, 1999), we argue that successfully dealing with multiple documents on the World Wide Web requires readers to…
NASA Astrophysics Data System (ADS)
Digiuseppe, Maurizio
Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science---a process in which learning materials like science textbooks play a significant role. This dissertation reports on a case study of the development of representations of the nature of science in one unit of a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of the nature of science; squared these understandings with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing; and developed and incorporated into the textbook representations of the nature of science they believed were the most suitable. Analyses of the data in this study indicate that a number of factors significantly influenced the development of representations of the nature of science, including representational accuracy (the degree to which suggested representations of the nature of science conformed to what the developers believed were contemporary understandings of the nature of science), representational consistency (the degree to which similar representations of the nature of science in different parts of the textbook conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level suitability of the suggested nature of science representations), representational alignment (the degree to which suggested representations of the nature of science addressed the requirements of mandated curricula), representational marketability (the degree to which textbook developers believed suggested representations of the nature of science would affect sales of the textbook in the marketplace), and a number of "Workplace Resources" factors such as the availability of time, relevant expertise, effective channels of communication, and opportunities for professional development. The developers of the unit of the textbook studied in this thesis made judicious decisions in the face of competing interests as they endeavoured to represent the nature of science in their science textbook.
Using Student Contributions and Multiple Representations To Develop Mathematical Language.
ERIC Educational Resources Information Center
Herbel-Eisenmann, Beth A.
2002-01-01
Describes a way to introduce and use mathematical language as an alternative to using vocabulary lists to introduce students to mathematical language in mathematics classrooms. Draws on multiple representations and student language. (YDS)
Chylek, Lily A.; Harris, Leonard A.; Tung, Chang-Shung; Faeder, James R.; Lopez, Carlos F.
2013-01-01
Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and post-translational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation). PMID:24123887
Brown, Joshua W.
2009-01-01
The error likelihood computational model of anterior cingulate cortex (ACC) (Brown & Braver, 2005) has successfully predicted error likelihood effects, risk prediction effects, and how individual differences in conflict and error likelihood effects vary with trait differences in risk aversion. The same computational model now makes a further prediction that apparent conflict effects in ACC may result in part from an increasing number of simultaneously active responses, regardless of whether or not the cued responses are mutually incompatible. In Experiment 1, the model prediction was tested with a modification of the Eriksen flanker task, in which some task conditions require two otherwise mutually incompatible responses to be generated simultaneously. In that case, the two response processes are no longer in conflict with each other. The results showed small but significant medial PFC effects in the incongruent vs. congruent contrast, despite the absence of response conflict, consistent with model predictions. This is the multiple response effect. Nonetheless, actual response conflict led to greater ACC activation, suggesting that conflict effects are specific to particular task contexts. In Experiment 2, results from a change signal task suggested that the context dependence of conflict signals does not depend on error likelihood effects. Instead, inputs to ACC may reflect complex and task specific representations of motor acts, such as bimanual responses. Overall, the results suggest the existence of a richer set of motor signals monitored by medial PFC and are consistent with distinct effects of multiple responses, conflict, and error likelihood in medial PFC. PMID:19375509
Multiple External Representations: Bridges or Barriers to Climate Literacy?
NASA Astrophysics Data System (ADS)
Holzer, M. A.
2012-12-01
The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a reader. Climatologists recognize the wealth of data and content found in these representations and therefore find themselves in a position where they can effectively interact with the author and their claims. This expert ability to seamlessly integrate text with the associated representations is at one end of the continuum of scientific text comprehension, but what abilities define a novice and those in between expert and novice in this continuum of scientific text comprehension? This talk will describe an ongoing research project with the overarching goal to establish the balance of this continuum in order to identify scaffolds that will assist non expert readers negotiate meaning from complex scientific text inclusive of multiple representations found in popular literature in climatology. It will inform those creating data representations on how best to create the representations so that claims and causal relationships may be derived from the literature or media source.
NASA Astrophysics Data System (ADS)
Setyarini, M.; Liliasari, Kadarohman, Asep; Martoprawiro, Muhamad A.
2016-02-01
This study aims at describing (1) students' level comprehension; (2) factors causing difficulties to 3D comprehend molecule representation and its interconversion on chirality. Data was collected using multiple-choice test consisting of eight questions. The participants were required to give answers along with their reasoning. The test was developed based on the indicators of concept comprehension. The study was conducted to 161 college students enrolled in stereochemistry topic in the odd semester (2014/2015) from two LPTK (teacher training institutes) in Bandar Lampung and Gorontalo, and one public university in Bandung. The result indicates that college students' level of comprehension towards 3D molecule representations and its inter-conversion was 5% on high level, 22 % on the moderate level, and 73 % on the low level. The dominant factors identified as the cause of difficulties to comprehend 3D molecule representation and its interconversion were (i) the lack of spatial awareness, (ii) violation of absolute configuration determination rules, (iii) imprecise placement of observers, (iv) the lack of rotation operation, and (v) the lack of understanding of correlation between the representations. This study recommends that learning show more rigorous spatial awareness training tasks accompanied using dynamic visualization media of molecules associated. Also students learned using static molecular models can help them overcome their difficulties encountered.
Relating brain signal variability to knowledge representation.
Heisz, Jennifer J; Shedden, Judith M; McIntosh, Anthony R
2012-11-15
We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Representations and processes of human spatial competence.
Gunzelmann, Glenn; Lyon, Don R
2011-10-01
This article presents an approach to understanding human spatial competence that focuses on the representations and processes of spatial cognition and how they are integrated with cognition more generally. The foundational theoretical argument for this research is that spatial information processing is central to cognition more generally, in the sense that it is brought to bear ubiquitously to improve the adaptivity and effectiveness of perception, cognitive processing, and motor action. We describe research spanning multiple levels of complexity to understand both the detailed mechanisms of spatial cognition, and how they are utilized in complex, naturalistic tasks. In the process, we discuss the critical role of cognitive architectures in developing a consistent account that spans this breadth, and we note some areas in which the current version of a popular architecture, ACT-R, may need to be augmented. Finally, we suggest a framework for understanding the representations and processes of spatial competence and their role in human cognition generally. Copyright © 2011 Cognitive Science Society, Inc.
Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.
Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang
2016-09-27
Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.
NASA Astrophysics Data System (ADS)
Wee, Loo Kang
2012-05-01
We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a consistent simulation world view with a pen and paper representation, (2) a data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and (3) a game for simple concept testing that can further support learning. We also suggest using a physical world setup augmented by simulation by highlighting three advantages of real collision carts equipment such as a tacit 3D experience, random errors in measurement and the conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes.
MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification
NASA Astrophysics Data System (ADS)
Lin, Daoyu; Fu, Kun; Wang, Yang; Xu, Guangluan; Sun, Xian
2017-11-01
With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
Teaching and Evaluation Materials Utilizing Multiple Representations in Mechanics
ERIC Educational Resources Information Center
Savinainen, A.; Nieminen, P.; Makynen, A.; Viiri, J.
2013-01-01
In this paper, we present materials and teaching ideas utilizing multiple representations in the contexts of kinematics and the force concept. These ideas and materials are substantiated by evidence and can be readily used in teaching with no special training. In addition, we briefly discuss two multiple-choice tests based on physics education…
ERIC Educational Resources Information Center
Crim, Courtney L.; Kennedy, Kimberley D.; Thornton, Jenifer S.
2013-01-01
This article reviews the relevant literature in regard to differentiation, multiple intelligences, and aesthetic representations. Next, it presents the methodology, reports findings, and discusses themes related to the authors' research questions. Finally, it concludes that tapping into students' multiple intelligence strength(s) is an excellent…
NASA Astrophysics Data System (ADS)
McDermott, Mark Andrew
2009-12-01
This study was designed to examine the impact of embedding multiple modes of representing science information on student conceptual understanding in science. Multiple representations refer to utilizing charts, graphs, diagrams, and other types of representations to communicate scientific information. This study investigated the impact of encouraging students to embed or integrate the multiple modes with text in end of unit writing-to-learn activities. A quasi-experimental design with four separate sites consisting of intact chemistry classes taught by different teachers at each site was utilized. At each site, approximately half of the classes were designated treatment classes and students in these classes participated in activities designed to encourage strategies to embed multiple modes within text in student writing. The control classes did not participate in these activities. All classes participated in identical end of unit writing tasks in which they were required to use at least one mode other than text, followed by identical end of unit assessments. This progression was then repeated for a second consecutive unit of study. Analysis of quantitative data indicated that in several cases, treatment classes significantly outperformed control classes both on measures of embeddedness in writing and on end of unit assessment measures. In addition, analysis at the level of individual students indicated significant positive correlations in many cases between measures of student embeddedness in writing and student performance on end of unit assessments. Three factors emerged as critical in increasing the likelihood of benefit for students from these types of activities. First, the level of teacher implementation and emphasis on the embeddedness lessons was linked to the possibility of conceptual benefit. Secondly, students participating in two consecutive lessons appeared to receive greater benefit during the second unit, inferring a cumulative benefit. Finally, differential impact of the degree of embeddedness on student performance was noted based on student's level of science ability prior to the initiation of study procedures.
ERIC Educational Resources Information Center
Hill, Matthew; Sharma, Manjula Devi
2015-01-01
To succeed within scientific disciplines, using representations, including those based on words, graphs, equations, and diagrams, is important. Research indicates that the use of discipline specific representations (sometimes referred to as expert generated representations), as well as multi-representational use, is critical for problem solving…
Properties of heuristic search strategies
NASA Technical Reports Server (NTRS)
Vanderbrug, G. J.
1973-01-01
A directed graph is used to model the search space of a state space representation with single input operators, an AND/OR is used for problem reduction representations, and a theorem proving graph is used for state space representations with multiple input operators. These three graph models and heuristic strategies for searching them are surveyed. The completeness, admissibility, and optimality properties of search strategies which use the evaluation function f = (1 - omega)g = omega(h) are presented and interpreted using a representation of the search process in the plane. The use of multiple output operators to imply dependent successors, and thus obtain a formalism which includes all three types of representations, is discussed.
NASA Astrophysics Data System (ADS)
Alami, Y.; Sinaga, P.; Setiawan, A.
2018-05-01
Based on recommendations from the Physics Education literature recommend the use of multiple representations to help students solve problems. The use of some good representations is considered important to study physics, so many good motivations to learn how students use multiple representations while solving problems and to learn how to solve problems using multiple representations. This study aims to explore the profile of high school students’ problem solving abilities and this study is part of a larger research focus on improving this ability in students in physics. The data is needed to determine the appropriate treatment to be used in subsequent research. A purposive sampling technique was used in this study and a survey was conducted to collect data. 74 students from one high school in Bandung were involved in this research.
Tackling the 2nd V: Big Data, Variety and the Need for Representation Consistency
NASA Astrophysics Data System (ADS)
Clune, T.; Kuo, K. S.
2016-12-01
While Big Data technologies are transforming our ability to analyze ever larger volumes of Earth science data, practical constraints continue to limit our ability to compare data across datasets from different sources in an efficient and robust manner. Within a single data collection, invariants such as file format, grid type, and spatial resolution greatly simplify many types of analysis (often implicitly). However, when analysis combines data across multiple data collections, researchers are generally required to implement data transformations (i.e., "data preparation") to provide appropriate invariants. These transformation include changing of file formats, ingesting into a database, and/or regridding to a common spatial representation, and they can either be performed once, statically, or each time the data is accessed. At the very least, this process is inefficient from the perspective of the community as each team selects its own representation and privately implements the appropriate transformations. No doubt there are disadvantages to any "universal" representation, but we posit that major benefits would be obtained if a suitably flexible spatial representation could be standardized along with tools for transforming to/from that representation. We regard this as part of the historic trend in data publishing. Early datasets used ad hoc formats and lacked metadata. As better tools evolved, published data began to use standardized formats (e.g., HDF and netCDF) with attached metadata. We propose that the modern need to perform analysis across data sets should drive a new generation of tools that support a standardized spatial representation. More specifically, we propose the hierarchical triangular mesh (HTM) as a suitable "generic" resolution that permits standard transformations to/from native representations in use today, as well as tools to convert/regrid existing datasets onto that representation.
Multimodal Literacies in Science: Currency, Coherence and Focus
NASA Astrophysics Data System (ADS)
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of RISE advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are integral to reasoning about scientific phenomena. This focus on thinking with representations mediates between well-resolved representations and formal reasoning of disciplinary science, and the capacity-limited, perceptually-driven nature of human cognition. The teaching practices described here build on three key principles: Each representation is interpreted through others; natural language is a sign system that is used to interpret a variety of other kinds of representations; and this chain of signs or representations is ultimately grounded in bodily experiences of perception and action. In these papers, the researchers provide examples and analysis of teachers scaffolding students in using representations to construct new knowledge, and in constructing new representations to express and develop their knowledge. The result is a new delineation of the power and the challenges of teaching science with multiple representations.
Optimization of digital designs
NASA Technical Reports Server (NTRS)
Miles, Lowell H. (Inventor); Whitaker, Sterling R. (Inventor)
2009-01-01
An application specific integrated circuit is optimized by translating a first representation of its digital design to a second representation. The second representation includes multiple syntactic expressions that admit a representation of a higher-order function of base Boolean values. The syntactic expressions are manipulated to form a third representation of the digital design.
Decoding and disrupting left midfusiform gyrus activity during word reading
Hirshorn, Elizabeth A.; Ward, Michael J.; Fiez, Julie A.; Ghuman, Avniel Singh
2016-01-01
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation. PMID:27325763
Students’ Representation in Mathematical Word Problem-Solving: Exploring Students’ Self-efficacy
NASA Astrophysics Data System (ADS)
Sahendra, A.; Budiarto, M. T.; Fuad, Y.
2018-01-01
This descriptive qualitative research aims at investigating student represented in mathematical word problem solving based on self-efficacy. The research subjects are two eighth graders at a school in Surabaya with equal mathematical ability consisting of two female students with high and low self-efficacy. The subjects were chosen based on the results of test of mathematical ability, documentation of the result of middle test in even semester of 2016/2017 academic year, and results of questionnaire of mathematics word problem in terms of self-efficacy scale. The selected students were asked to do mathematical word problem solving and be interviewed. The result of this study shows that students with high self-efficacy tend to use multiple representations of sketches and mathematical models, whereas students with low self-efficacy tend to use single representation of sketches or mathematical models only in mathematical word problem-solving. This study emphasizes that teachers should pay attention of student’s representation as a consideration of designing innovative learning in order to increase the self-efficacy of each student to achieve maximum mathematical achievement although it still requires adjustment to the school situation and condition.
Decoding and disrupting left midfusiform gyrus activity during word reading.
Hirshorn, Elizabeth A; Li, Yuanning; Ward, Michael J; Richardson, R Mark; Fiez, Julie A; Ghuman, Avniel Singh
2016-07-19
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation.
Animation graphic interface for the space shuttle onboard computer
NASA Technical Reports Server (NTRS)
Wike, Jeffrey; Griffith, Paul
1989-01-01
Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
Middle school students' reading comprehension of mathematical texts and algebraic equations
NASA Astrophysics Data System (ADS)
Duru, Adem; Koklu, Onder
2011-06-01
In this study, middle school students' abilities to translate mathematical texts into algebraic representations and vice versa were investigated. In addition, students' difficulties in making such translations and the potential sources for these difficulties were also explored. Both qualitative and quantitative methods were used to collect data for this study: questionnaire and clinical interviews. The questionnaire consisted of two general types of items: (1) selected-response (multiple-choice) items for which the respondent selects from multiple options and (2) open-ended items for which the respondent constructs a response. In order to further investigate the students' strategies while they were translating the given mathematical texts to algebraic equations and vice versa, five randomly chosen (n = 5) students were interviewed. Data were collected in the 2007-2008 school year from 185 middle-school students in five teachers' classrooms in three different schools in the city of Adıyaman, Turkey. After the analysis of data, it was found that students who participated in this study had difficulties in translating the mathematical texts into algebraic equations by using symbols. It was also observed that these students had difficulties in translating the symbolic representations into mathematical texts because of their weak reading comprehension. In addition, finding of this research revealed that students' difficulties in translating the given mathematical texts into symbolic representations or vice versa come from different sources.
ERIC Educational Resources Information Center
Nichols, Kim; Ranasinghe, Muditha; Hanan, Jim
2013-01-01
Interacting with and translating across multiple representations is an essential characteristic of expertise and representational fluency. In this study, we explored the effect of interacting with and translating between representations in a computer simulation or in a paper-based assignment on scientific accuracy of undergraduate science…
On the motion of multiple helical vortices
NASA Astrophysics Data System (ADS)
Wood, D. H.; Boersma, J.
2001-11-01
The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.
Introductory Biology Students’ Conceptual Models and Explanations of the Origin of Variation
Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy
2014-01-01
Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess understanding of the origin of variation. By midterm, only a small percentage of students articulated complete and accurate representations of the origin of variation in their models. Targeted feedback was offered through activities requiring students to critically evaluate peers’ models. At semester's end, a substantial proportion of students significantly improved their representation of how variation arises (though one-third still did not include mutation in their models). Students’ written explanations of the origin of variation were mostly consistent with their models, although less effective than models in conveying mechanistic reasoning. This study contributes evidence that articulating the genetic origin of variation is particularly challenging for learners and may require multiple cycles of instruction, assessment, and feedback. To support meaningful learning of the origin of variation, we advocate instruction that explicitly integrates multiple scales of biological organization, assessment that promotes and reveals mechanistic and causal reasoning, and practice with explanatory models with formative feedback. PMID:25185235
Promoting Decimal Number Sense and Representational Fluency
ERIC Educational Resources Information Center
Suh, Jennifer M.; Johnston, Chris; Jamieson, Spencer; Mills, Michelle
2008-01-01
The abstract nature of mathematics requires the communication of mathematical ideas through multiple representations, such as words, symbols, pictures, objects, or actions. Building representational fluency involves using mathematical representations flexibly and being able to interpret and translate among these different models and mathematical…
Connecting and Using Multiple Representations
ERIC Educational Resources Information Center
Nielsen, Maria E.; Bostic, Jonathan D.
2018-01-01
"Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014) emphasizes eight teaching practices for effective mathematics teaching, one of which is to "use and connect multiple representations" (NCTM 2014, p. 24). An action that describes how teachers might promote this practice is to "allocate substantial…
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2012 CFR
2012-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2014 CFR
2014-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
32 CFR 776.29 - Imputed disqualification: General rule.
Code of Federal Regulations, 2013 CFR
2013-07-01
... their federal, state, and local bar rules governing the representation of multiple or adverse clients within the same office before such representation is initiated, as such representation may expose them to... military (or Government) service may require representation of opposing sides by covered USG attorneys...
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons.
Edwards, Jonathan C W
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a 'consumer' in the street. The arguments presented draw on two principles - the neuron doctrine and the need for a venue for 'presentation' or 'reception' of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include 'null' elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance - since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming 'scenarios' comprising a molecular combination of 'premises' from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to 'occurrent' representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal 'consumer' of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of 'gnostic' cell types.
Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons
Edwards, Jonathan C. W.
2016-01-01
It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right – some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an input interaction between signals and consumer. The acceptance of this necessity provides a basis for resolving the problem that representations appear both as distributed (representation-as-origin) and as local (representation-as-input). The key implications are that representations in the brain are massively multiple both in series and in parallel, and that individual cells play specific semantic roles. These roles are discussed in relation to traditional concepts of ‘gnostic’ cell types. PMID:27746760
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
ERIC Educational Resources Information Center
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-01-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific…
ERIC Educational Resources Information Center
Cuero, Kimberley K.; Bonner, Jennifer; Smith, Brittaney; Schwartz, Michelle; Touchstone, Rose; Vela, Yvonne
2008-01-01
Based on Elliot Eisner's notions of multiple forms of representation and Rosenblatt's aesthetic/efferent responses to reading, a teacher educator/researcher had her undergraduate students explore their connections, using aesthetic representations, to a course entitled "Reading Comprehension". Each aesthetic representation revealed the complexities…
Narrative, memory and social representations: a conversation between history and social psychology.
Jovchelovitch, Sandra
2012-12-01
This paper explores relations between narrative, memory and social representations by examining how social representations express the ways in which communities deal with the historical past. Drawing on a case study of social representations of the Brazilian public sphere, it shows how a specific narrative of origins re-invents history as a useful mythological resource for defending identity, building inter-group solidarity and maintaining social cohesion. Produced by a time-travelling dialogue between multiple sources, this historical narrative is functional both to transform, to stabilise and give resilience to specific social representations of public life. The Brazilian case shows that historical narratives, which tend to be considered as part of the stable core of representational fields, are neither homogenous nor consensual but open polyphasic platforms for the construction of alternative, often contradictory, representations. These representations do not go away because they are ever changing and situated, recruit multiple ways of thinking and fulfil functions of identity, inter-group solidarity and social cohesion. In the disjunction between historiography and the past as social representation are the challenges and opportunities for the dialogue between historians and social psychologists.
Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations
ERIC Educational Resources Information Center
Timmerman, Maria A.
2014-01-01
If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…
Using Computer-Assisted Multiple Representations in Learning Geometry Proofs
ERIC Educational Resources Information Center
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Hsi-Hsun; Cheng, Ying-Hao
2011-01-01
Geometry theorem proving involves skills that are difficult to learn. Instead of working with abstract and complicated representations, students might start with concrete, graphical representations. A proof tree is a graphical representation of a formal proof, with each node representing a proposition or given conditions. A computer-assisted…
The Effects of Multiple Linked Representations on Student Learning in Mathematics.
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
This study investigated the effects on student understanding of linear relationships using the linked representation software VideoPoint as compared to using semi-linked representation software. It investigated students' attitudes towards and preferences for mathematical representations--equations, tables, or graphs. An Algebra I class was divided…
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2016-11-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The representation of multiplication and division facts in memory.
De Brauwer, Jolien; Fias, Wim
2011-01-01
Recently, using a training paradigm, Campbell and Agnew (2009) observed cross-operation response time savings with nonidentical elements (e.g., practice 3 + 2, test 5 - 2) for addition and subtraction, showing that a single memory representation underlies addition and subtraction performance. Evidence for cross-operation savings between multiplication and division have been described frequently (e.g., Campbell, Fuchs-Lacelle, & Phenix, 2006) but they have always been attributed to a mediation strategy (reformulating a division problem as a multiplication problem, e.g., Campbell et al., 2006). Campbell and Agnew (2009) therefore concluded that there exists a fundamental difference between addition and subtraction on the one hand and multiplication and division on the other hand. However, our results suggest that retrieval savings between inverse multiplication and division problems can be observed. Even for small problems (solved by direct retrieval) practicing a division problem facilitated the corresponding multiplication problem and vice versa. These findings indicate that shared memory representations underlie multiplication and division retrieval. Hence, memory and learning processes do not seem to differ fundamentally between addition-subtraction and multiplication-division.
Craft, David
2010-10-01
A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
On squares of representations of compact Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less
Examining the cognitive costs of counterfactual language comprehension: Evidence from ERPs.
Ferguson, Heather J; Cane, James E
2015-10-05
Recent empirical research suggests that understanding a counterfactual event (e.g. 'If Josie had revised, she would have passed her exams') activates mental representations of both the factual and counterfactual versions of events. However, it remains unclear when readers switch between these models during comprehension, and whether representing multiple 'worlds' is cognitively effortful. This paper reports two ERP studies where participants read contexts that set up a factual or counterfactual scenario, followed by a second sentence describing a consequence of this event. Critically, this sentence included a noun that was either consistent or inconsistent with the preceding context, and either included a modal verb to indicate reference to the counterfactual-world or not (thus referring to the factual-world). Experiment 2 used adapted versions of the materials used in Experiment 1 to examine the degree to which representing multiple versions of a counterfactual situation makes heavy demands on cognitive resources by measuring individuals' working memory capacity. Results showed that when reference to the counterfactual-world was maintained by the ongoing discourse, readers correctly interpreted events according to the counterfactual-world (i.e. showed larger N400 for inconsistent than consistent words). In contrast, when cues referred back to the factual-world, readers showed no difference between consistent and inconsistent critical words, suggesting that they simultaneously compared information against both possible worlds. These results support previous dual-representation accounts for counterfactuals, and provide new evidence that linguistic cues can guide the reader in selecting which world model to evaluate incoming information against. Crucially, we reveal evidence that maintaining and updating a hypothetical model over time relies upon the availability of cognitive resources. Copyright © 2015 Elsevier B.V. All rights reserved.
Genetics Reasoning with Multiple External Representations.
ERIC Educational Resources Information Center
Tsui, Chi-Yan; Treagust, David F.
2003-01-01
Explores a case study of a class of 10th grade students whose learning of genetics involved activities using BioLogica, a computer program that features multiple external representations (MERs). Findings indicate that the MERs in BioLogica contributed to students' development of genetics reasoning by engendering their motivation and interest but…
Students' Construction of External Representations in Design-Based Learning Situations
ERIC Educational Resources Information Center
de Vries, Erica
2006-01-01
This article develops a theoretical framework for the study of students' construction of mixed multiple external representations in design-based learning situations involving an adaptation of professional tasks and tools to a classroom setting. The framework draws on research on professional design processes and on learning with multiple external…
Using Multiple Representations to Teach Composition of Functions
ERIC Educational Resources Information Center
Steketee, Scott; Scher, Daniel
2012-01-01
Composition of functions is one of the five big ideas identified in NCTM's "Developing Essential Understanding of Functions, Grades 9-12" (Cooney, Beckmann, and Lloyd 2010). Through multiple representations (another big idea) and the use of The Geometer's Sketchpad[R] (GSP), students can directly manipulate variables and thus see dynamic visual…
Asymmetric Translation between Multiple Representations in Chemistry
ERIC Educational Resources Information Center
Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II
2016-01-01
Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests…
An Evaluation of Multimodal Interactions with Technology while Learning Science Concepts
ERIC Educational Resources Information Center
Anastopoulou, Stamatina; Sharples, Mike; Baber, Chris
2011-01-01
This paper explores the value of employing multiple modalities to facilitate science learning with technology. In particular, it is argued that when multiple modalities are employed, learners construct strong relations between physical movement and visual representations of motion. Body interactions with visual representations, enabled by…
ERIC Educational Resources Information Center
Pierce, Robyn; Stacey, Kaye; Wander, Roger; Ball, Lynda
2011-01-01
Current technologies incorporating sophisticated mathematical analysis software (calculation, graphing, dynamic geometry, tables, and more) provide easy access to multiple representations of mathematical problems. Realising the affordances of such technology for students' learning requires carefully designed lessons. This paper reports on design…
Gregg, Watson W; Rousseaux, Cécile S
2014-09-01
Quantifying change in ocean biology using satellites is a major scientific objective. We document trends globally for the period 1998-2012 by integrating three diverse methodologies: ocean color data from multiple satellites, bias correction methods based on in situ data, and data assimilation to provide a consistent and complete global representation free of sampling biases. The results indicated no significant trend in global pelagic ocean chlorophyll over the 15 year data record. These results were consistent with previous findings that were based on the first 6 years and first 10 years of the SeaWiFS mission. However, all of the Northern Hemisphere basins (north of 10° latitude), as well as the Equatorial Indian basin, exhibited significant declines in chlorophyll. Trend maps showed the local trends and their change in percent per year. These trend maps were compared with several other previous efforts using only a single sensor (SeaWiFS) and more limited time series, showing remarkable consistency. These results suggested the present effort provides a path forward to quantifying global ocean trends using multiple satellite missions, which is essential if we are to understand the state, variability, and possible changes in the global oceans over longer time scales.
ERIC Educational Resources Information Center
Ozdemir, S.; Reis, Z. Ayvaz
2013-01-01
Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…
Learning-Induced Plasticity in Medial Prefrontal Cortex Predicts Preference Malleability
Garvert, Mona M.; Moutoussis, Michael; Kurth-Nelson, Zeb; Behrens, Timothy E.J.; Dolan, Raymond J.
2015-01-01
Summary Learning induces plasticity in neuronal networks. As neuronal populations contribute to multiple representations, we reasoned plasticity in one representation might influence others. We used human fMRI repetition suppression to show that plasticity induced by learning another individual’s values impacts upon a value representation for oneself in medial prefrontal cortex (mPFC), a plasticity also evident behaviorally in a preference shift. We show this plasticity is driven by a striatal “prediction error,” signaling the discrepancy between the other’s choice and a subject’s own preferences. Thus, our data highlight that mPFC encodes agent-independent representations of subjective value, such that prediction errors simultaneously update multiple agents’ value representations. As the resulting change in representational similarity predicts interindividual differences in the malleability of subjective preferences, our findings shed mechanistic light on complex human processes such as the powerful influence of social interaction on beliefs and preferences. PMID:25611512
Wanting, liking, and preference construction.
Dai, Xianchi; Brendl, C Miguel; Ariely, Dan
2010-06-01
According to theories on preference construction, multiple preferences result from multiple contexts (e.g., loss vs. gain frames). This implies that people can have different representations of a preference in different contexts. Drawing on Berridge's (1999) distinction between unconscious liking and wanting, we hypothesize that people may have multiple representations of a preference toward an object even within a single context. Specifically, we propose that people can have different representations of an object's motivational value, or incentive value, versus its emotional value, or likability, even when the object is placed in the same context. Study 1 establishes a divergence between incentive value and likability of faces using behavioral measures. Studies 2A and 2B, using self-report measures, provide support for our main hypothesis that people are perfectly aware of these distinct representations and are able to access them concurrently at will. We also discuss implications of our findings for the truism that people seek pleasure and for expectancy-value theories.
Video based object representation and classification using multiple covariance matrices.
Zhang, Yurong; Liu, Quan
2017-01-01
Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.
Transformations in the Visual Representation of a Figural Pattern
ERIC Educational Resources Information Center
Montenegro, Paula; Costa, Cecília; Lopes, Bernardino
2018-01-01
Multiple representations of a given mathematical object/concept are one of the biggest difficulties encountered by students. The aim of this study is to investigate the impact of the use of visual representations in teaching and learning algebra. In this paper, we analyze the transformations from and to visual representations that were performed…
NASA Astrophysics Data System (ADS)
Price, Gwyneth A.
In this study, multiple external representations and Generative Learning Theory were used to design instruction that would facilitate physics learning. Specifically, the study looks at the learning differences that may occur when students are engaged in generating a graphical representation as compared to being presented with a computer-generated graph. It is hypothesized that by generating the graphical representation students will be able to overcome obstacles to integration and determine the relationships involved within a representation. In doing so, students will build a more complete mental model of the situation and be able to more readily use this information in transfer situations, thus improving their problem solving ability. Though the results of this study do not lend strong support for the hypothesis, the results are still informative and encouraging. Though several of the obstacles associated with learning from multiple representations such as cognitive load were cause for concern, those students with appropriate prior knowledge and familiarity with graphical representations were able to benefit from the generative activity. This finding indicates that if the issues are directly addressed within instruction, it may be that all students may be able to benefit from being actively engaged in generating representations.
The Nature of Change Detection and Online Representations of Scenes
ERIC Educational Resources Information Center
Ryan,J ennifer D.; Cohen, Neal J.
2004-01-01
This article provides evidence for implicit change detection and for the contribution of multiple memory sources to online representations. Multiple eye-movement measures distinguished original from changed scenes, even when college students had no conscious awareness for the change. Patients with amnesia showed a systematic deficit on 1 class of…
ERIC Educational Resources Information Center
Bergey, Bradley W.; Cromley, Jennifer G.; Newcombe, Nora S.
2015-01-01
There is growing evidence that targeted instruction can improve diagram comprehension, yet one of the skills identified in the diagram comprehension literature--coordinating multiple representations--has rarely been directly taught to students and tested as a classroom intervention. We created a Coordinating Multiple Representation (CMR)…
Wait-Time and Multiple Representation Levels in Chemistry Lessons
ERIC Educational Resources Information Center
Li, Winnie Sim Siew; Arshad, Mohammad Yusof
2014-01-01
Wait-time is an important aspect in a teaching and learning process, especially after the teacher has posed questions to students, as it is one of the factors in determining quality of students' responses. This article describes the practices of wait-time one after teacher's questions at multiple representation levels among twenty three chemistry…
Real-World Contexts, Multiple Representations, Student-Invented Terminology, and Y-Intercept
ERIC Educational Resources Information Center
Davis, Jon D.
2007-01-01
One classroom using two units from a "Standards"-based curriculum was the focus of a study designed to examine the effects of real-world contexts, delays in the introduction of formal mathematics terminology, and multiple function representations on student understanding. Students developed their own terminology for y-intercept, which was tightly…
Coordinating Multiple Representations in a Reform Calculus Textbook
ERIC Educational Resources Information Center
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2015-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
Learning by Understanding: The Role of Multiple Representations in Learning Algebra.
ERIC Educational Resources Information Center
Brenner, Mary E.; Mayer, Richard E.; Moseley, Bryan; Brar, Theresa; Duran, Richard; Reed, Barbara Smith; Webb, David
1997-01-01
In posttest results, 76 prealgebra students who learned about functions in a unit emphasizing multiple formats, anchoring learning in a thematic context, and problem solving in cooperative groups were more successful at problem solving and problem representation than were 56 comparison students conventionally taught. Similar results were found for…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro
2011-01-01
This study involved the evaluation of the efficacy of a planned instructional program to facilitate understanding of the macroscopic, submicroscopic and symbolic representational systems when describing and explaining chemical reactions by sixty-five Grade 9 students in a Singapore secondary school. A two-tier multiple-choice diagnostic instrument…
Coordinating Multiple Representations in a Reform Calculus Textbook
ERIC Educational Resources Information Center
Chang, Briana L.; Cromley, Jennifer G.; Tran, Nhi
2016-01-01
Coordination of multiple representations (CMR) is widely recognized as a critical skill in mathematics and is frequently demanded in reform calculus textbooks. However, little is known about the prevalence of coordination tasks in such textbooks. We coded 707 instances of CMR in a widely used reform calculus textbook and analyzed the distributions…
ERIC Educational Resources Information Center
Rosengrant, David
2011-01-01
Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2017-01-01
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) "sense making" of connections by verbally explaining how…
ERIC Educational Resources Information Center
Goodwin, Amanda P.; Gilbert, Jennifer K.; Cho, Sun-Joo; Kearns, Devin M.
2014-01-01
The current study models reader, item, and word contributions to the lexical representations of 39 morphologically complex words for 172 middle school students using a crossed random-effects item response model with multiple outcomes. We report 3 findings. First, results suggest that lexical representations can be characterized by separate but…
A Policy Representation Using Weighted Multiple Normal Distribution
NASA Astrophysics Data System (ADS)
Kimura, Hajime; Aramaki, Takeshi; Kobayashi, Shigenobu
In this paper, we challenge to solve a reinforcement learning problem for a 5-linked ring robot within a real-time so that the real-robot can stand up to the trial and error. On this robot, incomplete perception problems are caused from noisy sensors and cheap position-control motor systems. This incomplete perception also causes varying optimum actions with the progress of the learning. To cope with this problem, we adopt an actor-critic method, and we propose a new hierarchical policy representation scheme, that consists of discrete action selection on the top level and continuous action selection on the low level of the hierarchy. The proposed hierarchical scheme accelerates learning on continuous action space, and it can pursue the optimum actions varying with the progress of learning on our robotics problem. This paper compares and discusses several learning algorithms through simulations, and demonstrates the proposed method showing application for the real robot.
The Initial Development of Object Knowledge by a Learning Robot
Modayil, Joseph; Kuipers, Benjamin
2008-01-01
We describe how a robot can develop knowledge of the objects in its environment directly from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated representations: trackers that form spatio-temporal clusters of sensory experience, percepts that represent properties for the tracked objects, classes that support efficient generalization from past experience, and actions that reliably change object percepts. We evaluate how well this intrinsically acquired object knowledge can be used to solve externally specified tasks including object recognition and achieving goals that require both planning and continuous control. PMID:19953188
Space and time resolved representation of a vacuum arc light emission
NASA Astrophysics Data System (ADS)
Georgescu, N.; Sandolache, G.; Zoita, V.
1999-04-01
An optoelectronic multichannel detection system for the study of the visible light emission of a vacuum circuit breaker arc is described. The system consists of two multiple slit collimator assemblies coupled directly to the arc discharge chamber and an electronic detection part. The light emitted by the arc is collected by the two collimator assemblies and is transmitted through optical fibres to the electronic detection part. By using a new, simple computational method two-dimensional plots of the vacuum arc light emission at different times are obtained.
Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry
NASA Astrophysics Data System (ADS)
Daubenmire, Paul L.
Much like a practiced linguist, expert chemists utilize the power and elegance of chemical symbols to understand what is happening at the atomic level and to manipulate atoms and molecules to effect an observable change at the macroscopic level. Unfortunately, beginning chemistry is often taught in a way that emphasizes memorizing the symbolic representations of equations and reactions without much opportunity to meaningfully connect the observable macroscopic phenomena with an understanding of the chemistry taking place at the atomic level. The compartmentalized manner of chemistry instruction in most chemistry classrooms further nullifies the efficacy of the triplet relationship to connect between macroscopic observations, symbolic representations, and atomic scale views. If symbolic representations are presented as the goal of instruction, rather than as the means to gain understanding, then students will be impaired in developing a coherent understanding of chemical principles. This dissertation describes the development and implementation of an interview study to examine how undergraduate students interpreted multiple representations of a chemical equilibrium. To establish a baseline of ideas, students first were coached to verbally generate successive representations. They were then cued to think about the chemistry occurring between atoms and ions at the molecular level. Next, an experiment involving a change in states of matter and color was performed which paralleled the symbolic representations. Through self-explanations and verbalizing of conjectures, students were encouraged to explore, interpret, and refine their understanding of the observations related to the chemical symbols presented to them. Finally, with the goal of fostering a deeper understanding of the process of equilibrium, a dynamic visualization of the molecular level was introduced as a tool for helping students connect these multiple representations. This study revealed that one way in which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.
Pedagogical Affordances of Multiple External Representations in Scientific Processes
ERIC Educational Resources Information Center
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-01-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs…
ERIC Educational Resources Information Center
Won, Mihye; Yoon, Heojeong; Treagust, David F.
2014-01-01
The purpose of this study was to understand how students utilized multiple representations to learn and explain science concepts, in this case the human breathing mechanism. The study was conducted with Grade 11 students in a human biology class. Semistructured interviews and a two-tier diagnostic test were administered to evaluate students'…
ERIC Educational Resources Information Center
Beyranevand, Matthew L.
2010-01-01
Although it is difficult to find any current literature that does not encourage use of multiple representations in mathematics classrooms, there has been very limited research that compared such practice to student achievement level on standardized tests. This study examined the associations between students' achievement levels and their (a)…
ERIC Educational Resources Information Center
Flores, Raymond; Koontz, Esther; Inan, Fethi A.; Alagic, Mara
2015-01-01
This study examined the impact of the order of two teaching approaches on students' abilities and on-task behaviors while learning how to solve percentage problems. Two treatment groups were compared. MR first received multiple representation instruction followed by traditional algorithmic instruction and TA first received these teaching…
ERIC Educational Resources Information Center
Yilmaz, Yasemin; Durmus, Soner; Yaman, Hakan
2018-01-01
This study investigated the pattern problems posed by middle school mathematics preservice teachers using multiple representations to determine both their pattern knowledge levels and their abilities to transfer this knowledge to students. The design of the study is the survey method, one of the quantitative research methods. The study group was…
ERIC Educational Resources Information Center
Namdar, Bahadir; Shen, Ji
2016-01-01
Using multiple representations and argumentation are two fundamental processes in science. With the advancements of information communication technologies, these two processes are blended more so than ever before. However, little is known about how these two processes interact with each other in student learning. Hence, we conducted a design-based…
ERIC Educational Resources Information Center
Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim
2014-01-01
This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…
NASA Astrophysics Data System (ADS)
Tao, Guohua
2017-07-01
A general theoretical framework is derived for the recently developed multi-state trajectory (MST) approach from the time dependent Schrödinger equation, resulting in equations of motion for coupled nuclear-electronic dynamics equivalent to Hamilton dynamics or Heisenberg equation based on a new multistate Meyer-Miller (MM) model. The derived MST formalism incorporates both diabatic and adiabatic representations as limiting cases and reduces to Ehrenfest or Born-Oppenheimer dynamics in the mean-field or the single-state limits, respectively. In the general multistate formalism, nuclear dynamics is represented in terms of a set of individual state-specific trajectories, while in the active state trajectory (AST) approximation, only one single nuclear trajectory on the active state is propagated with its augmented images running on all other states. The AST approximation combines the advantages of consistent nuclear-coupled electronic dynamics in the MM model and the single nuclear trajectory in the trajectory surface hopping (TSH) treatment and therefore may provide a potential alternative to both Ehrenfest and TSH methods. The resulting algorithm features in a consistent description of coupled electronic-nuclear dynamics and excellent numerical stability. The implementation of the MST approach to several benchmark systems involving multiple nonadiabatic transitions and conical intersection shows reasonably good agreement with exact quantum calculations, and the results in both representations are similar in accuracy. The AST treatment also reproduces the exact results reasonably, sometimes even quantitatively well, with a better performance in the adiabatic representation.
Multi-view and 3D deformable part models.
Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt
2015-11-01
As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).
Object-based benefits without object-based representations.
Fougnie, Daryl; Cormiea, Sarah M; Alvarez, George A
2013-08-01
Influential theories of visual working memory have proposed that the basic units of memory are integrated object representations. Key support for this proposal is provided by the same object benefit: It is easier to remember multiple features of a single object than the same set of features distributed across multiple objects. Here, we replicate the object benefit but demonstrate that features are not stored as single, integrated representations. Specifically, participants could remember 10 features better when arranged in 5 objects compared to 10 objects, yet memory for one object feature was largely independent of memory for the other object feature. These results rule out the possibility that integrated representations drive the object benefit and require a revision of the concept of object-based memory representations. We propose that working memory is object-based in regard to the factors that enhance performance but feature based in regard to the level of representational failure. PsycINFO Database Record (c) 2013 APA, all rights reserved.
ERIC Educational Resources Information Center
Borba, Marcelo; Confrey, Jere
Function Probe is a multi-representational software for Apple Macintosh computers. It was designed to allow students to approach problems in different ways and/or use different representations. This case study describes a 16-year-old student as he creates a path among a variety of representations of transformations of functions while using the…
Multiple Representations-Based Face Sketch-Photo Synthesis.
Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie
2016-11-01
Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.
NASA Astrophysics Data System (ADS)
Allen, Emily Christine
Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.
Why Bother to Calibrate? Model Consistency and the Value of Prior Information
NASA Astrophysics Data System (ADS)
Hrachowitz, Markus; Fovet, Ophelie; Ruiz, Laurent; Euser, Tanja; Gharari, Shervan; Nijzink, Remko; Savenije, Hubert; Gascuel-Odoux, Chantal
2015-04-01
Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by 4 calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce 20 hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by using prior information about the system to impose "prior constraints", inferred from expert knowledge and to ensure a model which behaves well with respect to the modeller's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model set-up exhibited increased performance in the independent test period and skill to reproduce all 20 signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if efficiently counter-balanced by available prior constraints, can increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge driven strategy of constraining models.
Why Bother and Calibrate? Model Consistency and the Value of Prior Information.
NASA Astrophysics Data System (ADS)
Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J. E.; Savenije, H.; Gascuel-Odoux, C.
2014-12-01
Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by 4 calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce 20 hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by using prior information about the system to impose "prior constraints", inferred from expert knowledge and to ensure a model which behaves well with respect to the modeller's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model set-up exhibited increased performance in the independent test period and skill to reproduce all 20 signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if efficiently counter-balanced by available prior constraints, can increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge driven strategy of constraining models.
NASA Astrophysics Data System (ADS)
Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J.; Savenije, H. H. G.; Gascuel-Odoux, C.
2014-09-01
Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus, ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study, the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by four calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce a suite of hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by "prior constraints," inferred from expert knowledge to ensure a model which behaves well with respect to the modeler's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model setup exhibited increased performance in the independent test period and skill to better reproduce all tested signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if counter-balanced by prior constraints, can significantly increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge-driven strategy of constraining models.
Jacklin, Derek L; Cloke, Jacob M; Potvin, Alphonse; Garrett, Inara; Winters, Boyer D
2016-01-27
Rats, humans, and monkeys demonstrate robust crossmodal object recognition (CMOR), identifying objects across sensory modalities. We have shown that rats' performance of a spontaneous tactile-to-visual CMOR task requires functional integration of perirhinal (PRh) and posterior parietal (PPC) cortices, which seemingly provide visual and tactile object feature processing, respectively. However, research with primates has suggested that PRh is sufficient for multisensory object representation. We tested this hypothesis in rats using a modification of the CMOR task in which multimodal preexposure to the to-be-remembered objects significantly facilitates performance. In the original CMOR task, with no preexposure, reversible lesions of PRh or PPC produced patterns of impairment consistent with modality-specific contributions. Conversely, in the CMOR task with preexposure, PPC lesions had no effect, whereas PRh involvement was robust, proving necessary for phases of the task that did not require PRh activity when rats did not have preexposure; this pattern was supported by results from c-fos imaging. We suggest that multimodal preexposure alters the circuitry responsible for object recognition, in this case obviating the need for PPC contributions and expanding PRh involvement, consistent with the polymodal nature of PRh connections and results from primates indicating a key role for PRh in multisensory object representation. These findings have significant implications for our understanding of multisensory information processing, suggesting that the nature of an individual's past experience with an object strongly determines the brain circuitry involved in representing that object's multisensory features in memory. The ability to integrate information from multiple sensory modalities is crucial to the survival of organisms living in complex environments. Appropriate responses to behaviorally relevant objects are informed by integration of multisensory object features. We used crossmodal object recognition tasks in rats to study the neurobiological basis of multisensory object representation. When rats had no prior exposure to the to-be-remembered objects, the spontaneous ability to recognize objects across sensory modalities relied on functional interaction between multiple cortical regions. However, prior multisensory exploration of the task-relevant objects remapped cortical contributions, negating the involvement of one region and significantly expanding the role of another. This finding emphasizes the dynamic nature of cortical representation of objects in relation to past experience. Copyright © 2016 the authors 0270-6474/16/361273-17$15.00/0.
ERIC Educational Resources Information Center
Sunyono; Yuanita, L.; Ibrahim, M.
2015-01-01
The aim of this research is identify the effectiveness of a multiple representation-based learning model, which builds a mental model within the concept of atomic structure. The research sample of 108 students in 3 classes is obtained randomly from among students of Mathematics and Science Education Studies using a stratified random sampling…
ERIC Educational Resources Information Center
Rau, Martina A.; Aleven, Vincent; Rummel, Nikol
2017-01-01
Prior research shows that multiple representations can enhance learning, provided that students make connections among them. We hypothesized that support for connection making is most effective in enhancing learning of domain knowledge if it helps students both in making sense of these connections and in becoming perceptually fluent in making…
What Students Choose to Do and Have to Say about Use of Multiple Representations in College Algebra
ERIC Educational Resources Information Center
Herman, Marlena
2007-01-01
This report summarizes findings on strategies chosen by students (n=38) when solving algebra problems related to various functions with the freedom to use a TI-83 graphing calculator, influences on student problem-solving strategy choices, student ability to approach algebra problems with use of multiple representations, and student beliefs on how…
Learning with Multiple Representations: An Example of a Revision Lesson in Mathematics
ERIC Educational Resources Information Center
Wong, Darren; Poo, Sng Peng; Hock, Ng Eng; Kang, Wee Loo
2011-01-01
We describe an example of learning with multiple representations in an A-level revision lesson on mechanics. The context of the problem involved the motion of a ball thrown vertically upwards in air and studying how the associated physical quantities changed during its flight. Different groups of students were assigned to look at the ball's motion…
ERIC Educational Resources Information Center
Rau, Martina A.; Scheines, Richard
2012-01-01
Although learning from multiple representations has been shown to be effective in a variety of domains, little is known about the mechanisms by which it occurs. We analyzed log data on error-rate, hint-use, and time-spent obtained from two experiments with a Cognitive Tutor for fractions. The goal of the experiments was to compare learning from…
NASA Astrophysics Data System (ADS)
Suminar, Iin; Muslim, Liliawati, Winny
2017-05-01
The purpose of this research was to identify student's written argument embedded in scientific inqury investigation and argumentation skill using integrated argument-based inquiry with multiple representation approach. This research was using quasi experimental method with the nonequivalent pretest-posttest control group design. Sample ot this research was 10th grade students at one of High School in Bandung using two classes, they were 26 students of experiment class and 26 students of control class. Experiment class using integrated argument-based inquiry with multiple representation approach, while control class using argument-based inquiry. This study was using argumentation worksheet and argumentation test. Argumentation worksheet encouraged students to formulate research questions, design experiment, observe experiment and explain the data as evidence, construct claim, warrant, embedded multiple modus representation and reflection. Argumentation testinclude problem which asks students to explain evidence, warrants, and backings support of each claim. The result of this research show experiment class students's argumentation skill performed better than control class students that
Attitude Error Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2002-01-01
The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.
Do Knowledge-Component Models Need to Incorporate Representational Competencies?
ERIC Educational Resources Information Center
Rau, Martina Angela
2017-01-01
Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…
Drawing Connections across Conceptually Related Visual Representations in Science
ERIC Educational Resources Information Center
Hansen, Janice
2013-01-01
This dissertation explored beliefs about learning from multiple related visual representations in science, and compared beliefs to learning outcomes. Three research questions were explored: 1) What beliefs do pre-service teachers, non-educators and children have about learning from visual representations? 2) What format of presenting those…
Multimodal Literacies in Science: Currency, Coherence and Focus
ERIC Educational Resources Information Center
Klein, Perry D.; Kirkpatrick, Lori C.
2010-01-01
Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of "RISE" advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are…
Student Difficulties Regarding Symbolic and Graphical Representations of Vector Fields
ERIC Educational Resources Information Center
Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke
2017-01-01
The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing,…
Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning
ERIC Educational Resources Information Center
Rau, Martina A.
2017-01-01
Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…
ERIC Educational Resources Information Center
McPadden, Daryl; Brewe, Eric
2017-01-01
Representation use is a critical skill for learning, problem solving, and communicating in science, especially in physics where multiple representations often scaffold the understanding of a phenomenon. University Modeling Instruction, which is an active-learning, research-based introductory physics curriculum centered on students' use of…
Effects of auditory and visual modalities in recall of words.
Gadzella, B M; Whitehead, D A
1975-02-01
Ten experimental conditions were used to study the effects of auditory and visual (printed words, uncolored and colored pictures) modalities and their various combinations with college students. A recall paradigm was employed in which subjects responded in a written test. Analysis of data showed the auditory modality was superior to visual (pictures) ones but was not significantly different from visual (printed words) modality. In visual modalities, printed words were superior to colored pictures. Generally, conditions with multiple modes of representation of stimuli were significantly higher than for conditions with single modes. Multiple modalities, consisting of two or three modes, did not differ significantly from each other. It was concluded that any two modalities of the stimuli presented simultaneously were just as effective as three in recall of stimulus words.
Reaction schemes visualized in network form: the syntheses of strychnine as an example.
Proudfoot, John R
2013-05-24
Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.
Hierarchical Representation Learning for Kinship Verification.
Kohli, Naman; Vatsa, Mayank; Singh, Richa; Noore, Afzel; Majumdar, Angshul
2017-01-01
Kinship verification has a number of applications such as organizing large collections of images and recognizing resemblances among humans. In this paper, first, a human study is conducted to understand the capabilities of human mind and to identify the discriminatory areas of a face that facilitate kinship-cues. The visual stimuli presented to the participants determine their ability to recognize kin relationship using the whole face as well as specific facial regions. The effect of participant gender and age and kin-relation pair of the stimulus is analyzed using quantitative measures such as accuracy, discriminability index d' , and perceptual information entropy. Utilizing the information obtained from the human study, a hierarchical kinship verification via representation learning (KVRL) framework is utilized to learn the representation of different face regions in an unsupervised manner. We propose a novel approach for feature representation termed as filtered contractive deep belief networks (fcDBN). The proposed feature representation encodes relational information present in images using filters and contractive regularization penalty. A compact representation of facial images of kin is extracted as an output from the learned model and a multi-layer neural network is utilized to verify the kin accurately. A new WVU kinship database is created, which consists of multiple images per subject to facilitate kinship verification. The results show that the proposed deep learning framework (KVRL-fcDBN) yields the state-of-the-art kinship verification accuracy on the WVU kinship database and on four existing benchmark data sets. Furthermore, kinship information is used as a soft biometric modality to boost the performance of face verification via product of likelihood ratio and support vector machine based approaches. Using the proposed KVRL-fcDBN framework, an improvement of over 20% is observed in the performance of face verification.
Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic.
Neumayr, Bernd; Schuetz, Christoph G; Jeusfeld, Manfred A; Schrefl, Michael
2018-01-01
An enterprise database contains a global, integrated, and consistent representation of a company's data. Multi-level modeling facilitates the definition and maintenance of such an integrated conceptual data model in a dynamic environment of changing data requirements of diverse applications. Multi-level models transcend the traditional separation of class and object with clabjects as the central modeling primitive, which allows for a more flexible and natural representation of many real-world use cases. In deep instantiation, the number of instantiation levels of a clabject or property is indicated by a single potency. Dual deep modeling (DDM) differentiates between source potency and target potency of a property or association and supports the flexible instantiation and refinement of the property by statements connecting clabjects at different modeling levels. DDM comes with multiple generalization of clabjects, subsetting/specialization of properties, and multi-level cardinality constraints. Examples are presented using a UML-style notation for DDM together with UML class and object diagrams for the representation of two-level user views derived from the multi-level model. Syntax and semantics of DDM are formalized and implemented in F-Logic, supporting the modeler with integrity checks and rich query facilities.
Neural Overlap in Item Representations Across Episodes Impairs Context Memory.
Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas B
2018-06-12
We frequently encounter the same item in different contexts, and when that happens, memories of earlier encounters can get reactivated. We examined how existing memories are changed as a result of such reactivation. We hypothesized that when an item's initial and subsequent neural representations overlap, this allows the initial item to become associated with novel contextual information, interfering with later retrieval of the initial context. Specifically, we predicted a negative relationship between representational similarity across repeated experiences of an item and subsequent source memory for the initial context. We tested this hypothesis in an fMRI study, in which objects were presented multiple times during different tasks. We measured the similarity of the neural patterns in lateral occipital cortex that were elicited by the first and second presentations of objects, and related this neural overlap score to subsequent source memory. Consistent with our hypothesis, greater item-specific pattern similarity was linked to worse source memory for the initial task. In contrast, greater reactivation of the initial context was associated with better source memory. Our findings suggest that the influence of novel experiences on an existing context memory depends on how reliably a shared component (i.e., item) is represented across these episodes.
Kryklywy, James H; Macpherson, Ewan A; Mitchell, Derek G V
2018-04-01
Emotion can have diverse effects on behaviour and perception, modulating function in some circumstances, and sometimes having little effect. Recently, it was identified that part of the heterogeneity of emotional effects could be due to a dissociable representation of emotion in dual pathway models of sensory processing. Our previous fMRI experiment using traditional univariate analyses showed that emotion modulated processing in the auditory 'what' but not 'where' processing pathway. The current study aims to further investigate this dissociation using a more recently emerging multi-voxel pattern analysis searchlight approach. While undergoing fMRI, participants localized sounds of varying emotional content. A searchlight multi-voxel pattern analysis was conducted to identify activity patterns predictive of sound location and/or emotion. Relative to the prior univariate analysis, MVPA indicated larger overlapping spatial and emotional representations of sound within early secondary regions associated with auditory localization. However, consistent with the univariate analysis, these two dimensions were increasingly segregated in late secondary and tertiary regions of the auditory processing streams. These results, while complimentary to our original univariate analyses, highlight the utility of multiple analytic approaches for neuroimaging, particularly for neural processes with known representations dependent on population coding.
a New Protocol for Texture Mapping Process and 2d Representation of Rupestrian Architecture
NASA Astrophysics Data System (ADS)
Carnevali, L.; Carpiceci, M.; Angelini, A.
2018-05-01
The development of the survey techniques for architecture and archaeology requires a general review in the methods used for the representation of numerical data. The possibilities offered by data processing allow to find new paths for studying issues connected to the drawing discipline. The research project aimed at experimenting different approaches for the representation of the rupestrian architecture and the texture mapping process. The nature of the rupestrian architecture does not allow a traditional representation of sections and projections of edges and outlines. The paper presents a method, the Equidistant Multiple Sections (EMS), inspired by cartography and based on the use of isohipses generated from different geometric plane. A specific paragraph is dedicated to the texture mapping process for unstructured surface models. One of the main difficulty in the image projection consists in the recognition of homologous points between image and point cloud, above all in the areas with most deformations. With the aid of the "virtual scan" tool a different procedure was developed for improving the correspondences of the image. The result show a sensible improvement of the entire process above all for the architectural vaults. A detailed study concerned the unfolding of the straight line surfaces; the barrel vault of the analyzed chapel has been unfolded for observing the paintings in the real shapes out of the morphological context.
ERIC Educational Resources Information Center
Wichaidit, Patcharee Rompayom; Wichaidit, Sittichai
2016-01-01
Learning chemistry may be difficult for students for several reasons, such as the abstract nature of many chemistry concepts and the fact that students may view chemistry as irrelevant to their everyday lives. Teaching chemistry in familiar contexts and the use of multiple representations are seen as effective approaches for enhancing students'…
ERIC Educational Resources Information Center
Vinz, Ruth
Focusing on three literature teachers who have lived with and through the changing representations of the discipline, this paper, an examination of the nature of inquiry in literature education, describes the multiple realities that such teachers must negotiate for themselves and their students. The paper discusses conceptions of reflective…
Orienting Attention to Sound Object Representations Attenuates Change Deafness
ERIC Educational Resources Information Center
Backer, Kristina C.; Alain, Claude
2012-01-01
According to the object-based account of attention, multiple objects coexist in short-term memory (STM), and we can selectively attend to a particular object of interest. Although there is evidence that attention can be directed to visual object representations, the assumption that attention can be oriented to sound object representations has yet…
Research-Based Worksheets on Using Multiple Representations in Science Classrooms
ERIC Educational Resources Information Center
Hill, Matthew; Sharma, Manjula
2015-01-01
The ability to represent the world like a scientist is difficult to teach; it is more than simply knowing the representations (e.g., graphs, words, equations and diagrams). For meaningful science learning to take place, consideration needs to be given to explicitly integrating representations into instructional methods, linked to the content, and…
Higo, Noriyuki; Kunori, Nobuo; Murata, Yumi
2016-01-01
In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv.
Kunori, Nobuo; Murata, Yumi
2016-01-01
In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv. PMID:27494282
SPHERE: SPherical Harmonic Elastic REgistration of HARDI Data
Yap, Pew-Thian; Chen, Yasheng; An, Hongyu; Yang, Yang; Gilmore, John H.; Lin, Weili
2010-01-01
In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, the complex orientation information afforded by HARDI makes registration of HARDI images more complicated than scalar images. In particular, the question of how much orientation information is needed for satisfactory alignment has not been sufficiently addressed. Low order orientation representation is generally more robust than high order representation, although the latter provides more information for correct alignment of fiber pathways. However, high order representation, when naïvely utilized, might not necessarily be conducive to improving registration accuracy since similar structures with significant orientation differences prior to proper alignment might be mistakenly taken as non-matching structures. We present in this paper a HARDI registration algorithm, called SPherical Harmonic Elastic REgistration (SPHERE), which in a principled means hierarchically extracts orientation information from HARDI data for structural alignment. The image volumes are first registered using robust, relatively direction invariant features derived from the Orientation Distribution Function (ODF), and the alignment is then further refined using spherical harmonic (SH) representation with gradually increasing orders. This progression from non-directional, single-directional to multi-directional representation provides a systematic means of extracting directional information given by diffusion-weighted imaging. Coupled with a template-subject-consistent soft-correspondence-matching scheme, this approach allows robust and accurate alignment of HARDI data. Experimental results show marked increase in accuracy over a state-of-the-art DTI registration algorithm. PMID:21147231
Wigner tomography of multispin quantum states
NASA Astrophysics Data System (ADS)
Leiner, David; Zeier, Robert; Glaser, Steffen J.
2017-12-01
We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.
MODELS FOR THE COMPLEX REPRESENTATIONS OF THE GROUPS \\mathrm{GL}(n,\\,q)
NASA Astrophysics Data System (ADS)
Klyachko, Alexander A.
1984-02-01
The main result of the paper consists in the construction of a model of the full linear group over a finite field, i.e. its representations such that each irreducible representation occurs as a component precisely once. The series of representations thus constructed has the well-known Gel'fand-Graev representation as first term.Bibliography: 12 titles.
ERIC Educational Resources Information Center
Gkitzia, Vasiliki; Salta, Katerina; Tzougraki, Chryssa
2011-01-01
The study of Chemistry deals essentially with three types of chemical representations: macro, submicro, and symbolic. Research has consistently shown that students experience difficulties in understanding and interpreting the representations, in making translations between different types of representations, and in constructing them. In this…
2007-05-01
sufficient for explaining how theory -of- mind emerges in normally developing children . As confirmation of its plausibility, our theory explains the... autism . While there are a number of different substrate elements that we believe are operative during theory of mind computations, three elements in...15. SUBJECT TERMS PMESII, multiple representations, integrated reasoning, hybrid systems, social cognition, theory of mind 16. SECURITY
Grossberg, Stephen
2014-01-01
Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399
Elementary students' multiple representations of their ideas about air
NASA Astrophysics Data System (ADS)
Gravel, Brian Edward
This dissertation explores how students generate multiple external representations of their ideas about air, an "invisible" substance. External representations can serve a powerful role in placing students' ideas into the external world for reflection and abstraction. When provided the opportunity to represent their understandings of science in different ways, students generate increasingly coherent explanations of what they observe, including developing ideas about mechanisms that describe cause and effect. In this qualitative study, extended clinical interviews were conducted with twelve fifth-grade students from an urban public charter school. In study was designed to investigate students' ideas about air in the context of a linked-syringe device with the support of multiple representations. Students were given the opportunity to produce representations and to offer verbal explanations of the behavior of the syringes in a sequence of three interviews. In the first session, students were introduced to the linked-syringes, and they generated drawings to explain their thinking about air. In the second session, students created stop-motion animations of their explanations for air in the syringes. And in the final session, students built physical devices to demonstrate their ideas about air. Careful analysis of each individual student's trajectory through the microgenetic design and a cross-student analysis reveal that the process of generating multiple representations facilitates how students think and reason about air. Drawings served to organize elements of the linked-syringe problem, providing students with focal points on which to direct their reasoning as they generated more precise explanations. Stop-motion animation supported students' efforts to make sense of processes that change over time, such as compressing the air inside the syringes. And, the construction of physical artifacts prompted students to think about air as a substance, as the activity allowed them to generate analogous physical models of the linked syringes. Furthermore, the students' productions provided the researcher with enhanced access to the substance of students' ideas as captured in their representations. The results of this study are presented in case-study form to highlight how representations serve as embodiments of the resources that students possess for making sense of science. This dissertation contributes to the resources perspective of the importance of external representations in students' development of coherent explanations of what they observe.
NASA Technical Reports Server (NTRS)
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang;
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.
Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua
2016-01-01
The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180
Redundant binary number representation for an inherently parallel arithmetic on optical computers.
De Biase, G A; Massini, A
1993-02-10
A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.
ERIC Educational Resources Information Center
Defeyter, Margaret Anne; Avons, S. E.; German, Tamsin C.
2007-01-01
Research suggests that while information about design is a central feature of older children's artifact representations it may be less important in the artifact representations of younger children. Three experiments explore the pattern of responses that 5- and 7-year-old children generate when asked to produce multiple uses for familiar…
ERIC Educational Resources Information Center
Rau, Martina A.
2018-01-01
To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…
The Effects of Multiple Linked Representations on Students' Learning of Linear Relationships
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
2004-01-01
The focus of this study was on comparing three groups of Algebra I 9th-year students: one group using linked representation software, the second group using similar software but with semi-linked representations, and the control group in order to examine the effects on students' understanding of linear relationships. Data collection methods…
ERIC Educational Resources Information Center
Rau, M. A.; Aleven, V.; Rummel, N.
2011-01-01
Graphical representations (GRs) of the learning content are often used for instruction (Ainsworth, 2006). When used in learning technology, GRs can be especially useful since they allow for interactions across representations that are physically impossible, for instance by dragging and dropping symbolic statements into a chart that automatically…
Refining the assessment of internal working models: the Attachment Multiple Model Interview.
Miljkovitch, Raphaële; Moss, Ellen; Bernier, Annie; Pascuzzo, Katherine; Sander, Emmanuel
2015-01-01
The Attachment Multiple Model Interview (AMMI) was developed to assess internal working models (IWMs) of specific relationships in adulthood (e.g., with mother, father, and romantic partner). In an initial effort to validate the AMMI, the interview was administered to participants who were followed from age 4 to 23. ANOVA and contrast tests confirmed the AMMI's capacity to discriminate between mother, father, and partner IWMs. AMMI security with each parent was correlated with coherence according to the Adult Attachment Interview, and AMMI disorganization with mother with unresolved trauma (N = 53). AMMI dimensions of security, deactivation, and hyperactivation with the mother were associated with cumulative lifetime scores of security (N = 23), avoidance, and resistance (N = 34), respectively. Intercorrelations between these AMMI scales were also theory-consistent. Associations with the AAI and between AMMI security scores of different relationships are consistent with previous findings suggesting a contribution from both parents in the development of a state of mind, but a more important role of the mother for representations of the partner.
The role of social relationships and culture in the cognitive representation of emotions.
Koh, Sharon; Napa Scollon, Christie; Wirtz, Derrick
2014-04-01
There are individual and cultural differences in how memories of our emotions are cognitively represented. This article examines the cognitive representation of emotions in different cultures, as a result of emotional (in)consistency in different cultures. Using a continuous semantic priming task, we showed in two studies that individuals who were less emotionally consistent across relationships have stronger associations of their emotions within those relationships. Further, we found (in Study 2) that in a culture characterised by higher levels of emotional inconsistency across relationships (Singapore), stronger associations between emotions within relationships were found than in a culture characterised by emotional consistency (USA). This cultural difference in cognitive representation was fully mediated by individual differences in cross-situational consistency levels.
A development framework for distributed artificial intelligence
NASA Technical Reports Server (NTRS)
Adler, Richard M.; Cottman, Bruce H.
1989-01-01
The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.
Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird.
Tian, Lucas Y; Brainard, Michael S
2017-12-06
Motor skills depend on the reuse of individual gestures in multiple sequential contexts (e.g., a single phoneme in different words). Yet optimal performance requires that a given gesture be modified appropriately depending on the sequence in which it occurs. To investigate the neural architecture underlying such context-dependent modifications, we studied Bengalese finch song, which, like speech, consists of variable sequences of "syllables." We found that when birds are instructed to modify a syllable in one sequential context, learning generalizes across contexts; however, if unique instruction is provided in different contexts, learning is specific for each context. Using localized inactivation of a cortical-basal ganglia circuit specialized for song, we show that this balance between generalization and specificity reflects a hierarchical organization of neural substrates. Primary motor circuitry encodes a core syllable representation that contributes to generalization, while top-down input from cortical-basal ganglia circuitry biases this representation to enable context-specific learning. Copyright © 2017 Elsevier Inc. All rights reserved.
A normal' category-specific advantage for naming living things.
Laws, K R; Neve, C
1999-10-01
'Artefactual' accounts of category-specific disorders for living things have highlighted that compared to nonliving things, living things have lower name frequency, lower concept familiarity and greater visual complexity and greater within-category structural similarity or 'visual crowding' [7]. These hypotheses imply that deficits for living things are an exaggeration of some 'normal tendency'. Contrary to these notions, we found that normal subjects were consistently worse at naming nonliving than living things in a speeded presentation paradigm. Moreover, their naming was not predicted by concept familiarity, name frequency or visual complexity; however, a novel measure of visual familiarity (i.e. for the appearance of things) did significantly predict naming. We propose that under speeded conditions, normal subjects find nonliving things harder to name because their representations are less visually predictable than for living things (i.e. nonliving things show greater within-item structural variability). Finally, because nonliving things have multiple representations in the real world, this may lower the probability of finding impaired naming and recognition in this category.
The Convallis Rule for Unsupervised Learning in Cortical Networks
Yger, Pierre; Harris, Kenneth D.
2013-01-01
The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the “Convallis rule”, mathematically derived from a principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological, and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the neocortex. PMID:24204224
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
Online evaluation of novel choices by simultaneous representation of multiple memories
Barron, Helen C; Dolan, Raymond J; Behrens, Timothy E J
2014-01-01
Prior experience plays a critical role in decision making. It enables explicit representation of potential outcomes and provides training to valuation mechanisms. However, we can also make choices in the absence of prior experience, by merely imagining the consequences of a new experience. Here, using fMRI repetition suppression in humans, we show how neuronal representations of novel rewards can be constructed and evaluated. A likely novel experience is constructed by invoking multiple independent memories within hippocampus and medial prefrontal cortex. This construction persists for only a short time period, during which new associations are observed between the memories for component items. Together these findings suggest that in the absence of direct experience, co-activation of multiple relevant memories can provide a training signal to the valuation system which allows the consequences of new experiences to be imagined and acted upon. PMID:24013592
Neural basis for dynamic updating of object representation in visual working memory.
Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun
2010-02-15
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.
Geometrical interpretation for the outer SU(3) outer multiplicity label
NASA Technical Reports Server (NTRS)
Draayer, Jerry P.; Troltenier, D.
1995-01-01
A geometrical interpretation for the outer multiplicity rho that occurs in a reduction of the product of two SU(3) representations, (lambda(sub pi), mu(sub pi)) x (lambda(sub nu), mu(sub nu)) approaches sigma(sub rho)(lambda, mu)(sub rho), is introduced. This coupling of proton (pi) and neutron (nu) representations arises, for example, in both boson and fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises the possibility of introducing a simple interaction that provides a physically meaningful way for distinguishing multiple occurrences of (lambda, mu) values that can arise in such products.
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-01-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically-defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division vs. multiplication and subtraction vs. addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distributed representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. PMID:21616086
Rosenberg-Lee, Miriam; Chang, Ting Ting; Young, Christina B; Wu, Sarah; Menon, Vinod
2011-07-01
Although lesion studies over the past several decades have focused on functional dissociations in posterior parietal cortex (PPC) during arithmetic, no consistent view has emerged of its differential involvement in addition, subtraction, multiplication, and division. To circumvent problems with poor anatomical localization, we examined functional overlap and dissociations in cytoarchitectonically defined subdivisions of the intraparietal sulcus (IPS), superior parietal lobule (SPL) and angular gyrus (AG), across these four operations. Compared to a number identification control task, all operations except addition, showed a consistent profile of left posterior IPS activation and deactivation in the right posterior AG. Multiplication and subtraction differed significantly in right, but not left, IPS and AG activity, challenging the view that the left AG differentially subserves retrieval during multiplication. Although addition and multiplication both rely on retrieval, multiplication evoked significantly greater activation in right posterior IPS, as well as the prefrontal cortex, lingual and fusiform gyri, demonstrating that addition and multiplication engage different brain processes. Comparison of PPC responses to the two pairs of inverse operations: division versus multiplication and subtraction versus addition revealed greater activation of left lateral SPL during division, suggesting that processing inverse relations is operation specific. Our findings demonstrate that individual IPS, SPL and AG subdivisions are differentially modulated by the four arithmetic operations and they point to significant functional heterogeneity and individual differences in activation and deactivation within the PPC. Critically, these effects are related to retrieval, calculation and inversion, the three key cognitive processes that are differentially engaged by arithmetic operations. Our findings point to distribute representation of these processes in the human PPC and also help explain why lesion and previous imaging studies have yielded inconsistent findings. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey
2015-05-01
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
2015-05-28
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports
NASA Astrophysics Data System (ADS)
Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward
2009-11-01
This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.
Mathematics Teacher Candidates' Skills of Using Multiple Representations for Division of Fractions
ERIC Educational Resources Information Center
Biber, Abdullah Çagri
2014-01-01
The aim of this study is to reveal teacher candidates' preference regarding uses of verbal, symbolic, number line, and/or model representations of fraction divisions, and to investigate their skill of transferring from one representation type to the others. Case study was used as the research method in this study. The case that is examined within…
ERIC Educational Resources Information Center
Brar, Rozy
2010-01-01
There is a strong push from within mathematics education reform to incorporate representations in math classrooms (Behr, Harel, Post, & Lesh, 1993; Kieren, 1993; NCTM, 2000). However, questions regarding what representations should be used (for a given topic) and how representations should be used (such that students gain a deep understanding of…
ERIC Educational Resources Information Center
Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke
2018-01-01
The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the…
ERIC Educational Resources Information Center
Einsiedler, Wolfgang
1996-01-01
Asks whether theories of knowledge representation provide a basis for the development of theories of knowledge structuring in instruction. Discusses codes of knowledge, surface versus deep structures, semantic networks, and multiple memory systems. Reviews research on teaching, external representation of cognitive structures, hierarchical…
What do we mean by prediction in language comprehension?
Kuperberg, Gina R.; Jaeger, T. Florian
2016-01-01
We consider several key aspects of prediction in language comprehension: its computational nature, the representational level(s) at which we predict, whether we use higher level representations to predictively pre-activate lower level representations, and whether we ‘commit’ in any way to our predictions, beyond pre-activation. We argue that the bulk of behavioral and neural evidence suggests that we predict probabilistically and at multiple levels and grains of representation. We also argue that we can, in principle, use higher level inferences to predictively pre-activate information at multiple lower representational levels. We also suggest that the degree and level of predictive pre-activation might be a function of the expected utility of prediction, which, in turn, may depend on comprehenders’ goals and their estimates of the relative reliability of their prior knowledge and the bottom-up input. Finally, we argue that all these properties of language understanding can be naturally explained and productively explored within a multi-representational hierarchical actively generative architecture whose goal is to infer the message intended by the producer, and in which predictions play a crucial role in explaining the bottom-up input. PMID:27135040
Güçlü, Umut; van Gerven, Marcel A J
2017-01-15
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.
Asymmetric translation between multiple representations in chemistry
NASA Astrophysics Data System (ADS)
Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II
2016-03-01
Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests that presenting concrete representations before abstract representations can increase the effectiveness of MR instruction; however, little work has been conducted on varying the order of different representations during instruction and the role of concreteness in assessment. In this study, we investigated the application of concreteness fading to MR instruction and assessment in teaching chemistry. In two experiments, undergraduate students in either introductory psychology courses or general chemistry courses were given MR instruction on phase changes using different orders of presentation and MR assessment questions based on the representations in the chemistry triplet. Our findings indicate that the order of presentation based on levels of concreteness in MR chemistry instruction is less important than implementation of comprehensive MR assessments. Even after MR instruction, students display an asymmetric understanding of the chemical phenomenon on the MR assessments. Greater emphasis on MR assessments may be an important component in MR instruction that effectively moves novices toward more expert MR understanding.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
ERIC Educational Resources Information Center
Westermann, Gert; Mareschal, Denis; Johnson, Mark H.; Sirois, Sylvain; Spratling, Michael W.; Thomas, Michael S. C.
2007-01-01
Neuroconstructivism is a theoretical framework focusing on the construction of representations in the developing brain. Cognitive development is explained as emerging from the experience-dependent development of neural structures supporting mental representations. Neural development occurs in the context of multiple interacting constraints acting…
Communication: Multiple-property-based diabatization for open-shell van der Waals molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C., E-mail: gerritg@theochem.ru.nl
2016-03-28
We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated formore » O{sub 2} − O{sub 2} in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.« less
ERIC Educational Resources Information Center
Danish, Joshua Adam; Phelps, David
2011-01-01
A productive approach to studying the role of representations in supporting students' learning of science content is to examine their actions from a practice perspective. The current study examines kindergarten and first-grade students' representational practices across a consistent context--the creation of storyboards--both before and after a…
Unitary vs multiple semantics: PET studies of word and picture processing.
Bright, P; Moss, H; Tyler, L K
2004-06-01
In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990; Lambon Ralph, Graham, Patterson, & Hodges, 1999; Rapp, Hillis, & Caramazza, 1993)? We present an analysis of four PET studies (three semantic categorisation tasks and one lexical decision task), two of which employ words as stimuli and two of which employ pictures. Using conjunction analyses, we found robust semantic activation, common to both input modalities in anterior and medial aspects of the left fusiform gyrus, left parahippocampal and perirhinal cortices, and left inferior frontal gyrus (BA 47). There were modality-specific activations in both temporal poles (words) and occipitotemporal cortices (pictures). We propose that the temporal poles are involved in processing both words and pictures, but their engagement might be primarily determined by the level of specificity at which an object is processed. Activation in posterior temporal regions associated with picture processing most likely reflects intermediate, pre-semantic stages of visual processing. Our data are most consistent with a hierarchically structured, unitary system of semantic representations for both verbal and visual modalities, subserved by anterior regions of the inferior temporal cortex.
Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification.
Li, Haoxiang; Hua, Gang
2018-04-01
Pose variation remains to be a major challenge for real-world face recognition. We approach this problem through a probabilistic elastic part model. We extract local descriptors (e.g., LBP or SIFT) from densely sampled multi-scale image patches. By augmenting each descriptor with its location, a Gaussian mixture model (GMM) is trained to capture the spatial-appearance distribution of the face parts of all face images in the training corpus, namely the probabilistic elastic part (PEP) model. Each mixture component of the GMM is confined to be a spherical Gaussian to balance the influence of the appearance and the location terms, which naturally defines a part. Given one or multiple face images of the same subject, the PEP-model builds its PEP representation by sequentially concatenating descriptors identified by each Gaussian component in a maximum likelihood sense. We further propose a joint Bayesian adaptation algorithm to adapt the universally trained GMM to better model the pose variations between the target pair of faces/face tracks, which consistently improves face verification accuracy. Our experiments show that we achieve state-of-the-art face verification accuracy with the proposed representations on the Labeled Face in the Wild (LFW) dataset, the YouTube video face database, and the CMU MultiPIE dataset.
Consistent Orientation of Moduli Spaces
NASA Astrophysics Data System (ADS)
Freed, Daniel S.; Hopkins, Michael J.; Teleman, Constantin
In a series of papers by Freed, Hopkins, and Teleman (2003, 2005, 2007a) the relationship between positive energy representations of the loop group of a compact Lie group G and the twisted equivariant K-theory Kτ+dimGG (G) was developed. Here G acts on itself by conjugation. The loop group representations depend on a choice of ‘level’, and the twisting τ is derived from the level. For all levels the main theorem is an isomorphism of abelian groups, and for special transgressed levels it is an isomorphism of rings: the fusion ring of the loop group andKτ+dimGG (G) as a ring. For G connected with π1G torsionfree, it has been proven that the ring Kτ+dimGG (G) is a quotient of the representation ring of G and can be calculated explicitly. In these cases it agrees with the fusion ring of the corresponding centrally extended loop group. This chapter explicates the multiplication on the twisted equivariant K-theory for an arbitrary compact Lie group G. It constructs a Frobenius ring structure on Kτ+dimGG (G). This is best expressed in the language of topological quantum field theory: a two-dimensional topological quantum field theory (TQFT) is constructed over the integers in which the abelian group attached to the circle is Kτ+dimGG (G).
Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans.
Brunec, Iva K; Bellana, Buddhika; Ozubko, Jason D; Man, Vincent; Robin, Jessica; Liu, Zhong-Xu; Grady, Cheryl; Rosenbaum, R Shayna; Winocur, Gordon; Barense, Morgan D; Moscovitch, Morris
2018-06-13
The ability to represent the world accurately relies on simultaneous coarse and fine-grained neural information coding, capturing both gist and detail of an experience. The longitudinal axis of the hippocampus may provide a gradient of representational granularity in spatial and episodic memory in rodents and humans [1-8]. Rodent place cells in the ventral hippocampus exhibit significantly larger place fields and greater autocorrelation than those in the dorsal hippocampus [1, 9-11], which may underlie a coarser and slower changing representation of space [10, 12]. Recent evidence suggests that properties of cellular dynamics in rodents can be captured with fMRI in humans during spatial navigation [13] and conceptual learning [14]. Similarly, mechanisms supporting granularity along the long axis may also be extrapolated to the scale of fMRI signal. Here, we provide the first evidence for separable scales of representation along the human hippocampal anteroposterior axis during navigation and rest by showing (1) greater similarity among voxel time courses and (2) higher temporal autocorrelation in anterior hippocampus (aHPC), relative to posterior hippocampus (pHPC), the human homologs of ventral and dorsal rodent hippocampus. aHPC voxels exhibited more similar activity at each time point and slower signal change over time than voxels in pHPC, consistent with place field organization in rodents. Importantly, similarity between voxels was related to navigational strategy and episodic memory. These findings provide evidence that the human hippocampus supports an anterior-to-posterior gradient of coarse-to-fine spatiotemporal representations, suggesting the existence of a cross-species mechanism, whereby lower neural similarity supports more complex coding of experience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; ...
2015-03-24
Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less
bioWeb3D: an online webGL 3D data visualisation tool.
Pettit, Jean-Baptiste; Marioni, John C
2013-06-07
Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets.
Factors influencing infants’ ability to update object representations in memory
Moher, Mariko; Feigenson, Lisa
2013-01-01
Remembering persisting objects over occlusion is critical to representing a stable environment. Infants remember hidden objects at multiple locations and can update their representation of a hidden array when an object is added or subtracted. However, the factors influencing these updating abilities have received little systematic exploration. Here we examined the flexibility of infants’ ability to update object representations. We tested 11-month-olds in a looking-time task in which objects were added to or subtracted from two hidden arrays. Across five experiments, infants successfully updated their representations of hidden arrays when the updating occurred successively at one array before beginning at the other. But when updating required alternating between two arrays, infants failed. However, simply connecting the two arrays with a thin strip of foam-core led infants to succeed. Our results suggest that infants’ construal of an event strongly affects their ability to update memory representations of hidden objects. When construing an event as containing multiple updates to the same array, infants succeed, but when construing the event as requiring the revisiting and updating of previously attended arrays, infants fail. PMID:24049245
Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.
McLane, Sharon; Turley, James P
2009-11-14
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Using the Logarithm of Odds to Define a Vector Space on Probabilistic Atlases
Pohl, Kilian M.; Fisher, John; Bouix, Sylvain; Shenton, Martha; McCarley, Robert W.; Grimson, W. Eric L.; Kikinis, Ron; Wells, William M.
2007-01-01
The Logarithm of the Odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures. PMID:17698403
Multiple Sparse Representations Classification
Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik
2015-01-01
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Modeling a flexible representation machinery of human concept learning.
Matsuka, Toshihiko; Sakamoto, Yasuaki; Chouchourelou, Arieta
2008-01-01
It is widely acknowledged that categorically organized abstract knowledge plays a significant role in high-order human cognition. Yet, there are many unknown issues about the nature of how categories are internally represented in our mind. Traditionally, it has been considered that there is a single innate internal representation system for categorical knowledge, such as Exemplars, Prototypes, or Rules. However, results of recent empirical and computational studies collectively suggest that the human internal representation system is apparently capable of exhibiting behaviors consistent with various types of internal representation schemes. We, then, hypothesized that humans' representational system as a dynamic mechanism, capable of selecting a representation scheme that meets situational characteristics, including complexities of category structure. The present paper introduces a framework for a cognitive model that integrates robust and flexible internal representation machinery. Three simulation studies were conducted. The results showed that SUPERSET, our new model, successfully exhibited cognitive behaviors that are consistent with three main theories of the human internal representation system. Furthermore, a simulation study on social cognitive behaviors showed that the model was capable of acquiring knowledge with high commonality, even for a category structure with numerous valid conceptualizations.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Maggi, F. M.; Kleber, M.; Torn, M. S.; Tang, J. Y.; Dwivedi, D.; Guerry, N.
2014-01-01
Accurate representation of soil organic matter (SOM) dynamics in Earth System Models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed a SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic carbon (DOC) stocks in grassland ecosystems as well as lignin content and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and δ14C vertical profiles are consistent with a representation of SOM dynamics consisting of (1) carbon compounds without designated intrinsic turnover times, (2) vertical aqueous transport, and (3) dynamic protection on mineral surfaces.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Maggi, F.; Kleber, M.; Torn, M. S.; Tang, J. Y.; Dwivedi, D.; Guerry, N.
2014-07-01
Accurate representation of soil organic matter (SOM) dynamics in Earth system models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed an SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic matter (DOM) stocks and fluxes, lignin content, and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and Δ14C vertical profiles are consistent with a representation of SOM consisting of carbon compounds with relatively fast reaction rates, vertical aqueous transport, and dynamic protection on mineral surfaces.
NASA Astrophysics Data System (ADS)
Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.
2018-04-01
The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.
Musick, Charles R [Castro Valley, CA; Critchlow, Terence [Livermore, CA; Ganesh, Madhaven [San Jose, CA; Slezak, Tom [Livermore, CA; Fidelis, Krzysztof [Brentwood, CA
2006-12-19
A system and method is disclosed for integrating and accessing multiple data sources within a data warehouse architecture. The metadata formed by the present method provide a way to declaratively present domain specific knowledge, obtained by analyzing data sources, in a consistent and useable way. Four types of information are represented by the metadata: abstract concepts, databases, transformations and mappings. A mediator generator automatically generates data management computer code based on the metadata. The resulting code defines a translation library and a mediator class. The translation library provides a data representation for domain specific knowledge represented in a data warehouse, including "get" and "set" methods for attributes that call transformation methods and derive a value of an attribute if it is missing. The mediator class defines methods that take "distinguished" high-level objects as input and traverse their data structures and enter information into the data warehouse.
Vestibular system: the many facets of a multimodal sense.
Angelaki, Dora E; Cullen, Kathleen E
2008-01-01
Elegant sensory structures in the inner ear have evolved to measure head motion. These vestibular receptors consist of highly conserved semicircular canals and otolith organs. Unlike other senses, vestibular information in the central nervous system becomes immediately multisensory and multimodal. There is no overt, readily recognizable conscious sensation from these organs, yet vestibular signals contribute to a surprising range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. Critical to these diverse, multimodal functions are multiple computationally intriguing levels of processing. For example, the need for multisensory integration necessitates vestibular representations in multiple reference frames. Proprioceptive-vestibular interactions, coupled with corollary discharge of a motor plan, allow the brain to distinguish actively generated from passive head movements. Finally, nonlinear interactions between otolith and canal signals allow the vestibular system to function as an inertial sensor and contribute critically to both navigation and spatial orientation.
NASA Technical Reports Server (NTRS)
Kim, Hakil; Swain, Philip H.
1990-01-01
An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method.
Brain activation of semantic category-based grouping in multiple identity tracking task
Wei, Liuqing; Lyu, Chuang; Hu, Siyuan; Li, Zhen
2017-01-01
Using Multiple Identity Tracking task and the functional magnetic resonance imaging (fMRI) technology, the present study aimed to isolate and visualize the functional anatomy of neural systems involved in the semantic category-based grouping process. Three experiment conditions were selected and compared: the category-based targets grouping (TG) condition, the targets-distractors grouping (TDG) condition and the homogenous condition. In the TG condition, observers could utilize the categorical distinction between targets and distractors, to construct a uniform presentation of targets, that is, to form a group of the targets to facilitate tracking. In the TDG condition, half the targets and half the distractors belonged to the same category. Observers had to inhibit the grouping of targets and distractors in one category to complete tracking. In the homogenous condition, where targets and distractors consisted of the same objects, no grouping could be formed. The “TG-Homogenous” contrast (p<0.01) revealed the activation of the left fusiform and the pars triangularis of inferior frontal gyrus (IFG). The “TG-TDG” contrast only revealed the activation of the left anterior cingulate gyrus (ACC). The fusiform and IFG pars triangularis might participate in the representation of semantic knowledge, IFG pars triangularis might relate intensely with the classification of semantic categories. The ACC might be responsible for the initiation and maintenance of grouping representation. PMID:28505166
2011-01-01
Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research. PMID:21595881
Chepelev, Leonid L; Dumontier, Michel
2011-05-19
Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research.
Texture-Based Correspondence Display
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael
2004-01-01
Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.
ERIC Educational Resources Information Center
Unal, Hasan
2008-01-01
The importance of visualisation and multiple representations in mathematics has been stressed, especially in a context of problem solving. Hanna and Sidoli comment that "Diagrams and other visual representations have long been welcomed as heuristic accompaniments to proof, where they not only facilitate the understanding of theorems and their…
Distributed Representation of Visual Objects by Single Neurons in the Human Brain
Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.
2015-01-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.; Lumley, J. L.; Abid, R.
1994-01-01
A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equations, consistent with the Taylor-Proudman theorem, is presented. The representation insures that the modeled second-order equations are frame-invariant with respect to rotation when the flow is two-dimensional in planes perpendicular to the axis of rotation. The representation satisfies realizability in a new way: a special ansatz is used to obtain analytically, the values of coefficients valid away from the realizability limit: the model coefficients are functions of the state of the turbulence that are valid for all states of the mechanical turbulence attaining their constant limiting values only when the limit state is achieved. Utilization of all the mathematical constraints are not enough to specify all the coefficients in the model. The unspecified coefficients appear as free parameters which are used to insure that the representation is asymptotically consistent with the known equilibrium states of a homogeneous sheared turbulence. This is done by insuring that the modeled evolution equations have the same fixed points as those obtained from computer and laboratory experiments for the homogeneous shear. Results of computations of the homogeneous shear, with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results are consistently better, in a wide class of flows which the model not been calibrated, than those obtained with other nonlinear models.
Performance and consistency of indicator groups in two biodiversity hotspots.
Trindade-Filho, Joaquim; Loyola, Rafael Dias
2011-01-01
In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection. We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH): the Brazilian Cerrado and the Atlantic Forest. To test for group effectiveness we first found the best sets of sites able to maximize the representation of each indicator group in the BH and then calculated the average representation of different target species by the indicator groups in the BH. We considered consistent indicator groups whose representation of target species was not statistically different between BH. We called effective those groups that outperformed the target-species representation achieved by random sets of species. Effective indicator groups required the selection of less than 2% of the BH area for representing target species. Restricted-range species were the most effective indicators for the representation of all mammal diversity as well as target species. It was also the only group with high consistency. We show that several indicator groups could be applied as shortcuts for representing mammal species in the Cerrado and the Atlantic Forest to develop conservation plans, however, only restricted-range species consistently held as the most effective indicator group for such a task. This group is of particular importance in conservation planning as it captures high diversity of endemic and endangered species.
Performance and Consistency of Indicator Groups in Two Biodiversity Hotspots
Trindade-Filho, Joaquim; Loyola, Rafael Dias
2011-01-01
Background In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection. Methodology/Principal Findings We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH): the Brazilian Cerrado and the Atlantic Forest. To test for group effectiveness we first found the best sets of sites able to maximize the representation of each indicator group in the BH and then calculated the average representation of different target species by the indicator groups in the BH. We considered consistent indicator groups whose representation of target species was not statistically different between BH. We called effective those groups that outperformed the target-species representation achieved by random sets of species. Effective indicator groups required the selection of less than 2% of the BH area for representing target species. Restricted-range species were the most effective indicators for the representation of all mammal diversity as well as target species. It was also the only group with high consistency. Conclusions/Significance We show that several indicator groups could be applied as shortcuts for representing mammal species in the Cerrado and the Atlantic Forest to develop conservation plans, however, only restricted-range species consistently held as the most effective indicator group for such a task. This group is of particular importance in conservation planning as it captures high diversity of endemic and endangered species. PMID:21637330
Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex
Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.
2015-01-01
Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421
The self-consistency model of subjective confidence.
Koriat, Asher
2012-01-01
How do people monitor the correctness of their answers? A self-consistency model is proposed for the process underlying confidence judgments and their accuracy. In answering a 2-alternative question, participants are assumed to retrieve a sample of representations of the question and base their confidence on the consistency with which the chosen answer is supported across representations. Confidence is modeled by analogy to the calculation of statistical level of confidence (SLC) in testing hypotheses about a population and represents the participant's assessment of the likelihood that a new sample will yield the same choice. Assuming that participants draw representations from a commonly shared item-specific population of representations, predictions were derived regarding the function relating confidence to inter-participant consensus and intra-participant consistency for the more preferred (majority) and the less preferred (minority) choices. The predicted pattern was confirmed for several different tasks. The confidence-accuracy relationship was shown to be a by-product of the consistency-correctness relationship: It is positive because the answers that are consistently chosen are generally correct, but negative when the wrong answers tend to be favored. The overconfidence bias stems from the reliability-validity discrepancy: Confidence monitors reliability (or self-consistency), but its accuracy is evaluated in calibration studies against correctness. Simulation and empirical results suggest that response speed is a frugal cue for self-consistency, and its validity depends on the validity of self-consistency in predicting performance. Another mnemonic cue-accessibility, which is the overall amount of information that comes to mind-makes an added, independent contribution. Self-consistency and accessibility may correspond to the 2 parameters that affect SLC: sample variance and sample size.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexander E; Gschwind, Michael K; Gunnels, John A
2013-10-29
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Optimized scalar promotion with load and splat SIMD instructions
Eichenberger, Alexandre E [Chappaqua, NY; Gschwind, Michael K [Chappaqua, NY; Gunnels, John A [Yorktown Heights, NY
2012-08-28
Mechanisms for optimizing scalar code executed on a single instruction multiple data (SIMD) engine are provided. Placement of vector operation-splat operations may be determined based on an identification of scalar and SIMD operations in an original code representation. The original code representation may be modified to insert the vector operation-splat operations based on the determined placement of vector operation-splat operations to generate a first modified code representation. Placement of separate splat operations may be determined based on identification of scalar and SIMD operations in the first modified code representation. The first modified code representation may be modified to insert or delete separate splat operations based on the determined placement of the separate splat operations to generate a second modified code representation. SIMD code may be output based on the second modified code representation for execution by the SIMD engine.
Guideline validation in multiple trauma care through business process modeling.
Stausberg, Jürgen; Bilir, Hüseyin; Waydhas, Christian; Ruchholtz, Steffen
2003-07-01
Clinical guidelines can improve the quality of care in multiple trauma. In our Department of Trauma Surgery a specific guideline is available paper-based as a set of flowcharts. This format is appropriate for the use by experienced physicians but insufficient for electronic support of learning, workflow and process optimization. A formal and logically consistent version represented with a standardized meta-model is necessary for automatic processing. In our project we transferred the paper-based into an electronic format and analyzed the structure with respect to formal errors. Several errors were detected in seven error categories. The errors were corrected to reach a formally and logically consistent process model. In a second step the clinical content of the guideline was revised interactively using a process-modeling tool. Our study reveals that guideline development should be assisted by process modeling tools, which check the content in comparison to a meta-model. The meta-model itself could support the domain experts in formulating their knowledge systematically. To assure sustainability of guideline development a representation independent of specific applications or specific provider is necessary. Then, clinical guidelines could be used for eLearning, process optimization and workflow management additionally.
NASA Astrophysics Data System (ADS)
Waight, Noemi; Gillmeister, Kristina
2014-04-01
This study examined teachers' and students' initial conceptions of computer-based models—Flash and NetLogo models—and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry classrooms. Individual in-depth interviews were conducted with 32 students and 6 teachers. Findings revealed an interplay of complex factors that functioned as opportunities and obstacles in the implementation of technologies in science classrooms. Students revealed preferences for the Flash models as opposed to the open-ended NetLogo models. Altogether, due to lack of content and modeling background knowledge, students experienced difficulties articulating coherent and blended understandings of multiple representations. Concurrently, while the aesthetic and interactive features of the models were of great value, they did not sustain students' initial curiosity and opportunities to improve understandings about chemistry phenomena. Most teachers recognized direct alignment of the Flash model with their existing curriculum; however, the benefits were relegated to existing procedural and passive classroom practices. The findings have implications for pedagogical approaches that address the implementation of computer-based models, function of models, models as multiple representations and the role of background knowledge and cognitive load, and the role of teacher vision and classroom practices.
Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715
Online multi-modal robust non-negative dictionary learning for visual tracking.
Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang
2015-01-01
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.
Multiple Intelligences for Differentiated Learning
ERIC Educational Resources Information Center
Williams, R. Bruce
2007-01-01
There is an intricate literacy to Gardner's multiple intelligences theory that unlocks key entry points for differentiated learning. Using a well-articulated framework, rich with graphic representations, Williams provides a comprehensive discussion of multiple intelligences. He moves the teacher and students from curiosity, to confidence, to…
Filatov, Michael; Liu, Fang; Kim, Kwang S.; ...
2016-12-22
Here, the spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociationmore » of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.« less
bioWeb3D: an online webGL 3D data visualisation tool
2013-01-01
Background Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. Results An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Conclusions Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets. PMID:23758781
Vaughn, Brian E.; Waters, Theodore E. A.; Steele, Ryan D.; Roisman, Glenn I.; Bost, Kelly K.; Truitt, Warren; Waters, Harriet S.; Booth-LaForce, Cathryn
2016-01-01
Although attachment theory claims that early attachment representations reflecting the quality of the child’s “lived experiences” are maintained across developmental transitions, evidence that has emerged over the last decade suggests that the association between early relationship quality and adolescents’ attachment representations is fairly modest in magnitude. We used aspects of parenting beyond sensitivity over childhood and adolescence and early security to predict adolescents’ scripted attachment representations. At age 18 years, 673 participants from the NICHD Study of Early Child Care and Youth Development (SECCYD) completed the Attachment Script Assessment (ASA) from which we derived an assessment of secure base script knowledge. Measures of secure base support from childhood through age 15 years (e.g., parental monitoring of child activity, father presence in the home) were selected as predictors and accounted for an additional 8% of the variance in secure base script knowledge scores above and beyond direct observations of sensitivity and early attachment status alone, suggesting that adolescents’ scripted attachment representations reflect multiple domains of parenting. Cognitive and demographic variables also significantly increased predicted variance in secure base script knowledge by 2% each. PMID:27032953
Testing the exclusivity effect in location memory.
Clark, Daniel P A; Dunn, Andrew K; Baguley, Thom
2013-01-01
There is growing literature exploring the possibility of parallel retrieval of location memories, although this literature focuses primarily on the speed of retrieval with little attention to the accuracy of location memory recall. Baguley, Lansdale, Lines, and Parkin (2006) found that when a person has two or more memories for an object's location, their recall accuracy suggests that only one representation can be retrieved at a time (exclusivity). This finding is counterintuitive given evidence of non-exclusive recall in the wider memory literature. The current experiment explored the exclusivity effect further and aimed to promote an alternative outcome (i.e., independence or superadditivity) by encouraging the participants to combine multiple representations of space at encoding or retrieval. This was encouraged by using anchor (points of reference) labels that could be combined to form a single strongly associated combination. It was hypothesised that the ability to combine the anchor labels would allow the two representations to be retrieved concurrently, generating higher levels of recall accuracy. The results demonstrate further support for the exclusivity hypothesis, showing no significant improvement in recall accuracy when there are multiple representations of a target object's location as compared to a single representation.
Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming
2018-02-28
The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.
The conventionality of pictorial representation in interstellar messages
NASA Astrophysics Data System (ADS)
Vakoch, D. A.
2000-06-01
Pictorial messages have previously been advocated for interstellar communication because such messages are presumed to be capable of presenting information in a non-arbitrary and easily intelligible manner. In contrast to this view, pictorial messages actually represent information in a partially conventional way. This point is demonstrated by examining pictorial representations of human beings from a range of cultures. While such representations may be understood quite readily by individuals familiar with the conventions of a particular culture, to the uninitiated outsider, such representations can be unintelligible. In spite of the partially arbitrary nature of pictorial representation, we may be able to construct messages that would teach extraterrestrial intelligence (ETI) some of the conventions by which we view pictures. One such approach is to pair numerical information about geometrical objects with pictorial representations of the same objects. Problems of conventionality can also be addressed in part through use of (1) multiple representations of the same object, (2) contextual cues, (3) three- and four-dimensional representations and (4) non-visual representations.
ERIC Educational Resources Information Center
Earnest, Darrell
2015-01-01
This article reports on students' problem-solving approaches across three representations--number lines, coordinate planes, and function graphs--the axes of which conventional mathematics treats in terms of consistent geometric and numeric coordinations. I consider these representations to be a part of a "hierarchical representational…
Distributed and opposing effects of incidental learning in the human brain.
Hall, Michelle G; Naughtin, Claire K; Mattingley, Jason B; Dux, Paul E
2018-06-01
Incidental learning affords a behavioural advantage when sensory information matches regularities that have previously been encountered. Previous studies have taken a focused approach by probing the involvement of specific candidate brain regions underlying incidentally acquired memory representations, as well as expectation effects on early sensory representations. Here, we investigated the broader extent of the brain's sensitivity to violations and fulfilments of expectations, using an incidental learning paradigm in which the contingencies between target locations and target identities were manipulated without participants' overt knowledge. Multivariate analysis of functional magnetic resonance imaging data was applied to compare the consistency of neural activity for visual events that the contingency manipulation rendered likely versus unlikely. We observed widespread sensitivity to expectations across frontal, temporal, occipital, and sub-cortical areas. These activation clusters showed distinct response profiles, such that some regions displayed more reliable activation patterns under fulfilled expectations, whereas others showed more reliable patterns when expectations were violated. These findings reveal that expectations affect multiple stages of information processing during visual decision making, rather than early sensory processing stages alone. Copyright © 2018 Elsevier Inc. All rights reserved.
Knowledge-based approaches to the maintenance of a large controlled medical terminology.
Cimino, J J; Clayton, P D; Hripcsak, G; Johnson, S B
1994-01-01
OBJECTIVE: Develop a knowledge-based representation for a controlled terminology of clinical information to facilitate creation, maintenance, and use of the terminology. DESIGN: The Medical Entities Dictionary (MED) is a semantic network, based on the Unified Medical Language System (UMLS), with a directed acyclic graph to represent multiple hierarchies. Terms from four hospital systems (laboratory, electrocardiography, medical records coding, and pharmacy) were added as nodes in the network. Additional knowledge about terms, added as semantic links, was used to assist in integration, harmonization, and automated classification of disparate terminologies. RESULTS: The MED contains 32,767 terms and is in active clinical use. Automated classification was successfully applied to terms for laboratory specimens, laboratory tests, and medications. One benefit of the approach has been the automated inclusion of medications into multiple pharmacologic and allergenic classes that were not present in the pharmacy system. Another benefit has been the reduction of maintenance efforts by 90%. CONCLUSION: The MED is a hybrid of terminology and knowledge. It provides domain coverage, synonymy, consistency of views, explicit relationships, and multiple classification while preventing redundancy, ambiguity (homonymy) and misclassification. PMID:7719786
Evaluating and Evolving Metadata in Multiple Dialects
NASA Technical Reports Server (NTRS)
Kozimore, John; Habermann, Ted; Gordon, Sean; Powers, Lindsay
2016-01-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways.
Multiplicative Versus Additive Filtering for Spacecraft Attitude Determination
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2003-01-01
The absence of a globally nonsingular three-parameter representation of rotations forces attitude Kalman filters to estimate either a singular or a redundant attitude representation. We compare two filtering strategies using simplified kinematics and measurement models. Our favored strategy estimates a three-parameter representation of attitude deviations from a reference attitude specified by a higher- dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. We point out some disadvantages of the other strategy, which directly estimates the four-parameter quaternion representation.
Integrating multiple data sources for malware classification
Anderson, Blake Harrell; Storlie, Curtis B; Lane, Terran
2015-04-28
Disclosed herein are representative embodiments of tools and techniques for classifying programs. According to one exemplary technique, at least one graph representation of at least one dynamic data source of at least one program is generated. Also, at least one graph representation of at least one static data source of the at least one program is generated. Additionally, at least using the at least one graph representation of the at least one dynamic data source and the at least one graph representation of the at least one static data source, the at least one program is classified.
Combinatorial semantics strengthens angular-anterior temporal coupling.
Molinaro, Nicola; Paz-Alonso, Pedro M; Duñabeitia, Jon Andoni; Carreiras, Manuel
2015-04-01
The human semantic combinatorial system allows us to create a wide number of new meanings from a finite number of existing representations. The present study investigates the neural dynamics underlying the semantic processing of different conceptual constructions based on predictions from previous neuroanatomical models of the semantic processing network. In two experiments, participants read sentences for comprehension containing noun-adjective pairs in three different conditions: prototypical (Redundant), nonsense (Anomalous) and low-typical but composable (Contrastive). In Experiment 1 we examined the processing costs associated to reading these sentences and found a processing dissociation between Anomalous and Contrastive word pairs, compared to prototypical (Redundant) stimuli. In Experiment 2, functional connectivity results showed strong co-activation across conditions between inferior frontal gyrus (IFG) and posterior middle temporal gyrus (MTG), as well as between these two regions and middle frontal gyrus (MFG), anterior temporal cortex (ATC) and fusiform gyrus (FG), consistent with previous neuroanatomical models. Importantly, processing of low-typical (but composable) meanings relative to prototypical and anomalous constructions was associated with a stronger positive coupling between ATC and angular gyrus (AG). Our results underscore the critical role of IFG-MTG co-activation during semantic processing and how other relevant nodes within the semantic processing network come into play to handle visual-orthographic information, to maintain multiple lexical-semantic representations in working memory and to combine existing representations while creatively constructing meaning. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mukherjee, Biswaroop; Peter, Christine; Kremer, Kurt
2017-09-01
Understanding the connections between the characteristic dynamical time scales associated with a coarse-grained (CG) and a detailed representation is central to the applicability of the coarse-graining methods to understand molecular processes. The process of coarse graining leads to an accelerated dynamics, owing to the smoothening of the underlying free-energy landscapes. Often a single time-mapping factor is used to relate the time scales associated with the two representations. We critically examine this idea using a model system ideally suited for this purpose. Single molecular transport properties are studied via molecular dynamics simulations of the CG and atomistic representations of a liquid crystalline, azobenzene containing mesogen, simulated in the smectic and the isotropic phases. The out-of-plane dynamics in the smectic phase occurs via molecular hops from one smectic layer to the next. Hopping can occur via two mechanisms, with and without significant reorientation. The out-of-plane transport can be understood as a superposition of two (one associated with each mode of transport) independent continuous time random walks for which a single time-mapping factor would be rather inadequate. A comparison of the free-energy surfaces, relevant to the out-of-plane transport, qualitatively supports the above observations. Thus, this work underlines the need for building CG models that exhibit both structural and dynamical consistency to the underlying atomistic model.
Representational Competence: Towards a Distributed and Embodied Cognition Account
ERIC Educational Resources Information Center
Pande, Prajakt; Chandrasekharan, Sanjay
2017-01-01
Multiple external representations (MERs) are central to the practice and learning of science, mathematics and engineering, as the phenomena and entities investigated and controlled in these domains are often not available for perception and action. MERs therefore play a twofold constitutive role in reasoning in these domains. Firstly, MERs stand…
On Transitions between Representations: The Role of Contextual Reasoning in Calculus Problem Solving
ERIC Educational Resources Information Center
Zazkis, Dov
2016-01-01
This article argues for a shift in how researchers discuss and examine students' uses and understandings of multiple representations within a calculus context. An extension of Zazkis, Dubinsky, and Dautermann's (1996) visualization/analysis framework to include contextual reasoning is proposed. Several examples that detail transitions between…
ERIC Educational Resources Information Center
Bull, Glen; Garofalo, Joe
2010-01-01
The ability to move from one representation of data to another is one of the key characteristics of expert mathematicians and scientists. Cloud computing will offer more opportunities to create and display multiple representations of data, making this skill even more important in the future. The advent of the Internet led to widespread…
Critiquing Borders: Teaching about Religions in a Postcolonial World
ERIC Educational Resources Information Center
Ramey, Steven W.
2006-01-01
In a postcolonial environment, our students will encounter multiple representations and diverse followers of various religions outside the classroom. Students need to think critically about the representations of all religions and recognize the humanity of all people. Too often, students leave courses discussing one or more world religions with an…
A Simple Method for Calculating Clebsch-Gordan Coefficients
ERIC Educational Resources Information Center
Klink, W. H.; Wickramasekara, S.
2010-01-01
This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…
The "Double Bind" of Re-presentation in Qualitative Research Methods.
ERIC Educational Resources Information Center
Smithmier, Angela
A current movement in qualitative research is a preoccupation with representation of the "other" (Denzin and Lincoln 1994). Feminists, critical theorists and postmodernists have questioned the dominant, legitimized social order and remained sensitive to the multiple issues related to and emanating from power. This paper briefly reviews the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, Gavin E.
WebLogo is a web based application designed to make the generation of sequence logos as easy and painless as possible. Sequesnce logos are a graphical representation of an amino acid or nucleic acid multiple sequence alignment developed by Tom Schneider and Mike Stephens. Each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of the stack indicates the sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each amino or nucleic acid at that position. In general, a sequence logo provides a richermore » and more precise description of, for example, a binding site, than would a consensus sequence.« less
Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations
NASA Astrophysics Data System (ADS)
Corradi, David; Clarebout, Geraldine; Elen, Jan
2015-10-01
Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific and abstract chemical representations and presenting them to 133 learners with low prior knowledge of the represented domain. The results provide insight into three separate mechanisms of learning with MER. (1) A memory (number of ideas reproduced) and (2) an accuracy (correctness of these ideas) effects occur when two representations are presented in a sequence. An accuracy and a (3) redundancy (number of redundant ideas remembered) effects occur when three representations are presented in a sequence. A necessary precondition for these effects is that descriptive formats are placed before depictive formats. The identified effects are analyzed in terms of the concept of cognitive dissonance.
Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
Hausfeld, Lars; Valente, Giancarlo; Formisano, Elia
2014-08-01
When multivariate pattern decoding is applied to fMRI studies entailing more than two experimental conditions, a most common approach is to transform the multiclass classification problem into a series of binary problems. Furthermore, for decoding analyses, classification accuracy is often the only outcome reported although the topology of activation patterns in the high-dimensional features space may provide additional insights into underlying brain representations. Here we propose to decode and visualize voxel patterns of fMRI datasets consisting of multiple conditions with a supervised variant of self-organizing maps (SSOMs). Using simulations and real fMRI data, we evaluated the performance of our SSOM-based approach. Specifically, the analysis of simulated fMRI data with varying signal-to-noise and contrast-to-noise ratio suggested that SSOMs perform better than a k-nearest-neighbor classifier for medium and large numbers of features (i.e. 250 to 1000 or more voxels) and similar to support vector machines (SVMs) for small and medium numbers of features (i.e. 100 to 600voxels). However, for a larger number of features (>800voxels), SSOMs performed worse than SVMs. When applied to a challenging 3-class fMRI classification problem with datasets collected to examine the neural representation of three human voices at individual speaker level, the SSOM-based algorithm was able to decode speaker identity from auditory cortical activation patterns. Classification performances were similar between SSOMs and other decoding algorithms; however, the ability to visualize decoding models and underlying data topology of SSOMs promotes a more comprehensive understanding of classification outcomes. We further illustrated this visualization ability of SSOMs with a re-analysis of a dataset examining the representation of visual categories in the ventral visual cortex (Haxby et al., 2001). This analysis showed that SSOMs could retrieve and visualize topography and neighborhood relations of the brain representation of eight visual categories. We conclude that SSOMs are particularly suited for decoding datasets consisting of more than two classes and are optimally combined with approaches that reduce the number of voxels used for classification (e.g. region-of-interest or searchlight approaches). Copyright © 2014. Published by Elsevier Inc.
A new mathematical formulation of the line-by-line method in case of weak line overlapping
NASA Technical Reports Server (NTRS)
Ishov, Alexander G.; Krymova, Natalie V.
1994-01-01
A rigorous mathematical proof is presented for multiline representation on the equivalent width of a molecular band which consists in the general case of n overlapping spectral lines. The multiline representation includes a principal term and terms of minor significance. The principal term is the equivalent width of the molecular band consisting of the same n nonoverlapping spectral lines. The terms of minor significance take into consideration the overlapping of two, three and more spectral lines. They are small in case of the weak overlapping of spectral lines in the molecular band. The multiline representation can be easily generalized for optically inhomogeneous gas media and holds true for combinations of molecular bands. If the band lines overlap weakly the standard formulation of line-by-line method becomes too labor-consuming. In this case the multiline representation permits line-by-line calculations to be performed more effectively. Other useful properties of the multiline representation are pointed out.
45 CFR 1626.9 - Change in circumstances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ON LEGAL ASSISTANCE TO ALIENS § 1626.9 Change in circumstances. If, to the knowledge of the recipient... representation is prohibited by this part and a recipient must discontinue representation consistent with...
45 CFR 1626.9 - Change in circumstances.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ON LEGAL ASSISTANCE TO ALIENS § 1626.9 Change in circumstances. If, to the knowledge of the recipient... representation is prohibited by this part and a recipient must discontinue representation consistent with...
45 CFR 1626.9 - Change in circumstances.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ON LEGAL ASSISTANCE TO ALIENS § 1626.9 Change in circumstances. If, to the knowledge of the recipient... representation is prohibited by this part and a recipient must discontinue representation consistent with...
45 CFR 1626.9 - Change in circumstances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ON LEGAL ASSISTANCE TO ALIENS § 1626.9 Change in circumstances. If, to the knowledge of the recipient... representation is prohibited by this part and a recipient must discontinue representation consistent with...
45 CFR 1626.9 - Change in circumstances.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ON LEGAL ASSISTANCE TO ALIENS § 1626.9 Change in circumstances. If, to the knowledge of the recipient... representation is prohibited by this part and a recipient must discontinue representation consistent with...
Furman, Wyndol; Collibee, Charlene
2018-01-01
This study examined how representations of parent-child relationships, friendships, and past romantic relationships are related to subsequent romantic representations. Two-hundred 10th graders (100 female; M age = 15.87 years) from diverse neighborhoods in a Western U.S. city were administered questionnaires and were interviewed to assess avoidant and anxious representations of their relationships with parents, friends, and romantic partners. Participants then completed similar questionnaires and interviews about their romantic representations six more times over the next 7.5 years. Growth curve analyses revealed that representations of relationships with parents, friends, and romantic partners each uniquely predicted subsequent romantic representations across development. Consistent with attachment and behavioral systems theory, representations of romantic relationships are revised by representations and experiences in other relationships. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui
2015-10-30
Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.
Bidirectional associations in multiplication memory: conditions of negative and positive transfer.
Campbell, Jamie I D; Robert, Nicole D
2008-05-01
A variety of experimental evidence indicates that the memory representation for multiplication facts (e.g., 6 x 9 = 54) incorporates bidirectional links with a forward association from factors to product and a reverse association from product to factors. Surprisingly, the authors did not find evidence in Experiment 1 of facilitative transfer-of-practice from multiplication (6 x 9 = ?) to factoring (54 = ? x ?); in fact, multiplication practice produced item-specific interference with factoring. Similarly, the authors found no evidence in Experiment 2 that repetition of specific factoring problems (54 = ? x ?) facilitated performance of corresponding multiplication problems (6 x 9 = ?). In Experiment 3, participants practiced both multiplication and factoring and presented facilitative transfer in both directions. Thus, bidirectional facilitation occurred if both operations were practiced, but interference occurred when only one operation was practiced. We propose that this seemingly paradoxical behavior occurs because it is adaptive for the bidirectional retrieval structure to retain operational flexibility in the context of practicing both operations, whereas it is adaptive to specialize the memory representation for the practiced operation (i.e., factoring or multiplication) when only one operation is practiced.
ERIC Educational Resources Information Center
van Amelsvoort, Marije; Andriessen, Jerry; Kanselaar, Gellof
2007-01-01
This article investigates the conditions under which diagrammatic representations support collaborative argumentation-based learning in a computer environment. Thirty dyads of 15- to 18-year-old students participated in a writing task consisting of 3 phases. Students prepared by constructing a representation (text or diagram) individually. Then…
Role of Mental Representations in Problem Solving: Students' Approaches to Nondirected Tasks
ERIC Educational Resources Information Center
Ibrahim, Bashirah; Rebello, N. Sanjay
2013-01-01
In this paper, we report on a project concerned with the role of cognition during problem solving. We specifically explore the categories of mental representations that students work with during problem solving of different representational task formats. The sample, consisting of 19 engineering students taking a calculus-based physics course,…
Haberman, Jason; Brady, Timothy F; Alvarez, George A
2015-04-01
Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. (c) 2015 APA, all rights reserved).
Distributed representation of visual objects by single neurons in the human brain.
Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N
2015-04-01
It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
Mof-Tree: A Spatial Access Method To Manipulate Multiple Overlapping Features.
ERIC Educational Resources Information Center
Manolopoulos, Yannis; Nardelli, Enrico; Papadopoulos, Apostolos; Proietti, Guido
1997-01-01
Investigates the manipulation of large sets of two-dimensional data representing multiple overlapping features, and presents a new access method, the MOF-tree. Analyzes storage requirements and time with respect to window query operations involving multiple features. Examines both the pointer-based and pointerless MOF-tree representations.…
Factors influencing pre-service physics teachers' skills of writing teaching materials
NASA Astrophysics Data System (ADS)
Sinaga, Parlindungan
2016-02-01
Writing teaching materials is one of the generic pedagogical skills. Teachers and pre-service teachers should be trained to have the skills of writing teaching materials. This study examines the factors that influence the skills of writing in the disciplines among pre-service physics teachers. This study in particular aims to contribute to the development of science writing in the disciplines and to the organization of workshops on writing teaching materials for pre-service teachers. The problems of this research are formulated in the question of what are the factors that influence the skills of pre-service physics teachers in writing teaching materials. The research adopted mixed methods with embedded experimental design. The research subjects were 18 students enrolled in the school physics course. The instruments used consisted of conceptual understanding tests, learning strategy questionnaire, tests of the multiple representation skills, and one-on-one semi- structured interview. Results of data analysis show that the ability and skills of writing physics teaching materials of the pre- service physics teachers are determined by the factors of conceptual understanding of the subject matter with a contribution of 20%, the skills of making multiple representations of concepts with a contribution of 9.8% and students' self-regulation and learning strategy with a contribution of 33.5%. There are other factors that have not been investigated in this study; therefore, it is recommended that future research conduct further investigation on other factors that influence pre-service teachers' skills in writing physics teaching materials.
Navigation based on a sensorimotor representation: a virtual reality study
NASA Astrophysics Data System (ADS)
Zetzsche, Christoph; Galbraith, Christopher; Wolter, Johannes; Schill, Kerstin
2007-02-01
We investigate the hypothesis that the basic representation of space which underlies human navigation does not resemble an image-like map and is not restricted by the laws of Euclidean geometry. For this we developed a new experimental technique in which we use the properties of a virtual environment (VE) to directly influence the development of the representation. We compared the navigation performance of human observers under two conditions. Either the VE is consistent with the geometrical properties of physical space and could hence be represented in a map-like fashion, or it contains severe violations of Euclidean metric and planar topology, and would thus pose difficulties for the correct development of such a representation. Performance is not influenced by this difference, suggesting that a map-like representation is not the major basis of human navigation. Rather, the results are consistent with a representation which is similar to a non-planar graph augmented with path length information, or with a sensorimotor representation which combines sensory properties and motor actions. The latter may be seen as part of a revised view of perceptual processes due to recent results in psychology and neurobiology, which indicate that the traditional strict separation of sensory and motor systems is no longer tenable.
Pedagogical Affordances of Multiple External Representations in Scientific Processes
NASA Astrophysics Data System (ADS)
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-12-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Corradi, David M. J.; Elen, Jan; Schraepen, Beno; Clarebout, Geraldine
2014-01-01
When learning with abstract and scientific multiple external representations (MERs), low prior knowledge learners are said to have difficulties in using these MERs to achieve conceptual understanding. Yet little is known about what these limitations precisely entail. In order to understand this, we presented 101 learners with low prior knowledge…
Selection of a Man-Modelling CAD (Computer-Aided Design),
1985-09-01
OPTIONS link-length input options internal dimensions - V V external dimensions V V V percentile values V V V absolute values (mm) V V/ V somatotypes V...specific data .035 A3 somatotype representation .020 A4 a-typical postures possible .035 * A5 flesh contour representation .040 A6 multiple number of
A Study of Pre-Service Teachers Use of Representations in Their Proportional Reasoning
ERIC Educational Resources Information Center
Johnson, Kim
2017-01-01
Proportional reasoning is important to the field of mathematics education because it lies at the crossroads of additive reasoning in the elementary school and multiplicative reasoning needed for more advanced mathematics. This research reports on the representations used by pre-service teachers (PSTs) as they responded to tasks involving…
Effect of Algorithms' Multiple Representations in the Context of Programming Education
ERIC Educational Resources Information Center
Siozou, Stefania; Tselios, Nikolaos; Komis, Vassilis
2008-01-01
Purpose: The purpose of this paper is to compare the effect of different representations while teaching basic algorithmic concepts to novice programmers. Design/methodology/approach: A learning activity was designed and mediated with two conceptually different learning environments, each one used by a different group. The first group used the…
Unitary vs Multiple Semantics: PET Studies of Word and Picture Processing
ERIC Educational Resources Information Center
Bright, P.; Moss, H.; Tyler, L. K.
2004-01-01
In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990;…
ERIC Educational Resources Information Center
Li, Na; Black, John B.
2016-01-01
Chemistry knowledge can be represented at macro-, micro- and symbolic levels, and learning a chemistry topic requires students to engage in multiple representational activities. This study focused on scaffolding for inter-level connection-making in learning chemistry knowledge with graphical simulations. We also tested whether different sequences…
Impact of Context and Representation on Year 10 Students' Expression of Conceptions of Rate
ERIC Educational Resources Information Center
Herbert, Sandra
2010-01-01
Rate is an important, but difficult mathematical concept. More than twenty years of research, especially with calculus students, report difficulties with this concept. This paper reports on an alternative analysis, from the perspective of multiple representations and context, of interviews probing twenty Victorian Year 10 students' conceptions of…
ERIC Educational Resources Information Center
Gebre, Engida H.; Polman, Joseph L.
2016-01-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and…
ERIC Educational Resources Information Center
Nichols, Kim; Hanan, Jim; Ranasinghe, Muditha
2013-01-01
This study used an interactive dynamic simulation of action potential to explore social practices of learning among first year undergraduate biology students. It aimed to create a learning environment that fosters knowledge building discourse through working with multiple concept-specific representations. Three hundred and eighty-nine students and…
Developing Box Plots While Navigating the Maze of Data Representations
ERIC Educational Resources Information Center
Duncan, Bruce; Fitzallen, Noleine
2013-01-01
The learning sequence described in this article was developed to provide students with a demonstration of the development of box plots from authentic data as an illustration of the advantages gained from using multiple forms of data representation. The sequence follows an authentic process that starts with a problem to which data representations…
ERIC Educational Resources Information Center
Sturge-Apple, Melissa L.; Davies, Patrick T.; Winter, Marcia A.; Cummings, E. Mark; Schermerhorn, Alice
2008-01-01
This study examined how children's insecure internal representations of interparental and parent-child relationships served as explanatory mechanisms in multiple pathways linking interparental conflict and parent emotional unavailability with the emotional and classroom engagement difficulties the children had in their adjustment to school. With…
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Hu, Shih-Shin
2013-01-01
Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…
Identity from Variation: Representations of Faces Derived from Multiple Instances
ERIC Educational Resources Information Center
Burton, A. Mike; Kramer, Robin S. S.; Ritchie, Kay L.; Jenkins, Rob
2016-01-01
Research in face recognition has tended to focus on discriminating between individuals, or "telling people apart." It has recently become clear that it is also necessary to understand how images of the same person can vary, or "telling people together." Learning a new face, and tracking its representation as it changes from…
The Role of Multiple Representations in the Understanding of Ideal Gas Problems
ERIC Educational Resources Information Center
Madden, Sean P.; Jones, Loretta L.; Rahm, Jrene
2011-01-01
This study examined the representational competence of students as they solved problems dealing with the temperature-pressure relationship for ideal gases. Seven students enrolled in a first-semester general chemistry course and two advanced undergraduate science majors participated in the study. The written work and transcripts from videotaped…
ERIC Educational Resources Information Center
Dündar, Sefa
2015-01-01
Using multiple representations of a problem can reveal the relationship between complex concepts by expressing the same mathematical condition differently and can contribute to the meaningful learning of mathematical concepts. The purpose of this study is to assess the performances of mathematics teacher-candidates on trigonometry problems…
Generative Representations for Evolving Families of Designs
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2003-01-01
Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.
Feynman formulas for semigroups generated by an iterated Laplace operator
NASA Astrophysics Data System (ADS)
Buzinov, M. S.
2017-04-01
In the present paper, we find representations of a one-parameter semigroup generated by a finite sum of iterated Laplace operators and an additive perturbation (the potential). Such semigroups and the evolution equations corresponding to them find applications in the field of physics, chemistry, biology, and pattern recognition. The representations mentioned above are obtained in the form of Feynman formulas, i.e., in the form of a limit of multiple integrals as the multiplicity tends to infinity. The term "Feynman formula" was proposed by Smolyanov. Smolyanov's approach uses Chernoff's theorems. A simple form of representations thus obtained enables one to use them for numerical modeling the dynamics of the evolution system as a method for the approximation of solutions of equations. The problems considered in this note can be treated using the approach suggested by Remizov (see also the monograph of Smolyanov and Shavgulidze on path integrals). The representations (of semigroups) obtained in this way are more complicated than those given by the Feynman formulas; however, it is possible to bypass some analytical difficulties.
A knowledge base of the chemical compounds of intermediary metabolism.
Karp, P D
1992-08-01
This paper describes a publicly available knowledge base of the chemical compounds involved in intermediary metabolism. We consider the motivations for constructing a knowledge base of metabolic compounds, the methodology by which it was constructed, and the information that it currently contains. Currently the knowledge base describes 981 compounds, listing for each: synonyms for its name, a systematic name, CAS registry number, chemical formula, molecular weight, chemical structure and two-dimensional display coordinates for the structure. The Compound Knowledge Base (CompoundKB) illustrates several methodological principles that should guide the development of biological knowledge bases. I argue that biological datasets should be made available in multiple representations to increase their accessibility to end users, and I present multiple representations of the CompoundKB (knowledge base, relational data base and ASN. 1 representations). I also analyze the general characteristics of these representations to provide an understanding of their relative advantages and disadvantages. Another principle is that the error rate of biological data bases should be estimated and documented-this analysis is performed for the CompoundKB.
Representation control increases task efficiency in complex graphical representations.
Moritz, Julia; Meyerhoff, Hauke S; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients.
Representation control increases task efficiency in complex graphical representations
Meyerhoff, Hauke S.; Meyer-Dernbecher, Claudia; Schwan, Stephan
2018-01-01
In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients. PMID:29698443
The Differential Role of Verbal and Spatial Working Memory in the Neural Basis of Arithmetic
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2014-01-01
We examine the relations of verbal and spatial WM ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems. PMID:25144257
Multiple time-scales and the developmental dynamics of social systems
Flack, Jessica C.
2012-01-01
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819
Wood, Guilherme; Nuerk, Hans-Christoph; Moeller, Korbinian; Geppert, Barbara; Schnitker, Ralph; Weber, Jochen; Willmes, Klaus
2008-01-02
Number processing recruits a complex network of multiple numerical representations. Usually the components of this network are examined in a between-task approach with the disadvantage of relying upon different instructions, tasks, and inhomogeneous stimulus sets across different studies. A within-task approach may avoid these disadvantages and access involved numerical representations more specifically. In the present study we employed a within-task approach to investigate numerical representations activated in the number bisection task (NBT) using parametric rapid event-related fMRI. Participants were to judge whether the central number of a triplet was also its arithmetic mean (e.g. 23_26_29) or not (e.g. 23_25_29). Activation in the left inferior parietal cortex was associated with the deployment of arithmetic fact knowledge, while activation of the intraparietal cortex indicated more intense magnitude processing, instrumental aspects of calculation and integration of the base-10 structure of two-digit numbers. These results replicate evidence from the literature. Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex revealed mechanisms of feature monitoring and inhibition as well as allocation of cognitive resources recruited to solve a specific triplet. We conclude that the network of numerical representations should rather be studied in a within-task approach than in varying between-task approaches.
Multiple time-scales and the developmental dynamics of social systems.
Flack, Jessica C
2012-07-05
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.
The Probabilistic Admissible Region with Additional Constraints
NASA Astrophysics Data System (ADS)
Roscoe, C.; Hussein, I.; Wilkins, M.; Schumacher, P.
The admissible region, in the space surveillance field, is defined as the set of physically acceptable orbits (e.g., orbits with negative energies) consistent with one or more observations of a space object. Given additional constraints on orbital semimajor axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR), which can be used for orbit initiation in Bayesian tracking and prioritization of tracks in a multiple hypothesis tracking framework. The PAR concept was introduced by the authors at the 2014 AMOS conference. In that paper, a Monte Carlo approach was used to show how to construct the PAR in the range/range-rate space based on known statistics of the measurement, semimajor axis, and eccentricity. An expectation-maximization algorithm was proposed to convert the particle cloud into a Gaussian Mixture Model (GMM) representation of the PAR. This GMM can be used to initialize a Bayesian filter. The PAR was found to be significantly non-uniform, invalidating an assumption frequently made in CAR-based filtering approaches. Using the GMM or particle cloud representations of the PAR, orbits can be prioritized for propagation in a multiple hypothesis tracking (MHT) framework. In this paper, the authors focus on expanding the PAR methodology to allow additional constraints, such as a constraint on perigee altitude, to be modeled in the PAR. This requires re-expressing the joint probability density function for the attributable vector as well as the (constrained) orbital parameters and range and range-rate. The final PAR is derived by accounting for any interdependencies between the parameters. Noting that the concepts presented are general and can be applied to any measurement scenario, the idea will be illustrated using a short-arc, angles-only observation scenario.
NASA Astrophysics Data System (ADS)
Cherri, Abdallah K.; Alam, Mohammed S.
1998-07-01
Highly-efficient two-step recoded and one-step nonrecoded trinary signed-digit (TSD) carry-free adders subtracters are presented on the basis of redundant-bit representation for the operands digits. It has been shown that only 24 (30) minterms are needed to implement the two-step recoded (the one-step nonrecoded) TSD addition for any operand length. Optical implementation of the proposed arithmetic can be carried out by use of correlation- or matrix-multiplication-based schemes, saving 50% of the system memory. Furthermore, we present four different multiplication designs based on our proposed recoded and nonrecoded TSD adders. Our multiplication designs require a small number of reduced minterms to generate the multiplication partial products. Finally, a recently proposed pipelined iterative-tree algorithm can be used in the TSD adders multipliers; consequently, efficient use of all available adders can be made.
Cherri, A K; Alam, M S
1998-07-10
Highly-efficient two-step recoded and one-step nonrecoded trinary signed-digit (TSD) carry-free adders-subtracters are presented on the basis of redundant-bit representation for the operands' digits. It has been shown that only 24 (30) minterms are needed to implement the two-step recoded (the one-step nonrecoded) TSD addition for any operand length. Optical implementation of the proposed arithmetic can be carried out by use of correlation- or matrix-multiplication-based schemes, saving 50% of the system memory. Furthermore, we present four different multiplication designs based on our proposed recoded and nonrecoded TSD adders. Our multiplication designs require a small number of reduced minterms to generate the multiplication partial products. Finally, a recently proposed pipelined iterative-tree algorithm can be used in the TSD adders-multipliers; consequently, efficient use of all available adders can be made.
Agoncillo, A V; Mejino, J L; Rosse, C
1999-01-01
A principled and logical representation of the structure of the human body has led to conflicts with traditional representations of the same knowledge by anatomy textbooks. The examples which illustrate resolution of these conflicts suggest that stricter requirements must be met for semantic consistency, expressivity and specificity by knowledge sources intended to support inference than by textbooks and term lists. These next-generation resources should influence traditional concept representation, rather than be constrained by convention.
ERIC Educational Resources Information Center
Deliyianni, Eleni; Monoyiou, Annita; Elia, Iliada; Georgiou, Chryso; Zannettou, Eleni
2009-01-01
This study investigated the modes of representations generated by kindergarteners and first graders while solving standard and problematic problems in mathematics. Furthermore, it examined the influence of pupils' visual representations on the breach of the didactical contract rules in problem solving. The sample of the study consisted of 38…
ERIC Educational Resources Information Center
Bull, Elizabeth Kay
The goal of this study was to find a way to quantify three criteria of representational quality, described by Greeno, so that it would be possible to examine statistically the relationship between representational quality and other variables related to problem solution. The sample consisted of 18 college students, 84 percent of whom had…
ERIC Educational Resources Information Center
Sommer, Iris E. C.; Aleman, Andre; Bouma, Anke; Kahn, Rene S.
2004-01-01
Sex differences in cognition are consistently reported, men excelling in most visuospatial tasks and women in certain verbal tasks. It has been hypothesized that these sex differences in cognition results from a more bilateral pattern of language representation in women than in men. This bilateral pattern of language representation in women is…
Woith, Wendy Mann; Larson, Janet L
2008-08-01
Tuberculosis is a global problem, especially in high burden countries such as Russia, that is fueled by delay in seeking treatment and nonadherence to prescribed medications. Stigma and illness representation (a person's mental image of a specific illness) have the potential to affect treatment seeking and adherence. To describe the illness representation of tuberculosis in Russians with active pulmonary tuberculosis, and to determine if stigma and illness representation are predictors of delay in seeking treatment and adherence to tuberculosis medications. Cross-sectional, descriptive survey. Two outpatient clinics in the Vladimir Region, Russia. A total of 105 adults, 18 years and older, being treated for active pulmonary tuberculosis, and on outpatient therapy for a minimum of four weeks participated in this study. Delay was measured with a question asking length of time between onset of symptoms and appointment with a physician. Stigma was measured using the Social Impact Scale. Illness representation was measured using the Revised Illness Perception Questionnaire. Participants' outpatient medication records were reviewed for medication adherence. Symptoms reported were not consistent with those described in the medical literature and other studies. Only four subjects suspected tuberculosis based on their symptoms; 60% believed they had other respiratory infections. Multiple regression showed that illness identity (an attribute of illness representation) (beta=0.23) was a significant predictor of delay, accounting for 29% of the variance (p=0.008); and financial insecurity (beta=-0.28) and internalized shame (beta=0.27) (measures of stigma) were both significant predictors of medication adherence, accounting for 23% of the variance (p=0.003). Illness identity was associated with delay. Internalized shame was associated with increased medication adherence while financial insecurity was associated with decreased adherence. Results point to the need for broad, culturally specific patient, family, and community education programs.
Kim, Jongin; Lee, Boreom
2018-05-07
Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Marshall, Jonathan A.
1992-12-01
A simple self-organizing neural network model, called an EXIN network, that learns to process sensory information in a context-sensitive manner, is described. EXIN networks develop efficient representation structures for higher-level visual tasks such as segmentation, grouping, transparency, depth perception, and size perception. Exposure to a perceptual environment during a developmental period serves to configure the network to perform appropriate organization of sensory data. A new anti-Hebbian inhibitory learning rule permits superposition of multiple simultaneous neural activations (multiple winners), while maintaining contextual consistency constraints, instead of forcing winner-take-all pattern classifications. The activations can represent multiple patterns simultaneously and can represent uncertainty. The network performs parallel parsing, credit attribution, and simultaneous constraint satisfaction. EXIN networks can learn to represent multiple oriented edges even where they intersect and can learn to represent multiple transparently overlaid surfaces defined by stereo or motion cues. In the case of stereo transparency, the inhibitory learning implements both a uniqueness constraint and permits coactivation of cells representing multiple disparities at the same image location. Thus two or more disparities can be active simultaneously without interference. This behavior is analogous to that of Prazdny's stereo vision algorithm, with the bonus that each binocular point is assigned a unique disparity. In a large implementation, such a NN would also be able to represent effectively the disparities of a cloud of points at random depths, like human observers, and unlike Prazdny's method
Hosseinbor, A. Pasha; Chung, Moo K.; Koay, Cheng Guan; Schaefer, Stacey M.; van Reekum, Carien M.; Schmitz, Lara Peschke; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.
2015-01-01
Image-based parcellation of the brain often leads to multiple disconnected anatomical structures, which pose significant challenges for analyses of morphological shapes. Existing shape models, such as the widely used spherical harmonic (SPHARM) representation, assume topological invariance, so are unable to simultaneously parameterize multiple disjoint structures. In such a situation, SPHARM has to be applied separately to each individual structure. We present a novel surface parameterization technique using 4D hyperspherical harmonics in representing multiple disjoint objects as a single analytic function, terming it HyperSPHARM. The underlying idea behind Hyper-SPHARM is to stereographically project an entire collection of disjoint 3D objects onto the 4D hypersphere and subsequently simultaneously parameterize them with the 4D hyperspherical harmonics. Hence, HyperSPHARM allows for a holistic treatment of multiple disjoint objects, unlike SPHARM. In an imaging dataset of healthy adult human brains, we apply HyperSPHARM to the hippocampi and amygdalae. The HyperSPHARM representations are employed as a data smoothing technique, while the HyperSPHARM coefficients are utilized in a support vector machine setting for object classification. HyperSPHARM yields nearly identical results as SPHARM, as will be shown in the paper. Its key advantage over SPHARM lies computationally; Hyper-SPHARM possess greater computational efficiency than SPHARM because it can parameterize multiple disjoint structures using much fewer basis functions and stereographic projection obviates SPHARM's burdensome surface flattening. In addition, HyperSPHARM can handle any type of topology, unlike SPHARM, whose analysis is confined to topologically invariant structures. PMID:25828650
Excitatory Local Interneurons Enhance Tuning of Sensory Information
Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim
2012-01-01
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661
Examining student heuristic usage in a hydrogen bonding assessment.
Miller, Kathryn; Kim, Thomas
2017-09-01
This study investigates the role of representational competence in student responses to an assessment of hydrogen bonding. The assessment couples the use of a multiple-select item ("Choose all that apply") with an open-ended item to allow for an examination of students' cognitive processes as they relate to the assignment of hydrogen bonding within a structural representation. Response patterns from the multiple-select item implicate heuristic usage as a contributing factor to students' incorrect responses. The use of heuristics is further supported by the students' corresponding responses to the open-ended assessment item. Taken together, these data suggest that poor representational competence may contribute to students' previously observed inability to correctly navigate the concept of hydrogen bonding. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):411-416, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Predicting perceptual quality of images in realistic scenario using deep filter banks
NASA Astrophysics Data System (ADS)
Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang
2018-03-01
Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.
Transductive multi-view zero-shot learning.
Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang
2015-11-01
Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.
ERIC Educational Resources Information Center
Son, Ji-Won; Lee, Ji-Eun
2016-01-01
Despite the importance of teacher fractional knowledge, there are several areas of teacher understanding that are not well understood. The purpose of this study was to characterise profiles of pre-service teachers' (PSTs) mathematical competence on the topic of fraction multiplication by examining PSTs' understanding of multiplication of fractions…
Information Integration in Multiple Cue Judgment: A Division of Labor Hypothesis
ERIC Educational Resources Information Center
Juslin, Peter; Karlsson, Linnea; Olsson, Henrik
2008-01-01
There is considerable evidence that judgment is constrained to additive integration of information. The authors propose an explanation of why serial and additive cognitive integration can produce accurate multiple cue judgment both in additive and non-additive environments in terms of an adaptive division of labor between multiple representations.…
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Integrable generalizations of non-linear multiple three-wave interaction models
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1989-07-01
Integrable generalizations of multiple three-wave interaction models in terms of r-matrix formulation are investigated. The Lax representations, complete sets of first integrals in involution are constructed, the quantization leading to Gaudin's models is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, X.; Senftleben, A.; Pflueger, T.
Absolutely normalized (e,2e) measurements for H{sub 2} and He covering the full solid angle of one ejected electron are presented for 16 eV sum energy of both final state continuum electrons. For both targets rich cross-section structures in addition to the binary and recoil lobes are identified and studied as a function of the fixed electron's emission angle and the energy sharing among both electrons. For H{sub 2} their behavior is consistent with multiple scattering of the projectile as discussed before [Al-Hagan et al., Nature Phys. 5, 59 (2009)]. For He the binary and recoil lobes are significantly larger thanmore » for H{sub 2} and partly cover the multiple scattering structures. To highlight these patterns we propose a alternative representation of the triply differential cross section. Nonperturbative calculations are in good agreement with the He results and show discrepancies for H{sub 2} in the recoil peak region. For H{sub 2} a perturbative approach reasonably reproduces the cross-section shape but deviates in absolute magnitude.« less
Quantum dressing orbits on compact groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Šťovíček, Pavel
1993-02-01
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.
Vision Based Localization in Urban Environments
NASA Technical Reports Server (NTRS)
McHenry, Michael; Cheng, Yang; Matthies, Larry
2005-01-01
As part of DARPA's MARS2020 program, the Jet Propulsion Laboratory developed a vision-based system for localization in urban environments that requires neither GPS nor active sensors. System hardware consists of a pair of small FireWire cameras and a standard Pentium-based computer. The inputs to the software system consist of: 1) a crude grid-based map describing the positions of buildings, 2) an initial estimate of robot location and 3) the video streams produced by each camera. At each step during the traverse the system: captures new image data, finds image features hypothesized to lie on the outside of a building, computes the range to those features, determines an estimate of the robot's motion since the previous step and combines that data with the map to update a probabilistic representation of the robot's location. This probabilistic representation allows the system to simultaneously represent multiple possible locations, For our testing, we have derived the a priori map manually using non-orthorectified overhead imagery, although this process could be automated. The software system consists of two primary components. The first is the vision system which uses binocular stereo ranging together with a set of heuristics to identify features likely to be part of building exteriors and to compute an estimate of the robot's motion since the previous step. The resulting visual features and the associated range measurements are software component, a particle-filter based localization system. This system uses the map and the then fed to the second primary most recent results from the vision system to update the estimate of the robot's location. This report summarizes the design of both the hardware and software and will include the results of applying the system to the global localization of a robot over an approximately half-kilometer traverse across JPL'S Pasadena campus.
VLSI architectures for computing multiplications and inverses in GF(2m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.
1985-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2-m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.
1983-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
Hosseinbor, A. Pasha; Chung, Moo K.; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.
2014-01-01
We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, HyperSPHARM treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. HyperSPHARM is shown to achieve a better reconstruction with only 5 basis compared to SPHARM that requires more than 441. PMID:24505716
VLSI architectures for computing multiplications and inverses in GF(2m).
Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S
1985-08-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.
ERIC Educational Resources Information Center
Stull, Andrew T.; Hegarty, Mary
2016-01-01
This study investigated the development of representational competence among organic chemistry students by using 3D (concrete and virtual) models as aids for teaching students to translate between multiple 2D diagrams. In 2 experiments, students translated between different diagrams of molecules and received verbal feedback in 1 of the following 3…
The Born Digital Graduate: Multiple Representations of and within Digital Humanities PhD Theses
ERIC Educational Resources Information Center
Webb, Sharon; Teehan, Aja; Keating, John
2013-01-01
This chapter examines the production and utilisation of digital tools to create and present a born-digital theses, and in so doing, considers the changing function of traditional theses. It asks how (relatively) new technologies and methodologies should affect the representation and function of graduate scholarship in the Digital Humanities (DH),…
ERIC Educational Resources Information Center
Flores, Margaret M.; Hinton, Vanessa; Strozier, Shaunita D.
2014-01-01
Based on Common Core Standards (2010), mathematics interventions should emphasize conceptual understanding of numbers and operations as well as fluency. For students at risk for failure, the concrete-representational-abstract (CRA) sequence and the Strategic Instruction Model (SIM) have been shown effective in teaching computation with an emphasis…
ERIC Educational Resources Information Center
Adadan, Emine; Oner, Diler
2014-01-01
This multiple case study investigated how two preservice chemistry teachers' pedagogical content knowledge (PCK) representations of behavior of gases progressed in the context of a semester-long chemistry teaching methods course. The change in the participants' PCK components was interpreted with respect to the theoretical PCK learning…
ERIC Educational Resources Information Center
Waight, Noemi; Gillmeister, Kristina
2014-01-01
This study examined teachers' and students' initial conceptions of computer-based models--Flash and NetLogo models--and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry…
ERIC Educational Resources Information Center
Yakubova, Gulnoza; Hughes, Elizabeth M.; Shinaberry, Megan
2016-01-01
The purpose of this study was to determine the effectiveness of a video modeling intervention with concrete-representational-abstract instructional sequence in teaching mathematics concepts to students with autism spectrum disorder (ASD). A multiple baseline across skills design of single-case experimental methodology was used to determine the…
ERIC Educational Resources Information Center
Alnizami, Reema
2017-01-01
This study examined the math talk and the use of multiple representations in elementary classrooms of 134 beginning teachers, all in their second year of teaching. A quantitative correlational research design was employed to investigate the research questions. The data were collected using a log instrument, the Instructional Practices Log in…
ERIC Educational Resources Information Center
Özgül, Ilhan; Incikabi, Lütfi
2017-01-01
In this study, the representations preferred by prospective teachers in the teaching of note values were determined and the accuracy of these representations was analyzed in the context of mathematics and music. The case study, one of the qualitative research designs, was used in the study. Study group of the research consisted of 113 pre-school…
Batterink, Laura; Neville, Helen
2011-11-01
The vast majority of word meanings are learned simply by extracting them from context rather than by rote memorization or explicit instruction. Although this skill is remarkable, little is known about the brain mechanisms involved. In the present study, ERPs were recorded as participants read stories in which pseudowords were presented multiple times, embedded in consistent, meaningful contexts (referred to as meaning condition, M+) or inconsistent, meaningless contexts (M-). Word learning was then assessed implicitly using a lexical decision task and explicitly through recall and recognition tasks. Overall, during story reading, M- words elicited a larger N400 than M+ words, suggesting that participants were better able to semantically integrate M+ words than M- words throughout the story. In addition, M+ words whose meanings were subsequently correctly recognized and recalled elicited a more positive ERP in a later time window compared with M+ words whose meanings were incorrectly remembered, consistent with the idea that the late positive component is an index of encoding processes. In the lexical decision task, no behavioral or electrophysiological evidence for implicit priming was found for M+ words. In contrast, during the explicit recognition task, M+ words showed a robust N400 effect. The N400 effect was dependent upon recognition performance, such that only correctly recognized M+ words elicited an N400. This pattern of results provides evidence that the explicit representations of word meanings can develop rapidly, whereas implicit representations may require more extensive exposure or more time to emerge.
McCarthy, Laura Mary; Kalinyak-Fliszar, Michelene; Kohen, Francine; Martin, Nadine
2017-01-01
Deep dysphasia is a relatively rare subcategory of aphasia, characterised by word repetition impairment and a profound auditory-verbal short-term memory (STM) limitation. Repetition of words is better than nonwords (lexicality effect) and better for high-image than low-image words (imageability effect). Another related language impairment profile is phonological dysphasia, which includes all of the characteristics of deep dysphasia except for the occurrence of semantic errors in single word repetition. The overlap in symptoms of deep and phonological dysphasia has led to the hypothesis that they share the same root cause, impaired maintenance of activated representation of words, but that they differ in severity of that impairment, with deep dysphasia being more severe. We report a single-subject multiple baseline, multiple probe treatment study of a person who presented with a pattern of repetition that was consistent with the continuum of deep-phonological dysphasia: imageability and lexicality effects in repetition of single and multiple words and semantic errors in repetition of multiple-word utterances. The aim of this treatment study was to improve access to and repetition of low-imageability words by embedding them in modifier-noun phrases that enhanced their imageability. The treatment involved repetition of abstract noun pairs. We created modifier-abstract noun phrases that increased the semantic and syntactic cohesiveness of the words in the pair. For example, the phrases "long distance" and "social exclusion" were developed to improve repetition of the abstract pair "distance-exclusion". The goal of this manipulation was to increase the probability of accessing lexical and semantic representations of abstract words in repetition by enriching their semantic -syntactic context. We predicted that this increase in accessibility would be maintained when the words were repeated as pairs, but without the contextual phrase. Treatment outcomes indicated that increasing the semantic and syntactic cohesiveness of low-imageability and low-frequency words later improved this participant's ability to repeat those words when presented in isolation. This treatment approach to improving access to abstract word pairs for repetition was successful for our participant with phonological dysphasia. The approach exemplifies the potential value in manipulating linguistic characteristics of stimuli in ways that improve access between phonological and lexical-semantic levels of representation. Additionally, this study demonstrates how principles of a cognitive model of word processing can be used to guide treatment of word processing impairments in aphasia.
NASA Astrophysics Data System (ADS)
Lee, Yun-Young
2017-04-01
West Pacific (WP) teleconnection pattern is one of the well-known primary modes of boreal winter low-frequency variability (LFV) resolved in 500 hPa geopotential height and its phase and amplitude strongly influence regional weather conditions including temperature and rainfall extremes [Baxter and Nigam, 2015; Hsu and Wallace, 1985; Linkin and Nigam, 2008; Mo and Livezey, 1986; Thompson and Wallace, 1998; Wallace and Gutzler, 1981]. This study primary aims to evaluate individual 11 GCMs seasonal hindcasts employed as members of multi-model ensemble (MME) produced in APEC Climate Center (APCC) in representing WP. For the extensive and comprehensive evaluation, this study applied seven verification metrics in three scopes: (a) temporal representation of observed indices, (b) spatial mode separation in the Northern Hemisphere (NH), and (c) regional mode isolated in the preset longitudinal domain. Verification results display quite large inter-model spread. Some models mimic observed index variability while others display large bias of index variability compared to climatology. Basic north-south dipole pattern is mostly well reproduced in both rotated and unrotated loading modes. However, each individual seasonal forecast model exhibits slightly different behavior (e.g. amplification/weakening, zonal and meridional shift, downstream extension and so forth) in representing spatial structure of WP. When taking all 7 metrics into account, one Europe (CMCC) model, one Oceania (POAMA) model and two North America (NASA and NCEP) models are classified as relatively good performers while PNU is classified as a matchless poor performer out of 11. Least WP representing skill of PNU is sort of consistent with the largest bias of NH total variability. This study further tries to examine winter mean biases of individual models and figure out how mean bias is linked to WP representation in model world. Model bias of winter climatology is investigated focusing on six large scale phenomena: East Asian winter monsoon (EAWM), Atlantic dipole, Pacific/Atlantic jets and Pacific/Atlantic Hadley circulations. Changes in structure and amplitude of them are diagnosed in terms of root mean square error, pattern correlation, intensity bias, zonal displacement and/or downstream extension. There is consistent strengthening/downstream extension of Atlantic jet and absence of southern divergence cell of Atlantic Hadley in most seasonal prediction models. It is demonstrated that WP representation has something to do with bias of Atlantic winter climatology (Atlantic dipole and Atlantic jet) from scatter plot and regression analysis. This implies the importance of realistic simulation of winter climatology further upstream for better WP representation. A fundamental conclusion of this study is that the representation of primary WP features varies among individual models of APCC-MME and it is significantly dependent on the deficiencies of some winter mean climatological patterns.
Localization of Unitary Braid Group Representations
NASA Astrophysics Data System (ADS)
Rowell, Eric C.; Wang, Zhenghan
2012-05-01
Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.
1D gasdynamics of wind-blown bubbles: effects of thermal conduction
NASA Astrophysics Data System (ADS)
Zhekov, S. A.; Myasnikov, A. V.
1998-03-01
Gasdynamic properties of the wind-blown bubbles are considered in the framework of the 1D spherically symmetric flow. The model self-consistently takes into account the optically-thin-plasma cooling and the electron thermal conduction. The numerical method used in calculations is described in details. A comparison with the existing self-similar solution is provided. It is shown that the self-similar solution gives a relatively well representation of the hot-bubble interior and could be used for estimations of some of its spectral characteristics. However, it is also shown that the thermal conduction in combination with the cooling may cause additional multiple shocks to appear in the interaction region and the analysis of the nature of these shocks is provided.
Representations of the Extended Poincare Superalgebras in Four Dimensions
NASA Astrophysics Data System (ADS)
Griffis, John D.
Eugene Wigner used the Poincare group to induce representations from the fundamental internal space-time symmetries of (special) relativistic quantum particles. Wigner's students spent considerable amount of time translating passages of this paper into more detailed and accessible papers and books. In 1975, R. Haag et al. investigated the possible extensions of the symmetries of relativistic quantum particles. They showed that the only consistent (super)symmetric extensions to the standard model of physics are obtained by using super charges to generate the odd part of a Lie superalgebra whose even part is generated by the Poincare group; this theory has become known as supersymmetry. In this paper, R. Haag et al. used a notation called supermultiplets to give the dimension of a representation and its multiplicity; this notation is described mathematically in chapter 5 of this thesis. By 1980 S. Ferrara et al. began classifying the representations of these algebras for dimensions greater than four, and in 1986 Strathdee published considerable work listing some representations for the Poincare superalgebra in any finite dimension. This work has been continued to date. We found the work of S. Ferrara et al. to be essential to our understanding extended supersymmetries. However, this paper was written using imprecise language meant for physicists, so it was far from trivial to understand the mathematical interpretation of this work. In this thesis, we provide a "translation" of the previous results (along with some other literature on the Extended Poincare Superalgebras) into a rigorous mathematical setting, which makes the subject more accessible to a larger audience. Having a mathematical model allows us to give explicit results and detailed proofs. Further, this model allows us to see beyond just the physical interpretation and it allows investigation by a purely mathematically adept audience. Our work was motivated by a paper written in 2012 by M. Chaichian et al, which classified all of the unitary, irreducible representations of the extended Poincare superalgebra in three dimensions. We consider only the four dimensional case, which is of interest to physicists working on quantum supergravity models without cosmological constant, and we provide explicit branching rules for the invariant subgroups corresponding to the most physically relevant symmetries of the irreducible representations of the Extended Poincare Superalgebra in four dimensions. However, it is possible to further generalize this work into any finite dimension. Such work would classify all possible finitely extended supersymmetric models.
Bag of Lines (BoL) for Improved Aerial Scene Representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Harini; Cheriyadat, Anil M.
2014-09-22
Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scalemore » invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT- and Gabor-based representations.« less
Learning viewpoint invariant perceptual representations from cluttered images.
Spratling, Michael W
2005-05-01
In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations.
ABJM Wilson loops in arbitrary representations
NASA Astrophysics Data System (ADS)
Hatsuda, Yasuyuki; Honda, Masazumi; Moriyama, Sanefumi; Okuyama, Kazumi
2013-10-01
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.
Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo
2011-07-01
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.
Lorenz, Antje; Zwitserlood, Pienie
2016-01-01
This study examines the lexical representation and processing of noun-noun compounds and their grammatical gender during speech production in German, a language that codes for grammatical gender (masculine, feminine, and neuter). Using a picture-word interference paradigm, participants produced determiner-compound noun phrases in response to pictures, while ignoring written distractor words. Compound targets were either semantically transparent (e.g., birdhouse) or opaque (e.g., hotdog), and their constituent nouns either had the same or a different gender (internal gender match). Effects of gender-congruent but otherwise unrelated distractor nouns, and of two morphologically related distractors corresponding to the first or second constituent were assessed relative to a completely unrelated, gender-incongruent distractor baseline. Both constituent distractors strongly facilitated compound naming, and these effects were independent of the targets' semantic transparency. This supports retrieval of constituent morphemes for semantically transparent and opaque compounds during speech production. Furthermore, gender congruency between compounds and distractors did not speed up naming in general, but interacted with gender match of the compounds' constituent nouns, and their semantic transparency. A significant gender-congruency effect was obtained with semantically transparent compounds, consisting of two constituent nouns of the same gender, only. In principle, this pattern is compatible with a multiple lemma representation account for semantically transparent, but not for opaque compounds. The data also fit with a more parsimonious, holistic representation for all compounds at the lemma level, when differences in co-activation patterns for semantically transparent and opaque compounds are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark
Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less
Ukkola, Anna M.; Pitman, Andy J.; Decker, Mark; ...
2016-06-21
Surface fluxes from land surface models (LSMs) have traditionally been evaluated against monthly, seasonal or annual mean states. The limited ability of LSMs to reproduce observed evaporative fluxes under water-stressed conditions has been previously noted, but very few studies have systematically evaluated these models during rainfall deficits. We evaluated latent heat fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLE) LSM across 20 flux tower sites at sub-annual to inter-annual timescales, in particular focusing on model performance during seasonal-scale rainfall deficits. The importance of key model processes in capturing the latent heat flux was explored by employing alternative representations of hydrology, leafmore » area index, soil properties and stomatal conductance. We found that the representation of hydrological processes was critical for capturing observed declines in latent heat during rainfall deficits. By contrast, the effects of soil properties, LAI and stomatal conductance were highly site-specific. Whilst the standard model performs reasonably well at annual scales as measured by common metrics, it grossly underestimates latent heat during rainfall deficits. A new version of CABLE, with a more physically consistent representation of hydrology, captures the variation in the latent heat flux during seasonal-scale rainfall deficits better than earlier versions, but remaining biases point to future research needs. Lastly, our results highlight the importance of evaluating LSMs under water-stressed conditions and across multiple plant functional types and climate regimes.« less
The roles of perceptual and conceptual information in face recognition.
Schwartz, Linoy; Yovel, Galit
2016-11-01
The representation of familiar objects is comprised of perceptual information about their visual properties as well as the conceptual knowledge that we have about them. What is the relative contribution of perceptual and conceptual information to object recognition? Here, we examined this question by designing a face familiarization protocol during which participants were either exposed to rich perceptual information (viewing each face in different angles and illuminations) or with conceptual information (associating each face with a different name). Both conditions were compared with single-view faces presented with no labels. Recognition was tested on new images of the same identities to assess whether learning generated a view-invariant representation. Results showed better recognition of novel images of the learned identities following association of a face with a name label, but no enhancement following exposure to multiple face views. Whereas these findings may be consistent with the role of category learning in object recognition, face recognition was better for labeled faces only when faces were associated with person-related labels (name, occupation), but not with person-unrelated labels (object names or symbols). These findings suggest that association of meaningful conceptual information with an image shifts its representation from an image-based percept to a view-invariant concept. They further indicate that the role of conceptual information should be considered to account for the superior recognition that we have for familiar faces and objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Evaluating and Evolving Metadata in Multiple Dialects
NASA Astrophysics Data System (ADS)
Kozimor, J.; Habermann, T.; Powers, L. A.; Gordon, S.
2016-12-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways. This situation has led to the development of metadata repositories that can ingest and output metadata in multiple dialects. As an operational example, the NASA Common Metadata Repository (CMR) includes three different metadata dialects (DIF, ECHO, and ISO 19115-2). These systems raise a new question for metadata providers: if I have a choice of metadata dialects, which should I use and how do I make that decision? We have developed a collection of metadata evaluation tools that can be used to evaluate metadata records in many dialects for completeness with respect to recommendations from many organizations and communities. We have applied these tools to over 8000 collection and granule metadata records in four different dialects. This large collection of identical content in multiple dialects enables us to address questions about metadata and dialect evolution and to answer those questions quantitatively. We will describe those tools and results from evaluating the NASA CMR metadata collection.
Extracting the information of coastline shape and its multiple representations
NASA Astrophysics Data System (ADS)
Liu, Ying; Li, Shujun; Tian, Zhen; Chen, Huirong
2007-06-01
According to studying the coastline, a new way of multiple representations is put forward in the paper. That is stimulating human thinking way when they generalized, building the appropriate math model and describing the coastline with graphics, extracting all kinds of the coastline shape information. The coastline automatic generalization will be finished based on the knowledge rules and arithmetic operators. Showing the information of coastline shape by building the curve Douglas binary tree, it can reveal the shape character of coastline not only microcosmically but also macroscopically. Extracting the information of coastline concludes the local characteristic point and its orientation, the curve structure and the topology trait. The curve structure can be divided the single curve and the curve cluster. By confirming the knowledge rules of the coastline generalization, the generalized scale and its shape parameter, the coastline automatic generalization model is established finally. The method of the multiple scale representation of coastline in this paper has some strong points. It is human's thinking mode and can keep the nature character of the curve prototype. The binary tree structure can control the coastline comparability, avoid the self-intersect phenomenon and hold the unanimous topology relationship.
A Probabilistic Palimpsest Model of Visual Short-term Memory
Matthey, Loic; Bays, Paul M.; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204
A probabilistic palimpsest model of visual short-term memory.
Matthey, Loic; Bays, Paul M; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.
Feature generation and representations for protein-protein interaction classification.
Lan, Man; Tan, Chew Lim; Su, Jian
2009-10-01
Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.
Spinal cord injury affects the interplay between visual and sensorimotor representations of the body
Ionta, Silvio; Villiger, Michael; Jutzeler, Catherine R; Freund, Patrick; Curt, Armin; Gassert, Roger
2016-01-01
The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs’ somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants’ body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations. PMID:26842303
NASA Astrophysics Data System (ADS)
Jiang, Guo-Qian; Xie, Ping; Wang, Xiao; Chen, Meng; He, Qun
2017-11-01
The performance of traditional vibration based fault diagnosis methods greatly depends on those handcrafted features extracted using signal processing algorithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised representation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal structures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at different scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multiscale representations. Finally, the multiscale representations are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches.
Attention modulates maintenance of representations in visual short-term memory.
Kuo, Bo-Cheng; Stokes, Mark G; Nobre, Anna Christina
2012-01-01
Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top-down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top-down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.
Passot, Jean-Baptiste; Luque, Niceto R.; Arleo, Angelo
2013-01-01
The cerebellum is thought to mediate sensorimotor adaptation through the acquisition of internal models of the body-environment interaction. These representations can be of two types, identified as forward and inverse models. The first predicts the sensory consequences of actions, while the second provides the correct commands to achieve desired state transitions. In this paper, we propose a composite architecture consisting of multiple cerebellar internal models to account for the adaptation performance of humans during sensorimotor learning. The proposed model takes inspiration from the cerebellar microcomplex circuit, and employs spiking neurons to process information. We investigate the intrinsic properties of the cerebellar circuitry subserving efficient adaptation properties, and we assess the complementary contributions of internal representations by simulating our model in a procedural adaptation task. Our simulation results suggest that the coupling of internal models enhances learning performance significantly (compared with independent forward and inverse models), and it allows for the reproduction of human adaptation capabilities. Furthermore, we provide a computational explanation for the performance improvement observed after one night of sleep in a wide range of sensorimotor tasks. We predict that internal model coupling is a necessary condition for the offline consolidation of procedural memories. PMID:23874289
Multi-scale Material Appearance
NASA Astrophysics Data System (ADS)
Wu, Hongzhi
Modeling and rendering the appearance of materials is important for a diverse range of applications of computer graphics - from automobile design to movies and cultural heritage. The appearance of materials varies considerably at different scales, posing significant challenges due to the sheer complexity of the data, as well the need to maintain inter-scale consistency constraints. This thesis presents a series of studies around the modeling, rendering and editing of multi-scale material appearance. To efficiently render material appearance at multiple scales, we develop an object-space precomputed adaptive sampling method, which precomputes a hierarchy of view-independent points that preserve multi-level appearance. To support bi-scale material appearance design, we propose a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of Bidirectional Visible Normal Distribution Functions and pre-rotated Bidirectional Reflectance Distribution Functions in the matrix formulation of the rendering algorithm. This approach can guide the physical realization of appearance, as well as the modeling of real-world materials using very sparse measurements. Finally, we present a bi-scale-inspired high-quality general representation for material appearance described by Bidirectional Texture Functions. Our representation is at once compact, easily editable, and amenable to efficient rendering.
Aging and interference in story recall.
Mund, Iris; Bell, Raoul; Buchner, Axel
2012-01-01
BACKGROUND/STUDY CONTEXT: According to inhibitory deficit theory, older adults should be more impaired by visual distractors than younger adults when reading texts. Studies using a multiple-choice recognition test to examine age differences in the impairment of text comprehension due to distractor words yielded inconsistent results. In the present study, younger participants and older participants were required to read short texts comprising unrelated, related, or no distractor words. Visual acuity was equated between groups. Text recall was assessed using a gist-based propositional scoring procedure. There were pronounced age differences in reading with distraction. Older adults were slowed down more than younger adults by the presence of distractor words when reading. Furthermore, older adults' story recall was clearly impaired by the presence of distractor material, whereas younger adults' recall performance was not. In addition, older adults were more likely to make intrusion errors. Consistent with inhibitory deficit theory, the findings suggest that older adults were less able than younger adults to establish a correct mental representation of the target text when distractors were present. Furthermore, older adults were more likely than younger adults to build up incorrect memory representations that comprise distractor concepts. Thus, there are pronounced age differences in the impairment of text comprehension by distracting information.
Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models
Lezon, Timothy R.; Sali, Andrej; Bahar, Ivet
2009-01-01
The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations. PMID:19730674
Global motions of the nuclear pore complex: insights from elastic network models.
Lezon, Timothy R; Sali, Andrej; Bahar, Ivet
2009-09-01
The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at approximately 5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.
Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y
2014-09-01
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Measuring the Performance and Intelligence of Systems: Proceedings of the 2002 PerMIS Workshop
NASA Technical Reports Server (NTRS)
Messina, E. R.; Meystel, A. M.
2002-01-01
Contents include the following: Performance Metrics; Performance of Multiple Agents; Performance of Mobility Systems; Performance of Planning Systems; General Discussion Panel 1; Uncertainty of Representation I; Performance of Robots in Hazardous Domains; Modeling Intelligence; Modeling of Mind; Measuring Intelligence; Grouping: A Core Procedure of Intelligence; Uncertainty in Representation II; Towards Universal Planning/Control Systems.
ERIC Educational Resources Information Center
Chan, Chitat; Ting, Wai-Fong
2012-01-01
This study explores whether the deficit approach to understanding youth, which has been widely critiqued in contemporary youth studies, could still be a dominant paradigm in an emerging curriculum which emphasises multiple-perspective thinking. The analysis compares the representations of youth in selected reference sources at different levels of…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro
2009-01-01
An alternative program of instruction was implemented with 33 high-achieving Grade 9 students (15-16 years old) in Singapore that overtly focused on the use of macroscopic, submicroscopic, and symbolic representations to describe and explain the changes that occurred during the burning of metals, reactions of dilute acids, ionic precipitations,…
Syntactic levels, lexicalism, and ellipsis: The jury is still out.
Hartsuiker, Robert J; Bernolet, Sarah
2017-01-01
Structural priming data are sometimes compatible with several theoretical views, as shown here for three key theoretical claims. One reason is that prime sentences affect multiple representational levels driving syntactic choice. Additionally, priming is affected by further cognitive functions (e.g., memory). We therefore see priming as a useful tool for the investigation of linguistic representation but not the only tool.
ERIC Educational Resources Information Center
Strickland, Tricia K.; Maccini, Paula
2013-01-01
We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…
Translation of P = kT into a Pictorial External Representation by High School Seniors
ERIC Educational Resources Information Center
Matijaševic, Igor; Korolija, Jasminka N.; Mandic, Ljuba M.
2016-01-01
This paper describes the results achieved by high school seniors on an item which involves translation of the equation P = kT into a corresponding pictorial external representation. The majority of students (the classes of 2011, 2012 and 2013) did not give the correct answer to the multiple choice part of the translation item. They chose pictorial…
ERIC Educational Resources Information Center
Thigpen, L. Christine
2012-01-01
The purpose of this study was to explore teaching styles and how frequently teachers with a variety of teaching styles incorporate multiple representations, such as manipulatives, drawings, counters, etc., in the middle school mathematics classroom. Through this explanatory mixed methods study it was possible to collect the quantitative data in…
ERIC Educational Resources Information Center
Mondini, Sara; Luzzatti, Claudio; Zonca, Giusy; Pistarini, Caterina; Semenza, Carlo
2004-01-01
This study seeks information on the mental representation of Verb-Noun (VN) nominal compounds through neuropsychological methods. The lexical retrieval of compound nouns is tested in 30 aphasic patients using a visual confrontation naming task. The target names are VN compounds, Noun-Noun (NN) compounds, and long morphologically simple nouns…
Female political representation and child health: Evidence from a multilevel analysis.
Quamruzzaman, Amm; Lange, Matthew
2016-10-24
This article explores the impact of female political representation in national parliaments on child health through a multilevel analysis. Using available Demographic and Health Surveys, we employ both cross-sectional data for 51 low- and middle-income countries and longitudinal data for 20 countries with multiple surveys. For both the cross-sectional and longitudinal analyses, female representation is negatively related to infant mortality and positively related to measles vaccination status. To explore potential mechanisms, we control for state spending on health and analyze whether the impact of female representation depends on a critical mass of female representatives. The analysis offers evidence that state spending accounts for some of the mediation effect and that the impact of female representation on infant death depends on a critical mass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
NASA Astrophysics Data System (ADS)
Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein
2018-03-01
We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.
Carpentry: Blueprint Interpretation.
ERIC Educational Resources Information Center
Nikol, Vojkan; Poniatowski, Stephen J.
Designed to supplement any standard textbook in the first-year level of related drafting instruction for carpentry, this manual contains original illustrations on graphic representation, pictorial representation, working drawings, and structured building details (exterior and interior). It consists of five units with separate lessons for each: (1)…
Knowledge repositories for multiple uses
NASA Technical Reports Server (NTRS)
Williamson, Keith; Riddle, Patricia
1991-01-01
In the life cycle of a complex physical device or part, for example, the docking bay door of the Space Station, there are many uses for knowledge about the device or part. The same piece of knowledge might serve several uses. Given the quantity and complexity of the knowledge that must be stored, it is critical to maintain the knowledge in one repository, in one form. At the same time, because of quantity and complexity of knowledge that must be used in life cycle applications such as cost estimation, re-design, and diagnosis, it is critical to automate such knowledge uses. For each specific use, a knowledge base must be available and must be in a from that promotes the efficient performance of that knowledge base. However, without a single source knowledge repository, the cost of maintaining consistent knowledge between multiple knowledge bases increases dramatically; as facts and descriptions change, they must be updated in each individual knowledge base. A use-neutral representation of a hydraulic system for the F-111 aircraft was developed. The ability to derive portions of four different knowledge bases is demonstrated from this use-neutral representation: one knowledge base is for re-design of the device using a model-based reasoning problem solver; two knowledge bases, at different levels of abstraction, are for diagnosis using a model-based reasoning solver; and one knowledge base is for diagnosis using an associational reasoning problem solver. It was shown how updates issued against the single source use-neutral knowledge repository can be propagated to the underlying knowledge bases.
How meaning similarity influences ambiguous word processing: the current state of the literature
Tokowicz, Natasha
2016-01-01
The majority of words in the English language do not correspond to a single meaning, but rather correspond to two or more unrelated meanings (i.e., are homonyms) or multiple related senses (i.e., are polysemes). It has been proposed that the different types of “semantically-ambiguous words” (i.e., words with more than one meaning) are processed and represented differently in the human mind. Several review papers and books have been written on the subject of semantic ambiguity (e.g., Adriaens, Small, Cottrell, & Tanenhaus, 1988; Burgess & Simpson, 1988; Degani & Tokowicz, 2010; Gorfein, 1989, 2001; Simpson, 1984). However, several more recent studies (e.g., Klein & Murphy, 2001; Klepousniotou, 2002; Klepousniotou & Baum, 2007; Rodd, Gaskell, & Marslen-Wilson, 2002) have investigated the role of the semantic similarity between the multiple meanings of ambiguous words on processing and representation, whereas this was not the emphasis of previous reviews of the literature. In this review, we focus on the current state of the semantic ambiguity literature that examines how different types of ambiguous words influence processing and representation. We analyze the consistent and inconsistent findings reported in the literature and how factors such as semantic similarity, meaning/sense frequency, task, timing, and modality affect ambiguous word processing. We discuss the findings with respect to recent parallel distributed processing (PDP) models of ambiguity processing (Armstrong & Plaut, 2008, 2011; Rodd, Gaskell, & Marslen-Wilson, 2004). Finally, we discuss how experience/instance-based models (e.g., Hintzman, 1986; Reichle & Perfetti, 2003) can inform a comprehensive understanding of semantic ambiguity resolution. PMID:24889119
Consistent maximum entropy representations of pipe flow networks
NASA Astrophysics Data System (ADS)
Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael
2017-06-01
The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Oscillatory Activity in the Infant Brain and the Representation of Small Numbers
Leung, Sumie; Mareschal, Denis; Rowsell, Renee; Simpson, David; Iaria, Leon; Grbic, Amanda; Kaufman, Jordy
2016-01-01
Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6–8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants’ representation of small numbers. PMID:26903821
Oscillatory Activity in the Infant Brain and the Representation of Small Numbers.
Leung, Sumie; Mareschal, Denis; Rowsell, Renee; Simpson, David; Iaria, Leon; Grbic, Amanda; Kaufman, Jordy
2016-01-01
Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6-8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants' representation of small numbers.
ERIC Educational Resources Information Center
Shen, Ji
2009-01-01
In the Walking Out Graphs Lesson described here, students experience several types of representations used to describe motion, including words, sentences, equations, graphs, data tables, and actions. The most important theme of this lesson is that students have to understand the consistency among these representations and form the habit of…
Agency and communion attributes in adults’ spontaneous self-representations
Diehl, Manfred; Owen, Stephanie K.; Youngblade, Lise M.
2008-01-01
This study investigated agency and communion attributes in adults’ spontaneous self-representations. The study sample consisted of 158 adults (80 men, 78 women) ranging in age from 20 to 88 years. Consistent with theorising, significant age and sex differences were found in terms of the number of agency and communion attributes. Young and middle-aged adults included significantly more agency attributes in their self-representations than older adults; men listed significantly more agency attributes than women. In contrast, older adults included significantly more communion attributes in their self-representations than young adults, and women listed significantly more communion attributes than men. Significant Age Group × Self-Portrait Display and Sex × Self-Portrait Display interactions were found for communion attributes, indicating that the importance of communion attributes differed across age groups and by sex. Correlational analyses showed significant associations of agency and communion attributes with personality traits and defence mechanisms. Communion attributes also showed significant correlations with four dimensions of psychological well-being. PMID:18592013
NASA Astrophysics Data System (ADS)
Gebre, Engida H.; Polman, Joseph L.
2016-12-01
This study presents descriptive analysis of young adults' use of multiple representations in the context of science news reporting. Across one semester, 71 high school students, in a socioeconomically diverse suburban secondary school in Midwestern United States, participated in activities of researching science topics of their choice and producing infographic-based science news for possible online publication. An external editor reviewed their draft infographics and provided comments for subsequent revision. Students also provided peer feedback to the draft version of infographics using an online commentary tool. We analysed the nature of representations students used as well as the comments from peer and the editor feedback. Results showed both students' capabilities and challenges in learning with representations in this context. Students frequently rely on using certain kinds of representations that are depictive in nature, and supporting their progress towards using more abstract representations requires special attention and identifying learning gaps. Results also showed that students were able to determine representational adequacy in the context of providing peer feedback. The study has implication for research and instruction using infographics as expressive tools to support learning.
EliXR-TIME: A Temporal Knowledge Representation for Clinical Research Eligibility Criteria.
Boland, Mary Regina; Tu, Samson W; Carini, Simona; Sim, Ida; Weng, Chunhua
2012-01-01
Effective clinical text processing requires accurate extraction and representation of temporal expressions. Multiple temporal information extraction models were developed but a similar need for extracting temporal expressions in eligibility criteria (e.g., for eligibility determination) remains. We identified the temporal knowledge representation requirements of eligibility criteria by reviewing 100 temporal criteria. We developed EliXR-TIME, a frame-based representation designed to support semantic annotation for temporal expressions in eligibility criteria by reusing applicable classes from well-known clinical temporal knowledge representations. We used EliXR-TIME to analyze a training set of 50 new temporal eligibility criteria. We evaluated EliXR-TIME using an additional random sample of 20 eligibility criteria with temporal expressions that have no overlap with the training data, yielding 92.7% (76 / 82) inter-coder agreement on sentence chunking and 72% (72 / 100) agreement on semantic annotation. We conclude that this knowledge representation can facilitate semantic annotation of the temporal expressions in eligibility criteria.
Neural representations of magnitude for natural and rational numbers.
DeWolf, Melissa; Chiang, Jeffrey N; Bassok, Miriam; Holyoak, Keith J; Monti, Martin M
2016-11-01
Humans have developed multiple symbolic representations for numbers, including natural numbers (positive integers) as well as rational numbers (both fractions and decimals). Despite a considerable body of behavioral and neuroimaging research, it is currently unknown whether different notations map onto a single, fully abstract, magnitude code, or whether separate representations exist for specific number types (e.g., natural versus rational) or number representations (e.g., base-10 versus fractions). We address this question by comparing brain metabolic response during a magnitude comparison task involving (on different trials) integers, decimals, and fractions. Univariate and multivariate analyses revealed that the strength and pattern of activation for fractions differed systematically, within the intraparietal sulcus, from that of both decimals and integers, while the latter two number representations appeared virtually indistinguishable. These results demonstrate that the two major notations formats for rational numbers, fractions and decimals, evoke distinct neural representations of magnitude, with decimals representations being more closely linked to those of integers than to those of magnitude-equivalent fractions. Our findings thus suggest that number representation (base-10 versus fractions) is an important organizational principle for the neural substrate underlying mathematical cognition. Copyright © 2016 Elsevier Inc. All rights reserved.
Modified signed-digit arithmetic based on redundant bit representation.
Huang, H; Itoh, M; Yatagai, T
1994-09-10
Fully parallel modified signed-digit arithmetic operations are realized based on redundant bit representation of the digits proposed. A new truth-table minimizing technique is presented based on redundant-bitrepresentation coding. It is shown that only 34 minterms are enough for implementing one-step modified signed-digit addition and subtraction with this new representation. Two optical implementation schemes, correlation and matrix multiplication, are described. Experimental demonstrations of the correlation architecture are presented. Both architectures use fixed minterm masks for arbitrary-length operands, taking full advantage of the parallelism of the modified signed-digit number system and optics.
ERIC Educational Resources Information Center
Milenkovic´, Dus?ica D.; Segedinac, Mirjana D.; Hrin, Tamara N.
2014-01-01
The central goal of this study was to examine the extent to which a teaching approach focused on the interaction between macroscopic, submicroscopic, and symbolic levels of chemistry representations could affect high school students' performance in the field of inorganic reactions, as well as to examine how the applied instruction influences…
Multimodal Sparse Coding for Event Detection
2015-10-13
classification tasks based on single modality. We present multimodal sparse coding for learning feature representations shared across multiple modalities...The shared representa- tions are applied to multimedia event detection (MED) and evaluated in compar- ison to unimodal counterparts, as well as other...and video tracks from the same multimedia clip, we can force the two modalities to share a similar sparse representation whose benefit includes robust
Johnson, Marcia K.; Kuhl, Brice A.; Mitchell, Karen J.; Ankudowich, Elizabeth; Durbin, Kelly A.
2016-01-01
Although older adults often show reduced episodic memory accuracy, their ratings of the subjective vividness of their memories often equal or even exceed those of young adults. Such findings suggest that young and older adults may differentially access and/or weight different kinds of information in making vividness judgments. We examined this idea using multivoxel pattern classification of fMRI data to measure category representations while participants saw and remembered pictures of objects and scenes. Consistent with our hypothesis, there were age-related differences in how category representations related to the subjective sense of vividness. During remembering, older adults’ vividness ratings were more related, relative to young adults’, to category representations in prefrontal cortex. In contrast, young adults’ vividness ratings were more related, relative to older adults, to category representations in parietal cortex. In addition, category representations were more correlated among posterior regions in young than older adults, whereas correlations between PFC and posterior regions did not differ between the two groups. Together, these results are consistent with the idea that young and older adults differentially weight different types of information in assessing subjective vividness of their memories. PMID:25855004
The Deleuzian Concept of Structure and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christiaens, Wim A.
2014-03-01
Gilles Deleuze wanted a philosophy of nature in a pre-kantian almost archaic sense. A central concept in his philosophy is `multiplicity'. Although the concept is philosophical through and through, it has roots in the mathematical notion of manifold, specifically the state spaces for dynamical systems exhibiting non-linear behaviour. Deleuze was attracted to such mathematical structures because he believed they indicated a break with the dogmatic image of thought (the kind of thought that constrains itself into producing representations of reality conceived as particular things with strict borders, behaving and interacting according to invariant covering laws within space). However, even though it is true that a phase space representation of a physical entity is not a typical materialist picture of reality, it derives from a normal Euclidean representation, and can in principle be reduced to it. We want to argue that the real break happens with the quantum state space, and that Deleuze's typical description of a multiplicity fits even better with the quantum state space.
Multiple memory stores and operant conditioning: a rationale for memory's complexity.
Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu
2009-02-01
Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory stores, but such access was penalized as energy expenditure. Model animals were then selected on their fitness in simulated operant conditioning tasks. Results suggest that having access to multiple memory stores and their representations is important in learning to regulate dopamine release, as well as in contextual discrimination. For simple operant conditioning, as well as stimulus discrimination, hippocampal compound representations turned out to suffice, a counterintuitive result given findings that hippocampal lesions tend not to affect performance in such tasks. We argue that there is in fact evidence to support a role for compound representations and the hippocampus in even the simplest conditioning tasks.
Combining Multiple Forms Of Visual Information To Specify Contact Relations In Spatial Layout
NASA Astrophysics Data System (ADS)
Sedgwick, Hal A.
1990-03-01
An expert system, called Layout2, has been described, which models a subset of available visual information for spatial layout. The system is used to examine detailed interactions between multiple, partially redundant forms of information in an environment-centered geometrical model of an environment obeying certain rather general constraints. This paper discusses the extension of Layout2 to include generalized contact relations between surfaces. In an environment-centered model, the representation of viewer-centered distance is replaced by the representation of environmental location. This location information is propagated through the representation of the environment by a network of contact relations between contiguous surfaces. Perspective information interacts with other forms of information to specify these contact relations. The experimental study of human perception of contact relations in extended spatial layouts is also discussed. Differences between human results and Layout2 results reveal limitations in the human ability to register available information; they also point to the existence of certain forms of information not yet formalized in Layout2.
NASA Technical Reports Server (NTRS)
Vakil, Sanjay S.; Hansman, R. John
2000-01-01
Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution approaches to concerns regarding autoflight systems, and mode transitions in particular, are presented in this thesis. The first is to use training to modify pilot behaviours, or procedures to work around known problems. The second approach is to mitigate problems by enhancing feedback. The third approach is to modify the process by which automation is designed. The Operator Directed Process forces the consideration and creation of an automation model early in the design process for use as the basis of the software specification and training.
Salter, Phia S.; Adams, Glenn
2016-01-01
A cultural-psychological analysis emphasizes the intentionality of everyday worlds: the idea that material products not only bear psychological traces of culturally constituted beliefs and desires, but also subsequently afford and promote culturally consistent understandings and actions. We applied this conceptual framework of mutual constitution in a research project using quantitative and qualitative approaches to understand the dynamic resonance between sociocultural variance in Black History Month (BHM) representations and the reproduction of racial inequality in the U.S. In studies 1 and 2, we considered whether mainstream BHM artifacts reflect the preferences and understandings of White Americans (i.e., psychological constitution of cultural worlds). Consistent with the psychological constitution hypothesis, White American participants reported more positive affect, better recognition, and greater liking for BHM representations from the schools where White Americans were the majority than BHM representations from the schools where Black students and other students of color were the majority. Moreover, as an indication of the identity relevance of BHM representations, White identification was more positively associated with judgments of positive affect and preference in response to BHM representations from White schools than BHM representations from the schools where Black students were in the majority. In studies 3 and 4, we considered whether BHM representations from different settings differentially afford support or opposition to anti-racism policies (i.e., cultural constitution of psychological experience). In support of the cultural constitution hypothesis, BHM representations typical of schools where Black students were in the majority were more effective at promoting support for anti-racism policies compared to BHM representations typical of predominately White schools and a control condition. This effect was mediated by the effect of (different) BHM representations on perception of racism. Together, these studies suggest that representations of Black History constitute cultural affordances that, depending on their source, can promote (or impede) perception of racism and anti-racism efforts. This research contributes to an emerging body of work examining the bidirectional, psychological importance of cultural products. We discuss implications for theorizing collective manifestations of mind. PMID:27621712
Multiple Grammars: Old Wine in Old Bottles
ERIC Educational Resources Information Center
Sorace, Antonella
2014-01-01
Amaral and Roeper (this issue; henceforth A&R) argue that all speakers -- regardless of whether monolingual or bilingual -- have multiple grammars in their mental language representations. They further claim that this simple assumption can explain many things: optionality in second language (L2) language behaviour, multilingualism, language…
FINDING A COMMON DATA REPRESENTATION AND INTERCHANGE APPROACH FOR MULTIMEDIA MODELS
Within many disciplines, multiple approaches are used to represent and access very similar data (e.g., a time series of values), often due to the lack of commonly accepted standards. When projects must use data from multiple disciplines, the problems quickly compound. Often sig...
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
ERIC Educational Resources Information Center
Tweney, Ryan D.
2011-01-01
James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations. PMID:26617556
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.
Rapid extraction of gist from visual text and its influence on word recognition.
Asano, Michiko; Yokosawa, Kazuhiko
2011-01-01
Two experiments explored rapid extraction of gist from a visual text and its influence on word recognition. In both, a short text (sentence) containing a target word was presented for 200 ms and was followed by a target recognition task. Results showed that participants recognized contextually anomalous word targets less frequently than contextually consistent counterparts (Experiment 1). This context effect was obtained when sentences contained the same semantic content but with disrupted syntactic structure (Experiment 2). Results demonstrate that words in a briefly presented visual sentence are processed in parallel and that rapid extraction of sentence gist relies on a primitive representation of sentence context (termed protocontext) that is semantically activated by the simultaneous presentation of multiple words (i.e., a sentence) before syntactic processing.
Professional autonomy and nursing: representations of health professionals.
Santos, Érick Igor Dos; Alves, Yasmin Rayanne; Silva, Aline Cerqueira Santos Santana da; Gomes, Antonio Marcos Tosoli
2017-05-18
To analyse the social representations of the professional autonomy of nurses and nursing for non-nursing health professionals. This is a qualitative study based on the theory of social representations. Fifty-three non-nursing professionals of a municipal hospital participated in this study. Data were collected between March and April 2015, from hierarchical free evocations using the inductor terms, "professional autonomy of nurses" and "nursing". The data were analysed using EVOC 2003. The most likely core of the social representation of professional autonomy were the terms care, team, and responsibility. Moreover, the likely core of nursing comprises the elements care, team, responsibility, and work. The professional autonomy of nurses and nursing consists of fairly close objects of representation in the studied group, which makes them non-autonomous representations that are still sensitive to the incorporation of new elements.
NASA Astrophysics Data System (ADS)
Fan, Jiayuan; Tan, Hui Li; Toomik, Maria; Lu, Shijian
2016-10-01
Spatial pyramid matching has demonstrated its power for image recognition task by pooling features from spatially increasingly fine sub-regions. Motivated by the concept of feature pooling at multiple pyramid levels, we propose a novel spectral-spatial hyperspectral image classification approach using superpixel-based spatial pyramid representation. This technique first generates multiple superpixel maps by decreasing the superpixel number gradually along with the increased spatial regions for labelled samples. By using every superpixel map, sparse representation of pixels within every spatial region is then computed through local max pooling. Finally, features learned from training samples are aggregated and trained by a support vector machine (SVM) classifier. The proposed spectral-spatial hyperspectral image classification technique has been evaluated on two public hyperspectral datasets, including the Indian Pines image containing 16 different agricultural scene categories with a 20m resolution acquired by AVIRIS and the University of Pavia image containing 9 land-use categories with a 1.3m spatial resolution acquired by the ROSIS-03 sensor. Experimental results show significantly improved performance compared with the state-of-the-art works. The major contributions of this proposed technique include (1) a new spectral-spatial classification approach to generate feature representation for hyperspectral image, (2) a complementary yet effective feature pooling approach, i.e. the superpixel-based spatial pyramid representation that is used for the spatial correlation study, (3) evaluation on two public hyperspectral image datasets with superior image classification performance.
Pegors, Teresa K; Tompson, Steven; O'Donnell, Matthew Brook; Falk, Emily B
2017-08-15
Neural activity in medial prefrontal cortex (MPFC), identified as engaging in self-related processing, predicts later health behavior change. However, it is unknown to what extent individual differences in neural representation of content and lived experience influence this brain-behavior relationship. We examined whether the strength of content-specific representations during persuasive messaging relates to later behavior change, and whether these relationships change as a function of individuals' social network composition. In our study, smokers viewed anti-smoking messages while undergoing fMRI and we measured changes in their smoking behavior one month later. Using representational similarity analyses, we found that the degree to which message content (i.e. health, social, or valence information) was represented in a self-related processing MPFC region was associated with later smoking behavior, with increased representations of negatively valenced (risk) information corresponding to greater message-consistent behavior change. Furthermore, the relationship between representations and behavior change depended on social network composition: smokers who had proportionally fewer smokers in their network showed increases in smoking behavior when social or health content was strongly represented in MPFC, whereas message-consistent behavior (i.e., less smoking) was more likely for those with proportionally more smokers in their social network who represented social or health consequences more strongly. These results highlight the dynamic relationship between representations in MPFC and key outcomes such as health behavior change; a complete understanding of the role of MPFC in motivation and action should take into account individual differences in neural representation of stimulus attributes and social context variables such as social network composition. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Adams, Thomasenia Lott
2001-01-01
Focuses on the National Council of Teachers of Mathematics 2000 process-oriented standards of problem solving, reasoning and proof, communication, connections, and representation as providing a framework for using the multiple intelligences that children bring to mathematics learning. Presents ideas for mathematics lessons and activities to…
The Promise and Pitfalls of Making Connections in Mathematics
ERIC Educational Resources Information Center
Fyfe, Emily R.; Alibali, Martha W.; Nathan, Mitchell J.
2017-01-01
Making connections during math instruction is a recommended practice, but may increase the difficulty of the lesson. We used an avatar video instructor to qualitatively examine the role of linking multiple representations for 24 middle school students learning algebra. Students were taught how to solve polynomial multiplication problems, such as…
Laying the Foundation for Multiplicative Thinking in Year 2
ERIC Educational Resources Information Center
Watson, Kelly
2016-01-01
In order for students to move from using concrete materials to using mental strategies and from additive to multiplicative thinking, the use of arrays and visualisation is pivotal. This article describes a lesson in which students are taken through a Concrete-Representational-Abstract (CRA) approach that involves noticing structure, using…
ERIC Educational Resources Information Center
Caglayan, Günhan
2013-01-01
This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…
Plurilingualism, Linguistic Representations and Multiple Identities: Crossing the Frontiers
ERIC Educational Resources Information Center
Stratilaki, Sofia
2012-01-01
This article is concerned with the conditions and stakes of building competence in multiple languages in learners who, due to their language biographies or the educational system, are studying in prestigious institutional school environments, such as the French-German schools of Buc (Versailles), Freiburg (Breisgau) and Saarbrucken (Saarland). In…
Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets
NASA Astrophysics Data System (ADS)
Sorokine, A.; Stewart, R. N.
2017-10-01
Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
ERIC Educational Resources Information Center
Bascoe, Sonnette M.; Davies, Patrick T.; Sturge-Apple, Melissa L.; Cummings, E. Mark
2009-01-01
This study examined children's peer information processing as an explanatory mechanism underlying the association between their insecure representations of interparental and parent-child relationships and school adjustment in a sample of 210 first graders. Consistent with emotional security theory (P. T. Davies & E. M. Cummings, 1994), results…
ERIC Educational Resources Information Center
Matthiessen, Christian; Kasper, Robert
Consisting of two separate papers, "Representational Issues in Systemic Functional Grammar," by Christian Matthiessen and "Systemic Grammar and Functional Unification Grammar," by Robert Kasper, this document deals with systemic aspects of natural language processing and linguistic theory and with computational applications of…
The Embodied Nature of Implicit Theories: The Consistency of Ideas about the Nature of Matter
ERIC Educational Resources Information Center
Pozo, Juan Ignacio; Gomez Crespo, Miguel Angel
2005-01-01
Recent research has revealed the existence of intuitive representations strongly rooted in diverse knowledge domains and the difficulties of modifying those representations through instruction by means of conceptual change processes (Carey, 1995; Gopnik & Meltzoff, 1997; Vosniadou, 1994). According to some interpretations, these representations…
Representation of Scientific Methodology in Secondary Science Textbooks
ERIC Educational Resources Information Center
Binns, Ian C.
2009-01-01
The purpose of this investigation was to assess the representation of scientific methodology in secondary science textbooks. More specifically, this study looked at how textbooks introduced scientific methodology and to what degree the examples from the rest of the textbook, the investigations, and the images were consistent with the text's…
Microwave Workshop for Windows.
ERIC Educational Resources Information Center
White, Colin
1998-01-01
"Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third…
Batterink, Laura; Neville, Helen
2011-01-01
The vast majority of word meanings are learned simply by extracting them from context, rather than by rote memorization or explicit instruction. Although this skill is remarkable, little is known about the brain mechanisms involved. In the present study, ERPs were recorded as participants read stories in which pseudowords were presented multiple times, embedded in consistent, meaningful contexts (referred to as meaning condition, M+) or inconsistent, meaningless contexts (M−). Word learning was then assessed implicitly using a lexical decision task and explicitly through recall and recognition tasks. Overall, during story reading, M− words elicited a larger N400 than M+ words, suggesting that participants were better able to semantically integrate M+ words than M− words throughout the story. In addition, M+ words whose meanings were subsequently correctly recognized and recalled elicited a more positive ERP in a later time-window compared to M+ words whose meanings were incorrectly remembered, consistent with the idea that the late positive component (LPC) is an index of encoding processes. In the lexical decision task, no behavioral or electrophysiological evidence for implicit priming was found for M+ words. In contrast, during the explicit recognition task, M+ words showed a robust N400 effect. The N400 effect was dependent upon recognition performance, such that only correctly recognized M+ words elicited an N400. This pattern of results provides evidence that the explicit representations of word meanings can develop rapidly, while implicit representations may require more extensive exposure or more time to emerge. PMID:21452941
Representation, Modeling and Recognition of Outdoor Scenes
1994-04-01
B. C. Vemuri and R . Malladi . Deformable models: Canonical parameters for surface representation and multiple view integration. In Conference on...or a high disparity gradient. If both L- R and R -L disparity images are made available, then mirror images of this pattern may be sought in the two...et at., 1991, Terzopoulos and Vasilescu, 1991, Vemuri and Malladi , 1991], parameterized surfaces [Stokely and Wu, 1992, Lowe, 1991], local surfaces
Generative Representations for Automated Design of Robots
NASA Technical Reports Server (NTRS)
Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.
2007-01-01
A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance according to a fitness criterion to yield a figure of merit that is fed back into the evolutionary subprocess of the next iteration. In comparison with prior approaches to automated evolutionary design of robots, the use of generative representations offers two advantages: First, a generative representation enables the reuse of components in regular and hierarchical ways and thereby serves a systematic means of creating more complex modules out of simpler ones. Second, the evolved generative representation may capture intrinsic properties of the design problem, so that variations in the representations move through the design space more effectively than do equivalent variations in a nongenerative representation. This method has been demonstrated by using it to design some robots that move, variously, by walking, rolling, or sliding. Some of the robots were built (see figure). Although these robots are very simple, in comparison with robots designed by humans, their structures are more regular, modular, hierarchical, and complex than are those of evolved designs of comparable functionality synthesized by use of nongenerative representations.
Hausfeld, Lars; Riecke, Lars; Formisano, Elia
2018-06-01
Often, in everyday life, we encounter auditory scenes comprising multiple simultaneous sounds and succeed to selectively attend to only one sound, typically the most relevant for ongoing behavior. Studies using basic sounds and two-talker stimuli have shown that auditory selective attention aids this by enhancing the neural representations of the attended sound in auditory cortex. It remains unknown, however, whether and how this selective attention mechanism operates on representations of auditory scenes containing natural sounds of different categories. In this high-field fMRI study we presented participants with simultaneous voices and musical instruments while manipulating their focus of attention. We found an attentional enhancement of neural sound representations in temporal cortex - as defined by spatial activation patterns - at locations that depended on the attended category (i.e., voices or instruments). In contrast, we found that in frontal cortex the site of enhancement was independent of the attended category and the same regions could flexibly represent any attended sound regardless of its category. These results are relevant to elucidate the interacting mechanisms of bottom-up and top-down processing when listening to real-life scenes comprised of multiple sound categories. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Validation and structural analysis of the kinematics concept test
NASA Astrophysics Data System (ADS)
Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stern, E.; Vaterlaus, A.
2017-06-01
The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part of this article we describe the development and the validation process of the KCT. We applied the KCT to 338 Swiss high school students who attended traditional teaching in kinematics. We analyzed the response data to provide the psychometric properties of the test. In the second part we present the results of a structural analysis of the test. An exploratory factor analysis of 664 student answers finally uncovered the seven kinematics concepts as factors. However, the analysis revealed a hierarchical structure of concepts. At the higher level, mathematical concepts group together, and then split up into physics concepts at the lower level. Furthermore, students who seem to understand a concept in one representation have difficulties transferring the concept to similar problems in another representation. Both results have implications for teaching kinematics. First, teaching mathematical concepts beforehand might be beneficial for learning kinematics. Second, instructions have to be designed to teach students the change between different representations.
Beck, Valerie M; Hollingworth, Andrew
2017-02-01
The content of visual working memory (VWM) guides attention, but whether this interaction is limited to a single VWM representation or functional for multiple VWM representations is under debate. To test this issue, we developed a gaze-contingent search paradigm to directly manipulate selection history and examine the competition between multiple cue-matching saccade target objects. Participants first saw a dual-color cue followed by two pairs of colored objects presented sequentially. For each pair, participants selectively fixated an object that matched one of the cued colors. Critically, for the second pair, the cued color from the first pair was presented either with a new distractor color or with the second cued color. In the latter case, if two cued colors in VWM interact with selection simultaneously, we expected the second cued color object to generate substantial competition for selection, even though the first cued color was used to guide attention in the immediately previous pair. Indeed, in the second pair, selection probability of the first cued color was substantially reduced in the presence of the second cued color. This competition between cue-matching objects provides strong evidence that both VWM representations interacted simultaneously with selection. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Unpacking Exoplanet Detection Using Pedagogical Discipline Representations (PDRs)
NASA Astrophysics Data System (ADS)
Prather, Edward E.; Chambers, Timothy G.; Wallace, Colin Scott; Brissenden, Gina
2017-01-01
Successful educators know the importance of using multiple representations to teach the content of their disciplines. We have all seen the moments of epiphany that can be inspired when engaging with just the right representation of a difficult concept. The formal study of the cognitive impact of different representations on learners is now an active area of education research. The affordances of a particular representation are defined as the elements of disciplinary knowledge that students are able to access and reason about using that representation. Instructors with expert pedagogical content knowledge teach each topic using representations with complementary affordances, maximizing their students’ opportunity to develop fluency with all aspects of the topic. The work presented here examines how we have applied the theory of affordances to the development of pedagogical discipline representation (PDR) in an effort to provide access to, and help non-science-majors engage in expert-like reasoning about, general relativity as applied to detection of exoplanets. We define a pedagogical discipline representation (PDR) as a representation that has been uniquely tailored for the purpose of teaching a specific topic within a discipline. PDRs can be simplified versions of expert representations or can be highly contextualized with features that purposefully help unpack specific reasoning or concepts, and engage learners’ pre-existing mental models while promoting and enabling critical discourse. Examples of PDRs used for instruction and assessment will be provided along with preliminary results documenting the effectiveness of their use in the classroom.
Narcissism and relational representations among psychiatric outpatients.
Kealy, David; Ogrodniczuk, John S; Joyce, Anthony S; Steinberg, Paul I; Piper, William E
2015-06-01
Pathological narcissism is associated with maladaptive interpersonal behavior, although less is known regarding the internal relational representations of narcissistic patients. The authors examined the relationship between pathological narcissism and two constructs that reflect internal representations of relational patterns: quality of object relations and attachment style. Patients attending a psychiatric day treatment program (N = 218) completed measures of narcissism, general psychiatric distress, and attachment style in terms of attachment avoidance and anxiety. A semistructured interview was used to assess quality of object relations. Multiple regression analysis was conducted, controlling for general psychiatric distress. Pathological narcissism was associated with anxious attachment, but not with avoidant attachment. Narcissism was also associated with lower levels of quality of object relations. The implications of these results are discussed in terms of internal representations of self-other relations.
Prediction of crime occurrence from multi-modal data using deep learning
Kang, Hyeon-Woo
2017-01-01
In recent years, various studies have been conducted on the prediction of crime occurrences. This predictive capability is intended to assist in crime prevention by facilitating effective implementation of police patrols. Previous studies have used data from multiple domains such as demographics, economics, and education. Their prediction models treat data from different domains equally. These methods have problems in crime occurrence prediction, such as difficulty in discovering highly nonlinear relationships, redundancies, and dependencies between multiple datasets. In order to enhance crime prediction models, we consider environmental context information, such as broken windows theory and crime prevention through environmental design. In this paper, we propose a feature-level data fusion method with environmental context based on a deep neural network (DNN). Our dataset consists of data collected from various online databases of crime statistics, demographic and meteorological data, and images in Chicago, Illinois. Prior to generating training data, we select crime-related data by conducting statistical analyses. Finally, we train our DNN, which consists of the following four kinds of layers: spatial, temporal, environmental context, and joint feature representation layers. Coupled with crucial data extracted from various domains, our fusion DNN is a product of an efficient decision-making process that statistically analyzes data redundancy. Experimental performance results show that our DNN model is more accurate in predicting crime occurrence than other prediction models. PMID:28437486
Prediction of crime occurrence from multi-modal data using deep learning.
Kang, Hyeon-Woo; Kang, Hang-Bong
2017-01-01
In recent years, various studies have been conducted on the prediction of crime occurrences. This predictive capability is intended to assist in crime prevention by facilitating effective implementation of police patrols. Previous studies have used data from multiple domains such as demographics, economics, and education. Their prediction models treat data from different domains equally. These methods have problems in crime occurrence prediction, such as difficulty in discovering highly nonlinear relationships, redundancies, and dependencies between multiple datasets. In order to enhance crime prediction models, we consider environmental context information, such as broken windows theory and crime prevention through environmental design. In this paper, we propose a feature-level data fusion method with environmental context based on a deep neural network (DNN). Our dataset consists of data collected from various online databases of crime statistics, demographic and meteorological data, and images in Chicago, Illinois. Prior to generating training data, we select crime-related data by conducting statistical analyses. Finally, we train our DNN, which consists of the following four kinds of layers: spatial, temporal, environmental context, and joint feature representation layers. Coupled with crucial data extracted from various domains, our fusion DNN is a product of an efficient decision-making process that statistically analyzes data redundancy. Experimental performance results show that our DNN model is more accurate in predicting crime occurrence than other prediction models.
The representation of getting ill in adolescents with systemic lupus erythematosus.
Ceppas Resende, Ondina Lúcia; Barbosa, Maria Tereza Serrano; Simões, Bruno Francisco Teixeira; Velasque, Luciane de Souza
This study, developed in a federal hospital in the city of Rio de Janeiro, has aimed to analyze the social representation of chronic disease and its treatment, in the perspective of adolescents and their caregivers. The sample consisted of 31 adolescents (11-21 years) with systemic lupus erythematosus and 19 caregivers (32-66 years), followed in the pediatrics and in the internal medicine outpatient clinics for a period of six months. Data was collected from the free association of words test, using chronic disease and treatment of chronic disease impulses, and later submitted to the Multiple Correspondence Analysis using the R software. The group of adolescents associated the impulse chronic disease with the words medication, bad, illness, difficulty, no cure, faith and joy; and in the group of caregivers, to care, treatment, no cure and the word 'no'. The impulse treatment of chronic disease was associated, in the group of adolescents, with the words patience, improvement, help, affection, care and bad; and in the group of caregivers, to caring, hope, schedule, knowledge, obedience, medication, professional and improvement. Caregivers also associated impulses and words according to age: chronic disease was associated with the word care (over 61 years), pain and impotence (42-61 years), treatment (22-41 years); and treatment of chronic disease, with the words strength (over 61 years), professional, knowledge and improvement (42-61 years), affection and schedule (22-41 years). Considering as subjective and dynamic the experience of getting ill, knowing the representations can contribute to the orientation of conduct and type of psychotherapeutic intervention needed. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.
Brust-Renck, Priscila G; Reyna, Valerie F; Wilhelms, Evan A; Wolfe, Christopher R; Widmer, Colin L; Cedillos-Whynott, Elizabeth M; Morant, A Kate
2017-08-01
We used Sharable Knowledge Objects (SKOs) to create an Intelligent Tutoring System (ITS) grounded in Fuzzy-Trace Theory to teach women about obesity prevention: GistFit, getting the gist of healthy eating and exercise. The theory predicts that reliance on gist mental representations (as opposed to verbatim) is more effective in reducing health risks and improving decision making. Technical information was translated into decision-relevant gist representations and gist principles (i.e., healthy values). The SKO was hypothesized to facilitate extracting these gist representations and principles by engaging women in dialogue, "understanding" their responses, and replying appropriately to prompt additional engagement. Participants were randomly assigned to either the obesity prevention tutorial (GistFit) or a control tutorial containing different content using the same technology. Participants were administered assessments of knowledge about nutrition and exercise, gist comprehension, gist principles, behavioral intentions and self-reported behavior. An analysis of engagement in tutorial dialogues and responses to multiple-choice questions to check understanding throughout the tutorial revealed significant correlations between these conversations and scores on subsequent knowledge tests and gist comprehension. Knowledge and comprehension measures correlated with healthier behavior and greater intentions to perform healthy behavior. Differences between GistFit and control tutorials were greater for participants who engaged more fully. Thus, results are consistent with the hypothesis that active engagement with a new gist-based ITS, rather than a passive memorization of verbatim details, was associated with an array of known psychosocial mediators of preventive health decisions, such as knowledge acquisition, and gist comprehension.
Deacon, D; Nousak, J M; Pilotti, M; Ritter, W; Yang, C M
1998-07-01
The effects of global and feature-specific probabilities of auditory stimuli were manipulated to determine their effects on the mismatch negativity (MMN) of the human event-related potential. The question of interest was whether the automatic comparison of stimuli indexed by the MMN was performed on representations of individual stimulus features or on gestalt representations of their combined attributes. The design of the study was such that both feature and gestalt representations could have been available to the comparator mechanism generating the MMN. The data were consistent with the interpretation that the MMN was generated following an analysis of stimulus features.
Characterizing representational learning: A combined simulation and tutorial on perturbation theory
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Passante, Gina
2017-12-01
Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.
NASA Astrophysics Data System (ADS)
Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William
2017-11-01
The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.
Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach.
Han, Hu; K Jain, Anil; Shan, Shiguang; Chen, Xilin
2017-08-10
Face attribute estimation has many potential applications in video surveillance, face retrieval, and social media. While a number of methods have been proposed for face attribute estimation, most of them did not explicitly consider the attribute correlation and heterogeneity (e.g., ordinal vs. nominal and holistic vs. local) during feature representation learning. In this paper, we present a Deep Multi-Task Learning (DMTL) approach to jointly estimate multiple heterogeneous attributes from a single face image. In DMTL, we tackle attribute correlation and heterogeneity with convolutional neural networks (CNNs) consisting of shared feature learning for all the attributes, and category-specific feature learning for heterogeneous attributes. We also introduce an unconstrained face database (LFW+), an extension of public-domain LFW, with heterogeneous demographic attributes (age, gender, and race) obtained via crowdsourcing. Experimental results on benchmarks with multiple face attributes (MORPH II, LFW+, CelebA, LFWA, and FotW) show that the proposed approach has superior performance compared to state of the art. Finally, evaluations on a public-domain face database (LAP) with a single attribute show that the proposed approach has excellent generalization ability.
Visualising large hierarchies with Flextree
NASA Astrophysics Data System (ADS)
Song, Hongzhi; Curran, Edwin P.; Sterritt, Roy
2003-05-01
One of the main tasks in Information Visualisation research is creating visual tools to facilitate human understanding of large and complex information spaces. Hierarchies, being a good mechanism in organising such information, are ubiquitous. Although much research effort has been spent on finding useful representations for hierarchies, visualising large hierarchies is still a difficult topic. One of the difficulties is how to show both tructure and node content information in one view. Another is how to achieve multiple foci in a focus+context visualisation. This paper describes a novel hierarchy visualisation technique called FlexTree to address these problems. It contains some important features that have not been exploited so far. In this visualisation, a profile or contour unique to the hierarchy being visualised can be gained in a histogram-like layout. A normalised view of a common attribute of all nodes can be acquired, and selection of this attribute is controllable by the user. Multiple foci are consistently accessible within a global context through interaction. Furthermore it can handle a large hierarchy that contains several thousand nodes in a PC environment. In addition results from an informal evaluation are also presented.
Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables
Kennerley, Steven W.; Dahmubed, Aspandiar F.; Lara, Antonio H.; Wallis, Jonathan D.
2009-01-01
A central question in behavioral science is how we select among choice alternatives to obtain consistently the most beneficial outcomes. Three variables are particularly important when making a decision: the potential payoff, the probability of success, and the cost in terms of time and effort. A key brain region in decision making is the frontal cortex as damage here impairs the ability to make optimal choices across a range of decision types. We simultaneously recorded the activity of multiple single neurons in the frontal cortex while subjects made choices involving the three aforementioned decision variables. This enabled us to contrast the relative contribution of the anterior cingulate cortex (ACC), the orbito-frontal cortex, and the lateral prefrontal cortex to the decision-making process. Neurons in all three areas encoded value relating to choices involving probability, payoff, or cost manipulations. However, the most significant signals were in the ACC, where neurons encoded multiplexed representations of the three different decision variables. This supports the notion that the ACC is an important component of the neural circuitry underlying optimal decision making. PMID:18752411
Cruwys, Tegan; Steffens, Niklas K; Haslam, S Alexander; Haslam, Catherine; Jetten, Jolanda; Dingle, Genevieve A
2016-12-01
In this research, we introduce Social Identity Mapping (SIM) as a method for visually representing and assessing a person's subjective network of group memberships. To provide evidence of its utility, we report validating data from three studies (two longitudinal), involving student, community, and clinical samples, together comprising over 400 participants. Results indicate that SIM is easy to use, internally consistent, with good convergent and discriminant validity. Each study also illustrates the ways that SIM can be used to address a range of novel research questions. Study 1 shows that multiple positive group memberships are a particularly powerful predictor of well-being. Study 2 shows that social support is primarily given and received within social groups and that only in-group support is beneficial for well-being. Study 3 shows that improved mental health following a social group intervention is attributable to an increase in group compatibility. In this way, the studies demonstrate the capacity for SIM to make a contribution both to the development of social-psychological theory and to its practical application. © 2016 The British Psychological Society.
Teachers' Understanding of Algebraic Generalization
NASA Astrophysics Data System (ADS)
Hawthorne, Casey Wayne
Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive conceptualizations of the symbols. Finally, by comparing two teachers' understandings of student thinking in the classroom, I developed an instructional trajectory to describe steps along students' generalization processes. This emergent framework serves as an instructional tool for teachers' use in identifying significant connections in supporting students to develop understanding of algebraic symbols as representations that communicate the quantities perceived in the figure.
Conversion from Tree to Graph Representation of Requirements
NASA Technical Reports Server (NTRS)
Mayank, Vimal; Everett, David Frank; Shmunis, Natalya; Austin, Mark
2009-01-01
A procedure and software to implement the procedure have been devised to enable conversion from a tree representation to a graph representation of the requirements governing the development and design of an engineering system. The need for this procedure and software and for other requirements-management tools arises as follows: In systems-engineering circles, it is well known that requirements- management capability improves the likelihood of success in the team-based development of complex systems involving multiple technological disciplines. It is especially desirable to be able to visualize (in order to identify and manage) requirements early in the system- design process, when errors can be corrected most easily and inexpensively.
General methodology for simultaneous representation and discrimination of multiple object classes
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
We address a new general method for linear and nonlinear feature extraction for simultaneous representation and classification. We call this approach the maximum representation and discrimination feature (MRDF) method. We develop a novel nonlinear eigenfeature extraction technique to represent data with closed-form solutions and use it to derive a nonlinear MRDF algorithm. Results of the MRDF method on synthetic databases are shown and compared with results from standard Fukunaga-Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem and for classification and pose estimation of two similar objects under 3D aspect angle variations.
Maynard, Ashley E; Greenfield, Patricia M; Childs, Carla P
2015-02-01
We studied the implications of social change for cognitive development in a Maya community in Chiapas, Mexico, over 43 years. The same procedures were used to collect data in 1969-1970, 1991, and 2012-once in each generation. The goal was to understand the implications of weaving, schooling and participation in a commercial economy for the development of visual pattern representation. In 2012, our participants consisted of 133 boys and girls descended from participants in the prior two generations. Procedures consisted of placing colored sticks in a wooden frame to make striped patterns, some familiar (Zinacantec woven patterns) and some novel (created by the investigators). Following Greenfield (2009), we hypothesised that the development of commerce and the expansion of formal schooling would influence children's representations. Her theory postulates that these factors move human development towards cognitive abstraction and skill in dealing with novelty. Furthermore, the theory posits that whatever sociodemographic variable is changing most rapidly functions as the primary motor for developmental change. From 1969 to 1991, the rapid development of a commercial economy drove visual representation in the hypothesised directions. From 1991 to 2012, the rapid expansion of schooling drove visual representation in the hypothesised directions. © 2015 International Union of Psychological Science.
Vollmann, Manja; Scharloo, Margreet; Langguth, Berthold; Kalkouskaya, Natallia; Salewski, Christel
2013-01-01
Both dispositional optimism and illness representations are related to psychological health in chronic patients. In a group of chronic tinnitus sufferers, the interplay between these two variables was examined. Specifically, it was tested to what extent the relationship between dispositional optimism and depression is mediated by more positive illness representations. The study had a cross-sectional design. One hundred and eighteen patients diagnosed with chronic tinnitus completed questionnaires assessing optimism (Life Orientation Test-Revised [LOT-R]), illness representations (Illness Perceptions Questionnaire-Revised [IPQ-R]) and depression (Hospital Anxiety and Depression Scale [HADS]). Correlation analysis showed that optimism was associated with more positive illness representations and lower levels of depression. Simple mediation analyses revealed that the relationship between optimism and depression was partially mediated by the illness representation dimensions consequences, treatment control, coherence, emotional representations and internal causes. A multiple mediation analysis indicated that the total mediation effect of illness representations is particularly due to the dimension consequences. Optimism influences depression in tinnitus patients both directly and indirectly. The indirect effect indicates that optimism is associated with more positive tinnitus-specific illness representations which, in turn, are related to less depression. These findings contribute to a better understanding of the interplay between generalised expectancies, illness-specific perceptions and psychological adjustment to medical conditions.