Sample records for multiple rupture time

  1. The 2016 M7.8 Kaikōura earthquake revealed by multiple seismic wavefield simulations: slow rupture propagation on a geometrically complex fault network

    NASA Astrophysics Data System (ADS)

    Kaneko, Y.; Francois-Holden, C.; Hamling, I. J.; D'Anastasio, E.; Fry, B.

    2017-12-01

    The 2016 M7.8 Kaikōura (New Zealand) earthquake generated ground motions over 1g across a 200-km long region, resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution during the Kaikōura earthquake multiple kinematic modelling methods based on local strong-motion and high-rate GPS data. Our kinematic models constrained by near-source data capture, in detail, a complex pattern of slowly (Vr < 2km/s) propagating rupture from the south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 seconds after the origin time. Interestingly, both models indicate rupture re-activation on the Kekerengu fault with the time separation of 11 seconds. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.

  2. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    USGS Publications Warehouse

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  3. Characterize kinematic rupture history of large earthquakes with Multiple Haskell sources

    NASA Astrophysics Data System (ADS)

    Jia, Z.; Zhan, Z.

    2017-12-01

    Earthquakes are often regarded as continuous rupture along a single fault, but the occurrence of complex large events involving multiple faults and dynamic triggering challenges this view. Such rupture complexities cause difficulties in existing finite fault inversion algorithms, because they rely on specific parameterizations and regularizations to obtain physically meaningful solutions. Furthermore, it is difficult to assess reliability and uncertainty of obtained rupture models. Here we develop a Multi-Haskell Source (MHS) method to estimate rupture process of large earthquakes as a series of sub-events of varying location, timing and directivity. Each sub-event is characterized by a Haskell rupture model with uniform dislocation and constant unilateral rupture velocity. This flexible yet simple source parameterization allows us to constrain first-order rupture complexity of large earthquakes robustly. Additionally, relatively few parameters in the inverse problem yields improved uncertainty analysis based on Markov chain Monte Carlo sampling in a Bayesian framework. Synthetic tests and application of MHS method on real earthquakes show that our method can capture major features of large earthquake rupture process, and provide information for more detailed rupture history analysis.

  4. Theory of time-dependent rupture in the Earth

    NASA Technical Reports Server (NTRS)

    Das, S.; Scholz, C. H.

    1980-01-01

    Fracture mechanics is used to develop a theory of earthquake mechanism which includes the phenomenon of subcritical crack growth. The following phenomena are predicted: slow earthquakes, multiple events, delayed multiple events (doublets), postseismic rupture growth and afterslip, foreshocks, and aftershocks. The theory predicts a nucleation stage prior to an earthquake, and suggests a physical mechanism by which one earthquake may 'trigger' another.

  5. A multiple fault rupture model of the November 13 2016, M 7.8 Kaikoura earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Benites, R. A.; Francois-Holden, C.; Langridge, R. M.; Kaneko, Y.; Fry, B.; Kaiser, A. E.; Caldwell, T. G.

    2017-12-01

    The rupture-history of the November 13 2016 MW7.8 Kaikoura earthquake recorded by near- and intermediate-field strong-motion seismometers and 2 high-rate GPS stations reveals a complex cascade of multiple crustal fault rupture. In spite of such complexity, we show that the rupture history of each fault is well approximated by simple kinematic model with uniform slip and rupture velocity. Using 9 faults embedded in a crustal layer 19 km thick, each with a prescribed slip vector and rupture velocity, this model accurately reproduces the displacement waveforms recorded at the near-field strong-motion and GPS stations. This model includes the `Papatea Fault' with a mixed thrust and strike-slip mechanism based on in-situ geological observations with up to 8 m of uplift observed. Although the kinematic model fits the ground-motion at the nearest strong station, it doesn not reproduce the one sided nature of the static deformation field observed geodetically. This suggests a dislocation based approach does not completely capture the mechanical response of the Papatea Fault. The fault system as a whole extends for approximately 150 km along the eastern side of the Marlborough fault system in the South Island of New Zealand. The total duration of the rupture was 74 seconds. The timing and location of each fault's rupture suggests fault interaction and triggering resulting in a northward cascade crustal ruptures. Our model does not require rupture of the underlying subduction interface to explain the data.

  6. Scram recoveries---C Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constable, D.W.; Pierce, J.R.; Wood, S.A.

    1962-04-26

    The purpose of this report is to discuss the observations made on two equilibrium scram recovery startups (April 5 and April 16). Normally, the two startups would have little significance but unusual ruptures were experienced in the top near section of the reactor shortly after both startups, which indicates that some similarity could exist between the two. The ruptures were unusual in that the two tubes involved both had multiple ruptures. One tube contained two E{sup 2} ruptures and the other tube contained three overbore metal ruptures. The overbore tube also contained three incipient ruptures (uranium split under the can).more » The initial rise to power on both startups appeared to be normal with the flux peaking on the near side as expected. On the April 16 startup the maximum level reached was 1050 at which time a rupture in overbore tube 3062 caused on increase in pressure resulting in a high trip on the Panellit gauge. A level of 1600 was reached on the April 5 startup which was held for approximately 14 hours at which time the reactor was shut down due to rupture indications on row 29.« less

  7. Pulsed strain release on the Altyn Tagh fault, northwest China

    USGS Publications Warehouse

    Gold, Ryan D.; Cowgill, Eric; Arrowsmith, J. Ramón; Friedrich, Anke M.

    2017-01-01

    Earthquake recurrence models assume that major surface-rupturing earthquakes are followed by periods of reduced rupture probability as stress rebuilds. Although purely periodic, time- or slip-predictable rupture models are known to be oversimplifications, a paucity of long records of fault slip clouds understanding of fault behavior and earthquake recurrence over multiple ruptures. Here, we report a 16 kyr history of fault slip—including a pulse of accelerated slip from 6.4 to 6.0 ka—determined using a Monte Carlo analysis of well-dated offset landforms along the central Altyn Tagh strike-slip fault (ATF) in northwest China. This pulse punctuates a median rate of 8.1+1.2/−0.9 mm/a and likely resulted from either a flurry of temporally clustered ∼Mw 7.5 ground-rupturing earthquakes or a single large >Mw 8.2 earthquake. The clustered earthquake scenario implies rapid re-rupture of a fault reach >195 km long and indicates decoupled rates of elastic strain energy accumulation versus dissipation, conceptualized as a crustal stress battery. If the pulse reflects a single event, slip-magnitude scaling implies that it ruptured much of the ATF with slip similar to, or exceeding, the largest documented historical ruptures. Both scenarios indicate fault rupture behavior that deviates from classic time- or slip-predictable models.

  8. The 2016 Kaikōura Earthquake Revealed by Kinematic Source Inversion and Seismic Wavefield Simulations: Slow Rupture Propagation on a Geometrically Complex Crustal Fault Network

    NASA Astrophysics Data System (ADS)

    Holden, C.; Kaneko, Y.; D'Anastasio, E.; Benites, R.; Fry, B.; Hamling, I. J.

    2017-11-01

    The 2016 Kaikōura (New Zealand) earthquake generated large ground motions and resulted in multiple onshore and offshore fault ruptures, a profusion of triggered landslides, and a regional tsunami. Here we examine the rupture evolution using two kinematic modeling techniques based on analysis of local strong-motion and high-rate GPS data. Our kinematic models capture a complex pattern of slowly (Vr < 2 km/s) propagating rupture from south to north, with over half of the moment release occurring in the northern source region, mostly on the Kekerengu fault, 60 s after the origin time. Both models indicate rupture reactivation on the Kekerengu fault with the time separation of 11 s between the start of the original failure and start of the subsequent one. We further conclude that most near-source waveforms can be explained by slip on the crustal faults, with little (<8%) or no contribution from the subduction interface.

  9. Earthquake Directivity, Orientation, and Stress Drop Within the Subducting Plate at the Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Abercrombie, Rachel E.; Poli, Piero; Bannister, Stephen

    2017-12-01

    We develop an approach to calculate earthquake source directivity and rupture velocity for small earthquakes, using the whole source time function rather than just an estimate of the duration. We apply the method to an aftershock sequence within the subducting plate beneath North Island, New Zealand, and investigate its resolution. We use closely located, highly correlated empirical Green's function (EGF) events to obtain source time functions (STFs) for this well-recorded sequence. We stack the STFs from multiple EGFs at each station, to improve the stability of the STFs. Eleven earthquakes (M 3.3-4.5) have sufficient azimuthal coverage, and both P and S STFs, to investigate directivity. The time axis of each STF in turn is stretched to find the maximum correlation between all pairs of stations. We then invert for the orientation and rupture velocity of both unilateral and bilateral line sources that best match the observations. We determine whether they are distinguishable and investigate the effects of limited frequency bandwidth. Rupture orientations are resolvable for eight earthquakes, seven of which are predominantly unilateral, and all are consistent with rupture on planes similar to the main shock fault plane. Purely unilateral rupture is rarely distinguishable from asymmetric bilateral rupture, despite a good station distribution. Synthetic testing shows that rupture velocity is the least well-resolved parameter; estimates decrease with loss of high-frequency energy, and measurements are best considered minimum values. We see no correlation between rupture velocity and stress drop, and spatial stress drop variation cannot be explained as an artifact of varying rupture velocity.

  10. Insights into the Fault Geometry and Rupture History of the 2016 MW 7.8 Kaikoura, New Zealand, Earthquake

    NASA Astrophysics Data System (ADS)

    Adams, M.; Ji, C.

    2017-12-01

    The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the east coast of the northern part of the South Island. The local tectonic setting is complicated. The central South Island is dominated by oblique continental convergence, whereas the southern part of this island experiences eastward subduction of the Australian plate. Available information (e.g., Hamling et al., 2017; Bradley et al., 2017) indicate that this earthquake involved multiple fault segments of the Marlborough fault system (MFS) as the rupture propagated northwards for more than 150 km. Additional slip might also occur on the subduction interface of the Pacific plate under the Australian plate, beneath the MFS. However, the exact number of involved fault segments as well as the temporal co-seismic rupture sequence has not been fully determined with geodetic and geological observations. Knowledge of the kinematics of complex fault interactions has important implications for our understanding of global seismic hazards, particularly to relatively unmodeled multisegment ruptures. Understanding the Kaikoura earthquake will provide insight into how one incorporates multi-fault ruptures in seismic-hazard models. We propose to apply a multiple double-couple inversion to determine the fault geometry and spatiotemporal rupture history using teleseismic and strong motion waveforms, before constraining the detailed slip history using both seismic and geodetic data. The Kaikoura earthquake will be approximated as the summation of multiple subevents—each represented as a double-couple point source, characterized by i) fault geometry (strike, dip and rake), ii) seismic moment, iii) centroid time, iv) half-duration and v) location (latitude, longitude and depth), a total of nine variables. We progressively increase the number of point sources until the additional source cannot produce significant improvement to the observations. Our preliminary results using only teleseismic data indicate that, broadly speaking, the sequence of fault planes dips towards the northwest and the motion of slip is largely to the northeast. Sequence and timing of the rupturing faults is still to be determined.

  11. 3-D simulations of M9 earthquakes on the Cascadia Megathrust: Key parameters and uncertainty

    USGS Publications Warehouse

    Wirth, Erin; Frankel, Arthur; Vidale, John; Marafi, Nasser A.; Stephenson, William J.

    2017-01-01

    Geologic and historical records indicate that the Cascadia subduction zone is capable of generating large, megathrust earthquakes up to magnitude 9. The last great Cascadia earthquake occurred in 1700, and thus there is no direct measure on the intensity of ground shaking or specific rupture parameters from seismic recordings. We use 3-D numerical simulations to generate broadband (0-10 Hz) synthetic seismograms for 50 M9 rupture scenarios on the Cascadia megathrust. Slip consists of multiple high-stress drop subevents (~M8) with short rise times on the deeper portion of the fault, superimposed on a background slip distribution with longer rise times. We find a >4x variation in the intensity of ground shaking depending upon several key parameters, including the down-dip limit of rupture, the slip distribution and location of strong-motion-generating subevents, and the hypocenter location. We find that extending the down-dip limit of rupture to the top of the non-volcanic tremor zone results in a ~2-3x increase in peak ground acceleration for the inland city of Seattle, Washington, compared to a completely offshore rupture. However, our simulations show that allowing the rupture to extend to the up-dip limit of tremor (i.e., the deepest rupture extent in the National Seismic Hazard Maps), even when tapering the slip to zero at the down-dip edge, results in multiple areas of coseismic coastal uplift. This is inconsistent with coastal geologic evidence (e.g., buried soils, submerged forests), which suggests predominantly coastal subsidence for the 1700 earthquake and previous events. Defining the down-dip limit of rupture as the 1 cm/yr locking contour (i.e., mostly offshore) results in primarily coseismic subsidence at coastal sites. We also find that the presence of deep subevents can produce along-strike variations in subsidence and ground shaking along the coast. Our results demonstrate the wide range of possible ground motions from an M9 megathrust earthquake in Cascadia, and the potential to further constrain key rupture parameters using geologic and geophysical observations, ultimately improving our estimation of seismic hazard associated with the Cascadia megathrust.

  12. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Oskin, M. E.; Liu-zeng, J.; Shao, Y.-X.

    2018-05-01

    Restraining double-bends along strike-slip faults inhibit or permit throughgoing ruptures depending on bend angle, length, and prior rupture history. Modeling predicts that for mature strike-slip faults in a regional stress regime characterized by simple shear, a restraining bend of >18° and >4 km length impedes propagating rupture. Indeed, natural evidence shows that the most recent rupture(s) of the Xorkoli section (90°-93°E) of the eastern Altyn Tagh fault (ATF) ended at large restraining bends. However, when multiple seismic cycles are considered in numerical dynamic rupture modeling, heterogeneous residual stresses enable some ruptures to propagate further, modulating whether the bends persistently serve as barriers. These models remain to be tested using observations of the cumulative effects of multiple earthquake ruptures. Here we investigate whether a large restraining double-bend on the ATF serves consistently as a barrier to rupture by measuring long-term slip rates around the terminus of its most recent surface rupture at the Aksay bend. Our results show a W-E decline in slip as the SATF enters the bend, as would be predicted from repeated rupture terminations there. Prior work demonstrated no Holocene slip on the central, most misoriented portion of the bend, while 19-79 m offsets suggest that multiple ruptures have occurred on the west side of the bend during the Holocene. Thus we conclude the gradient in the SATF's slip rate results from the repeated termination of earthquake ruptures there. However, a finite slip rate east of the bend represents the transmission of some slip, suggesting that a small fraction of ruptures may fully traverse or jump the double-bend. This agreement between natural observations of slip accumulation and multi-cycle models of fault rupture enables us to translate observed slip rates into insight about the dynamic rupture process of individual earthquakes as they encounter geometric complexities along faults.

  13. Morphological characteristics associated with rupture risk of multiple intracranial aneurysms.

    PubMed

    Wang, Guang-Xian; Liu, Lan-Lan; Wen, Li; Cao, Yun-Xing; Pei, Yu-Chun; Zhang, Dong

    2017-10-01

    To identify the morphological parameters that are related to intracranial aneurysms (IAs) rupture using a case-control model. A total of 107 patients with multiple IAs and aneurysmal subarachnoid hemorrhage between August 2011 and February 2017 were enrolled in this study. Characteristics of IAs location, shape, neck width, perpendicular height, depth, maximum size, flow angle, parent vessel diameter (PVD), aspect ratio (AR) and size ratio (SR) were evaluated using CT angiography. Multiple logistic regression analysis was used to identify the independent risk factors associated with IAs rupture. Receiver operating characteristic curve analysis was performed on the final model, and the optimal thresholds were obtained. IAs located in the internal carotid artery (ICA) was associated with a negative risk of rupture, whereas AR, SR1 (height/PVD) and SR2 (depth/PVD) were associated with increased risk of rupture. When SR was calculated differently, the odds ratio values of these factors were also different. The receiver operating characteristic curve showed that AR, SR1 and SR2 had cut-off values of 1.01, 1.48 and 1.40, respectively. SR3 (maximum size/PVD) was not associated with IAs rupture. IAs located in the ICA are associated with a negative risk of rupture, while high AR (>1.01), SR1 (>1.48) or SR2 (>1.40) are risk factors for multiple IAs rupture. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  14. 'Two go together': Near-simultaneous moment release of two asperities during the 2016 Mw 6.6 Muji, China earthquake

    NASA Astrophysics Data System (ADS)

    Bie, Lidong; Hicks, Stephen; Garth, Thomas; Gonzalez, Pablo; Rietbrock, Andreas

    2018-06-01

    On 25 November 2016, a Mw 6.6 earthquake ruptured the Muji fault in western Xinjiang, China. We investigate the earthquake rupture independently using geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and regional seismic recordings. To constrain the fault geometry and slip distribution, we test different combinations of fault dip and slip direction to reproduce InSAR observations. Both InSAR observations and optimal distributed slip model suggest buried rupture of two asperities separated by a gap of greater than 5 km. Additional seismic gaps exist at the end of both asperities that failed in the 2016 earthquake. To reveal the dynamic history of asperity failure, we inverted regional seismic waveforms for multiple centroid moment tensors and construct a moment rate function. The results show a small centroid time gap of 2.6 s between the two sub-events. Considering the >5 km gap between the two asperities and short time interval, we propose that the two asperities failed near-simultaneously, rather than in a cascading rupture propagation style. The second sub-event locates ∼39 km to the east of the epicenter and the centroid time is at 10.7 s. It leads to an estimate of average velocity of 3.7 km/s as an upper bound, consistent with upper crust shear wave velocity in this region. We interpret that the rupture front is propagating at sub-shear wave velocities, but that the second sub-event has a reduced or asymmetric rupture time, leading to the apparent near-simultaneous moment release of the two asperities.

  15. Rupture process of a multiple main shock sequence: analysis of teleseismic, local and field observations of the Tennant Creek, Australia, earthquakes of January 22, 1988

    USGS Publications Warehouse

    Choy, G.L.; Bowman, J.R.

    1990-01-01

    On January 22, 1988, three large intraplate earthquakes (with MS 6.3, 6.4 and 6.7) occurred within a 12-hour period near Tennant Creek, Australia. Broadband displacement and velocity records of body waves from teleseismically recorded data are analyzed to determine source mechanisms, depths, and complexity of rupture of each of the three main shocks. Hypocenters of an additional 150 foreshocks and aftershocks constrained by local arrival time data and field observations of surface rupture are used to complement the source characteristics of the main shocks. The interpretation of the combined data sets suggests that the overall rupture process involved unusually complicated stress release. Rupture characteristics suggest that substantial slow slip occurred on each of the three fault interfaces that was not accompanied by major energy release. Variation of focal depth and the strong increase of moment and radiated energy with each main shock imply that lateral variations of strength were more important than vertical gradients of shear stress in controlling the progression of rupture. -from Authors

  16. Management of hepatocellular adenoma: Solitary-uncomplicated, multiple and ruptured tumors

    PubMed Central

    Toso, Christian; Majno, Pietro; Andres, Axel; Rubbia-Brandt, Laura; Berney, Thierry; Buhler, Léo; Morel, Philippe; Mentha, Gilles

    2005-01-01

    AIM: While hepatocellular adenomas (HAs) have often been studied as a unique entity, we aimed to better define current management of the various forms of HAs. METHODS: Twenty-five consecutive patients operated for solitary-uncomplicated (9), multiple (6), and ruptured (10) HAs were reviewed according to management strategies and outcomes. RESULTS: All solitary-uncomplicated HAs (ranged 2.2-14 cm in size) were removed. Out of 25 HAs, 2 (8%) included foci of carcinoma. In the multiple HA group, previously undiagnosed tumors were identified during surgery in 5/6 cases. In three cases with multiple spread HA, several lesions had to be left unresected. They remained unmodified after 4-, 6-, and 6-year radiological follow-up. Patients with ruptured HA (ranged 1.7-10 cm in size) were initially managed with hemodynamic support and angiography, allowing the embolization of actively bleeding tumors in two patients. All ruptured tumors were subsequently removed 5.5 d (range 4-70 d) after admission. CONCLUSION: Tumors suspected of HA, regardless of the size, should be resected, because of high chances of rupture causing bleeding, and/or containing malignant foci. Although it is desirable to remove all lesions of multiple HA, this may not be possible in some patients, for whom long-term radiological follow-up is advised. Ruptured HA can be managed by hemodynamic support and angiography, allowing scheduled surgery. PMID:16237767

  17. Metrics for comparing dynamic earthquake rupture simulations

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  18. Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II

    NASA Astrophysics Data System (ADS)

    Smith, D.; Boese, M.; Heaton, T. H.

    2015-12-01

    Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.

  19. Overall outcomes following early interventions for intracranial arteriovenous malformations with hematomas.

    PubMed

    Bir, Shyamal C; Maiti, Tanmoy Kumar; Konar, Subhas; Nanda, Anil

    2016-01-01

    We evaluated the timing and predictors of surgical intervention for intracranial arteriovenous malformations (AVM) with hematoma. A ruptured intracranial AVM with hematoma is an emergency condition, and the optimal timing for surgical intervention is not well understood. In addition, the outcome predictors of surgical intervention have rarely been reported. We identified and analyzed 78 patients treated with microsurgical resection for pathologically proven AVM at Louisiana State University Health in Shreveport from February 1992 to December 2004. All 78 patients were diagnosed with ruptured AVM before surgery. The independent variables, including patient demographics, timing of surgery, location of the AVM and comorbidities were analyzed to assess outcome. The results of this series revealed that surgical intervention after 48hours resulted in poor outcomes for patients with hematoma, following a ruptured AVM. Several other prognostic factors, including younger age (11-40years), Spetzler-Martin Grade I and II, and AVM in a supratentorial location, had significant positive effects on outcomes. However, hypertension, smoking, and a prior embolization showed significant negative effects on outcomes after surgery. The multiple logistic regression analyses also revealed that the timing of surgical intervention had a significant effect on outcomes in patients with hematoma following ruptured AVM. Early intervention is the key to success in these patients. Published by Elsevier Ltd.

  20. Evaluating a kinematic method for generating broadband ground motions for great subduction zone earthquakes: Application to the 2003 Mw 8.3 Tokachi‐Oki earthquake

    USGS Publications Warehouse

    Wirth, Erin A.; Frankel, Arthur; Vidale, John E.

    2017-01-01

    We compare broadband synthetic seismograms with recordings of the 2003 Mw">MwMw 8.3 Tokachi‐Oki earthquake to evaluate a compound rupture model, in which slip on the fault consists of multiple high‐stress‐drop asperities superimposed on a background slip distribution with longer rise times. Low‐frequency synthetics (<1  Hz"><1  Hz<1  Hz) are calculated using deterministic, 3D finite‐difference simulations and are combined with high‐frequency (>1  Hz">>1  Hz>1  Hz) stochastic synthetics using a matched filter at 1 Hz. We show that this compound rupture model and overall approach accurately reproduces waveform envelopes and observed response spectral accelerations (SAs) from the Tokachi‐Oki event. We find that sufficiently short subfault rise times (i.e., <∼1–2  s"><∼1–2  s<∼1–2  s) are necessary to reproduce energy ∼1  Hz">∼1  Hz∼1  Hz. This is achieved by either (1) including distinct subevents with short rise times, as may be suggested by the Tokachi‐Oki data, or (2) imposing a fast‐slip velocity over the entire rupture area. We also include a systematic study on the effects of varying several kinematic rupture parameters. We find that simulated strong ground motions are sensitive to the average rupture velocity and coherence of the rupture front, with more coherent ruptures yielding higher response SAs. We also assess the effects of varying the average slip velocity and the character (i.e., area, magnitude, and location) of high‐stress‐drop subevents. Even in the absence of precise constraints on these kinematic rupture parameters, our simulations still reproduce major features in the Tokachi‐Oki earthquake data, supporting its accuracy in modeling future large earthquakes.

  1. Comparison of Frequency-Domain Array Methods for Studying Earthquake Rupture Process

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Yin, J.; Yao, H.

    2014-12-01

    Seismic array methods, in both time- and frequency- domains, have been widely used to study the rupture process and energy radiation of earthquakes. With better spatial resolution, the high-resolution frequency-domain methods, such as Multiple Signal Classification (MUSIC) (Schimdt, 1986; Meng et al., 2011) and the recently developed Compressive Sensing (CS) technique (Yao et al., 2011, 2013), are revealing new features of earthquake rupture processes. We have performed various tests on the methods of MUSIC, CS, minimum-variance distortionless response (MVDR) Beamforming and conventional Beamforming in order to better understand the advantages and features of these methods for studying earthquake rupture processes. We use the ricker wavelet to synthesize seismograms and use these frequency-domain techniques to relocate the synthetic sources we set, for instance, two sources separated in space but, their waveforms completely overlapping in the time domain. We also test the effects of the sliding window scheme on the recovery of a series of input sources, in particular, some artifacts that are caused by the sliding window scheme. Based on our tests, we find that CS, which is developed from the theory of sparsity inversion, has relatively high spatial resolution than the other frequency-domain methods and has better performance at lower frequencies. In high-frequency bands, MUSIC, as well as MVDR Beamforming, is more stable, especially in the multi-source situation. Meanwhile, CS tends to produce more artifacts when data have poor signal-to-noise ratio. Although these techniques can distinctly improve the spatial resolution, they still produce some artifacts along with the sliding of the time window. Furthermore, we propose a new method, which combines both the time-domain and frequency-domain techniques, to suppress these artifacts and obtain more reliable earthquake rupture images. Finally, we apply this new technique to study the 2013 Okhotsk deep mega earthquake in order to better capture the rupture characteristics (e.g., rupture area and velocity) of this earthquake.

  2. Multiple tendon ruptures of unknown etiology.

    PubMed

    Axibal, Derek P; Anderson, John G

    2013-10-01

    Tendon ruptures are common findings in foot and ankle practice. The etiology of tendon ruptures tends to be multifactorial-usually due to a combination of trauma, effects of systemic diseases, adverse effects of medications, and obesity. We present an unusual case of right Achilles tendinitis, left Achilles tendon rupture, bilateral peroneus longus tendon rupture, and left peroneus brevis tendon rupture of unknown etiology. This case report highlights the need for research for other possible, lesser known etiologies of tendon pathology. Therapeutic, Level IV, Case Study.

  3. Extracorporeal cardiopulmonary resuscitation for blunt cardiac rupture.

    PubMed

    Kudo, Shunsuke; Tanaka, Keiji; Okada, Kunihiko; Takemura, Takahiro

    2017-11-01

    Extracorporeal cardiopulmonary resuscitation (ECPR) followed by operating room sternotomy, rather than resuscitative thoracotomy, might be life-saving for patients with blunt cardiac rupture and cardiac arrest who do not have multiple severe traumatic injuries. A 49-year-old man was injured in a vehicle crash and transferred to the emergency department. On admission, he was hemodynamically stable, but a plain chest radiograph revealed a widened mediastinum, and echocardiography revealed hemopericardium. A computed tomography scan revealed hemopericardium and mediastinal hematoma, without other severe traumatic injuries. However, the patient's pulse was lost soon after he was transferred to the intensive care unit, and cardiopulmonary resuscitation was initiated. We initiated ECPR using femorofemoral veno-arterial extracorporeal membrane oxygenation (ECMO) with heparin administration, which achieved hemodynamic stability. He was transferred to the operating room for sternotomy and cardiac repair. Right ventricular rupture and pericardial sac laceration were identified intraoperatively, and cardiac repair was performed. After repairing the cardiac rupture, the cardiac output recovered spontaneously, and ECMO was discontinued intraoperatively. The patient recovered fully and was discharged from the hospital on postoperative day 7. In this patient, ECPR rapidly restored brain perfusion and provided enough time to perform operating room sternotomy, allowing for good surgical exposure of the heart. Moreover, open cardiac massage was unnecessary. ECPR with sternotomy and cardiac repair is advisable for patients with blunt cardiac rupture and cardiac arrest who do not have severe multiple traumatic injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing

    2018-05-01

    We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.

  5. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    PubMed

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  6. FROM ACUTE ACHILLES TENDON RUPTURE TO RETURN TO PLAY - A CASE REPORT EVALUATING RECOVERY OF TENDON STRUCTURE, MECHANICAL PROPERTIES, CLINICAL AND FUNCTIONAL OUTCOMES.

    PubMed

    Zellers, Jennifer A; Cortes, Daniel H; Silbernagel, Karin Grävare

    2016-12-01

    Achilles tendon rupture results in significant functional deficits regardless of treatment strategy (surgical versus non-surgical intervention). Recovery post-rupture is highly variable, making comprehensive patient assessment critical. Assessment tools may change along the course of recovery as the patient progresses - for instance, moving from a seated heel-rise to standing heel-rise to jump testing. However, tools that serve as biomarkers for early recovery may be particularly useful in informing clinical decision-making. The purpose of this case report was to describe the progress of a young, athletic individual following Achilles tendon rupture managed non-surgically, using patient reported and functional performance outcome measures and comprehensively evaluating Achilles tendon structure and function incorporating a novel imaging technique (cSWE). The subject is a 26 year-old, female basketball coach who sustained an Achilles tendon rupture and was managed non-surgically. The subject was able to steadily progress using a gradual tendon loading treatment approach well-supported by the literature. Multiple evaluative techniques including the addition of diagnostic ultrasound imaging and continuous shear wave elastography (cSWE) to standard clinical tests and measures were used to assess patient-reported symptoms, tendon structure, and tendon functional performance. Five assessments were performed over the course of 2-14 months post-rupture. By the 14-month follow-up, the subject had achieved full self-reported function. Tendon structural and mechanical properties showed similar shear modulus by 14 months, however, viscosity continued to be lower and tendon length longer on the ruptured side. Functional performance, evidenced by the heel-rise test and jump tests, also showed a positive trajectory, however, deficits of 12-28% remained between ruptured and non-ruptured sides at 14 months. This case report outlines comprehensive outcomes assessment in an athletic individual following non-surgically managed Achilles tendon rupture using a wide variety of tools that capture different aspects of tendon health. Interestingly, the course of recovery of patient symptoms, functional performance, and tendon structure do not occur in the same time frame. Therefore, it is important to assess patient outcomes using multiple outcome measures encompassing different aspects of patient performance to ensure the patient is progressing steadily with rehabilitation. Level 4.

  7. Kinematic inversion of the 2008 Mw7 Iwate-Miyagi (Japan) earthquake by two independent methods: Sensitivity and resolution analysis

    NASA Astrophysics Data System (ADS)

    Gallovic, Frantisek; Cirella, Antonella; Plicka, Vladimir; Piatanesi, Alessio

    2013-04-01

    On 14 June 2008, UTC 23:43, the border of Iwate and Miyagi prefectures was hit by an Mw7 reverse-fault type crustal earthquake. The event is known to have the largest ground acceleration observed to date (~4g), which was recorded at station IWTH25. We analyze observed strong motion data with the objective to image the event rupture process and the associated uncertainties. Two different slip inversion approaches are used, the difference between the two methods being only in the parameterization of the source model. To minimize mismodeling of the propagation effects we use crustal model obtained by full waveform inversion of aftershock records in the frequency range between 0.05-0.3 Hz. In the first method, based on linear formulation, the parameters are represented by samples of slip velocity functions along the (finely discretized) fault in a time window spanning the whole rupture duration. Such a source description is very general with no prior constraint on the nucleation point, rupture velocity, shape of the velocity function. Thus the inversion could resolve very general (unexpected) features of the rupture evolution, such as multiple rupturing, rupture-propagation reversals, etc. On the other hand, due to the relatively large number of model parameters, the inversion result is highly non-unique, with possibility of obtaining a biased solution. The second method is a non-linear global inversion technique, where each point on the fault can slip only once, following a prescribed functional form of the source time function. We invert simultaneously for peak slip velocity, slip angle, rise time and rupture time by allowing a given range of variability for each kinematic model parameter. For this reason, unlike to the linear inversion approach, the rupture process needs a smaller number of parameters to be retrieved, and is more constrained with a proper control on the allowed range of parameter values. In order to test the resolution and reliability of the retrieved models, we present a thorough analysis of the performance of the two inversion approaches. In fact, depending on the inversion strategy and the intrinsic 'non-uniqueness' of the inverse problem, the final slip maps and distribution of rupture onset times are generally different, sometimes even incompatible with each other. Great emphasis is devoted to the uncertainty estimate of both techniques. Thus we do not compare only the best fitting models, but their 'compatibility' in terms of the uncertainty limits.

  8. Meteorological factors and timing of the initiating event of human parturition

    NASA Astrophysics Data System (ADS)

    Hirsch, Emmet; Lim, Courtney; Dobrez, Deborah; Adams, Marci G.; Noble, William

    2011-03-01

    The aim of this study was to determine whether meteorological factors are associated with the timing of either onset of labor with intact membranes or rupture of membranes prior to labor—together referred to as `the initiating event' of parturition. All patients delivering at Evanston Hospital after spontaneous labor or rupture of membranes at ≥20 weeks of gestation over a 6-month period were studied. Logistic regression models of the initiating event of parturition using clinical variables (maternal age, gestational age, parity, multiple gestation and intrauterine infection) with and without the addition of meteorological variables (barometric pressure, temperature and humidity) were compared. A total of 1,088 patients met the inclusion criteria. Gestational age, multiple gestation and chorioamnionitis were associated with timing of initiation of parturition ( P < 0.01). The addition of meteorological to clinical variables generated a statistically significant improvement in prediction of the initiating event; however, the magnitude of this improvement was small (less than 2% difference in receiver-operating characteristic score). These observations held regardless of parity, fetal number and gestational age. Meteorological factors are associated with the timing of parturition, but the magnitude of this association is small.

  9. An insight on correlations between kinematic rupture parameters from dynamic ruptures on rough faults

    NASA Astrophysics Data System (ADS)

    Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin

    2017-04-01

    We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.

  10. Formation and Rupture of the Internal Carotid Artery Aneurysm after Multiple Courses of Intensity-Modulated Radiation Therapy for Management of the Skull Base Ewing Sarcoma/PNET: Case Report.

    PubMed

    Tamura, Manabu; Kogo, Kasei; Masuo, Osamu; Oura, Yoshinori; Matsumoto, Hiroyuki; Fujita, Koji; Nakao, Naoyuki; Uematsu, Yuji; Itakura, Toru; Chernov, Mikhail; Hayashi, Motohiro; Muragaki, Yoshihiro; Iseki, Hiroshi

    2013-12-01

    Background Aneurysm formation after stereotactic irradiation of skull base tumors is rare. The formation and rupture of an internal carotid artery (ICA) aneurysm in a patient with skull base Ewing sarcoma/primitive neuroectodermal tumor (PNET), who underwent surgery followed by multiple courses of intensity-modulated radiation therapy (IMRT) and chemotherapy, is described. Case Description A 25-year-old man presented with a sinonasal tumor with intraorbital and intracranial growth. At that time cerebral angiography did not reveal any vascular abnormalities. The lesion was resected subtotally. Histopathologic diagnosis was Ewing sarcoma/PNET. The patient underwent multiple courses of chemotherapy and three courses of IMRT at 3, 28, and 42 months after initial surgery. The total biologically effective dose delivered to the right ICA was 220.2 Gy. Seven months after the third IMRT, the patient experienced profound nasal bleeding that resulted in hypovolemic shock. Angiography revealed a ruptured right C4-C5 aneurysm and irregular stenotic changes of the ICA. Lifesaving endovascular trapping of the right ICA was done. The patient recovered well after surgery but died due to tumor recurrence 6 months later. Conclusion Excessive irradiation of the ICA may occasionally result in aneurysm formation, which should be borne in mind during stereotactic irradiation of malignant skull base tumors.

  11. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  12. Rupture Processes of the Mw8.3 Sea of Okhotsk Earthquake and Aftershock Sequences from 3-D Back Projection Imaging

    NASA Astrophysics Data System (ADS)

    Jian, P. R.; Hung, S. H.; Meng, L.

    2014-12-01

    On May 24, 2013, the largest deep earthquake ever recorded in history occurred on the southern tip of the Kamchatka Island, where the Pacific Plate subducts underneath the Okhotsk Plate. Previous 2D beamforming back projection (BP) of P- coda waves suggests the mainshock ruptured bilaterally along a horizontal fault plane determined by the global centroid moment tensor solution. On the other hand, the multiple point source inversion of P and SH waveforms argued that the earthquake comprises a sequence of 6 subevents not located on a single plane but actually distributed in a zone that extends 64 km horizontally and 35 km in depth. We then apply a three-dimensional MUSIC BP approach to resolve the rupture processes of the manishock and two large aftershocks (M6.7) with no a priori setup of preferential orientations of the planar rupture. The maximum pseudo-spectrum of high-frequency P wave in a sequence of time windows recorded by the densely-distributed stations from US and EU Array are used to image 3-D temporal and spatial rupture distribution. The resulting image confirms that the nearly N-S striking but two antiparallel rupture stages. The first subhorizontal rupture initially propagates toward the NNE direction, while at 18 s later it directs reversely to the SSW and concurrently shifts downward to 35 km deeper lasting for about 20 s. The rupture lengths in the first NNE-ward and second SSW-ward stage are about 30 km and 85 km; the estimated rupture velocities are 3 km/s and 4.25 km/s, respectively. Synthetic experiments are undertaken to assess the capability of the 3D MUSIC BP for the recovery of spatio-temporal rupture processes. Besides, high frequency BP images based on the EU-Array data show two M6.7 aftershocks are more likely to rupture on the vertical fault planes.

  13. Transection of the inferior vena cava from blunt thoracic trauma: case reports.

    PubMed

    Peitzman, A B; Udekwu, A O; Pevec, W; Albrink, M

    1989-04-01

    Blunt thoracic trauma is a frequent cause of death in multiple trauma victims. Myocardial rupture may occur in up to 65% of patients who die with thoracic injuries. Two cases are presented with intrapericardial transection of the inferior vena cava, pericardial rupture, and myocardial rupture from blunt thoracic trauma. Both patients died.

  14. Professional Athletes' Return to Play and Performance After Operative Repair of an Achilles Tendon Rupture.

    PubMed

    Trofa, David P; Miller, J Chance; Jang, Eugene S; Woode, Denzel R; Greisberg, Justin K; Vosseller, J Turner

    2017-10-01

    Most Achilles tendon ruptures are sports related. However, few studies have examined and compared the effect of surgical repair for complete ruptures on return to play (RTP), play time, and performance across multiple sports. To examine RTP and performance among professional athletes after Achilles tendon repair and compare pre- versus postoperative functional outcomes of professional athletes from different major leagues in the United States. Cohort study; Level of evidence, 3. National Basketball Association (NBA), National Football League (NFL), Major League Baseball (MLB), and National Hockey League (NHL) athletes who sustained a primary complete Achilles tendon rupture treated surgically between 1989 and 2013 were identified via public injury reports and press releases. Demographic information and performance-related statistics were recorded for 2 seasons before and after surgery and compared with matched controls. Statistical analyses were used to assess differences in recorded metrics. Of 86 athletes screened, 62 met inclusion criteria including 25 NBA, 32 NFL, and 5 MLB players. Nineteen (30.6%) professional athletes with an isolated Achilles tendon rupture treated surgically were unable to return to play. Among athletes who successfully returned to play, game participation averaged 75.4% ( P < .001) and 81.9% ( P = .002) of the total games played the season before injury at 1 and 2 years postoperatively, respectively. Play time was significantly decreased and athletes performed significantly worse compared with preoperative levels at 1 and 2 years after injury ( P < .001). When players were compared with matched controls, an Achilles tendon rupture resulted in fewer games played ( P < .001), decreased play time ( P = .025), and worse performance statistics ( P < .001) at 1 year but not 2 years postoperatively ( P > .05). When individual sports were compared, NBA players were most significantly affected, experiencing significant decreases in games played, play time, and performance. An Achilles tendon rupture is a devastating injury that prevents RTP for 30.6% of professional players. Athletes who do return play in fewer games, have less play time, and perform at a lower level than their preinjury status. However, these functional deficits are seen only at 1 year after surgery compared with matched controls, such that players who return to play can expect to perform at a level commensurate with uninjured controls 2 years postoperatively.

  15. Breaking barriers and halting rupture: the 2016 Amatrice-Visso-Castelluccio earthquake sequence, central Italy

    NASA Astrophysics Data System (ADS)

    Gregory, L. C.; Walters, R. J.; Wedmore, L. N. J.; Craig, T. J.; McCaffrey, K. J. W.; Wilkinson, M. W.; Livio, F.; Michetti, A.; Goodall, H.; Li, Z.; Chen, J.; De Martini, P. M.

    2017-12-01

    In 2016 the Central Italian Apennines was struck by a sequence of normal faulting earthquakes that ruptured in three separate events on the 24th August (Mw 6.2), the 26th Oct (Mw 6.1), and the 30th Oct (Mw 6.6). We reveal the complex nature of the individual events and the time-evolution of the sequence using multiple datasets. We will present an overview of the results from field geology, satellite geodesy, GNSS (including low-cost short baseline installations), and terrestrial laser scanning (TLS). Sequences of earthquakes of mid to high magnitude 6 are common in historical and seismological records in Italy and other similar tectonic settings globally. Multi-fault rupture during these sequences can occur in seconds, as in the M 6.9 1980 Irpinia earthquake, or can span days, months, or years (e.g. the 1703 Norcia-L'Aquila sequence). It is critical to determine why the causative faults in the 2016 sequence did not rupture simultaneously, and how this relates to fault segmentation and structural barriers. This is the first sequence of this kind to be observed using modern geodetic techniques, and only with all of the datasets combined can we begin to understand how and why the sequence evolved in time and space. We show that earthquake rupture both broke through structural barriers that were thought to exist, but was also inhibited by a previously unknown structure. We will also discuss the logistical challenges in generating datasets on the time-evolving sequence, and show how rapid response and international collaboration within the Open EMERGEO Working Group was critical for gaining a complete picture of the ongoing activity.

  16. Greater Rupture Risk for Familial as Compared to Sporadic Unruptured Intracranial Aneurysms

    PubMed Central

    Broderick, Joseph P.; Brown, Robert D.; Sauerbeck, Laura; Hornung, Richard; Huston, John; Woo, Daniel; Anderson, Craig; Rouleau, Guy; Kleindorfer, Dawn; Flaherty, Matthew L.; Meissner, Irene; Foroud, Tatiana; Moomaw, E. Charles J.; Connolly, E. Sander

    2009-01-01

    Background The risk of intracranial aneurysm (IA) rupture in asymptomatic members of families who have multiple affected individuals is not known. Methods First-degree unaffected relatives of those with a familial history of IA who had a history of smoking or hypertension but no known IA were offered cerebral magnetic resonance angiography (MRA) and followed yearly as part of an NINDS-funded study of familial IA (FIA Study). Results 2874 subjects from 542 FIA families were enrolled. After study enrollment, MRAs were performed in 548 FIA family members with no known history of IA. Of these 548 subjects, 113 subjects (20.6%) had 148 IAs by MRA of whom 5 subjects had IA >= 7 mm. Two subjects with an unruptured IA by MRA/CTA (3 mm and 4mm ACOM) subsequently had rupture of their IA. This represents an annual rate of 1.2 ruptures per 100 subjects (1.2% per year, 95% CI of 0.14% to 4.3% per year). None of the 435 subjects with a negative MRA have had a ruptured IA. Survival curves between the MRA positive and negative cohorts were significantly different (p = 0.004). This rupture rate of unruptured IA in the FIA cohort of 1.2% per year is approximately 17 times higher than the rupture rate for subjects with an unruptured IA in the International Study of Unruptured Aneurysm Study with a matched distribution of IA size and location - 0.069% per year. Conclusions Small unruptured IAs in patients from FIA families may have a higher risk of rupture than sporadic unruptured IAs of similar size, which should be considered in the management of these patients. PMID:19228834

  17. Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms.

    PubMed

    Broderick, Joseph P; Brown, Robert D; Sauerbeck, Laura; Hornung, Richard; Huston, John; Woo, Daniel; Anderson, Craig; Rouleau, Guy; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Foroud, Tatiana; Moomaw, E Charles J; Connolly, E Sander

    2009-06-01

    The risk of intracranial aneurysm (IA) rupture in asymptomatic members of families who have multiple affected individuals is not known. First-degree unaffected relatives of those with a familial history of IA who had a history of smoking or hypertension but no known IA were offered cerebral MR angiography (MRA) and followed yearly as part of a National Institute of Neurological Diseases and Stroke-funded study of familial IA (Familial Intracranial Aneurysm [FIA] Study). A total of 2874 subjects from 542 FIA Study families were enrolled. After study enrollment, MRAs were performed in 548 FIA Study family members with no known history of IA. Of these 548 subjects, 113 subjects (20.6%) had 148 IAs by MRA of whom 5 subjects had IA >or=7 mm. Two subjects with an unruptured IA by MRA/CT angiography (3-mm and 4-mm anterior communicating artery) subsequently had rupture of their IA. This represents an annual rate of 1.2 ruptures per 100 subjects (1.2% per year; 95% CI, 0.14% to 4.3% per year). None of the 435 subjects with a negative MRA have had a ruptured IA. Survival curves between the MRA-positive and -negative cohorts were significantly different (P=0.004). This rupture rate of unruptured IA in the FIA Study cohort of 1.2% per year is approximately 17 times higher than the rupture rate for subjects with an unruptured IA in the International Study of Unruptured Aneurysm Study with a matched distribution of IA size and location 0.069% per year. Small unruptured IAs in patients from FIA Study families may have a higher risk of rupture than sporadic unruptured IAs of similar size, which should be considered in the management of these patients.

  18. Metal-metal laminar composites for high temperature applications

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.; Weeton, J. W.

    1972-01-01

    A study was conducted to obtain indications of the potentialities of laminar metal-metal composites for elevated temperature use. Most of the composites consisted of multiple layers or laminae of tungsten alternated with laminae of Nichrome V, a ductile, weaker but oxidation-resistant alloy. Composites with 50 volume percent of each phase were tested in tension and stress rupture at temperatures of 871 and 1093 C (1600 and 2000 F) and in impact at 23 and 524 C (73 and 975 F). A tension and a short time stress-rupture test was conducted on specimens of 77 v/o W-Re-Hf-C/23 v/o Inconel alloy 600 at 1093 C (2000 F).

  19. Linguine sign at MR imaging: does it represent the collapsed silicone implant shell?

    PubMed

    Gorczyca, D P; DeBruhl, N D; Mund, D F; Bassett, L W

    1994-05-01

    One intact and one ruptured single-lumen implant were surgically placed in a rabbit. Magnetic resonance (MR) imaging was performed before and after surgical removal, and the ruptured implant was imaged after removal of the implant shell. Multiple curvilinear hypointense lines (linguine sign) were present in the MR images of the ruptured implant and of the implant shell alone immersed in saline solution but not in the image of the free silicone. The collapsed implant shell in a ruptured silicone implant does cause the linguine sign.

  20. [Emergency radiology in acute traumatic rupture of the thoracic aorta. Detection of atypical forms. Apropos of 52 cases].

    PubMed

    Pinet, F; Vuilliez, J G; Gourdol, Y; Celard, P; Villard, J; Cognet, J B

    1983-10-27

    Fifty-two traumatic ruptures of the thoracic aorta were hospitalized between 1972 and 1982, with 46 angiographies. The most significant clinical sign of aortic rupture is the difference in blood pressure between the upper and lower limbs. The frequency of chest film findings is discussed. The aortography by arterial route must be performed at the sligh test suspicion, sometimes without radiographic signs, to establish diagnostics and detect associated lesions (dissection) and unusual types (low localization, multiple localization, localized rupture of the intima.

  1. Retrieving rupture history using waveform inversions in time sequence

    NASA Astrophysics Data System (ADS)

    Yi, L.; Xu, C.; Zhang, X.

    2017-12-01

    The rupture history of large earthquakes is generally regenerated using the waveform inversion through utilizing seismological waveform records. In the waveform inversion, based on the superposition principle, the rupture process is linearly parameterized. After discretizing the fault plane into sub-faults, the local source time function of each sub-fault is usually parameterized using the multi-time window method, e.g., mutual overlapped triangular functions. Then the forward waveform of each sub-fault is synthesized through convoluting the source time function with its Green function. According to the superposition principle, these forward waveforms generated from the fault plane are summarized in the recorded waveforms after aligning the arrival times. Then the slip history is retrieved using the waveform inversion method after the superposing of all forward waveforms for each correspond seismological waveform records. Apart from the isolation of these forward waveforms generated from each sub-fault, we also realize that these waveforms are gradually and sequentially superimposed in the recorded waveforms. Thus we proposed a idea that the rupture model is possibly detachable in sequent rupture times. According to the constrained waveform length method emphasized in our previous work, the length of inverted waveforms used in the waveform inversion is objectively constrained by the rupture velocity and rise time. And one essential prior condition is the predetermined fault plane that limits the duration of rupture time, which means the waveform inversion is restricted in a pre-set rupture duration time. Therefore, we proposed a strategy to inverse the rupture process sequentially using the progressively shift rupture times as the rupture front expanding in the fault plane. And we have designed a simulation inversion to test the feasibility of the method. Our test result shows the prospect of this idea that requiring furthermore investigation.

  2. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo

    2015-01-05

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution ofmore » activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.« less

  3. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    NASA Astrophysics Data System (ADS)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response and hazard assessment after destructive large earthquakes. Existing multiple global seismic arrays, when properly calibrated and used in combinations, provide a high resolution image of rupture of large earthquakes and spatiotemporal distribution of aftershocks.

  4. Integrated Geophysical Characteristics of the 2015 Illapel, Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Yeck, W. L.; Nealy, J. L.; Hayes, G. P.; Barnhart, W. D.; Benz, H.; Furlong, K. P.

    2015-12-01

    On September 16th, 2015, an Mw 8.3 earthquake (USGS moment magnitude) ruptured offshore of central Chile, 50 km west of the city of Illapel and 200 km north of Santiago. The earthquake occurred just north of where the Juan Fernandez Ridge enters the subduction zone. In this study, we integrate multiple seismic and geodetic datasets, including multiple-event earthquake relocations; moment tensors of the Illapel mainshock, aftershocks, and prior regional seismicity; finite fault models (FFMs) of the mainshock rupture; subduction zone geometry; Coulomb stress transfer calculations; and co-seismic GPS offsets and InSAR images. These datasets allow us to (a) assess the context of the Illapel earthquake sequence with respect to historical seismicity in central Chile; (b) constrain the relationship between subduction geometry and the kinematic characteristics of the earthquake sequence; and (c) understand the distribution of aftershocks with respect to the rupture zone. Double source W-phase moment tensor analysis indicates the Illapel mainshock rupture began as a smaller Mw ~7.2 thrusting event before growing into a great-sized Mw 8.3 earthquake. Relocated aftershock seismicity is concentrated around the main region of slip, and few aftershocks occur on the megathrust shallower than ~15 km, despite the FFM indicating slip near the trench. This distribution is consistent with the aftershock behavior following the 2010 Maule and 2014 Iquique earthquakes: aftershocks primarily surround the rupture zones and are largely absent from regions of greatest slip. However, in contrast to the recent 2014 Iquique and 2010 Maule events, which ruptured in regions of the Chilean subduction zone that had not had large events in over a century, this earthquake occurred in a section of the subduction zone that hosted a large earthquake as recently as 1943, as well as earlier significant events in 1880 and 1822. At this section of the subduction zone, in addition to the impinging Juan Fernandez Ridge, the slab geometry changes from steeply dipping south of the Illapel earthquake to a nearly horizontal dip adjacent to the event. Combining these various observations provides insight into the links between regional tectonics and the timing and distribution of megathrust earthquakes at this segment of the central Chilean subduction zone.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratto, T V; Rudd, R E; Langry, K C

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, theymore » do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.« less

  6. Kinematics of shallow backthrusts in the Seattle fault zone, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.

    2015-01-01

    Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.

  7. Surface fault rupture during the Mw 7.8 Kaikoura earthquake, New Zealand, with specific comment on the Kekerengu Fault - one of the country's fastest slipping onland active faults

    NASA Astrophysics Data System (ADS)

    Van Dissen, Russ; Little, Tim

    2017-04-01

    The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches received surface fault rupture, and are now dextrally offset by about 9 m, while the third trench did not have any 2016 surface rupture pass through it. In this instance, ground-surface rupture along this trace of the fault died out within tens of metres of the trench. Another salient aspect of the Kaikoura earthquake is that the determined (or estimated) recurrence intervals of the faults that ruptured the ground surface vary by an order of magnitude or more. This strongly implies that the ensemble of faults that ruptured with the Kekerengu Fault in the 2016 earthquake has not always been the same for past earthquakes. Possible reasons for this could include the state of stress at the time of a specific earthquake, the direction of rupture propagation, and whether or not rupture on one fault system cascades into rupture on another as is suspected to have happened in the Kaikoura earthquake.

  8. Complex ruptures during hydraulic fracturing of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Viegas, G. F.; Urbancic, T.; Bosman, K.; Baig, A. M.

    2016-12-01

    Complex rupture patterns were observed on several M0+ events recorded during a hydraulic stimulation of the Marcellus shale. Although M>0 events associated with hydraulic fracturing have now been commonly recorded and may cause concern in terms of public and infrastructure safety, the vast majority of these events are smaller than M3 and are not felt at the surface. We investigate the rupture characteristics of one such multi-rupture event with 3 sub-events, by examining the failure dynamics of the overall fracture itself and of each individual sub-event, and the growth of the overall fracture from rupture initiation to arrest. This analysis is only possible due to the wide frequency range of the seismic monitoring system put in place which spanned from 0.1 Hz to 1000 Hz. The monitoring system consists of: high-frequency sensor-arrays of geophones deployed downhole close to the reservoir and thus to the rupture initiation point; and low to intermediate frequency accelerometers and geophones deployed at intermediate and shallow depths, allowing for the investigation of overall rupture characteristics. We aim to gain an understanding of the role of asperities, fracture roughness, and fluids on the different aspects of the rupture processes and of the failure mechanisms (shearing versus tensile dominance of behavior) associated with these complex events. Our results show that the overall event is characterized by the failure of multiple asperities and the distance between the 3 sub-events is less than 20 m. We observe decreasing stress drop and increasing Mw over time for the successive sub-events which suggest decreasing frictional resistance due to the presence of fluids over an increasingly large rupture surface akin to increased slip over a larger and less resistant contact area such as an asperity. The overall failure shows a dominant shearing mode mechanism whereas the sub-events failures show strong tensile components. The ruptures of the 1st and 2nd sub-events are indicative of shear-compaction of an asperity and the one of the 3rd sub-event is suggestive of a rupture riding over several surface patches. Additional analysis of other complex events will improve the characterization of the rupture processes of these larger-magnitude events and allow for the assessment of conditions under which the failures occur.

  9. Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.

    2018-02-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.

  10. Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.

    2018-04-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.

  11. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    NASA Astrophysics Data System (ADS)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  12. An asymptomatic ruptured hepatic hydatid cyst case presenting with subdiaphragmatic gas in a traumatic patient.

    PubMed

    Eren, Suat; Yildirgan, Ilhan; Kantarci, A Mecit

    2005-12-01

    Hydatid disease presents as hydatid cysts primarily in the liver and lungs. Although hepatic hydatid cysts (HHCs) may be asymptomatic for many years, they may be symptomatic due to expansion, rupture, and pyogenic infection. Rupture of the HHC into the biliary tract is one of the most serious complications and is frequently related to overenlargement of the cyst or major trauma. Patients with this disease usually have jaundice or fever. We report an asymptomatic HHC ruptured after minor trauma. While the ruptured cyst was presented as the subdiaphragmatic gas on the chest radiography, it was detected as a large cyst with multiple daughter cysts on ultrasound, computed tomography scan, and magnetic resonance imaging.

  13. Concurrent intraoperative uterine rupture and placenta accreta. Do preoperative chronic hypertension, preterm premature rupture of membranes, chorioamnionitis, and placental abruption provide warning to this rare occurrence?

    PubMed

    Cometa, M Anthony; Wasilko, Scott M; Wendling, Adam L

    2018-04-01

    Uterine and placental pathology can be a major cause of morbidity and mortality in the parturient and infant. When presenting alone, placental abruption, uterine rupture, or placenta accreta can result in significant peripartum hemorrhage, requiring aggressive surgical and anesthetic management; however, the presence of multiple concurrent uterine and placental pathologies can result in significant morbidity and mortality. We present the anesthetic management of a parturient who underwent an urgent cesarean delivery for non-reassuring fetal tracing in the setting of chronic hypertension, preterm premature rupture of membranes, and chorioamnionitis who was subsequently found to have placental abruption, uterine rupture, and placenta accreta.

  14. Concurrent intraoperative uterine rupture and placenta accreta. Do preoperative chronic hypertension, preterm premature rupture of membranes, chorioamnionitis, and placental abruption provide warning to this rare occurrence?

    PubMed Central

    Wasilko, Scott M.; Wendling, Adam L.

    2018-01-01

    Uterine and placental pathology can be a major cause of morbidity and mortality in the parturient and infant. When presenting alone, placental abruption, uterine rupture, or placenta accreta can result in significant peripartum hemorrhage, requiring aggressive surgical and anesthetic management; however, the presence of multiple concurrent uterine and placental pathologies can result in significant morbidity and mortality. We present the anesthetic management of a parturient who underwent an urgent cesarean delivery for non-reassuring fetal tracing in the setting of chronic hypertension, preterm premature rupture of membranes, and chorioamnionitis who was subsequently found to have placental abruption, uterine rupture, and placenta accreta. PMID:29756067

  15. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    NASA Astrophysics Data System (ADS)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification of biased uncertainty of the back projection. Preliminary results from the Venezuela data set shows an East to West rupture propagation along the fault with sub-Rayleigh rupture speed, consistent with a compact source with two significant asperities which are confirmed by source time function obtained from Green’s function deconvolution and other source inversion results. These efforts could lead the Venezuela National Seismic Network to play a prominent role in the timely characterization of the rupture process of large earthquakes in the Caribbean, including the future ruptures along the yet unbroken segments of the Enriquillo fault system.

  16. Salient Features of the 2015 Gorkha, Nepal Earthquake in Relation to Earthquake Cycle and Dynamic Rupture Models

    NASA Astrophysics Data System (ADS)

    Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.

    2015-12-01

    Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity. Earthquake cycle and dynamic rupture models containing deep asperities reproduce the slower spectral decay found in teleseismic spectra of the Gorkha earthquake and in subduction events in the deeper edge of the seismogenic zone.

  17. Rupture Propagation Imaging of Fluid Induced Events at the Basel EGS Project

    NASA Astrophysics Data System (ADS)

    Folesky, Jonas; Kummerow, Jörn; Shapiro, Serge A.

    2014-05-01

    The analysis of rupture properties using rupture propagation imaging techniques is a fast developing field of research in global seismology. Usually rupture fronts of large to megathrust earthquakes are subject of recent studies, like e.g. the 2004 Sumatra-Andaman earthquake or the 2011 Tohoku, Japan earthquake. The back projection technique is the most prominent technique in this field. Here the seismograms recorded at an array or at a seismic network are back shifted to a grid of possible source locations via a special stacking procedure. This can provide information on the energy release and energy distribution of the rupture which then can be used to find estimates of event properties like location, rupture direction, rupture speed or length. The procedure is fast and direct and it only relies on a reasonable velocity model. Thus it is a good way to rapidly estimate the rupture properties and it can be used to confirm independently achieved event information. We adopted the back projection technique and put it in a microseismic context. We demonstrated its usage for multiple synthetic ruptures within a reservoir model of microseismic scale in earlier works. Our motivation hereby is the occurrence of relatively large, induced seismic events at a number of stimulated geothermal reservoirs or waste disposal sites, having magnitudes ML ≥ 3.4 and yielding rupture lengths of several hundred meters. We use the configuration of the seismic network and reservoir properties of the Basel Geothermal Site to build a synthetic model of a rupture by modeling the wave field of multiple spatio-temporal separated single sources using Finite-Difference modeling. The focus of this work is the application of the Back Projection technique and the demonstration of its feasibility to retrieve the rupture properties of real fluid induced events. We take four microseismic events with magnitudes from ML 3.1 to 3.4 and reconstruct source parameters like location, orientation and length. By comparison with our synthetic results as well as independent localization studies and source mechanism studies in this area we can show, that the obtained results are reasonable and that the application of back projection imaging is not only possible for microseismic datasets of respective quality, but that it provides important additional insights in the rupture process.

  18. A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Braunagel, M. J.; Griffith, W. A.

    2017-12-01

    Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial experimental results demonstrate that fragmentation of Westerly Granite samples occurs at lower stresses and strain rates than those expected from traditional SHPB experiments.

  19. Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.

    2017-12-01

    The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.

  20. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    NASA Astrophysics Data System (ADS)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  1. Paleo-earthquake Analysis from the Morphologic Features of Unconsolidated-sediment Fault Scarp: An Example from Dushanzi Thrust Fault in the Northern Tianshan, China

    NASA Astrophysics Data System (ADS)

    Wei, Z.; He, H.

    2016-12-01

    Fault scarp is important specific tectonic landform caused by surface-rupture earthquake. The morphology of the fault scarp in unconsolidated sediment could evolve in a predictable, time-dependent diffusion model. As a result, the investigation of fault-generated fault scarps is a prevalent technique used to study fault activity, geomorphic evolution, and the recurrence of faulting events. Addition to obtainment of cumulative displacement, gradient changes, i.e. slope breaks, in the morphology of fault scarps could indicate multiple rupture events along an active fault. In this study, we exacted a large set of densely spaced topographic profiles across fault scarp from LiDAR-derive DEM to detect subtle changes in the fault scarp geometry at the Dushanzi trust fault in the Northern Tianshan, China. Several slope breaks in topographic profiles can be identified, which may represent repeated rupture at the investigated fault. The number of paleo-earthquakes derived from our analysis is 4-3, well in agreement with the investigation results from the paleoseismological trenches. Statistical analysis results show that the scarp height of fault scarp with one slope break is 0.75±0.12 (mean value ±1 standard deviation) m representing the last incremental displacement during earthquakes; the height of fault scarp with two slope breaks is 1.86±0.32 m, and the height of fault scarp with three-four slope break is 6.45±1.44 m. Our approach enables us to obtain paleo-earthquake information from geomorphological analysis of fault scarps, and to assess the multiple rupture history of a complex fault system.

  2. Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation.

    PubMed

    Zhang, Ying; Yang, Xinjian; Wang, Yang; Liu, Jian; Li, Chuanhui; Jing, Linkai; Wang, Shengzhang; Li, Haiyun

    2014-12-31

    The authors evaluated the impact of morphological and hemodynamic factors on the rupture of matched-pairs of ruptured-unruptured intracranial aneurysms on one patient's ipsilateral anterior circulation with 3D reconstruction model and computational fluid dynamic method simulation. 20 patients with intracranial aneurysms pairs on the same-side of anterior circulation but with different rupture status were retrospectively collected. Each pair was divided into ruptured-unruptured group. Patient-specific models based on their 3D-DSA images were constructed and analyzed. The relative locations, morphologic and hemodynamic factors of these two groups were compared. There was no significant difference in the relative bleeding location. The morphological factors analysis found that the ruptured aneurysms more often had irregular shape and had significantly higher maximum height and aspect ratio. The hemodynamic factors analysis found lower minimum wall shear stress (WSSmin) and more low-wall shear stress-area (LSA) in the ruptured aneurysms than that of the unruptured ones. The ruptured aneurysms more often had WSSmin on the dome. Intracranial aneurysms pairs with different rupture status on unilateral side of anterior circulation may be a good disease model to investigate possible characteristics linked to rupture independent of patient characteristics. Irregular shape, larger size, higher aspect ratio, lower WSSmin and more LSA may indicate a higher risk for their rupture.

  3. High-speed rupture during the initiation of the 2015 Bonin Islands deep earthquake

    NASA Astrophysics Data System (ADS)

    Zhan, Z.; Ye, L.; Shearer, P. M.; Lay, T.; Kanamori, H.

    2015-12-01

    Among the long-standing questions on how deep earthquakes rupture, the nucleation phase of large deep events is one of the most puzzling parts. Resolving the rupture properties of the initiation phase is difficult to achieve with far-field data because of the need for accurate corrections for structural effects on the waveforms (e.g., attenuation, scattering, and site effects) and alignment errors. Here, taking the 2015 Mw 7.9 Bonin Islands earthquake (depth = 678 km) as an example, we jointly invert its far-field P waves at multiple stations for the average rupture speed during the first second of the event. We use waveforms from a closely located aftershock as empirical Green's functions, and correct for possible differences in focal mechanisms and waveform misalignments with an iterative approach. We find that the average initial rupture speed is over 5 km/s, significantly higher than the average rupture speed of 3 km/s later in the event. This contrast suggests that rupture speeds of deep earthquakes can be highly variable during individual events and may define different stages of rupture, potentially with different mechanisms.

  4. Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force

    NASA Astrophysics Data System (ADS)

    Grubmuller, Helmut; Heymann, Berthold; Tavan, Paul

    1996-02-01

    The force required to rupture the streptavidin-biotin complex was calculated here by computer simulations. The computed force agrees well with that obtained by recent single molecule atomic force microscope experiments. These simulations suggest a detailed multiple-pathway rupture mechanism involving five major unbinding steps. Binding forces and specificity are attributed to a hydrogen bond network between the biotin ligand and residues within the binding pocket of streptavidin. During rupture, additional water bridges substantially enhance the stability of the complex and even dominate the binding inter-actions. In contrast, steric restraints do not appear to contribute to the binding forces, although conformational motions were observed.

  5. Unraveling the Earthquake History of the Denali Fault System, Alaska: Filling a Blank Canvas With Paleoearthquakes

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Haeussler, P. J.; Seitz, G. G.; Dawson, T. E.; Stenner, H. D.; Matmon, A.; Crone, A. J.; Personius, S.; Burns, P. B.; Cadena, A.; Thoms, E.

    2005-12-01

    Developing accurate rupture histories of long, high-slip-rate strike-slip faults is is especially challenging where recurrence is relatively short (hundreds of years), adjacent segments may fail within decades of each other, and uncertainties in dating can be as large as, or larger than, the time between events. The Denali Fault system (DFS) is the major active structure of interior Alaska, but received little study since pioneering fault investigations in the early 1970s. Until the summer of 2003 essentially no data existed on the timing or spatial distribution of past ruptures on the DFS. This changed with the occurrence of the M7.9 2002 Denali fault earthquake, which has been a catalyst for present paleoseismic investigations. It provided a well-constrained rupture length and slip distribution. Strike-slip faulting occurred along 290 km of the Denali and Totschunda faults, leaving unruptured ?140km of the eastern Denali fault, ?180 km of the western Denali fault, and ?70 km of the eastern Totschunda fault. The DFS presents us with a blank canvas on which to fill a chronology of past earthquakes using modern paleoseismic techniques. Aware of correlation issues with potentially closely-timed earthquakes we have a) investigated 11 paleoseismic sites that allow a variety of dating techniques, b) measured paleo offsets, which provide insight into magnitude and rupture length of past events, at 18 locations, and c) developed late Pleistocene and Holocene slip rates using exposure age dating to constrain long-term fault behavior models. We are in the process of: 1) radiocarbon-dating peats involved in faulting and liquefaction, and especially short-lived forest floor vegetation that includes outer rings of trees, spruce needles, and blueberry leaves killed and buried during paleoearthquakes; 2) supporting development of a 700-900 year tree-ring time-series for precise dating of trees used in event timing; 3) employing Pb 210 for constraining the youngest ruptures in sag ponds on the eastern and western Denali fault; and 4) using volcanic ashes in trenches for dating and correlation. Initial results are: 1) Large earthquakes occurred along the 2002 rupture section 350-700 yrb02 (2-sigma, calendar-corrected, years before 2002) with offsets about the same as 2002. The Denali penultimate rupture appears younger (350-570 yrb02) than the Totschunda (580-700 yrb02); 2) The western Denali fault is geomorphically fresh, its MRE likely occurred within the past 250 years, the penultimate event occurred 570-680 yrb02, and slip in each event was 4m; 3) The eastern Denali MRE post-dates peat dated at 550-680 yrb02, is younger than the penultimate Totschunda event, and could be part of the penultimate Denali fault rupture or a separate earthquake; 4) A 120-km section of the Denali fault between tNenana glacier and the Delta River may be a zone of overlap for large events and/or capable of producing smaller earthquakes; its western part has fresh scarps with small (1m) offsets. 2004/2005 field observations show there are longer datable records, with 4-5 events recorded in trenches on the eastern Denali fault and the west end of the 2002 rupture, 2-3 events on the western part of the fault in Denali National Park, and 3-4 events on the Totschunda fault. These and extensive datable material provide the basis to define the paleoseismic history of DFS earthquake ruptures through multiple and complete earthquake cycles.

  6. Complementary Ruptures of Surface Ruptures and Deep Asperity during the 2014 Northern Nagano, Japan, Earthquake (MW 6.3)

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.; Kubo, H.

    2015-12-01

    A thrust earthquake of MW 6.3 occurred along the northern part of the Itoigawa-Shizuoka Tectonic Line (ISTL) in the northern Nagano prefecture, central Japan, on November 22, 2014. This event was reported to be related to an active fault, the Kamishiro fault belonging to the ISTL (e.g., HERP, 2014). The surface rupture is observed along the Kamishiro fault (e.g., Lin et al., 2015; Okada et al., 2015). We estimated the kinematic source rupture process of this earthquake through the multiple time-window linear waveform inversion method (Hartzell and Heaton, 1983). We used velocity waveforms in 0.05-1 Hz from 12 strong motion stations of K-NET, KiK-net (NIED), JMA, and Nagano prefecture (SK-net, ERI). In order to enhance the reliability in Green's functions, we assumed one-dimensional velocity structure models different for the different stations, which were extracted from the nation-wide three-dimensional velocity structure model, Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012). Considering the spatial distribution of aftershocks (Sakai et al., 2015) and surface ruptures, the assumed fault model consisted of two dip-bending fault segments with different dip angles between the northern and southern segments. The total length and width of the fault plane is 20 km and 13 km, relatively, and the fault model is divided into 260 subfaults of 1 km × 1 km in space and six smoothed ramp functions in time. An asperity or large slip area with a peak slip of 1.9 m was estimated in the lower plane of the northern segment in the approximate depth range of 4 to 8 km. The depth extent of this asperity is consistent with the seismogenic zone revealed by past studies (e.g., Panayotopoulos et al., 2014). In contrast, the slip in the southern segment is relatively concentrated in the shallow portion of the segment where the surface ruptures were found along the Kamishiro fault. The overall spatial rupture pattern of the source fault, in which the deep asperity was located on the northern segment and surface rupture was found on the southern segment, seems to be spatially consistent with the mapped active faults. These findings suggest characteristic and repeating features of fault ruptures along active faults where static offsets have accumulated over past events, and it would be a good constraint on earthquake scenarios along it.

  7. Microvessel rupture induced by high-intensity therapeutic ultrasound-a study of parameter sensitivity in a simple in vivo model.

    PubMed

    Kim, Yeonho; Nabili, Marjan; Acharya, Priyanka; Lopez, Asis; Myers, Matthew R

    2017-01-01

    Safety analyses of transcranial therapeutic ultrasound procedures require knowledge of the dependence of the rupture probability and rupture time upon sonication parameters. As previous vessel-rupture studies have concentrated on a specific set of exposure conditions, there is a need for more comprehensive parametric studies. Probability of rupture and rupture times were measured by exposing the large blood vessel of a live earthworm to high-intensity focused ultrasound pulse trains of various characteristics. Pressures generated by the ultrasound transducers were estimated through numerical solutions to the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation. Three ultrasound frequencies (1.1, 2.5, and 3.3 MHz) were considered, as were three pulse repetition frequencies (1, 3, and 10 Hz), and two duty factors (0.0001, 0.001). The pressures produced ranged from 4 to 18 MPa. Exposures of up to 10 min in duration were employed. Trials were repeated an average of 11 times. No trends as a function of pulse repetition rate were identifiable, for either probability of rupture or rupture time. Rupture time was found to be a strong function of duty factor at the lower pressures; at 1.1 MHz the rupture time was an order of magnitude lower for the 0.001 duty factor than the 0.0001. At moderate pressures, the difference between the duty factors was less, and there was essentially no difference between duty factors at the highest pressure. Probability of rupture was not found to be a strong function of duty factor. Rupture thresholds were about 4 MPa for the 1.1 MHz frequency, 7 MPa at 3.3 MHz, and 11 MPa for the 2.5 MHz, though the pressure value at 2.5 MHz frequency will likely be reduced when steep-angle corrections are accounted for in the KZK model used to estimate pressures. Mechanical index provided a better collapse of the data (less separation of the curves pertaining to the different frequencies) than peak negative pressure, for both probability of rupture and rupture time. The results provide a database with which investigations in more complex animal models can be compared, potentially establishing trends by which bioeffects in human vessels can be estimated.

  8. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model.

    PubMed

    Kuijpers, M J E; Gilio, K; Reitsma, S; Nergiz-Unal, R; Prinzen, L; Heeneman, S; Lutgens, E; van Zandvoort, M A M J; Nieswandt, B; Egbrink, M G A Oude; Heemskerk, J W M

    2009-01-01

    Atherothrombosis is a major cause of cardiovascular events. However, animal models to study this process are scarce. We describe the first murine model of acute thrombus formation upon plaque rupture to study atherothrombosis by intravital fluorescence microscopy. Localized rupture of an atherosclerotic plaque in a carotid artery from Apoe(-/-) mice was induced in vivo using ultrasound. Rupture of the plaque and formation of localized thrombi were verified by two-photon laser scanning microscopy (TPLSM) in isolated arteries, and by immunohistochemistry. The thrombotic reaction was quantified by intravital fluorescence microscopy. Inspection of the ultrasound-treated plaques by histochemistry and TPLSM demonstrated local damage, collagen exposure, luminal thrombus formation as well as intra-plaque intrusion of erythrocytes and fibrin. Ultrasound treatment of healthy carotid arteries resulted in endothelial damage and limited platelet adhesion. Real-time intravital fluorescence microscopy demonstrated rapid platelet deposition on plaques and formation of a single thrombus that remained subocclusive. The thrombotic process was antagonized by thrombin inhibition, or by blocking of collagen or adenosine diphosphate receptor pathways. Multiple thrombi were formed in 70% of mice lacking CD40L. Targeted rupture of murine plaques results in collagen exposure and non-occlusive thrombus formation. The thrombotic process relies on platelet activation as well as on thrombin generation and coagulation, and is sensitive to established and novel antithrombotic medication. This model provides new possibilities to study atherothrombosis in vivo.

  9. Impact of spontaneous tumor rupture on prognosis of patients with T4 hepatocellular carcinoma

    PubMed Central

    Chan, Wen‐Hui; Hung, Chien‐Fu; Pan, Kuang‐Tse; Lui, Kar‐Wai; Huang, Yu‐Ting; Lin, Shen‐Yen; Lin, Yang‐Yu; Wu, Tsung‐Han

    2016-01-01

    Background and objectives Compare the outcomes of three groups of patients with T4 hepatocellular carcinoma (HCC): tumor rupture with shock (RS group), tumor rupture without shock (R group), and no tumor rupture (NR group). Materials and Methods We retrospectively reviewed 221 patients with T4 HCC from 2010 to 2012. The clinical background and prognosis were analyzed. Results Overall in‐hospital mortality rate was 18.1%; overall median survival time was 4 months. The NR group were more likely to have multiple and infiltrative tumors (P < 0.001). Relative to the NR group, the R + RS group had better survival rates at 6 months (49.2% vs. 32.2%), 1 year (35.3% vs. 21.0%), 3 years (22.5% vs. 11.0%), and 5 years (17.7% vs. 5.5%) (P = 0.010). Patients in the RS group had a higher in‐hospital mortality rate, but significantly better long‐term survival than the NR and R group (P < 0.001). Multivariate analysis indicated that Child‐Pugh class B or C, presence of portal venous thrombosis, and absence of shock were significantly associated with poor survival. Conclusion Patients with tumor rupture and shock had worse in‐hospital survival. However, patients without decompensated liver cirrhosis and portal venous thrombosis, and eligible for curative treatment had favorable long‐term outcome. J. Surg. Oncol. 2016;113:789–795. © 2016 The Authors. Journal of Surgical Oncology Published by Wiley Periodicals, Inc. PMID:27062288

  10. [Aortic valve insufficiency due to rupture of the cusp in a patient with multiple trauma].

    PubMed

    Vidmar, J; Brilej, D; Voga, G; Kovacic, N; Smrkolj, V

    2003-06-01

    Lesions of the heart valve caused by blunt chest trauma is rare, but when it does occur it can significantly injure the patient. On the basis of autopsy studies, research shows that heart valves are injured in less than 5% of patients who have died due to impact thoracic trauma. Among the heart valves, the aortic valve is the most often lacerated, which has been proved by relevant autopsy and clinical studies. Aortic valve lesions can be the only injury, but it is possible that additional heart or large vessel injuries are also present (myocardial contusion, rupture of the atrial septum, aortic rupture, rupture of the left common carotid artery). The force that causes such an injury is often great and often causes injuries to other organs and organ systems. In a multiple trauma patient, it is very important to specifically look for heart-related injuries because it is possible that they may be overlooked or missed by the surgeon, because of other obvious injuries. We describe the case of a 41-year-old man with multiple trauma who was diagnosed with aortic valve insufficiency due to rupture of the left coronary cusp 6 weeks after a road accident. Valvuloplasty was performed. Seven years later the patient is free of symptoms and is in good physical condition. Echocardiography showed normal dimensions of the heart chambers, a normal thickness of the heart walls, and normal systolic and diastolic function of the left ventricle. Heart valves are morphologically normal, and only an unimportant aortic insufficiency was noticed by echocardiography.

  11. Implications on 1+1 D runup modeling due to time features of the earthquake source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Campos, J. A.

    2017-12-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1+1D solution for the shoreline motion time series, from the static case to the dynamic case, by including both, rise time and rupture velocity. Results show that the static case correspond to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum run-up may be affected by very slow ruptures and long rise time. The analytical solution has been tested for the Nicaraguan tsunami earthquake, suggesting that the rupture was not slow enough to cause wave amplification to explain the high runup observations.

  12. The transition of dynamic rupture styles in elastic media under velocity-weakening friction

    NASA Astrophysics Data System (ADS)

    Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, P. M.

    2012-09-01

    Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.

  13. Aneurysm Morphology and Prediction of Rupture: An International Study of Unruptured Intracranial Aneurysms Analysis.

    PubMed

    Mocco, J; Brown, Robert D; Torner, James C; Capuano, Ana W; Fargen, Kyle M; Raghavan, Madhavan L; Piepgras, David G; Meissner, Irene; Huston, John

    2018-04-01

    There are conflicting data between natural history studies suggesting a very low risk of rupture for small, unruptured intracranial aneurysms and retrospective studies that have identified a much higher frequency of small, ruptured aneurysms than expected. To use the prospective International Study of Unruptured Intracranial Aneurysms cohort to identify morphological characteristics predictive of unruptured intracranial aneurysm rupture. A case-control design was used to analyze morphological characteristics associated with aneurysm rupture in the International Study of Unruptured Intracranial Aneurysms database. Fifty-seven patients with ruptured aneurysms during follow-up were matched (by size and location) with 198 patients with unruptured intracranial aneurysms without rupture during follow-up. Twelve morphological metrics were measured from cerebral angiograms in a blinded fashion. Perpendicular height (P = .008) and size ratio (ratio of maximum diameter to the parent vessel diameter; P = .01) were predictors of aneurysm rupture on univariate analysis. Aspect ratio, daughter sacs, multiple lobes, aneurysm angle, neck diameter, parent vessel diameter, and calculated aneurysm volume were not statistically significant predictors of rupture. On multivariate analysis, perpendicular height was the only significant predictor of rupture (Chi-square 7.1, P-value .008). This study underscores the importance of other morphological factors, such as perpendicular height and size ratio, that may influence unruptured intracranial aneurysm rupture risk in addition to greatest diameter and anterior vs posterior location.

  14. Segmentation and supercycles: A catalog of earthquake cycle complexities from the Sumatran Sunda Megathrust and other well-studied faults worldwide

    NASA Astrophysics Data System (ADS)

    Philibosian, B.; Meltzner, A. J.; Sieh, K.

    2017-12-01

    Understanding earthquake cycle processes is key to both seismic hazard and fault mechanics. A concept that has come into focus recently is that rupture segmentation and cyclicity can be complex, and that simple models of periodically repeating similar earthquakes are inadequate. The term "supercycle" has been used to describe repeating longer periods of strain accumulation that involve multiple fault ruptures. However, this term has become broadly applied, lumping together several distinct phenomena that likely have disparate underlying causes. Earthquake recurrence patterns have often been described as "clustered," but this term is also imprecise. It is necessary to develop a terminology framework that consistently and meaningfully describes all types of behavior that are observed. We divide earthquake cycle patterns into four major classes, each having different implications for seismic hazard and fault mechanics: 1) quasi-periodic similar ruptures, 2) temporally clustered similar ruptures, 3) temporally clustered complementary ruptures, also known as rupture cascades, in which neighboring fault patches fail sequentially, and 4) superimposed cycles in which neighboring fault patches have cycles with different recurrence intervals, but may occasionally rupture together. Rupture segmentation is classified as persistent, frequent, or transient depending on how reliably ruptures terminate in a given area. We discuss the paleoseismic and historical evidence currently available for each of these types of behavior on subduction zone megathrust faults worldwide. Due to the unique level of paleoseismic and paleogeodetic detail provided by the coral microatoll technique, the Sumatran Sunda megathrust provides one of the most complete records over multiple seismic cycles. Most subduction zones with sufficient data exhibit examples of persistent and frequent segmentation, with cycle patterns 1, 3, and 4 on different segments. Pattern 2 is generally confined to overlap zones between segments. This catalog of seismic cycle observations provides a basis for exploring and modeling root causes of rupture segmentation and cycle behavior. Researchers should expect to discover similar behavior styles on other megathrust faults and perhaps major crustal faults around the world.

  15. Time-Dependent Alterations of MMPs, TIMPs and Tendon Structure in Human Achilles Tendons after Acute Rupture

    PubMed Central

    Minkwitz, Susann; Schmock, Aysha; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian; Klatte-Schulz, Franka

    2017-01-01

    A balance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) is required to maintain tendon homeostasis. Variation in this balance over time might impact on the success of tendon healing. This study aimed to analyze structural changes and the expression profile of MMPs and TIMPs in human Achilles tendons at different time-points after rupture. Biopsies from 37 patients with acute Achilles tendon rupture were taken at surgery and grouped according to time after rupture: early (2–4 days), middle (5–6 days), and late (≥7 days), and intact Achilles tendons served as control. The histological score increased from the early to the late time-point after rupture, indicating the progression towards a more degenerative status. In comparison to intact tendons, qRT-PCR analysis revealed a significantly increased expression of MMP-1, -2, -13, TIMP-1, COL1A1, and COL3A1 in ruptured tendons, whereas TIMP-3 decreased. Comparing the changes over time post rupture, the expression of MMP-9, -13, and COL1A1 significantly increased, whereas MMP-3 and -10 expression decreased. TIMP expression was not significantly altered over time. MMP staining by immunohistochemistry was positive in the ruptured tendons exemplarily analyzed from early and late time-points. The study demonstrates a pivotal contribution of all investigated MMPs and TIMP-1, but a minor role of TIMP-2, -3, and -4, in the early human tendon healing process. PMID:29053586

  16. Periodic and chaotic host-parasite interactions in human malaria.

    PubMed Central

    Kwiatkowski, D; Nowak, M

    1991-01-01

    It has been recognized since ancient times that malaria fever is highly periodic but the mechanism has been poorly understood. Malaria fever is related to the parasite growth cycle in erythrocytes. After a fixed period of replication, a mature parasite (schizont) causes the infected erythrocyte to rupture, releasing progeny that quickly invade other erythrocytes. Simultaneous rupture of a large number of schizonts stimulates a host fever response. Febrile temperatures are damaging to Plasmodium falciparum, particularly in the second half of its 48-hr replicative cycle. Using a mathematical model, we show that these interactions naturally tend to generate periodic fever. The model predicts chaotic parasite population dynamics at high multiplication rates, consistent with the classical observation that P. falciparum causes less regular fever than other species of parasite. PMID:2052590

  17. A surface-wave investigation of the rupture mechanism of the Gobi-Altai (4 December 1957) earthquake

    NASA Technical Reports Server (NTRS)

    Okal, E. A.

    1975-01-01

    Long period records of multiple Love waves from the 1957 earthquake in Mongolia at Pasadena are analyzed and compared to synthetic seismograms, generated by the method of Kanamori. A fit in the time domain shows that the records are not consistent with the previous solution, achieved through a frequency domain analysis of directivity. The solution asks for a shorter rupture of 270 km at a velocity of 3.5 km/s. The focal parameters are constrained by updating all the reported first motion and are found to be: Strike = 103 deg, Dip = 53 deg, Slip = 32 deg. A seismic moment of 1.8 10 to the 28th power dynes-cm is obtained. These figures are also consistent with a time domain analysis of Love waves at Palisades and Strasbourg, and of Rayleigh waves at Pasadena, with a directivity study of Love waves at Pasadena, and with static deformation and isoseismal data. A discussion is given of the relation between moment, magnitude and rupture area, and a comparison is made with other events in the same region: It is concluded that this earthquake does not exhibit an intra-plate behavior, but rather compares better with inter-plate events, such as the great Assam earthquake.

  18. Strike-parallel and strike-normal coordinate system around geometrically complicated rupture traces: use by NGA-West2 and further improvements

    USGS Publications Warehouse

    Spudich, Paul A.; Chiou, Brian

    2015-01-01

    We present a two-dimensional system of generalized coordinates for use with geometrically complex fault ruptures that are neither straight nor continuous. The coordinates are a generalization of the conventional strike-normal and strike-parallel coordinates of a single straight fault. The presented conventions and formulations are applicable to a single curved trace, as well as multiple traces representing the rupture of branching faults or noncontiguous faults. An early application of our generalized system is in the second round of the Next Generation of Ground-Motion Attenuation Model project for the Western United States (NGA-West2), where they were used in the characterization of the hanging-wall effects. We further improve the NGA-West2 strike-parallel formulation for multiple rupture traces with a more intuitive definition of the nominal strike direction. We also derive an analytical expression for the gradient of the generalized strike-normal coordinate. The direction of this gradient may be used as the strike-normal direction in the study of polarization effects on ground motions.

  19. Seismicity in the Wake of the April 2016 Pedernales Earthquake

    NASA Astrophysics Data System (ADS)

    Meltzer, A.; Beck, S. L.; Ruiz, M. C.; Hernandez, S.; Alvarado, A. P.; Regnier, M. M.; Rietbrock, A.; Font, Y.; Charvis, P.; Yepes, H. A.; Lynner, C.; Porritt, R. W.

    2016-12-01

    On April 16th 2016 a Mw7.8 earthquake struck along the Colombia-Ecuador trench near Pedernales, Ecuador. The epicentral region lies just north of the intersection of the Carnegie Ridge with the subduction zone where the orientation of the trench shifts from N20°E to N32°E. This portion of the subduction zone has ruptured on decadal time scales; Mw7.8 (1942), Mw 7.7 (1958), and Mw 8.8 (1906). The rupture zone of the 2016 Pedernales earthquake falls within the rupture area of the 1906 event and appears to overlap with the previous 1942 event. In the wake of the earthquake an international response coordinated by the Instituto Geofisico EPN in Quito deployed accelerometers, seismometers, OBS, and GPS receivers to record aftershocks and post-seismic deformation. These data provide the opportunity to examine the persistence of asperities for large to great earthquakes over multiple seismic cycles, the role of asperities in promoting or inhibiting rupture propagation, and the relationship between locked and creeping parts of the subduction interface. Onland, a dense array of 64 broadband and intermediate period seismometers cover the 2016 rupture zone, extending north to the section that ruptured in 1958 and covers the contiguous area that ruptured in 1906. The US portion of the response supported by the NSF includes 19 broadband seismic stations to record aftershocks for a year, an eGPS survey, and five cGPS stations to enhance the existing network in Ecuador. Data from the NSF supported stations are open access. We examine the distribution of seismicity from the aftershock deployment in relationship to the 1942, 1958, and 1906 ruptures. Preliminary locations from the IG-EPN aftershock catalog outline the rupture zone and initially exhibited an abrupt termination to the north at 1°N. Along this northern boundary a series of aftershocks that took place over a period of several hours along a very linear trend culminated in one of several ≥Mw 6.0 aftershocks. To the south, a significant cluster of events is observed 100 km south of the area that ruptured in the mainshock. This area lies south of an area of low coupling observed in GPS data suggesting that stress is being transmitted across a zone that is freely slipping. In July a series of events occurred north of the rupture zone close to the edge of the segment that ruptured in 1958.

  20. Source Parameters and Rupture Directivities of Earthquakes Within the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Allen, A. A.; Chen, X.

    2017-12-01

    The Mendocino Triple Junction (MTJ), a region in the Cascadia subduction zone, produces a sizable amount of earthquakes each year. Direct observations of the rupture properties are difficult to achieve due to the small magnitudes of most of these earthquakes and lack of offshore observations. The Cascadia Initiative (CI) project provides opportunities to look at the earthquakes in detail. Here we look at the transform plate boundary fault located in the MTJ, and measure source parameters of Mw≥4 earthquakes from both time-domain deconvolution and spectral analysis using empirical Green's function (EGF) method. The second-moment method is used to infer rupture length, width, and rupture velocity from apparent source duration measured at different stations. Brune's source model is used to infer corner frequency and spectral complexity for stacked spectral ratio. EGFs are selected based on their location relative to the mainshock, as well as the magnitude difference compared to the mainshock. For the transform fault, we first look at the largest earthquake recorded during the Year 4 CI array, a Mw5.72 event that occurred in January of 2015, and select two EGFs, a Mw1.75 and a Mw1.73 located within 5 km of the mainshock. This earthquake is characterized with at least two sub-events, with total duration of about 0.3 second and rupture length of about 2.78 km. The earthquake is rupturing towards west along the transform fault, and both source durations and corner frequencies show strong azimuthal variations, with anti-correlation between duration and corner frequency. The stacked spectral ratio from multiple stations with the Mw1.73 EGF event shows deviation from pure Brune's source model following the definition from Uchide and Imanishi [2016], likely due to near-field recordings with rupture complexity. We will further analyze this earthquake using more EGF events to test the reliability and stability of the results, and further analyze three other Mw≥4 earthquakes within the array.

  1. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami

    NASA Astrophysics Data System (ADS)

    Horton, B.; Rubin, C. M.; Sieh, K.; Jessica, P.; Daly, P.; Ismail, N.; Parnell, A. C.

    2017-12-01

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here, we identify coastal caves as a new depositional environment for reconstructing tsunami records and present a 5,000 year record of continuous tsunami deposits from a coastal cave in Sumatra, Indonesia which shows the irregular recurrence of 11 tsunamis between 7,400 and 2,900 years BP. The data demonstrates that the 2004 tsunami was just the latest in a sequence of devastating tsunamis stretching back to at least the early Holocene and suggests a high likelihood for future tsunamis in the Indian Ocean. The sedimentary record in the cave shows that ruptures of the Sunda megathrust vary between large (which generated the 2004 Indian Ocean tsunami) and smaller slip failures. The chronology of events suggests the recurrence of multiple smaller tsunamis within relatively short time periods, interrupted by long periods of strain accumulation followed by giant tsunamis. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. The very long dormant period suggests that the Sunda megathrust is capable of accumulating large slip deficits between earthquakes. Such a high slip rupture would produce a substantially larger earthquake than the 2004 event. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda Megathrust ruptures as large as that of 2004 Indian Ocean tsunami. The remarkable variability of recurrence suggests that regional hazard mitigation plans should be based upon the high likelihood of future destructive tsunami demonstrated by the cave record and other paleotsunami sites, rather than estimates of recurrence intervals.

  2. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine Fault can inhibit rupture propagation, producing a soft earthquake segment boundary. The study demonstrates the utility of lakes as paleoseismometers that can be used to reconstruct the spatial and temporal patterns of earthquakes on a fault.

  3. Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic cycle model of fault interactions

    USGS Publications Warehouse

    Pollitz, F.F.; Schwartz, D.P.

    2008-01-01

    We construct a viscoelastic cycle model of plate boundary deformation that includes the effect of time-dependent interseismic strain accumulation, coseismic strain release, and viscoelastic relaxation of the substrate beneath the seismogenic crust. For a given fault system, time-averaged stress changes at any point (not on a fault) are constrained to zero; that is, kinematic consistency is enforced for the fault system. The dates of last rupture, mean recurrence times, and the slip distributions of the (assumed) repeating ruptures are key inputs into the viscoelastic cycle model. This simple formulation allows construction of stress evolution at all points in the plate boundary zone for purposes of probabilistic seismic hazard analysis (PSHA). Stress evolution is combined with a Coulomb failure stress threshold at representative points on the fault segments to estimate the times of their respective future ruptures. In our PSHA we consider uncertainties in a four-dimensional parameter space: the rupture peridocities, slip distributions, time of last earthquake (for prehistoric ruptures) and Coulomb failure stress thresholds. We apply this methodology to the San Francisco Bay region using a recently determined fault chronology of area faults. Assuming single-segment rupture scenarios, we find that fature rupture probabilities of area faults in the coming decades are the highest for the southern Hayward, Rodgers Creek, and northern Calaveras faults. This conclusion is qualitatively similar to that of Working Group on California Earthquake Probabilities, but the probabilities derived here are significantly higher. Given that fault rupture probabilities are highly model-dependent, no single model should be used to assess to time-dependent rupture probabilities. We suggest that several models, including the present one, be used in a comprehensive PSHA methodology, as was done by Working Group on California Earthquake Probabilities.

  4. Distant Migration of Multiple Siliconomas in Lower Extremities following Breast Implant Rupture: Case Report.

    PubMed

    Oh, Joo Hyun; Song, Seung Yong; Lew, Dae Hyun; Lee, Dong Won

    2016-10-01

    Siliconoma from ruptured breast implants has been reported in multiple body sites, including but not limited to the breast parenchyma, axillary lymph nodes, upper arm, and even lower leg. In this regard, we report a rare case of distant silicone migration to the lower extremities after traumatic breast implant rupture. A 55-year-old Asian woman who received bilateral augmentation mammoplasty 20 years ago presented with ruptured breast implants from a car accident 2 years earlier. Magnetic resonance imaging confirmed intracapsular and extracapsular rupture of the right breast implant, showing "linguine sign." We removed the bilateral breast implants and performed capsulectomy and bilateral reduction mammoplasty using inverted-T incisions. The implant was confirmed as a smooth, silicone gel-filled mammary implant of 125 cm 3 by a Japanese manufacturer, Koken. During her regular follow-up outpatient visits, physical examination revealed 2.5- × 1.5-cm ill-defined, tender, subcutaneous nodules on both knees and 8.5- × 3.0-cm inflammatory changes in the inguinal area with persistent pain. Computed tomography showed no definite mass, but rather infiltrative, nonenhancing soft-tissue densities in the subcutaneous layers of the bilateral inguinal and knee areas. Surgical excision was performed, and pathologic findings confirmed variable vacuoles with foreign body reaction and fibrosis, consistent with siliconoma. It is important to acknowledge that siliconomas can be encountered in patients with ruptured breast implants, especially those manufactured decades ago. Our patient with masses as remote as the inguinal and knee areas is a prime example of how far siliconomas can migrate.

  5. Distant Migration of Multiple Siliconomas in Lower Extremities following Breast Implant Rupture: Case Report

    PubMed Central

    Oh, Joo Hyun; Song, Seung Yong; Lew, Dae Hyun

    2016-01-01

    Summary: Siliconoma from ruptured breast implants has been reported in multiple body sites, including but not limited to the breast parenchyma, axillary lymph nodes, upper arm, and even lower leg. In this regard, we report a rare case of distant silicone migration to the lower extremities after traumatic breast implant rupture. A 55-year-old Asian woman who received bilateral augmentation mammoplasty 20 years ago presented with ruptured breast implants from a car accident 2 years earlier. Magnetic resonance imaging confirmed intracapsular and extracapsular rupture of the right breast implant, showing “linguine sign.” We removed the bilateral breast implants and performed capsulectomy and bilateral reduction mammoplasty using inverted-T incisions. The implant was confirmed as a smooth, silicone gel–filled mammary implant of 125 cm3 by a Japanese manufacturer, Koken. During her regular follow-up outpatient visits, physical examination revealed 2.5- × 1.5-cm ill-defined, tender, subcutaneous nodules on both knees and 8.5- × 3.0-cm inflammatory changes in the inguinal area with persistent pain. Computed tomography showed no definite mass, but rather infiltrative, nonenhancing soft-tissue densities in the subcutaneous layers of the bilateral inguinal and knee areas. Surgical excision was performed, and pathologic findings confirmed variable vacuoles with foreign body reaction and fibrosis, consistent with siliconoma. It is important to acknowledge that siliconomas can be encountered in patients with ruptured breast implants, especially those manufactured decades ago. Our patient with masses as remote as the inguinal and knee areas is a prime example of how far siliconomas can migrate. PMID:27826457

  6. The 2014 Mihoub earthquake (Mw4.3), northern Algeria: empirical Green's function analysis of the mainshock and the largest aftershock

    NASA Astrophysics Data System (ADS)

    Semmane, F.; Benabdeloued, B. Y. N.; Heddar, A.; Khelif, M. F.

    2017-11-01

    On November 15, 2014, an Mw4.3 earthquake occurred 2 km west of Mihoub village, 60 km SE of Algiers. In this study, we retrieve the relative source-time functions of the mainshock and largest aftershock (Mw3.9) for rupture analysis using the empirical Green's function method. The two events are nearly colocated with a smaller aftershock (Mw3.5), which is treated as the empirical Green's function. Moreover, these three events have similar focal mechanisms, suggesting that deconvolution is well posed in this case. The three events were recorded by nine stations of the Algerian permanent network. We use mainly P-wave data. The focal mechanism solution shows dominant reverse faulting with a strong strike-slip component. The two nodal planes align almost E-W, dipping to the south, and NNE-SSW, dipping to the NW, respectively; the fault and auxiliary planes cannot be resolved from hypocenter locations alone because too few aftershocks were recorded by the permanent network. The results show unilateral rupture propagation to the ENE and complex rupture with multiple episodes for the mainshock. The largest aftershock shows similar behavior with slightly less pronounced directivity at some sites. The rupture directivity for the mainshock is estimated at about N66° E, and the rupture velocity is Vr = 0.66 β. The E-W nodal plane of the best-fit focal mechanism is the preferred fault plane because it best agrees with the directivity direction and is consistent with the E-W faulting that dominates in the region.

  7. Detection of high-frequency radiation sources during the 2004 Parkfield earthquake by a matched filter analysis

    NASA Astrophysics Data System (ADS)

    Uchide, T.; Shearer, P. M.

    2009-12-01

    Introduction Uchide and Ide [SSA Spring Meeting, 2009] proposed a new framework for studying the scaling and overall nature of earthquake rupture growth in terms of cumulative moment functions. For better understanding of rupture growth processes, spatiotemporally local processes are also important. The nature of high-frequency (HF) radiation has been investigated for some time, but its role in the earthquake rupture process is still unclear. A wavelet analysis reveals that the HF radiation (e.g., 4 - 32 Hz) of the 2004 Parkfield earthquake is peaky, which implies that the sources of the HF radiation are isolated in space and time. We experiment with applying a matched filter analysis using small template events occurring near the target event rupture area to test whether it can reveal the HF radiation sources for a regular large earthquake. Method We design a matched filter for multiple components and stations. Shelly et al. [2007] attempted identifying low-frequency earthquakes (LFE) in non-volcanic tremor waveforms by stacking the correlation coefficients (CC) between the seismograms of the tremor and the LFE. Differing from their method, our event detection indicator is the CC between the seismograms of the target and template events recorded at the same stations, since the key information for detecting the sources will be the arrival-time differences and the amplitude ratios among stations. Data from both the target and template events are normalized by the maximum amplitude of the seismogram of the template event in the cross-correlation time window. This process accounts for the radiation pattern and distance between the source and stations. At each small earthquake target, high values in the CC time series suggest the possibility of HF radiation during the mainshock rupture from a similar location to the target event. Application to the 2004 Parkfield earthquake We apply the matched filter method to the 2004 Parkfield earthquake (Mw 6.0). We use seismograms recorded at the 13 stations of UPSAR [Fletcher et al, 1992]. At each station, both acceleration and velocity sensors are installed, therefore both large and small earthquakes are observable. We employ 184 earthquakes (M 2.0 - 3.5) as template events, and 0.5 s of the P waves on the vertical components and the S waves on all three components. The data are bandpass-filtered between 4 and 16 Hz. One source is detected at 4 s and 12 km northwest from the hypocenter. Although the CC has generally low values, its peak is more than five times larger than its standard deviation and thus remarkably high. This source is close to the secondary onset revealed by a back-projection analysis of 2 - 8 Hz data from Parkfield strong motion stations [Allmann and Shearer, 2007]. While the back-projection approach images the peak of HF radiation, our method detects the onset time, which is slightly different. Another source is located at 1.2 s and 2 km southeast from the hypocenter, which may correspond to deceleration of the initial rupture. Comparisons of the derived HF radiation sources to the whole rupture process will help us reveal general earthquake source dynamics.

  8. Combining Multiple Rupture Models in Real-Time for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Wu, S.; Beck, J. L.; Heaton, T. H.

    2015-12-01

    The ShakeAlert earthquake early warning system for the west coast of the United States is designed to combine information from multiple independent earthquake analysis algorithms in order to provide the public with robust predictions of shaking intensity at each user's location before they are affected by strong shaking. The current contributing analyses come from algorithms that determine the origin time, epicenter, and magnitude of an earthquake (On-site, ElarmS, and Virtual Seismologist). A second generation of algorithms will provide seismic line source information (FinDer), as well as geodetically-constrained slip models (BEFORES, GPSlip, G-larmS, G-FAST). These new algorithms will provide more information about the spatial extent of the earthquake rupture and thus improve the quality of the resulting shaking forecasts.Each of the contributing algorithms exploits different features of the observed seismic and geodetic data, and thus each algorithm may perform differently for different data availability and earthquake source characteristics. Thus the ShakeAlert system requires a central mediator, called the Central Decision Module (CDM). The CDM acts to combine disparate earthquake source information into one unified shaking forecast. Here we will present a new design for the CDM that uses a Bayesian framework to combine earthquake reports from multiple analysis algorithms and compares them to observed shaking information in order to both assess the relative plausibility of each earthquake report and to create an improved unified shaking forecast complete with appropriate uncertainties. We will describe how these probabilistic shaking forecasts can be used to provide each user with a personalized decision-making tool that can help decide whether or not to take a protective action (such as opening fire house doors or stopping trains) based on that user's distance to the earthquake, vulnerability to shaking, false alarm tolerance, and time required to act.

  9. Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough

    NASA Astrophysics Data System (ADS)

    Imai, K.; Satake, K.; Furumura, T.

    2010-04-01

    We investigated the effect of delayed rupture of great earthquakes along the Nankai trough on tsunami heights on the Japanese coast. As the tsunami source, we used a model of the 1707 Hoei earthquake, which consists of four segments: Tokai, Tonankai, and two Nankai segments. We first searched for the worst case, in terms of coastal tsunami heights, of rupture delay time on each segment, on the basis of superposition principle for the linear long wave theory. When the rupture starts on the Tonankai segment, followed by rupture on the Tokai segment 21 min later, as well as the eastern and western Nankai segments 15 and 28 min later, respectively, the average coastal tsunami height becomes the largest. To quantify the tsunami amplification, we compared the coastal tsunami heights from the delayed rupture with those from the simultaneous rupture model. Along the coasts of the sea of Hyu'uga and in the Bungo Channel, the tsunami heights become significantly amplified (>1.4 times larger) relative to the simultaneous rupture. Along the coasts of Tosa Bay and in the Kii Channel, the tsunami heights become amplified about 1.2 times. Along the coasts of the sea of Kumano and Ise Bay, and the western Enshu coast, the tsunami heights become slightly smaller for the delayed rupture. Along the eastern Enshu coast, the coast of Suruga Bay, and the west coast of Sagami Bay, the tsunami heights become amplified about 1.1 times.

  10. Broadband ground-motion simulation using a hybrid approach

    USGS Publications Warehouse

    Graves, R.W.; Pitarka, A.

    2010-01-01

    This paper describes refinements to the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared fall-off and the average rupture speed is set at 80% of the local shear-wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong-motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.

  11. Intrinsic, Transitional, and Extrinsic Morphological Factors Associated With Rupture of Intracranial Aneurysms.

    PubMed

    Ho, Allen L; Lin, Ning; Frerichs, Kai U; Du, Rose

    2015-09-01

    As diagnosis and treatment of unruptured intracranial aneurysms continues to increase, management principles remain largely based on size. This is despite mounting evidence that aneurysm location and other morphologic variables could play a role in predicting overall risk of rupture. Morphological parameters can be divided into 3 main groups, those that are intrinsic to the aneurysm, those that are extrinsic to the aneurysm, and those that involve both the aneurysm and surrounding vasculature (transitional). We present an evaluation of intrinsic, transitional, and extrinsic factors and their association with ruptured aneurysms. Using preoperative computed tomographic angiography, we generated 3-dimensional models of aneurysms and their surrounding vasculature with Slicer software. Using univariate and multivariate analyses, we examined the association of intrinsic, transitional, and extrinsic aspects of aneurysm morphology with rupture. Between 2005 and 2013, 227 cerebral aneurysms in 4 locations were evaluated/treated at a single institution, and computed tomographic angiographies of 218 patients (97 unruptured and 130 ruptured) were analyzed. Ruptured aneurysms analyzed were associated with clinical factors of absence of multiple aneurysms and history of no prior rupture, and morphologic factors of greater aspect ratio. On multivariate analysis, aneurysm rupture remained associated with history of no prior rupture, greater flow angle, greater daughter-daughter vessel angle, and smaller parent-daughter vessel angle. By studying the morphology of aneurysms and their surrounding vasculature, we identified several parameters associated with ruptured aneurysms that include intrinsic, transitional, and extrinsic factors of cerebral aneurysms and their surrounding vasculature.

  12. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    NASA Astrophysics Data System (ADS)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike-slip faults at the northern end of the rupture. The northern and southern strike-slip fault domains have the same orientation but are spatially separated by >15 km. In our model, the low angle splay thrust fault is located above the slab and connects the strike-slip faults kinematically. During the aftershock phase, the entire fault system remained active.

  13. A broken heart: right ventricular rupture after blunt cardiac injury.

    PubMed

    Nabeel, Muhammad; Williams, Kim Allan

    2013-01-01

    A 68 year old woman who was a restrained driver was brought to the hospital after sustaining severe motor vehicle accident. She underwent CT of the chest demonstrating pulmonary infiltrates, multiple rib fractures, bilateral hemo- and pneumothoraces. Subsequent review of the images noted contrast extravasating from the apical portion of the right ventricle into the pericardial space, demonstrating a confined rupture of right ventricle. Cardiac rupture is a common complication of a rare event and there are few examples in the imaging literature capturing such event. Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  14. Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: differences in multiplicity and location.

    PubMed

    Mackey, Jason; Brown, Robert D; Moomaw, Charles J; Sauerbeck, Laura; Hornung, Richard; Gandhi, Dheeraj; Woo, Daniel; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Anderson, Craig; Connolly, E Sander; Rouleau, Guy; Kallmes, David F; Torner, James; Huston, John; Broderick, Joseph P

    2012-07-01

    Familial predisposition is a recognized nonmodifiable risk factor for the formation and rupture of intracranial aneurysms (IAs). However, data regarding the characteristics of familial IAs are limited. The authors sought to describe familial IAs more fully, and to compare their characteristics with a large cohort of nonfamilial IAs. The Familial Intracranial Aneurysm (FIA) study is a multicenter international study with the goal of identifying genetic and other risk factors for formation and rupture of IAs in a highly enriched population. The authors compared the FIA study cohort with the International Study of Unruptured Intracranial Aneurysms (ISUIA) cohort with regard to patient demographic data, IA location, and IA multiplicity. To improve comparability, all patients in the ISUIA who had a family history of IAs or subarachnoid hemorrhage were excluded, as well as all patients in both cohorts who had a ruptured IA prior to study entry. Of 983 patients enrolled in the FIA study with definite or probable IAs, 511 met the inclusion criteria for this analysis. Of the 4059 patients in the ISUIA study, 983 had a previous IA rupture and 657 of the remainder had a positive family history, leaving 2419 individuals in the analysis. Multiplicity was more common in the FIA patients (35.6% vs 27.9%, p<0.001). The FIA patients had a higher proportion of IAs located in the middle cerebral artery (28.6% vs 24.9%), whereas ISUIA patients had a higher proportion of posterior communicating artery IAs (13.7% vs 8.2%, p=0.016). Heritable structural vulnerability may account for differences in IA multiplicity and location. Important investigations into the underlying genetic mechanisms of IA formation are ongoing.

  15. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  16. Delineation of Rupture Propagation of Large Earthquakes Using Source-Scanning Algorithm: A Control Study

    NASA Astrophysics Data System (ADS)

    Kao, H.; Shan, S.

    2004-12-01

    Determination of the rupture propagation of large earthquakes is important and of wide interest to the seismological research community. The conventional inversion method determines the distribution of slip at a grid of subfaults whose orientations are predefined. As a result, difference choices of fault geometry and dimensions often result in different solutions. In this study, we try to reconstruct the rupture history of an earthquake using the newly developed Source-Scanning Algorithm (SSA) without imposing any a priori constraints on the fault's orientation and dimension. The SSA identifies the distribution of seismic sources in two steps. First, it calculates the theoretical arrival times from all grid points inside the model space to all seismic stations by assuming an origin time. Then, the absolute amplitudes of the observed waveforms at the predicted arrival times are added to give the "brightness" of each time-space pair, and the brightest spots mark the locations of sources. The propagation of the rupture is depicted by the migration of the brightest spots throughout a prescribed time window. A series of experiments are conducted to test the resolution of the SSA inversion. Contrary to the conventional wisdom that seismometers should be placed as close as possible to the fault trace to give the best resolution in delineating rupture details, we found that the best results are obtained if the seismograms are recorded at a distance about half of the total rupture length away from the fault trace. This is especially true when the rupture duration is longer than ~10 s. A possible explanation is that the geometric spreading effects for waveforms from different segments of the rupture are about the same if the stations are sufficiently away from the fault trace, thus giving a uniform resolution to the entire rupture history.

  17. Pseudo-dynamic source characterization accounting for rough-fault effects

    NASA Astrophysics Data System (ADS)

    Galis, Martin; Thingbaijam, Kiran K. S.; Mai, P. Martin

    2016-04-01

    Broadband ground-motion simulations, ideally for frequencies up to ~10Hz or higher, are important for earthquake engineering; for example, seismic hazard analysis for critical facilities. An issue with such simulations is realistic generation of radiated wave-field in the desired frequency range. Numerical simulations of dynamic ruptures propagating on rough faults suggest that fault roughness is necessary for realistic high-frequency radiation. However, simulations of dynamic ruptures are too expensive for routine applications. Therefore, simplified synthetic kinematic models are often used. They are usually based on rigorous statistical analysis of rupture models inferred by inversions of seismic and/or geodetic data. However, due to limited resolution of the inversions, these models are valid only for low-frequency range. In addition to the slip, parameters such as rupture-onset time, rise time and source time functions are needed for complete spatiotemporal characterization of the earthquake rupture. But these parameters are poorly resolved in the source inversions. To obtain a physically consistent quantification of these parameters, we simulate and analyze spontaneous dynamic ruptures on rough faults. First, by analyzing the impact of fault roughness on the rupture and seismic radiation, we develop equivalent planar-fault kinematic analogues of the dynamic ruptures. Next, we investigate the spatial interdependencies between the source parameters to allow consistent modeling that emulates the observed behavior of dynamic ruptures capturing the rough-fault effects. Based on these analyses, we formulate a framework for pseudo-dynamic source model, physically consistent with the dynamic ruptures on rough faults.

  18. Observations of the rupture development process from source time functions

    NASA Astrophysics Data System (ADS)

    Renou, Julien; Vallée, Martin

    2017-04-01

    The mechanisms governing the seismic rupture expansion and leading to earthquakes of very different magnitudes are still under debate. In the cascade model, the rupture starts from a very small patch, which size is undetectable by seismological investigation. Then rupture grows in a self-similar way, implying that no clues about the earthquake magnitude can be found before rupture starts declining. However dependencies between early phases of the rupture process and final magnitude have also been proposed, which can be explained if an earthquake is more likely to be a big one when its start and early development occur in rupture-prone areas. Here, the analysis of the early phases of the seismic rupture is achieved from an observational point of view using the SCARDEC database, a global catalog containing more than 3000 Source Time Functions (STFs) of earthquakes with magnitude larger than 5.7. This dataset is theoretically very suitable to investigate the initial phase, because STFs directly describe the seismic moment rate released over time, giving access to the rupture growth behavior. As several studies already showed that deep earthquakes tend to have a specific signature of short duration with respect to magnitude (implying a quicker rupture growth than superficial events), only shallow events (depths < 70km) are analyzed here. Our method consists in computing the STFs slope, i.e. the seismic moment acceleration, at several prescribed moment rates. In order to ensure that the chosen moment rates intersect the growth phase of the STF, its value must be high enough to avoid the very beginning of the signal -not well constrained in the deconvolution process-, and low enough to avoid the proximity of the peak moment rate. This approach does not use any rupture time information, which is interesting as (1) the exact hypocentral time can be uncertain and (2) the real rupture expansion can be delayed compared to origin time. If any magnitude-dependent signal exists, the average or median value of the slope should vary with the magnitude of the events, despite the intrinsic variability of the STFs. The preliminary results from the SCARDEC dataset seem to only exhibit a weak dependence of the slope with magnitude, in the magnitude domain where the chosen moment rate value crosses most of the STFs onsets. In addition, our results point out that slope values gradually increase with the moment rate. These findings will be discussed in the frame of the existing models of seismic rupture expansion.

  19. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-09-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  20. Bilateral Patellar Tendon Rupture.

    PubMed

    Kamienski, Mary

    The knee is the most complex and largest joint in the body. Injuries to any part of this joint affect the entire body. There are multiple injuries that can occur to the knee, with the most common being ligament and meniscus tears. A not-so-common injury to the knee is a patellar tendon rupture. A bilateral patellar tendon rupture is extremely rare. A case study of a 43-year-old man who sustained a bilateral patellar tendon rupture while playing softball is used to present this devastating injury. This discussion includes the incidence and diagnosis of the tear, surgical repair, as well as a description of the comprehensive rehabilitation process necessary to allow the patient to return to normal physical activity. Risks and complications of this surgery and the expected outcomes are also presented.

  1. Subcortical hematoma caused by cerebral amyloid angiopathy: does the first evidence of hemorrhage occur in the subarachnoid space?

    PubMed

    Takeda, Shigeki; Yamazaki, Kazunori; Miyakawa, Teruo; Onda, Kiyoshi; Hinokuma, Kaoru; Ikuta, Fusahiro; Arai, Hiroyuki

    2003-12-01

    Six autopsy cases of subcortical hematoma caused by CAA were examined to elucidate the primary site of hemorrhage. Immunohistochemistry for amyloid beta-protein (A beta) revealed extensive CAA in the intrasulcal meningeal vessels rather than in the cerebral cortical vessels. All of the examined cases had multiple hematomas in the subarachnoid space, mainly in the cerebral sulci, as well as intracerebral hematomas. Each intracerebral hematoma was connected to the subarachnoid hematomas at the depth of cerebral sulci or through the lateral side of the cortex. There was no debris of the cerebral cortical tissue in the subarachnoid hematomas. In case 2, another solitary subarachnoid hematoma, which was not connected to any intracerebral hematoma, was seen. In all of these subarachnoid hematomas, many ruptured A beta-immunopositive arteries were observed. These ruptured arteries did not accompany any debris of the brain tissue, some of them were large in diameter (250-300 microm), and several of them were far from the cerebral cortex. Therefore, it was considered that they were not cortical arteries but meningeal arteries. Within the cerebral cortex, there were only a few ruptured arteries associated with small hemorrhages. There were no ruptured vessels within the intracerebral hematomas. There was a strong suggestion that all of the subarachnoid hematomas, including the solitary one in case 2, originated from the rupture of the meningeal arteries. The present study indicates that in some cases of subcortical hematoma caused by CAA, the primary hemorrhage occurs in the subarachnoid space, in particular the cerebral sulci, because of rupture of multiple meningeal arteries. Infarction occurs subsequently in the cortex around the hematoma, the hematoma penetrates into the brain parenchyma, and finally, a subcortical hematoma is formed.

  2. Strong ground motion simulation of the 2016 Kumamoto earthquake of April 16 using multiple point sources

    NASA Astrophysics Data System (ADS)

    Nagasaka, Yosuke; Nozu, Atsushi

    2017-02-01

    The pseudo point-source model approximates the rupture process on faults with multiple point sources for simulating strong ground motions. A simulation with this point-source model is conducted by combining a simple source spectrum following the omega-square model with a path spectrum, an empirical site amplification factor, and phase characteristics. Realistic waveforms can be synthesized using the empirical site amplification factor and phase models even though the source model is simple. The Kumamoto earthquake occurred on April 16, 2016, with M JMA 7.3. Many strong motions were recorded at stations around the source region. Some records were considered to be affected by the rupture directivity effect. This earthquake was suitable for investigating the applicability of the pseudo point-source model, the current version of which does not consider the rupture directivity effect. Three subevents (point sources) were located on the fault plane, and the parameters of the simulation were determined. The simulated results were compared with the observed records at K-NET and KiK-net stations. It was found that the synthetic Fourier spectra and velocity waveforms generally explained the characteristics of the observed records, except for underestimation in the low frequency range. Troughs in the observed Fourier spectra were also well reproduced by placing multiple subevents near the hypocenter. The underestimation is presumably due to the following two reasons. The first is that the pseudo point-source model targets subevents that generate strong ground motions and does not consider the shallow large slip. The second reason is that the current version of the pseudo point-source model does not consider the rupture directivity effect. Consequently, strong pulses were not reproduced enough at stations northeast of Subevent 3 such as KMM004, where the effect of rupture directivity was significant, while the amplitude was well reproduced at most of the other stations. This result indicates the necessity for improving the pseudo point-source model, by introducing azimuth-dependent corner frequency for example, so that it can incorporate the effect of rupture directivity.[Figure not available: see fulltext.

  3. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  4. Heterogeneous Rupture in the Great Cascadia Earthquake of 1700 Inferred from Coastal Subsidence Estimates

    NASA Astrophysics Data System (ADS)

    Wang, P.; Wang, K.; Hawkes, A.; Horton, B. P.; Engelhart, S. E.; Nelson, A. R.; Witter, R. C.

    2011-12-01

    Abrupt coastal subsidence induced by the great AD 1700 Cascadia earthquake has been estimated from paleoseismic evidence of buried soils and overlying mud and associated tsunamis deposits. These records have been modeled using a rather uniform rupture model, a mirror image of the uniform interseismic fault locking based on modern GPS observations. However, as seen in other megathrust earthquakes such as at Sumatra, Chile, and Alaska, the rupture must have had multiple patches of concentrated slip. Variable moment release is also seen in the 2011 Tohoku-Oki earthquake in Japan, although there is only one patch. The use of a uniform rupture scenario for Cascadia is due mainly to the poor resolving power of the previous paleoseismic data. In this work, we invoke recently obtained more precise data from detailed microfossil studies to better constrain the slip distribution. Our 3-D elastic dislocation model allows the fault slip to vary along strike. Along any profile in the dip direction, we assume a bell-shaped slip distribution with the peak value scaling with local rupture width, consistent with rupture mechanics. We found that the coseismic slip is large in central Cascadia, and areas of high moment release are separated by areas of low moment release. The amount of slip in northern and southern Cascadia is poorly constrained. Although data uncertainties are large, the coastal variable subsidence can be explained with multiple slip patches. For example, there is an area near Alsea Bay, Oregon (about 44.5°N) that, in accordance with the minimum coseismic subsidence estimated by the microfossil data, had very little slip in the 1700 event. This area approximately coincides with a segment boundary previously defined on the basis of gravity anomalies. There is also reported evidence for the presence of a subducting seamount in this area, and the seamount might be responsible for impeding rupture during large earthquakes. The nature of this rupture barrier and whether it is a persistent feature are important topics of future research. Our results indicate that there is not always a one-to-one correlation between areas of more complete interseismic locking and larger coseismic slip.

  5. Rupture Following Biceps-to-Triceps Tendon Transfer in Adolescents and Young Adults With Spinal Cord Injury:

    PubMed Central

    Merenda, Lisa A.; Rutter, Laure; Curran, Kimberly; Kozin, Scott H.

    2012-01-01

    Background: Tendon transfer surgery can restore elbow extension in approximately 70% of persons with tetraplegia and often results in antigravity elbow extension strength. However, we have noted an almost 15% rupture/attenuation rate. Objective: This investigation was conducted to analyze potential causes in adolescents/young adults with spinal cord injury (SCI) who experienced tendon rupture or attenuation after biceps-to-triceps transfer. Methods: Medical charts of young adults with SCI who underwent biceps-to-triceps transfer and experienced tendon rupture or attenuation were reviewed. Data collected by retrospective chart review included general demographics, surgical procedure(s), use and duration of antibiotic treatment, time from tendon transfer surgery to rupture/attenuation, and method of diagnosis. Results: Twelve subjects with tetraplegia (mean age, 19 years) who underwent biceps-to-triceps reconstruction with subsequent tendon rupture or attenuation were evaluated. Mean age at time of tendon transfer was 18 years (range, 14-21 years). A fluoroquinolone was prescribed for 42% (n=5) of subjects. Tendon rupture was noted in 67% (n=8), and attenuation was noted in 33% (n=4). Average length of time from surgery to tendon rupture/attenuation was 5.7 months (range, 3-10 months). Conclusion: Potential contributing causes of tendon rupture/attenuation after transfer include surgical technique, rehabilitation, co-contraction of the transfer, poor patient compliance, and medications. In this cohort, 5 subjects were prescribed fluoroquinolones that have a US Food and Drug Administration black box concerning tendon ruptures. Currently, all candidates for upper extremity tendon transfer reconstruction are counseled on the effects of fluoroquinolones and the potential risk for tendon rupture. PMID:23459326

  6. The Non-Regularity of Earthquake Recurrence in California: Lessons From Long Paleoseismic Records in Simple vs Complex Fault Regions (Invited)

    NASA Astrophysics Data System (ADS)

    Rockwell, T. K.

    2010-12-01

    A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern California. These observations suggest that the complexity of the southern California fault network is partly responsible for the apparent increase in “noise” and non-periodic behavior, perhaps resulting from stress transfer to adjacent faults after a large earthquake on one fault. The simplicity of the central NAF may account for its relatively simple behavior. If correct, the study of simple plate boundary faults may provide new insights into the constitutive elements of fault zones, and may aid in identifying those components that are critical for better forecasting future seismicity in complex systems.

  7. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.

    PubMed

    Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M

    2017-10-01

    Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.

  8. Stress-rupture behavior of small diameter polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Goldsby, Jon C.; Dicarlo, James A.

    1993-01-01

    Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C.

  9. Spontaneous hemothorax caused by ruptured multiple mycotic aortic aneurysms: a case report and literature review.

    PubMed

    Li, Po-Sung; Tsai, Chung-Lin; Hu, Sung-Yuan; Lin, Tzu-Chieh; Chang, Yao-Tien

    2017-12-02

    Mycotic aortic aneurysm (MAA) is a rare clinical entity with an incidence of 1-3%, but it is a life-threatening infection of aorta characterized by dilatation of aorta with false lumen. Multiple MAAs have been reported rarely with an incidence of 0.03% and associated with a high mortality rate of 80% if ruptured. A hypertensive and diabetic 78-year-old man visited our emergency department complaining intermittent dull and tingled pain over the left flank region for 1 week. Chest X-ray showed left pleural effusion and hemothorax was confirmed by thoracocentesis. Computed tomography (CT) of chest demonstrated multiple thoracic aortic aneurysms and the pathological findings disclosed the diagnosis of multiple MAAs. He was discharged under an uneventful condition post-surgical aortic repair with adequate intravenous antibiotics for 4 weeks. CT scan may make a definite diagnosis of multiple MAAs and management with surgical debridement, aortic repair and full-course antibiotics for Gram-positive coccus and/or Gram-negative bacillus is recommended.

  10. Is there a basis for preferring characteristic earthquakes over a Gutenberg–Richter distribution in probabilistic earthquake forecasting?

    USGS Publications Warehouse

    Parsons, Thomas E.; Geist, Eric L.

    2009-01-01

    The idea that faults rupture in repeated, characteristic earthquakes is central to most probabilistic earthquake forecasts. The concept is elegant in its simplicity, and if the same event has repeated itself multiple times in the past, we might anticipate the next. In practice however, assembling a fault-segmented characteristic earthquake rupture model can grow into a complex task laden with unquantified uncertainty. We weigh the evidence that supports characteristic earthquakes against a potentially simpler model made from extrapolation of a Gutenberg–Richter magnitude-frequency law to individual fault zones. We find that the Gutenberg–Richter model satisfies key data constraints used for earthquake forecasting equally well as a characteristic model. Therefore, judicious use of instrumental and historical earthquake catalogs enables large-earthquake-rate calculations with quantifiable uncertainty that should get at least equal weighting in probabilistic forecasting.

  11. Hidradenitis suppurativa/acne inversa: bilocated epithelial hyperplasia with very different sequelae.

    PubMed

    von Laffert, M; Stadie, V; Wohlrab, J; Marsch, W C

    2011-02-01

    Hidradenitis suppurativa/acne inversa is a chronic, inflammatory, scarring disease in the terminal hair follicle and apocrine gland-bearing areas (skin folds). There is considerable histological evidence that perifolliculitis and follicular hyperkeratosis precede the rupture of the follicle. The timing of the epithelial hyperplasia at the infundibula of inflamed terminal follicles has not yet been clarified. To clarify the early histopathological life of lesions ('chronology') in hidradenitis suppurativa/acne inversa, focusing on the terminal follicle structure and its surrounding tissue (hyperkeratosis, hyperplasia of follicular epithelium, perifolliculitis and rupture). In total, 485 operative specimens obtained from 128 patients with diagnosed hidradenitis suppurativa/acne inversa (all surgically treated by wide excision) were examined histologically. Two to five histological preparations (total 485) per operation area (total 196) were prepared by multiple slicing. Hidradenitis suppurativa/acne inversa showed a heterogeneous histological pattern: hyperkeratosis of the terminal follicles (89%), hyperplasia of follicular epithelium (80%), pronounced perifolliculitis (68%) and follicle rupture (24%). Perifolliculitis, follicular hyperkeratosis and hyperplasia occurred prior to the rupture of the follicle. Other histological criteria were: subepidermal cellular inflammatory infiltrate (82%), epidermal psoriasiform hyperplasia (56%), pronounced acute dermal inflammation (28%), pronounced chronic dermal inflammation (49%), and involvement of apocrine glands (52%) and subcutis (31%). Infundibular hyperkeratosis, hyperplasia of the follicular epithelium and perifolliculitis are major histopathological characteristics of hidradenitis suppurativa/acne inversa. These apparently precede rupture of the follicle. In particular, hyperplasia of the follicular epithelium probably marks the beginning of sinus formation, which usually spreads horizontally. Psoriasiform hyperplasia of the interfollicular epidermis with subepidermal inflammatory infiltrate might be interpreted as an inflammation-driven process basically identical to that which is evident at the terminal follicle. However, it does not lead to harmful and progressive sequelae like those (rupture, sinus tracts) seen at the terminal follicles. © 2010 The Authors. BJD © 2010 British Association of Dermatologists.

  12. Prospective randomized clinical trial of aggressive rehabilitation after acute Achilles tendon ruptures repaired with Dresden technique.

    PubMed

    De la Fuente, Carlos; Peña y Lillo, Roberto; Carreño, Gabriel; Marambio, Hugo

    2016-03-01

    Rupture of the Achilles tendon is a common injury during working years. Aggressive rehabilitation may provide better outcomes, but also a greater chance of re-rupture. To determine if aggressive rehabilitation has better clinical outcomes for Achilles tendon function, Triceps surae function, one-leg heel rise capacity and lower complication rate during twelve weeks after percutaneous Achilles tendon repair compared to conventional rehabilitation. Randomized controlled trial. Thirty-nine patients were prospectively randomized. The aggressive group (n=20, 41.4 ± 8.3 years) received rehabilitation from the first day after surgery. The conventional group (n=19, 41.7 ± 10.7 years) rested for 28 days, before rehabilitation started. The statistical parameters were the Achilles tendon rupture score (ATRS), verbal pain scale, time to return to work, pain medication consumption, Achilles tendon strength, dorsiflexion range of motion (RoM), injured-leg calf circumference, calf circumference difference, one-leg heel rise repetition and difference, re-rupture rate, strength deficit rate, and other complication rates. Mixed-ANOVA and Bonferroni's post hoc test were performed for multiple comparisons. Student's t-test was performed for parameters measured on the 12th week. The aggressive group with respect to the conventional group had a higher ATRS; lower verbal pain score; lower pain medication consumption; early return to work; higher Achilles tendon strength; higher one-leg heel rise repetitions; and lower one-leg heel rise difference. The re-rupture rate was 5% and 5%, the strength deficit rate was 42% and 5%, and other complications rate was 11% and 15% in the conventional and aggressive group, respectively. Patients with Dresden repair and aggressive rehabilitation have better clinical outcomes, Achilles tendon function and one-leg heel rise capacity without increasing the postoperative complications rate after 12 weeks compared to rehabilitation with immobilization and non-weight-bearing during the first 28 days after surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 2D Ball-and-Socket Tectonic Rotation in a Heterogeneous Strain Field: The 2013 Mw7.7 Balochistan, Pakistan Earthquake

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Hayes, G. P.; Briggs, R. W.; Gold, R. D.; Bilham, R. G.

    2014-12-01

    The September 2013 Mw7.7 Balochistan strike-slip earthquake ruptured a ~200 km long segment of the curved Hoshab fault within the Makran accretionary prism - the active zone of convergence between the northward subducting Arabia plate and overriding Eurasia. The Hoshab fault ruptured bilaterally with ~10 m of mean sinistral and ~1.7 m of dip slip along the length of the rupture, quantified jointly from geodetic and seismological observations. This rupture is unusual because the fault dips ~60o towards the focus of a small circle centered in northwest Pakistan, and, despite a 30o increase in obliquity along the curving strike of the fault with respect to Arabia:Eurasia convergence, the ratio of strike and dip slip remain relatively uniform. Static friction prior to rupture was unusually weak ( <0.05) as inferred from topographic and slab profiles, and friction may have approached zero during dynamic rupture, thus permitting in part this unusual event. In this presentation, we argue that the northward dipping Hosab fault defines the northern rim of a structural unit in southeast Makran. This unit rotates - akin to a 2-D ball-and-socket joint - counter clockwise in response to India's penetration into the Eurasia plate. According to this interpretation, the mechanically weak Makran accretionary prism is subjected to a highly heterogeneous strain and deforms in response to convergence from both the Arabia and India plates. Rotation of the southeast Makran block accounts for complexity in the Chaman fault system and, in principle, reduces the seismic potential near Karachi by accommodating some slip along the southern Ornach-Nal fault. At the same time, geological indicators and along-strike fault slip profiles indicate that the Hoshab fault may also slip as a reverse fault in response to Arabia:Eurasia convergence - indicating that a single fault may accommodate multiple components of strain partitioning in a heterogeneous strain field over several seismic cycles.

  14. Rupture characteristics of the 2016 Meinong earthquake revealed by the back projection and directivity analysis of teleseismic broadband waveforms

    NASA Astrophysics Data System (ADS)

    Jian, Pei-Ru; Hung, Shu-Huei; Meng, Lingsen; Sun, Daoyuan

    2017-04-01

    The 2016 Mw 6.4 Meinong earthquake struck a previously unrecognized fault zone in midcrust beneath south Taiwan and inflicted heavy causalities in the populated Tainan City about 30 km northwest of the epicenter. Because of its relatively short rupture duration and P wave trains contaminated by large-amplitude depth phases and reverberations generated in the source region, accurate characterization of the rupture process and source properties for such a shallow strong earthquake remains challenging. Here we present a first high-resolution MUltiple SIgnal Classification back projection source image by using both P and depth-phase sP waves recorded at two large and dense arrays to understand the source behavior and consequent hazards of this peculiar catastrophic event. The results further corroborated by the directivity analysis indicate a unilateral rupture propagating northwestward and slightly downward on the shallow NE-dipping fault plane. The source radiation process is primarily characterized by one single peak, 7 s duration, with a total rupture length of 17 km and average rupture speed of 2.4 km/s. The rupture terminated immediately east of the prominent off-fault aftershock cluster about 20 km northwest of the hypocenter. Synergistic amplification of ground shaking by the directivity and strong excitation of sP and reverberations mainly caused the destruction concentrated in the area further to the northwest away from the rupture zone.

  15. Two regions of seafloor deformation generated the tsunami for the 13 November 2016, Kaikoura, New Zealand earthquake

    NASA Astrophysics Data System (ADS)

    Bai, Yefei; Lay, Thorne; Cheung, Kwok Fai; Ye, Lingling

    2017-07-01

    The 13 November 2016 Kaikoura, New Zealand, Mw 7.8 earthquake ruptured multiple crustal faults in the transpressional Marlborough and North Canterbury tectonic domains of northeastern South Island. The Hikurangi trench and underthrust Pacific slab terminate in the region south of Kaikoura, as the subdution zone transitions to the Alpine fault strike-slip regime. It is difficult to establish whether any coseismic slip occurred on the megathrust from on-land observations. The rupture generated a tsunami well recorded at tide gauges along the eastern coasts and in Chatham Islands, including a 4 m crest-to-trough signal at Kaikoura where coastal uplift was about 1 m, and at multiple gauges in Wellington Harbor. Iterative modeling of teleseismic body waves and the regional water-level recordings establishes that two regions of seafloor motion produced the tsunami, including an Mw 7.6 rupture on the megathrust below Kaikoura and comparable size transpressional crustal faulting extending offshore near Cook Strait.

  16. Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.

    2013-12-01

    Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several heterogeneous media characterized by different statistical properties. We find that at distances less than ~6 km from the fault, RMS acceleration values from simulations with homogeneous and heterogeneous media are similar, but at greater distances the RMS values associated with heterogeneous media are larger than those associated with homogeneous media. The magnitude of this divergence increases with the amplitude of the heterogeneities. For instance, for a heterogeneous medium with a 10% standard deviation in material property values relative to mean values, RMS accelerations are ~50% larger than for a homogeneous medium at distances greater than 6 km. This finding is attributed to the scattering of coherent pulses into multiple pulses of decreased amplitude that subsequently arrive at later times. In order to understand the robustness of these results, an extension of our dynamic rupture and wave propagation code to 3D is underway.

  17. Pulling-induced rupture of ligand-receptor bonds between a spherically shaped bionanoparticle and the support

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2018-04-01

    Contacts of biological or biologically-inspired spherically shaped nanoparticles (e.g., virions or lipid nanoparticles used for intracellular RNA delivery) with a lipid membrane of cells are often mediated by multiple relatively weak ligand-receptor bonds. Such contacts can be studied at a supported lipid bilayer. The rupture of bonds can be scrutinized by using force spectroscopy. Bearing a supported lipid bilayer in mind, the author shows analytically that the corresponding dependence of the force on the nanoparticle displacement and the effect of the force on the bond-rupture activation energy are qualitatively different compared to what is predicted by the conventional Bell approximation.

  18. Linkages Between the Megathrust and Upper-plate Deformation: Lessons From the Deformational Dichotomy of the 2016 Kaikoura New Zealand Earthquake

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Herman, M. W.

    2017-12-01

    Following the 2016 Mw 7.8 Kaikoura earthquake, the nature of the coseismic rupture was unclear. Seismological and tsunami evidence pointed to significant involvement of the subduction megathrust, while geodetic and field observations pointed to a shallow set of intra-crustal faults as the main participants during the earthquake. It now appears that the Kaikoura earthquake produced synchronous faulting on the plate boundary subduction interface - the megathrust - and on a suite of crustal faults above the rupture zone in the overlying plate. This Kaikoura-style earthquake, involving synchronous ruptures on multiple components of the plate boundary, may be an important mode of plate boundary deformation affecting seismic hazard along subduction zones. Here we propose a model to explain how these upper-plate faults are loaded during the periods between megathrust earthquakes and subsequently can rupture synchronously with the megathrust. Between megathrust earthquakes, horizontal compression, driven by plate convergence, locks the upper-plate faults, particularly those at higher angles to the convergence direction and the oblique plate motion of the subducting Pacific plate deforms the upper-plate in bulk shear. During the time interval of megathrust rupture, two things happen which directly affect the stress conditions acting on these upper-plate faults: (1) slip on the megathrust and the associated `rebound' of the upper plate reduces the compressive or normal stress acting on the upper plate faults, and (2) the base of the upper plate faults (and the upper plate itself) is decoupled from the slab in the region above rupture area. The reduction in normal stress acting on these faults increases their Coulomb Stress state to strongly favor strike-slip fault slip, and the basal decoupling of the upper plate allows it to undergo nearly complete stress recovery in that region; enabling the occurrence of very large offsets on these faults - offsets that exceed the slip on the plate interface. With these results it is clear that the 2016 Kaikoura NZ earthquake represents a mode of subduction zone rupture that must be considered in other regions.

  19. Blunt traumatic cardiac rupture: therapeutic options and outcomes.

    PubMed

    Nan, Yu-Yun; Lu, Ming-Shian; Liu, Kuo-Sheng; Huang, Yao-Kuang; Tsai, Feng-Chun; Chu, Jaw-Ji; Lin, Pyng Jing

    2009-09-01

    Cardiac rupture following blunt thoracic trauma is rarely encountered by clinicians, since it commonly causes death at the scene. With advances in traumatology, blunt cardiac rupture had been increasingly disclosed in various ways. This study reviews our experience of patients with suspected blunt traumatic cardiac rupture and proposes treatment protocols for the same. This is a 5-year retrospective study of trauma patients confirmed with blunt traumatic cardiac rupture admitted to a university-affiliated tertiary trauma referral centre. The following information was collected from the patients: age, sex, mechanism of injury, initial effective diagnostic tool used for diagnosing blunt cardiac rupture, location and size of the cardiac injury, associated injury and injury severity score (ISS), reversed trauma score (RTS), survival probability of trauma and injury severity scoring (TRISS), vital signs and biochemical lab data on arrival at the trauma centre, time elapsed from injury to diagnosis and surgery, surgical details, hospital course and final outcome. The study comprised 8 men and 3 women with a median age of 39 years (range: 24-73 years) and the median follow-up was 5.5 months (range: 1-35 months). The ISS, RTS, and TRISS scores of the patients were 32.18+/-5.7 (range: 25-43), 6.267+/-1.684 (range: 2.628-7.841), and 72.4+/-25.6% (range: 28.6-95.5%), respectively. Cardiac injuries were first detected using focused assessment with sonography for trauma (FAST) in 4 (36.3%) patients, using transthoracic echocardiography in 3 (27.3%) patients, chest CT in 1 (9%) patient, and intra-operatively in 3 (27.3%) patients. The sites of cardiac injury comprised the superior vena cava/right atrium junction (n=4), right atrial auricle (n=1), right ventricle (n=4), left ventricular contusion (n=1), and diffuse endomyocardial dissection over the right and left ventricles (n=1). Notably, 2 had pericardial lacerations presenting as a massive haemothorax, which initially masked the cardiac rupture. The in-hospital mortality was 27.3% (3/11) with 1 intra-operative death, 1 multiple organ failure, and 1 death while waiting for cardiac transplantation. Another patient with morbid neurological defects died on the thirty-third postoperative day; the overall survival was 63.6% (7/11). Compared with the surviving patients, the fatalities had higher RTS and TRISS scores, serum creatinine levels, had received greater blood transfusions, and had a worse preoperative conscious state. We proposed a protocol combining various diagnostic tools, including FAST, CT, transthoracic echocardiography, and TEE, to manage suspected blunt traumatic cardiac rupture. Pericardial defects can mask the cardiac lesion and complicate definite cardiac repair. Comorbid trauma, particularly neurological injury, may have an impact on the survival of such patients, despite timely repair of the cardiac lesions.

  20. The 1994 Northridge, California, earthquake: Investigation of rupture velocity, risetime, and high-frequency radiation

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.; Mendoza, C.

    1996-01-01

    A hybrid global search algorithm is used to solve the nonlinear problem of calculating slip amplitude, rake, risetime, and rupture time on a finite fault. Thirty-five strong motion velocity records are inverted by this method over the frequency band from 0.1 to 1.0 Hz for the Northridge earthquake. Four regions of larger-amplitude slip are identified: one near the hypocenter at a depth of 17 km, a second west of the hypocenter at about the same depth, a third updip from the hypocenter at a depth of 10 km, and a fourth updip from the hypocenter and to the northwest. The results further show an initial fast rupture with a velocity of 2.8 to 3.0 km/s followed by a slow termination of the rupture with velocities of 2.0 to 2.5 km/s. The initial energetic rupture phase lasts for 3 s, extending out 10 km from the hypocenter. Slip near the hypocenter has a short risetime of 0.5 s, which increases to 1.5 s for the major slip areas removed from the hypocentral region. The energetic rupture phase is also shown to be the primary source of high-frequency radiation (1-15 Hz) by an inversion of acceleration envelopes. The same global search algorithm is used in the envelope inversion to calculate high-frequency radiation intensity on the fault and rupture time. The rupture timing from the low- and high-frequency inversions is similar, indicating that the high frequencies are produced primarily at the mainshock rupture front. Two major sources of high-frequency radiation are identified within the energetic rupture phase, one at the hypocenter and another deep source to the west of the hypocenter. The source at the hypocenter is associated with the initiation of rupture and the breaking of a high-stress-drop asperity and the second is associated with stopping of the rupture in a westerly direction.

  1. Self-Healing Wire Insulation

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  2. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  3. Rupture Complexities of Fluid Induced Microseismic Events at the Basel EGS Project

    NASA Astrophysics Data System (ADS)

    Folesky, Jonas; Kummerow, Jörn; Shapiro, Serge A.; Häring, Markus; Asanuma, Hiroshi

    2016-04-01

    Microseismic data sets of excellent quality, such as the seismicity recorded in the Basel-1 enhanced geothermal system, Switzerland, in 2006-2007, provide the opportunity to analyse induced seismic events in great detail. It is important to understand in how far seismological insights on e.g. source and rupture processes are scale dependent and how they can be transferred to fluid induced micro-seismicity. We applied the empirical Green's function (EGF) method in order to reconstruct the relative source time functions of 195 suitable microseismic events from the Basel-1 reservoir. We found 93 solutions with a clear and consistent directivity pattern. The remaining events display either no measurable directivity, are unfavourably oriented or exhibit non consistent or complex relative source time functions. In this work we focus on selected events of M ˜ 1 which show possible rupture complexities. It is demonstrated that the EGF method allows to resolve complex rupture behaviour even if it is not directly identifiable in the seismograms. We find clear evidence of rupture directivity and multi-phase rupturing in the analysed relative source time functions. The time delays between consecutive subevents lies in the order of 10ms. Amplitudes of the relative source time functions of the subevents do not always show the same azimuthal dependence, indicating dissimilarity in the rupture directivity of the subevents. Our observations support the assumption that heterogeneity on fault surfaces persists down to small scale (few tens of meters).

  4. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    NASA Astrophysics Data System (ADS)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.

  5. Three dimensional modelling of earthquake rupture cycles on frictional faults

    NASA Astrophysics Data System (ADS)

    Simpson, Guy; May, Dave

    2017-04-01

    We are developing an efficient MPI-parallel numerical method to simulate earthquake sequences on preexisting faults embedding within a three dimensional viscoelastic half-space. We solve the velocity form of the elasto(visco)dynamic equations using a continuous Galerkin Finite Element Method on an unstructured pentahedral mesh, which thus permits local spatial refinement in the vicinity of the fault. Friction sliding is coupled to the viscoelastic solid via rate- and state-dependent friction laws using the split-node technique. Our coupled formulation employs a picard-type non-linear solver with a fully implicit, first order accurate time integrator that utilises an adaptive time step that efficiently evolves the system through multiple seismic cycles. The implementation leverages advanced parallel solvers, preconditioners and linear algebra from the Portable Extensible Toolkit for Scientific Computing (PETSc) library. The model can treat heterogeneous frictional properties and stress states on the fault and surrounding solid as well as non-planar fault geometries. Preliminary tests show that the model successfully reproduces dynamic rupture on a vertical strike-slip fault in a half-space governed by rate-state friction with the ageing law.

  6. Modulation of a pulsatile release drug delivery system using different swellable/rupturable materials.

    PubMed

    El-Maradny, Hoda A

    2007-11-01

    Diclofenac sodium tablets consisting of core coated with two layers of swelling and rupturable coatings were prepared and evaluated as a pulsatile drug delivery system. Cores containing the drug were prepared by direct compression using microcrystalline cellulose and Ludipress as hydrophilic excipients with the ratio of 1:1. Cores were then coated sequentially with an inner swelling layer of different swellable materials; either Explotab, Croscarmellose sodium, or Starch RX 1500, and an outer rupturable layer of different levels of ethylcellulose. The effect of the nature of the swelling layer and the level of the rupturable coating on the lag time and the water uptake were investigated. Drug release rate studies were performed using USP paddle method. Results showed the dependence of the lag time and water uptake prior to tablet rupture on the nature of the swelling layer and the coating levels. Explotab showed a significant decrease in the lag time, followed by Croscarmellose sodium and finally by Starch RX 1500. Increasing the level of ethylcellulose coating retarded the diffusion of the release medium to the swelling layer and the rupture of the coat, thus prolonging the lag time.

  7. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  8. Rupture process of the 2016 Mw 7.8 Ecuador earthquake from joint inversion of InSAR data and teleseismic P waveforms

    NASA Astrophysics Data System (ADS)

    Yi, Lei; Xu, Caijun; Wen, Yangmao; Zhang, Xu; Jiang, Guoyan

    2018-01-01

    The 2016 Ecuador earthquake ruptured the Ecuador-Colombia subduction interface where several historic megathrust earthquakes had occurred. In order to determine a detailed rupture model, Interferometric Synthetic Aperture Radar (InSAR) images and teleseismic data sets were objectively weighted by using a modified Akaika's Bayesian Information Criterion (ABIC) method to jointly invert for the rupture process of the earthquake. In modeling the rupture process, a constrained waveform length method, unlike the traditional subjective selected waveform length method, was used since the lengths of inverted waveforms were strictly constrained by the rupture velocity and rise time (the slip duration time). The optimal rupture velocity and rise time of the earthquake were estimated from grid search, which were determined to be 2.0 km/s and 20 s, respectively. The inverted model shows that the event is dominated by thrust movement and the released moment is 5.75 × 1020 Nm (Mw 7.77). The slip distribution extends southward along the Ecuador coast line in an elongated stripe at a depth between 10 and 25 km. The slip model is composed of two asperities and slipped over 4 m. The source time function is approximate 80 s that separated into two segments corresponding to the two asperities. The small magnitude of the slip occurred in the updip section of the fault plane resulted in small tsunami waves that were verified by observations near the coast. We suggest a possible situation that the rupture zone of the 2016 earthquake is likely not overlapped with that of the 1942 earthquake.

  9. Real-time GPS integration for prototype earthquake early warning and near-field imaging of the earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Given, D.; King, N. E.; Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Gomberg, J. S.

    2011-12-01

    Over the past several years, USGS has developed the infrastructure for integrating real-time GPS with seismic data in order to improve our ability to respond to earthquakes and volcanic activity. As part of this effort, we have tested real-time GPS processing software components , and identified the most robust and scalable options. Simultaneously, additional near-field monitoring stations have been built using a new station design that combines dual-frequency GPS with high quality strong-motion sensors and dataloggers. Several existing stations have been upgraded in this way, using USGS Multi-Hazards Demonstration Project and American Recovery and Reinvestment Act funds in southern California. In particular, existing seismic stations have been augmented by the addition of GPS and vice versa. The focus of new instrumentation as well as datalogger and telemetry upgrades to date has been along the southern San Andreas fault in hopes of 1) capturing a large and potentially damaging rupture in progress and augmenting inputs to earthquake early warning systems, and 2) recovering high quality recordings on scale of large dynamic displacement waveforms, static displacements and immediate and long-term post-seismic transient deformation. Obtaining definitive records of large ground motions close to a large San Andreas or Cascadia rupture (or volcanic activity) would be a fundamentally important contribution to understanding near-source large ground motions and the physics of earthquakes, including the rupture process and friction associated with crack propagation and healing. Soon, telemetry upgrades will be completed in Cascadia and throughout the Plate Boundary Observatory as well. By collaborating with other groups on open-source automation system development, we will be ready to process the newly available real-time GPS data streams and to fold these data in with existing strong-motion and other seismic data. Data from these same stations will also serve the very practical purpose of enabling earthquake early warning and greatly improving rapid finite-fault source modeling. Multiple uses of the effectively very broad-band data obtained by these stations, for operational and research purposes, are bound to occur especially because all data will be freely, openly and instantly available.

  10. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    PubMed

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  11. Simultaneous or Early Sequential Rupture of Multiple Intracranial Aneurysms: A Rare and Insufficiently Understood Entity.

    PubMed

    Hou, Kun; Zhao, Jinchuan; Zhang, Yang; Zhu, Xiaobo; Zhao, Yan; Li, Guichen

    2016-05-01

    Simultaneous or early sequential rupture of multiple intracranial aneurysms (MIAs) is encountered rarely, with no more than 10 cases having been reported. As a result of its rarity, there are a lot of questions concerning this entity need to be answered. A 67-year-old woman was admitted to the First Hospital of Jilin University (Eastern Division) from a local hospital after a sudden onset of severe headache, nausea, and vomiting. Head computed tomography (CT) at the local hospital revealed diffuse subarachnoid hemorrhage (SAH) that was concentrated predominately in the suprasellar cistern and interhemispheric fissure. During her transfer to our hospital, she experienced another episode of sudden headache. CT on admission to our hospital revealed that the SAH was increased with 2 isolated hematomas both in the interhemispheric fissure and the left paramedian frontal lobe. Further CT angiography and intraoperative findings were in favor of early sequential rupture of 2 intracranial aneurysms. To further elucidate the characteristics, mechanism, management, and prognosis of this specific entity, we conducted a comprehensive review of the literature. The mechanism of simultaneous or early sequential rupture of MIAs is still obscure. Transient elevation of blood pressure might play a role in the process, and preventing the sudden elevation of blood pressure might be beneficial for patients with aneurysmal SAH and MIAs. The management of simultaneously or early sequentially ruptured aneurysms is more complex for its difficulty in responsible aneurysm determination, urgency in treatment, toughness in intraoperative manipulation and poorness in prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Anandasabari, K.; Sanwal, Jaishri; Rajendran, Kusala; Kumar, Pankaj; Chopra, Sundeep

    2018-01-01

    The foothills of the Himalaya bordered by the Main Frontal Thrust (MFT) continue to be a locus of paleoseismological studies. One of such recent studies of trench stratigraphy near the central (Indian) Himalayan foothills (Malik et al., (2016) has reported multiple ruptures dated at 467-570, 1294-1587 and 1750-1932 CE. The last offset has been attributed to the Uttarkashi earthquake of 1803 and the penultimate faulting, with lesser confidence to an earthquake in 1505 CE. We tested these claims by logging an adjacent section on a shared scarp, and the new trench site, however, revealed a stratigraphic configuration partially in variance with from what has been reported in the earlier study. Our findings do not support the previous interpretation of the trench stratigraphy that suggested multiple displacements cutting across a varied set of deformed stratigraphic units leading up to the 1803 rupture. The current interpretation posits a single episode of a low-angle displacement at this site occurred between 1266 CE and 1636. Our results suggest a single medieval earthquake, conforming to what was reported from the previously studied neighboring sites to the east and west. The present study while reiterating a great medieval earthquake questions the assumption that the 1803 earthquake ruptured the MFT. Although a décollement earthquake, the 1803 rupture may have been arrested midway on the basal flat, and fell short of reaching the MFT, somewhat comparable to a suite of blind thrust earthquakes like the1905 Kangra and the 1833 Nepal earthquakes.

  13. Near-field observations of microearthquake source physics using dense array

    NASA Astrophysics Data System (ADS)

    Chen, X.; Nakata, N.; Abercrombie, R. E.

    2017-12-01

    The recorded waveform includes contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of near-site attenuation effects. Fortunately, this problem can be remedied by dense near-field recordings at high frequency, and large databases with wide magnitude range. The 2016 IRIS wavefield experiment provides high-quality recordings of earthquake sequences in north-central Oklahoma with about 400 sensors in 15 km area. Preliminary processing of the IRIS wavefield array resulted with about 20,000 microearthquakes ranging from M-1 to M2, while only 2 earthquakes are listed in the catalog during the same time period. A preliminary examination of the catalog reveals three similar magnitude earthquakes (M 2) occurred at similar locations within 9 seconds of each other. Utilizing this catalog, we will combine individual empirical Green's function (EGF) analysis and stacking over multiple EGFs to examine if there are any systematic variations of source time functions and spectral ratios across the array, which will provide constrains of rupture complexity, directivity and earthquake interactions. For example, this would help us to understand if these three earthquakes rupture overlapping fault patches from cascading failure, or from repeated rupture at the same slip patch due to external stress loading. Deciphering the interaction at smaller scales with near-field observations is important for a controlled earthquake experiment.

  14. Factors that influence the outcome of open urethroplasty for pelvis fracture urethral defect (PFUD): an observational study from a single high-volume tertiary care center.

    PubMed

    Fu, Qiang; Zhang, Yu-meng; Barbagli, Guido; Zhang, Jiong; Xie, Hong; Sa, Ying-long; Jin, San-bao; Xu, Yue-min

    2015-12-01

    To report the clinical features of pelvic fracture urethral injury (PFUI) and assess the real effect of factors that are believed to have adverse effects on delayed urethroplasty. An observational descriptive study in a single urological center examined 376 male patients diagnosed with PFUI who underwent open urethroplasty from 2009 to 2013. Analyzed factors included patient age at the time of injury, etiology of PFUI, type of emergency treatment, concomitant injuries, length and position of stricture, type of urethroplasty and the outcome of surgery. Univariate and multivariate logistic regression analyses were applied, together with analytical statistic methods such as t test and Chi-square test. The overall success rate of delayed urethroplasty was 80.6 %. Early realignment was associated with reduced stricture length and had beneficial effect on delayed surgery. Concomitant rectum rupture, strictures longer than 1.6 cm and strictures closer than 3 cm to the bladder neck were indicators of poor outcome. Age, type of injury, urethral fistula and bladder rupture were not significant predicators of surgery outcome. Failed direct vision internal urethrotomy and urethroplasty had no significant influence on salvage operation. The outcome of posterior urethroplasty is affected by multiple factors. Early realignment has beneficial effect; while the length and position of stricture and its distance to bladder neck plays the key role, rectum rupture at the time of injury is also an indicator of poor outcome. The effect of other factors seems insignificant.

  15. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

    NASA Astrophysics Data System (ADS)

    Yue, Han; Simons, Mark; Duputel, Zacharie; Jiang, Junle; Fielding, Eric; Liang, Cunren; Owen, Susan; Moore, Angelyn; Riel, Bryan; Ampuero, Jean Paul; Samsonov, Sergey V.

    2017-09-01

    On April 25th 2015, the Mw 7.8 Gorkha (Nepal) earthquake ruptured a portion of the Main Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03-0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture, while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquake may have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes.

  16. Process for Self-Repair of Insulation Material

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2007-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured reactants witlun the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  17. Process for self-repair of insulation material

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2007-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  18. Evidence for large earthquakes on the San Andreas fault at the Wrightwood, California paleoseismic site: A.D. 500 to present

    USGS Publications Warehouse

    Fumal, T.E.; Weldon, R.J.; Biasi, G.P.; Dawson, T.E.; Seitz, G.G.; Frost, W.T.; Schwartz, D.P.

    2002-01-01

    We present structural and stratigraphic evidence from a paleoseismic site near Wrightwood, California, for 14 large earthquakes that occurred on the southern San Andreas fault during the past 1500 years. In a network of 38 trenches and creek-bank exposures, we have exposed a composite section of interbedded debris flow deposits and thin peat layers more than 24 m thick; fluvial deposits occur along the northern margin of the site. The site is a 150-m-wide zone of deformation bounded on the surface by a main fault zone along the northwest margin and a secondary fault zone to the southwest. Evidence for most of the 14 earthquakes occurs along structures within both zones. We identify paleoearthquake horizons using infilled fissures, scarps, multiple rupture terminations, and widespread folding and tilting of beds. Ages of stratigraphic units and earthquakes are constrained by historic data and 72 14C ages, mostly from samples of peat and some from plant fibers, wood, pine cones, and charcoal. Comparison of the long, well-resolved paleoseimic record at Wrightwood with records at other sites along the fault indicates that rupture lengths of past earthquakes were at least 100 km long. Paleoseismic records at sites in the Coachella Valley suggest that each of the past five large earthquakes recorded there ruptured the fault at least as far northwest as Wrightwood. Comparisons with event chronologies at Pallett Creek and sites to the northwest suggests that approximately the same part of the fault that ruptured in 1857 may also have failed in the early to mid-sixteenth century and several other times during the past 1200 years. Records at Pallett Creek and Pitman Canyon suggest that, in addition to the 14 earthquakes we document, one and possibly two other large earthquakes ruptured the part of the fault including Wrightwood since about A.D. 500. These observations and elapsed times that are significantly longer than mean recurrence intervals at Wrightwood and sites to the southeast suggest that at least the southermost 200 km of the San Andreas fault is near failure.

  19. Turbidite event history--Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone

    USGS Publications Warehouse

    Goldfinger, Chris; Nelson, C. Hans; Morey, Ann E.; Johnson, Joel E.; Patton, Jason R.; Karabanov, Eugene B.; Gutierrez-Pastor, Julia; Eriksson, Andrew T.; Gracia, Eulalia; Dunhill, Gita; Enkin, Randolph J.; Dallimore, Audrey; Vallier, Tracy; Kayen, Robert; Kayen, Robert

    2012-01-01

    Turbidite systems along the continental margin of Cascadia Basin from Vancouver Island, Canada, to Cape Mendocino, California, United States, have been investigated with swath bathymetry; newly collected and archive piston, gravity, kasten, and box cores; and accelerator mass spectrometry radiocarbon dates. The purpose of this study is to test the applicability of the Holocene turbidite record as a paleoseismic record for the Cascadia subduction zone. The Cascadia Basin is an ideal place to develop a turbidite paleoseismologic method and to record paleoearthquakes because (1) a single subduction-zone fault underlies the Cascadia submarine-canyon systems; (2) multiple tributary canyons and a variety of turbidite systems and sedimentary sources exist to use in tests of synchronous turbidite triggering; (3) the Cascadia trench is completely sediment filled, allowing channel systems to trend seaward across the abyssal plain, rather than merging in the trench; (4) the continental shelf is wide, favoring disconnection of Holocene river systems from their largely Pleistocene canyons; and (5) excellent stratigraphic datums, including the Mazama ash and distinguishable sedimentological and faunal changes near the Pleistocene-Holocene boundary, are present for correlating events and anchoring the temporal framework. Multiple tributaries to Cascadia Channel with 50- to 150-km spacing, and a wide variety of other turbidite systems with different sedimentary sources contain 13 post-Mazama-ash and 19 Holocene turbidites. Likely correlative sequences are found in Cascadia Channel, Juan de Fuca Channel off Washington, and Hydrate Ridge slope basin and Astoria Fan off northern and central Oregon. A probable correlative sequence of turbidites is also found in cores on Rogue Apron off southern Oregon. The Hydrate Ridge and Rogue Apron cores also include 12-22 interspersed thinner turbidite beds respectively. We use 14C dates, relative-dating tests at channel confluences, and stratigraphic correlation of turbidites to determine whether turbidites deposited in separate channel systems are correlative - triggered by a common event. In most cases, these tests can separate earthquake-triggered turbidity currents from other possible sources. The 10,000-year turbidite record along the Cascadia margin passes several tests for synchronous triggering and correlates well with the shorter onshore paleoseismic record. The synchroneity of a 10,000-year turbidite-event record for 500 km along the northern half of the Cascadia subduction zone is best explained by paleoseismic triggering by great earthquakes. Similarly, we find a likely synchronous record in southern Cascadia, including correlated additional events along the southern margin. We examine the applicability of other regional triggers, such as storm waves, storm surges, hyperpycnal flows, and teletsunami, specifically for the Cascadia margin. The average age of the oldest turbidite emplacement event in the 10-0-ka series is 9,800±~210 cal yr B.P. and the youngest is 270±~120 cal yr B.P., indistinguishable from the A.D. 1700 (250 cal yr B.P.) Cascadia earthquake. The northern events define a great earthquake recurrence of ~500-530 years. The recurrence times and averages are supported by the thickness of hemipelagic sediment deposited between turbidite beds. The southern Oregon and northern California margins represent at least three segments that include all of the northern ruptures, as well as ~22 thinner turbidites of restricted latitude range that are correlated between multiple sites. At least two northern California sites, Trinidad and Eel Canyon/pools, record additional turbidites, which may be a mix of earthquake and sedimentologically or storm-triggered events, particularly during the early Holocene when a close connection existed between these canyons and associated river systems. The combined stratigraphic correlations, hemipelagic analysis, and 14C framework suggest that the Cascadia margin has three rupture modes: (1) 19-20 full-length or nearly full length ruptures; (2) three or four ruptures comprising the southern 50-70 percent of the margin; and (3) 18-20 smaller southern-margin ruptures during the past 10 k.y., with the possibility of additional southern-margin events that are presently uncorrelated. The shorter rupture extents and thinner turbidites of the southern margin correspond well with spatial extents interpreted from the limited onshore paleoseismic record, supporting margin segmentation of southern Cascadia. The sequence of 41 events defines an average recurrence period for the southern Cascadia margin of ~240 years during the past 10 k.y. Time-independent probabilities for segmented ruptures range from 7-12 percent in 50 years for full or nearly full margin ruptures to ~21 percent in 50 years for a southern-margin rupture. Time-dependent probabilities are similar for northern margin events at ~7-12 percent and 37-42 percent in 50 years for the southern margin. Failure analysis suggests that by the year 2060, Cascadia will have exceeded ~27 percent of Holocene recurrence intervals for the northern margin and 85 percent of recurrence intervals for the southern margin. The long earthquake record established in Cascadia allows tests of recurrence models rarely possible elsewhere. Turbidite mass per event along the Cascadia margin reveals a consistent record for many of the Cascadia turbidites. We infer that larger turbidites likely represent larger earthquakes. Mass per event and magnitude estimates also correlate modestly with following time intervals for each event, suggesting that Cascadia full or nearly full margin ruptures weakly support a time-predictable model of recurrence. The long paleoseismic record also suggests a pattern of clustered earthquakes that includes four or five cycles of two to five earthquakes during the past 10 k.y., separated by unusually long intervals. We suggest that the pattern of long time intervals and longer ruptures for the northern and central margins may be a function of high sediment supply on the incoming plate, smoothing asperities, and potential barriers. The smaller southern Cascadia segments correspond to thinner incoming sediment sections and potentially greater interaction between lower-plate and upper-plate heterogeneities. The Cascadia Basin turbidite record establishes new paleoseismic techniques utilizing marine turbidite-event stratigraphy during sea-level highstands. These techniques can be applied in other specific settings worldwide, where an extensive fault traverses a continental margin that has several active turbidite systems.

  20. Estimation of source processes of the 2016 Kumamoto earthquakes from strong motion waveforms

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Suzuki, W.; Aoi, S.; Sekiguchi, H.

    2016-12-01

    In this study, we estimated the source processes for two large events of the 2016 Kumamoto earthquakes (the M7.3 event at 1:25 JST on April 16, 2016 and the M6.5 event at 21:26 JST on April 14, 2016) from strong motion waveforms using multiple-time-window linear waveform inversion (Hartzell and Heaton 1983; Sekiguchi et al. 2000). Based on the observations of surface ruptures, the spatial distribution of aftershocks, and the geodetic data, a realistic curved fault model was developed for the source-process analysis of the M7.3 event. The source model obtained for the M7.3 event with a seismic moment of 5.5 × 1019 Nm (Mw 7.1) had two significant ruptures. One rupture propagated toward the northeastern shallow region at 4 s after rupture initiation, and continued with large slips to approximately 16 s. This rupture caused a large slip region with a peak slip of 3.8 m that was located 10-30 km northeast of the hypocenter and reached the caldera of Mt. Aso. The contribution of the large slip region to the seismic waveforms was large at many stations. Another rupture propagated toward the surface from the hypocenter at 2-6 s, and then propagated toward the northeast along the near surface at 6-10 s. This rupture largely contributed to the seismic waveforms at the stations south of the fault and close to the hypocenter. A comparison with the results obtained using a single fault plane model demonstrate that the use of the curved fault model led to improved waveform fit at the stations south of the fault. The extent of the large near-surface slips in this source model for the M7.3 event is roughly consistent with the extent of the observed large surface ruptures. The source model obtained for the M6.5 event with a seismic moment of 1.7 × 1018 Nm (Mw 6.1) had large slips in the region around the hypocenter and in the shallow region north-northeast of the hypocenter, both of which had a maximum slip of 0.7 m. The rupture of the M6.5 event propagated from the former region to the latter region at 1-6 s after rupture initiation, which is expected to have caused the strong ground motions due to the forward directivity effect at KMMH16 and surroundings. The occurrence of the near-surface large slips in this source model for the M6.5 event is consistent with the appearance of small surface cracks, which were observed by some residents.

  1. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity

    NASA Astrophysics Data System (ADS)

    Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise

    2018-05-01

    Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z < 120 km) earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.

  2. A minimal rupture cascade model for living cell plasticity

    NASA Astrophysics Data System (ADS)

    Polizzi, Stefano; Laperrousaz, Bastien; Perez-Reche, Francisco J.; Nicolini, Franck E.; Maguer Satta, Véronique; Arneodo, Alain; Argoul, Françoise

    2018-05-01

    Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34+ cells isolated from healthy and leukemic bone marrows in the highly nonlinear elasto-plastic regime, by poking their perinuclear region with a sharp AFM cantilever tip. We use the wavelet transform mathematical microscope to identify singular events in the force-indentation curves induced by local rupture events in the cytoskeleton (CSK). We distinguish two types of rupture events, brittle failures likely corresponding to irreversible ruptures in a stiff and highly cross-linked CSK and ductile failures resulting from dynamic cross-linker unbindings during plastic deformation without loss of CSK integrity. We propose a stochastic multiplicative cascade model of mechanical ruptures that reproduces quantitatively the experimental distributions of the energy released during these events, and provides some mathematical and mechanistic understanding of the robustness of the log-normal statistics observed in both brittle and ductile situations. We also show that brittle failures are relatively more prominent in leukemia than in healthy cells suggesting their greater fragility.

  3. The effectiveness of 3D animations to enhance understanding of cranial cruciate ligament rupture.

    PubMed

    Clements, Dylan N; Broadhurst, Henry; Clarke, Stephen P; Farrell, Michael; Bennett, David; Mosley, John R; Mellanby, Richard J

    2013-01-01

    Cranial cruciate ligament (CCL) rupture is one of the most important orthopedic diseases taught to veterinary undergraduates. The complexity of the anatomy of the canine stifle joint combined with the plethora of different surgical interventions available for the treatment of the disease means that undergraduate veterinary students often have a poor understanding of the pathophysiology and treatment of CCL rupture. We designed, developed, and tested a three dimensional (3D) animation to illustrate the pertinent clinical anatomy of the stifle joint, the effects of CCL rupture, and the mechanisms by which different surgical techniques can stabilize the joint with CCL rupture. When compared with a non-animated 3D presentation, students' short-term retention of functional anatomy improved although they could not impart a better explanation of how different surgical techniques worked. More students found the animation useful than those who viewed a comparable non-animated 3D presentation. Multiple peer-review testing is required to maximize the usefulness of 3D animations during development. Free and open access to such tools should improve student learning and client understanding through wide-spread uptake and use.

  4. Urethral injury in the multiple-injured patient.

    PubMed

    Cass, A S

    1984-10-01

    A total of 74 patients with urethral injury due to external trauma consisted of 48 posterior urethral injuries (25 complete rupture, 23 partial rupture) and 26 anterior urethral injuries (two complete rupture, 16 partial rupture, and eight contusion). The diagnosis was made by retrograde urethrography. All 48 patients with posterior urethral injury had associated injuries, including a fractured pelvis in 46, and a mortality rate of 33%. Only seven of the 26 patients with anterior urethral injury had associated injuries and a mortality rate of 14%. The management of posterior urethral injury is changing from primary realignment of the ruptured urethra to suprapubic cystostomy alone and followed later by urethral surgery for the resulting stricture. The impotence rate is significantly lower with management with suprapubic cystostomy alone. However, the type of pelvic fracture, the urethral injury itself disrupting neurovascular structures, and the surgical dissection (initial primary realignment or delayed urethroplasty) must be investigated before it can be determined whether the impotence associated with pelvic trauma is caused by the injury itself or by the surgical dissection undertaken to reconstruct the urethra.

  5. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  6. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  7. Time-Temperature Superposition to Determine the Stress-Rupture of Aramid Fibres

    NASA Astrophysics Data System (ADS)

    Alwis, K. G. N. C.; Burgoyne, C. J.

    2006-07-01

    Conventional creep testing takes a long time to obtain stress-rupture data for aramid fibres at the low stress levels likely to be used in practical applications. However, the rate of creep of aramid can be accelerated by a thermally activated process to obtain the failure of fibres within a few hours. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve know as a master curve, from which stress-rupture data can be obtained. This technique is known as the time-temperature superposition principle and will be applied to Kevlar 49 yarns. Important questions relating to the techniques needed to obtain smooth master curves will be discussed, as will the validity the resulting curves and the corresponding stress-rupture lifetime.

  8. Multiple Re-entry Closures After TEVAR for Ruptured Chronic Post-dissection Thoraco-abdominal Aortic Aneurysm.

    PubMed

    Kinoshita, R; Ganaha, F; Ito, J; Ohyama, N; Abe, N; Yamazato, T; Munakata, H; Mabuni, K; Kugai, T

    2018-01-01

    Although thoracic endovascular aortic repair (TEVAR) has become a promising treatment for complicated acute type B dissection, its role in treating chronic post-dissection thoraco-abdominal aortic aneurysm (TAA) is still limited owing to persistent retrograde flow into the false lumen (FL) through abdominal or iliac re-entry tears. A case of chronic post-dissection TAA treatment, in which a dilated descending FL ruptured into the left thorax, is described. The primary entry tear was closed by emergency TEVAR and multiple abdominal re-entries were closed by EVAR. In addition, major re-entries at the detached right renal artery and iliac bifurcation were closed using covered stents. To close re-entries as far as possible, EVAR was carried out using the chimney technique, and additional aortic extenders were placed above the coeliac artery. A few re-entries remained, but complete FL thrombosis of the rupture site was achieved. Follow-up computed tomography showed significant shrinkage of the FL. In treating post-dissection TAA, entry closure by TEVAR is sometimes insufficient, owing to persistent retrograde flow into the FL from abdominal or iliac re-entries. Adjunctive techniques are needed to close these distal re-entries to obtain complete FL exclusion, especially in rupture cases. Recently, encouraging results of complete coverage of the thoraco-abdominal aorta with fenestrated or branched endografts have been reported; however, the widespread employment of such techniques appears to be limited owing to technical difficulties. The present method with multiple re-entry closures using off the shelf and immediately available devices is an alternative for the endovascular treatment of post-dissection TAA, especially in the emergency setting.

  9. Outcomes of expectantly managed pregnancies with multiple gestations and preterm premature rupture of membranes prior to 26 weeks.

    PubMed

    Wong, Luchin F; Holmgren, Calla M; Silver, Robert M; Varner, Michael W; Manuck, Tracy A

    2015-02-01

    The objective of the study was to determine the obstetric and neonatal outcomes of expectantly managed multifetal pregnancies complicated by early preterm premature rupture of membranes (PPROM) prior to 26 weeks. This was a retrospective cohort of all multifetal pregnancies complicated by documented PPROM occurring before 26 0/7 weeks and managed expectantly by a single maternal-fetal medicine practice between July 4, 2002, and Sept. 1, 2013. Neonatal and maternal outcomes were assessed and comparisons made between the fetus with ruptured membranes and the first fetus to deliver with intact membranes. Twenty-three pregnancies (46 fetuses) were analyzed with a median gestational age at PPROM of 22.9 weeks; 74% experienced PPROM at less than 24 weeks' gestation. A median latency of 11 days was achieved with expectant management. Of the 46 neonates, 20 (43%) survived to hospital discharge. Of these, 12 (60%) experienced severe neonatal morbidity defined as defined as grade III or IV intraventricular hemorrhage, bronchopulmonary dysplasia, pulmonary hypoplasia, necrotizing enterocolitis requiring surgical intervention, and/or grade 3 or 4 retinopathy of prematurity. Eight neonates survived to hospital discharge without severe neonatal morbidity. The multiple with ruptured membranes was more likely to experience intrauterine demise but otherwise had similar outcomes as the multiple with intact membranes. Maternal morbidity was considerable, with 7 of 23 pregnancies (30%) complicated by clinical chorioamnionitis, 12 of 23 (52%) delivering by cesarean, of which 3 of 12 (25%) were classical cesarean deliveries. Overall, neonatal survival to hospital discharge was 43%, but only 17% survived without significant neonatal morbidity. These data provide a basis for counseling and management of women with multifetal gestation complicated by very early PPROM. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Evaluating the Possibility of a joint San Andreas-Imperial Fault Rupture in the Salton Trough Region

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Meltzner, A. J.; Rockwell, T. K.

    2016-12-01

    A geodynamic investigation of possible earthquakes in a given region requires both field data and numerical simulations. In particular, the investigation of past earthquakes is also a fundamental part of understanding the earthquake potential of the Salton Trough region. Geological records from paleoseismic trenches inform us of past ruptures (length, magnitude, timing), while dynamic rupture models allow us to evaluate numerically the mechanics of such earthquakes. The two most recent events (Mw 6.4 1940 and Mw 6.9 1979) on the Imperial fault (IF) both ruptured up to the northern end of the mapped fault, giving the impression that rupture doesn't propagate further north. This result is supported by small displacements, 20 cm, measured at the Dogwood site near the end of the mapped rupture in each event. However, 3D paleoseismic data from the same site corresponding to the most recent pre-1940 event (1710 CE) and 5th (1635 CE) and 6th events back revealed up to 1.5 m of slip in those events. Since we expect the surface displacement to decrease toward the termination of a rupture, we postulate that in these earlier cases the rupture propagated further north than in 1940 or 1979. Furthermore, paleoseismic data from the Coachella site (Philibosian et al., 2011) on the San Andreas fault (SAF) indicates slip events ca. 1710 CE and 1588-1662 CE. In other words, the timing of two large paleoseismic displacements on the IF cannot be distinguished from the timing of the two most recent events on the southern SAF, leaving a question: is it possible to have through-going rupture in the Salton Trough? We investigate this question through 3D dynamic finite element rupture modeling. In our work, we considered two scenarios: rupture initiated on the IF propagating northward, and rupture initiated on the SAF propagating southward. Initial results show that, in the first case, rupture propagates north of the mapped northern terminus of the IF only under certain pre-stress conditions, such as values of the seismic parameter S = 0.45 to 2.0, and tends to stop for S = 2.5. If rupture initiates in the north on the SAF, we find that it is easier for it to propagate across the entire stepover region. The results have implications for potential earthquakes in the region, with the possibility of a preferred direction of rupture propagation through the stepover.

  11. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  12. Geodetic Insights into the Earthquake Cycle in a Fold and Thrust Belt

    NASA Astrophysics Data System (ADS)

    Ingleby, T. F.; Wright, T. J.; Butterworth, V.; Weiss, J. R.; Elliott, J.

    2017-12-01

    Geodetic measurements are often sparse in time (e.g. individual interferograms) and/or space (e.g. GNSS stations), adversely affecting our ability to capture the spatiotemporal detail required to study the earthquake cycle in complex tectonic systems such as subaerial fold and thrust belts. In an effort to overcome these limitations we combine 3 generations of SAR satellite data (ERS 1/2, Envisat & Sentinel-1a/b) to obtain a 25 year, high-resolution surface displacement time series over the frontal portion of an active fold and thrust belt near Quetta, Pakistan where a Mw 7.1 earthquake doublet occurred in 1997. With these data we capture a significant portion of the seismic cycle including the interseismic, coseismic and postseismic phases. Each satellite time series has been referenced to the first ERS-1 SAR epoch by fitting a ground deformation model to the data. This allows us to separate deformation associated with each phase and to examine their relative roles in accommodating strain and creating topography, and to explore the relationship between the earthquake cycle and critical taper wedge mechanics. Modeling of the coseismic deformation suggests a long, thin rupture with rupture length 7 times greater than rupture width. Rupture was confined to a 20-30 degree north-northeast dipping reverse fault or ramp at depth, which may be connecting two weak decollements at approximately 8 km and 13 km depth. Alternatively, intersections between the coseismic fault plane and pre-existing steeper splay faults underlying folds may have played a significant role in inhibiting rupture, as evidenced by intersection points bordering the rupture. These fault intersections effectively partition the fault system down-dip and enable long, thin ruptures. Postseismic deformation is manifest as uplift across short-wavelength folds at the thrust front, with displacement rates decreasing with time since the earthquake. Broader patterns of postseismic uplift are also observed surrounding the coseismic rupture in both the down- and up-dip directions. We examine how coseismic stress changes may be driving the postseismic deformation by jointly inverting the InSAR-derived displacements for the rupture and fault friction parameters using a rate-strengthening friction model.

  13. A finite difference method for off-fault plasticity throughout the earthquake cycle

    NASA Astrophysics Data System (ADS)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  14. Dynamic Parameters of the 2015 Nepal Gorkha Mw7.8 Earthquake Constrained by Multi-observations

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yang, H.

    2017-12-01

    Dynamic rupture model can provide much detailed insights into rupture physics that is capable of assessing future seismic risk. Many studies have attempted to constrain the slip-weakening distance, an important parameter controlling friction behavior of rock, for several earthquakes based on dynamic models, kinematic models, and direct estimations from near-field ground motion. However, large uncertainties of the values of the slip-weakening distance still remain, mostly because of the intrinsic trade-offs between the slip-weakening distance and fault strength. Here we use a spontaneously dynamic rupture model to constrain the frictional parameters of the 25 April 2015 Mw7.8 Nepal earthquake, by combining with multiple seismic observations such as high-rate cGPS data, strong motion data, and kinematic source models. With numerous tests we find the trade-off patterns of final slip, rupture speed, static GPS ground displacements, and dynamic ground waveforms are quite different. Combining all the seismic constraints we can conclude a robust solution without a substantial trade-off of average slip-weakening distance, 0.6 m, in contrast to previous kinematical estimation of 5 m. To our best knowledge, this is the first time to robustly determine the slip-weakening distance on seismogenic fault from seismic observations. The well-constrained frictional parameters may be used for future dynamic models to assess seismic hazard, such as estimating the peak ground acceleration (PGA) etc. Similar approach could also be conducted for other great earthquakes, enabling broad estimations of the dynamic parameters in global perspectives that can better reveal the intrinsic physics of earthquakes.

  15. Seismogeodesy of the 2014 Mw6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault

    NASA Astrophysics Data System (ADS)

    Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.

    2015-07-01

    Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

  16. The hemodynamics in intracranial aneurysm ruptured region with active contrast leakage during computed tomography angiography

    NASA Astrophysics Data System (ADS)

    Li, Ming-Lung; Wang, Yi-Chou; Liou, Tong-Miin; Lin, Chao-An

    2014-10-01

    Precise locations of rupture region under contrast agent leakage of five ruptured cerebral artery aneurysms during computed tomography angiography, which is to our knowledge for the first time, were successfully identified among 101 patients. These, together with numerical simulations based on the reconstructed aneurysmal models, were used to analyze hemodynamic parameters of aneurysms under different cardiac cyclic flow rates. For side wall type aneurysms, different inlet flow rates have mild influences on the shear stresses distributions. On the other hand, for branch type aneurysms, the predicted wall shear stress (WSS) correlates strongly with the increase of inlet vessel velocity. The mean and time averaged WSSes at rupture regions are found to be lower than those over the surface of the aneurysms. Also, the levels of the oscillatory shear index (OSI) are higher than the reported threshold value, supporting the assertion that high OSI correlates with rupture of the aneurysm. However, the present results also indicate that OSI level at the rupture region is relatively lower.

  17. Slow crack growth in spinel in water

    NASA Technical Reports Server (NTRS)

    Schwantes, S.; Elber, W.

    1983-01-01

    Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.

  18. Tearing the terroir: Details and implications of surface rupture and deformation from the 24 August 2014 M6.0 South Napa earthquake, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Donnellan, Andrea; Ponti, Daniel J.; Rubin, Ron S.; Lienkaemper, James J.; Prentice, Carol S.; Dawson, Timothy E.; Seitz, Gordon G.; Schwartz, David P.; Hudnut, Kenneth W.; Rosa, Carla M.; Pickering, Alexandra J; Parker, Jay W.

    2016-01-01

    The Mw 6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5 km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a ~7 km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The rupture continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main rupture trace with total slip 1 year postevent approaching 0.5 m at locations where only a few centimeters were measured the day of the earthquake. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along fault traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the fault, perhaps indicating secondary structures ruptured as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed faulting, and this was generally borne out by the complex 2014 rupture pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface rupture in areas of complex topography, especially where multiple potentially Quaternary-active fault strands can be mapped.

  19. Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

  20. Limit on slip rate and timing of recent seismic ground-ruptures on the Jinghong fault, SE of the eastern Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Shi, Xuhua; Weldon, Ray; Liu-Zeng, Jing; Wang, Yu; Weldon, Elise; Sieh, Kerry; Li, Zhigang; Zhang, Jinyu; Yao, Wenqian; Li, Zhanfei

    2018-06-01

    Quantifying slip rates and earthquake occurrence of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to assessing the seismic hazard and understanding the kinematics and geodynamics of this region. Most previous estimates of slip rates are averaged over either many millions of years using offset geological markers or decades using GPS. Well-constrained millennial slip rates of these faults remain sparse and constraints on recurrence rates of damaging earthquakes exist only for a few faults. Here we investigate the millennial slip rate and timing of recent earthquakes on the Jinghong fault, one of the geomorphically most significant sinistral-slip faults on the central Shan Plateau. We map and reconstruct fault offset (18 ± 5 m) of alluvial fan features at Manpa on the central Jinghong fault, using a 0.1 m-resolution digital surface model obtained from an unmanned aerial vehicle survey. We establish a slip rate, ≤2.5 ± 0.7 mm/yr over the past 7000 years, using pit-exposed stratigraphy. This millennial slip rate is consistent with rates averaged over both decadal and million-year timescales. Excavations at three sites near the town of Gelanghe on the northeastern Jinghong fault demonstrate 1) that the last seismic ground-rupture occurred between 482 and 889 cal yr BP, most likely in the narrower window 824-767 cal yr BP, if the lack of large earthquakes in the historical earthquake record is reliable, and 2) that multiple fault ruptures have occurred since 3618 cal yr BP. Combining this finding with a lack of large earthquakes in the 800-year-long Chinese historic record in this region, we suggest an average recurrence interval of seismic ground-ruptures on the order of 1000 years. This recurrence interval is consistent with the slip rate of the Jinghong fault and the size and earthquake frequency on other sinistral faults on the Shan Plateau.

  1. Surgical Versus Conservative Intervention for Acute Achilles Tendon Rupture: A PRISMA-Compliant Systematic Review of Overlapping Meta-Analyses.

    PubMed

    Zhang, Hao; Tang, Hao; He, Qianyun; Wei, Qiang; Tong, Dake; Wang, Chuangfeng; Wu, Dajiang; Wang, Guangchao; Zhang, Xin; Ding, Wenbin; Li, Di; Ding, Chen; Liu, Kang; Ji, Fang

    2015-11-01

    Although many meta-analyses comparing surgical intervention with conservative treatment have been conducted for acute Achilles tendon rupture, discordant conclusions are shown. This study systematically reviewed the overlapping meta-analyses relating to surgical versus conservative intervention of acute Achilles tendon rupture to assist decision makers select among conflicting meta-analyses, and to offer intervention recommendations based on the currently best evidence.Multiple databases were comprehensively searched for meta-analyses comparing surgical with conservative treatment of acute Achilles tendon rupture. Meta-analyses only comprising randomized controlled trials (RCTs) were included. Two authors independently evaluated the meta-analysis quality and extracted data. The Jadad decision algorithm was applied to ascertain which meta-analysis offered the best evidence.A total of 9 meta-analyses were included. Only RCTs were determined as Level-II evidence. The scores of Assessment of Multiple Systematic Reviews (AMSTAR) ranged from 5 to 10 (median 7). A high-quality meta-analysis with more RCTs was selected according to the Jadad decision algorithm. This study found that when functional rehabilitation was used, conservative intervention was equal to surgical treatment regarding the incidence of rerupture, range of motion, calf circumference, and functional outcomes, while reducing the incidence of other complications. Where functional rehabilitation was not performed, conservative intervention could significantly increase rerupture rate.Conservative intervention may be preferred for acute Achilles tendon rupture at centers offering functional rehabilitation, because it shows a similar rerupture rate with a lower risk of other complications when compared with surgical treatment. However, surgical treatment should be considered at centers without functional rehabilitation as this can reduce the incidence of rerupture.

  2. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    NASA Astrophysics Data System (ADS)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure of the rupture extent and dimensions, but not necessarily the strike. We found that using standard earthquake catalogs, such as the National Earthquake Information Center catalog, we can constrain the rupture extent, rupture direction, and in many cases the type of faulting, of the mainshock with the aftershocks that occur within the first hour after the mainshock. However, this data may not be currently available in near real-time. Since our results show that these early aftershock locations may be used to estimate first order rupture parameters for large global earthquakes, the near real-time availability of these data would be useful for fast earthquake damage assessment.

  3. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    NASA Astrophysics Data System (ADS)

    Graves, Robert; Jordan, Thomas H.; Callaghan, Scott; Deelman, Ewa; Field, Edward; Juve, Gideon; Kesselman, Carl; Maechling, Philip; Mehta, Gaurang; Milner, Kevin; Okaya, David; Small, Patrick; Vahi, Karan

    2011-03-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i.e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and magnitude uncertainty estimates used in the definition of the ruptures than is found in the traditional GMPE approach. This reinforces the need for continued development of a better understanding of earthquake source characterization and the constitutive relations that govern the earthquake rupture process.

  4. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    USGS Publications Warehouse

    Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.

    2011-01-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and magnitude uncertainty estimates used in the definition of the ruptures than is found in the traditional GMPE approach. This reinforces the need for continued development of a better understanding of earthquake source characterization and the constitutive relations that govern the earthquake rupture process. ?? 2010 Springer Basel AG.

  5. Atmospheric Pressure and Abdominal Aortic Aneurysm Rupture: Results From a Time Series Analysis and Case-Crossover Study.

    PubMed

    Penning de Vries, Bas B L; Kolkert, Joé L P; Meerwaldt, Robbert; Groenwold, Rolf H H

    2017-10-01

    Associations between atmospheric pressure and abdominal aortic aneurysm (AAA) rupture risk have been reported, but empirical evidence is inconclusive and largely derived from studies that did not account for possible nonlinearity, seasonality, and confounding by temperature. Associations between atmospheric pressure and AAA rupture risk were investigated using local meteorological data and a case series of 358 patients admitted to hospital for ruptured AAA during the study period, January 2002 to December 2012. Two analyses were performed-a time series analysis and a case-crossover study. Results from the 2 analyses were similar; neither the time series analysis nor the case-crossover study showed a significant association between atmospheric pressure ( P = .627 and P = .625, respectively, for mean daily atmospheric pressure) or atmospheric pressure variation ( P = .464 and P = .816, respectively, for 24-hour change in mean daily atmospheric pressure) and AAA rupture risk. This study failed to support claims that atmospheric pressure causally affects AAA rupture risk. In interpreting our results, one should be aware that the range of atmospheric pressure observed in this study is not representative of the atmospheric pressure to which patients with AAA may be exposed, for example, during air travel or travel to high altitudes in the mountains. Making firm claims regarding these conditions in relation to AAA rupture risk is difficult at best. Furthermore, despite the fact that we used one of the largest case series to date to investigate the effect of atmospheric pressure on AAA rupture risk, it is possible that this study is simply too small to demonstrate a causal link.

  6. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian noise where the duration of the time window and the starting rupture is determined by the slip rate function at each point in the fault (Dalguer et al, 2002). Finally, to validate this method we compare the synthetic seismograms with the recorded ground motion for the 2011 Tohoku earthquake up to 10 Hz.

  7. From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust

    NASA Astrophysics Data System (ADS)

    Saillard, M.; Audin, L.; Rousset, B.; Avouac, J. P.; Chlieh, M.; Hall, S. R.; Husson, L.; Farber, D.

    2017-12-01

    Measurement of interseismic strain along subduction zones reveals the location of both locked asperities, which might rupture during megathrust earthquakes, and creeping zones, which tend to arrest such seismic ruptures. The heterogeneous pattern of interseismic coupling presumably relates to spatial variations of frictional properties along the subduction interface and may also show up in the fore-arc morphology. To investigate this hypothesis, we compiled information on the extent of earthquake ruptures for the last 500 yrs and uplift rates derived from dated marine terraces along the South American coastline from central Peru to southern Chile. We additionally calculated a new interseismic coupling model for that same area based on a compilation of GPS data. We show that the coastline geometry, characterized by the distance between the coast and the trench; the latitudinal variations of long-term uplift rates; and the spatial pattern of interseismic coupling are correlated. Zones of faster and long-term permanent coastal uplift, evidenced by uplifted marine terraces, coincide with peninsulas and also with areas of creep on the megathrust where slip is mostly aseismic and tend to arrest seismic ruptures. This correlation suggests that these areas prevent elastic strain buildup and inhibit lateral seismic rupture propagation. Correlation between the location of these regions across and along strike of convergence and the long-term morphology of the subduction margin suggests that the barrier effect might be due to rheology, namely rate-strengthening friction, although geometric effects might also play a secondary role. Higher shear stress along creeping segments of the megathrust than along segments dominated by recurring large earthquakes would favor more rapid viscoplastic (permanent) deformation of the fore arc and thus uplift. Marine terrace sequences attest to frictional properties along the megathrust persisting for million-year time scales. Peninsulas are the surface expression of large subduction earthquakes segment boundaries and show evidence for their stability over multiple seismic cycles. We conclude spatial variations of frictional properties along the megathrust dictate the tectono-geomorphological evolution of the coastal zone and the extent of seismic ruptures along strike.

  8. Progestogens in singleton gestations with preterm prelabor rupture of membranes: a systematic review and metaanalysis of randomized controlled trials.

    PubMed

    Quist-Nelson, Johanna; Parker, Pamela; Mokhtari, Neggin; Di Sarno, Rossana; Saccone, Gabriele; Berghella, Vincenzo

    2018-03-31

    Preterm prelabor rupture of membranes occurs in 3% of all pregnancies. Neonatal benefit is seen in uninfected women who do not deliver immediately after preterm prelabor rupture of membranes. The purpose of this study was to evaluate whether the administration of progestogens in singleton pregnancies prolongs pregnancy after preterm prelabor rupture of membranes. Searches were performed in MEDLINE, OVID, Scopus, EMBASE, ClinicalTrials.gov, and the Cochrane Central Register of Controlled Trials with the use of a combination of keywords and text words related to "progesterone," "progestogen," "prematurity," and "preterm premature rupture of membranes" from the inception of the databases until January 2018. We included all randomized controlled trials of singleton gestations after preterm prelabor rupture of membranes that were randomized to either progestogens or control (either placebo or no treatment). Exclusion criteria were trials that included women who had contraindications to expectant management after preterm prelabor rupture of membranes (ie, chorioamnionitis, severe preeclampsia, and nonreassuring fetal status) and trials on multiple gestations. We planned to include all progestogens, including but not limited to 17-α hydroxyprogesterone caproate, and natural progesterone. The primary outcome was latency from randomization to delivery. Metaanalysis was performed with the use of the random effects model of DerSimonian and Laird to produce relative risk with 95% confidence interval. Analysis was performed for each mode of progestogen administration separately. Six randomized controlled trials (n=545 participants) were included. Four of the included trials assessed the efficacy of 17-α hydroxyprogesterone caproate; 1 trial assessed rectal progestogen, and 1 trial had 3 arms that compared 17-α hydroxyprogesterone caproate, rectal progestogen, and placebo. The mean gestational age at time randomization was 26.9 weeks in the 17-α hydroxyprogesterone caproate group and 27.3 weeks in the control group. 17-α Hydroxyprogesterone caproate administration was not found to prolong the latency period between randomization and delivery (mean difference, 0.11 days; 95% confidence interval, -3.30 to 3.53). There were no differences in mean gestational age at delivery, mode of delivery, or maternal or neonatal outcomes between the 2 groups. Similarly, there was no difference in latency for those women who received rectal progesterone (mean difference, 4.00 days; 95% confidence interval, -0.72 to 8.72). Progestogen administration does not prolong pregnancy in singleton gestations with preterm prelabor rupture of membranes. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Posterolateral rotatory instability from multiple steroids injections for tennis elbow: a case report.

    PubMed

    Chanlalit, Cholawish; Limsricharoen, Warodom

    2013-01-01

    This article reports the complication (lateral collateral ligament rupture) arising from improper numbers of steroids injections for the chronic lateral elbow pain (tennis elbow). Clinical sign and investigation with MRI confirmed a diagnosis of LCL rupture. In the present report, we describe the successful outcome of one year results in surgical debridement and lateral collateral ligament (LCL) reconstruction. A discussion of the proper conservative role for the chronic lateral epicondyalgia and the surgical decision to resolve this complication is also included.

  10. A New Correlation of Large Earthquakes Along the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Scharer, K. M.; Weldon, R. J.; Biasi, G. P.

    2010-12-01

    There are now three sites on the southern San Andreas fault (SSAF) with records of 10 or more dated ground rupturing earthquakes (Frazier Mountain, Wrightwood and Pallett Creek) and at least seven other sites with 3-5 dated events. Numerous sites have related information including geomorphic offsets caused by 1 to a few earthquakes, a known amount of slip spanning a specific interval of time or number of earthquakes, or the number (but not necessarily the exact ages) of earthquakes in an interval of time. We use this information to construct a record of recent large earthquakes on the SSAF. Strongly overlapping C-14 age ranges, especially between closely spaced sites like Pallett Creek and Wrightwood on the Mojave segment and Thousand Palms, Indio, Coachella and Salt Creek on the southernmost 100 kms of the fault, and overlap between the more distant Frazier Mountain and Bidart Fan sites on the northernmost part of the fault suggest that the paleoseismic data are robust and can be explained by a relatively small number of events that span substantial portions of the fault. This is consistent with the extent of rupture of the two historic events (1857 was ~300 km long and 1812 was 100-200 km long); slip per event data that averages 3-5 m per event at most sites; and the long historical hiatus since 1857. While some sites have smaller offsets for individual events, correlation between sites suggests that many small offsets are near the end of long ruptures. While the long event series on the Mojave are quasi-periodic, individual intervals range about an order of magnitude, from a few decades up to ~200 years. This wide range of intervals and the apparent anti-slip predictable behavior of ruptures (small intervals are not followed by small events) suggest weak clustering or periods of time spanning multiple intervals when strain release is higher low lower than average. These properties defy the application of simple hazard analysis but need to be understood to properly forecast hazard along the fault.

  11. Rupture processes of the 2010 Canterbury earthquake and the 2011 Christchurch earthquake inferred from InSAR, strong motion and teleseismic datasets

    NASA Astrophysics Data System (ADS)

    Yun, S.; Koketsu, K.; Aoki, Y.

    2014-12-01

    The September 4, 2010, Canterbury earthquake with a moment magnitude (Mw) of 7.1 is a crustal earthquake in the South Island, New Zealand. The February 22, 2011, Christchurch earthquake (Mw=6.3) is the biggest aftershock of the 2010 Canterbury earthquake that is located at about 50 km to the east of the mainshock. Both earthquakes occurred on previously unrecognized faults. Field observations indicate that the rupture of the 2010 Canterbury earthquake reached the surface; the surface rupture with a length of about 30 km is located about 4 km south of the epicenter. Also various data including the aftershock distribution and strong motion seismograms suggest a very complex rupture process. For these reasons it is useful to investigate the complex rupture process using multiple data with various sensitivities to the rupture process. While previously published source models are based on one or two datasets, here we infer the rupture process with three datasets, InSAR, strong-motion, and teleseismic data. We first performed point source inversions to derive the focal mechanism of the 2010 Canterbury earthquake. Based on the focal mechanism, the aftershock distribution, the surface fault traces and the SAR interferograms, we assigned several source faults. We then performed the joint inversion to determine the rupture process of the 2010 Canterbury earthquake most suitable for reproducing all the datasets. The obtained slip distribution is in good agreement with the surface fault traces. We also performed similar inversions to reveal the rupture process of the 2011 Christchurch earthquake. Our result indicates steep dip and large up-dip slip. This reveals the observed large vertical ground motion around the source region is due to the rupture process, rather than the local subsurface structure. To investigate the effects of the 3-D velocity structure on characteristic strong motion seismograms of the two earthquakes, we plan to perform the inversion taking 3-D velocity structure of this region into account.

  12. Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.

    2013-12-01

    A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF was stressed sufficiently to fail at that time. The Bear River fault zone (BRFZ) is a young normal fault along the eastern margin of basin-range extension that appears to have reactivated a ramp in the Laramide-age Darby-Hogsback thrust. The entire Cenozoic history of the BRFZ may consist of only two surface-rupturing events in the late Holocene (one at ~5 ka and the most recent at ~2.5 ka). The 40-km-long fault comprises synthetic and antithetic scarps extending across a zone up to 5 km wide. Remote sensing, including airborne LiDAR, and field studies show that, despite the complexity, the pattern of faulting was similar (in location and amount) for each of the two events and, at the south end, was strongly influenced by the east-west-trending Uinta Arch. Pre-existing structure clearly has exerted a first-order control on moment release on this immature fault. As shown by these examples, data on timing of surface ruptures, coseismic slip, slip rate, and fault geometry can provide a basis to constrain lengths of past and future earthquake ruptures, including possible alternative rupture scenarios. The difficult question for hazard analysis is whether the available data capture the full range of behavior and with what relative frequency do the alternatives occur?

  13. Hemodynamic and morphological characteristics of unruptured posterior communicating artery aneurysms with oculomotor nerve palsy.

    PubMed

    Lv, Nan; Yu, Ying; Xu, Jinyu; Karmonik, Christof; Liu, Jianmin; Huang, Qinghai

    2016-08-01

    OBJECT Unruptured posterior communicating artery (PCoA) aneurysms with oculomotor nerve palsy (ONP) have a very high risk of rupture. This study investigated the hemodynamic and morphological characteristics of intracranial aneurysms with high rupture risk by analyzing PCoA aneurysms with ONP. METHODS Fourteen unruptured PCoA aneurysms with ONP, 33 ruptured PCoA aneurysms, and 21 asymptomatic unruptured PCoA aneurysms were included in this study. The clinical, morphological, and hemodynamic characteristics were compared among the different groups. RESULTS The clinical characteristics did not differ among the 3 groups (p > 0.05), whereas the morphological and hemodynamic analyses showed that size, aspect ratio, size ratio, undulation index, nonsphericity index, ellipticity index, normalized wall shear stress (WSS), and percentage of low WSS area differed significantly (p < 0.05) among the 3 groups. Furthermore, multiple comparisons revealed that these parameters differed significantly between the ONP group and the asymptomatic unruptured group and between the ruptured group and the asymptomatic unruptured group, except for size, which differed significantly only between the ONP group and the asymptomatic unruptured group (p = 0.0005). No morphological or hemodynamic parameters differed between the ONP group and the ruptured group. CONCLUSIONS Unruptured PCoA aneurysms with ONP demonstrated a distinctive morphological-hemodynamic pattern that was significantly different compared with asymptomatic unruptured PCoA aneurysms and was similar to ruptured PCoA aneurysms. The larger size, more irregular shape, and lower WSS might be related to the high rupture risk of PCoA aneurysms.

  14. Investigation of Finite Sources through Time Reversal

    NASA Astrophysics Data System (ADS)

    Kremers, Simon; Brietzke, Gilbert; Igel, Heiner; Larmat, Carene; Fichtner, Andreas; Johnson, Paul A.; Huang, Lianjie

    2010-05-01

    Under certain conditions time reversal is a promising method to determine earthquake source characteristics without any a-priori information (except the earth model and the data). It consists of injecting flipped-in-time records from seismic stations within the model to create an approximate reverse movie of wave propagation from which the location of the hypocenter and other information might be inferred. In this study, the backward propagation is performed numerically using a parallel cartesian spectral element code. Initial tests using point source moment tensors serve as control for the adaptability of the used wave propagation algorithm. After that we investigated the potential of time reversal to recover finite source characteristics (e.g., size of ruptured area, rupture velocity etc.). We used synthetic data from the SPICE kinematic source inversion blind test initiated to investigate the performance of current kinematic source inversion approaches (http://www.spice-rtn.org/library/valid). The synthetic data set attempts to reproduce the 2000 Tottori earthquake with 33 records close to the fault. We discuss the influence of various assumptions made on the source (e.g., origin time, hypocenter, fault location, etc.), adjoint source weighting (e.g., correct for epicentral distance) and structure (uncertainty in the velocity model) on the results of the time reversal process. We give an overview about the quality of focussing of the different wavefield properties (i.e., displacements, strains, rotations, energies). Additionally, the potential to recover source properties of multiple point sources at the same time is discussed.

  15. Subcritical crack growth in fibrous materials

    NASA Astrophysics Data System (ADS)

    Santucci, S.; Cortet, P.-P.; Deschanel, S.; Vanel, L.; Ciliberto, S.

    2006-05-01

    We present experiments on the slow growth of a single crack in a fax paper sheet submitted to a constant force F. We find that statistically averaged crack growth curves can be described by only two parameters: the mean rupture time τ and a characteristic growth length ζ. We propose a model based on a thermally activated rupture process that takes into account the microstructure of cellulose fibers. The model is able to reproduce the shape of the growth curve, the dependence of ζ on F as well as the effect of temperature on the rupture time τ. We find that the length scale at which rupture occurs in this model is consistently close to the diameter of cellulose microfibrils.

  16. Effect of position, time in the season, and playing surface on Achilles tendon ruptures in NFL games: a 2009-10 to 2016-17 review.

    PubMed

    Krill, Michael K; Borchers, James R; Hoffman, Joshua T; Krill, Matthew L; Hewett, Timothy E

    2017-09-01

    Achilles tendon (AT) ruptures are a potentially career-altering and ending injury. Achilles tendon ruptures have a below average return-to-play rate compared to other common orthopaedic procedures for National Football League (NFL) players. The objective of this study was to monitor the incidence and injury rates (IR) of AT ruptures that occurred during the regular season in order to evaluate the influence of player position, time of injury, and playing surface on rupture rates. A thorough online review was completed to identify published injury reports and public information regarding AT ruptures sustained during regular season and post-season games in the National Football League (NFL) during the 2009-10 to 2016-17 seasons. Team schedules, player position details and stadium information was used to determine period of the season of injury and playing surface. IRs were calculated per 100 team games (TG). Injury rate ratios (IRR) were utilized to compare IRs. During eight monitored seasons, there were 44 AT ruptures in NFL games. A majority of AT ruptures were sustained in the first eight games of the regular season (n = 32, 72.7%). There was a significant rate difference for the first and second four-game segments of the regular season compared to the last two four-game segments of the regular season. Defensive players suffered a majority of AT ruptures (n = 32, 72.7%). The IR on grass was 1.00 per 100 TG compared to 1.08 per 100 TG on artificial turf (IRR: 0.93, p = .80). A significant increase in AT ruptures occurred in the first and second four game segments of the regular season compared to the last two-four game segments of the regular season. Defensive players suffered a majority of AT ruptures compared to offensive or specialist players. There was no difference between AT rupture rates and playing surface in games.

  17. Multiple geophysical observations indicate possible splay fault activation during the 2006 Java Tsunami earthquake

    NASA Astrophysics Data System (ADS)

    Fan, W.; Bassett, D.; Denolle, M.; Shearer, P. M.; Ji, C.; Jiang, J.

    2017-12-01

    The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted 65 s with a rupture speed of 1.2 km/s, while the second stage lasted from 65 to 150 s with a rupture speed of 2.7 km/s. In addition, P-wave high-frequency radiated energy and fall-off rates indicate a rupture transition at 60 s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also collocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.

  18. Misdiagnosed Chest Pain: Spontaneous Esophageal Rupture

    PubMed Central

    Inci, Sinan; Gundogdu, Fuat; Gungor, Hasan; Arslan, Sakir; Turkyilmaz, Atila; Eroglu, Atila

    2013-01-01

    Chest pain is one of themost common complaints expressed by patients presenting to the emergency department, and any initial evaluation should always consider life-threatening causes. Esophageal rupture is a serious condition with a highmortality rate. If diagnosed, successful therapy depends on the size of the rupture and the time elapsed between rupture and diagnosis.We report on a 41-year-old woman who presented to the emergency department complaining of left-sided chest pain for two hours. PMID:27122690

  19. Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth

    PubMed Central

    Sornette, Didier

    2002-01-01

    We propose that catastrophic events are “outliers” with statistically different properties than the rest of the population and result from mechanisms involving amplifying critical cascades. We describe a unifying approach for modeling and predicting these catastrophic events or “ruptures,” that is, sudden transitions from a quiescent state to a crisis. Such ruptures involve interactions between structures at many different scales. Applications and the potential for prediction are discussed in relation to the rupture of composite materials, great earthquakes, turbulence, and abrupt changes of weather regimes, financial crashes, and human parturition (birth). Future improvements will involve combining ideas and tools from statistical physics and artificial/computational intelligence, to identify and classify possible universal structures that occur at different scales, and to develop application-specific methodologies to use these structures for prediction of the “crises” known to arise in each application of interest. We live on a planet and in a society with intermittent dynamics rather than a state of equilibrium, and so there is a growing and urgent need to sensitize students and citizens to the importance and impacts of ruptures in their multiple forms. PMID:11875205

  20. The 2017 Mw8.2 Tres Picos, Mexico Earthquake, an intraslab rupture crossing the Tehuantepec Fracture Zone stopped by a tear in the Cocos Plate

    NASA Astrophysics Data System (ADS)

    Wei, S.; Zeng, H.; WANG, X.; Qiu, Q.; Wang, T.; Li, L.; Chen, M.; Hermawan, I.; Wang, Y.; Tapponnier, P.; Barbot, S.

    2017-12-01

    On September 7th 2017, an Mw 8.2 intraslab earthquake ruptured beneath the Tehuantepec seismic gap in the Mexico subduction zone. We conducted a comprehensive investigation to characterize the earthquake rupture, including high-resolution back-projection, mainshock and large aftershocks relocation, aftershock moment tensor inversion, finite rupture model inversion jointly inverted from seismic waveform, static/high-rate GPS and InSAR images, and tsunami modeling. The back-projection results delineate a unilateral northwestward rupture about 150 km in length and 60s in duration, with a stable average rupture speed of 2.8 km/s. To reconcile multiple datasets, we used a two-segment fault geometry with near vertical dip angle (78°), and the second segment strikes slightly northward oriented, to mimic the rupture across the Tehuantepec Fracture Zone (FTZ) that separates the rupture into two segments. The joint inversion shows that the slip southeastern of TFZ dominates the moment release in the depth range of 30-50km during the first 40s. The second rupture segment released about 15% of the total moment, but with relatively larger contribution to the high-rate GPS, static geodetic and tide gauges data. Most of the large aftershocks occurred in the shallower part of the slab, with dominant thrust focal mechanism in agreement with slab bending. In contrast, the mainshock initiated at greater depth inside the slab, on a fault that may have formed near the trench and was reactivated by slab unbending, and was perhaps facilitated by dehydration. The comparison between the rupture model and the free air gravity anomaly suggests that the rupture was blocked westward by a low gravity anomaly zone. We interpret the difference in subducting speed and slab age across the TFZ and the Cocos plate gravity anomaly to be responsible for the abrupt stopping of the rupture at a tear zone inside the diving Cocos plate. Whether this earthquake will enhance future rupture on the plate interface in Tehuantepec seismic gap is not clear, as the corresponding stress change clamped the megathrust up-dip. Still, the recent seismic activity raises concern about the imminent seismic hazards in the region.

  1. Impact of fault models on probabilistic seismic hazard assessment: the example of the West Corinth rift.

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Boiselet, Aurelien; Lyon-Caen, Hélène

    2016-04-01

    Including faults in probabilistic seismic hazard assessment tends to increase the degree of uncertainty in the results due to the intrinsically uncertain nature of the fault data. This is especially the case in the low to moderate seismicity regions of Europe, where slow slipping faults are difficult to characterize. In order to better understand the key parameters that control the uncertainty in the fault-related hazard computations, we propose to build an analytic tool that provides a clear link between the different components of the fault-related hazard computations and their impact on the results. This will allow identifying the important parameters that need to be better constrained in order to reduce the resulting uncertainty in hazard and also provide a more hazard-oriented strategy for collecting relevant fault parameters in the field. The tool will be illustrated through the example of the West Corinth rifts fault-models. Recent work performed in the gulf has shown the complexity of the normal faulting system that is accommodating the extensional deformation of the rift. A logic-tree approach is proposed to account for this complexity and the multiplicity of scientifically defendable interpretations. At the nodes of the logic tree, different options that could be considered at each step of the fault-related seismic hazard will be considered. The first nodes represent the uncertainty in the geometries of the faults and their slip rates, which can derive from different data and methodologies. The subsequent node explores, for a given geometry/slip rate of faults, different earthquake rupture scenarios that may occur in the complex network of faults. The idea is to allow the possibility of several faults segments to break together in a single rupture scenario. To build these multiple-fault-segment scenarios, two approaches are considered: one based on simple rules (i.e. minimum distance between faults) and a second one that relies on physically-based simulations. The following nodes represents for each rupture scenario different rupture forecast models (i.e; characteristic or Gutenberg-Richter) and for a given rupture forecast, two probability models commonly used in seismic hazard assessment: poissonian or time-dependent. The final node represents an exhaustive set of ground motion prediction equations chosen in order to be compatible with the region. Finally, the expected probability of exceeding a given ground motion level is computed at each sites. Results will be discussed for a few specific localities of the West Corinth Gulf.

  2. 77 FR 32437 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... different compliance time. We are proposing this AD to prevent rupture of a gas generator (GG) turbine blade... rupture of a gas generator (GG) turbine blade, which could result in an uncommanded in-flight shutdown and... AD resulted from several cases of GG turbine blade rupture occurring in service on Arriel 2 twin...

  3. Spontaneous renal hemorrhage associated with renal tumors.

    PubMed

    Mydlo, J H; Kaplan, J; Thelmo, W; Macchia, R J

    1997-01-01

    Spontaneous ruptures of the kidney sometimes require emergency surgery, at which time the etiology for the rupture becomes evident. Because the patient with previously existing renal pathology is asymptomatic, when these ruptures do occur one should be suspect of underlying disease. We present a case and discuss the relevant aspects of such entities.

  4. Use of fluroquinolone and risk of Achilles tendon rupture: a population-based cohort study.

    PubMed

    Sode, Jacob; Obel, Niels; Hallas, Jesper; Lassen, Annmarie

    2007-05-01

    Several case-control studies have reported that the use of fluoroquinolone increases the risk of rupture of the Achilles tendon. Our aim was to estimate this risk by means of a population-based cohort approach. Data on Achilles tendon ruptures and fluoroquinolone use were retrieved from three population-based databases that include information on residents of Funen County (population: 470,000) in primary and secondary care during the period 1991-1999. A study cohort of all 28,262 first-time users of fluoroquinolone and all incident cases of Achilles tendon ruptures were identified. The incidence rate of Achilles tendon ruptures among users and non-users of fluoroquinolones and the standardised incidence rate ratio associating fluoroquinolon use with Achilles tendon rupture were the main outcome measures. Between 1991 and 2002 the incidence of Achilles tendon rupture increased from 22.1 to 32.6/100,000 person-years. Between 1991 and 1999 the incidence of fluoroquinolone users was 722/100,000 person-years, with no apparent trend over time. Within 90 days of their first use of fluoroquinolone, five individuals had a rupture of the Achilles tendon; the expected number was 1.6, yielding an age- and sex-standardised incidence ratio of 3.1 [(95% confidence interval (95%CI): 1.0-7.3). The 90-day cumulative incidence of Achilles tendon ruptures among fluoroquinolone users was 17.7/100,000 (95%CI: 5.7-41.3), which is an increase of 12.0/100,000 (95%CI: 0.0-35.6) compared to the background population. Fluoroquinolone use triples the risk of Achilles tendon rupture, but the incidence among users is low.

  5. Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.

    2017-12-01

    Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new pseudo-dynamic rupture modeling approach for computing broadband ground-motion time-histories for simulation-based PSHA

  6. Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases.

    PubMed

    Schlumberger, Michael; Schuster, Philipp; Schulz, Martin; Immendörfer, Micha; Mayer, Philipp; Bartholomä, Jochen; Richter, Jörg

    2017-05-01

    To determine incidence and risk factors for traumatic graft rupture following primary and revision anterior cruciate ligament (ACL) reconstruction. All cases of isolated ACL reconstructions (primary or revision) performed at our institution between January 2007 and December 2010 were included. From this group of 2467 primary reconstructions (32.4 ± 12.2 years) and 448 revision reconstructions (33.0 ± 10.4 years), we identified all patients who underwent revision ACL reconstruction following traumatic graft rupture in further course and all patients who underwent contralateral primary ACL reconstruction until January 2014. Age, gender, time from index procedure and graft diameter (for hamstring autografts) were analysed in terms of being a potential risk factor for graft rupture. Within a follow-up period of 5.0 ± 1.1 years (3.0-7.0), a total of 82 traumatic graft ruptures were identified, resulting in an incidence of 2.8 %. Seventy-three cases were seen following primary reconstructions (3.0 %), and nine cases following revision reconstructions (2.0 %), respectively (n.s.). Age younger than 25 years was identified as a risk factor for both groups (p = 0.001 and p = 0.008; odds ratio 6.0 and 6.4, respectively). In primary reconstruction, male patients had a higher risk of graft rupture compared with females (3.7 vs. 1.6 %; p = 0.005), and the first year after index procedure was associated with a higher risk of graft rupture compared with the following (p < 0.001). Graft diameter did not influence the risk of graft rupture. Incidence of contralateral ACL rupture was 3.1 %, which was not different to the incidence of graft rupture ipsilaterally (n.s.). No statistically significant differences were seen between graft rupture incidence of primary and revision ACL reconstructions. Young age (<25 years) and short time to the index procedure (especially within the first year) were confirmed as risk factors for graft rupture in both groups. Male gender was a risk factor for primary reconstructions. Graft diameter had no influence on graft rupture rates. No difference in incidence of graft rupture compared to ACL rupture on the contralateral side was apparent. Retrospective case series, Level IV.

  7. Shared and Distinct Rupture Discriminants of Small and Large Intracranial Aneurysms.

    PubMed

    Varble, Nicole; Tutino, Vincent M; Yu, Jihnhee; Sonig, Ashish; Siddiqui, Adnan H; Davies, Jason M; Meng, Hui

    2018-04-01

    Many ruptured intracranial aneurysms (IAs) are small. Clinical presentations suggest that small and large IAs could have different phenotypes. It is unknown if small and large IAs have different characteristics that discriminate rupture. We analyzed morphological, hemodynamic, and clinical parameters of 413 retrospectively collected IAs (training cohort; 102 ruptured IAs). Hierarchal cluster analysis was performed to determine a size cutoff to dichotomize the IA population into small and large IAs. We applied multivariate logistic regression to build rupture discrimination models for small IAs, large IAs, and an aggregation of all IAs. We validated the ability of these 3 models to predict rupture status in a second, independently collected cohort of 129 IAs (testing cohort; 14 ruptured IAs). Hierarchal cluster analysis in the training cohort confirmed that small and large IAs are best separated at 5 mm based on morphological and hemodynamic features (area under the curve=0.81). For small IAs (<5 mm), the resulting rupture discrimination model included undulation index, oscillatory shear index, previous subarachnoid hemorrhage, and absence of multiple IAs (area under the curve=0.84; 95% confidence interval, 0.78-0.88), whereas for large IAs (≥5 mm), the model included undulation index, low wall shear stress, previous subarachnoid hemorrhage, and IA location (area under the curve=0.87; 95% confidence interval, 0.82-0.93). The model for the aggregated training cohort retained all the parameters in the size-dichotomized models. Results in the testing cohort showed that the size-dichotomized rupture discrimination model had higher sensitivity (64% versus 29%) and accuracy (77% versus 74%), marginally higher area under the curve (0.75; 95% confidence interval, 0.61-0.88 versus 0.67; 95% confidence interval, 0.52-0.82), and similar specificity (78% versus 80%) compared with the aggregate-based model. Small (<5 mm) and large (≥5 mm) IAs have different hemodynamic and clinical, but not morphological, rupture discriminants. Size-dichotomized rupture discrimination models performed better than the aggregate model. © 2018 American Heart Association, Inc.

  8. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.

    PubMed

    Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E

    2015-12-22

    The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.

  9. Transpressional Rupture Cascade of the 2016 Mw 7.8 Kaikoura Earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Feng, Guangcai; Meng, Lingsen; Zhang, Ailin; Ampuero, Jean Paul; Bürgmann, Roland; Fang, Lihua

    2018-03-01

    Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface displacement of about 10 m near the intersection between the Kekerengu and Papatea faults. Teleseismic back projection imaging shows that rupture speed was overall slow (1.4 km/s) but faster on individual fault segments (approximately 2 km/s) and that the conjugate, oblique-reverse, north striking faults released the largest high-frequency energy. We show that the linking Conway-Charwell faults aided in propagation of rupture across the step over from the Humps fault zone to the Hope fault. Fault slip cascaded along the Jordan Thrust, Kekerengu, and Needles faults, causing stress perturbations that activated two major conjugate faults, the Hundalee and Papatea faults. Our results shed important light on the study of earthquakes and seismic hazard evaluation in geometrically complex fault systems.

  10. Investigating the deformation of upper crustal faults at the N-Chilean convergent plate boundary at different scales using high-resolution topography datasets and creepmeter measurements

    NASA Astrophysics Data System (ADS)

    Ewiak, O.; Victor, P.; Ziegenhagen, T.; Oncken, O.

    2012-04-01

    The Chilean convergent plate boundary is one of the tectonically most active regions on earth and prone to large megathrust earthquakes as e. g. the 2010 Mw 8.8 Maule earthquake which ruptured a mature seismic gap in south-central Chile. In northern Chile historical data suggests the existence of a seismic gap between Arica and Mejillones Peninsula (MP), which has not ruptured since 1877. Further south, the 1995 Mw 8.0 Antofagasta earthquake ruptured the subduction interface between MP and Taltal. In this study we investigate the deformation at four active upper plate faults (dip-slip and strike-slip) located above the coupling zone of the subduction interface. The target faults (Mejillones Fault - MF, Salar del Carmen Fault - SCF, Cerro Fortuna Fault - CFF, Chomache Fault - CF) are situated in forearc segments, which are in different stages of the megathrust seismic cycle. The main question of this study is how strain is accumulated in the overriding plate, what is the response of the target faults to the megathrust seismic cycle and what are the mechanisms / processes involved. The hyper arid conditions of the Atacama desert and the extremely low erosion rates enable us to investigate geomorphic markers, e .g. fault scarps and knickpoints, which serve as a record for upper crustal deformation and fault activity about ten thousands years into the past. Fault scarp data has been acquired with Differential-GPS by measuring high-resolution topographic profiles perpendicular to the fault scarps and along incised gullies. The topographic data show clear variations between the target faults which possibly result from their position within the forearc. The surveyed faults, e. g. the SCF, exhibit clear along strike variations in the morphology of surface ruptures attributed to seismic events and can be subdivided into individual segments. The data allows us to distinguish single, composite and multiple fault scarps and thus to detect differences in fault growth initiated either by seismic rupture or fault creep. Additional information on the number of seismic events responsible for the cumulative displacement can be derived from the mapping of knickpoints. By reconstructing the stress field responsible for the formation of identified seismic surface ruptures we can determine stress conditions for failure of upper crustal faults. Comparing these paleo stress conditions with the recent forearc stresses (interseismic / coseismic) we can derive information about a possible activation of upper crustal faults during the megathrust seismic cycle. In addition to the morphotectonic surveys we explore the recent deformation of the target faults by analyzing time series of displacements recorded with micron precision by an array of creepmeters at the target faults for over three years. Total displacement is composed of steady state creep, creep events and sudden displacement events (SDEs) related to seismic rupture. The percentage of SDEs accounts for >50 % (SCF) to 90 % (CFF) of the cumulative displacement. This result very well reflects the field observation that a considerable amount of the total displacement has been accumulated during multiple seismic events.

  11. A Deterministic Methodology for Discriminating between Earthquakes and Underground Nuclear Explosions

    DTIC Science & Technology

    1976-07-01

    rupture (right) to represent a bilat- eral rupture is described in the text Page 48 50 51 56 60 3.11 Far-field radiation patterns for the bi ...particularly effective for detecting, isolating and timing the various seismic phases ^g’ p*’ pn’ Sg’ s*’ Sn , etc.) that are recorded on event seismograms in...of the stress field during rupture. 5. A criterion allowing the rupture to heal . All earthquake models must, implicitly or explicitly, deal with

  12. Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.

    1996-01-01

    Seismological observations of short slip duration on faults (short rise time on seismograms) during earthquakes are not consistent with conventional crack models of dynamic rupture and fault slip. In these models, the leading edge of rupture stops only when a strong region is encountered, and slip at an interior point ceases only when waves from the stopped edge of slip propagate back to that point. In contrast, some seismological evidence suggests that the duration of slip is too short for waves to propagate from the nearest edge of the ruptured surface, perhaps even if the distance used is an asperity size instead of the entire rupture dimension. What controls slip duration, if not dimensions of the fault or of asperities? In this study, dynamic earthquake rupture and slip are represented by a propagating shear crack. For all propagating shear cracks, slip velocity is highest near the rupture front, and at a small distance behind the rupture front, the slip velocity decreases. As pointed out by Heaton (1990), if the crack obeys a negative slip-rate-dependent strength relation, the lower slip velocity behind the rupture front will lead to strengthening that further reduces the velocity, and under certain circumstances, healing of slip can occur. The boundary element method of Hamano (1974) is used in a program adapted from Andrews (1985) for numerical simulations of mode II rupture with two different velocity-dependent strength functions. For the first function, after a slip-weakening displacement, the crack follows an exponential velocity-weakening relation. The characteristic velocity V0 of the exponential determines the magnitude of the velocity-dependence at dynamic velocities. The velocity-dependence at high velocity is essentially zero when V0 is small and the resulting slip velocity distribution is similar to slip weakening. If V0 is larger, rupture propagation initially resembles slip-weakening, but spontaneous healing occurs behind the rupture front. The rise time and rupture propagation velocity depend on the choice of constitutive parameters. The second strength function is a natural log velocity-dependent form similar to constitutive laws that fit experimental rock friction data at lower velocities. Slip pulses also arise with this function. For a reasonable choice of constitutive parameters, slip pulses with this function do not propagate at speeds greater than the Raleighwave velocity. The calculated slip pulses are similar in many aspects to seismic observations of short rise time. In all cases of self-healing slip pulses, the residual stress increases with distance behind the trailing edge of the pulse so that the final stress drop is much less than the dynamic stress drop, in agreement with the model of Brune (1976) and some recent seismological observations of rupture.

  13. A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake

    NASA Astrophysics Data System (ADS)

    Ruppert, Stanley D.; Yomogida, Kiyoshi

    1992-09-01

    Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.

  14. Temporal and spatial heterogeneity of rupture process application in shakemaps of Yushu Ms7.1 earthquake, China

    NASA Astrophysics Data System (ADS)

    Kun, C.

    2015-12-01

    Studies have shown that estimates of ground motion parameter from ground motion attenuation relationship often greater than the observed value, mainly because multiple ruptures of the big earthquake reduce the source pulse height of source time function. In the absence of real-time data of the station after the earthquake, this paper attempts to make some constraints from the source, to improve the accuracy of shakemaps. Causative fault of Yushu Ms 7.1 earthquake is vertical approximately (dip 83 °), and source process in time and space was dispersive distinctly. Main shock of Yushu Ms7.1 earthquake can be divided into several sub-events based on source process of this earthquake. Magnitude of each sub-events depended on each area under the curve of source pulse of source time function, and location derived from source process of each sub-event. We use ShakeMap method with considering the site effect to generate shakeMap for each sub-event, respectively. Finally, ShakeMaps of mainshock can be aquired from superposition of shakemaps for all the sub-events in space. Shakemaps based on surface rupture of causative Fault from field survey can also be derived for mainshock with only one magnitude. We compare ShakeMaps of both the above methods with Intensity of investigation. Comparisons show that decomposition method of main shock more accurately reflect the shake of earthquake in near-field, but for far field the shake is controlled by the weakening influence of the source, the estimated Ⅵ area was smaller than the intensity of the actual investigation. Perhaps seismic intensity in far-field may be related to the increasing seismic duration for the two events. In general, decomposition method of main shock based on source process, considering shakemap of each sub-event, is feasible for disaster emergency response, decision-making and rapid Disaster Assessment after the earthquake.

  15. Fault zones ruptured during the early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0) based on the associated co-seismic surface ruptures

    NASA Astrophysics Data System (ADS)

    Lekkas, Efthymios L.; Mavroulis, Spyridon D.

    2016-01-01

    The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.

  16. A retrospective study of eyeball rupture in patients with or without orbital fracture

    PubMed Central

    Chen, Xiang; Yao, Yi; Wang, Fengxiang; Liu, Tiecheng; Zhao, Xiao

    2017-01-01

    Abstract To summarize the clinical features of eyeball rupture with or without orbital fracture and explore the differences between them. In all, 197 patients were observed, and the following data were recorded: sex, age, time of injury, place of injury, cause of trauma, zone of eye injury, intraocular content prolapse, surgical methods and the therapeutic process, visual acuity after injury, and the final best corrected visual acuity. The results were analyzed for statistically significant differences. There was no significant difference (P > .05) in the age, sex, or cause of injury. Patients with eyeball rupture with fracture had poorer vision than did those in the simple eyeball rupture group; eyeball rupture with fracture also had a higher probability of enucleation. In this study, the clinical results show that prognosis of eyeball rupture with orbital fracture is worse than that of eyeball rupture without orbital fracture. PMID:28614230

  17. A retrospective study of eyeball rupture in patients with or without orbital fracture.

    PubMed

    Chen, Xiang; Yao, Yi; Wang, Fengxiang; Liu, Tiecheng; Zhao, Xiao

    2017-06-01

    To summarize the clinical features of eyeball rupture with or without orbital fracture and explore the differences between them.In all, 197 patients were observed, and the following data were recorded: sex, age, time of injury, place of injury, cause of trauma, zone of eye injury, intraocular content prolapse, surgical methods and the therapeutic process, visual acuity after injury, and the final best corrected visual acuity. The results were analyzed for statistically significant differences.There was no significant difference (P > .05) in the age, sex, or cause of injury. Patients with eyeball rupture with fracture had poorer vision than did those in the simple eyeball rupture group; eyeball rupture with fracture also had a higher probability of enucleation.In this study, the clinical results show that prognosis of eyeball rupture with orbital fracture is worse than that of eyeball rupture without orbital fracture.

  18. Seismic hazard assessment over time: Modelling earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Chung-Han; Wang, Yu; Wang, Yu-Ju; Lee, Ya-Ting

    2017-04-01

    To assess the seismic hazard with temporal change in Taiwan, we develop a new approach, combining both the Brownian Passage Time (BPT) model and the Coulomb stress change, and implement the seismogenic source parameters by the Taiwan Earthquake Model (TEM). The BPT model was adopted to describe the rupture recurrence intervals of the specific fault sources, together with the time elapsed since the last fault-rupture to derive their long-term rupture probability. We also evaluate the short-term seismicity rate change based on the static Coulomb stress interaction between seismogenic sources. By considering above time-dependent factors, our new combined model suggests an increased long-term seismic hazard in the vicinity of active faults along the western Coastal Plain and the Longitudinal Valley, where active faults have short recurrence intervals and long elapsed time since their last ruptures, and/or short-term elevated hazard levels right after the occurrence of large earthquakes due to the stress triggering effect. The stress enhanced by the February 6th, 2016, Meinong ML 6.6 earthquake also significantly increased rupture probabilities of several neighbouring seismogenic sources in Southwestern Taiwan and raised hazard level in the near future. Our approach draws on the advantage of incorporating long- and short-term models, to provide time-dependent earthquake probability constraints. Our time-dependent model considers more detailed information than any other published models. It thus offers decision-makers and public officials an adequate basis for rapid evaluations of and response to future emergency scenarios such as victim relocation and sheltering.

  19. Dynamic Rupture along a Material Interface: Background, Implications, and Recent Seismological Observations

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; McGuire, J.

    2003-04-01

    Natural fault systems have interfaces that separate different media. There are fundamental differences between in-plane ruptures on planar faults that separate similar and dissimilar elastic solids. In a linear isotropic homogeneous solid, slip does not change the normal stress on the rupture plane. However, if the fault separates different materials in-plane slip can produce strong variations of normal stress on the fault. The interaction between slip and normal stress along a material interface can reduce dynamically the frictional strength, making material interfaces mechanically favored surfaces for rupture propagation. Analytical and numerical works (Weertman, 1980; Adams, 1995; Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998) have shown that rupture along a material interface occurs as a narrow wrinkle-like pulse propagating spontaneously only in one direction, that of slip in the more compliant medium. Characteristic features of the wrinkle-like pulse include: (1) Strong correlation between variations of normal stress and slip. (2) Asymmetric motion on different sides of the fault. (3) Preferred direction of rupture propagation. (4) Self-sharpening and divergent behavior with propagation distance. These characteristics can be important to a number of fundamental issues, including trapping of rupture in structures with material interfaces, the heat flow paradox, short rise-time of earthquake slip, possible existence of tensile component of rupture, and spatial distribution of seismic shaking. Rubin and Gillard (2000), Rubin (2002) and McGuire et al. (2002) presented some seismological evidence that rupture propagation along the San Andreas and other large faults is predominantly unidirectional. Features (1)-(4) are consistent with observations from lab sliding and fracture experiments (Anooshehpoor and Brune, 1999; Schallamach, 1971; Samudrala and Rosakis, 2000). Cochard and Rice (2000) performed calculations of rupture along a material interface governed by a regularized friction having a gradual response of strength to an abrupt variation of normal stress. Their calculations confirmed features (1)-(3) and showed hints of feature (4). The latter was not fully developed in their results because the calculations did not extend long enough in time. Ben-Zion and Huang (2002) simulated dynamic rupture on an interface governed by the regularized friction between a low velocity layer and a surrounding host rock. The results show that the self-sharpening and divergent behavior exists also with the regularized friction for large enough propagation distance. The simulations of Ben-Zion and Huang suggest that in fault structures having a low velocity layer, rupture initiated by failing of an asperity with size not larger than the layer width can become a self-sustaining wrinkle-like pulse. However, if the initial asperity is much larger than the layer width, the rupture will not propagate as a self-sustaining pulse (unless there is also an overall contrast across the fault). The Bear Valley section of the San Andreas Fault separates high velocity block on the SW from a low-velocity material on the NE. This contrast is expected to generate a preference for rupture to the SE and fault zone head-waves on the NE block. Using seismograms from a high density temporary array (Thurber et al., 1997), we measured differential travel-times of head-waves along with the geometrical distribution of the stations at which they arrive prior to the direct P-wave. The travel-time data and spatial distribution of events and stations associated with headwave first arrivals are compatible with the theoretical results of Ben-Zion (1989). We are now modeling waveforms to obtain high resolution image of the fault-zone structure. To test the prediction of unidirectional rupture propagation, we estimate the space-time variances of the moment-release distribution of magnitude 2.5-3.0 events using a variation of the Empirical Green's Function technique. Initial results for a few small events indicate rupture propagation in both directions. We are developing a catalog that will hopefully be large enough to provide clear results on this issue.

  20. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  1. Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture

    PubMed Central

    Holmes, D. F.; Lu, Y.; Purslow, P. P.; Kadler, K. E.; Bechet, D.; Wess, T. J.

    2012-01-01

    Scaling relationships have been formulated to investigate the influence of collagen fibril diameter (D) on age-related variations in the strain energy density of tendon. Transmission electron microscopy was used to quantify D in tail tendon from 1.7- to 35.3-mo-old (C57BL/6) male mice. Frequency histograms of D for all age groups were modeled as two normally distributed subpopulations with smaller (DD1) and larger (DD2) mean Ds, respectively. Both DD1 and DD2 increase from 1.6 to 4.0 mo but decrease thereafter. From tensile tests to rupture, two strain energy densities were calculated: 1) uE [from initial loading until the yield stress (σY)], which contributes primarily to tendon resilience, and 2) uF [from σY through the maximum stress (σU) until rupture], which relates primarily to resistance of the tendons to rupture. As measured by the normalized strain energy densities uE/σY and uF/σU, both the resilience and resistance to rupture increase with increasing age and peak at 23.0 and 4.0 mo, respectively, before decreasing thereafter. Multiple regression analysis reveals that increases in uE/σY (resilience energy) are associated with decreases in DD1 and increases in DD2, whereas uF/σU (rupture energy) is associated with increases in DD1 alone. These findings support a model where age-related variations in tendon resilience and resistance to rupture can be directed by subtle changes in the bimodal distribution of Ds. PMID:22837169

  2. Investigation of the Landing Characteristics of a Re-entry Vehicle Having a Canted Multiple Air Bag Load Alleviation System

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Stubbs, Sandy M.

    1963-01-01

    An investigation was made to determine the landing-impact characteristics of a reentry vehicle having a multiple-air-bag load-alleviation system. A 1/16-scale dynamic model having four canted air bags was tested at flight-path angles of 90 degrees (vertical), 45 degrees, and 27 degrees for a parachute or paraglider vertical letdown velocity of 30 feet per second (full scale). Landings were made on concrete at attitudes ranging from -l5 degrees to 20 degrees. The friction coefficient between the model heat shield and the concrete was approximately 0.4. An aluminum diaphragm, designed to rupture at 10.8 pounds per square inch gage, was used to maintain initial pressure in the air bags for a short time period.

  3. Pectoralis major ruptures in professional American football players.

    PubMed

    Tarity, T David; Garrigues, Grant E; Ciccotti, Michael G; Zooker, Chad C; Cohen, Steven B; Frederick, Robert W; Williams, Gerald R; DeLuca, Peter F; Dodson, Christopher C

    2014-09-01

    Pectoralis major injuries are an infrequent shoulder injury that can result in pain, weakness, and deformity. These injuries may occur during the course of an athletic competition, including football. The purpose of this study was to determine the incidence of pectoralis major ruptures in professional football players and time lost from the sport following injury. We hypothesized that ruptures most frequently occur during bench-press strength training. The National Football League Injury Surveillance System was reviewed for all pectoralis major injuries in all players from 2000 to 2010. Details regarding injury setting, player demographics, method of treatment, and time lost were recorded. A total of 10 injuries-complete ruptures-were identified during this period. Five of the 10 were sustained in defensive players, generally while tackling. Nine occurred during game situations, and 1 occurred during practice. Specific data pertinent to the practice injury was not available. No rupture occurred during weight lifting. Eight ruptures were treated operatively, and 2 cases did not report the method of definitive treatment. The average days lost was 111 days (range, 42-189). The incidence was 0.004 pectoralis major ruptures during the 11-year study period. Pectoralis major injuries are uncommon while playing football. In the National Football League, these injuries primarily occur not during practice or while bench pressing but rather during games. When pectoralis major ruptures do occur, they are successfully treated operatively. Surgery may allow for return to full sports participation. IV, case series.

  4. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  5. PIP silicone breast implants: rupture rates based on the explantation of 676 implants in a single surgeon series.

    PubMed

    Quaba, Omar; Quaba, Awf

    2013-09-01

    To determine the true rupture rates of PIP implants from a large single surgeon cohort and to assess whether rupture rates varied depending on time of implant insertion. In addition, the efficacy of ultra sound scanning (USS) in determining rupture is examined. Predominantly prospectively based analysis of patient records, investigations and surgical findings. 338 patients (676 implants) were included in the study and they all had removal of their implants. The senior author operated on all patients at some stage of their treatment. 160 patients were imaged pre-operatively with USS. Patients had implants inserted between 1999 and 2007 for cosmetic breast augmentation. A total of 144 ruptured implants were removed from 119 patients, giving a rupture rate of 35.2% per patient and 21.3% per implant over a mean implantation period of 7.8 years. A statistical difference (P < 0.001) in rupture rates between implants inserted prior to 2003 and those inserted from 2003 was demonstrated, with higher failure rates in the latter group. There was a significant difference in rupture rates depending on pocket placement of the implants. The sensitivity and specificity of USS at detecting rupture was 90.6% and 98.3% respectively. A proportion of patients (29.4%) demonstrated loco-regional spread of silicone to the axilla on scanning. Our paper has confirmed high rates of PIP implant failure in the largest published series to date. The significant difference in rupture rates between implants inserted prior to 2003 and those after this time supports the view that industrial silicone was used in the devices after 2003. Implants are more likely to rupture if inserted in the sub muscular plane compared to the sub glandular plane. USS is highly effective at detecting rupture in PIP implants and loco-regional spread is high compared to other devices. We believe this paper provides hard data enabling more informed decision making for patients, clinicians and providers in what remains an active issue affecting thousands of women. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. [Endoscopic realignment with drainage via a peel-away sheath for the treatment of urethral rupture: A report of 21 cases].

    PubMed

    Han, Cong-Xiang; Xu, Wei-Jie; Li, Wei; Yu, Zhong-Ying; Li, Jin-Yu; Lin, Xia-Cong; Zhao, Li

    2016-07-01

    To study the clinical effect endoscopic realignment with drainage via a peel-away sheath in the treatment of urethral rupture. We treated 21 urethral rupture patients by endoscopic realignment with drainage via a peel-away sheath using normal saline for irrigation under the normal nephroscope or Li Xun nephroscope, followed by analysis of the clinical results. The operation was successfully accomplished in 20 cases but failed in 1 and none experienced urinary extravasation. In the 14 cases of bulbar urethral rupture, the mean operation time was (5.1±1.6) min and the mean Foley catheter indwelling time was (26.0±5.1) d. Urethral stricture developed in 57.1% (8/14) of the cases after catheter removal, of which 1 was cured by internal urethrotomy and the other 7 by urethral sound dilation, with an average maximum urinary flow rate of (18.8±1.8) ml/s at 12 months after operation. In the 6 cases of posterior urethral rupture, the mean operation time was (15.8±7.5) min and the mean Foley catheter indwelling time was 8 weeks. Urethral stricture developed in all the 6 cases after catheter removal, of which 3 cases were cured by urethral dilation, 1 by internal urethrotomy, and 2 by open urethroplasty. The average maxium urinary flow rate of the 4 cases exempt from open surgery was (17.9±1.9) ml/s at 12 months after operation. Endoscopic realignment with drainage via a peel-away sheath can keep the operative field clear, avoid intraoperative rinse extravasation, shorten the operation time, improve the operation success rate, and achieve satisfactory early clinical outcomes in the treatment of either bulbar or posterior urethral rupture.

  7. M≥7 Earthquake rupture forecast and time-dependent probability for the Sea of Marmara region, Turkey

    USGS Publications Warehouse

    Murru, Maura; Akinci, Aybige; Falcone, Guiseppe; Pucci, Stefano; Console, Rodolfo; Parsons, Thomas E.

    2016-01-01

    We forecast time-independent and time-dependent earthquake ruptures in the Marmara region of Turkey for the next 30 years using a new fault-segmentation model. We also augment time-dependent Brownian Passage Time (BPT) probability with static Coulomb stress changes (ΔCFF) from interacting faults. We calculate Mw > 6.5 probability from 26 individual fault sources in the Marmara region. We also consider a multisegment rupture model that allows higher-magnitude ruptures over some segments of the Northern branch of the North Anatolian Fault Zone (NNAF) beneath the Marmara Sea. A total of 10 different Mw=7.0 to Mw=8.0 multisegment ruptures are combined with the other regional faults at rates that balance the overall moment accumulation. We use Gaussian random distributions to treat parameter uncertainties (e.g., aperiodicity, maximum expected magnitude, slip rate, and consequently mean recurrence time) of the statistical distributions associated with each fault source. We then estimate uncertainties of the 30-year probability values for the next characteristic event obtained from three different models (Poisson, BPT, and BPT+ΔCFF) using a Monte Carlo procedure. The Gerede fault segment located at the eastern end of the Marmara region shows the highest 30-yr probability, with a Poisson value of 29%, and a time-dependent interaction probability of 48%. We find an aggregated 30-yr Poisson probability of M >7.3 earthquakes at Istanbul of 35%, which increases to 47% if time dependence and stress transfer are considered. We calculate a 2-fold probability gain (ratio time-dependent to time-independent) on the southern strands of the North Anatolian Fault Zone.

  8. Acoustic investigation of the aperture dynamics of an elastic membrane closing an overpressurized cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia; Vidal, Valérie; Melo, Francisco

    2015-08-01

    We report an experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently used as an experimental model system for the investigation of the acoustic emission from the bursting of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the linear acoustic regime. For large initial membrane deformation, the rupture time τ rup is small compared to the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is described.

  9. Pediatric appendicitis rupture rate: a national indicator of disparities in healthcare access.

    PubMed

    Jablonski, Kathleen A; Guagliardo, Mark F

    2005-05-04

    BACKGROUND: The U.S. National Healthcare Disparities Report is a recent effort to measure and monitor racial and ethnic disparities in health and healthcare. The Report is a work in progress and includes few indicators specific to children. An indicator worthy of consideration is racial/ethnic differences in the rate of bad outcomes for pediatric acute appendicitis. Bad outcomes for this condition are indicative of poor access to healthcare, which is amenable to social and healthcare policy changes. METHODS: We analyzed the KID Inpatient Database, a nationally representative sample of pediatric hospitalization, to compare rates of appendicitis rupture between white, African American, Hispanic and Asian children. We ran weighted logistic regression models to obtain national estimates of relative odds of rupture rate for the four groups, adjusted for developmental, biological, socioeconomic, health services and hospital factors that might influence disease outcome. RESULTS: Rupture was a much more burdensome outcome than timely surgery and rupture avoidance. Rupture cases had 97% higher hospital charges and 175% longer hospital stays than non-rupture cases on average. These burdens disproportionately affected minority children, who had 24% - 38% higher odds of appendicitis rupture than white children, adjusting for age and gender. These differences were reduced, but remained significant after adjusting for other factors. CONCLUSION: The racial/ethnic disparities in pediatric appendicitis outcome are large and are preventable with timely diagnosis and surgery for all children. Furthermore, estimating this disparity using the KID survey is a relatively straightforward process. Therefore pediatric appendicitis rupture rate is a good candidate for inclusion in the National Healthcare Disparities Report. As with most other health and healthcare disparities, efforts to reduce disparities in income, wealth and access to care will most likely improve the odds of favorable outcome for this condition as well.

  10. Poly Implant Prothèse (PIP) incidence of rupture: a retrospective MR analysis in 64 patients.

    PubMed

    Scotto di Santolo, Mariella; Cusati, Bianca; Ragozzino, Alfonso; Dell'Aprovitola, Nicoletta; Acquaviva, Alessandra; Altiero, Michele; Accurso, Antonello; Riccardi, Albina; Imbriaco, Massimo

    2014-12-01

    The purpose of this retrospective study was to describe the magnetic resonance imaging (MRI) features of Poly Implant Prothèse (PIP) hydrogel implants in a group of 64 patients and to assess the incidence of rupture, compared to other clinical trials. In this double-center study, we retrospectively reviewed the data sets of 64 consecutive patients (mean age, 43±9 years, age range, 27-65 years), who underwent breast MRI examinations, between January 2008 and October 2013, with suspected implant rupture on the basis of clinical assessment or after conventional imaging examination (either mammography or ultrasound). All patients had undergone breast operation with bilateral textured cohesive gel PIP implant insertion for aesthetic reasons. The mean time after operation was 8 years (range, 6-14 years). No patients reported history of direct trauma to their implants. At the time of clinical examination, 41 patients were asymptomatic, 16 complained of breast tenderness and 7 had clinical evidence of rupture. Normal findings were observed in 15 patients. In 26 patients there were signs of mild collapse, with associated not significant peri-capsular fluid collections and no evidence of implant rupture; in 23 patients there was suggestion of implant rupture, according to breast MRI leading to an indication for surgery. In particular, 14 patients showed intra-capsular rupture, with associated evidence of the linguine sign in all cases; the keyhole sign and the droplet signs were observed in 6 cases. In 9 patients there was evidence of extra-capsular rupture, with presence of axillary collections (siliconomas) in 7 cases and peri-prosthetic and mediastinal cavity siliconomas, in 5 cases. The results of this double center retrospective study, confirm the higher incidence (36%) of prosthesis rupture observed with the PIP implants, compared to other breast implants.

  11. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  12. Systematic Observations of the Slip-pulse Properties of Large Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Hayes, G. P.

    2017-12-01

    In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of ruptures and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture, however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7-M9 processed in a uniform manner and show the magnitude scaling properties (rise time, pulse width, and peak slip rate) of these slip pulses indicates self-similarity. Self similarity suggests a weak form of rupture determinism, where early on in the source process broader, higher amplitude slip pulses will distinguish between events of icnreasing magnitude. Indeed, we find by analyzing the moment rate functions that large and very large events are statistically distinguishable relatively early (at 15 seconds) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.

  13. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    NASA Astrophysics Data System (ADS)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  14. UCERF3: A new earthquake forecast for California's complex fault system

    USGS Publications Warehouse

    Field, Edward H.; ,

    2015-01-01

    With innovations, fresh data, and lessons learned from recent earthquakes, scientists have developed a new earthquake forecast model for California, a region under constant threat from potentially damaging events. The new model, referred to as the third Uniform California Earthquake Rupture Forecast, or "UCERF" (http://www.WGCEP.org/UCERF3), provides authoritative estimates of the magnitude, location, and likelihood of earthquake fault rupture throughout the state. Overall the results confirm previous findings, but with some significant changes because of model improvements. For example, compared to the previous forecast (Uniform California Earthquake Rupture Forecast 2), the likelihood of moderate-sized earthquakes (magnitude 6.5 to 7.5) is lower, whereas that of larger events is higher. This is because of the inclusion of multifault ruptures, where earthquakes are no longer confined to separate, individual faults, but can occasionally rupture multiple faults simultaneously. The public-safety implications of this and other model improvements depend on several factors, including site location and type of structure (for example, family dwelling compared to a long-span bridge). Building codes, earthquake insurance products, emergency plans, and other risk-mitigation efforts will be updated accordingly. This model also serves as a reminder that damaging earthquakes are inevitable for California. Fortunately, there are many simple steps residents can take to protect lives and property.

  15. Holocene activity and seismogenic capability of intraplate thrusts: Insights from the Pampean Ranges, Argentina

    NASA Astrophysics Data System (ADS)

    Costa, Carlos H.; Owen, Lewis A.; Ricci, Walter R.; Johnson, William J.; Halperin, Alan D.

    2018-07-01

    Trench excavations across the El Molino fault in the southeastern Pampean Ranges of central-western Argentina have revealed a deformation zone composed of opposite-verging thrusts that deform a succession of Holocene sediments. The west-verging thrusts place Precambrian basement over Holocene proximal scarp-derived deposits, whereas the east-verging thrusts form an east-directed fault-propagation fold that deforms colluvium, fluvial and aeolian deposits. Ages for exposed fault-related deposits range from 7.1 ± 0.4 to 0.3 ka. Evidence of surface deformation suggests multiple rupture events with related scarp-derived deposits and a minimum of three surface ruptures younger than 7.1 ± 0.4 ka, the last rupture event being younger than 1 ka. Shortening rates of 0.7 ± 0.2 mm/a are near one order of magnitude higher than those estimated for the faults bounding neighboring crustal blocks and are considered high for this intraplate setting. These ground-rupturing crustal earthquakes are estimated to be of magnitude Mw ≥ 7.0, a significant discrepancy with the magnitudes Mw < 6.5 recorded in the seismic catalog of this region at present with low to moderate seismicity. Results highlight the relevance of identifying primary surface ruptures as well as the seismogenic potential of thrust faults in seemingly stable continental interiors.

  16. Spontaneous rupture of the ascending aorta.

    PubMed

    Bin Mahmood, Syed Usman; Ulrich, Andrew; Safdar, Basmah; Geirsson, Arnar; Mangi, Abeel A

    2018-02-01

    Nontraumatic, spontaneous rupture of the ascending aorta is rare and the etiology is largely unknown. We reviewed seven patients from our institution, with no known aortic disease or hereditary connective tissue disorder that presented with spontaneous ascending aortic rupture from 2012 to 2017. Most patients presented with non-radiating chest pain along with hypertension (71.4%). The mean ascending aortic diameter at rupture was 4.60 ± 0.62 cm. The median door-to-operating room time was 2.58 h, resulting from effective implementation of an aortic emergency protocol. There were no operative mortalities. In patients with ascending aortic rupture, aortic diameter may not always correlate with the risk of rupture. Rapid diagnosis combined with a multidisciplinary approach is vital for the successful management of these high-risk patients. © 2018 Wiley Periodicals, Inc.

  17. A case of splenic rupture within an umbilical hernia with loss of domain.

    PubMed

    Fernando, Emil J; Guerron, Alfredo D; Rosen, Michael J

    2015-04-01

    Massive ventral hernia with loss of abdominal domain is a particularly complex disease. We present a case of a massive umbilical hernia with loss of abdominal domain containing the small bowel, colon, and spleen that presented with spontaneous splenic rupture. The patient was an 82-year-old Caucasian female with multiple comorbidities, on anti-coagulation for cardiac dysrhythmia with a congenital umbilical hernia with loss of abdominal domain which had progressed over multiple years. She presented to an outside hospital with history of a left-sided abdominal pain accompanying fatigue and weakness.A CT scan of the abdomen revealed an umbilical hernia with loss of abdominal domain containing the patient's entire small bowel, colon, pancreas, and the spleen. The spleen had ruptured with associated hemorrhage and hematoma in the hernia sac.Management included a multidisciplinary approach with particular attention to comorbidities and hemodynamic monitoring due to splenic rupture. Given the need for lifetime anticoagulation, a splenectomy was planned along with simultaneous abdominal wall reconstruction. The patient underwent an exploratory laparotomy, splenectomy, bilateral posterior component separation with transversus abdominis release, and a retrorectus/preperitoneal placement of heavy weight polypropylene mesh.During the postoperative period, the patient remained intubated initially due to elevated airway pressures before transferring to the regular nursing floor. The remainder of the patient's hospital stay was complicated by a postoperative ileus requiring nasogastric tube decompression and a DVT and PE necessitating anticoagulation. The ileus eventually resolved and diet was slowly advanced. The patient was discharged on POD17. To our knowledge, this is the first report in the literature describing a splenic rupture that occurred within the hernia sac of a congenital umbilical hernia. This report serves to highlight that even with novel cases of massive and atypical hernias, posterior component separation with transversus abdominis release is a reproducible repair that can be performed with good result in a variety of circumstances.

  18. Augmenting Onshore GPS Displacements with Offshore Observations to Improve Slip Characterization for Cascadia Subduction Earthquakes

    NASA Astrophysics Data System (ADS)

    Saunders, J. K.; Haase, J. S.

    2017-12-01

    The rupture location of a Mw 8 megathrust earthquake can dramatically change the near-source tsunami impact, where a shallow earthquake can produce a disproportionally large tsunami for its magnitude. Because the locking pattern of the shallow Cascadia megathrust is unconstrained due to the lack of widespread seafloor geodetic observations, near-source tsunami early warning systems need to be able to identify shallow, near-trench earthquakes. Onshore GPS displacements provide low frequency ground motions and coseismic offsets for characterizing tsunamigenic earthquakes, however the one-sided distribution of data may not be able to uniquely determine the rupture region. We examine how augmenting the current real-time GPS network in Cascadia with different offshore station configurations improves static slip inversion solutions for Mw 8 earthquakes at different rupture depths. Two offshore coseismic data types are tested in this study: vertical-only, which would be available using existing technology for bottom pressure sensors, and all-component, which could be achieved by combining pressure sensors with real-time GPS-Acoustic observations. We find that both types of offshore data better constrain the rupture region for a shallow earthquake compared to onshore data alone when offshore stations are located above the rupture. However, inversions using vertical-only offshore data tend to underestimate the amount of slip for a shallow rupture, which we show underestimates the tsunami impact. Including offshore horizontal coseismic data into the inversions improves the slip solutions for a given offshore station configuration, especially in terms of maximum slip. This suggests that while real-time GPS-Acoustic sensors may have a long development timeline, they will have more impact for inversion-based tsunami early warning systems than bottom pressure sensors. We also conduct sensitivity studies using kinematic models with varying rupture speeds and rise times as a proxy for expected rigidity changes with depth along the megathrust. We find distinguishing features in displacement waveforms that can be used to infer primary rupture region. We discuss how kinematic inversion methods that use these characteristics in high-rate GPS data could be applied to the Cascadia subduction zone.

  19. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction.

    PubMed

    Webster, Kate E; Feller, Julian A; Leigh, Warren B; Richmond, Anneka K

    2014-03-01

    Graft rupture of the same knee or injury to the anterior cruciate ligament (ACL) in the contralateral knee is a devastating outcome after ACL reconstruction surgery. While a number of factors have been identified as potentially increasing the risk of subsequent ACL injury, the literature is far from definitive. To determine the rates of graft rupture and contralateral ACL injury in a large cohort and to investigate patient characteristics that may be associated with these. Case-control study; Level of evidence, 3. A consecutive cohort of 750 patients who had undergone primary ACL reconstruction surgery with a minimum 3-year follow-up were questioned about the incidence of ACL graft rupture, contralateral ACL injury, family history of ACL injury, and current activity level. Patient databases provided details for age, sex, original injury mechanism, meniscus or articular surface injury, and graft diameter. Responses were received from 561 patients (75%) at a mean ± SD follow-up time of 4.8 ± 1.1 years. Anterior cruciate ligament graft ruptures occurred in 25 patients (4.5%), and contralateral ACL injuries occurred in 42 patients (7.5%). The highest incidence of further ACL injury occurred in patients younger than 20 years at the time of surgery. In this group, 29% sustained a subsequent ACL injury to either knee. The odds for sustaining an ACL graft rupture or contralateral injury increased 6- and 3-fold, respectively, for patients younger than 20 years. Returning to cutting/pivoting sports increased the odds of graft rupture by a factor of 3.9 and contralateral rupture by a factor of 5. A positive family history doubled the odds for both graft rupture and contralateral ACL injury. Patients younger than 20 years who undergo ACL reconstruction are at significantly increased risk for both graft rupture and contralateral ACL injury. Whether age per se is a risk factor or age represents a proxy for other factors remains to be determined.

  20. The Siesta Habit is Associated with a Decreased Risk of Rupture of Intracranial Aneurysms.

    PubMed

    Kang, Huibin; Feng, Xin; Zhang, Baorui; Guo, Erkang; Wang, Luyao; Qian, Zenghui; Liu, Peng; Wen, Xiaolong; Xu, Wenjuan; Li, Youxiang; Jiang, Chuhan; Wu, Zhongxue; Zhang, Hongbing; Liu, Aihua

    2017-01-01

    Previous studies have examined an association between the siesta habit and hypertension, as well as coronary heart disease. However, the relationship between a siesta and the risk of rupture of an intracranial aneurysm (IA) has not yet been established. We aimed to investigate the effects of a siesta on the risk of rupture of IAs. We prospectively enrolled consecutive patients diagnosed with IAs at our hospital between January 2016 and December 2016. Univariate and multivariate logistic regression analysis were performed to identify independent risk factors associated with IA rupture. We studied 581 consecutive patients with 514 unruptured and 120 ruptured aneurysms. Univariate analysis demonstrated that hypertension, hyperlipidemia, diabetes mellitus, cigarette smoking, location, size, as well as shape and aspect ratio were associated with the risk of rupture of IAs. Multivariate analysis identified hypertension [odds ratio (OR) 1.68, 95% confidence interval (CI) 1.03-2.73], hyperlipidemia (OR 0.25, 95% CI 0.08-0.72), current cigarette smoking ≥20 cigarettes/day (d) (OR 3.48, 95% CI 1.63-7.47), siesta (siesta time <1 h, OR 0.49, 95% CI 0.24-0.98 and siesta time ≥1 h, OR 0.32, 95% CI 0.19-0.57), location of largest aneurysm on the anterior communicating and internal carotid-posterior communicating artery (PCOM) (anterior communicating artery OR 16.27, 95% CI 7.40-35.79 and PCOM OR 11.21, 95% CI 5.15-24.43), and size of aneurysm ≥7 mm (OR 2.19, 95% CI 1.21-3.97) as independent strong risk factors associated with risk of aneurysm rupture. In the present study, we found that a habitual siesta is a new predictive factor to assess the risk of rupture of an IA. We found the siesta habit may reduce the risk of aneurysm rupture. We also found that hypertension, hyperlipidemia, cigarette smoking, location, and size of aneurysm were associated with the risk of rupture of IAs.

  1. Map showing surface ruptures associated with the Mammoth Lakes, California, earthquakes of May 1980

    USGS Publications Warehouse

    Clark, M.M.; Yount, J.C.; Vaughn, P.R.; Zepeda, R.L.

    1982-01-01

    This map shows surface ruptures associated with the M 6 Mammoth Lakes earthquakes of May 25-27, 1980 (Sherburne, 1980). The ruptures were mapped during USGS field investigations May 28 to June 4 and July 14-19, 1980. The map also includes some of the ruptures recorded by California Division of Mines and Geology investigators May 26-31, June 26-27, and July 7-11, 1980 (Taylor and Bryant, 1980). Because most of the surface ruptures developed in either unconsolidated pumice, alluvium, or till (and many were on slopes of scarps created by earlier faulting), wind, rain and animals quickly erased many of the ruptures. In places, the minimum detectable slip was 3-10 mm. Thus the lines on the map do not record all of the ruptures that formed at the time of the earthquake. Many of the areas were we show gaps between lines on the map probably had cracks originally. 

  2. Broadband simulations for Mw 7.8 southern san andreas earthquakes: Ground motion sensitivity to rupture speed

    USGS Publications Warehouse

    Graves, R.W.; Aagaard, Brad T.; Hudnut, K.W.; Star, L.M.; Stewart, J.P.; Jordan, T.H.

    2008-01-01

    Using the high-performance computing resources of the Southern California Earthquake Center, we simulate broadband (0-10 Hz) ground motions for three Mw 7.8 rupture scenarios of the southern San Andreas fault. The scenarios incorporate a kinematic rupture description with the average rupture speed along the large slip portions of the fault set at 0.96, 0.89, and 0.84 times the local shear wave velocity. Consistent with previous simulations, a southern hypocenter efficiently channels energy into the Los Angeles region along the string of basins south of the San Gabriel Mountains. However, we find the basin ground motion levels are quite sensitive to the prescribed rupture speed, with peak ground velocities at some sites varying by over a factor of two for variations in average rupture speed of about 15%. These results have important implications for estimating seismic hazards in Southern California and emphasize the need for improved understanding of earthquake rupture processes. Copyright 2008 by the American Geophysical Union.

  3. The effect of segmented fault zones on earthquake rupture propagation and termination

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2017-12-01

    A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for rupture propagation through the Anza seismic gap. Our results suggest that a priori knowledge of properties of segmented fault zones is of great importance for predicting sizes of future large earthquakes on major faults.

  4. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  5. Intracranial dermoid cyst rupture-related brain ischemia: Case report and hemodynamic study.

    PubMed

    Jin, Hang; Guo, Zhen-Ni; Luo, Yun; Zhao, Ren; Sun, Ming-Shuo; Yang, Yi

    2017-01-01

    Spontaneous rupture of intracranial dermoid cyst is a rare but serious clinical event that can result in cerebral ischemia. Cerebral vasospasm and vasculitis are considered as potential mechanisms of dermoid cyst rupture-related cerebral ischemia. However, the hemodynamic mechanisms between cerebral ischemia and dermoid cyst rupture are not well known. A 55-year-old, right-handed man was admitted to our hospital with sudden receptive aphasia and right-sided hypoalgesia. Brain magnetic resonance imaging (MRI) revealed a ruptured dermoid cyst and watershed infarcts in the left hemisphere. Then brain magnetic resonance angiography disclosed mild stenosis in the left middle cerebral artery (MCA), and further high-resolution MRI demonstrated it was caused by an unstable atherosclerosis plaque. Transcranial Doppler of the patient showed a decreasing tendency of peak systolic velocity (PSV) of the left MCA at different time points after the stroke (from 290cm/s at day 6 to 120cm/s at day 30), indicating a transient vasospasm. However, the time course of dynamic cerebral autoregulation (dCA) seemed different from the PSV. The patient's dCA reached its lowest point at day 8 and was restored at day 10. The time course of dCA indicated a "called procedure" of a cerebrovascular regulating function to deal with the stimulation in subarachnoid space. A dermoid cyst rupture-related cerebral infarction was diagnosed in this patient. Aspirin (100 mg/d) and atorvastatin (20 mg/d) were given to the patient. A neurosurgical operation was strongly recommended to minimize the risk of further injury of the ruptured dermoid cyst; however, the patient refused the recommended treatment. The neurological deficit of the patient was significantly improved on 30 days follow-up. We found that the spread of cyst contents through the subarachnoid and/or ventricular system can induce a vasospasm. Then, dCA was "called" to deal with the stimulation in the subarachnoid space. Compromised dCA seems to be one of the compensatory of cerebral vasospasm after a dermoid cyst rupture.

  6. Effects of Bounded Fault on Seismic Radiation and Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yang, H.

    2016-12-01

    It has been suggested that narrow rectangle fault may emit stopping phases that can largely affect seismic radiation and thus rupture propagation, e.g., generation of short-duration pulse-like ruptures. Here we investigate the effects of narrow along-dip rectangle fault (analogously to 2015 Nepal earthquake with 200 km * 40 km) on seismic radiation and rupture propagation through numerical modeling in the framework of the linear slip-weakening friction law. First, we found the critical slip-weakening distance Dc may largely affect the seismic radiation and other source parameters, such as rupture speed, final slip and stress drop. Fixing all other uniform parameters, decreasing Dc could decrease the duration time of slip rate and increase the peak slip rate, thus increase the seismic radiation energy spectrum of slip acceleration. In addition, smaller Dc could lead to larger rupture speed (close to S wave velocity), but smaller stress drop and final slip. The results show that Dc may control the efficiency of far-field radiation. Furthermore, the duration time of slip rate at locations close to boundaries is 1.5 - 4 s less than that in the center of the fault. Such boundary effect is especially remarkable for smaller Dc due to the smaller average duration time of slip rate, which could increase the high-frequency radiation energy and impede low-frequency component near the boundaries from the analysis of energy spectrum of slip acceleration. These results show high frequency energy tends to be radiated near the fault boundaries as long as Dc is small enough. In addition, ruptures are fragile and easy to self-arrest if the width of the seismogenic zone is very narrow. In other words, the sizes of nucleation zone need to be larger to initiate runaway ruptures. Our results show the critical sizes of nucleation zones increase as the widths of seismogenic zones decrease.

  7. Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults

    USGS Publications Warehouse

    Felzer, Karen R.

    2014-01-01

    An earthquake occurs when rock that has been deformed under stress rebounds elastically along a fault plane (Gilbert, 1884; Reid, 1911), radiating seismic waves through the surrounding earth. Rupture along the entire fault surface does not spontaneously occur at the same time, however. Rather the rupture starts in one tiny area, the rupture nucleation zone, and spreads sequentially along the fault. Like a row of dominoes, one bit of rebounding fault triggers the next. This triggering is understood to occur because of the large dynamic stresses at the tip of an active seismic rupture. The importance of these crack tip stresses is a central question in earthquake physics. The crack tip stresses are minimally important, for example, in the time predictable earthquake model (Shimazaki and Nakata, 1980), which holds that prior to rupture stresses are comparable to fault strength in many locations on the future rupture plane, with bits of variation. The stress/strength ratio is highest at some point, which is where the earthquake nucleates. This model does not require any special conditions or processes at the nucleation site; the whole fault is essentially ready for rupture at the same time. The fault tip stresses ensure that the rupture occurs as a single rapid earthquake, but the fact that fault tip stresses are high is not particularly relevant since the stress at most points does not need to be raised by much. Under this model it should technically be possible to forecast earthquakes based on the stress-renewaql concept, or estimates of when the fault as a whole will reach the critical stress level, a practice used in official hazard mapping (Field, 2008). This model also indicates that physical precursors may be present and detectable, since stresses are unusually high over a significant area before a large earthquake.

  8. Effect of Time and Temperature on Transformation Toughened Zirconias.

    DTIC Science & Technology

    1987-06-01

    room temperature. High temperature mechanical tests performed vere stress rupture and stepped temperature stress rupture. The results of the tests...tetragonal precipitates will spontaneously transform to the monoclinic phae due to the lattice mismatch stress if they become larger than about 0.2 on, with...specimens, including fast fracture and fracture toughness testing. High temper- ture testing consisting of stress rupture and stepped temperature stress

  9. Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present

    USGS Publications Warehouse

    Scharer, Katherine M.; Weldon, Ray; Biasi, Glenn; Streig, Ashley; Fumal, Thomas E.

    2017-01-01

    Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes.

  10. Are Physics-Based Simulators Ready for Prime Time? Comparisons of RSQSim with UCERF3 and Observations.

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Shaw, B. E.; Gilchrist, J. J.; Jordan, T. H.

    2017-12-01

    Probabilistic seismic hazard analysis (PSHA) is typically performed by combining an earthquake rupture forecast (ERF) with a set of empirical ground motion prediction equations (GMPEs). ERFs have typically relied on observed fault slip rates and scaling relationships to estimate the rate of large earthquakes on pre-defined fault segments, either ignoring or relying on expert opinion to set the rates of multi-fault or multi-segment ruptures. Version 3 of the Uniform California Earthquake Rupture Forecast (UCERF3) is a significant step forward, replacing expert opinion and fault segmentation with an inversion approach that matches observations better than prior models while incorporating multi-fault ruptures. UCERF3 is a statistical model, however, and doesn't incorporate the physics of earthquake nucleation, rupture propagation, and stress transfer. We examine the feasibility of replacing UCERF3, or components therein, with physics-based rupture simulators such as the Rate-State Earthquake Simulator (RSQSim), developed by Dieterich & Richards-Dinger (2010). RSQSim simulations on the UCERF3 fault system produce catalogs of seismicity that match long term rates on major faults, and produce remarkable agreement with UCERF3 when carried through to PSHA calculations. Averaged over a representative set of sites, the RSQSim-UCERF3 hazard-curve differences are comparable to the small differences between UCERF3 and its predecessor, UCERF2. The hazard-curve agreement between the empirical and physics-based models provides substantial support for the PSHA methodology. RSQSim catalogs include many complex multi-fault ruptures, which we compare with the UCERF3 rupture-plausibility metrics as well as recent observations. Complications in generating physically plausible kinematic descriptions of multi-fault ruptures have thus far prevented us from using UCERF3 in the CyberShake physics-based PSHA platform, which replaces GMPEs with deterministic ground motion simulations. RSQSim produces full slip/time histories that can be directly implemented as sources in CyberShake, without relying on the conditional hypocenter and slip distributions needed for the UCERF models. We also compare RSQSim with time-dependent PSHA calculations based on multi-fault renewal models.

  11. Interpolation and Extrapolation of Creep Rupture Data by the Minimum Commitment Method. Part 3: Analysis of Multiheats

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Ensign, C. R.

    1978-01-01

    The Minimum Commitment Method was applied to two sets of data for which multiple heat information was available. For one alloy, a 304 stainless steel studied in Japan, data on nine well characterized heats were used, while for a proprietary low alloy carbon steel studied in the United Kingdom data were available on seven heats - in many cases to very long rupture times. For this preliminary study no instability factors were used. It was discovered that heat-to-heat variations would be accounted for by introducing heat identifiers in the form A + B log sigma where sigma is the stress and the constants A and B depend only on the heat. With these identifiers all the data could be collapsed onto a single master curve, even though there was considerable scatter among heats. Using these identifiers together with the average behavior of all heats made possible the determination of an accurate constitutive equation for each individual heat. Two basic approaches are discussed for applying the results of the analysis.

  12. Observations on Rupture Behaviour of Fluid Induced Events at the Basel EGS Based on Empirical Green's Function Analysis

    NASA Astrophysics Data System (ADS)

    Folesky, J.; Kummerow, J.; Shapiro, S. A.; Asanuma, H.; Häring, M. O.

    2015-12-01

    The Emprirical Green's Function (EGF) method uses pairs of events of high wave form similarity and adjacent hypocenters to decompose the influences of source time function, ray path, instrument site, and instrument response. The seismogram of the smaller event is considered as the Green's Function which then can be deconvolved from the other seismogram. The result provides a reconstructed relative source time function (RSTF) of the larger event of that event pair. The comparison of the RSTFs at different stations of the observation systems produces information on the rupture process of the larger event based on the observation of the directivity effect and on changing RSTFs complexities.The Basel EGS dataset of 2006-2007 consists of about 2800 localized events of magnitudes between 0.0

  13. Computational simulation of the creep-rupture process in filamentary composite materials

    NASA Technical Reports Server (NTRS)

    Slattery, Kerry T.; Hackett, Robert M.

    1991-01-01

    A computational simulation of the internal damage accumulation which causes the creep-rupture phenomenon in filamentary composite materials is developed. The creep-rupture process involves complex interactions between several damage mechanisms. A statistically-based computational simulation using a time-differencing approach is employed to model these progressive interactions. The finite element method is used to calculate the internal stresses. The fibers are modeled as a series of bar elements which are connected transversely by matrix elements. Flaws are distributed randomly throughout the elements in the model. Load is applied, and the properties of the individual elements are updated at the end of each time step as a function of the stress history. The simulation is continued until failure occurs. Several cases, with different initial flaw dispersions, are run to establish a statistical distribution of the time-to-failure. The calculations are performed on a supercomputer. The simulation results compare favorably with the results of creep-rupture experiments conducted at the Lawrence Livermore National Laboratory.

  14. Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work

    USGS Publications Warehouse

    Weldon, R.; Scharer, K.; Fumal, T.; Biasi, G.

    2004-01-01

    The concept of the earthquake cycle is so well established that one often hears statements in the popular media like, "the Big One is overdue" and "the longer it waits, the bigger it will be." Surprisingly, data to critically test the variability in recurrence intervals, rupture displacements, and relationships between the two are almost nonexistent. To generate a long series of earthquake intervals and offsets, we have conducted paleoseismic investigations across the San Andreas fault near the town of Wrightwood, California, excavating 45 trenches over 18 years, and can now provide some answers to basic questions about recurrence behavior of large earthquakes. To date, we have characterized at least 30 prehistoric earthquakes in a 6000-yr-long record, complete for the past 1500 yr and for the interval 3000-1500 B.C. For the past 1500 yr, the mean recurrence interval is 105 yr (31-165 yr for individual intervals) and the mean slip is 3.2 m (0.7-7 m per event). The series is slightly more ordered than random and has a notable cluster of events, during which strain was released at 3 times the long-term average rate. Slip associated with an earthquake is not well predicted by the interval preceding it, and only the largest two earthquakes appear to affect the time interval to the next earthquake. Generally, short intervals tend to coincide with large displacements and long intervals with small displacements. The most significant correlation we find is that earthquakes are more frequent following periods of net strain accumulation spanning multiple seismic cycles. The extent of paleoearthquake ruptures may be inferred by correlating event ages between different sites along the San Andreas fault. Wrightwood and other nearby sites experience rupture that could be attributed to overlap of relatively independent segments that each behave in a more regular manner. However, the data are equally consistent with a model in which the irregular behavior seen at Wrightwood typifies the entire southern San Andreas fault; more long event series will be required to definitively outline prehistoric rupture extents.

  15. Automated analysis of cell migration and nuclear envelope rupture in confined environments.

    PubMed

    Elacqua, Joshua J; McGregor, Alexandra L; Lammerding, Jan

    2018-01-01

    Recent in vitro and in vivo studies have highlighted the importance of the cell nucleus in governing migration through confined environments. Microfluidic devices that mimic the narrow interstitial spaces of tissues have emerged as important tools to study cellular dynamics during confined migration, including the consequences of nuclear deformation and nuclear envelope rupture. However, while image acquisition can be automated on motorized microscopes, the analysis of the corresponding time-lapse sequences for nuclear transit through the pores and events such as nuclear envelope rupture currently requires manual analysis. In addition to being highly time-consuming, such manual analysis is susceptible to person-to-person variability. Studies that compare large numbers of cell types and conditions therefore require automated image analysis to achieve sufficiently high throughput. Here, we present an automated image analysis program to register microfluidic constrictions and perform image segmentation to detect individual cell nuclei. The MATLAB program tracks nuclear migration over time and records constriction-transit events, transit times, transit success rates, and nuclear envelope rupture. Such automation reduces the time required to analyze migration experiments from weeks to hours, and removes the variability that arises from different human analysts. Comparison with manual analysis confirmed that both constriction transit and nuclear envelope rupture were detected correctly and reliably, and the automated analysis results closely matched a manual analysis gold standard. Applying the program to specific biological examples, we demonstrate its ability to detect differences in nuclear transit time between cells with different levels of the nuclear envelope proteins lamin A/C, which govern nuclear deformability, and to detect an increase in nuclear envelope rupture duration in cells in which CHMP7, a protein involved in nuclear envelope repair, had been depleted. The program thus presents a versatile tool for the study of confined migration and its effect on the cell nucleus.

  16. Supershear rupture in the 24 May 2013 Mw 6.7 Okhotsk deep earthquake: Additional evidence from regional seismic stations

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongwen; Shearer, Peter M.; Kanamori, Hiroo

    2015-10-01

    Zhan et al. (2014a) reported supershear rupture during the Mw 6.7 aftershock of the 2013 Mw 8.3 Sea of Okhotsk deep earthquake, relying heavily on the regional station PET, which played a critical role in constraining the vertical rupture dimension and rupture speed. Here we include five more regional stations and find that the durations of the source time functions derived from these stations are consistent with Zhan et al.'s supershear rupture model. Furthermore, to reduce the nonuniqueness of deconvolution and combine the bandwidths of different stations, we conduct a joint inversion of the six regional stations for a single broadband moment-rate function (MRF). The best fitting MRF, which explains all the regional waveforms well, has a smooth shape without any temporal gaps. The Mw 6.7 Okhotsk deep earthquake is more likely a continuous supershear rupture than a dynamically triggered doublet.

  17. Chorioretinal neovascular membranes complicating contusional eye injuries with indirect choroidal ruptures.

    PubMed Central

    Wood, C M; Richardson, J

    1990-01-01

    Chorioretinal neovascular membranes are a recognised but rare cause of late visual loss in eyes suffering contusional injuries. A series of eight cases is presented all with indirect choroidal ruptures involving the perifoveal region. Two main patterns of 'at risk' rupture were noted: a temporally situated rupture passing almost directly through the fovea, and a rupture which curves inferior or superior to the optic disc stopping just short of the fovea. In six of eight cases there was only a partial thickness rupture of the choroid. These neovascular membranes may present at any time after the original injury, either early (within six months of the injury), which could be related to persistence of the normal reparative neovascular response, or late (at least one year after the injury), which are more likely to have resulted from a secondary breakdown of the outer blood-retina barrier. Images PMID:1690025

  18. Great earthquakes of variable magnitude at the Cascadia subduction zone

    USGS Publications Warehouse

    Nelson, A.R.; Kelsey, H.M.; Witter, R.C.

    2006-01-01

    Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600??cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350??cal yr B.P., 2500??cal yr B.P., 3400??cal yr B.P., 3800??cal yr B.P., 4400??cal yr B.P., and 4900??cal yr B.P. A rupture about 700-1100??cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900??cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100??cal yr B.P., 1700??cal yr B.P., 3200??cal yr B.P., 4200??cal yr B.P., 4600??cal yr B.P., and 4700??cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.

  19. Clinical recovery of two hip adductor longus ruptures: a case-report of a soccer player

    PubMed Central

    2013-01-01

    Background Non-operative treatment of acute hip adductor longus ruptures in athletes has been described in the literature. However, very limited information concerning the recovery of this type of injury exists. This case represented a unique possibility to study the recovery of two acute adductor longus ruptures, using novel, reliable and validated assessment methods. Case presentation A 22-year old male soccer player (Caucasian) sustained two subsequent acute adductor longus ruptures, one in each leg. The injuries occurred 10 months apart, and were treated non-surgically in both situations. He was evaluated using hip-strength assessments, self-report and ultrasonography until complete muscle-strength recovery of the hip adductors had occurred. The player was able to participate in a full soccer training session without experiencing pain 15 weeks after the first rupture, and 12 weeks after the second rupture. Full hip adductor muscle-strength recovery was obtained 52 weeks after the first rupture and 10 weeks after the second rupture. The adductor longus injuries, as verified by initial ultrasonography (10 days post-injury), showed evidence of a complete tendon rupture in both cases, with an almost identical imaging appearance. It was only at 6 and 10 weeks ultrasonographic follow-up that the first rupture was found to include a larger anatomical area than the second rupture. Conclusion From this case we can conclude that two apparently similar hip adductor longus ruptures, verified by initial ultrasonography (10 days post-injury), can have very different hip adductor strength recovery times. Assessment of adductor strength recovery may therefore in the future be a useful and important additional measure for determining when soccer players with hip adductor longus ruptures can return safely to play. PMID:23693119

  20. Rupture process of the 2013 Okhotsk deep mega earthquake from iterative backprojection and compress sensing methods

    NASA Astrophysics Data System (ADS)

    Qin, W.; Yin, J.; Yao, H.

    2013-12-01

    On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for the 2011 Tohoku Mw 9.0 earthquake. Geophysical Journal International, 2012, 190(2): 1152-1168. [2]Yao H, Gerstoft P, Shearer P M, et al. Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophysical Research Letters, 2011, 38(20).

  1. Lived experiences of women who developed uterine rupture following severe obstructed labor in Mulago hospital, Uganda

    PubMed Central

    2014-01-01

    Background Maternal mortality is a major public health challenge in Uganda. Whereas uterine rupture remains a major cause of maternal morbidity and mortality, there is limited research into what happens to women who survive such severe obstetric complications. Understanding their experiences might delineate strategies to support survivors. Methods This qualitative study used a phenomenological approach to explore lived experiences of women who developed uterine rupture following obstructed labor. In-depth interviews initially conducted during their hospitalization were repeated 3–6 months after the childbirth event to explore their health and meanings they attached to the traumatic events and their outcomes. Data were analyzed using thematic analysis. Results The resultant themes included barriers to access healthcare, multiple “losses” and enduring physical, psychosocial and economic consequences. Many women who develop uterine rupture fail to access critical care needed due to failure to recognise danger signs of obstructed labor, late decision making for accessing care, geographical barriers to health facilities, late or failure to diagnose obstructed labor at health facilities, and failure to promptly perform caesarean section. Secondly, the sequel of uterine rupture includes several losses (loss of lives, loss of fertility, loss of body image, poor quality of life and disrupted marital relationships). Thirdly, uterine rupture has grim economic consequences for the survivors (with financial loss and loss of income during and after the calamitous events). Conclusion Uterine rupture is associated with poor quality of care due to factors that operate at personal, household, family, community and society levels, and results in dire physical, psychosocial and financial consequences for survivors. There is need to improve access to and provision of emergency obstetric care in order to prevent uterine rupture consequent to obstructed labor. There is also critical need to provide counselling and support to survivors to enable them cope with physical, social, psychological and economic consequences. PMID:24758354

  2. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    NASA Astrophysics Data System (ADS)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un-ruptured southern segment of the seismic gap.

  3. W-phase estimation of first-order rupture distribution for megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2014-05-01

    Estimating the rupture pattern for large earthquakes during the first hour after the origin time can be crucial for rapid impact assessment and tsunami warning. However, the estimation of coseismic slip distribution models generally involves complex methodologies that are difficult to implement rapidly. Further, while model parameter uncertainty can be crucial for meaningful estimation, they are often ignored. In this work we develop a finite fault inversion for megathrust earthquakes which rapidly generates good first order estimates and uncertainties of spatial slip distributions. The algorithm uses W-phase waveforms and a linear automated regularization approach to invert for rupture models of some recent megathrust earthquakes. The W phase is a long period (100-1000 s) wave which arrives together with the P wave. Because it is fast, has small amplitude and a long-period character, the W phase is regularly used to estimate point source moment tensors by the NEIC and PTWC, among others, within an hour of earthquake occurrence. We use W-phase waveforms processed in a manner similar to that used for such point-source solutions. The inversion makes use of 3 component W-phase records retrieved from the Global Seismic Network. The inverse problem is formulated by a multiple time window method, resulting in a linear over-parametrized problem. The over-parametrization is addressed by Tikhonov regularization and regularization parameters are chosen according to the discrepancy principle by grid search. Noise on the data is addressed by estimating the data covariance matrix from data residuals. The matrix is obtained by starting with an a priori covariance matrix and then iteratively updating the matrix based on the residual errors of consecutive inversions. Then, a covariance matrix for the parameters is computed using a Bayesian approach. The application of this approach to recent megathrust earthquakes produces models which capture the most significant features of their slip distributions. Also, reliable solutions are generally obtained with data in a 30-minute window following the origin time, suggesting that a real-time system could obtain solutions in less than one hour following the origin time.

  4. Comparison of Different Approach of Back Projection Method in Retrieving the Rupture Process of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Tan, F.; Wang, G.; Chen, C.; Ge, Z.

    2016-12-01

    Back-projection of teleseismic P waves [Ishii et al., 2005] has been widely used to image the rupture of earthquakes. Besides the conventional narrowband beamforming in time domain, approaches in frequency domain such as MUSIC back projection (Meng 2011) and compressive sensing (Yao et al, 2011), are proposed to improve the resolution. Each method has its advantages and disadvantages and should be properly used in different cases. Therefore, a thorough research to compare and test these methods is needed. We write a GUI program, which puts the three methods together so that people can conveniently use different methods to process the same data and compare the results. Then we use all the methods to process several earthquake data, including 2008 Wenchuan Mw7.9 earthquake and 2011 Tohoku-Oki Mw9.0 earthquake, and theoretical seismograms of both simple sources and complex ruptures. Our results show differences in efficiency, accuracy and stability among the methods. Quantitative and qualitative analysis are applied to measure their dependence on data and parameters, such as station number, station distribution, grid size, calculate window length and so on. In general, back projection makes it possible to get a good result in a very short time using less than 20 lines of high-quality data with proper station distribution, but the swimming artifact can be significant. Some ways, for instance, combining global seismic data, could help ameliorate this method. Music back projection needs relatively more data to obtain a better and more stable result, which means it needs a lot more time since its runtime accumulates obviously faster than back projection with the increase of station number. Compressive sensing deals more effectively with multiple sources in a same time window, however, costs the longest time due to repeatedly solving matrix. Resolution of all the methods is complicated and depends on many factors. An important one is the grid size, which in turn influences runtime significantly. More detailed results in this research may help people to choose proper data, method and parameters.

  5. Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Mendoza, C.

    1991-01-01

    An iterative least-squares technique is used to simultaneously invert the strong-motion records and teleseismic P waveforms for the 1978 Tabas, Iran, earthquake to deduce the rupture history. The effects of using different data sets and different parametrizations of the problem (linear versus nonlinear) are considered. A consensus of all the inversion runs indicates a complex, multiple source for the Tabas earthquake, with four main source regions over a fault length of 90 km and an average rupture velocity of 2.5 km/sec. -from Authors

  6. The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Wei, S.

    2017-12-01

    The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks and the mainshock. The results support that the stress alternation after the foreshocks may have triggered the failure on the fault plane of the Mw7.1 earthquake. Therefore, the 2016 Kumamoto earthquake sequence is dominated by a series of large triggering events whose initiation is associated with the geometric barrier in the intersection of the Futagawa and Hinagu faults.

  7. Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations

    NASA Astrophysics Data System (ADS)

    Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.

    2016-12-01

    We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should not be biased by rupture propagation direction. Here we present results from Ahar, Baladeh, Qom, Rigan, Silakhour and Zirkuh clusters, that include early-instrumental and modern mainshock-aftershock sequences. These will in turn provide a greatly improved basis for research into seismic hazards in this region.

  8. The Application of Stress-Relaxation Test to Life Assessment of T911/T22 Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, Tieshan; Zhao, Jie; Cheng, Congqian; Li, Huifang

    2016-03-01

    A dissimilar weld metal was obtained through submerged arc welding of a T911 steel to a T22 steel, and its creep property was explored by stress-relaxation test assisted by some conventional creep tests. The creep rate information of the stress-relaxation test was compared to the minimum and the average creep rates of the conventional creep test. Log-log graph showed that the creep rate of the stress-relaxation test was in a linear relationship with the minimum creep rate of the conventional creep test. Thus, the creep rate of stress-relaxation test could be used in the Monkman-Grant relation to calculate the rupture life. The creep rate of the stress-relaxation test was similar to the average creep rate, and thereby the rupture life could be evaluated by a method of "time to rupture strain." The results also showed that rupture life which was assessed by the Monkman-Grant relation was more accurate than that obtained through the method of "time to rupture strain."

  9. Rupture process of 2016, 25 January earthquake, Alboran Sea (South Spain, Mw= 6.4) and aftershocks series

    NASA Astrophysics Data System (ADS)

    Buforn, E.; Pro, C.; del Fresno, C.; Cantavella, J.; Sanz de Galdeano, C.; Udias, A.

    2016-12-01

    We have studied the rupture process of the 25 January 2016 earthquake (Mw =6.4) occurred in South Spain in the Alboran Sea. Main shock, foreshock and largest aftershocks (Mw =4.5) have been relocated using the NonLinLoc algorithm. Results obtained show a NE-SW distribution of foci at shallow depth (less than 15 km). For main shock, focal mechanism has been obtained from slip inversion over the rupture plane of teleseismic data, corresponding to left-lateral strike-slip motion. The rupture starts at 7 km depth and it propagates upward with a complex source time function. In order to obtain a more detailed source time function and to validate the results obtained from teleseismic data, we have used the Empirical Green Functions method (EGF) at regional distances. Finally, results of the directivity effect from teleseismic Rayleigh waves and the EGF method, are consistent with a rupture propagation to the NE. These results are interpreted in terms of the main geological features in the region.

  10. A hemodynamic-based dimensionless parameter for predicting rupture of intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Varble, Nicole; Meng, Hui; Borazjani, Iman

    2016-11-01

    Rupture of an intracranial aneurysm (IA) is a disease with high rates of mortality. Given the risk associated with the aneurysm surgery, quantifying the likelihood of aneurysm rupture is essential. There are many risk factors that could be implicated in the rupture of an aneurysm. However, the hemodynamic factors are believed to be the most influential ones. Here, we carry out three-dimensional high resolution simulations on human subjects IAs to test a dimensionless number, denoted as An number, to classify the flow mode. An number is defined as the ratio of the time takes the parent artery flow transports through the expansion region to the time required for vortex formation. Furthermore, we investigate the correlation of IA flow mode and WSS/OSI on the human subject IAs. Finally, we test if An number can distinguish ruptured from unruptured IAs on a database containing 204 human subjects IAs. This work was supported by National Institute Of Health (NIH) Grant R03EB014860 and the Center of Computational Research (CCR) of University at Buffalo.

  11. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    USGS Publications Warehouse

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  12. Atriocaval Rupture After Right Atrial Isthmus Ablation for Atrial Flutter.

    PubMed

    Vloka, Caroline; Nelson, Daniel W; Wetherbee, Jule

    2016-06-01

    A patient with symptomatic typical atrial flutter (AFL) underwent right atrial isthmus ablation with an 8-mm catheter. Eight months later, his typical AFL recurred. Ten months later, he underwent a repeat right atrial isthmus ablation with an irrigated tip catheter and an 8-mm tip catheter. Six weeks after his second procedure, while performing intense sprint intervals on a treadmill, he developed an abrupt onset of chest pain, hypotension, and cardiac tamponade. He underwent emergency surgery to repair an atriocaval rupture and has done well since. Our report suggests that an association of multiple radiofrequency ablations with increased risk for delayed atriocaval rupture occurring 1 to 3 months after ablation. In conclusion, although patients generally were advised to limit exercise for 1 to 2 weeks after AFL ablation procedures in the past, it may be prudent to avoid intense exercise for at least 3 months after procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Blunt transection of rectus abdominis following seatbelt related trauma with associated small and large bowel injury.

    PubMed

    Patel, K; Doolin, R; Suggett, N

    2013-01-01

    Closed rupture of rectus abdominis following seatbelt related trauma is rare. We present the case of a 45 year old female who presented with closed rupture of the rectus abdominis in conjunction with damage to small bowel mesentery and infarction of small and large bowel following a high velocity road traffic accident. Multiple intestinal resections were required resulting in short bowel syndrome and abdominal wall reconstruction with a porcine collagen mesh. Post-operative complications included intra-abdominal sepsis and an enterocutaneous fistula. The presence of rupture of rectus abdominis muscle secondary to seatbelt injury should raise the suspicion of intra-abdominal injury. Our case highlights the need for suspicion, investigation and subsequent surgical management of intra-abdominal injury following identification of this rare consequence of seatbelt trauma. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Iliopsoas tendon rupture: a new differential for atraumatic groin pain post-total hip arthroplasty.

    PubMed

    Piggott, Robert Pearse; Doody, Orla; Quinlan, John Francis

    2015-02-26

    Groin pain post-total hip arthroplasty (THA) is of concern for the patient and the surgeon, especially when there is no history of any traumatic event. Obvious concern centres on complications from the prosthesis. The use of multiple imaging modalities allow for accurate diagnosis of groin pain. Atraumatic iliopsoas rupture is rare and has only been reported once before in the setting of THA. We present the case of 53-year old female with atraumatic rupture of the iliopsoas tendon that presented with severe groin pain and limited flexion. We discuss the clinical presentation, radiological features and follow-up of the patient. We also discuss the relevant published literature on the topic. This is a rare phenomenon but should be consider in patients with groin pain post-THA, especially after prosthesis complications have been ruled out. 2015 BMJ Publishing Group Ltd.

  15. The temporal distribution of seismic radiation during deep earthquake rupture

    USGS Publications Warehouse

    Houston, H.; Vidale, J.E.

    1994-01-01

    The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.

  16. [Surgical selection and efficacy assessment for membranous urethral trauma caused by pelvic fracture].

    PubMed

    Zhu, Li-Zhen; Liu, Liang-Le; Cai, Chun-Yuan; Yang, Guo-Jing; Zhang, Li-Cheng; Zhu, Qi

    2012-08-01

    To explore selection and efficacy assessment for membranous urethral trauma caused by pelvic fracture. From June 2000 to August 2010, 72 patients with membranous urethral trauma caused by pelvic fracture were selected. There were 46 males and 26 females,ranging age from 26 to 62 years (averaged 35.2 years). The time from injury to hospitalization time was 1 to 3 hours. According to Tile pelvic fracture classification, there were 8 patients with type A, 45 patients with type B, 19 patients with type C. Thirty of the 35 patients with partial rupture of posterior urethral were treated by catheterization,5 patients treated by rupture anastomosis on the stage I combined with cystostomy; 25 of the 37 patients with complete rupture of posterior urethra were treated by early realignment, and 12 patients were treated by cystostomy. Urinary incontinence, impotence and urethrostenosis were evaluated. All patients were followed up for 5 to 10 years (mean 7.7 years). Incidence of urethrostenosis, impotence and urinary incontinence in patients treated by cystostomy were significantly higher than rupture anastomosis on the stage I and early realignment (P < 0.05); while incidence in patients treated by catheterization was significantly lower than other groups (P < 0.05). For patients with partial rupture of posterior urethral, catheterization and rupture anastomosis on the stage I are preferred methods; while patients with complete rupture of posterior urethra, early realignment is a preferred method with advantages of simple operation and less complications.

  17. Simultaneous uterine and urinary bladder rupture in an otherwise successful vaginal birth after cesarean delivery.

    PubMed

    Ho, Szu-Ying; Chang, Shuenn-Dhy; Liang, Ching-Chung

    2010-12-01

    Uterine rupture is the primary concern when a patient chooses a trial of labor after a cesarean section. Bladder rupture accompanied by uterine rupture should be taken into consideration if gross hematuria occurs. We report the case of a patient with uterine rupture during a trial of labor after cesarean delivery. She had a normal course of labor and no classic signs of uterine rupture. However, gross hematuria was noted after repair of the episiotomy. The patient began to complain of progressive abdominal pain, gross hematuria and oliguria. Cystoscopy revealed a direct communication between the bladder and the uterus. When opening the bladder peritoneum, rupture sites over the anterior uterus and posterior wall of the bladder were noted. Following primary repair of both wounds, a Foley catheter was left in place for 12 days. The patient had achieved a full recovery by the 2-year follow-up examination. Bladder injury and uterine rupture can occur at any time during labor. Gross hematuria immediately after delivery is the most common presentation. Cystoscopy is a good tool to identify the severity of bladder injury. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  18. Rupture dynamics along dipping thrust faults: free surface interaction and the case of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre

    2017-04-01

    To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.

  19. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study.

    PubMed

    Tian, Jinwei; Ren, Xuefeng; Vergallo, Rocco; Xing, Lei; Yu, Huai; Jia, Haibo; Soeda, Tsunenari; McNulty, Iris; Hu, Sining; Lee, Hang; Yu, Bo; Jang, Ik-Kyung

    2014-06-03

    The study sought to identify specific morphological characteristics of ruptured culprit plaques (RCP) responsible for acute events, and compare them with ruptured nonculprit plaques (RNCP) and nonruptured thin-cap fibroatheroma (TCFA) in patients presenting with acute coronary syndromes (ACS). Nonruptured TCFA and multiple ruptured plaques are detected in the same patients with ACS. It remains unknown whether certain morphological characteristics determine rupture of TCFA and subsequently result in ACS. We analyzed 126 plaques (RCP = 49, RNCP = 19, TCFA = 58) from 82 ACS patients using optical coherence tomography (OCT) and intravascular ultrasound (IVUS). Fibrous cap thickness was determined by OCT. Plaque burden and lumen area were measured with IVUS. Fibrous cap was thinner in RCP (43 ± 11 μm) and RNCP (41 ± 10 μm) than in TCFA (56 ± 9 μm, p < 0.001 and p < 0.001, respectively). Plaque burden was greater in RCP (82 ± 7.2%), compared with RNCP (64 ± 7.2%, p < 0.001) and TCFA (62 ± 12.5%, p < 0.001). Lumen area was smaller in RCP (2.1 ± 0.9 mm(2)), compared with RNCP (4.6 ± 2.3 mm(2), p = 0.001) and TCFA (5.1 ± 2.7 mm(2), p < 0.001). The fibrous cap thickness <52 μm had good performance in discriminating ruptured plaque from TCFA (area under the curve [AUC] = 0.857, p < 0.001), and plaque burden >76% and lumen area <2.6 mm(2) had good performance in discriminating RCP from RNCP and TCFA (AUC = 0.923, p < 0.001 and AUC = 0.881, p < 0.001, respectively). Fibrous cap thickness is a critical morphological discriminator between ruptured plaques and nonruptured TCFA, while plaque burden and lumen area appear to be important morphological features of RCP. These findings suggest that plaque rupture is determined by fibrous cap thickness, and a combination of large plaque burden and luminal narrowing result in ACS. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Forecasting the Rupture Directivity of Large Earthquakes: Centroid Bias of the Conditional Hypocenter Distribution

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2012-12-01

    Forecasting the rupture directivity of large earthquakes is an important problem in probabilistic seismic hazard analysis (PSHA), because directivity is known to strongly influence ground motions. We describe how rupture directivity can be forecast in terms of the "conditional hypocenter distribution" or CHD, defined to be the probability distribution of a hypocenter given the spatial distribution of moment release (fault slip). The simplest CHD is a uniform distribution, in which the hypocenter probability density equals the moment-release probability density. For rupture models in which the rupture velocity and rise time depend only on the local slip, the CHD completely specifies the distribution of the directivity parameter D, defined in terms of the degree-two polynomial moments of the source space-time function. This parameter, which is zero for a bilateral rupture and unity for a unilateral rupture, can be estimated from finite-source models or by the direct inversion of seismograms (McGuire et al., 2002). We compile D-values from published studies of 65 large earthquakes and show that these data are statistically inconsistent with the uniform CHD advocated by McGuire et al. (2002). Instead, the data indicate a "centroid biased" CHD, in which the expected distance between the hypocenter and the hypocentroid is less than that of a uniform CHD. In other words, the observed directivities appear to be closer to bilateral than predicted by this simple model. We discuss the implications of these results for rupture dynamics and fault-zone heterogeneities. We also explore their PSHA implications by modifying the CyberShake simulation-based hazard model for the Los Angeles region, which assumed a uniform CHD (Graves et al., 2011).

  1. Health Monitoring of Composite Overwrapped Pressure Vessels (COPVs) Using Meandering Winding Magnetometer ((MWM(Registered Trademark)) Eddy Current Sensors

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Grundy, David; Jablonski, David; Martin, Christopher; Washabaugh, Andrew; Goldfine, Neil

    2011-01-01

    There are 3 mechanisms that affect the life of a COPV are: a) The age life of the overwrap; b) Cyclic fatigue of the metallic liner; c) Stress Rupture life. The first two mechanisms are understood through test and analysis. A COPV Stress Rupture is a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. Currently there is no simple, deterministic method of determining the stress rupture life of a COPV, nor a screening technique to determine if a particular COPV is close to the time of a stress rupture failure. Conclusions: Demonstrated a correlation between MWM response and pressure or strain. Demonstrated the ability to monitor stress in COPV at different orientations and depths. FA41 provides best correlation with bottle pressure or stress.

  2. Evidence for two surface ruptures in the past 500 years on the San Andreas fault at Frazier Mountain, California

    USGS Publications Warehouse

    Lindvall, S.C.; Rockwell, T.K.; Dawson, T.E.; Helms, J.G.; Bowman, K.W.

    2002-01-01

    We conducted paleoseismic studies in a closed depression along the San Andreas fault on the north flank of Frazier Mountain near Frazier Park, California. We recognized two earthquake ruptures in our trench exposure and interpreted the most recent rupture, event 1, to represent the historical 1857 earthquake. We also exposed evidence of an earlier surface rupture, event 2, along an older group of faults that did not rerupture during event 1. Radiocarbon dating of the stratigraphy above and below the earlier event constrains its probable age to between A.D. 1460 and 1600. Because we documented continuous, unfaulted stratigraphy between the earlier event horizon and the youngest event horizon in the portion of the fault zone exposed, we infer event 2 to be the penultimate event. We observed no direct evidence of an 1812 earthquake in our exposures. However, we cannot preclude the presence of this event at our site due to limited age control in the upper part of the section and the possibility of other fault strands beyond the limits of our exposures. Based on overlapping age ranges, event 2 at Frazier Mountain may correlate with event B at the Bidart fan site in the Carrizo Plain to the northwest and events V and W4 at Pallett Creek and Wrightwood, respectively, to the southeast. If the events recognized at these multiple sites resulted from the same surface rupture, then it appears that the San Andreas fault has repeatedly failed in large ruptures similar in extent to 1857.

  3. Complex rupture during the 12 January 2010 Haiti earthquake

    USGS Publications Warehouse

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  4. [Quadriceps tendon insufficiency and rupture : Treatment options in total knee arthroplasty].

    PubMed

    Thiele, K; von Roth, P; Pfitzner, T; Preininger, B; Perka, C

    2016-05-01

    Quadriceps tendon injuries and insufficiencies in total knee arthroplasty are rare, but are followed by a devastating complication that left untreated leads to a complete loss of function of the knee. This review article summarizes the functional anatomy, risk factors, and the prevalence and diagnosis of quadriceps tendon injuries, in addition to the possible management options for partial and complete ruptures. The treatment options are adapted according to the extent of the loss of function (partial, complete) and the duration of the injury (acute vs chronic). Furthermore, the choice of treatment should take into account the quality and availability of primary tissue, the patient's general health, along with their likely functional requirements. Conservative treatment is often justified in partial ruptures with good results. Complete ruptures require surgical intervention and multiple operative techniques are described. Treatment options for acute ruptures include direct primary repair with autogenous or synthetic tissue augmentation. In the case of chronic insufficiency and a lack of soft-tissue surroundings, reconstruction with the aid of a muscle flap or allograft tissue can be considered. All surgical intervention techniques used so far have been fraught with complications and rarely lead to satisfactory results. A new surgical approach to the reconstruction and augmentation of the extensor mechanism consists of the use of a synthetic mesh. The technique is described here in detail.

  5. Adjoint analysis of the source and path sensitivities of basin-guided waves

    NASA Astrophysics Data System (ADS)

    Day, Steven M.; Roten, Daniel; Olsen, Kim B.

    2012-05-01

    Simulations of earthquake rupture on the southern San Andreas Fault (SAF) reveal large amplifications in the San Gabriel and Los Angeles Basins (SGB and LAB) apparently associated with long-range path effects. Geometrically similar excitation patterns can be recognized repeatedly in different SAF simulations (e.g. Love wave-like energy with predominant period around 4 s, channelled southwestwardly from the SGB into LAB), yet the amplitudes with which these distinctive wavefield patterns are excited change, depending upon source details (slip distribution, direction and velocity of rupture). We describe a method for rapid calculation of the sensitivity of such predicted wavefield features to perturbations of the source kinematics, using a time-reversed (adjoint) wavefield simulation. The calculations are analogous to those done in adjoint tomography, and the same time-reversed calculation also yields path-sensitivity kernels that give further insight into the excitation mechanism. For rupture on the southernmost 300 km of SAF, LAB excitation is greatest for slip concentrated between the northern Coachella Valley and the transverse ranges, propagating to the NE and with rupture velocities between 3250 and 3500 m s-1 along that fault segment; that is, within or slightly above the velocity range (between Rayleigh and S velocities) that is energetically precluded in the limit of a sharp rupture front, highlighting the potential value of imposing physical constraints (such as from spontaneous rupture models) on source parametrizations. LAB excitation is weak for rupture to the SW and for ruptures in either direction located north of the transverse transverse ranges, whereas Ventura Basin (VTB) is preferentially excited by NE ruptures situated north of the transverse ranges. Path kernels show that LAB excitation is mediated by surface waves deflected by the velocity contrast along the southern margin of the transverse ranges, having most of their energy in basement rock until they impinge on the eastern edge of SGB, through which they are then funnelled into LAB. VTB amplification is enhanced by a similar waveguide effect.

  6. Long-term results of middle cerebral artery aneurysm clipping in the Barrow Ruptured Aneurysm Trial.

    PubMed

    Mooney, Michael A; Simon, Elias D; Brigeman, Scott; Nakaji, Peter; Zabramski, Joseph M; Lawton, Michael T; Spetzler, Robert F

    2018-04-27

    OBJECTIVE A direct comparison of endovascular versus microsurgical treatment of ruptured middle cerebral artery (MCA) aneurysms in randomized trials is lacking. As endovascular treatment strategies continue to evolve, the number of reports of endovascular treatment of these lesions is increasing. Herein, the authors report a detailed post hoc analysis of ruptured MCA aneurysms treated by microsurgical clipping from the Barrow Ruptured Aneurysm Trial (BRAT). METHODS The cases of patients enrolled in the BRAT who underwent microsurgical clipping for a ruptured MCA aneurysm were reviewed. Characteristics of patients and their clinical outcomes and long-term angiographic results were analyzed. RESULTS Fifty patients underwent microsurgical clipping of a ruptured MCA aneurysm in the BRAT, including 21 who crossed over from the endovascular treatment arm. Four patients with nonsaccular (e.g., dissecting, fusiform, or blister) aneurysms were excluded, leaving 46 patients for analysis. Most (n = 32; 70%) patients presented with a Hunt and Hess grade II or III subarachnoid hemorrhage, with a high prevalence of intraparenchymal blood (n = 23; 50%), intraventricular blood (n = 21; 46%), or both. At the last follow-up (up to 6 years after treatment), clinical outcomes were good (modified Rankin Scale score 0-2) in 70% (n = 19) of 27 Hunt and Hess grades I-III patients and in 36% (n = 4) of 11 Hunt and Hess grade IV or V patients. There were no instances of rebleeding after the surgical clipping of aneurysms in this series at the time of last clinical follow-up. CONCLUSIONS Microsurgical clipping of ruptured MCA aneurysms has several advantages over endovascular treatment, including durability over time. The authors report detailed outcome data of patients with ruptured MCA aneurysms who underwent microsurgical clipping as part of a prospective, randomized trial. These results should be used for comparison with future endovascular and surgical series to ensure that the best results are being achieved for patients with ruptured MCA aneurysms.

  7. Poly Implant Prothèse (PIP) incidence of rupture: a retrospective MR analysis in 64 patients

    PubMed Central

    Scotto di Santolo, Mariella; Cusati, Bianca; Ragozzino, Alfonso; Dell’Aprovitola, Nicoletta; Acquaviva, Alessandra; Altiero, Michele; Accurso, Antonello; Riccardi, Albina

    2014-01-01

    Aim of the study The purpose of this retrospective study was to describe the magnetic resonance imaging (MRI) features of Poly Implant Prothèse (PIP) hydrogel implants in a group of 64 patients and to assess the incidence of rupture, compared to other clinical trials. Material and methods In this double-center study, we retrospectively reviewed the data sets of 64 consecutive patients (mean age, 43±9 years, age range, 27-65 years), who underwent breast MRI examinations, between January 2008 and October 2013, with suspected implant rupture on the basis of clinical assessment or after conventional imaging examination (either mammography or ultrasound). All patients had undergone breast operation with bilateral textured cohesive gel PIP implant insertion for aesthetic reasons. The mean time after operation was 8 years (range, 6-14 years). No patients reported history of direct trauma to their implants. Results At the time of clinical examination, 41 patients were asymptomatic, 16 complained of breast tenderness and 7 had clinical evidence of rupture. Normal findings were observed in 15 patients. In 26 patients there were signs of mild collapse, with associated not significant peri-capsular fluid collections and no evidence of implant rupture; in 23 patients there was suggestion of implant rupture, according to breast MRI leading to an indication for surgery. In particular, 14 patients showed intra-capsular rupture, with associated evidence of the linguine sign in all cases; the keyhole sign and the droplet signs were observed in 6 cases. In 9 patients there was evidence of extra-capsular rupture, with presence of axillary collections (siliconomas) in 7 cases and peri-prosthetic and mediastinal cavity siliconomas, in 5 cases. Conclusions The results of this double center retrospective study, confirm the higher incidence (36%) of prosthesis rupture observed with the PIP implants, compared to other breast implants. PMID:25525578

  8. Earthquake Source Inversion Blindtest: Initial Results and Further Developments

    NASA Astrophysics Data System (ADS)

    Mai, P.; Burjanek, J.; Delouis, B.; Festa, G.; Francois-Holden, C.; Monelli, D.; Uchide, T.; Zahradnik, J.

    2007-12-01

    Images of earthquake ruptures, obtained from modelling/inverting seismic and/or geodetic data exhibit a high degree in spatial complexity. This earthquake source heterogeneity controls seismic radiation, and is determined by the details of the dynamic rupture process. In turn, such rupture models are used for studying source dynamics and for ground-motion prediction. But how reliable and trustworthy are these earthquake source inversions? Rupture models for a given earthquake, obtained by different research teams, often display striking disparities (see http://www.seismo.ethz.ch/srcmod) However, well resolved, robust, and hence reliable source-rupture models are an integral part to better understand earthquake source physics and to improve seismic hazard assessment. Therefore it is timely to conduct a large-scale validation exercise for comparing the methods, parameterization and data-handling in earthquake source inversions.We recently started a blind test in which several research groups derive a kinematic rupture model from synthetic seismograms calculated for an input model unknown to the source modelers. The first results, for an input rupture model with heterogeneous slip but constant rise time and rupture velocity, reveal large differences between the input and inverted model in some cases, while a few studies achieve high correlation between the input and inferred model. Here we report on the statistical assessment of the set of inverted rupture models to quantitatively investigate their degree of (dis-)similarity. We briefly discuss the different inversion approaches, their possible strength and weaknesses, and the use of appropriate misfit criteria. Finally we present new blind-test models, with increasing source complexity and ambient noise on the synthetics. The goal is to attract a large group of source modelers to join this source-inversion blindtest in order to conduct a large-scale validation exercise to rigorously asses the performance and reliability of current inversion methods and to discuss future developments.

  9. Detailed Mapping of Historical and Preinstrumental Earthquake Ruptures in Central Asia Using Multi-Scale, Multi-Platform Photogrammetry

    NASA Astrophysics Data System (ADS)

    Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.

    2016-12-01

    In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large inferred magnitude of the 1889 Chilik event. High resolution, photogrammetric topography offers a low-cost, effective way to thoroughly map rupture traces and measure coseismic displacements for past fault ruptures, extending our record of coseismic displacements into a past rich with formerly sparsely documented ruptures.

  10. Near-Source Shaking and Dynamic Rupture in Plastic Media

    NASA Astrophysics Data System (ADS)

    Gabriel, A.; Mai, P. M.; Dalguer, L. A.; Ampuero, J. P.

    2012-12-01

    Recent well recorded earthquakes show a high degree of complexity at the source level that severely affects the resulting ground motion in near and far-field seismic data. In our study, we focus on investigating source-dominated near-field ground motion features from numerical dynamic rupture simulations in an elasto-visco-plastic bulk. Our aim is to contribute to a more direct connection from theoretical and computational results to field and seismological observations. Previous work showed that a diversity of rupture styles emerges from simulations on faults governed by velocity-and-state-dependent friction with rapid velocity-weakening at high slip rate. For instance, growing pulses lead to re-activation of slip due to gradual stress build-up near the hypocenter, as inferred in some source studies of the 2011 Tohoku-Oki earthquake. Moreover, off-fault energy dissipation implied physical limits on extreme ground motion by limiting peak slip rate and rupture velocity. We investigate characteristic features in near-field strong ground motion generated by dynamic in-plane rupture simulations. We present effects of plasticity on source process signatures, off-fault damage patterns and ground shaking. Independent of rupture style, asymmetric damage patterns across the fault are produced that contribute to the total seismic moment, and even dominantly at high angles between the fault and the maximum principal background stress. The off-fault plastic strain fields induced by transitions between rupture styles reveal characteristic signatures of the mechanical source processes during the transition. Comparing different rupture styles in elastic and elasto-visco-plastic media to identify signatures of off-fault plasticity, we find varying degrees of alteration of near-field radiation due to plastic energy dissipation. Subshear pulses suffer more peak particle velocity reduction due to plasticity than cracks. Supershear ruptures are affected even more. The occurrence of multiple rupture fronts affect seismic potency release rate, amplitude spectra, peak particle velocity distributions and near-field seismograms. Our simulations enable us to trace features of source processes in synthetic seismograms, for example exhibiting a re-activation of slip. Such physical models may provide starting points for future investigations of field properties of earthquake source mechanisms and natural fault conditions. In the long-term, our findings may be helpful for seismic hazard analysis and the improvement of seismic source models.

  11. Advanced technical skills are required for microsurgical clipping of posterior communicating artery aneurysms in the endovascular era.

    PubMed

    Sanai, Nader; Caldwell, Nolan; Englot, Dario J; Lawton, Michael T

    2012-08-01

    Many neurosurgeons feel competent clipping posterior communicating artery (PCoA) aneurysms and include this lesion in their practice. However, endovascular therapy removes simple aneurysms that would have been easiest to clip with the best results. What remains are aneurysms with complex anatomy and technical challenges that are not well described. A contemporary surgical series with PCoA aneurysms is reviewed to define the patients, microsurgical techniques, and outcomes in current practice. A total of 218 patients had 218 PCoA aneurysms that were treated microsurgically during an 11-year period. Complexities influencing aneurysm management included (1) large/giant size; (2) fetal posterior cerebral artery; (3) previous coiling; (4) anterior clinoidectomy; (5) adherence of the anterior choroidal artery (AChA); (6) intraoperative aneurysm rupture; (7) complex clipping; and (8) atherosclerotic calcification. Simple PCoA aneurysms were encountered in 113 patients (51.8%) and complex aneurysms in 105 (48.2%). Adherent AChA (13.8%) and intraoperative rupture (11.5%) were the most common complexities. Simple aneurysms had favorable outcomes in 86.6% of patients, whereas aneurysms with 1 or multiple complexities had favorable outcomes in 78.2% and 75.0%, respectively. Intraoperative rupture (P < .01), large/giant size (P = .04), and complex clipping (P = .05) were associated with increased neurological worsening. Because endovascular therapy alters the surgical population, neurosurgeons should recalibrate their expectations with this once straightforward aneurysm. The current mix of PCoA aneurysms requires advanced techniques including clinoidectomy, AChA microdissection, complex clipping, and facility with intraoperative rupture. Microsurgery is recommended for recurrent aneurysms after coiling, complex branches, aneurysms causing oculomotor nerve palsy, multiple aneurysms, and patients with hematomas.

  12. Secular Variation in the Storage and Dissipation of Elastic Strain Energy Along the Central Altyn Tagh Fault (86-88.5°E), NW China

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Gold, R. D.; Arrowsmith, R.; Friedrich, A. M.

    2015-12-01

    In elastic rebound theory, hazard increases as interseismic strain rebuilds after rupture. This model is challenged by the temporal variation in the pacing of major earthquakes that is both predicted by mechanical models and suggested by some long paleoseismic records (e.g., 1-3). However, the extent of such behavior remains unclear due to a lack of long (5-25 ky) records of fault slip. Using Monte Carlo analysis of 11 offset landforms, we determined a 16-ky record of fault slip for the active, left-lateral Altyn Tagh fault, which bounds the NW margin of the Tibetan Plateau. This history reveals a pulse of accelerated slip between 6.4 and 6.0 ka, during which the fault slipped 9 +14/-2 m at a rate of 23 +35/-5 mm/y, or ~3x the 16 ky average of 8.1 +1.2/-0.9mm/y. These two modes of earthquake behavior suggest temporal variation in the rates of stress storage and release. The simplest explanation for the pulse is a cluster of 2-8 Mw > 7.5 earthquakes. Such supercyclicity has been reported for the Sunda (4) and Cascadia (3) megathrusts, but contrasts with steady slip along the strike-slip Alpine fault (5), for example. A second possibility is that the pulse reflects a single, unusually large rupture. However, this Black Swan event is unlikely: empirical scaling relationships require a Mw 8.2 rupture of the entire 1200-km-long ATF to produce 7 m of average slip. Likewise, Coulomb stress change from rupture on the adjacent North Altyn fault is of modest magnitude and overlap with the ATF. Poor temporal correlation between precipitation and the slip pulse argues against climatically modulated changes in surface loading (lakes/ice) or pore-fluid pressure. "Paleoslip" studies such as this sacrifice the single-event resolution of paleoseismology in exchange for long records that quantify both the timing and magnitude of fault slip averaged over multiple ruptures, and are essential for documenting temporal variations in fault slip as we begin to use calibrated physical models of the earthquake cycle to forecast time-dependent earthquake hazard (e.g., 6,7). 1. Weldon et al., 2004 GSA Today 14, 4; 2. Rockwell et al., 2015, PAGEOPH, 172, 1143; 3. Goldfinger et al., 2013, SRL, 84, 24; 4. Sieh et al., 2008, Science, 322, 1674; 5. Berryman et l., 2012, Science, 336, 1690; 6. Barbot et al., 2012, Science, 336, 707; 7. Field, 2015, BSSA, 105, 544.

  13. To what extent the repeating earthquakes repeated? - Analyses of 1982 and 2008 Ibaraki-ken-oki M7 class earthquakes using strong motion records -

    NASA Astrophysics Data System (ADS)

    Takiguchi, M.; Asano, K.; Iwata, T.

    2010-12-01

    Two M7 class subduction zone earthquakes have occurred in the Ibaraki-ken-oki region, northeast Japan, at 23:23 on July 23, 1982 JST (Mw7.0; 1982MS) and at 01:45 on May 8, 2008 JST (Mw6.8; 2008MS). It has been reported that, from the results of the teleseismic waveform inversion, the rupture of the asperity repeated (HERP, 2010). We estimated the source processes of these earthquakes in detail by analyzing the strong motion records and discussed how much the source characteristics of the two earthquakes repeated. First, we estimated the source model of 2008MS following the method of Miyake et al. (2003). The best-fit set of the model parameters was determined by a grid search using forward modeling of broad-band ground motions. A single 12.6 km × 12.6 km rectangular Strong Motion Generation Area (SMGA, Miyake et al., 2003) was estimated. The rupture of the SMGA of 2008MS (2008SMGA) started from the hypocenter and propagated mainly to northeast. Next, we estimated the source model of 1982MS. We compared the waveforms of 1982MS and 2008MS recorded at the same stations and found the initial rupture phase before the main rupture phase on the waveforms of 1982MS. The travel time analysis showed that the main rupture of the 1982MS started approximately 33 km west of the hypocenter at about 11s after the origin time. The main rupture starting point was located inside 2008SMGA, suggesting that the two SMGAs overlapped in part. The seismic moment ratio of 1982MS to 2008MS was approximately 1.6, and we also found the observed acceleration amplitude spectra of 1982MS were 1.5 times higher than those of 2008MS in the available frequency range. We performed the waveform modeling for 1982MS with a constraint of these ratios. A single rectangular SMGA (1982SMGA) was estimated for the main rupture, which had the same size and the same rupture propagation direction as those of 2008SMGA. However, the estimated stress drop or average slip amount of 1982SMGA was 1.5 times larger than those of 2008SMGA.

  14. Lisbon 1755, a multiple-rupture earthquake

    NASA Astrophysics Data System (ADS)

    Fonseca, J. F. B. D.

    2017-12-01

    The Lisbon earthquake of 1755 poses a challenge to seismic hazard assessment. Reports pointing to MMI 8 or above at distances of the order of 500km led to magnitude estimates near M9 in classic studies. A refined analysis of the coeval sources lowered the estimates to 8.7 (Johnston, 1998) and 8.5 (Martinez-Solares, 2004). I posit that even these lower magnitude values reflect the combined effect of multiple ruptures. Attempts to identify a single source capable of explaining the damage reports with published ground motion models did not gather consensus and, compounding the challenge, the analysis of tsunami traveltimes has led to disparate source models, sometimes separated by a few hundred kilometers. From this viewpoint, the most credible source would combine a sub-set of the multiple active structures identifiable in SW Iberia. No individual moment magnitude needs to be above M8.1, thus rendering the search for candidate structures less challenging. The possible combinations of active structures should be ranked as a function of their explaining power, for macroseismic intensities and tsunami traveltimes taken together. I argue that the Lisbon 1755 earthquake is an example of a distinct class of intraplate earthquake previously unrecognized, of which the Indian Ocean earthquake of 2012 is the first instrumentally recorded example, showing space and time correlation over scales of the orders of a few hundred km and a few minutes. Other examples may exist in the historical record, such as the M8 1556 Shaanxi earthquake, with an unusually large damage footprint (MMI equal or above 6 in 10 provinces; 830000 fatalities). The ability to trigger seismicity globally, observed after the 2012 Indian Ocean earthquake, may be a characteristic of this type of event: occurrences in Massachussets (M5.9 Cape Ann earthquake on 18/11/1755), Morocco (M6.5 Fez earthquake on 27/11/1755) and Germany (M6.1 Duren earthquake, on 18/02/1756) had in all likelyhood a causal link to the Lisbon earthquake. This may reflect the very long period of surface waves generated by the combined sources as a result of the delays between ruptures. Recognition of this new class of large intraplate earthquakes may pave the way to a better understanding of the mechanisms driving intraplate deformation.

  15. Using a pseudo-dynamic source inversion approach to improve earthquake source imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.

    2014-12-01

    Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.

  16. Hierarchical damage mechanisms in composite materials subjected to fatigue loadings

    NASA Astrophysics Data System (ADS)

    D'Amore, Alberto; Grassia, Luigi

    2018-02-01

    The strength degradation of fiber reinforced composites subjected to constant amplitude (CA) fatigue loadings can be described by a two-parameter residual strength model. From the analytical approach it results that under moderate loadings the multiple damage mechanisms develop with different kinetics and manifest their effectiveness at different time scales highlighting the three-Stage hierarchical nature of damage accumulation in composites. The model captures the sequence of damage accumulation mechanisms from diffuse matrix cracking (I), to fiber/matrix interface failure (II) to fiber and ply rupture and delamination (III). Further, by increasing the loading severity it appears that the different mechanisms superpose witnessing their simultaneous co-existence.

  17. Heart rupture predictors in Spanish myocardial infarction patients: evaluation using propensity score analysis.

    PubMed

    Ruiz-Bailén, Manuel; Expósito-Ruiz, Manuela; Castillo-Rivera, Ana-María; Rucabado-Aguilar, Luis; Ruiz-García, María Isabel; Ramos-Cuadra, José-Angel; Ruiz-Valverde, Andrés; Gómez-Jiménez, Javier; Benitez-Parejo, José-Luis; Cuñat de la Hoz, José; Abat, Francisco Felices; Valenzuela, Jesús Pérez

    2010-05-01

    The aim was to evaluate factors associated with the development of heart rupture in a Spanish registry of acute myocardial infarction (AMI) patients. This was a retrospective study of cohorts, including all patients diagnosed with AMI included in the ARIAM Spanish multicenter registry. The study period was from June 1996 to December 2005. The follow-up period was limited to the time of stay in intensive care or coronary care units. Multivariate logistic regression was used to study the factors associated with the development of heart rupture. A propensity score analysis was also performed to determine the involvement of beta blockers, ACE inhibitors, and fibrinolytics in the development of heart rupture. 16,815 AMI patients were included. Heart rupture occurred in 477 (2.8%). Heart rupture was associated with female gender, older age, the absence of previous infarct, and the administration of thrombolysis, while ACE inhibitors and beta blockers acted as protective variables. The propensity score analysis showed that fibrinolysis was a variable associated with heart rupture except in the younger subgroup and in the subgroup with less delay in administration. It was also found that beta blockers and ACE inhibitors are variables providing protection against heart rupture. Heart rupture is associated with older age, female gender, absence of previous infarct, and the administration of thrombolysis, while ACE inhibitors and beta blockers seem to prevent this complication.

  18. Rupture models with dynamically determined breakdown displacement

    USGS Publications Warehouse

    Andrews, D.J.

    2004-01-01

    The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.

  19. Source modeling and inversion with near real-time GPS: a GITEWS perspective for Indonesia

    NASA Astrophysics Data System (ADS)

    Babeyko, A. Y.; Hoechner, A.; Sobolev, S. V.

    2010-07-01

    We present the GITEWS approach to source modeling for the tsunami early warning in Indonesia. Near-field tsunami implies special requirements to both warning time and details of source characterization. To meet these requirements, we employ geophysical and geological information to predefine a maximum number of rupture parameters. We discretize the tsunamigenic Sunda plate interface into an ordered grid of patches (150×25) and employ the concept of Green's functions for forward and inverse rupture modeling. Rupture Generator, a forward modeling tool, additionally employs different scaling laws and slip shape functions to construct physically reasonable source models using basic seismic information only (magnitude and epicenter location). GITEWS runs a library of semi- and fully-synthetic scenarios to be extensively employed by system testing as well as by warning center personnel teaching and training. Near real-time GPS observations are a very valuable complement to the local tsunami warning system. Their inversion provides quick (within a few minutes on an event) estimation of the earthquake magnitude, rupture position and, in case of sufficient station coverage, details of slip distribution.

  20. Microstructure characterization in domestically-made TP310HNbN austenitic stainless steel after creep test

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Lin, Lin; Hou, Shufang; Wang, Bohan

    Microstructure characterization of domestically-made TP310HNbN austenitic stainless steel after creep test was investigated by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results revealed that M23C6 carbides precipitated both inside grains and at the grain boundaries and NbCrN particles were located inside grains for creep-rupture samples. It was clear that sigma phase and NbC particles precipitated inside grains for the creep-rupture sample at 670 C. M23C6 carbides with lattice parameter of three times of the austenite matrix grow in a cube to cube orientation relationship with the matrix. The amount of M23C6 carbide particles obviously increased with the testing time prolonged. Deformation hardening induced an enhanced hardness nearby rupture surface for the creep-rupture samples with a short testing time. For the domestically-made TP310HNbN steel, great attention should be paid to the distribution, size and amount of sigma phase and M23C6 during service.

  1. Compound earthquakes on a bimaterial interface and implications for rupture mechanics

    NASA Astrophysics Data System (ADS)

    Wang, E.; Rubin, A. M.

    2011-12-01

    Rubin and Ampuero [2007] simulated slip-weakening ruptures on a 2-D (line fault) bimaterial interface and observed differences in the timescales for the two edges to experience their peak stress after being slowed by barriers. The barrier on the "negative" side reached its peak stress when the P-wave stopping phase arrives from the opposite end, which takes ~20 ms for a 100 m event. This may be long enough for a potential secondary rupture to be observed as a distinct subevent. In contrast, the same timescale for a barrier at the "positive" front is nearly instantaneous (really the distance from the stopped rupture edge to the barrier divided by the shear wave speed), possibly making a secondary event there indistinguishable from the main rupture. Rubin and Gillard [2000] observed that of a family of 72 similar earthquakes along the San Andreas fault in Northern California, 5 were identified as compound and in all cases the second event was located on the negative (NW) side of the main event. Based on their simulations, Rubin and Ampuero interpreted this as being due to the above-mentioned asymmetry in the dynamic stressing-rate history on the two sides of a rupture on a bimaterial interface. To test this hypothesis for the asymmetric distribution of subevents within compound earthquakes, we search more systematically for secondary arrivals within 0.15 s of the first P arrival for microearthquakes on the San Andreas. We take advantage of similarity between waveforms of adjacent events and deconvolve the first 0.64 s following the P arrival of a target event using a nearby Empirical Green's Function (EGF). We use the iterative deconvolution method described in Kikuchi & Kanamori [1982]. When the EGF is a simple earthquake and the target is compound, the deconvolution is expected to show two spikes, corresponding to the main and secondary events. Due to the existence of noise, a second spike is considered robust only when the difference between the waveforms of the target event and the aligned and scaled EGF is similar enough (cross-correlation coefficient higher than 0.6) to the EGF at multiple stations. The azimuthal consistency of delays between the main and secondary arrivals is more convincing evidence that the target is a compound event. Using these criteria we temporarily identified ~70 compound events out of ~8200 in our catalog. Future work will include improving the quality of the inter-event delay time by using Monte Carlo simulations to allow the amplitudes and arrival times of both spikes (as opposed to just the second spike) to vary. Accurate relative locations and times can improve our understanding of the triggering mechanism of the subevents and perhaps the longer-timescale aftershock asymmetry observed in this region as well. For example, it has been proposed that the deficit of longer-timescale aftershocks in the SE (positive) direction could be due to triggering by propagation of a tensile stress pulse down the fault as the mainshock is stopped.

  2. Evaluation of Metakaolin and Slag for GDOT Concrete Specifications and Mass Concrete Provision - Phase I

    DOT National Transportation Integrated Search

    2017-11-01

    This report documents the evaluation of cement replacement with mekaolin and slag materials supplied by multiple vendors by measuring compressive strength, tensile strength, modulus of rupture, modulus of elasticity, sulfate expansion, alkali-silica ...

  3. Spontaneous rupture of the spleen due to infectious mononucleosis.

    PubMed

    Farley, D R; Zietlow, S P; Bannon, M P; Farnell, M B

    1992-09-01

    Spontaneous splenic rupture is an extremely rare but life-threatening complication of infectious mononucleosis in young adults. Although splenectomy remains effective treatment, reports of successful nonoperative management have challenged the time-honored approach of emergent laparotomy. On retrospective analysis of our institutional experience with 8,116 patients who had this disease during a 40-year period, we found 5 substantiated cases of atraumatic splenic rupture due to infectious mononucleosis. Four additional cases of suspected splenic rupture were noted. All nine patients were hospitalized and treated (seven underwent splenectomy and two were treated with supportive measures only), and they remain alive and well. In patients with infectious mononucleosis suspected of having rupture of the spleen, a rapid but thorough assessment and prompt implementation of appropriate management should minimize the associated morbidity and mortality. On the basis of review of the medical literature and careful scrutiny of our own experience, we advocate emergent splenectomy for spontaneous splenic rupture in patients with infectious mononucleosis.

  4. Fracture Mechanisms For SiC Fibers And SiC/SiC Composites Under Stress-Rupture Conditions at High Temperatures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Hurst, Janet B.; Viterna, L. (Technical Monitor)

    2002-01-01

    The successful application of SiC/SiC ceramic matrix composites as high-temperature structural materials depends strongly on maximizing the fracture or rupture life of the load-bearing fiber and matrix constituents. Using high-temperature data measured under stress-rupture test conditions, this study examines in a mechanistic manner the effects of various intrinsic and extrinsic factors on the creep and fracture behavior of a variety of SiC fiber types. It is shown that although some fiber types fracture during a large primary creep stage, the fiber creep rate just prior to fracture plays a key role in determining fiber rupture time (Monkman-Grant theory). If it is assumed that SiC matrices rupture in a similar manner as fibers with the same microstructures, one can develop simple mechanistic models to analyze and optimize the stress-rupture behavior of SiC/SiC composites for applied stresses that are initially below matrix cracking.

  5. Nondestructive Evaluation and Monitoring Results from COPV Accelerated Stress Rupture Testing, NASA White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Saulsberry Regor

    2010-01-01

    Develop and demonstrate NDE techniques for real-time characterization of CPVs and, where possible, identification of NDE capable of assessing stress rupture related strength degradation and/or making vessel life predictions (structural health monitoring or periodic inspection modes). Secondary: Provide the COPV user and materials community with quality carbon/epoxy (C/Ep) COPV stress rupture progression rate data. Aid in modeling, manufacturing, and application of COPVs for NASA spacecraft.

  6. Delayed splenic rupture: dating the sub-capsular hemorrhage as a useful task to evaluate causal relationships with trauma.

    PubMed

    Riezzo, Irene; Di Battista, Benedetta; De Salvia, Alessandra; Cantatore, Santina; Neri, Margherita; Pomara, Cristoforo; Turillazzi, Emanuela; Fineschi, Vittorio

    2014-01-01

    The aim of the paper was to perform a chronological assessment of the phenomenon of delayed rupture of the spleen, to assess the phenomenological order about the sub-capsular hematoma transformation to determine the causal relationship with trauma as hypothetical cause of death. 80 cases of blunt trauma with splenic capsular hematoma and subsequent rupture of the spleen were evaluated: 38 had an acute rupture of the spleen, 42 presented a break in days or weeks after the traumatic injury. Time between the traumatic event and delayed rupture of the spleen is within a range of time from one day to more than one month. Data recorded included age, sex, type of trauma, injury severity score, grade of splenic injury, associated intra-abdominal injuries, pathologic specimen evaluation. Immunohistochemical investigation of perisplenic hematoma or laceration was performed utilizing polyclonal antibodies anti-fibrinogen, CD61 and CD68, and showed structural chronological differences of sub-capsular hematoma. Expression of modification and organization of erythrocytes, fibrinogen, platelets and macrophages provides an informative picture of the progression of reparative phenomena associated with sub-capsular hematoma and subsequent delayed splenic rupture. Sub-capsular splenic hematoma dating, which we divided into 4 phases, is representing a task in both clinical practice and forensic pathology. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  8. Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Elizabeth; Dempsey, David; Pawar, Rajesh

    The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less

  9. Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection

    DOE PAGES

    Keating, Elizabeth; Dempsey, David; Pawar, Rajesh

    2017-08-18

    The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less

  10. Higher leukocyte count predicts 3-month poor outcome of ruptured cerebral aneurysms.

    PubMed

    Yao, Pei-Sen; Chen, Guo-Rong; Xie, Xue-Ling; Shang-Guan, Huang-Cheng; Gao, Jin-Zhen; Lin, Yuan-Xiang; Zheng, Shu-Fa; Lin, Zhang-Ya; Kang, De-Zhi

    2018-04-11

    It is not fully established whether leukocyte can predict the poor outcome for ruptured cerebral aneurysms (CA) or not. Here, we retrospectively analyzed the clinical data of 428 patients with ruptured CA between 2010 and 2015. Patients' demographic data, including gender, age, history of smoking, alcohol, hypertension, diabetes and hypercholesterolemia, Hunt-Hess and Fisher grade, occurrence of hydrocephalus, aneurysm location, time to surgery, delayed ischemic neurological deficit (DIND) and peak leukocyte of blood test from day 1 to 3 after aneurysmal rupture were recorded and analyzed. In the multivariable analysis model, gender, Fisher grade, time to surgery and hydrocephalus were not relevant to poor outcome. However, Hunt-Hess grade, DIND and preoperative leukocyte count (>13.84 × 10 9 /L) were significantly associated with adverse outcome. The respective increased risks were 5.2- (OR5.24, 95% CI 1.67-16.50, p = 0.005), 6.2-(OR 6.24, 95% CI 3.55-10.99, p < 0.001) and 10.9-fold (OR 9.35, 95% CI 5.98-19.97, p < 0.001). The study revealed that Hunt-Hess grade, DIND and preoperative leukocyte count (>13.84 × 10 9 /L) were independent risk factors for poor outcome of ruptured CA at 3 months. Higher leukocyte count is a convenient and useful marker to predict 3-month poor outcome for ruptured CA.

  11. UTILIZING RESULTS FROM INSAR TO DEVELOP SEISMIC LOCATION BENCHMARKS AND IMPLICATIONS FOR SEISMIC SOURCE STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. BEGNAUD; ET AL

    2000-09-01

    Obtaining accurate seismic event locations is one of the most important goals for monitoring detonations of underground nuclear teats. This is a particular challenge at small magnitudes where the number of recording stations may be less than 20. Although many different procedures are being developed to improve seismic location, most procedures suffer from inadequate testing against accurate information about a seismic event. Events with well-defined attributes, such as latitude, longitude, depth and origin time, are commonly referred to as ground truth (GT). Ground truth comes in many forms and with many different levels of accuracy. Interferometric Synthetic Aperture Radar (InSAR)more » can provide independent and accurate information (ground truth) regarding ground surface deformation and/or rupture. Relating surface deformation to seismic events is trivial when events are large and create a significant surface rupture, such as for the M{sub w} = 7.5 event that occurred in the remote northern region of the Tibetan plateau in 1997. The event, which was a vertical strike slip even appeared anomalous in nature due to the lack of large aftershocks and had an associated surface rupture of over 180 km that was identified and modeled using InSAR. The east-west orientation of the fault rupture provides excellent ground truth for latitude, but is of limited use for longitude. However, a secondary rupture occurred 50 km south of the main shock rupture trace that can provide ground truth with accuracy within 5 km. The smaller, 5-km-long secondary rupture presents a challenge for relating the deformation to a seismic event. The rupture is believed to have a thrust mechanism; the dip of the fimdt allows for some separation between the secondary rupture trace and its associated event epicenter, although not as much as is currently observed from catalog locations. Few events within the time period of the InSAR analysis are candidates for the secondary rupture. Of these, we have identified six possible secondary rupture events (mb range = 3.7-4.8, with two magnitudes not reported), based on synthetic tests and residual analysis. All of the candidate events are scattered about the main and secondary rupture. A Joint Hypocenter Determination (JHD) approach applied to the aftershocks using global picks was not able to identify the secondary event. We added regional data and used propagation path corrections to reduce scatter and remove the 20-km bias seen in the main shock location. A&r preliminary analysis using several different velocity models, none of the candidate events proved to relocate on the surface trace of the secondary rupture. However, one event (mb = not reported) moved from a starting distance of {approximately}106 km to a relocated distance of {approximately}28 km from the secondary rupture, the only candidate event to relocate in relative proximity to the secondary rupture.« less

  12. Nankai-Tokai subduction hazard for catastrophe risk modeling

    NASA Astrophysics Data System (ADS)

    Spurr, D. D.

    2010-12-01

    The historical record of Nankai subduction zone earthquakes includes nine event sequences over the last 1300 years. Typical characteristic behaviour is evident, with segments rupturing either co-seismically or as two large earthquakes less than 3 yrs apart (active phase), followed by periods of low seismicity lasting 90 - 150 yrs or more. Despite the long historical record, the recurrence behaviour and consequent seismic hazard remain uncertain and controversial. In 2005 the Headquarters for Earthquake Research Promotion (HERP) published models for hundreds of faults as part of an official Japanese seismic hazard map. The HERP models have been widely adopted in part or full both within Japan and by the main international catastrophe risk model companies. The time-dependent recurrence modelling we adopt for the Nankai faults departs considerably from HERP in three main areas: ■ A “Linked System” (LS) source model is used to simulate the strong correlation between segment ruptures evident in the historical record, whereas the HERP recurrence estimates assume the Nankai, Tonankai and Tokai segments rupture independently. The LS component models all historical events with a common rupture recurrence cycle for the three segments. System rupture probabilities are calculated assuming BPT behaviour and parameter uncertainties assessed from the full 1300 yr historical record. ■ An independent, “Tokai Only” (TO) rupture source is used specifically to model potential “Tokai only” earthquakes. There are widely diverging views on the possibility of this segment rupturing independently. Although all historical Tokai ruptures appear to have been composite Tonankai -Tokai earthquakes, the available data do not preclude the possibility of future “Tokai only” events. The HERP model also includes “Tokai only” earthquakes but the recurrence parameters are based on historical composite Tonankai -Tokai ruptures and do not appear to recognise the complex tectonic environment in the Tokai area. ■ For the Nankai and Tonankai segments only, HERP assumed Time-Predictable (TP) recurrence behaviour. The resulting calculated 30 and 50 year rupture probabilities are considerably higher than standard renewal model estimates as used in the adopted model. While perhaps more contentious, the weight of evidence available does not appear to be consistent with TP behaviour. For the adopted modelling the estimated probabilities of no Nankai segment rupture within the next 30 & 50 years are 56% & 27% respectively. The disparity between the models is highlighted by the much lower estimates obtained by HERP (2.5% & 0.039% respectively as at 2006). Even for just the Nankai and Tonankai segments (ie. ignoring Tokai), HERP estimated only 1.7% probability of no rupture in 50yrs. These estimates can be contrasted with the fact that in 2056 (50 yrs from 2006), the elapsed time since the start of the last rupture cycle (112yrs) will still be 5 yrs short of the historical mean recurrence interval since 1360. Net effects on nation-wide catastrophe risk estimates for all earthquake sources depend on modelled exposure distributions but can be as much as a factor of two. The differences are important as they impact on multi-billion dollar international risk transfer programs.

  13. Constant Stress Drop Fits Earthquake Surface Slip-Length Data

    NASA Astrophysics Data System (ADS)

    Shaw, B. E.

    2011-12-01

    Slip at the surface of the Earth provides a direct window into the earthquake source. A longstanding controversy surrounds the scaling of average surface slip with rupture length, which shows the puzzling feature of continuing to increase with rupture length for lengths many times the seismogenic width. Here we show that a more careful treatment of how ruptures transition from small circular ruptures to large rectangular ruptures combined with an assumption of constant stress drop provides a new scaling law for slip versus length which (1) does an excellent job fitting the data, (2) gives an explanation for the large crossover lengthscale at which slip begins to saturate, and (3) supports constant stress drop scaling which matches that seen for small earthquakes. We additionally discuss how the new scaling can be usefully applied to seismic hazard estimates.

  14. Women's expectations and experiences of rupture of membranes and views of the potential use of reagent pads for detecting amniotic fluid.

    PubMed

    Spiby, Helen; Borrelli, Sara; Hughes, Anita J

    2017-12-01

    To explore first-time mothers' expectations and experiences regarding rupture of membranes at term and their views on the potential use of reagent pads that detect amniotic fluid. There is little information available on women's experiences of spontaneous rupture of membranes, or interest in using methods to confirm rupture of membranes (e.g. reagent pads). Descriptive qualitative study, using focus groups and telephone interviews with women during pregnancy and after the birth of their first baby. Thematic analysis was undertaken to analyse women's responses. Ethics committee approval was obtained. Twenty-five women participated in the study of whom 13 contributed both during pregnancy and postpartum between October 2015-March 2016. Three overarching themes were identified from the data from women's expectations and experiences: uncertainty in how, when and where membranes may rupture; information which was felt to be limited and confirmation of rupture of membranes. The potential use of reagent pads met with varied responses. Women were interested in having facts and figures regarding rupture of membranes, such as characteristics of liquor; volume and probability of membranes rupturing spontaneously at term. Use of a pad as a means of confirmation was viewed as helpful, although the potential for increasing anxiety was raised. © 2017 John Wiley & Sons Ltd.

  15. Source Characterization of Microseismic Events using Empirical Green's Functions at the Basel EGS Project

    NASA Astrophysics Data System (ADS)

    Folesky, Jonas; Kummerow, Jörn

    2015-04-01

    The Empirical Green's Function (EGF) method uses pairs of events of high wave form similarity and adjacent hypocenters to decompose the influences of source time function, ray path, instrument site, and instrument response. The seismogram of the smaller event is considered as the Green's function which then can be deconvolved from the other seismogram. The result provides a reconstructed relative source time function (RSTF) of the larger event of that event pair. The comparison of the RSTFs at all stations of the observation systems produces information on the rupture process of the event based on an apparent directivity effect and possible changes in the RSTFs complexities. The Basel EGS dataset of 2006-2007 consists of about 2800 localized events of magnitudes between 0.0 < ML < 3.5 with event pairs of adequate magnitude difference for EGF analysis. The data has sufficient quality to analyse events with magnitudes down to ML = 0.0 for an apparent directivity effect although the approximate rupture duration for those events is of only a few milliseconds. The dataset shows a number of multiplets where fault plane solutions are known from earlier studies. Using the EGF method we compute rupture orientations for about 190 event pairs and compare them to the fault plane solutions of the multiplets. For the majority of events we observe a good consistency between the rupture direction found there and one of the previously determined nodal planes from fault plane solutions. In combination this resolves the fault plane ambiguity. Furthermore the rupture direction fitting yields estimates for projections of the rupture velocity on the horizontal plane. They seem to vary between the multiplets in the reservoir from 0.3 to 0.7 times the S-wave velocity. To our knowledge source characterization by EGF analysis has not yet been introduced to microseismic reservoirs with the data quality found in Basel. Our results show that EGF analysis can provide valuable additional insights on the distribution of rupture properties within the reservoir.

  16. Revisiting the 1872 Owens Valley, California, Earthquake

    USGS Publications Warehouse

    Hough, S.E.; Hutton, K.

    2008-01-01

    The 26 March 1872 Owens Valley earthquake is among the largest historical earthquakes in California. The felt area and maximum fault displacements have long been regarded as comparable to, if not greater than, those of the great San Andreas fault earthquakes of 1857 and 1906, but mapped surface ruptures of the latter two events were 2-3 times longer than that inferred for the 1872 rupture. The preferred magnitude estimate of the Owens Valley earthquake has thus been 7.4, based largely on the geological evidence. Reinterpreting macroseismic accounts of the Owens Valley earthquake, we infer generally lower intensity values than those estimated in earlier studies. Nonetheless, as recognized in the early twentieth century, the effects of this earthquake were still generally more dramatic at regional distances than the macroseismic effects from the 1906 earthquake, with light damage to masonry buildings at (nearest-fault) distances as large as 400 km. Macroseismic observations thus suggest a magnitude greater than that of the 1906 San Francisco earthquake, which appears to be at odds with geological observations. However, while the mapped rupture length of the Owens Valley earthquake is relatively low, the average slip was high. The surface rupture was also complex and extended over multiple fault segments. It was first mapped in detail over a century after the earthquake occurred, and recent evidence suggests it might have been longer than earlier studies indicated. Our preferred magnitude estimate is Mw 7.8-7.9, values that we show are consistent with the geological observations. The results of our study suggest that either the Owens Valley earthquake was larger than the 1906 San Francisco earthquake or that, by virtue of source properties and/or propagation effects, it produced systematically higher ground motions at regional distances. The latter possibility implies that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude.

  17. Uncertainty Analyses for Back Projection Methods

    NASA Astrophysics Data System (ADS)

    Zeng, H.; Wei, S.; Wu, W.

    2017-12-01

    So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.

  18. Total transverse rupture of the duodenum after blunt abdominal trauma.

    PubMed

    Pirozzi, Cesare; Di Marco, Carluccio; Loponte, Margherita; Savino, Grazia

    2014-05-11

    Complete transverse rupture of the duodenum as an isolated lesion in blunt trauma can be considered as exceptional. The aim of this report is to discuss diagnostic procedures and surgical options in such an infrequent presentation. We report on a 37 year old man who had a total transverse rupture of the duodenum after blunt abdominal trauma. Diagnosis was suspected after contrast enhanced CT scan and confirmed at laparotomy; duodenal rupture was repaired by an end to end duodenal-duodenal anastomosis, after Kocher maneuver. The patient had fast and complete recovery. A high index of suspicion is necessary for timely diagnosis. Multi detector contrast enhanced CT scan is the gold standard for that aim. Surgical management must be tailored on an individual basis, since many techniques are available for both reconstruction and duodenum decompression. Kocher maneuver is essential for complete inspection of the pancreatic duodenal block and for appropriate reconstruction. Management of isolated duodenal rupture can be difficult. Contrast enhanced TC scans is essential for timely diagnosis. Primary repair can be achieved by an end to end duodenum anastomosis after Kocher maneuver, although alternative techniques are available for tailored solutions. Complex duodenum decompression techniques are not mandatory.

  19. Variations in rupture process with recurrence interval in a repeated small earthquake

    USGS Publications Warehouse

    Vidale, J.E.; Ellsworth, W.L.; Cole, A.; Marone, Chris

    1994-01-01

    In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.In theory and in laboratory experiments, friction on sliding surfaces such as rock, glass and metal increases with time since the previous episode of slip. This time dependence is a central pillar of the friction laws widely used to model earthquake phenomena. On natural faults, other properties, such as rupture velocity, porosity and fluid pressure, may also vary with the recurrence interval. Eighteen repetitions of the same small earthquake, separated by intervals ranging from a few days to several years, allow us to test these laboratory predictions in situ. The events with the longest time since the previous earthquake tend to have about 15% larger seismic moment than those with the shortest intervals, although this trend is weak. In addition, the rupture durations of the events with the longest recurrence intervals are more than a factor of two shorter than for the events with the shortest intervals. Both decreased duration and increased friction are consistent with progressive fault healing during the time of stationary contact.

  20. Multiple myeloma in an Amur tiger (Panthera tigris altaica)

    PubMed Central

    Lee, Alison M.; Guppy, Naomi; Bainbridge, John; Jahns, Hanne

    2017-01-01

    The Amur tiger (Panthera tigris altaica) is an endangered tiger subspecies. An adult zoo-bred female was found collapsed, and died despite supportive treatment. Hematology and biochemistry showed pancytopenia and hyperglobulinemia, and serum protein electrophoresis revealed a monoclonal band in the β-globulin region. Necropsy demonstrated hemoabdomen, multifocal lytic bone marrow lesions, splenomegaly, and hemorrhagic hepatic nodules, with left medial lobe rupture. There were mutifocal hemorrhages in the subcutis, lung, epicardium, and intestinal mucosa. Histopathology demonstrated plasmacytoid cells infiltrating the bone marrow, liver and spleen, and circulating within blood vessels. On immunohistochemistry, cell infiltrates of the three tissues were positive for λ light chains, bone marrow infiltrates were positive for MUM-1 and bone marrow and spleen infiltrates were positive for CD20. These findings indicate that this animal died of hemoabdomen subsequent to multiple myeloma. This is the first time this disease has been reported in a tiger. PMID:29138744

  1. Multiple myeloma in an Amur tiger (Panthera tigris altaica).

    PubMed

    Lee, Alison M; Guppy, Naomi; Bainbridge, John; Jahns, Hanne

    2017-01-01

    The Amur tiger ( Panthera tigris altaica ) is an endangered tiger subspecies. An adult zoo-bred female was found collapsed, and died despite supportive treatment. Hematology and biochemistry showed pancytopenia and hyperglobulinemia, and serum protein electrophoresis revealed a monoclonal band in the β-globulin region. Necropsy demonstrated hemoabdomen, multifocal lytic bone marrow lesions, splenomegaly, and hemorrhagic hepatic nodules, with left medial lobe rupture. There were mutifocal hemorrhages in the subcutis, lung, epicardium, and intestinal mucosa. Histopathology demonstrated plasmacytoid cells infiltrating the bone marrow, liver and spleen, and circulating within blood vessels. On immunohistochemistry, cell infiltrates of the three tissues were positive for λ light chains, bone marrow infiltrates were positive for MUM-1 and bone marrow and spleen infiltrates were positive for CD20. These findings indicate that this animal died of hemoabdomen subsequent to multiple myeloma. This is the first time this disease has been reported in a tiger.

  2. Traumatic and non-traumatic adrenal emergencies.

    PubMed

    Chernyak, Victoria; Patlas, Michael N; Menias, Christine O; Soto, Jorge A; Kielar, Ania Z; Rozenblit, Alla M; Romano, Luigia; Katz, Douglas S

    2015-12-01

    Multiple traumatic and non-traumatic adrenal emergencies are occasionally encountered during the cross-sectional imaging of emergency department patients. Traumatic adrenal hematomas are markers of severe polytrauma, and can be easily overlooked due to multiple concomitant injuries. Patients with non-traumatic adrenal emergencies usually present to an emergency department with a non-specific clinical picture. The detection and management of adrenal emergencies is based on cross-sectional imaging. Adrenal hemorrhage, adrenal infection, or rupture of adrenal neoplasm require immediate detection to avoid dire consequences. More often however, adrenal emergencies are detected incidentally in patients being investigated for non-specific acute abdominal pain. A high index of suspicion is required for the establishment of timely diagnosis and to avert potentially life-threatening complications. We describe cross-sectional imaging findings in patients with traumatic and non-traumatic adrenal hemorrhage, adrenal infarctions, adrenal infections, and complications of adrenal masses.

  3. Holocene behavior of the Brigham City segment: implications for forecasting the next large-magnitude earthquake on the Wasatch fault zone, Utah

    USGS Publications Warehouse

    Personius, Stephen F.; DuRoss, Christopher B.; Crone, Anthony J.

    2012-01-01

    The Brigham City segment (BCS), the northernmost Holocene‐active segment of the Wasatch fault zone (WFZ), is considered a likely location for the next big earthquake in northern Utah. We refine the timing of the last four surface‐rupturing (~Mw 7) earthquakes at several sites near Brigham City (BE1, 2430±250; BE2, 3490±180; BE3, 4510±530; and BE4, 5610±650 cal yr B.P.) and calculate mean recurrence intervals (1060–1500  yr) that are greatly exceeded by the elapsed time (~2500  yr) since the most recent surface‐rupturing earthquake (MRE). An additional rupture observed at the Pearsons Canyon site (PC1, 1240±50 cal yr B.P.) near the southern segment boundary is probably spillover rupture from a large earthquake on the adjacent Weber segment. Our seismic moment calculations show that the PC1 rupture reduced accumulated moment on the BCS about 22%, a value that may have been enough to postpone the next large earthquake. However, our calculations suggest that the segment currently has accumulated more than twice the moment accumulated in the three previous earthquake cycles, so we suspect that additional interactions with the adjacent Weber segment contributed to the long elapse time since the MRE on the BCS. Our moment calculations indicate that the next earthquake is not only overdue, but could be larger than the previous four earthquakes. Displacement data show higher rates of latest Quaternary slip (~1.3  mm/yr) along the southern two‐thirds of the segment. The northern third likely has experienced fewer or smaller ruptures, which suggests to us that most earthquakes initiate at the southern segment boundary.

  4. Similar microearthquakes observed in western Nagano, Japan, and implications for rupture mechanics

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Niu, Fenglin; Silver, Paul G.; Horiuchi, Shigeki; Takai, Kaori; Iio, Yoshihisa; Ito, Hisao

    2007-04-01

    We have applied a waveform cross correlation technique to study the similarity and the repeatability of more than 21,000 microearthquakes (0 < M < 4.5) in the aftershock zone of the 1984 western Nagano earthquake in central Japan. We find that the seismicity in this particular intraplate fault essentially consists of no repeating earthquakes that occurred on the same patch of the fault in a quasiperiodic manner in the study period between 1995 and 2001. On the other hand, we identify a total of 278 doublets and 62 multiplets (807 events) that occurred consecutively within seconds to days. On the basis of the relative arrival times of the P and S waves, we have obtained precise relative locations of these consecutive events with an error between several meters to a few tens of meters. There is a clear lower bound on the distances measured between these consecutive events and the lower bound appears to be proportional to the size of the first events. This feature is consistent with what Rubin and Gillard [2000] have observed near the San Juan Bautista section of the San Andreas Fault. Shear stress increases at the edge of an earthquake rupture, and the rupture edge becomes the most likely place where the second events are initiated. The observed minimum distance thus reflects the rupture size of the first events. The minimum distance corresponds to the rupture size calculated from a circular fault model with a stress drop of 10 MPa. We found that using different time windows results in a slight difference in the delay time estimates and the subsequent projection locations, which may reflect the finite size nature of earthquake ruptures.

  5. Increasing age in Achilles rupture patients over time.

    PubMed

    Ho, Gavin; Tantigate, Direk; Kirschenbaum, Josh; Greisberg, Justin K; Vosseller, J Turner

    2017-07-01

    The changing demographics of Achilles tendon rupture (ATR) patients have not fully been investigated. However, there has been a general suspicion that this injury is occurring in an increasingly older population, in terms of mean age. The aim of this study was to objectively show an increase in age in Achilles tendon rupture patients over time. Published literature on Achilles tendon ruptures was searched for descriptive statistics on the demographics of patients in the studies, specifically mean and median age of Achilles tendon rupture patients, gender ratio, percentage of athletics-related injuries, percentage of smokers, and BMI. Linear regression analyses were performed to determine the trend of patient demographics over time. A Welch one-way ANOVA was carried out to identify any possible differences in data obtained from different types of studies. The patient demographics from 142 studies were recorded, with all ATR injuries occurring between the years 1953 and 2014. There was no significant difference in the mean age data reported by varying study types, i.e. randomized controlled trial, cohort study, case series, etc. (P=0.182). There was a statistically significant rise in mean age of ATR patients over time (P<0.0005). There was also a statistically significant drop in percentage of male ATR patients (P=0.02). There is no significant trend for percentage of athletics-related injuries, smoking or BMI. Since 1953 to present day, the mean age at which ATR occurs has been increasing by at least 0.721 years every five years. In the same time period, the percentage of female study patients with ATR injuries has also been increasing by at least 0.6% every five years. Level III; Retrospective cohort study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mw7.7 2013 Balochistan Earthquake. Slip-Distribution and Deformation Field in Oblique Tectonic Context

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.

    2014-12-01

    The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.

  7. High-intensity focused ultrasound ablation around the tubing

    PubMed Central

    Siu, Jun Yang; Liu, Chenhui

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17–339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10–30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography. PMID:29161293

  8. High-intensity focused ultrasound ablation around the tubing.

    PubMed

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  9. Geometric analysis of ruptured and nonruptured abdominal aortic aneurysms.

    PubMed

    Kimura, Masaru; Hoshina, Katsuyuki; Miyahara, Kazuhiro; Nitta, Jun; Kobayashi, Masaharu; Yamamoto, Sota; Ohshima, Marie

    2018-06-15

    The objective of this study was to use parameters to determine the geometric differences between ruptured abdominal aortic aneurysms (AAAs) and nonruptured AAAs. Computed tomography data of 38 ruptured AAAs and 215 electively repaired (nonruptured) AAAs were collected from multiple institutes. We compared the ruptured AAA group and nonruptured AAA group with 1:1 matching by using the Mahalanobis distance, which was calculated using the patient's age, sex, and AAA diameter. We selected the longitudinal AAA image in multiplanar reconstruction view, placed a hypothetical ellipse on the aneurysm's protruded curve, and placed a circle on the portion connecting the aneurysm and the aorta. We then measured the aspect ratio (the vertical diameter divided by the horizontal diameter) and fillet radius (the radius of arc). The aspect ratio was significantly lower in the ruptured group than in the nonruptured group (2.02 ± 0.53 vs 2.60 ± 1.02; P = .002), as was the fillet radius (0.28 ± 0.18 vs 0.81 ± 0.44; P < .001). Receiver operating characteristic analysis revealed that the area under the curve of the aspect ratio was 0.688, and the optimal cutoff point was 2.23, with sensitivity and specificity of 0.55 and 0.76, respectively. The area under the curve of the fillet radius was 0.933, and the optimal cutoff was 0.347, with sensitivity and specificity of 0.97 and 0.87, respectively. The geometric analysis performed in this study revealed that ruptured AAAs had a smaller fillet radius and smaller aspect ratio than nonruptured AAAs did. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Mechanics of Multifault Earthquake Ruptures

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  11. Kinematic Source Rupture Process of the 2008 Iwate-Miyagi Nairiku Earthquake, a MW6.9 thrust earthquake in northeast Japan, using Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.

    2008-12-01

    The 2008 Iwate-Miyagi Nairiku earthquake (MJMA7.2) on June 14, 2008, is a thrust type inland crustal earthquake, which occurred in northeastern Honshu, Japan. In order to see strong motion generation process of this event, the source rupture process is estimated by the kinematic waveform inversion using strong motion data. Strong motion data of the K-NET and KiK-net stations and Aratozawa Dam are used. These stations are located 3-94 km from the epicenter. Original acceleration time histories are integrated into velocity and band- pass filtered between 0.05 and 1 Hz. For obtaining the detailed source rupture process, appropriate velocity structure model for Green's functions should be used. We estimated one dimensional velocity structure model for each strong motion station by waveform modeling of aftershock records. The elastic wave velocity, density, and Q-values for four sedimentary layers are assumed following previous studies. The thickness of each sedimentary layer depends on the station, which is estimated to fit the observed aftershock's waveforms by the optimization using the genetic algorithm. A uniform layered structure model is assumed for crust and upper mantle below the seismic bedrock. We succeeded to get a reasonable velocity structure model for each station to give a good fit of the main S-wave part in the observation of aftershocks. The source rupture process of the mainshock is estimated by the linear kinematic waveform inversion using multiple time windows (Hartzell and Heaton, 1983). A fault plane model is assumed following the moment tensor solution by F-net, NIED. The strike and dip angle is 209° and 51°, respectively. The rupture starting point is fixed at the hypocenter located by the JMA. The obtained source model shows a large slip area in the shallow portion of the fault plane approximately 6 km southwest of the hypocenter. The rupture of the asperity finishes within about 9 s. This large slip area corresponds to the area with surface break reported by the field survey group (e.g., AIST/GSJ, 2008), which supports the existence of the large slip close to the ground surface. But, most of surface offset found by the field survey are less than 0.5 m whereas the slip amount of the shallow asperity of the source inversion result is 3-4 m. In north of the hypocenter, the estimated slip amount is small. Slip direction is almost pure dip-slip for the entire fault (Northwest side goes up against southeast side). Total seismic moment is 2.6× 1019 Nm (MW 6.9). Acknowledgments: Strong motion data of K-NET and KiK-net operated by the National Research Institute for Earth Science and Disaster Prevention are used. Strong motion data of Aratozawa Dam obtained by Miyagi prefecture government is also used in the study.

  12. Trends in aortic aneurysm- and dissection-related mortality in the state of São Paulo, Brazil, 1985–2009: multiple-cause-of-death analysis

    PubMed Central

    2012-01-01

    Background Aortic aneurysm and dissection are important causes of death in older people. Ruptured aneurysms show catastrophic fatality rates reaching near 80%. Few population-based mortality studies have been published in the world and none in Brazil. The objective of the present study was to use multiple-cause-of-death methodology in the analysis of mortality trends related to aortic aneurysm and dissection in the state of Sao Paulo, between 1985 and 2009. Methods We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which aortic aneurysm and dissection were listed as a cause-of-death. The variables sex, age, season of the year, and underlying, associated or total mentions of causes of death were studied using standardized mortality rates, proportions and historical trends. Statistical analyses were performed by chi-square goodness-of-fit and H Kruskal-Wallis tests, and variance analysis. The joinpoint regression model was used to evaluate changes in age-standardized rates trends. A p value less than 0.05 was regarded as significant. Results Over a 25-year period, there were 42,615 deaths related to aortic aneurysm and dissection, of which 36,088 (84.7%) were identified as underlying cause and 6,527 (15.3%) as an associated cause-of-death. Dissection and ruptured aneurysms were considered as an underlying cause of death in 93% of the deaths. For the entire period, a significant increased trend of age-standardized death rates was observed in men and women, while certain non-significant decreases occurred from 1996/2004 until 2009. Abdominal aortic aneurysms and aortic dissections prevailed among men and aortic dissections and aortic aneurysms of unspecified site among women. In 1985 and 2009 death rates ratios of men to women were respectively 2.86 and 2.19, corresponding to a difference decrease between rates of 23.4%. For aortic dissection, ruptured and non-ruptured aneurysms, the overall mean ages at death were, respectively, 63.2, 68.4 and 71.6 years; while, as the underlying cause, the main associated causes of death were as follows: hemorrhages (in 43.8%/40.5%/13.9%); hypertensive diseases (in 49.2%/22.43%/24.5%) and atherosclerosis (in 14.8%/25.5%/15.3%); and, as associated causes, their principal overall underlying causes of death were diseases of the circulatory (55.7%), and respiratory (13.8%) systems and neoplasms (7.8%). A significant seasonal variation, with highest frequency in winter, occurred in deaths identified as underlying cause for aortic dissection, ruptured and non-ruptured aneurysms. Conclusions This study introduces the methodology of multiple-causes-of-death to enhance epidemiologic knowledge of aortic aneurysm and dissection in São Paulo, Brazil. The results presented confer light to the importance of mortality statistics and the need for epidemiologic studies to understand unique trends in our own population. PMID:23046791

  13. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period.

    PubMed

    Lantto, I; Heikkinen, J; Flinkkilä, T; Ohtonen, P; Leppilahti, J

    2015-02-01

    We investigated the epidemiology of total Achilles tendon ruptures and complication rates after operative and nonoperative treatments over a 33-year period in Oulu, Finland. Patients with Achilles tendon ruptures from 1979 to 2011 in Oulu were identified from hospital patient records. Demographic data, treatment method, and complications were collected retrospectively from medical records. Overall and sex- and age-specific incidence rates were calculated with 95% confidence intervals (CIs). The overall incidence per 100,000 person-years increased from 2.1 (95% CI 0.3-7.7) in 1979 to 21.5 (95% CI 14.6-30.6) in 2011. The incidence increased in all age groups. The mean annual increase in incidence was 2.4% (95% CI 1.3-4.7) higher for non-sports-related ruptures than for sports-related ruptures (P = 0.036). The incidence of sports-related ruptures increased during the second 11-year period whereas the incidence of non-sports-related ruptures increased steadily over the entire study period. Infection was four times more common after operative treatment compared with nonoperative treatment, re-rupture rates were similar. The incidence of Achilles tendon ruptures increased in all age groups over a 33-year period. Increases were mainly due to sports-related injuries in the second 11-year period and non-sports-related injuries in the last 11-year period. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Long-period spectral features of the Sumatra-Andaman 2004 earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Clévédé, E.; Bukchin, B.; Favreau, P.; Mostinskiy, A.; Aoudia, A.; Panza, G. F.

    2012-12-01

    The goal of this study is to investigate the spatial variability of the seismic radiation spectral content of the Sumatra-Andaman 2004 earthquake. We determine the integral estimates of source geometry, duration and rupture propagation given by the stress glut moments of total degree 2 of different source models. These models are constructed from a single or a joint use of different observations including seismology, geodesy, altimetry and tide gauge data. The comparative analysis shows coherency among the different models and no strong contradictions are found between the integral estimates of geodetic and altimetric models, and those retrieved from very long period seismic records (up to 2000-3000 s). The comparison between these results and the integral estimates derived from observed surface wave spectra in period band from 500 to 650 s suggests that the northern part of the fault (to the north of 8°N near Nicobar Islands) did not radiate long period seismic waves, that is, period shorter than 650 s at least. This conclusion is consistent with the existing composite short and long rise time tsunami model: with short rise time of slip in the southern part of the fault and very long rise time of slip at the northern part. This complex space-time slip evolution can be reproduced by a simple dynamic model of the rupture assuming a crude phenomenological mechanical behaviour of the rupture interface at the fault scales combining an effective slip-controlled exponential weakening effect, related to possible friction and damage breakdown processes of the fault zone, and an effective linear viscous strengthening effect, related to possible interface lubrication processes. While the rupture front speed remains unperturbed with initial short slip duration, a slow creep wave propagates behind the rupture front in the case of viscous effects accounting for the long slip duration and the radiation characteristics in the northern segment.

  15. Mortality outcomes of ruptured abdominal aortic aneurysms and rural presentation.

    PubMed

    Munday, Emily; Walker, Stuart

    2016-10-01

    Centralisation of vascular surgery services has coincided with a move towards endovascular repair of ruptured abdominal aortic aneurysms with the goal to improve patient outcomes. The aim of this study was to assess the effect of rural presentation and transfer times on survival from ruptured abdominal aortic aneurysm. A retrospective review. All patients presenting with ruptured abdominal aortic aneurysm to public hospitals in Tasmania between July 2006 and April 2013. Demographic data, Glasgow aneurysm score, Hardman index, transfer times, operative technique and 30-day mortality were collected from medical records. Over the study period 127 patients presented to public hospitals in Tasmania with ruptured abdominal aortic aneurysm. A total of 27 presented to north west hospitals where no vascular surgery service is provided (NWRH), 23 to a northern hospital where an intermittent vascular surgery service is provided (LGH) and 77 to the state tertiary vascular surgery service (RHH). Of these, 4 (14.8%) died at NWRH, 6 (26.1%) died at LGH and 43 (55.8%) died at RHH without operation. Of the 35 patients transferred from NWRH and LGH to RHH, 5 died without operation. Median time from presentation to theatre at RHH if transferred from NWRH was 6.25 hours, from the LGH 4.75 hours, compared to 2.75 hours when presenting directly to RHH. Open repair was performed in 41 patients and endovascular repair in 23 patients. Overall 30-day mortality in those treated at RHH was 26.6% (39.0% for open repair, 4.3% for endovascular repair). Mortality for intended operative patients initially presenting to non-RHH hospitals was 33.3% vs. 32.3% for those initially presenting to RHH. p Value 0.93. There was no clinical or statistical disadvantage to rural presentation and transfer for patients presenting with ruptured abdominal aortic aneurysm in Tasmania. Endovascular repair has a role despite long transfer times. © The Author(s) 2015.

  16. Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake.

    PubMed

    Maercklin, Nils; Festa, Gaetano; Colombelli, Simona; Zollo, Aldo

    2012-01-01

    The 2011 Tohoku megathrust earthquake had an unexpected size for the region. To image the earthquake rupture in detail, we applied a novel backprojection technique to waveforms from local accelerometer networks. The earthquake began as a small-size twin rupture, slowly propagating mainly updip and triggering the break of a larger-size asperity at shallower depths, resulting in up to 50 m slip and causing high-amplitude tsunami waves. For a long time the rupture remained in a 100-150 km wide slab segment delimited by oceanic fractures, before propagating further to the southwest. The occurrence of large slip at shallow depths likely favored the propagation across contiguous slab segments and contributed to build up a giant earthquake. The lateral variations in the slab geometry may act as geometrical or mechanical barriers finally controlling the earthquake rupture nucleation, evolution and arrest.

  17. Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake

    PubMed Central

    Maercklin, Nils; Festa, Gaetano; Colombelli, Simona; Zollo, Aldo

    2012-01-01

    The 2011 Tohoku megathrust earthquake had an unexpected size for the region. To image the earthquake rupture in detail, we applied a novel backprojection technique to waveforms from local accelerometer networks. The earthquake began as a small-size twin rupture, slowly propagating mainly updip and triggering the break of a larger-size asperity at shallower depths, resulting in up to 50 m slip and causing high-amplitude tsunami waves. For a long time the rupture remained in a 100–150 km wide slab segment delimited by oceanic fractures, before propagating further to the southwest. The occurrence of large slip at shallow depths likely favored the propagation across contiguous slab segments and contributed to build up a giant earthquake. The lateral variations in the slab geometry may act as geometrical or mechanical barriers finally controlling the earthquake rupture nucleation, evolution and arrest. PMID:23050093

  18. Ruptured congenital aneurysm of the right sinus of Valsalva into the right ventricle: with special reference to pathoanatomic and hemodynamic characteristics in symptomless cases.

    PubMed

    Chen, J J; Lien, W P; Chang, F Z; Lee, Y S; Hung, C R; Chu, S S; Wu, T L

    1980-02-01

    Clinical features of 19 cases with congenital aneurysm of the right sinus of Valsalva rupturing into the right ventricular outflow region (Type 1) were analysed in relation to their pathoanatomic lesions and hemodynamic alterations. Sixteen cases were operated with one surgical death. All were catheterized together with ascending aortographic study. Rupture of the aneurysm in many cases was silent or symptomless and progressive heart failure was not quite common. Symptomatology of the patients did not seem to be related entirely to status of the pathoanatomical lesions or hemodynamic alterations. Time of the rupture, and inherent right ventricular characteristics, tolerating volume overload rather well, might be, in part, responsible for its better prognosis in some cases. However, all patients with ruptured aneurysm of the sinus of Valsalva should be treated surgically. Bacterial endocarditis is a serious complication leading to death.

  19. Vaginal delivery after Misgav-Ladach cesarean section--is the risk of uterine rupture acceptable?

    PubMed

    Hudić, Igor; Fatusić, Zlatan; Kamerić, Lejla; Misić, Mladen; Serak, Indira; Latifagić, Anela

    2010-10-01

    To evaluate whether the single-layer closure as is a routine by the Misgav-Ladach method compared to the double-layer closure as used by the Dörfler cesarean method is associated with an increased risk of uterine rupture in the subsequent pregnancy and delivery. The analysis is retrospective and is based on medical documentation of the Clinic for Gynecology and Obstetrics, University Clinical Centre, Tuzla, Bosnia and Herzegovina. All patients with one previous cesarean section who attempted vaginal birth following cesarean section were managed from 1 January 2002 to 31 December 2008. Exclusion criteria included multiple gestation, greater than one previous cesarean section, previous incision other than low transverse, gestational age at delivery less than 37 weeks and induction of delivery. We identified 448 patients who met inclusion criteria. We found that 303 patients had a single-layer closure (Misgav-Ladach) and 145 had a double-layer closure (Dörffler) of the previous uterine incision. There were 35 cases of uterine rupture. Of those patients with previous single-layer closure, 5.28% (16/303) had a uterine rupture compared to 13.11% (19/145) in the double-layer closure group (p<0.05). We have not found that a Misgav-Ladach cesarean section method (single-layer uterine closure) might be more likely to result in uterine rupture in women who attempted a vaginal birth after a previous cesarean delivery. This cesarean section method should find its confirmation in everyday clinical practice.

  20. Magnetic resonance imaging screening results compared with explantation results in poly implant prothèse silicone breast implants, recalled from the European market in 2010.

    PubMed

    Maijers, Maria C; Niessen, Francisus B; Veldhuizen, Jacob F H; Ritt, Marco J P F; Manoliu, Radu A

    2014-02-01

    In a prospective cohort study, the authors followed 112 women whose Poly Implant Prothèse silicone breast implants were recalled. Magnetic resonance imaging results and clinical consequences were previously published. The authors compared magnetic resonance imaging screening with explantation results to study the diagnostic value of magnetic resonance imaging in this unique unselected and nonbiased group. women with 224 proven Poly Implant Prothèse implants after a mean implantation time of 10 years were enrolled in 2011. All women underwent magnetic resonance imaging screening and were offered explantation. The explantation details of 107 women could be compared with magnetic resonance imaging results. Of 107 women, 29 (27 percent) had at least one ruptured implant at explantation, and 44 of 214 explanted implants (21 percent) were ruptured. The magnetic resonance imaging results correctly diagnosed 154 intact and 35 ruptured implants. Sensitivity and specificity were 80 percent and 91 percent, respectively. The positive predictive value was 69 percent, and the negative predictive value was 95 percent. The accuracy of magnetic resonance imaging is comparable to previously published data from other manufacturers of modern silicone implants but lower than that of some recent validation studies in selected symptomatic women. The authors believe that this study is representative of common daily practice as they followed normal day-to-day magnetic resonance imaging protocol without using multiple independent readers. The authors hope that this study will contribute to the ongoing discussion to screen asymptomatic women with modern silicone breast implants. Diagnostic, II.

  1. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    NASA Astrophysics Data System (ADS)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  2. Intra-Abdominal Hypertension and Abdominal Compartment Syndrome in Association with Ruptured Abdominal Aortic Aneurysm in the Endovascular Era: Vigilance Remains Critical

    PubMed Central

    Bozeman, Matthew C.; Ross, Charles B.

    2012-01-01

    Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are common complications of ruptured abdominal aortoiliac aneurysms (rAAAs) and other abdominal vascular catastrophes even in the age of endovascular therapy. Morbidity and mortality due to systemic inflammatory response syndrome (SIRS) and multiple organ failure (MOF) are significant. Recognition and management of IAH are key critical care measures which may decrease morbidity and improve survival in these vascular patients. Two strategies have been utilized: expectant management with prompt decompressive laparotomy upon diagnosis of threshold levels of IAH versus prophylactic, delayed abdominal closure based upon clinical parameters at the time of initial repair. Competent management of the abdominal wound with preservation of abdominal domain is also an important component of the care of these patients. In this review, we describe published experience with IAH and ACS complicating abdominal vascular catastrophes, experience with ACS complicating endovascular repair of rAAAs, and techniques for management of the abdominal wound. Vigilance and appropriate management of IAH and ACS remains critically important in decreasing morbidity and optimizing survival following catastrophic intra-abdominal vascular events. PMID:22454763

  3. Intra-abdominal hypertension and abdominal compartment syndrome in association with ruptured abdominal aortic aneurysm in the endovascular era: vigilance remains critical.

    PubMed

    Bozeman, Matthew C; Ross, Charles B

    2012-01-01

    Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are common complications of ruptured abdominal aortoiliac aneurysms (rAAAs) and other abdominal vascular catastrophes even in the age of endovascular therapy. Morbidity and mortality due to systemic inflammatory response syndrome (SIRS) and multiple organ failure (MOF) are significant. Recognition and management of IAH are key critical care measures which may decrease morbidity and improve survival in these vascular patients. Two strategies have been utilized: expectant management with prompt decompressive laparotomy upon diagnosis of threshold levels of IAH versus prophylactic, delayed abdominal closure based upon clinical parameters at the time of initial repair. Competent management of the abdominal wound with preservation of abdominal domain is also an important component of the care of these patients. In this review, we describe published experience with IAH and ACS complicating abdominal vascular catastrophes, experience with ACS complicating endovascular repair of rAAAs, and techniques for management of the abdominal wound. Vigilance and appropriate management of IAH and ACS remains critically important in decreasing morbidity and optimizing survival following catastrophic intra-abdominal vascular events.

  4. Minimally Invasive Surgical Device for Precise Application of Bioadhesives to Prevent iPPROM.

    PubMed

    Devaud, Yannick Robert; Züger, Silvia; Zimmermann, Roland; Ehrbar, Martin; Ochsenbein-Kölble, Nicole

    2018-06-19

    The benefits of endoscopic fetal surgery are deteriorated by the high risk of iatrogenic preterm prelabor rupture of fetal membranes (iPPROM). While previous studies have reported good sealing candidates to prevent membrane rupture, the delivery of these materials to the location of membrane puncture remains unsolved. We describe an approach to apply sealing materials onto the amnion through the fetoscopy port. We developed a device composed of an umbrella-shaped polyester coated nitinol mesh and an applicator. The spontaneously unfolding umbrella is pushed through the port, pulled against the amnion, and glued onto the amnion defect site. We tested the adhesion strength of multiple glues and tested the feasibility and reproducibility of this fetal membrane sealing approach in an ex vivo model. The umbrella unfolded and was well positioned in all tests (n = 18). When applied via the fetoscopy port, umbrellas were successfully glued onto the fetal membrane, and all of them completely covered the defect (n = 5). The mean time needed for the whole procedure was 3 min. This study is a proof of concept presenting a potential future solution for the precise local application of bioadhesives for the prevention of iPPROM. © 2018 S. Karger AG, Basel.

  5. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    USGS Publications Warehouse

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.

  6. Paleoseismicity and neotectonics of the Aleutian Subduction Zone—An overview

    NASA Astrophysics Data System (ADS)

    Carver, Gary; Plafker, George

    The Aleutian subduction zone is one of the most seismically active plate boundaries and the source of several of the world's largest historic earthquakes. The structural architecture of the subduction zone varies considerably along its length. At the eastern end is a tectonically complex collision zone where the allochthonous Yakutat terrane is moving northwest into mainland Alaska. West of the collision zone a shallow-dipping subducted plate beneath a wide forearc, nearly orthogonal convergence, and a continental-type subduction regime characterizes the eastern part of the subduction zone. In the central part of the subduction zone, convergence becomes increasingly right oblique and the forearc is divided into a series of large clockwise-rotated fault-bounded blocks. Highly oblique convergence and island arc tectonics characterize the western part of the subduction zone. At the extreme western end of the arc, the relative plate motion is nearly pure strike-slip. A series of great subduction earthquakes ruptured most of the 4000-km length of the subduction zone during a period of several decades in the mid 1900s. The majority of these earthquakes broke multiple segments as defined by the large-scale structure of the overriding plate margin and patterns of historic seismicity. Several of these earthquakes generated Pacific-wide tsunamis and significant damage in the southwestern and south-central regions of Alaska. Characterization of previous subduction earthquakes is important in assessing future seismic and tsunami hazards. However, at present such information is available only for the eastern part of the subduction zone. The 1964 Alaska earthquake (M 9.2) ruptured about ˜950 km of the plate boundary that encompassed the Kodiak and Prince William Sound (PWS) segments. Within this region, nine paleosubduction earthquakes in the past ˜5000 years are recognized on the basis of geologic evidence of sudden land level change and, at some sites, coeval tsunami deposits. Carbon 14-based chronologies indicate recurrence intervals between median calibrated ages for these paleoearthquakes range from 333 to 875 years. The most recent occurred about 489 years ago and broke only the Kodiak segment. During the previous three cycles, both the Kodiak and PWS segments were involved in either multiple-segment ruptures or closely timed pairs of single segment ruptures. Evidence for the earlier paleosubduction earthquakes has been found only at sites in the PWS segment. Thus, future work on the paleoseismicity of other segments would by particular valuable in defining the seismic behavior of the subduction zone.

  7. Timing of late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand

    USGS Publications Warehouse

    Zachariasen, J.; Berryman, K.; Langridge, Rob; Prentice, C.; Rymer, M.; Stirling, M.; Villamor, P.

    2006-01-01

    Three trenches excavated across the central portion of the right-lateral strike-slip Wairau Fault in South Island, New Zealand, exposed a complex set of fault strands that have displaced a sequence of late Holocene alluvial and colluvial deposits. Abundant charcoal fragments provide age control for various stratigraphic horizons dating back to c. 5610 yr ago. Faulting relations from the Wadsworth trench show that the most recent surface rupture event occurred at least 1290 yr and at most 2740 yr ago. Drowned trees in landslide-dammed Lake Chalice, in combination with charcoal from the base of an unfaulted colluvial wedge at Wadsworth trench, suggest a narrower time bracket for this event of 1811-2301 cal. yr BP. The penultimate faulting event occurred between c. 2370 and 3380 yr, and possibly near 2680 ?? 60 cal. yr BP, when data from both the Wadsworth and Dillon trenches are combined. Two older events have been recognised from Dillon trench but remain poorly dated. A probable elapsed time of at least 1811 yr since the last surface rupture, and an average slip rate estimate for the Wairau Fault of 3-5 mm/yr, suggests that at least 5.4 m and up to 11.5 m of elastic shear strain has accumulated since the last rupture. This is near to or greater than the single-event displacement estimates of 5-7 m. The average recurrence interval for surface rupture of the fault determined from the trench data is 1150-1400 yr. Although the uncertainties in the timing of faulting events and variability in inter-event times remain high, the time elapsed since the last event is in the order of 1-2 times the average recurrence interval, implying that the Wairau Fault is near the end of its interseismic period. ?? The Royal Society of New Zealand 2006.

  8. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  9. [Premature rupture of membranes one fetus from a multiple pregnancy].

    PubMed

    Malinowski, Witold

    2011-10-01

    In multiple gestation, premature rupture of fetal membranes (PROM) is an important risk factor for premature delivery and intrauterine infection. The incidence of PROM in twin gestations is threefold of that in singleton pregnancies. The incidence in triplets occurs even more frequently underlining the role of PROM as a leading cause of infant mortality and morbidity. Besides prematurity the complications of PROM include umbilical cord compression due to oligohydramnios, cord prolapse, placental abruption, and chorioamnionitis. Together with PROM, chorioamnionitis is held responsible for significant maternal and neonatal morbidity including endometritis and sepsis in the mother and early-onset sepsis, respiratory distress syndrome, inborn pneumonia, bronchopulmonary dysplasia, intraventricular hemorrhage, and periventricular white matter injury in the neonate. Furthermore, in twin gestations, PROM remains an independent risk factor for long-term neonatal care. An uncommon situation develops when in multiple gestation PROM affects only one of the fetuses. In such cases, the co-existence in the uterine cavity of the properly developing fetus(es) can be a challenge for the process of medical decision-making. In the present work, limited world literature on the topic was critically reviewed in search of the best possible recommendations for clinical management.

  10. Time-varying interseismic strain rates and similar seismic ruptures on the Nias-Simeulue patch of the Sunda megathrust

    USGS Publications Warehouse

    Meltzner, Aron J.; Sieh, Kerry E.; Chiang, Hong-Wei; Wu, Chung-Che; Tsang, Louisa L.H.; Shen, Chuan-Chou; Hill, Emma M.; Suwargadi, Bambang W.; Natawidjaja, Danny H.; Philibosian, Belle; Briggs, Richard

    2015-01-01

    Fossil coral microatolls from fringing reefs above the great (MW 8.6) megathrust rupture of 2005 record uplift during the historically reported great earthquake of 1861. Such evidence spans nearly the entire 400-km strike length of the 2005 rupture, which was previously shown to be bounded by two persistent barriers to seismic rupture. Moreover, at sites where we have constrained the 1861 uplift amplitude, it is comparable to uplift in 2005. Thus the 1861 and 2005 ruptures appear to be similar in both extent and magnitude. At one site an uplift around AD 1422 also appears to mimic the amount of uplift in 2005. The high degree of similarity among certain ruptures of this Nias–Simeulue section of the Sunda megathrust contrasts with the substantial disparities amongst ruptures along other sections of the Sumatran portion of the Sunda megathrust. At a site on the northwestern tip of Nias, reefs also rose during an earthquake in AD 1843, known historically for its damaging tsunami along the eastern coast of the island.The coral microatolls also record interseismic vertical deformation, at annual to decadal resolution, spanning decades to more than a century before each earthquake. The corals demonstrate significant changes over time in the rates of interseismic deformation. On southern Simeulue, interseismic subsidence rates were low between 1740 and 1820 but abruptly increased by a factor of 4–10, two to four decades before the 1861 rupture. This may indicate that full coupling or deep locking of the megathrust began only a few decades before the great earthquake. In the Banyak Islands, near the pivot line separating coseismic uplift from subsidence in 2005, ongoing interseismic subsidence switched to steady uplift from 1966 until 1981, suggesting a 15-year-long slow slip event, with slip velocities at more than 120% of the plate convergence rate

  11. Spatial and Temporal Variations in Earthquake Stress Drop on Gofar Transform Fault, East Pacific Rise: Implications for Fault Strength

    NASA Astrophysics Data System (ADS)

    Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.

    2017-12-01

    During the last five seismic cycles on Gofar transform fault on the East Pacific Rise, the largest earthquakes (6.0 ≤ Mw ≤ 6.2) have repeatedly ruptured the same fault segment (rupture asperity), while intervening fault segments host swarms of microearthquakes. Previous studies on Gofar have shown that these segments of low (≤10%) seismic coupling contain diffuse zones of seismicity and P-wave velocity reduction compared with the rupture asperity; suggesting heterogeneous fault properties control earthquake behavior. We investigate the role systematic differences in material properties have on earthquake rupture along Gofar using waveforms from ocean bottom seismometers that recorded the end of the 2008 Mw 6.0 seismic cycle.We determine stress drop for 117 earthquakes (2.4 ≤ Mw ≤ 4.2) that occurred in and between rupture asperities from corner frequency derived using an empirical Green's function spectral ratio method and seismic moment obtained by fitting the omega-square source model to the low frequency amplitude of earthquake spectra. We find stress drops from 0.03 to 2.7 MPa with significant spatial variation, including 2 times higher average stress drop in the rupture asperity compared to fault segments with low seismic coupling. We interpret an inverse correlation between stress drop and P-wave velocity reduction as the effect of damage on earthquake rupture. Earthquakes with higher stress drops occur in more intact crust of the rupture asperity, while earthquakes with lower stress drops occur in regions of low seismic coupling and reflect lower strength, highly fractured fault zone material. We also observe a temporal control on stress drop consistent with log-time healing following the Mw 6.0 mainshock, suggesting a decrease in stress drop as a result of fault zone damage caused by the large earthquake.

  12. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture.

    PubMed

    Kyritsis, Polyvios; Bahr, Roald; Landreau, Philippe; Miladi, Riadh; Witvrouw, Erik

    2016-08-01

    The decision as to whether or not an athlete is ready to return to sport (RTS) after ACL reconstruction is difficult as the commonly used RTS criteria have not been validated. To evaluate whether a set of objective discharge criteria, including muscle strength and functional tests, are associated with risk of ACL graft rupture after RTS. 158 male professional athletes who underwent an ACL reconstruction and returned to their previous professional level of sport were included. Before players returned to sport they underwent a battery of discharge tests (isokinetic strength testing at 60°, 180° and 300°/s, a running t test, single hop, triple hop and triple crossover hop tests). Athletes were monitored for ACL re-ruptures once they returned to sport (median follow-up 646 days, range 1-2060). Of the 158 athletes, 26 (16.5%) sustained an ACL graft rupture an average of 105 days after RTS. Two factors were associated with increased risk of ACL graft rupture: (1) not meeting all six of the discharge criteria before returning to team training (HR 4.1, 95% CI 1.9 to 9.2, p≤0.001); and (2) decreased hamstring to quadriceps ratio of the involved leg at 60°/s (HR 10.6 per 10% difference, 95% CI 10.2 to 11, p=0.005). Athletes who did not meet the discharge criteria before returning to professional sport had a four times greater risk of sustaining an ACL graft rupture compared with those who met all six RTS criteria. In addition, hamstring to quadriceps strength ratio deficits were associated with an increased risk of an ACL graft rupture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Rupture process of the 2010 Mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations

    NASA Astrophysics Data System (ADS)

    Yue, Han; Lay, Thorne; Rivera, Luis; Bai, Yefei; Yamazaki, Yoshiki; Cheung, Kwok Fai; Hill, Emma M.; Sieh, Kerry; Kongko, Widjo; Muhari, Abdul

    2014-07-01

    The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) ruptured the shallow portion of the Sunda megathrust seaward of the Mentawai Islands, offshore of Sumatra, Indonesia, generating a strong tsunami that took 509 lives. The rupture zone was updip of those of the 12 September 2007 Mw 8.5 and 7.9 underthrusting earthquakes. High-rate (1 s sampling) GPS instruments of the Sumatra GPS Array network deployed on the Mentawai Islands and Sumatra mainland recorded time-varying and static ground displacements at epicentral distances from 49 to 322 km. Azimuthally distributed tsunami recordings from two deepwater sensors and two tide gauges that have local high-resolution bathymetric information provide additional constraints on the source process. Finite-fault rupture models, obtained by joint inversion of the high-rate (hr)-GPS time series and numerous teleseismic broadband P and S wave seismograms together with iterative forward modeling of the tsunami recordings, indicate rupture propagation ~50 km up dip and ~100 km northwest along strike from the hypocenter, with a rupture velocity of ~1.8 km/s. Subregions with large slip extend from 7 to 10 km depth ~80 km northwest from the hypocenter with a maximum slip of 8 m and from ~5 km depth to beneath thin horizontal sedimentary layers beyond the prism deformation front for ~100 km along strike, with a localized region having >15 m of slip. The seismic moment is 7.2 × 1020 N m. The rupture model indicates that local heterogeneities in the shallow megathrust can accumulate strain that allows some regions near the toe of accretionary prisms to fail in tsunami earthquakes.

  14. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  15. A comparative study of ground motion hybrid simulations and the modified NGA ground motion predictive equations for directivity and its application to the the Marmara Sea region (Turkey)

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Akinci, A.; Spagnuolo, E.; Taroni, M.; Herrero, A.; Aochi, H.

    2016-12-01

    We have simulated strong ground motions for two Mw>7.0 rupture scenarios on the North Anatolian Fault, in the Marmara Sea within 10-20 km from Istanbul. This city is characterized by one of the highest levels of seismic risk in Europe and the Mediterranean region. The increased risk in Istanbul is due to eight destructive earthquakes that ruptured the fault system and left a seismic gap at the western portion of the 1000km-long North Anatolian Fault Zone. To estimate the ground motion characteristics and its variability in the region we have simulated physics-based rupture scenarios, producing hybrid broadband time histories. We have merged two simulation techniques: a full 3D wave propagation method to generate low-frequency seismograms (Aochi and Ulrich, 2015) and the stochastic finite-fault model approach based on a dynamic corner frequency (Motazedian and Atkinson, 2005) to simulate high-frequency seismograms (Akinci et al., 2016, submitted to BSSA, 2016). They are merged to compute realistic broadband hybrid time histories. The comparison of ground motion intensity measures (PGA, PGV, SA) resulting from our simulations with those predicted by the recent Ground Motion Prediction Equations (GMPEs) in the region (Boore & Atkinson, 2008; Chiou & Young, 2008; Akkar & Bommer, 2010; Akkar & Cagnan, 2010) seems to indicate that rupture directivity and super-shear rupture effects affect the ground motion in the Marmara Sea region. In order to account for the rupture directivity we improve the comparison using the directivity predictor proposed by Spudich & Chiu (2008). This study highlights the importance of the rupture directivity for the hazard estimation in the Marmara Sea region, especially for the city of Istanbul.

  16. Insight into the rupture process of a rare tsunami earthquake from near-field high-rate GPS

    NASA Astrophysics Data System (ADS)

    Macpherson, K. A.; Hill, E. M.; Elosegui, P.; Banerjee, P.; Sieh, K. E.

    2011-12-01

    We investigated the rupture duration and velocity of the October 25, 2010 Mentawai earthquake by examining high-rate GPS displacement data. This Mw=7.8 earthquake appears to have ruptured either an up-dip part of the Sumatran megathrust or a fore-arc splay fault, and produced tsunami run-ups on nearby islands that were out of proportion with its magnitude. It has been described as a so-called "slow tsunami earthquake", characterised by a dearth of high-frequency signal and long rupture duration in low-strength, near-surface media. The event was recorded by the Sumatran GPS Array (SuGAr), a network of high-rate (1 sec) GPS sensors located on the nearby islands of the Sumatran fore-arc. For this study, the 1 sec time series from 8 SuGAr stations were selected for analysis due to their proximity to the source and high-quality recordings of both static displacements and dynamic waveforms induced by surface waves. The stations are located at epicentral distances of between 50 and 210 km, providing a unique opportunity to observe the dynamic source processes of a tsunami earthquake from near-source, high-rate GPS. We estimated the rupture duration and velocity by simulating the rupture using the spectral finite-element method SPECFEM and comparing the synthetic time series to the observed surface waves. A slip model from a previous study, derived from the inversion of GPS static offsets and tsunami data, and the CRUST2.0 3D velocity model were used as inputs for the simulations. Rupture duration and velocity were varied for a suite of simulations in order to determine the parameters that produce the best-fitting waveforms.

  17. Multimedia as Rhizome: Design Issues in a Network Environment.

    ERIC Educational Resources Information Center

    Burnett, Kathleen

    1992-01-01

    Defines the concepts of hypertext, hypermedia, multimedia, and multimedia networks. Using the rhizome as a metaphor for electronically mediated exchange, a theory of hypermedia design that incorporates principles of connection and heterogeneity, multiplicity, asignifying rupture, and cartography and decalomania is explored. (four references) (MES)

  18. Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi

    2017-05-01

    The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.

  19. Strain buildup and release, earthquake prediction and selection of VBL sites for margins of the north Pacific

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Bilham, R.; Johnson, T. L.

    1981-01-01

    During the past year, the grant supported research on several aspects of crustal deformation. The relation between earthquake displacements and fault dimensions was studied in an effort to find scaling laws that relate static parameters such as slip and stress drop to the dimensions of the rupture. Several implications of the static relations for the dynamic properties of earthquakes such as rupture velocity and dynamic stress drop were proposed. A theoretical basis for earthquake related phenomena associated with slow rupture growth or propagation, such as delayed multiple events, was developed using the stress intensity factor defined in fracture mechanics and experimental evidence from studies of crack growth by stress corrosion. Finally, extensive studies by Japanese geologists have established the offset across numerous faults in Japan over the last one hundred thousand years. These observations of intraplate faulting are being used to establish the spatial variations of the average strain rate of subregions in southern Japan.

  20. The 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground shaking

    NASA Astrophysics Data System (ADS)

    Wei, Shengji; Chen, Meng; Wang, Xin; Graves, Robert; Lindsey, Eric; Wang, Teng; Karakaş, Çağıl; Helmberger, Don

    2018-01-01

    To better quantify the relatively long period (< 0.3 Hz) shaking experienced during the 2015 Gorkha (Nepal) earthquake sequence, we study the finite rupture processes and the associated 3D ground motion of the Mw7.8 mainshock and the Mw7.2 aftershock. The 3D synthetics are then used in the broadband ground shaking in Kathmandu with a hybrid approach, summarized in a companion paper (Chen and Wei, 2017, submitted together). We determined the coseismic rupture process of the mainshock by joint inversion of InSAR/SAR, GPS (static and high-rate), strong motion and teleseismic waveforms. Our inversion for the mainshock indicates unilateral rupture towards the ESE, with an average rupture speed of 3.0 km/s and a total duration of 60 s. Additionally, we find that the beginning part of the rupture (5-18 s) has about 40% longer rise time than the rest of the rupture, as well as slower rupture velocity. Our model shows two strong asperities occurring 24 s and 36 s after the origin and located 30 km to the northwest and northeast of the Kathmandu valley, respectively. In contrast, the Mw7.2 aftershock is more compact both in time and space, as revealed by joint inversion of teleseismic body waves and InSAR data. The different rupture features between the mainshock and the aftershock could be related to difference in fault zone structure. The mainshock and aftershock ground motions in the Kathmandu valley, recorded by both strong motion and high-rate GPS stations, exhibited strong amplification around 0.2 Hz. A simplified 3D basin model, calibrated by an Mw5.2 aftershock, can match the observed waveforms reasonably well at 0.3 Hz and lower frequency. The 3D simulations indicate that the basin structure trapped the wavefield and produced an extensive ground vibration. Our study suggests that the combination of rupture characteristics and propagational complexity are required to understand the ground shaking produced by hazardous earthquakes such as the Gorkha event.

  1. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger event. For that reason, we are investigating scenarios of a moderate rupture on a cross fault, and determining conditions under which the rupture will propagate onto the adjacent SSAF. Our investigation will provide fundamental insights that may help us interpret faulting behaviors in other areas, such as the complex Mw 7.8 2016 Kaikoura (New Zealand) earthquake.

  2. [Conservative treatment of a chronic rupture of Achilles tendon: case report].

    PubMed

    González-Murillo, M; Rodrigo-Alonso, A; Figueiredo-González, H; Salgado-Rodrigo, A M; Mota-Blanco, S M

    2016-01-01

    We report a case of a 64 years-old-female patient with ruptured left Achilles tendon within two months of evolution that has gone unnoticed. By the application of a conservative treatment recovered complete and symmetrical functionality in five months time after the injury.

  3. Rupture complexity of the Mw 8.3 sea of okhotsk earthquake: Rapid triggering of complementary earthquakes?

    USGS Publications Warehouse

    Wei, Shengji; Helmberger, Don; Zhan, Zhongwen; Graves, Robert

    2013-01-01

    We derive a finite slip model for the 2013 Mw 8.3 Sea of Okhotsk Earthquake (Z = 610 km) by inverting calibrated teleseismic P waveforms. The inversion shows that the earthquake ruptured on a 10° dipping rectangular fault zone (140 km × 50 km) and evolved into a sequence of four large sub-events (E1–E4) with an average rupture speed of 4.0 km/s. The rupture process can be divided into two main stages. The first propagated south, rupturing sub-events E1, E2, and E4. The second stage (E3) originated near E2 with a delay of 12 s and ruptured northward, filling the slip gap between E1 and E2. This kinematic process produces an overall slip pattern similar to that observed in shallow swarms, except it occurs over a compressed time span of about 30 s and without many aftershocks, suggesting that sub-event triggering for deep events is significantly more efficient than for shallow events.

  4. Rupture imaging of the Mw 7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismic P waves

    USGS Publications Warehouse

    Xu, Y.; Koper, K.D.; Sufri, O.; Zhu, L.; Hutko, Alexander R.

    2009-01-01

    [1] The Mw 7.9 Wenchuan earthquake of 12 May 2008 was the most destructive Chinese earthquake since the 1976 Tangshan event. Tens of thousands of people were killed, hundreds of thousands were injured, and millions were left homeless. Here we infer the detailed rupture process of the Wenchuan earthquake by back-projecting teleseismic P energy from several arrays of seismometers. This technique has only recently become feasible and is potentially faster than traditional finite-fault inversion of teleseismic body waves; therefore, it may reduce the notification time to emergency response agencies. Using the IRIS DMC, we collected 255 vertical component broadband P waves at 30-95?? from the epicenter. We found that at periods of 5 s and greater, nearly all of these P waves were coherent enough to be used in a global array. We applied a simple down-sampling heuristic to define a global subarray of 70 stations that reduced the asymmetry and sidelobes of the array response function (ARF). We also considered three regional subarrays of seismometers in Alaska, Australia, and Europe that had apertures less than 30?? and P waves that were coherent to periods as short as 1 s. Individual ARFs for these subarrays were skewed toward the subarrays; however, the linear sum of the regional subarray beams at 1 s produced a symmetric ARF, similar to that of the groomed global subarray at 5 s. For both configurations we obtained the same rupture direction, rupture length, and rupture time. We found that the Wenchuan earthquake had three distinct pulses of high beam power at 0, 23, and 57 s after the origin time, with the pulse at 23 s being highest, and that it ruptured unilaterally to the northeast for about 300 km and 110 s, with an average speed of 2.8 km/s. It is possible that similar results can be determined for future large dip-slip earthquakes within 20-30 min of the origin time using relatively sparse global networks of seismometers such as those the USGS uses to locate earthquakes in near-real time. Copyright 2009 by the American Geophysical Union.

  5. EGF Search for Compound Source Time Functions in Microearthquakes

    NASA Astrophysics Data System (ADS)

    Ampuero, J.; Rubin, A. M.

    2003-12-01

    Numerical simulations of stopping ruptures on bimaterial interfaces seem to indicate a pronounced asymmetry in the time it takes to reach the peak Coulomb stress shortly beyond the rupture ends. For the rupture front moving in the direction of slip of the stiffer medium, the timescale is controlled by the arrival of stopping phases from the opposite side of the crack, but for the opposite rupture front this timescale is controlled by the much shorter-duration tensile stress pulse that moves in front of the crack tip as it slows down. This behavior may have implications for rupture complexity on bimaterial interfaces. In addition to observing an asymmetry in aftershock occurrence on the San Andreas fault, Rubin and Gillard (2000) noted that for all 5 of the compound earthquakes they observed in a cluster of 72 events, the second subevent occurred to the NW of the first (that is, near the rupture front moving in the direction of slip of the stiffer medium). They suggested that these 5``second events'' were simply examples of ``early aftershocks'' which also occur preferentially to the NW; however, the fact that these 5 earthquakes could not be recognized as compound at stations located to the SE indicates that the second event actually occurred on the timescale of the passage of the dynamic stress waves. Thus, observations of asymmetry in rupture complexity may form an independent dataset, complimentary to observations of aftershock asymmetry, for constraining models of rupture on bimaterial interfaces. Microseismicity recorded on dense seismological networks has proved interesting for earthquake physics because the high number of events allows one to gain statistical insight into the observed source properties. However, microearthquakes are usually so small that the range of methods that can be applied to their analysis is limited and of low resolution. To address the questions raised above we would like to characterize the source time functions (STF) of a large number of microearthquakes, in particular the statistics of compound events and the possible asymmetry of their spatial distribution. We will show results of the systematic application of empirical Green's function deconvolution methods to a large dataset from the Parkfield HRSN. On the methodological side the performance and robustness of various deconvolution schemes is tested. These range from trivially stabilized spectral division to projected Landweber and blind deconvolution. Use is also made of the redundance available in highly clustered seismicity with many similar seismograms. The observations will be interpreted in the light of recent numerical simulations of dynamic rupture on bimaterial interfaces (see abstract of Rubin and Ampuero).

  6. Toward tsunami early warning system in Indonesia by using rapid rupture durations estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madlazim

    2012-06-20

    Indonesia has Indonesian Tsunami Early Warning System (Ina-TEWS) since 2008. The Ina-TEWS has used automatic processing on hypocenter; Mwp, Mw (mB) and Mj. If earthquake occurred in Ocean, depth < 70 km and magnitude > 7, then Ina-TEWS announce early warning that the earthquake can generate tsunami. However, the announcement of the Ina-TEWS is still not accuracy. Purposes of this research are to estimate earthquake rupture duration of large Indonesia earthquakes that occurred in Indian Ocean, Java, Timor sea, Banda sea, Arafura sea and Pasific ocean. We analyzed at least 330 vertical seismogram recorded by IRIS-DMC network using a directmore » procedure for rapid assessment of earthquake tsunami potential using simple measures on P-wave vertical seismograms on the velocity records, and the likelihood that the high-frequency, apparent rupture duration, T{sub dur}. T{sub dur} can be related to the critical parameters rupture length (L), depth (z), and shear modulus ({mu}) while T{sub dur} may be related to wide (W), slip (D), z or {mu}. Our analysis shows that the rupture duration has a stronger influence to generate tsunami than Mw and depth. The rupture duration gives more information on tsunami impact, Mo/{mu}, depth and size than Mw and other currently used discriminants. We show more information which known from the rupture durations. The longer rupture duration, the shallower source of the earthquake. For rupture duration greater than 50 s, the depth less than 50 km, Mw greater than 7, the longer rupture length, because T{sub dur} is proportional L and greater Mo/{mu}. Because Mo/{mu} is proportional L. So, with rupture duration information can be known information of the four parameters. We also suggest that tsunami potential is not directly related to the faulting type of source and for events that have rupture duration greater than 50 s, the earthquakes generated tsunami. With available real-time seismogram data, rapid calculation, rupture duration discriminant can be completed within 4-5 min after an earthquake occurs and thus can aid in effective, accuracy and reliable tsunami early warning for Indonesia region.« less

  7. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the failure envelope of the Mohr-Coulomb criterion that describes shear-related rupture. The critical value of the volumetric strain for rupture may be controlled by the apparent cohesion and apparent angle of internal friction of the Mohr-Coulomb criterion.

  8. Diverse rupture modes for surface-deforming upper plate earthquakes in the southern Puget Lowland of Washington State

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Sherrod, Brian L.; Kelsey, Harvey M.; Johnson, Samuel Y.; Bradley, Lee-Ann; Wells, Ray E.

    2014-01-01

    Earthquake prehistory of the southern Puget Lowland, in the north-south compressive regime of the migrating Cascadia forearc, reflects diverse earthquake rupture modes with variable recurrence. Stratigraphy and Bayesian analyses of previously reported and new 14C ages in trenches and cores along backthrust scarps in the Seattle fault zone restrict a large earthquake to 1040–910 cal yr B.P. (2σ), an interval that includes the time of the M 7–7.5 Restoration Point earthquake. A newly identified surface-rupturing earthquake along the Waterman Point backthrust dates to 940–380 cal yr B.P., bringing the number of earthquakes in the Seattle fault zone in the past 3500 yr to 4 or 5. Whether scarps record earthquakes of moderate (M 5.5–6.0) or large (M 6.5–7.0) magnitude, backthrusts of the Seattle fault zone may slip during moderate to large earthquakes every few hundred years for periods of 1000–2000 yr, and then not slip for periods of at least several thousands of years. Four new fault scarp trenches in the Tacoma fault zone show evidence of late Holocene folding and faulting about the time of a large earthquake or earthquakes inferred from widespread coseismic subsidence ca. 1000 cal yr B.P.; 12 ages from 8 sites in the Tacoma fault zone limit the earthquakes to 1050–980 cal yr B.P. Evidence is too sparse to determine whether a large earthquake was closely predated or postdated by other earthquakes in the Tacoma basin, but the scarp of the Tacoma fault was formed by multiple earthquakes. In the northeast-striking Saddle Mountain deformation zone, along the western limit of the Seattle and Tacoma fault zones, analysis of previous ages limits earthquakes to 1200–310 cal yr B.P. The prehistory clarifies earthquake clustering in the central Puget Lowland, but cannot resolve potential structural links among the three Holocene fault zones.

  9. Traumatic rupture of the tricuspid valve and multi-modality imaging

    PubMed Central

    Corneli, Mariana; Conde, Diego; Ronderos, Ricardo

    2014-01-01

    Introduction Motor vehicle accident (MVA) account for most cases of traumatic rupture of the tricuspid valve. Valve rupture during an MVA is generated by an abrupt deceleration coupled with an increase in right-side cardiac pressures (Valsalva maneuver and thorax compression). Case A 39-year-old asymptomatic man was referred for an echocardiogram due to the presence of a systolic murmur. He had no prior significant medical history, except for a remote MVA 3 years ago. Real-time 3D echocardiography (RT3DE) showed a tear in the body of the anterior leaflet and not at the cord, as was suggested by two-dimensional transthoracic echocardiography (2D-TTE). Based on these findings, the mechanism was considered anterior leaflet rupture of the tricuspid valve, secondary to chest blunt trauma. The anterior leaflet was repaired using two polytetrafluoroethylene sutures, and tricuspid annuloplasty with an Edwards ring was performed. Conclusions Multimodality imaging helps to determine timing of surgery in asymptomatic traumatic tricuspid rupture. The combination of echocardiography and magnetic resonance imaging provide information of volumetric data and contractility of the right ventricle (RV) during follow-up. RT3DE gives information relevant to the morphological and functional characterization of the valve, allowing the planning of appropriate surgical procedure. PMID:25414827

  10. Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2010-01-01

    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.

  11. Synthetic Augmented Suture Anchor Reconstruction for a Complete Traumatic Distal Triceps Tendon Rupture in a Male Professional Bodybuilder with Postoperative Biomechanical Assessment

    PubMed Central

    Nikolaidou, Maria-Elissavet; Banke, Ingo J.; Laios, Thomas; Petsogiannis, Konstantinos; Mourikis, Anastasios

    2014-01-01

    Bodybuilding is a high-risk sport for distal triceps tendon ruptures. Management, especially in high-demanding athletes, is operative with suture anchor refixation technique being frequently used. However, the rate of rerupture is high due to underlying poor tendon quality. Thus, additional augmentation could be useful. This case report presents a reconstruction technique for a complete traumatic distal triceps tendon rupture in a bodybuilder with postoperative biomechanical assessment. A 28-year-old male professional bodybuilder was treated with a synthetic augmented suture anchor reconstruction for a complete triceps tendon rupture of his right dominant elbow. Postoperative biomechanical assessment included isokinetic elbow strength and endurance testing by using multiple angular velocities to simulate the “off-season” and “precompetition” phases of training. Eighteen months postoperatively and after full return to training, the biomechanical assessment indicated that the strength and endurance of the operated elbow joint was fully restored with even higher ratings compared to the contralateral healthy arm. The described reconstruction technique can be considered as an advisable option in high-performance athletes with underlying poor tendon quality due to high tensile strength and lack of donor site morbidity, thus enabling them to restore preinjury status and achieve safe return to sports. PMID:24711944

  12. [A Case of Aortoesophageal Fistula Rupture Due to Descending Thoracic Aortic Dissection with Recurrent Colon Cancer during Chemotherapy Containing Bevacizumab].

    PubMed

    Koda, Takamaru; Koike, Junichi; Masuhara, Hiroshi; Kurihara, Akiharu; Shiokawa, Hiroyuki; Ushigome, Mitsunori; Kaneko, Tomoaki; Suzuki, Takayuki; Sawaguchi, Yuko; Katayanagi, Tomoyuki; Fujii, Takerou; Watanabe, Yoshinori; Funahashi, Kimihiko; Shimada, Hideaki; Kaneko, Hironori

    2016-11-01

    We report a case of aortoesophageal fistula rupture during the course of chemotherapy following colon cancer resection. The patient was a 77-year-old woman. Following recurrence of cancer of the sigmoid colon, the patient received a course of XELOX plus bevacizumab(Bmab)to treat peritoneal dissemination and lung metastases. She was brought by ambulance to our hospital's emergency department 55 days after the last dose of Bmab, with a chief complaint of hematemesis. Hematolo- gy results showed severe anemia with a hemoglobin level of 4.0 g/dL. Descending thoracic aortic dissection was noted on chest CT with contrast, and the patient was diagnosed with an aortoesophageal fistula rupture. She underwent emergent endovascular chest stent grafting to control the bleeding. Although the ruptured esophagus was a potential source of infection, the patient and family members chose palliative treatment. Therefore, conservative treatment was administered without removing the esophagus. The patient's postoperative course was good; instead of resuming oral intake, the patient was discharged on home IVH 59 days after surgery. Outpatient follow-up continued, but multiple metastases led to gradual worsening of the patient's general condition. She died 168 days after being admitted for surgery.

  13. Repair of pediatric bladder rupture improves survival: results from the National Trauma Data Bank.

    PubMed

    Deibert, Christopher M; Glassberg, Kenneth I; Spencer, Benjamin A

    2012-09-01

    The urinary bladder is the second most commonly injured genitourinary organ. The objective of this study was to describe the management of pediatric traumatic bladder ruptures in the United States and their association with surgical repair and mortality. We searched the 2002-2008 National Trauma Data Bank for all pediatric (<18 years old) subjects with bladder rupture. Demographics, mechanism of injury, coexisting injury severity, and operative interventions for bladder and other abdominal trauma are described. Multivariate logistic regression analysis was used to examine the relationship between bladder rupture and both bladder surgery and in-hospital mortality. We identified 816 children who sustained bladder trauma. Forty-four percent underwent bladder surgery, including 17% with an intraperitoneal injury. Eighteen percent had 2 intra-abdominal injuries, and 40% underwent surgery to other abdominal organs. In multivariate analysis, operative bladder repair reduced the likelihood of in-hospital mortality by 82%. A greater likelihood of dying was seen among the uninsured and those with more severe injuries and multiple abdominal injuries. After bladder trauma, pediatric patients demonstrate significantly improved survival when the bladder is surgically repaired. With only 67% of intraperitoneal bladder injuries being repaired, there appears to be underuse of a life-saving procedure. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Epidemiology of abdominal aortic aneurysms in a Chinese population during introduction of endovascular repair, 1994 to 2013: A retrospective observational study.

    PubMed

    Tam, Greta; Chan, Yiu Che; Chong, Ka Chun; Lee, Kam Pui; Cheung, Grace Chung-Yan; Cheng, Stephen Wing-Keung

    2018-03-01

    The aim of this study was to examine changes in abdominal aortic aneurysm repair and mortality during a period when endovascular aneurysm repair (EVAR) was introduced.Open repair surgery was the mainstay of treatment for abdominal aortic aneurysm (AAA), but EVAR is increasingly utilized. Studies in the Western population have reported improved short-term or postoperative mortality and shorter length of hospital stay with EVAR. However, scant data are available in the Chinese population.We conducted a retrospective observational study using the database of the Hospital Authority, which provides public health care to most of the Hong Kong population. AAA patients admitted to public hospitals for intact repair or rupture from 1994 to 2013 were included in this study. We calculated the incidence of ruptured AAA, annual repair rates according to type of AAA and surgery, as well as death rates (operative and overall short-term). We calculated whether there were significant changes over time and compared short-term mortality between open surgery and EVAR.One thousand eight hundred eighty-five patients were admitted for intact repair and 1306 patients were admitted for AAA rupture, of whom 795 underwent rupture repair. Intact repair rates significantly increased in all age groups (7.3-37.8%, P < .001) over the study period.The incidence of ruptured AAA increased, in all age groups, except in < 64 years old. By 2013, 85% of intact repairs and 55.4% of rupture repair were done by EVAR. Over time, there was a significant decrease in operative mortality for intact repair (16.5 in 1994 to 7.1 in 2013, P = .01) and rupture repair (59.7 in 1994 to 30.8 in 2013, P = .003). Over the same time period, short-term AAA-related deaths decreased by more than half (73% in 1994 to 24% in 2013, P < .001), with a significant decline in all age groups, except < 64 years old. Short-term mortality was significantly lower for EVAR than for open repair (17.2% vs 40.3%, P < .01).Short-term AAA-related deaths have declined likely due to decreased operative mortality and rupture deaths during the period of EVAR introduction and expansion.

  15. Programmed release triggered by osmotic gradients in multicomponent vesicles

    NASA Astrophysics Data System (ADS)

    Dong, Ruo-Yu; Jang, Hyun-Sook; Granick, Steve

    Polymersomes, a good candidate for encapsulation and delivery of active ingredients, can be constructed with inter-connected multiple compartments. These so-called multisomes on the one hand enable the spatial separation of various incompatible contents or processes, and on the other hand provide an efficient route for inter-compartment communication via the interface semipermeable membrane. Here we show that by establishing osmotic imbalances between different compartments, interesting synergetic morphology changes of the multisomes can be observed. And by further carefully adjusting the osmotic gradients and the arrangement of compartments, we can realize a cascade rupture of these individual units, which may be a new step towards controlled mixing and timed sequences of chemical reactions.

  16. Spinal cord protection in descending thoracic and thoracoabdominal aortic aneurysm repair.

    PubMed

    Safi, H J; Campbell, M P; Ferreira, M L; Azizzadeh, A; Miller, C C

    1998-01-01

    During aneurysm repair of the descending thoracic or thoracoabdominal aorta, the likelihood of neurological complications increases greatly after only 30 minutes of spinal cord ischemia. However, the manifestation of paraplegia or paraparesis relates not only to aortic cross-clamping time, but to multiple factors that may include aortic dissection, previous aortic surgery, advanced age, preoperative renal insufficiency, rupture, and most significantly, aneurysm extent. At greatest risk is the patient with type II thoracoabdominal aortic aneurysm. For this patient the simple cross-clamp technique, which uses no protective surgical adjuncts, heightens the threat of neurological deficit. With the surgical adjuncts of cerebrospinal fluid drainage and distal aortic perfusion, the probability of neurological deficit is appreciably lowered.

  17. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, Andrew V.; Hayes, Gavin P.; Wei, Yong; Convers, Jaime

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5–9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast.

  18. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, A.V.; Hayes, G.; Wei, Y.; Convers, J.

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5-9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast. Copyright 2011 by the American Geophysical Union.

  19. Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains

    PubMed Central

    Ackbarow, Theodor; Chen, Xuefeng; Keten, Sinan; Buehler, Markus J.

    2007-01-01

    The fundamental fracture mechanisms of biological protein materials remain largely unknown, in part, because of a lack of understanding of how individual protein building blocks respond to mechanical load. For instance, it remains controversial whether the free energy landscape of the unfolding behavior of proteins consists of multiple, discrete transition states or the location of the transition state changes continuously with the pulling velocity. This lack in understanding has thus far prevented us from developing predictive strength models of protein materials. Here, we report direct atomistic simulation that over four orders of magnitude in time scales of the unfolding behavior of α-helical (AH) and β-sheet (BS) domains, the key building blocks of hair, hoof, and wool as well as spider silk, amyloids, and titin. We find that two discrete transition states corresponding to two fracture mechanisms exist. Whereas the unfolding mechanism at fast pulling rates is sequential rupture of individual hydrogen bonds (HBs), unfolding at slow pulling rates proceeds by simultaneous rupture of several HBs. We derive the hierarchical Bell model, a theory that explicitly considers the hierarchical architecture of proteins, providing a rigorous structure–property relationship. We exemplify our model in a study of AHs, and show that 3–4 parallel HBs per turn are favorable in light of the protein's mechanical and thermodynamical stability, in agreement with experimental findings that AHs feature 3.6 HBs per turn. Our results provide evidence that the molecular structure of AHs maximizes its robustness at minimal use of building materials. PMID:17925444

  20. Cohesive zone length of metagabbro at supershear rupture velocity

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Xu, Shiqing; Yamashita, Futoshi; Mizoguchi, Kazuo

    2016-10-01

    We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m × 0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than √{2} times the shear wave velocity. This feature is consistent with the theoretical prediction.

  1. Surface faulting and paleoseismic history of the 1932 Cedar Mountain earthquake area, west-central Nevada, and implications for modern tectonics of the Walker Lane

    USGS Publications Warehouse

    Bell, J.W.; DePolo, C.M.; Ramelli, A.R.; Sarna-Wojcicki, A. M.; Meyer, C.E.

    1999-01-01

    The 1932 Cedar Mountain earthquake (Ms 7.2) was one of the largest historical events in the Walker Lane region of western Nevada, and it produced a complicated strike-slip rupture pattern on multiple Quaternary faults distributed through three valleys. Primary, right-lateral surface ruptures occurred on north-striking faults in Monte Cristo Valley; small-scale lateral and normal offsets occurred in Stewart Valley; and secondary, normal faulting occurred on north-northeast-striking faults in the Gabbs Valley epicentral region. A reexamination of the surface ruptures provides new displacement and fault-zone data: maximum cumulative offset is estimated to be 2.7 m, and newly recognized faults extend the maximum width and end-to-end length of the rupture zone to 17 and 75 km, respectively. A detailed Quaternary allostratigraphic chronology based on regional alluvialgeomorphic relationships, tephrochronology, and radiocarbon dating provides a framework for interpreting the paleoseismic history of the fault zone. A late Wisconsinan alluvial-fan and piedmont unit containing a 32-36 ka tephra layer is a key stratigraphic datum for paleoseismic measurements. Exploratory trenching and radiocarbon dating of tectonic stratigraphy provide the first estimates for timing of late Quaternary faulting along the Cedar Mountain fault zone. Three trenches display evidence for six faulting events, including that in 1932, during the past 32-36 ka. Radiocarbon dating of organic soils interstratified with tectonically ponded silts establishes best-fit ages of the pre-1932 events at 4, 5,12,15, and 18 ka, each with ??2 ka uncertainties. On the basis of an estimated cumulative net slip of 6-12 m for the six faulting events, minimum and maximum late Quaternary slip rates are 0.2 and 0.7 mm/yr, respectively, and the preferred rate is 0.4-0.5 mm/yr. The average recurrence (interseismic) interval is 3600 yr. The relatively uniform thickness of the ponded deposits suggests that similar-size, characteristic rupture events may characterize late Quaternary slip on the zone. A comparison of event timing with the average late Quaternary recurrence interval indicates that slip has been largely regular (periodic) rather than temporally clustered. To account for the spatial separation of the primary surface faulting in Monte Cristo Valley from the epicenter and for a factor-of-two-to-three disparity between the instrumentally and geologically determined seismic moments associated with the earthquake, we hypothesize two alternative tectonic models containing undetected subevents. Either model would adequately account for the observed faulting on the basis of wrench-fault kinematics that may be associated with the Walker Lane. The 1932 Cedar Mountain earthquake is considered an important modern analogue for seismotectonic modeling and estimating seismic hazard in the Walker Lane region. In contrast to most other historical events in the Basin and Range province, the 1932 event did not occur along a major range-bounding fault, and no single, throughgoing basement structure can account for the observed rupture pattern. The 1932 faulting supports the concept that major earthquakes in the Basin and Range province can exhibit complicated distributive rupture patterns and that slip rate may not be a reliable criterion for modeling seismic hazard.

  2. A Combined Experimental and Numerical Modeling Study of the Deformation and Rupture of Axisymmetric Liquid Bridges under Coaxial Stretching.

    PubMed

    Zhuang, Jinda; Ju, Y Sungtaek

    2015-09-22

    The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.

  3. Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Lyon-Caen, Hélène; Boiselet, Aurélien

    2017-10-01

    Modeling the seismic potential of active faults is a fundamental step of probabilistic seismic hazard assessment (PSHA). An accurate estimation of the rate of earthquakes on the faults is necessary in order to obtain the probability of exceedance of a given ground motion. Most PSHA studies consider faults as independent structures and neglect the possibility of multiple faults or fault segments rupturing simultaneously (fault-to-fault, FtF, ruptures). The Uniform California Earthquake Rupture Forecast version 3 (UCERF-3) model takes into account this possibility by considering a system-level approach rather than an individual-fault-level approach using the geological, seismological and geodetical information to invert the earthquake rates. In many places of the world seismological and geodetical information along fault networks is often not well constrained. There is therefore a need to propose a methodology relying on geological information alone to compute earthquake rates of the faults in the network. In the proposed methodology, a simple distance criteria is used to define FtF ruptures and consider single faults or FtF ruptures as an aleatory uncertainty, similarly to UCERF-3. Rates of earthquakes on faults are then computed following two constraints: the magnitude frequency distribution (MFD) of earthquakes in the fault system as a whole must follow an a priori chosen shape and the rate of earthquakes on each fault is determined by the specific slip rate of each segment depending on the possible FtF ruptures. The modeled earthquake rates are then compared to the available independent data (geodetical, seismological and paleoseismological data) in order to weight different hypothesis explored in a logic tree.The methodology is tested on the western Corinth rift (WCR), Greece, where recent advancements have been made in the understanding of the geological slip rates of the complex network of normal faults which are accommodating the ˜ 15 mm yr-1 north-south extension. Modeling results show that geological, seismological and paleoseismological rates of earthquakes cannot be reconciled with only single-fault-rupture scenarios and require hypothesizing a large spectrum of possible FtF rupture sets. In order to fit the imposed regional Gutenberg-Richter (GR) MFD target, some of the slip along certain faults needs to be accommodated either with interseismic creep or as post-seismic processes. Furthermore, computed individual faults' MFDs differ depending on the position of each fault in the system and the possible FtF ruptures associated with the fault. Finally, a comparison of modeled earthquake rupture rates with those deduced from the regional and local earthquake catalog statistics and local paleoseismological data indicates a better fit with the FtF rupture set constructed with a distance criteria based on 5 km rather than 3 km, suggesting a high connectivity of faults in the WCR fault system.

  4. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2)

    USGS Publications Warehouse

    ,

    2008-01-01

    California?s 35 million people live among some of the most active earthquake faults in the United States. Public safety demands credible assessments of the earthquake hazard to maintain appropriate building codes for safe construction and earthquake insurance for loss protection. Seismic hazard analysis begins with an earthquake rupture forecast?a model of probabilities that earthquakes of specified magnitudes, locations, and faulting types will occur during a specified time interval. This report describes a new earthquake rupture forecast for California developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP 2007).

  5. On the Prediction of Ground Motion

    NASA Astrophysics Data System (ADS)

    Lavallee, D.; Schmedes, J.; Archuleta, R. J.

    2012-12-01

    Using a slip-weakening dynamic model of rupture, we generated earthquake scenarios that provided the spatio-temporal evolution of the slip on the fault and the radiated field at the free surface. We observed scenarios where the rupture propagates at a supershear speed on some parts of the fault while remaining subshear for other parts of the fault. For some scenarios with nearly identical initial conditions, the rupture speed was always subshear. For both types of scenarios (mixture of supershear and subshear speeds and only subshear), we compute the peak ground accelerations (PGA) regularly distributed over the Earth's surface. We then calculate the probability density functions (PDF) of the PGA. For both types of scenarios, the PDF curves are asymmetrically shaped and asymptotically attenuated according to power law. This behavior of the PDF is similar to that observed for the PDF curves of PGA recorded during earthquakes. The main difference between scenarios with a supershear rupture speed and scenarios with only subshear rupture speed is the range of PGA values. Based on these results, we investigate three issues fundamental for the prediction of ground motion. It is important to recognize that recorded ground motions during an earthquake sample a small fraction of the radiation field. It is not obvious that such sampling will capture the largest ground motion generated during an earthquake, nor that the number of stations is large enough to properly infer the statistical properties associated with the radiation field. To quantify the effect of under (or low) sampling of the radiation field, we design three experiments. For a scenario where the rupture speed is only subshear, we construct multiple sets of observations. Each set is comprised of 100 randomly selected PGA values from all of the PGA's calculated at the Earth's surface. In the first experiment, we evaluate how the distributions of PGA in the sets compare with the distribution of all the PGA. For this experiment, we used different statistical tests (e.g. chi-square). This experiment quantifies the likelihood that a random set of PGA can be used to infer the statistical properties of all the PGA. In the second experiment, we fit the PDF of the PGA of every set with probability laws used in the literature to describe the PDF of recorded PGA: the lognormal law, the generalized maximum extreme value law, and the Levy law. For each set, the probability laws are then used to compute the probability to observe a PGA value that will cause "moderate to heavy" potential damage according to Instrumental Intensity scale developed by USGS. For each probability law, we compare predictions based on the set with the prediction estimated from all the PGA. This experiment quantifies the reliability and uncertainty in predicting an outcome due to under sampling the radiation field. The third experiment consists in using the sets discussed above and repeats the two investigations discussed above but this time comparing with a scenario where the rupture has a supershear speed over part of the fault. The objective here is to assess additional uncertainty in predicting PGA and damage resulting from ruptures that have supershear speeds.

  6. [Spontaneous rupture of the spleen in infectious mononucleosis: case report and review of the literature].

    PubMed

    Kuzman, Ilija; Kirac, Petar; Kuzman, Tomislav; Puljiz, Ivan; Bilić, Vide

    2003-01-01

    Spontaneous splenic rupture is a rare but potentially fatal complication of infectious mononucleosis. Abdominal pain is uncommon in infectious mononucleosis, and splenic rupture should be strongly considered whenever abdominal pain occurs. The onset of pain may be insidious or abrupt. The pain is usually in the left upper quadrant. To indicate that infectious mononucleosis is not always the innocent kissing disease, but could be complicated with splenic rupture as a life-threathenig condition. Our first case is described and a short literature review is provided. We report on the case of a 27-year-old man with infectious mononucleosis who had spontaneous splenic rupture that was successfully managed by splenectomy. On admission, he was febrile (38.5 degrees C) with hepatosplenomegaly, and had a blood pressure of 100/70 mm Hg. Six hours later, the patient complained of increasing abdominal pain. Abdominal ultrasound and computed tomography showed a 16.5 cm heterogeneous splenomegaly with subcapsular hematoma as well as free ascites. Laparotomy confirmed spontaneous rupture of the splenic capsule with active abdominal bleeding. Splenectomy was performed with a good clinical response. Examination of the spleen revealed a ruptured capsule with a subcapsular hematoma. Infectious mononucleosis is the most common infectious disease to result in spontaneous spleen rupture. The prognosis is favorable when diagnosis is made on time and correct treatment is started immediately. Although splenectomy was advocated as definitive therapy in the past, numerous recent reports have documented good outcomes with non-operative management. Based on the literature review, an approach to the management of a spontaneously ruptured spleen secondary to infectious mononucleosis is suggested. Non-operative management can be successful in hemodynamically stable patients, i.e. in patients with subcapsular hematoma without overt rupture of the capsule to avoid complications of splenectomy (e.g. post-splenectomy sepsis). We report on a 27-year-old man with infectious mononucleosis who had spontaneous splenic rupture that was successfully managed by splenectomy.

  7. Demonstration of improved seismic source inversion method of tele-seismic body wave

    NASA Astrophysics Data System (ADS)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  8. Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir

    NASA Astrophysics Data System (ADS)

    Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2014-12-01

    In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.

  9. Strong Ground Motion Generation during the 2011 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.

    2011-12-01

    Strong ground motions during the 2011 Tohoku-Oki earthquake (Mw9.0) were densely observed by the strong motion observation networks all over Japan. Seeing the acceleration and velocity waveforms observed at strong stations in northeast Japan along the source region, those ground motions are characterized by plural wave packets with duration of about twenty seconds. Particularly, two wave packets separated by about fifty seconds could be found on the records in the northern part of the damaged area, whereas only one significant wave packets could be recognized on the records in the southern part of the damaged area. The record section shows four isolated wave packets propagating from different locations to north and south, and it gives us a hint of the strong motion generation process on the source fault which is related to the heterogeneous rupture process in the scale of tens of kilometers. In order to solve it, we assume that each isolated wave packet is contributed by the corresponding strong motion generation area (SMGA). It is a source patch whose slip velocity is larger than off the area (Miyake et al., 2003). That is, the source model of the 2011 Tohoku-Oki earthquake consists of four SMGAs. The SMGA source model has succeeded in reproducing broadband strong ground motions for past subduction-zone events (e.g., Suzuki and Iwata, 2007). The target frequency range is set to be 0.1-10 Hz in this study as this range is significantly related to seismic damage generation to general man-made structures. First, we identified the rupture starting points of each SMGA by picking up the onset of individual packets. The source fault plane is set following the GCMT solution. The first two SMGAs were located approximately 70 km and 30 km west of the hypocenter. The third and forth SMGAs were located approximately 160 km and 230 km southwest of the hypocenter. Then, the model parameters (size, rise time, stress drop, rupture velocity, rupture propagation pattern) of these four SMGAs were determined by waveform modeling using the empirical Green's function method (Irikura, 1986). The first and second SMGAs are located close to each other, and they are partially overlapped though the difference in the rupture time between them is more than 40 s. Those two SMGA appear to be included in the source region of the past repeating Miyagi-Oki subduction-zone event in 1936. The third and fourth SMGAs appear to be located in the source region of the past Fukushima-Oki events in 1938. Each of Those regions has been expected to cause next major earthquakes in the long-term evaluation. The obtained source model explains the acceleration, velocity, and displacement time histories in the target frequency range at most stations well. All of four SMGAs exist apparently outside of the large slip area along the trench east of the hypocenter, which was estimated by the seismic, geodetic, and tsunami inversion analyses, and this large slip zone near the trench does not contribute to strong motion much. At this point, we can conclude that the 2011 Tohoku-Oki earthquake has a possibility to be a complex event rupturing multiple preexisting asperities in terms of strong ground motion generation. It should be helpful to validate and improve the applicability of the strong motion prediction recipe for great subduction-zone earthquakes.

  10. Incidence and clinical outcomes of tendon rupture following distal radius fracture.

    PubMed

    White, Brian D; Nydick, Jason A; Karsky, Dawnne; Williams, Bailee D; Hess, Alfred V; Stone, Jeffrey D

    2012-10-01

    To evaluate the incidence of tendon rupture after nonoperative and operative management of distal radius fractures, report clinical outcomes after tendon repair or transfer, and examine volar plate and dorsal screw prominence as a predictor of tendon rupture. We performed a retrospective chart review on patients treated for tendon rupture after distal radius fracture. We evaluated active range of motion, Disabilities of Arm, Shoulder, and Hand score, grip strength, and pain score, and performed radiographic evaluation of volar plate and dorsal screw prominence in both the study group and a matched control group. There were 6 tendon ruptures in 1,359 patients (0.4%) treated nonoperatively and 8 tendon ruptures in 999 patients (0.8%) treated with volar plate fixation. At the time of final follow-up, regardless of treatment, we noted that patients had minimal pain and excellent motion and grip strength. Mean Disabilities of the Shoulder, Arm, and Hand scores were 6 for patients treated nonoperatively and 4 for those treated with volar plating. We were unable to verify volar plate or dorsal screw prominence as independent risk factors for tendon rupture after distal radius fractures. However, we recommend continued follow-up and plate removal for symptomatic patients who have volar plate prominence or dorsal screw prominence. In the event of tendon rupture, we report excellent clinical outcomes after tendon repair or tendon transfer. Therapeutic IV. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Size ratio correlates with intracranial aneurysm rupture status: a prospective study.

    PubMed

    Rahman, Maryam; Smietana, Janel; Hauck, Erik; Hoh, Brian; Hopkins, Nick; Siddiqui, Adnan; Levy, Elad I; Meng, Hui; Mocco, J

    2010-05-01

    The prediction of intracranial aneurysm (IA) rupture risk has generated significant controversy. The findings of the International Study of Unruptured Intracranial Aneurysms (ISUIA) that small anterior circulation aneurysms (<7 mm) have a 0% risk of subarachnoid hemorrhage in 5 years is difficult to reconcile with other studies that reported a significant portion of ruptured IAs are small. These discrepancies have led to the search for better aneurysm parameters to predict rupture. We previously reported that size ratio (SR), IA size divided by parent vessel diameter, correlated strongly with IA rupture status (ruptured versus unruptured). These data were all collected retrospectively off 3-dimensional angiographic images. Therefore, we performed a blinded prospective collection and evaluation of SR data from 2-dimensional angiographic images for a consecutive series of patients with ruptured and unruptured IAs. We prospectively enrolled 40 consecutive patients presenting to a single institution with either ruptured IA or for first-time evaluation of an incidental IA. Blinded technologists acquired all measurements from 2-dimensional angiographic images. Aneurysm rupture status, location, IA maximum size, and parent vessel diameter were documented. The SR was calculated by dividing the aneurysm size (mm) by the average parent vessel size (mm). A 2-tailed Mann-Whitney test was performed to assess statistical significance between ruptured and unruptured groups. Fisher exact test was used to compare medical comorbidities between the ruptured and unruptured groups. Significant differences between the 2 groups were subsequently tested with logistic regression. SE and probability values are reported. Forty consecutive patients with 24 unruptured and 16 ruptured aneurysms met the inclusion criteria. No significant differences were found in age, gender, smoking status, or medical comorbidities between ruptured and unruptured groups. The average maximum size of the unruptured IAs (6.18 + or - 0.60 mm) was significantly smaller compared with the ruptured IAs (7.91 + or - 0.47 mm; P=0.03), and the unruptured group had significantly smaller SRs (2.57 + or - 0.24 mm) compared with the ruptured group (4.08 + or - 0.54 mm; P<0.01). Logistic regression was used to evaluate the independent predictive value of those variables that achieved significance in univariate analysis (IA maximum size and SR). Using stepwise selection, only SR remained in the final predictive model (OR, 2.12; 95% CI, 1.09 to 4.13). SR, the ratio between aneurysm size and parent artery diameter, can be easily calculated from 2-dimensional angiograms and correlates with IA rupture status on presentation in a blinded analysis. SR should be further studied in a large prospective observational cohort to predict true IA risk of rupture.

  12. [Risk factors for preterm labor].

    PubMed

    Rodrigues, T; Barros, H

    1998-10-01

    Most studies investigating preterm risk factors include medically induced preterm labor due to fetal or maternal complications and do not distinguish preterm labor from preterm premature rupture of membranes. Thus, the objective of this study was to determine the proportion of the three types of preterm birth and identify risk factors for spontaneous preterm labor in a sample of pregnant women who delivered at two level III units. From January to October 1996, we interviewed 385 women with live preterm newborns and, as controls, 357 mothers of term newborns. Preterm births were classified as preterm labor, preterm premature rupture of membranes and iathrogenic preterm. Independent associations between maternal sociodemographic, constitutional, nutritional and obstetric characteristics and preterm labor were identified using logistic regression analysis. In this sample of preterm births, 29% corresponded to preterm labor, 49% to preterm premature rupture of the membranes and 22% were iathrogenic preterm. The identified risk factors for preterm labor were multiple gestation, no paid work during pregnancy, less than six prenatal care visits, arm circumference less than 26 cm and previous preterm or low birth-weight. Gestational bleeding during the first or third trimester was significantly associated with preterm labor. As previously recognized, multiple gestation, prior preterm or low birthweight and gestational bleeding are established risk factors for preterm labor. However, prenatal care, maternal work and nutritional status have also been revealed as important issues in preterm risk, deserving special interest since they are susceptible to preventive intervention.

  13. Rhizomorphic Reading: The Emergence of a New Aesthetic in Literature for Youth.

    ERIC Educational Resources Information Center

    Burnett, Kathleen; Dresang, Eliza T.

    1999-01-01

    A new approach to appreciation of children's literature supports the principles of Deleuze and Guattari used to describe human communication and employed as a metaphor for the ideal or rhizome book: connection, heterogeneity, multiplicity, asignifying rupture, cartography, and decalcomania. Examples of this new aesthetic drawn from contemporary…

  14. Critical aspect ratio for tungsten fibers in copper-nickel matrix composites

    NASA Technical Reports Server (NTRS)

    Jech, R. W.

    1975-01-01

    Stress-rupture and tensile tests were conducted at 816 C (1500 F) to determine the effect of matrix composition on the minimum fiber length to diameter ratio (critical aspect ratio) below which fibers in a tungsten fiber/copper-nickel alloy matrix composite could not be stressed to their ultimate load carrying capability. This study was intended to simulate some of the conditions that might be encountered with materials combinations used in high-temperature composites. The critical aspect ratio for stress-rupture was found to be greater than for short-time tension, and it increased as the time to rupture increased. The increase was relatively slight, and calculated fiber lengths for long service appear to be well within practical size limits for effective reinforcement and ease of fabrication of potential gas turbine components.

  15. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Larochelle, Kevin J.

    This study focused on moisture and intermediate temperature effects on the embrittlement phenomenon and stress rupture life of the ceramic matrix composite (CMC) made of Sylramic(TM) fibers with an in-situ layer of boron nitride (Syl-iBN), boron nitride interphase (BN), and SiC matrix (Syl-iBN/BN/SiC). Stress rupture tests were performed at 550°C or 750°C with moisture contents of 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH 2O. The CMC stress rupture strengths at 100 hrs at 550°C with 0.0, 0.2, or 0.6 atm pH2O were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the corresponding strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy (FESEM) analysis showed that the amount of pesting by glass formations increased with time, temperature, and pH2O leading to embrittlement. Total embrittlement times for 550°C were estimated to be greater than 63 hrs for 0.0 atm pH2O greater than 38 hrs for 0.2 atm pH 2O and between 8 and 71 hrs for 0.6 atm pH2O. Corresponding estimated embrittlement times for the 750°C were greater than 83 hrs, between 13 and 71 hrs, and between 1 and 6 hrs. A time-dependent, phenomenological, Monte Carlo-type simulation of composite failure was developed. The simulated total embrittlement times for the 550°C cases were 300 hrs, 100 hrs, and 25 hrs for 0.0, 0.2, and 0.6 atm pH 2O, respectively. The corresponding embrittlement times for the 750°C cases were 300 hrs, 20 hrs, and 3 hrs. A detailed sensitivity analysis on the variables used in the model was conducted. The model was most sensitive to variation in the ultimate strength of the CMC at room temperature, the ultimate strength of the CMC at elevated temperature, and the reference strength of a fiber and it was least sensitive to variation in the modulus of elasticity of the matrix and fiber. The sensitivity analysis showed that the stress ruptures curves generated by variation in the total embrittlement time simulate the trends in the experimental data. This research showed that the degree of stress rupture strength degradation increases with temperature, moisture content level, and exposure time.

  16. Source complexity and the physical mechanism of the 2015 Mw 7.9 Bonin Island earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Meng, L.; Wen, L.

    2015-12-01

    The 30 May 2015 Mw 7.9 Bonin Island earthquake is the largest instrument-recorded deep-focus earthquake in the Izu-Bonin arc. It occurred approximately 100 km deeper than the previous seismicity, in the region unlikely to be within the core of the subducting Izu-Bonin slab. The earthquake provides an unprecedented opportunity to understand the unexpected occurrence of such isolated deep earthquakes. Multiple source inversion of the P, SH, pP and sSH phases and a novel fully three-dimensional back-projection of P and pP phases are applied to study the coseismic source process. The subevents locations and short-period energy radiations both show a L-shape bilateral rupture propagating initially in the SW direction then in the NW direction with an average rupture speed of 2.0 km/s. The decrease of focal depth on the NW branch suggests that the rupture is consistent with a single sub-horizontal plane inferred from the GCMT solution. The multiple source inversion further indicates slight variation of the focal strikes of the sub-events with the curvature of the subducting Izu-Bonin slab. The rupture is confined within an area of 20 km x 35 km, rather compact compared with the shallow earthquake of similar magnitude. The earthquake is of high stress drop on the order of 100 MPa and a low seismic efficiency of 0.19, indicating large frictional heat dissipation. The only aftershock is 11 km to the east of the mainshock hypocenter and 3 km away from the centroid of the first sub-event. Analysis of the regional tomography and nearby seismicity suggests that the earthquake may occur at the edge/periphery of the bending slab and is unlikely to be within the "cold" metastable olivine wedge. Our results suggest the spontaneous nucleation of the thermally induced shear instability is a possible mechanism for such isolated deep earthquakes.

  17. Permeability evolution associated to creep and episodic slow slip of a fault affecting clay formations: Results from the FS fault activation experiment in Mt Terri (Switzerland).

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Nussbaum, C.; Birkholzer, J. T.; De Barros, L.; Cappa, F.

    2017-12-01

    There is a large spectrum of fault slow rupture processes such as stable creep and slow slip that radiate no or little seismic energy, and which relationships to normal earthquakes and fault permeability variations are enigmatic. Here we present measurements of a fault slow rupture, permeability variation and seismicity induced by fluid-injection in a fault affecting the Opalinus clay (Mt Terri URL, Switzerland) at a depth of 300 m. We observe multiple dilatant slow slip events ( 0.1-to-30 microm/s) associated with factor-of-1000 increase of permeability, and terminated by a magnitude -2.5 main seismic event associated with a swarm of very small magnitude ones. Using fully coupled numerical modeling, we calculate that the short term velocity strengthening behavior observed experimentally at laboratory scale is overcome by longer slip weakening that may be favored by slip induced dilation. Two monitoring points set across the fault allow estimating that, at the onset of the seismicity, the radius of the fault patch invaded by pressurized fluid is 9-to-11m which is in good accordance with a fault instability triggering when the dimensions of the critical slip distance are overcome. We then observe that the long term slip weakening is associated to an exponential permeability increase caused by a cumulated effective normal stress drop of about 3.4MPa which controls the successive slip activation of multiple fracture planes inducing a 0.1MPa shear stress drop in the fault zone. Therefore, our data suggest that the induced earthquake that terminated the rupture sequence may have represented enough dynamic stress release to arrest the fault permeability increase, suggesting the high sensitivity of the slow rupture processes to the structural heterogeneity of the fault zone hydromechanical properties.

  18. Functional management of Achilles tendon rupture: A viable option for non-operative management.

    PubMed

    Karkhanis, S; Mumtaz, H; Kurdy, N

    2010-06-01

    Functional management of the ruptured Achilles tendon can be effective using orthoses like the removable walker boot (Foam Walker Boot, Air Cast UK Limited, Lincolnshire, United Kingdom). We conducted this study to look at the outcome of our protocol using this orthosis. We retrospectively reviewed 107 non-operatively managed Achilles tendon ruptures over the last 5 years. Case notes were analyzed for demographics and immediate outcomes. Long term outcomes were assessed by a postal questionnaire using the Achilles Tendon Total Rupture Score (ATRS). Of the 107 tendons (male:female=71:36, mean age=50 years), 105 tendons (98%) healed with an average discharge time of 22 weeks. Six patients reported major complications and 6 reported minor complications. We received 56 questionnaires with a mean ATRS score of 21. Seventy-seven percent returned to pre-injury level of activity. Functional management of Achilles tendon rupture, under appropriate supervision, provides a viable option for non-operative management. Copyright 2009 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  19. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  20. The deep Peru 2015 doublet earthquakes

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Tavera, H.; Poli, P.; Herrera, C.; Flores, C.; Rivera, E.; Madariaga, R.

    2017-11-01

    On 24 November 2015 two events of magnitude Mw 7.5 and Mw 7.6 occurred at 600 km depth under the Peru-Brazil boundary. These two events were separated in time by 300 s. Deep event doublets occur often under South America. The characteristics that control these events and the dynamic interaction between them are an unresolved problem. We used teleseismic and regional data, situated above the doublet, to perform source inversion in order to characterize their ruptures. The overall resemblance between these two events suggests that they share similar rupture process. They are not identical but occur on the same fault surface dipping westward. Using a P-wave stripping and stretching method we determine rupture speed of 2.25 km/s. From regional body wave inversion we find that stress drop is similar for both events, they differ by a factor of two. The similarity in geometry, rupture velocity, stress drop and radiated energy, suggests that these two events looked like simple elliptical ruptures that propagated like classical sub-shear brittle cracks.

  1. Evidence for surface rupture in 1868 on the Hayward Fault in North Oakland and major rupturing in prehistoric earthquakes

    NASA Astrophysics Data System (ADS)

    Lienkaemper, James J.; Williams, Patrick L.

    1999-07-01

    WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776.

  2. Evidence for surface rupture in 1868 on the Hayward fault in north Oakland and major rupturing in prehistoric earthquakes

    USGS Publications Warehouse

    Lienkaemper, J.J.; Williams, P.L.

    1999-01-01

    WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776. Copyright 1999 by the American Geophysical Union.

  3. Implementation of visual data mining for unsteady blood flow field in an aortic aneurysm.

    PubMed

    Morizawa, Seiichiro; Shimoyama, Koji; Obayashi, Shigeru; Funamoto, Kenichi; Hayase, Toshiyuki

    2011-12-01

    This study was performed to determine the relations between the features of wall shear stress and aneurysm rupture. For this purpose, visual data mining was performed in unsteady blood flow simulation data for an aortic aneurysm. The time-series data of wall shear stress given at each grid point were converted to spatial and temporal indices, and the grid points were sorted using a self-organizing map based on the similarity of these indices. Next, the results of cluster analysis were mapped onto the real space of the aortic aneurysm to specify the regions that may lead to aneurysm rupture. With reference to previous reports regarding aneurysm rupture, the visual data mining suggested specific hemodynamic features that cause aneurysm rupture. GRAPHICAL ABSTRACT:

  4. Rupture history of the 1997 Cariaco, Venezuela, earthquake from teleseismic P waves

    USGS Publications Warehouse

    Mendoza, C.

    2000-01-01

    A two-step finite-fault waveform inversion scheme is applied to the broadband teleseismic P waves recorded for the strike-slip, Cariaco, Venezuela, earthquake of 9 July 1997 to recover the distribution of mainshock slip. The earthquake is first analyzed using a long narrow fault with a maximum rise time of 20 sec. This line-source analysis indicates that slip propagated to the west with a constant rupture velocity and a relatively short rise time. The results are then used to constrain a second inversion of the P waveforms using a 60-km by 20-km two-dimensional fault. The rupture shows a zone of large slip (1.3-m peak) near the hypocenter and a second, broader source extending updip and to the west at depths shallower than 5 km. The second source has a peak slip of 2.1 meters and accounts for most of the moment of 1.1 × 1026 dyne-cm (6.6 Mww) estimated from the P waves. The inferred rupture pattern is consistent with macroseismic effects observed in the epicentral area.

  5. Droplet size effects on film drainage between droplet and substrate.

    PubMed

    Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q

    2006-06-06

    When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.

  6. Rupture process of the 2009 L'Aquila, central Italy, earthquake, from the separate and joint inversion of Strong Motion, GPS and DInSAR data.

    NASA Astrophysics Data System (ADS)

    Cirella, A.; Piatanesi, A.; Tinti, E.; Chini, M.; Cocco, M.

    2012-04-01

    In this study, we investigate the rupture history of the April 6th 2009 (Mw 6.1) L'Aquila normal faulting earthquake by using a nonlinear inversion of strong motion, GPS and DInSAR data. We use a two-stage non-linear inversion technique. During the first stage, an algorithm based on the heat-bath simulated annealing generates an ensemble of models that efficiently sample the good data-fitting regions of parameter space. In the second stage the algorithm performs a statistical analysis of the ensemble providing us the best-fitting model, the average model, the associated standard deviation and coefficient of variation. This technique, rather than simply looking at the best model, extracts the most stable features of the earthquake rupture that are consistent with the data and gives an estimate of the variability of each model parameter. The application to the 2009 L'Aquila main-shock shows that both the separate and joint inversion solutions reveal a complex rupture process and a heterogeneous slip distribution. Slip is concentrated in two main asperities: a smaller shallow patch of slip located up-dip from the hypocenter and a second deeper and larger asperity located southeastward along strike direction. The key feature of the source process emerging from our inverted models concerns the rupture history, which is characterized by two distinct stages. The first stage begins with rupture initiation and with a modest moment release lasting nearly 0.9 seconds, which is followed by a sharp increase in slip velocity and rupture speed located 2 km up-dip from the nucleation. During this first stage the rupture front propagated up-dip from the hypocenter at relatively high (˜ 4.0 km/s), but still sub-shear, rupture velocity. The second stage starts nearly 2 seconds after nucleation and it is characterized by the along strike rupture propagation. The largest and deeper asperity fails during this stage of the rupture process. The rupture velocity is larger in the up-dip than in the along-strike direction. The up-dip and along-strike rupture propagation are separated in time and associated with a Mode II and a Mode III crack, respectively. Our results show that the 2009 L'Aquila earthquake featured a very complex rupture, with strong spatial and temporal heterogeneities suggesting a strong frictional and/or structural control of the rupture process.

  7. [Experimental study of multiple organ injuries after high-velocity missiles].

    PubMed

    Fu, X B

    1990-06-01

    Multiple organ injuries after high-velocity missiles shot were studied on the 8 pigs. The experimental results showed that (1) more than two organs (the maximum six organs) wounded could be seen in all the pigs; (2) the injuries were characterized by hemorrhage, tissue rupture and hematoma, etc., the pathologic changes were local edema and necrosis; (3) the marked increase of LPO on the vital organs indicates that multiple organ injuries can also occur at the molecular level; (4) they are due to direct effects of pressure waves and not to shock or infection.

  8. Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Madden, E. H.; Wollherr, S.; Uphoff, C.; Rettenberger, S.; Bader, M.

    2017-12-01

    SeisSol (www.seissol.org) is an open-source software package based on an arbitrary high-order derivative Discontinuous Galerkin method (ADER-DG). It solves spontaneous dynamic rupture propagation on pre-existing fault interfaces according to non-linear friction laws, coupled to seismic wave propagation with high-order accuracy in space and time (minimal dispersion errors). SeisSol exploits unstructured meshes to account for complex geometries, e.g. high resolution topography and bathymetry, 3D subsurface structure, and fault networks. We present the up-to-date largest (1500 km of faults) and longest (500 s) dynamic rupture simulation modeling the 2004 Sumatra-Andaman earthquake. We demonstrate the need for end-to-end-optimization and petascale performance of scientific software to realize realistic simulations on the extreme scales of subduction zone earthquakes: Considering the full complexity of subduction zone geometries leads inevitably to huge differences in element sizes. The main code improvements include a cache-aware wave propagation scheme and optimizations of the dynamic rupture kernels using code generation. In addition, a novel clustered local-time-stepping scheme for dynamic rupture has been established. Finally, asynchronous output has been implemented to overlap I/O and compute time. We resolve the frictional sliding process on the curved mega-thrust and a system of splay faults, as well as the seismic wave field and seafloor displacement with frequency content up to 2.2 Hz. We validate the scenario by geodetic, seismological and tsunami observations. The resulting rupture dynamics shed new light on the activation and importance of splay faults.

  9. Creep rupture testing of carbon fiber-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Burton, Kathryn Anne

    Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.

  10. Exploring the age of intracranial aneurysms using carbon birth dating: preliminary results.

    PubMed

    Etminan, Nima; Dreier, Rita; Buchholz, Bruce A; Bruckner, Peter; Steiger, Hans-Jakob; Hänggi, Daniel; Macdonald, R Loch

    2013-03-01

    There is a controversy about the time span over which cerebral aneurysms develop. In particular, it is unknown whether collagen in ruptured aneurysms undergoes more rapid turnover than in unruptured aneurysms.(14)C birth dating of collagen could be used to address this question. Aneurysmal domes from patients undergoing surgical treatment for ruptured or unruptured aneurysms were excised. Aneurysmal collagen was isolated and purified after pepsin digestion. Collagen from mouse tendons served as controls. F(14)C levels in collagen were analyzed by accelerator mass spectrometry and correlated with patient age and aneurysm size. Analysis of 10 aneurysms from 9 patients (6 ruptured, 3 unruptured) revealed an average aneurysm collagen age of <5 years, generally irrespective of patient age and aneurysm size or rupture status. Interestingly, F(14)C levels correlated with patient age as well as aneurysm size in ruptured aneurysm collagen samples. Our preliminary data suggest that collagen extracted from intracranial aneurysms generally has a high turnover, associated with aneurysm size and patient age. The correlation of patient age and aneurysm F(14)C levels could explain models of aneurysm development. Although preliminary, our findings may have implications for the biological and structural stability of ruptured and unruptured intracranial aneurysms.

  11. A support-operator method for 3-D rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  12. Rupture of the gravid uterus in a tertiary health facility in the Niger delta region of Nigeria: A 5-year review.

    PubMed

    Nyengidiki, T K; Allagoa, D O

    2011-10-01

    Ruptured uterus is a major life-threatening condition encountered mostly in developing countries and is an index of failure of obstetric care at a point in time in a woman's reproductive career. With worsening economic condition, increasing caesarean section rates, and patients' aversion for operative delivery this condition would still remain a major obstetric matter for discussion. To identify the incidence, sociodemographic variables, clinical characteristics, causes, and outcome of ruptured uterus at the University of Port Harcourt Teaching Hospital. A 5-year retrospective study of cases of ruptured uterus at the University of Port Harcourt Teaching Hospital was carried out. The case notes of 40 patients with uterine rupture during the period 2003-2007 were analyzed. Data collected included sociodemographic characteristics, etiologic factors, clinical presentation, and outcome. Data were analyzed using Microsoft Excel version 2007 and SPSS 14.0 computer software. The incidence of rupture of the gravid uterus was 1:258 deliveries. In patients with rupture of the gravid uterus, 65% (26) of patients were unbooked; 37.5% (15) were aged between 25 and 29 years. A total of 42.5% (17) of patients had secondary education and 21 (52.5%) were housewives. Rupture of a previous scar was the commonest etiologic factor accounting for 32.5% (11). The commonest presentation was abdominal pain in 92.5% of cases. Perinatal mortality and maternal mortality were 80% and 17.5% respectively. Rupture of the gravid uterus still remains a major cause of maternal mortality. Injudicious use of oxytocics should be discouraged in peripheral health facilities and reinforcement of the need for hospital based deliveries in patients with previous caesarean sections should also be intensified to improve outcome.

  13. A Benchmarking setup for Coupled Earthquake Cycle - Dynamic Rupture - Tsunami Simulations

    NASA Astrophysics Data System (ADS)

    Behrens, Joern; Bader, Michael; van Dinther, Ylona; Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Uphoff, Carsten; Vater, Stefan; Wollherr, Stephanie; van Zelst, Iris

    2017-04-01

    We developed a simulation framework for coupled physics-based earthquake rupture generation with tsunami propagation and inundation on a simplified subduction zone system for the project "Advanced Simulation of Coupled Earthquake and Tsunami Events" (ASCETE, funded by the Volkswagen Foundation). Here, we present a benchmarking setup that can be used for complex rupture models. The workflow begins with a 2D seismo-thermo-mechanical earthquake cycle model representing long term deformation along a planar, shallowly dipping subduction zone interface. Slip instabilities that approximate earthquakes arise spontaneously along the subduction zone interface in this model. The absolute stress field and material properties for a single slip event are used as initial conditions for a dynamic earthquake rupture model.The rupture simulation is performed with SeisSol, which uses an ADER discontinuous Galerkin discretization scheme with an unstructured tetrahedral mesh. The seafloor displacements resulting from this rupture are transferred to the tsunami model with a simple coastal run-up profile. An adaptive mesh discretizing the shallow water equations with a Runge-Kutta discontinuous Galerkin (RKDG) scheme subsequently allows for an accurate and efficient representation of the tsunami evolution and inundation at the coast. This workflow allows for evaluation of how the rupture behavior affects the hydrodynamic wave propagation and coastal inundation. We present coupled results for differing earthquake scenarios. Examples include megathrust only ruptures versus ruptures with splay fault branching off the megathrust near the surface. Coupling to the tsunami simulation component is performed either dynamically (time dependent) or statically, resulting in differing tsunami wave and inundation behavior. The simplified topographical setup allows for systematic parameter studies and reproducible physical studies.

  14. Diagnosis of Complex Pulley Ruptures Using Ultrasound in Cadaver Models.

    PubMed

    Schöffl, Isabelle; Hugel, Arnica; Schöffl, Volker; Rascher, Wolfgang; Jüngert, Jörg

    2017-03-01

    Pulley ruptures are common in climbing athletes. The purposes of this study were to determine the specific positioning of each pulley with regards to the joint, and to evaluate the ultrasound diagnostics of various pulley rupture combinations. For this, 34 cadaver fingers were analyzed via ultrasound, the results of which were compared to anatomic measurements. Different pulley ruptures were then simulated and evaluated using ultrasound in standardized dynamic forced flexion. Visualization of the A2 and A4 pulleys was achieved 100% of the time, while the A3 pulley was visible in 74% of cases. Similarly, injuries to the A2 and A4 pulleys were readily observable, while A3 pulley injuries were more challenging to identify (sensitivity of 0.2 for singular A3 pulley, 0.5 for A2/A4 pulley and 0.33 for A3/A4 pulley ruptures). Receiver operating characteristic analysis was used to evaluate the optimal tendon-bone distance for pulley rupture diagnosis, a threshold which was determined to be 1.9 mm for A2 pulley ruptures and 1.85 for A4 pulley ruptures. This study was the first to carry out a cadaver ultrasound examination of a wide variety of pulley ruptures. Ultrasound is a highly accurate tool for visualizing the A2 and A4 pulleys in a cadaver model. This method of pathology diagnosis was determined to be suitable for injuries to the A2 and A4 pulleys, but inadequate for A3 pulley injuries. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. The Implications of Strike-Slip Earthquake Source Properties on the Transform Boundary Development Process

    NASA Astrophysics Data System (ADS)

    Neely, J. S.; Huang, Y.; Furlong, K.

    2017-12-01

    Subduction-Transform Edge Propagator (STEP) faults, produced by the tearing of a subducting plate, allow us to study the development of a transform plate boundary and improve our understanding of both long-term geologic processes and short-term seismic hazards. The 280 km long San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon and Vanuatu subduction zones, shows along-strike variations in earthquake behaviors. The segment of the SCT closest to the tear rarely hosts earthquakes > Mw 6, whereas the SCT sections more than 80 - 100 km from the tear experience Mw7 earthquakes with repeated rupture along the same segments. To understand the effect of cumulative displacement on SCT seismicity, we analyze b-values, centroid-time delays and corner frequencies of the SCT earthquakes. We use the spectral ratio method based on Empirical Green's Functions (eGfs) to isolate source effects from propagation and site effects. We find high b-values along the SCT closest to the tear with values decreasing with distance before finally increasing again towards the far end of the SCT. Centroid time-delays for the Mw 7 strike-slip earthquakes increase with distance from the tear, but corner frequency estimates for a recent sequence of Mw 7 earthquakes are approximately equal, indicating a growing complexity in earthquake behavior with distance from the tear due to a displacement-driven transform boundary development process (see figure). The increasing complexity possibly stems from the earthquakes along the eastern SCT rupturing through multiple asperities resulting in multiple moment pulses. If not for the bounding Vanuatu subduction zone at the far end of the SCT, the eastern SCT section, which has experienced the most displacement, might be capable of hosting larger earthquakes. When assessing the seismic hazard of other STEP faults, cumulative fault displacement should be considered a key input in determining potential earthquake size.

  16. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  17. Spontaneous rupture of a hepatic epithelioid angiomyolipoma: damage control surgery. A case report.

    PubMed

    Occhionorelli, S; Dellachiesa, L; Stano, R; Cappellari, L; Tartarini, D; Severi, S; Palini, G M; Pansini, G C; Vasquez, G

    2013-01-01

    Angiomyolipoma (AML) is a rare mesenchymal tumor composed by blood vessels, adipose tissue and smooth muscle cells in variable proportions. Although it is most often diagnosed in the kidney, this tumor may originate from any part of the liver. It is often misdiagnosed as hepatocellular carcinoma (HCC) or other benign liver tumor. We describe a case of spontaneous rupture of hepatic angiomyolipoma in a young woman, with evidence of internal hemorrhage and hemoperitoneum. Liver tumor rupture is a rare but real surgical emergency. In our case it has been managed according to the trauma principles of the damage control surgery. At the time of the observation, the patient presented an instable condition, so the decision-making was oriented toward a less invasive first step of liver packing instead of a more aggressive intervention such as one shot hepatic resection. Damage control surgery with deep parenchymal sutures of the liver and pro-coagulant tissue adhesives packing abbreviates surgical time before the development of critical and irreversible physiological endpoints and permits a more confident second time surgery. This surgical management concept helps to reduce the mortality rate and the incidence of complications not only in traumatic liver damages, it works very well in spontaneous liver ruptures as well.

  18. Gene expression profile of blood cells for the prediction of delayed cerebral ischemia after intracranial aneurysm rupture: a pilot study in humans.

    PubMed

    Baumann, Antoine; Devaux, Yvan; Audibert, Gérard; Zhang, Lu; Bracard, Serge; Colnat-Coulbois, Sophie; Klein, Olivier; Zannad, Faiez; Charpentier, Claire; Longrois, Dan; Mertes, Paul-Michel

    2013-01-01

    Delayed cerebral ischemia (DCI) is a potentially devastating complication after intracranial aneurysm rupture and its mechanisms remain poorly elucidated. Early identification of the patients prone to developing DCI after rupture may represent a major breakthrough in its prevention and treatment. The single gene approach of DCI has demonstrated interest in humans. We hypothesized that whole genome expression profile of blood cells may be useful for better comprehension and prediction of aneurysmal DCI. Over a 35-month period, 218 patients with aneurysm rupture were included in this study. DCI was defined as the occurrence of a new delayed neurological deficit occurring within 2 weeks after aneurysm rupture with evidence of ischemia either on perfusion-diffusion MRI, CT angiography or CT perfusion imaging, or with cerebral angiography. DCI patients were matched against controls based on 4 out of 5 criteria (age, sex, Fisher grade, aneurysm location and smoking status). Genome-wide expression analysis of blood cells obtained at admission was performed by microarrays. Transcriptomic analysis was performed using long oligonucleotide microarrays representing 25,000 genes. Quantitative PCR: 1 µg of total RNA extracted was reverse-transcribed, and the resulting cDNA was diluted 10-fold before performing quantitative PCR. Microarray data were first analyzed by 'Significance Analysis of Microarrays' software which includes the Benjamini correction for multiple testing. In a second step, microarray data fold change was compared using a two-tailed, paired t test. Analysis of receiver-operating characteristic (ROC) curves and the area under the ROC curves were used for prediction analysis. Logistic regression models were used to investigate the additive value of multiple biomarkers. A total of 16 patients demonstrated DCI. Significance Analysis of Microarrays software failed to retrieve significant genes, most probably because of the heterogeneity of the patients included in the microarray experiments and the small size of the DCI population sample. Standard two-tailed paired t test and C-statistic revealed significant associations between gene expression and the occurrence of DCI: in particular, the expression of neuroregulin 1 was 1.6-fold upregulated in patients with DCI (p = 0.01) and predicted DCI with an area under the ROC curve of 0.96. Logistic regression analyses revealed a significant association between neuroregulin 1 and DCI (odds ratio 1.46, 95% confidence interval 1.02-2.09, p = 0.02). This pilot study suggests that blood cells may be a reservoir of prognostic biomarkers of DCI in patients with intracranial aneurysm rupture. Despite an evident lack of power, this study elicited neuroregulin 1, a vasoreactivity-, inflammation- and angiogenesis-related gene, as a possible candidate predictor of DCI. Larger cohort studies are needed but genome-wide microarray-based studies are promising research tools for the understanding of DCI after intracranial aneurysm rupture. © 2013 S. Karger AG, Basel.

  19. Conditional, Time-Dependent Probabilities for Segmented Type-A Faults in the WGCEP UCERF 2

    USGS Publications Warehouse

    Field, Edward H.; Gupta, Vipin

    2008-01-01

    This appendix presents elastic-rebound-theory (ERT) motivated time-dependent probabilities, conditioned on the date of last earthquake, for the segmented type-A fault models of the 2007 Working Group on California Earthquake Probabilities (WGCEP). These probabilities are included as one option in the WGCEP?s Uniform California Earthquake Rupture Forecast 2 (UCERF 2), with the other options being time-independent Poisson probabilities and an ?Empirical? model based on observed seismicity rate changes. A more general discussion of the pros and cons of all methods for computing time-dependent probabilities, as well as the justification of those chosen for UCERF 2, are given in the main body of this report (and the 'Empirical' model is also discussed in Appendix M). What this appendix addresses is the computation of conditional, time-dependent probabilities when both single- and multi-segment ruptures are included in the model. Computing conditional probabilities is relatively straightforward when a fault is assumed to obey strict segmentation in the sense that no multi-segment ruptures occur (e.g., WGCEP (1988, 1990) or see Field (2007) for a review of all previous WGCEPs; from here we assume basic familiarity with conditional probability calculations). However, and as we?ll see below, the calculation is not straightforward when multi-segment ruptures are included, in essence because we are attempting to apply a point-process model to a non point process. The next section gives a review and evaluation of the single- and multi-segment rupture probability-calculation methods used in the most recent statewide forecast for California (WGCEP UCERF 1; Petersen et al., 2007). We then present results for the methodology adopted here for UCERF 2. We finish with a discussion of issues and possible alternative approaches that could be explored and perhaps applied in the future. A fault-by-fault comparison of UCERF 2 probabilities with those of previous studies is given in the main part of this report.

  20. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  1. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the 2007 Noto-hanto earthquake, 2008 Iwate-Miyagi earthquake, and 2008 Wenchuan earthquake. The on-going rupture extent can be estimated for all datasets as the rupture propagates. For earthquakes with magnitude about 7.0, the determination of the fault parameters converges to the final geometry within 10 seconds.

  2. Rupture process of the M 7.9 Denali fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions

    USGS Publications Warehouse

    Frankel, A.

    2004-01-01

    Displacement waveforms and high-frequency acceleration envelopes from stations at distances of 3-300 km were inverted to determine the source process of the M 7.9 Denali fault earthquake. Fitting the initial portion of the displacement waveforms indicates that the earthquake started with an oblique thrust subevent (subevent # 1) with an east-west-striking, north-dipping nodal plane consistent with the observed surface rupture on the Susitna Glacier fault. Inversion of the remainder of the waveforms (0.02-0.5 Hz) for moment release along the Denali and Totschunda faults shows that rupture proceeded eastward on the Denali fault, with two strike-slip subevents (numbers 2 and 3) centered about 90 and 210 km east of the hypocenter. Subevent 2 was located across from the station at PS 10 (Trans-Alaska Pipeline Pump Station #10) and was very localized in space and time. Subevent 3 extended from 160 to 230 km east of the hypocenter and had the largest moment of the subevents. Based on the timing between subevent 2 and the east end of subevent 3, an average rupture velocity of 3.5 km/sec, close to the shear wave velocity at the average rupture depth, was found. However, the portion of the rupture 130-220 km east of the epicenter appears to have an effective rupture velocity of about 5.0 km/ sec, which is supershear. These two subevents correspond approximately to areas of large surface offsets observed after the earthquake. Using waveforms of the M 6.7 Nenana Mountain earthquake as empirical Green's functions, the high-frequency (1-10 Hz) envelopes of the M 7.9 earthquake were inverted to determine the location of high-frequency energy release along the faults. The initial thrust subevent produced the largest high-frequency energy release per unit fault length. The high-frequency envelopes and acceleration spectra (>0.5 Hz) of the M 7.9 earthquake can be simulated by chaining together rupture zones of the M 6.7 earthquake over distances from 30 to 180 km east of the hypocenter. However, the inversion indicates that there was relatively little high-frequency energy generated along the 60-km portion of the Totschunda fault on the east end of the rupture.

  3. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep rupture off Fukushima at 90-135 s. The dominant-period difference of the seismic-wave radiation between two deep ruptures off Miyagi may result from the mechanism that small-scale heterogeneities on the fault are removed by the first rupture. This difference can be also interpreted by the concept of multi-scale dynamic rupture (Ide & Aochi, 2005).

  4. A Chicken-Or-Egg Riddle: Why Do Many Large Basin and Range Ruptures Terminate in Seismically Active Geothermal Zones?

    NASA Astrophysics Data System (ADS)

    Stein, R. S.; Sevilgen, V.

    2016-12-01

    The 26 March 1872 M 7.6 Owens Valley, CA, rupture extended between two seismically active geothermal areas: Ridgecrest-Coso to the south and Mammoth-Long Valley to the north. Is this a coincidence, or is the rupture extent related to the geothermal and seismic activity? The 1872 rupture might have been confined between these two shattered, fluid-saturated zones if, because of very low friction, they do not accumulate stress. Alternatively, the 1872 earthquake could have activated these zones, as they are located where the rupture is calculated to have increased the Coulomb stress by 1-2 bars. Cause or effect, this phenomenon may be common in trans-tensional regimes: There are geothermal areas near or just beyond the ends of the 1954 M=7.1 Fairview Peak and M=6.8 Dixie Valley, NV, ruptures, with some seismicity clusters beyond the rupture tips. The 2008 Mw=6.0 South Iceland earthquake, another site of trans-tensional faulting and geothermal activity, shows intense aftershock clusters off the ends of the main rupture, resembling the 1872 earthquake. This chicken-or-egg riddle would be easy to solve if it were known whether the earthquake rate in the geothermal areas increased as a result of the 1872 shock. There is only one recorded quake before the mainshock, a July 1871 M 5.5 event at the southern tip of the 1872 rupture; this suggests the clusters might have been active before the mainshock. On the other hand, one of the two largest aftershocks of the 1872 event, a M 6.8 near Bishop two weeks after the mainshock, stuck in the center of the northern cluster, which supports the clusters were activated by the mainshock. We walk away with a tie. If the 1872 rupture did trigger the activity in the clusters, it begs a harder question: Could aftershocks or triggered seismicity have continued almost 150 years after the mainshock? The Owens Valley Fault slips 2-3 mm/yr, about a tenth of the San Andreas Fault rate. Rate/state theory and observations from the central US and Japan indicate that an Owens Valley aftershock sequence should last about ten times longer than one on the San Andreas. The Owens Valley Fault appears to produce M 7.5 shocks roughly every 3,500 yr, and so 150 yr is 4% of the interevent time, equivalent to about 10 yr on the San Andreas. Therefore, one cannot exclude the possibility that these earthquakes are aftershocks.

  5. Modeling Coupled Processes for Multiphase Fluid Flow in Mechanically Deforming Faults

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Pike, D. Q.

    2011-12-01

    Modeling of coupled hydrological-mechanical processes in fault zones is critical for understanding the long-term behavior of fluids within the shallow crust. Here we utilize a previously developed cellular-automata (CA) model to define the evolution of permeability within a 2-D fault zone under compressive stress. At each time step, the CA model calculates the increase in fluid pressure within the fault at every grid cell. Pressure surpassing a critical threshold (e.g., lithostatic stress) causes a rupture in that cell, and pressure is then redistributed across the neighboring cells. The rupture can cascade through the spatial domain and continue across multiple time steps. Stress continues to increase and the size and location of rupture events are recorded until a percolating backbone of ruptured cells exists across the fault. Previous applications of this model consider uncorrelated random fields for the compressibility of the fault material. The prior focus on uncorrelated property fields is consistent with development of a number of statistical physics models including percolation processes and fracture propagation. However, geologic materials typically express spatial correlation and this can have a significant impact on the results of the pressure and permeability distributions. We model correlation of the fault material compressibility as a multiGaussian random field with a correlation length defined as the full-width at half maximum (FWHM) of the kernel used to create the field. The FWHM is varied from < 0.001 to approximately 0.47 of the domain size. The addition of spatial correlation to the compressibility significantly alters the model results including: 1) Accumulation of larger amounts of strain prior to the first rupture event; 2) Initiation of the percolating backbone at lower amounts of cumulative strain; 3) Changes in the event size distribution to a combined power-law and exponential distribution with a smaller power; and 4) Evolution of the spatial-temporal distribution of rupture event locations from a purely Poisson process to a complex pattern of clustered events with periodic patterns indicative of emergent phenomena. Switching the stress field from compressive to quiescent, or extensional, during the CA simulation results in a fault zone with a complex permeability pattern and disconnected zones of over-pressured fluid that serves as the initial conditions for simulation of capillary invasion of a separate fluid phase. We use Modified Invasion Percolation to simulate the invasion of a less dense fluid into the fault zone. Results show that the variability in fluid displacement measures caused by the heterogeneous permeability field and initial pressure conditions are significant. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  6. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    USGS Publications Warehouse

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  7. Rapid Measurement of Tectonic Deformation Using Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Pickering, A.; DeLong, S.; Lienkaemper, J. J.; Hecker, S.; Prentice, C. S.; Schwartz, D. P.; Sickler, R. R.

    2016-12-01

    Rapid collection and distribution of accurate surface slip data after earthquakes can support emergency response, help coordinate scientific response, and constrain coseismic slip that can be rapidly overprinted by postseismic slip, or eliminated as evidence of surface deformation is repaired or obscured. Analysis of earthquake deformation can be achieved quickly, repeatedly and inexpensively with the use of Structure-from-Motion (SfM) photogrammetry. Traditional methods of measuring surface slip (e.g. manual measurement with tape measures) have proven inconsistent and irreproducible, and sophisticated methods such as laser scanning require specialized equipment and longer field time. Here we present a simple, cost-effective workflow for rapid, three-dimensional imaging and measurement of features affected by earthquake rupture. As part of a response drill performed by the USGS and collaborators on May 11, 2016, geologists documented offset cultural features along the creeping Hayward Fault in northern California, in simulation of a surface-rupturing earthquake. We present several photo collections from smart phones, tablets, and DSLR cameras from a number of locations along the fault collected by users with a range of experience. Using professionally calibrated photogrammetric scale bars we automatically and accurately scale our 3D models to 1 mm accuracy for precise measurement in three dimensions. We then generate scaled 3D point clouds and extract offsets from manual measurement and multiple linear regression for comparison with collected terrestrial scanner data. These results further establish dense photo collection and SfM processing as an important, low-cost, rapid means of quantifying surface deformation in the critical hours after a surface-rupturing earthquake and emphasize that researchers with minimal training can rapidly collect three-dimensional data that can be used to analyze and archive the surface effects of damaging earthquakes.

  8. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.

    2015-06-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  9. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a dozen fault-spanning volumes. At the magnitude threshold M = 7, the ACDF can be well fit by renewal models with fairly small aperiodicity parameters (α < 0.2) for all fault volumes but one (on the San Jacinto fault). At interseismic (Reid) time scales, we observe pairs of fault segments that are tightly locked, such as the Cholame and Carrizo sections of the San Andreas Fault (SAF), where the CCDF and two ACDFs are nearly equal; segments out of phase (Carrizo-SAF/Coachella-SAF and Coachella-SAF/San Jacinto), where the CCDF variation is an odd function of time; and segments where events are in phase with integer ratios of recurrence times (2:1 synchronicity of Coachella-SAF/Mojave-SAF and Carrizo-SAF/Mojave-SAF). At near-seismic (Omori) time scales, we observe various modes of clustering, triggering, and shadowing in RSQSim catalogs; e.g., events on Mojave-SAF trigger Garlock events, and events on Coachella-SAF shut down events on San Jacinto. Therefore, despite its geometrical complexity and multiplicity of time scales, the RSQSim model of the San Andreas fault system exhibits a variety of synchronous behaviors that increase the predictability of large ruptures within the system. A key question for earthquake forecasting is whether the real San Andreas system is equally, or much less, synchronous.

  10. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    NASA Astrophysics Data System (ADS)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as representative of the VBFS behavior, a discussion on the fault system boundaries persistence, and on the significance of the repeated surface faulting at same location.

  11. 3-D Dynamic rupture simulation for the 2016 Kumamoto, Japan, earthquake sequence: Foreshocks and M6 dynamically triggered event

    NASA Astrophysics Data System (ADS)

    Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.

    2016-12-01

    A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an active volcano.

  12. Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations

    NASA Astrophysics Data System (ADS)

    Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.

    2017-09-01

    Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.

  13. Deflate-gate: Conservative Management of a Large Ruptured Hydrocele

    PubMed Central

    Flores, Viktor X.; Wallen, Jared J.; Martinez, Danny R.; Carrion, Rafael

    2015-01-01

    A hydrocele is a common cause of intrascrotal swelling that results when fluid accumulates between the parietal and visceral layers of the tunica vaginalis. Over time, fluid may collect to form a massive hydrocele and result in significant discomfort for the patient. In this case report, we present a rare event of a 28-year-old gentleman with a documented massive hydrocele measuring 14.1 × 8.9 cm who ruptured his hydrocele during sexual intercourse. We expectantly managed the patient's ruptured hydrocele and encountered no complications throughout the course of his recovery. PMID:26793551

  14. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  15. Affected twins in the familial intracranial aneurysm study.

    PubMed

    Mackey, Jason; Brown, Robert D; Sauerbeck, Laura; Hornung, Richard; Moomaw, Charles J; Koller, Daniel L; Foroud, Tatiana; Deka, Ranjan; Woo, Daniel; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Anderson, Craig; Rouleau, Guy; Connolly, E Sander; Huston, John; Broderick, Joseph P

    2015-01-01

    Very few cases of intracranial aneurysms (IAs) in twins have been reported. Previous work has suggested that vulnerability to IA formation is heritable. Twin studies provide an opportunity to evaluate the impact of genetics on IA characteristics, including IA location. We therefore sought to examine IA location concordance, multiplicity, and rupture status within affected twin-pairs. The Familial Intracranial Aneurysm study was a multicenter study whose goal was to identify genetic and other risk factors for formation and rupture of IAs. The study required at least three affected family members or an affected sibling pair for inclusion. Subjects with fusiform aneurysms, an IA associated with an AVM, or a family history of conditions known to predispose to IA formation, such as polycystic kidney disease, Ehlers-Danlos syndrome, Marfan syndrome, fibromuscular dysplasia, or moyamoya syndrome were excluded. Twin-pairs were identified by birth date and were classified as monozygotic (MZ) or dizygotic (DZ) through DNA marker genotypes. In addition to zygosity, we evaluated twin-pairs by smoking status, major arterial territory of IAs, and rupture status. Location concordance was defined as the presence of an IA in the same arterial distribution (ICA, MCA, ACA, and vertebrobasilar), irrespective of laterality, in both members of a twin-pair. The Fisher exact test was used for comparisons between MZ and DZ twin-pairs. A total of 16 affected twin-pairs were identified. Location concordance was observed in 8 of 11 MZ twin-pairs but in only 1 of 5 DZ twin-pairs (p = 0.08). Three MZ subjects had unknown IA locations and comprised the three instances of MZ discordance. Six of the 11 MZ twin-pairs and none of the 5 DZ twin-pairs had IAs in the ICA distribution (p = 0.03). Multiple IAs were observed in 11 of 22 MZ and 5 of 10 DZ twin-pairs. Thirteen (13) of the 32 subjects had an IA rupture, including 10 of 22 MZ twins. We found that arterial location concordance was greater in MZ than DZ twins, which suggests a genetic influence upon aneurysm location. The 16 twin-pairs in the present study are nearly the total of affected twin-pairs that have been reported in the literature to date. Further studies are needed to determine the impact of genetics in the formation and rupture of IAs. © 2015 S. Karger AG, Basel.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Seth Carpenter; Suzette J. Payne; Annette L. Schafer

    We recognize a discrepancy in magnitudes estimated for several Basin and Range, U.S.A. faults. For example, magnitudes predicted for the Wasatch (Utah), Lost River (Idaho), and Lemhi (Idaho) faults from fault segment lengths (L{sub seg}) where lengths are defined between geometrical, structural, and/or behavioral discontinuities assumed to persistently arrest rupture, are consistently less than magnitudes calculated from displacements (D) along these same segments. For self-similarity, empirical relationships (e.g. Wells and Coppersmith, 1994) should predict consistent magnitudes (M) using diverse fault dimension values for a given fault (i.e. M {approx} L{sub seg}, should equal M {approx} D). Typically, the empirical relationshipsmore » are derived from historical earthquake data and parameter values used as input into these relationships are determined from field investigations of paleoearthquakes. A commonly used assumption - grounded in the characteristic-earthquake model of Schwartz and Coppersmith (1984) - is equating L{sub seg} with surface rupture length (SRL). Many large historical events yielded secondary and/or sympathetic faulting (e.g. 1983 Borah Peak, Idaho earthquake) which are included in the measurement of SRL and used to derive empirical relationships. Therefore, calculating magnitude from the M {approx} SRL relationship using L{sub seg} as SRL leads to an underestimation of magnitude and the M {approx} L{sub seg} and M {approx} D discrepancy. Here, we propose an alternative approach to earthquake magnitude estimation involving a relationship between moment magnitude (Mw) and length, where length is L{sub seg} instead of SRL. We analyze seven historical, surface-rupturing, strike-slip and normal faulting earthquakes for which segmentation of the causative fault and displacement data are available and whose rupture included at least one entire fault segment, but not two or more. The preliminary Mw {approx} L{sub seg} results are strikingly consistent with Mw {approx} D calculations using paleoearthquake data for the Wasatch, Lost River, and Lemhi faults, demonstrating self-similarity and implying that the Mw {approx} L{sub seg} relationship should supplant M {approx} SRL relationships currently employed in seismic hazard analyses. The relationship will permit reliable use of L{sub seg} data from field investigations and proper use and weighting of multiple-segment-rupture scenarios in seismic hazard analyses, and eliminate the need to reconcile the Mw {approx} SRL and Mw {approx} D differences in a multiple-parameter relationship for segmented faults.« less

  17. Evidence for Coseismic Rupture Beyond the Base of the Seismogenic Layer

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Wesnousky, S.

    2010-12-01

    For scientific reasons and hazard assessment it is important to better understand the physics and rupture characteristics of large, destructive earthquakes. However, those events occur infrequently, severely obstructing their analysis. Smaller but more frequent earthquakes are usually studied and their characteristics are extrapolated to assess large earthquake behavior, assuming that small and large events are associated with the same physical processes and parameters. For small and moderate size earthquakes it was observed and independently derived from elastic models that coseismic stress drop is independent of earthquake size and that slip is proportional to the smallest rupture dimension. It is therefore assumed that large earthquake stress drops are essentially equal to the stress drop of their smaller size siblings. It is further assumed that the slip amount of large events does not further increase once it ruptures the full seismogenic layer--the base of the seismogenic layer is commonly thought to limit the earthquake down-dip rupture extend and thus defines the smallest rupture dimension. However, slip observations for many large strike-slip events show how offset gradually increases with rupture length. Two explanations have been formulated: If the rupture width of those events were indeed limited by the base of the seismogenic layer, the observations would imply larger stress drops and possibly other processes involved in large earthquake rupture, questioning the validity of the aforementioned extrapolation from small to large earthquakes. On the other hand, if rupture width of large earthquakes were not limited by the base of the seismogenic layer but were allowed to extend further down (as suggested by recent studies), the increased slip amount may be explained without an increase in stress drop or additional rupture mechanisms for large earthquakes. For the study we present here, we analyzed seismic data constraining the depth extent of large earthquakes relative to the depth of the seismogenic base. We utilized time series data of aftershock depths for a number of large strike-slip earthquakes, generating aftershock time vs. depth histograms to investigate the temporal variation in depth distribution. Based on hypocenter depth of small earthquakes along the Landers fault (causing the 1992 M7.3 Landers earthquake), we identified the base of the seismogenic layer at ~10km. Aftershocks that occurred only days after the Landers earthquake had maximum depths of ~18km, suggesting that rupture of the main shock extended this far down and therefore went well below the base of the seismogenic layer. Maximum aftershock depth then decayed roughly logarithmically, reaching the previous value of ~10km after about 5.5years. We argue that these observations are a logical consequence of the visco-elastic rheology of crustal rocks: Coseismically highly increased strains elevate the crustal stiffness, temporarily lowering the base of the seismogenic layer and permitting initiation of slip instabilities at depths that are otherwise characterized by viscous behavior. Extrapolation from small to large earthquakes is therefore permitted. No additional stress drop or rupture mechanism is required to explain the data.

  18. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    NASA Astrophysics Data System (ADS)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor displacement, in 2D. Finally, we use the same rheology in a large-scale 3D scenario of the 2004 Sumatra earthquake to shed light to the source process that caused the subsequent devastating tsunami.

  19. Estimating Rupture Directivity of Aftershocks of the 2014 Mw8.1 Iquique Earthquake, Northern Chile

    NASA Astrophysics Data System (ADS)

    Folesky, Jonas; Kummerow, Jörn; Timann, Frederik; Shapiro, Serge

    2017-04-01

    The 2014 Mw8.1 Iquique earthquake was accompanied by numerous fore- and aftershocks of magnitudes up to M ˜ 7.6. While the rupture processes of the main event and its largest aftershock were already analysed in great detail, this study focusses on the rupture processes of about 230 smaller aftershocks that occurred during the first two days after the main event. Since the events are of magnitudes 4.0 ≤ M ≤ 6.5 it is not trivial which method is most suitable. Thus we apply and compare here three different approaches attempting to extract a possible rupture directivity for each single event. The seismic broadband recordings of the Integrated Plate Boundary Observatory Chile (IPOC) provide an excellent database for our analysis. Their high sampling rate (100 Hz) and a well distributed station selection that cover an aperture of about 180 ° are a great advantage for a thorough directivity analysis. First, we apply a P wave polarization analysis (PPA) where we reconstruct the direction of the incoming wave-field by covariance analysis of the first particle motions. Combined with a sliding time window the results from different stations are capable of identifying first the hypocentre of the events and also a migration of the rupture front, if the event is of unilateral character. A second approach is the back projection imaging (BPI) technique, which illuminates the rupture path by back-projecting the recorded seismic energy to its source. A propagating rupture front would be reconstructed from the migration of the zone of high constructive amplitude stacks. In a third step we apply the empirical Green's function (EGF) method, where events of high waveform similarity, hence co-located and of similar mechanisms, are selected in order to use the smaller event as the Green's function of the larger event. This approach results in an estimated source time function, which is compared station wise and whose azimuthal variations are analysed for complexities and directivity.

  20. Chronic triceps insufficiency managed with extensor carpi radialis longus and palmaris longus tendon grafts.

    PubMed

    Singh, Dhanpal; Kumar, K Arun; Dinesh, Mc; Raj, Ranju

    2012-03-01

    Chronic triceps insufficiency, causing prolonged disability, occurs due to a missed diagnosis of an acute rupture. We report a 25 year old male with history of a significant fall sustaining multiple injuries. Since then, he had inability in extending his right elbow for which he sought intervention after a year. Diagnosis of triceps rupture was made clinicoradiologically and surgery was planned. Intraoperative findings revealed a deficient triceps with a fleck of avulsed bone from olecranon. Ipsilateral double tendon graft including extensor carpi radialis longus and palmaris longus were anchored to triceps and secured with the olecranon. Six-months follow revealed a complete active extension of elbow and a full function at the donor site.

  1. Modeling Of Spontaneous Multiscale Roughening And Branching of Ruptures Propagating On A Slip-Weakening Frictional Fault

    NASA Astrophysics Data System (ADS)

    Elbanna, A. E.

    2013-12-01

    Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.

  2. Late Holocene paleoseismology of Shuyak Island, Kodiak Archipelago, Alaska - surface deformation and plate segmentation within the 1964 Alaska M 9.2 earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Brader, Martin; Shennan, Ian; Barlow, Natasha; Davies, Frank; Longley, Chris; Tunstall, Neil

    2017-04-01

    Recent paleoseismological studies question whether segment boundaries identified for 20th and 21st century great, >M 8, earthquakes persist through multiple earthquake cycles, or whether smaller segments with different boundaries rupture and cause significant hazards. The smaller segments may include some that are currently slipping rather than locked. The 1964 Alaska M 9.2 earthquake was the largest of five earthquakes of >M 7.9 between 1938 and 1965 along the Aleutian chain and coast of southcentral Alaska that helped define models of rupture segments along the Alaska-Aleutian megathrust. The 1964 M 9.2 earthquake ruptured ˜950 km of the megathrust, involving two main asperities focussed on Kodiak Island and Prince William Sound and crossed the Kenai segment, which is currently creeping. Paleoseismic studies of coastal sediments currently provide a long record of previous large earthquakes for the Prince William Sound segment, with widespread evidence of seven great earthquakes in the last 4000 years and more restricted evidence for three earlier ones. Shorter and more fragmentary records from the Kenai Peninsula, Yakataga and Kodiak Archipelago raise the hypothesis of different patterns of surface deformation during past great earthquakes. We present new evidence from coastal wetlands on Shuyak Island, towards the hypothesised north-eastern boundary of the Kodiak segment, to illustrate different detection limits of paleoseismic indicators and how these influence the identification of segment boundaries in late Holocene earthquakes. We compare predictions of co-seismic uplift and subsidence derived from geophysical models of earthquakes with different rupture modes. The spatial patterns of agreement and misfit between model predictions and quantitative reconstructions of co-seismic submergence and emergence suggest that no earthquake within the last 4000 years had the same rupture pattern as the 1964 M 9.2 earthquake.

  3. Strong Ground Motion Analysis and Afterslip Modeling of Earthquakes near Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Gong, J.; McGuire, J. J.

    2017-12-01

    The Mendocino Triple Junction (MTJ) is one of the most seismically active regions in North America in response to the ongoing motions between North America, Pacific and Gorda plates. Earthquakes near the MTJ come from multiple types of faults due to the interaction boundaries between the three plates and the strong internal deformation within them. Understanding the stress levels that drive the earthquake rupture on the various types of faults and estimating the locking state of the subduction interface are especially important for earthquake hazard assessment. However due to lack of direct offshore seismic and geodetic records, only a few earthquakes' rupture processes have been well studied and the locking state of the subducted slab is not well constrained. In this study we first use the second moment inversion method to study the rupture process of the January 28, 2015 Mw 5.7 strike slip earthquake on Mendocino transform fault using strong ground motion records from Cascadia Initiative community experiment as well as onshore seismic networks. We estimate the rupture dimension to be of 6 km by 3 km and a stress drop of 7 MPa on the transform fault. Next we investigate the frictional locking state on the subduction interface through afterslip simulation based on coseismic rupture models of this 2015 earthquake and a Mw 6.5 intraplate eathquake inside Gorda plate whose slip distribution is inverted using onshore geodetic network in previous study. Different depths for velocity strengthening frictional properties to start at the downdip of the locked zone are used to simulate afterslip scenarios and predict the corresponding surface deformation (GPS) movements onshore. Our simulations indicate that locking depth on the slab surface is at least 14 km, which confirms that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected near the coast.

  4. Different Achilles Tendon Pathologies Show Distinct Histological and Molecular Characteristics

    PubMed Central

    Minkwitz, Susann; Schmock, Aysha; Bormann, Nicole; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian

    2018-01-01

    Reasons for the development of chronic tendon pathologies are still under debate and more basic knowledge is needed about the different diseases. The aim of the present study was therefore to characterize different acute and chronic Achilles tendon disorders. Achilles tendon samples from patients with chronic tendinopathy (n = 7), chronic ruptures (n = 6), acute ruptures (n = 13), and intact tendons (n = 4) were analyzed. The histological score investigating pathological changes was significantly increased in tendinopathy and chronic ruptures compared to acute ruptures. Inflammatory infiltration was detected by immunohistochemistry in all tendon pathology groups, but was significantly lower in tendinopathy compared to chronic ruptures. Quantitative real-time PCR (qRT-PCR) analysis revealed significantly altered expression of genes related to collagens and matrix modeling/remodeling (matrix metalloproteinases, tissue inhibitors of metalloproteinases) in tendinopathy and chronic ruptures compared to intact tendons and/or acute ruptures. In all three tendon pathology groups markers of inflammation (interleukin (IL) 1β, tumor necrosis factor α, IL6, IL10, IL33, soluble ST2, transforming growth factor β1, cyclooxygenase 2), inflammatory cells (cluster of differentaition (CD) 3, CD68, CD80, CD206), fat metabolism (fatty acid binding protein 4, peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, adiponectin), and innervation (protein gene product 9.5, growth associated protein 43, macrophage migration inhibitory factor) were detectable, but only in acute ruptures significantly regulated compared to intact tendons. The study gives an insight into structural and molecular changes of pathological processes in tendons and might be used to identify targets for future therapy of tendon pathologies. PMID:29385715

  5. Slow crack growth: Models and experiments

    NASA Astrophysics Data System (ADS)

    Santucci, S.; Vanel, L.; Ciliberto, S.

    2007-07-01

    The properties of slow crack growth in brittle materials are analyzed both theoretically and experimentally. We propose a model based on a thermally activated rupture process. Considering a 2D spring network submitted to an external load and to thermal noise, we show that a preexisting crack in the network may slowly grow because of stress fluctuations. An analytical solution is found for the evolution of the crack length as a function of time, the time to rupture and the statistics of the crack jumps. These theoretical predictions are verified by studying experimentally the subcritical growth of a single crack in thin sheets of paper. A good agreement between the theoretical predictions and the experimental results is found. In particular, our model suggests that the statistical stress fluctuations trigger rupture events at a nanometric scale corresponding to the diameter of cellulose microfibrils.

  6. Steroid signaling in mature follicles is important for Drosophila ovulation

    PubMed Central

    Knapp, Elizabeth

    2017-01-01

    Although ecdysteroid signaling regulates multiple steps in oogenesis, it is not known whether it regulates Drosophila ovulation, a process involving a matrix metalloproteinase-dependent follicle rupture. In this study, we demonstrated that ecdysteroid signaling is operating in mature follicle cells to control ovulation. Moreover, knocking down shade (shd), encoding the monooxygenase that converts ecdysone (E) to the more active 20-hydroxyecdysone (20E), specifically in mature follicle cells, blocked follicle rupture, which was rescued by ectopic expression of shd or exogenous 20E. In addition, disruption of the Ecdysone receptor (EcR) in mature follicle cells mimicked shd-knockdown defects, which were reversed by ectopic expression of EcR.B2 but not by EcR.A or EcR.B1 isoforms. Furthermore, we showed that ecdysteroid signaling is essential for the proper activation of matrix metalloproteinase 2 (Mmp2) for follicle rupture. Our data strongly suggest that 20E produced in follicle cells before ovulation activates EcR.B2 to prime mature follicles to be responsive to neuronal ovulatory stimuli, thus providing mechanistic insights into steroid signaling in Drosophila ovulation. PMID:28069934

  7. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench

    USGS Publications Warehouse

    Nanayama, F.; Satake, K.; Furukawa, R.; Shimokawa, K.; Atwater, B.F.; Shigeno, K.; Yamaki, S.

    2003-01-01

    The Pacific plate converges with northeastern Eurasia at a rate of 8-9 m per century along the Kamchatka, Kuril and Japan trenches. Along the southern Kuril trench, which faces the Japanese island of Hokkaido, this fast subduction has recurrently generated earthquakes with magnitudes of up to ???8 over the past two centuries. These historical events, on rupture segments 100-200 km long, have been considered characteristic of Hokkaido's plate-boundary earthquakes. But here we use deposits of prehistoric tsunamis to infer the infrequent occurrence of larger earthquakes generated from longer ruptures. Many of these tsunami deposits form sheets of sand that extend kilometres inland from the deposits of historical tsunamis. Stratigraphic series of extensive sand sheets, intercalated with dated volcanic-ash layers, show that such unusually large tsunamis occurred about every 500 years on average over the past 2,000-7,000 years, most recently ???350 years ago. Numerical simulations of these tsunamis are best explained by earthquakes that individually rupture multiple segments along the southern Kuril trench. We infer that such multi-segment earthquakes persistently recur among a larger number of single-segment events.

  8. Physical Factors Effecting Cerebral Aneurysm Pathophysiology

    PubMed Central

    Sadasivan, Chander; Fiorella, David J.; Woo, Henry H.; Lieber, Baruch B.

    2013-01-01

    Many factors that are either blood-, wall-, or hemodynamics-borne have been associated with the initiation, growth, and rupture of intracranial aneurysms. The distribution of cerebral aneurysms around the bifurcations of the circle of Willis has provided the impetus for numerous studies trying to link hemodynamic factors (flow impingement, pressure, and/or wall shear stress) to aneurysm pathophysiology. The focus of this review is to provide a broad overview of such hemodynamic associations as well as the subsumed aspects of vascular anatomy and wall structure. Hemodynamic factors seem to be correlated to the distribution of aneurysms on the intracranial arterial tree and complex, slow flow patterns seem to be associated with aneurysm growth and rupture. However, both the prevalence of aneurysms in the general population and the incidence of ruptures in the aneurysm population are extremely low. This suggests that hemodynamic factors and purely mechanical explanations by themselves may serve as necessary, but never as necessary and sufficient conditions of this disease’s causation. The ultimate cause is not yet known, but it is likely an additive or multiplicative effect of a handful of biochemical and biomechanical factors. PMID:23549899

  9. Re-revision of a patellar tendon rupture in a young professional martial arts athlete.

    PubMed

    Vadalà, A; Iorio, R; Bonifazi, A M; Bolle, G; Ferretti, A

    2012-09-01

    A 27-year-old professional martial arts athlete experienced recurrent right knee patellar tendon rupture on three occasions. He underwent two operations for complete patellar tendon rupture: an end-to-end tenorrhaphy the first time, and revision with a bone-patellar-tendon (BPT) allograft. After the third episode, he was referred to our department, where we performed a surgical reconstruction with the use of hamstring pro-patellar tendon, in a figure-of-eight configuration, followed by a careful rehabilitation protocol. Clinical and radiological follow-ups were realized at 1, 3, and 6 months and 1 and 2 years postop, with an accurate physical examination, the use of recognized international outcome scores, and radiograph and MRI studies. As far as we know, this is the first paper to report a re-revision of a patellar tendon rupture.

  10. Effect of rolling on the high temperature tensile and stress-rupture properties of tungsten fiber-superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.

    1974-01-01

    An investigation was conducted to determine the effects of mechanical working on the 1093 C (2000 F) tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C (2000 F). The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C (2000 F). Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C (2000 F). The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C (2000 F) ultimate tensile strength of the composites.

  11. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  12. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome.

    PubMed

    Byers, Peter H; Belmont, John; Black, James; De Backer, Julie; Frank, Michael; Jeunemaitre, Xavier; Johnson, Diana; Pepin, Melanie; Robert, Leema; Sanders, Lynn; Wheeldon, Nigel

    2017-03-01

    Vascular Ehlers Danlos syndrome (vEDS) is an uncommon genetic disorders characterized by arterial aneurysm, dissection and rupture, bowel rupture, and rupture of the gravid uterus. The frequency is estimated as 1/50,000-1/200,000 and results from pathogenic variants in COL3A1, which encodes the chains of type III procollagen, a major protein in vessel walls and hollow organs. Initial diagnosis depends on the recognitions of clinical features, including family history. Management is complex and requires multiple specialists who can respond to and manage the major complications. A summary of recommendations for management include: Identify causative variants in COL3A1 prior to application of diagnosis, modulate life style to minimize injury, risk of vessel/organ rupture, identify and create care team, provide individual plans for emergency care ("vascular EDS passport") with diagnosis and management plan for use when traveling, centralize management at centers of excellence (experience) when feasible, maintain blood pressure in the normal range and treat hypertension aggressively, surveillance of vascular tree by doppler ultrasound, CTA (low radiation alternatives) or MRA if feasible on an annual basis. These recommendations represent a consensus of an international group of specialists with a broad aggregate experience in the care of individuals with vascular EDS that will need to be assessed on a regular basis as new information develops. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. A 3000-year record of ground-rupturing earthquakes along the central North Anatolian fault near Lake Ladik, Turkey

    USGS Publications Warehouse

    Fraser, J.; Pigati, J.S.; Hubert-Ferrari, A.; Vanneste, K.; Avsar, U.; Altinok, S.

    2009-01-01

    The North Anatolian fault (NAF) is a ???1500 km long, arcuate, dextral strike-slip fault zone in northern Turkey that extends from the Karliova triple junction to the Aegean Sea. East of Bolu, the fault zone exhibits evidence of a sequence of large (Mw >7) earthquakes that occurred during the twentieth century that displayed a migrating earthquake sequence from east to west. Prolonged human occupation in this region provides an extensive, but not exhaustive, historical record of large earthquakes prior to the twentieth century that covers much of the last 2000 yr. In this study, we extend our knowledge of rupture events in the region by evaluating the stratigraphy and chronology of sediments exposed in a paleoseismic trench across a splay of the NAF at Destek, ???6:5 km east of Lake Ladik (40.868?? N, 36.121?? E). The trenched fault strand forms an uphill-facing scarp and associated sediment trap below a small catchment area. The trench exposed a narrow fault zone that has juxtaposed a sequence of weakly defined paleosols interbedded with colluvium against highly fractured bedrock. We mapped magnetic susceptibility variations on the trench walls and found evidence for multiple visually unrecognized colluvial wedges. This technique was also used to constrain a predominantly dip-slip style of displacement on this fault splay. Sediments exposed in the trench were dated using both charcoal and terrestrial gastropod shells to constrain the timing of the earthquake events. While the gastropod shells consistently yielded 14 C ages that were too old (by ???900 yr), we obtained highly reliable 14 C ages from the charcoal by dating multiple components of the sample material. Our radiocarbon chronology constrains the timing of seven large earthquakes over the past 3000 yr prior to the 1943 Tosya earthquake, including event ages of (2?? error): A.D. 1437-1788, A.D. 1034-1321, A.D. 549-719, A.D. 17-585 (1-3 events), 35 B.C.-A.D. 28, 700-392 B.C., 912-596 B.C. Our results indicate an average interevent time of 385 166?? yr (1??).

  14. MEGA16 - Computer program for analysis and extrapolation of stress-rupture data

    NASA Technical Reports Server (NTRS)

    Ensign, C. R.

    1981-01-01

    The computerized form of the minimum commitment method of interpolating and extrapolating stress versus time to failure data, MEGA16, is described. Examples are given of its many plots and tabular outputs for a typical set of data. The program assumes a specific model equation and then provides a family of predicted isothermals for any set of data with at least 12 stress-rupture results from three different temperatures spread over reasonable stress and time ranges. It is written in FORTRAN 4 using IBM plotting subroutines and its runs on an IBM 370 time sharing system.

  15. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren

    2010-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  16. Mapping PetaSHA Applications to TeraGrid Architectures

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.

    2007-12-01

    The Southern California Earthquake Center (SCEC) has a science program in developing an integrated cyberfacility - PetaSHA - for executing physics-based seismic hazard analysis (SHA) computations. The NSF has awarded PetaSHA 15 million allocation service units this year on the fastest supercomputers available within the NSF TeraGrid. However, one size does not fit all, a range of systems are needed to support this effort at different stages of the simulations. Enabling PetaSHA simulations on those TeraGrid architectures to solve both dynamic rupture and seismic wave propagation have been a challenge from both hardware and software levels. This is an adaptation procedure to meet specific requirements of each architecture. It is important to determine how fundamental system attributes affect application performance. We present an adaptive approach in our PetaSHA application that enables the simultaneous optimization of both computation and communication at run-time using flexible settings. These techniques optimize initialization, source/media partition and MPI-IO output in different ways to achieve optimal performance on the target machines. The resulting code is a factor of four faster than the orignial version. New MPI-I/O capabilities have been added for the accurate Staggered-Grid Split-Node (SGSN) method for dynamic rupture propagation in the velocity-stress staggered-grid finite difference scheme (Dalguer and Day, JGR, 2007), We use execution workflow across TeraGrid sites for managing the resulting data volumes. Our lessons learned indicate that minimizing time to solution is most critical, in particular when scheduling large scale simulations across supercomputer sites. The TeraShake platform has been ported to multiple architectures including TACC Dell lonestar and Abe, Cray XT3 Bigben and Blue Gene/L. Parallel efficiency of 96% with the PetaSHA application Olsen-AWM has been demonstrated on 40,960 Blue Gene/L processors at IBM TJ Watson Center. Notable accomplishments using the optimized code include the M7.8 ShakeOut rupture scenario, as part of the southern San Andreas Fault evaluation SoSAFE. The ShakeOut simulation domain is the same as used for the SCEC TeraShake simulations (600 km by 300 km by 80 km). However, the higher resolution of 100 m with frequency content up to 1 Hz required 14.4 billion grid points, eight times more than the TeraShake scenarios. The simulation used 2000 TACC Dell linux Lonestar processors and took 56 hours to compute 240 seconds of wave propagation. The pre-processing input partition, as well as post-processing analysis has been performed on the SDSC IBM Datastar p655 and p690. In addition, as part of the SCEC DynaShake computational platform, the SGSN capability was used to model dynamic rupture propagation for the ShakeOut scenario that match the proposed surface slip and size of the event. Mapping applications to different architectures require coordination of many areas of expertise in hardware and application level, an outstanding challenge faced on the current petascale computing effort. We believe our techniques as well as distributed data management through data grids have provided a practical example of how to effectively use multiple compute resources, and our results will benefit other geoscience disciplines as well.

  17. Vortex dynamics in ruptured and unruptured intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Trylesinski, Gabriel

    Intracranial aneurysms (IAs) are a potentially devastating pathological dilation of brain arteries that affect 1.5-5 % of the population. Causing around 500 000 deaths per year worldwide, their detection and treatment to prevent rupture is critical. Multiple recent studies have tried to find a hemodynamics predictor of aneurysm rupture, but concluded with distinct opposite trends using Wall Shear Stress (WSS) based parameters in different clinical datasets. Nevertheless, several research groups tend to converge for now on the fact that the flow patterns and flow dynamics of the ruptured aneurysms are complex and unstable. Following this idea, we investigated the vortex properties of both unruptured and ruptured cerebral aneurysms. A brief comparison of two Eulerian vortex visualization methods (Q-criterion and lambda 2 method) showed that these approaches gave similar results in our complex aneurysm geometries. We were then able to apply either one of them to a large dataset of 74 patient specific cases of intracranial aneurysms. Those real cases were obtained by 3D angiography, numerical reconstruction of the geometry, and then pulsatile CFD simulation before post-processing with the mentioned vortex visualization tools. First we tested the two Eulerian methods on a few cases to verify their implementation we made as well as compare them with each other. After that, the Q-criterion was selected as method of choice for its more obvious physical meaning (it shows the balance between two characteristics of the flow, its swirling and deformation). Using iso-surfaces of Q, we started by categorizing the patient-specific aneurysms based on the gross topology of the aneurysmal vortices. This approach being unfruitful, we found a new vortex-based characteristic property of ruptured aneurysms to stratify the rupture risk of IAs that we called the Wall-Kissing Vortices, or WKV. We observed that most ruptured aneurysms had a large amount of WKV, which appears to agree with the current hypothesized biological triggers of pathological remodeling of the artery walls. Having a good natural ratio of statuses in our IA cohort (55 unruptured vs. 19 ruptured), we were able to test the statistical significance of our predictor to fortify our findings. We also performed a distribution analysis of our cohort with respect to the number of WKV to strengthen the encouraging statistical analysis result; both analyses provided a clear good separation of the status of the aneurysms based on our predictor. Lastly, we constructed a receiver operating characteristic (ROC) curve to analyze the power different thresholds of WKV had in splitting the data in a binary way (unruptured/ruptured). The number of WKV was efficaciously able to stratify the rupture status, identifying 84.21 % of the ruptured aneurysms (with 25.45 % of false positives, i.e. unruptured IAs tagged as ruptured) when using a threshold value of 2. Our novel work undertaken to study the vortex structures in IAs brought to light interesting characteristics of the flow in the aneurysmal sac. We found that there are several distinct categories in which the aneurysm vortex topologies can be put in without relationship to the aneurysm rupture status. This first finding was in contradiction with available already-published results. Nonetheless, ruptured IAs had a statistically significant larger amount of WKV as opposed to unruptured aneurysms. This new predictor we propose to the community could very well clear a new path among the currently controversial WSS-based parameters. Although it needs to be improved to be more resilient, the first results obtained by the WKV-based parameter are promising when applied to a large dataset of 74 IAs patient-specific transient CFD simulations.

  18. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  19. Musculoskeletal management of a patient with a history of chronic ankle sprains: identifying rupture of peroneal brevis and peroneal longus with diagnostic ultrasonography.

    PubMed

    Bruin, Dick B; von Piekartz, Harry

    2014-09-01

    The purpose of this case report is to describe the use of mobilization and eccentric exercise training for a patient with ankle pain and a history of chronic ankle sprains and discuss the course of diagnostic decision making when the patient did not respond to care. A 48-year-old police officer who had sustained multiple ankle sprains throughout his life presented with pain and restriction in his ability to walk, run, and work. The Global Rating of Change Scale score was - 6, the Numeric Pain Rating Scale score was 7/10, and the Lower Extremity Functional Scale score was - 33. Palpation of the peroneus longus and brevis muscles and inversion with overpressure reproduced the chief concern (Numeric Pain Rating Scale 7/10). The patient was initially diagnosed with chronic peroneal tendinopathy. Treatment included lateral translation mobilization of the talocrural joint combined with eccentric exercise using an elastic band for the peroneal muscles. The patient reported improvement in pain and function during the course of intervention but not as rapidly as expected. Therefore, follow-up ultrasonographic imaging and radiography were performed. These studies revealed partial rupture of the peroneal brevis muscle and total rupture of the peroneal longus muscle. A patient with long-term concerns of the foot complex with a diagnosis of peroneal tendinopathy showed slight improvement with eccentric exercises combined with manual therapy of the talocrural joint. After a course of treatment but minimal response, a diagnosis of tendon rupture was confirmed with diagnostic ultrasonography. Clinicians should be aware that when injuries do not improve with care, tendon rupture should be considered.

  20. No difference between mechanical perturbation training with compliant surface and manual perturbation training on knee functional performance after ACL rupture.

    PubMed

    Nawasreh, Zakariya; Logerstedt, David; Failla, Mathew; Snyder-Mackler, Lynn

    2017-10-27

    Manual perturbation training improves dynamic knee stability and functional performance after anterior cruciate ligament rupture (ACL-rupture). However, it is limited to static standing position and does not allow time-specific perturbations at different phase of functional activities. The purpose of this study was to investigate whether administering mechanical perturbation training including compliant surface provides effects similar to manual perturbation training on knee functional measures after an acute ACL-rupture. Sixteen level I/II athletes with ACL-ruptures participated in this preliminary study. Eight patients received mechanical (Mechanical) and eight subjects received manual perturbation training (Manual). All patients completed a functional testing (isometric quadriceps strength, single-legged hop tests) and patient-reported measures (Knee Outcome Survey-Activities of Daily Living Scale (KOS-ADLS), Global Rating Score (GRS), International Knee Documentation Committee 2000 (IKDC 2000) at pre- and post-training. 2 × 2 ANOVA was used for data analysis. No significant group-by-time interactions were found for all measures (p > 0.18). Main effects of time were found for single hop (Pre-testing: 85.14% ± 21.07; Post-testing: 92.49% ± 17.55), triple hop (Pre-testing: 84.64% ± 14.17; Post-testing: 96.64% ± 11.14), KOS-ADLS (Pre-testing: 81.13% ± 11.12; Post-testing: 88.63% ± 12.63), GRS (Pre-testing: 68.63% ± 15.73; Post-testing: 78.81% ± 13.85), and IKDC 2000 (Pre-testing: 66.66% ± 9.85; Post-testing: 76.05% ± 14.62) (p < 0.032). Administering mechanical perturbation training using compliant surfaces induce effects similar to manual perturbation training on knee functional performance after acute ACL-rupture. The clinical significance is both modes of training improve patients' functional-performance and limb-to-limb movement symmetry, and enhancing the patients' self-reported of knee functional measures after ACL rupture. Mechanical perturbation that provides a compliant surface might be utilized as part of the ACL rehabilitation training. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Delayed treatment of ruptured brain AVMs: is it ok to wait?

    PubMed

    Beecher, Jeffrey S; Lyon, Kristopher; Ban, Vin Shen; Vance, Awais; McDougall, Cameron M; Whitworth, Louis A; White, Jonathan A; Samson, Duke; Batjer, H Hunt; Welch, Babu G

    2018-04-01

    OBJECTIVE Despite a hemorrhagic presentation, many patients with arteriovenous malformations (AVMs) do not require emergency resection. The timing of definitive management is not standardized in the cerebrovascular community. This study was designed to evaluate the safety of delaying AVM treatment in clinically stable patients with a new hemorrhagic presentation. The authors examined the rate of rehemorrhage or neurological decline in a cohort of patients with ruptured brain AVMs during a period of time posthemorrhage. METHODS Patients presenting to the authors' institution from January 2000 to December 2015 with ruptured brain AVMs treated at least 4 weeks posthemorrhage were included in this analysis. Exclusion criteria were ruptured AVMs that required emergency surgery involving resection of the AVM, prior treatment of AVM at another institution, or treatment of lesions within 4 weeks for other reasons (subacute surgery). The primary outcome measure was time from initial hemorrhage to treatment failure (defined as rehemorrhage or neurological decline as a direct result of the AVM). Patient-days were calculated from the day of initial rupture until the day AVM treatment was initiated or treatment failed. RESULTS Of 102 ruptured AVMs in 102 patients meeting inclusion criteria, 7 (6.9%) failed the treatment paradigm. Six patients (5.8%) had a new hemorrhage within a median of 248 days (interquartile range 33-1364 days). The total "at risk" period was 18,740 patient-days, yielding a rehemorrhage rate of 11.5% per patient-year, or 0.96% per patient-month. Twelve (11.8%) of 102 patients were found to have an associated aneurysm. In this group there was a single (8.3%) new hemorrhage during a total at-risk period of 263 patient-days until the aneurysm was secured, yielding a rehemorrhage risk of 11.4% per patient-month. CONCLUSIONS It is the authors' practice to rehabilitate patients after brain AVM rupture with a plan for elective treatment of the AVM. The present data are useful in that the findings quantify the risk of the authors' treatment strategy. These findings indicate that delaying intervention for at least 4 weeks after the initial hemorrhage subjects the patient to a low (< 1%) risk of rehemorrhage. The authors modified the treatment paradigm when a high-risk feature, such as an associated intracranial aneurysm, was identified.

  2. Simulating Large-Scale Earthquake Dynamic Rupture Scenarios On Natural Fault Zones Using the ADER-DG Method

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; Pelties, Christian

    2014-05-01

    In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.

  3. Intermediate Temperature Strength Degradation in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Cawley, James D.; Levine, Stanley (Technical Monitor)

    2001-01-01

    Woven silicon carbide fiber-reinforced, silicon carbide matrix composites are leading candidate materials for an advanced jet engine combustor liner application. Although the use temperature in the hot region for this application is expected to exceed 1200 C, a potential life-limiting concern for this composite system exists at intermediate temperatures (800 +/- 200 C), where significant time-dependent strength degradation has been observed under stress-rupture loading. A number of factors control the degree of stress-rupture strength degradation, the major factor being the nature of the interphase separating the fiber and the matrix. BN interphases are superior to carbon interphases due to the slower oxidation kinetics of BN. A model for the intermediate temperature stress-rupture of SiC/BN/SiC composites is presented based on the observed mechanistic process that leads to strength degradation for the simple case of through-thickness matrix cracks. The approach taken has much in common with that used by Curtin and coworkers, for two different composite systems. The predictions of the model are in good agreement with the rupture data for stress-rupture of both precracked and as-produced composites. Also, three approaches that dramatically improve the intermediate temperature stress-rupture properties are described: Si-doped BN, fiber spreading, and 'outside debonding'.

  4. Achilles tendon rupture--treatment and complications: a systematic review.

    PubMed

    Holm, C; Kjaer, M; Eliasson, P

    2015-02-01

    Achilles tendon rupture is a frequent injury with an increasing incidence. Until now, there is no consensus regarding optimal treatment. The aim of this review was to illuminate and summarize randomized controlled trials comparing surgical and non-surgical treatment of Achilles tendon ruptures during the last 10 years. Seven articles were found and they were all acceptable according to international quality assessment guidelines. Primary outcomes were re-ruptures, other complications, and functional outcomes. There was no significant difference in re-ruptures between the two treatments, but a tendency to favoring surgical treatment. Further, one study found an increased risk of soft-tissue-related complications after surgery. Patient satisfaction and time to return to work were significantly different in favor of surgery in one study, and there was also better functional outcome after surgery in some studies. These seven studies indicate that surgical patients have a faster rehabilitation. However, the differences between surgical and non-surgical treatment appear to be subtle and it could mean that rehabilitation is more important, rather than the actual initial treatment. Therefore, further studies will be needed in regard to understanding the interplay between acute surgical or non-surgical treatment, and the rehabilitation regimen for the overall outcome after Achilles tendon ruptures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    USGS Publications Warehouse

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  6. Investigation of UF/sub 6/ behavior in a fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    Reactions between UF/sub 6/ and combustible gases and the potential for UF/sub 6/-filled cylinders to rupture when exposed to fire are addressed. Although the absence of kinetic data prevents specific identification and quantification of the chemical species formed, potential reaction products resulting from the release of UF/sub 6/ into a fire include UF/sub 4/, UO/sub 2/F/sub 2/, HF, C, CF/sub 4/,COF/sub 2/, and short chain, fluorinated or partially fluorinated hydrocarbons. Such a release adds energy to a fire relative to normal combustion reactions. Time intervals to an assumed point of rupture for UF/sub 6/-filled cylinders exposed to fire are estimatedmore » conservatively. Several related studies are also summarized, including a test series in which small UF/sub 6/-filled cylinders were immersed in fire resulting in valve failures and explosive ruptures. It is concluded that all sizes of UF/sub 6/ cylinders currently in use may rupture within 30 minutes when totally immersed in a fire. For cylinders adjacent to fires, rupture of the larger cylinders appears much less likely.« less

  7. Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.

    2018-04-01

    Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.

  8. Cystic echinococcosis: late rupture and complication of a stable pulmonary cyst.

    PubMed

    Fisher, J; Shargall, Y; Krajden, S; Moid, F; Hoffstein, V

    2011-01-01

    Cystic echinococcosis is observed worldwide. Traditional management includes an invasive surgical approach with adjunctive chemotherapy. It has been suggested that observation alone may be appropriate in asymptomatic individuals with stable cysts. A case involving a 38-year-old Peruvian man with an asymptomatic bronchogenic cyst (suspected to be due to echinococcus, but never definitely diagnosed) is presented. The cyst was first noted in 1998, and was followed for 10 years during which time he remained asymptomatic with minimal radiographic change. One year later, in 2009, he presented with acute rupture of the cyst causing empyema. The patient required thoracotomy, decortication and resection of the ruptured cyst. Final pathology showed Echinococcus organisms. The patient responded well to treatment with albendazole and praziquantel, and became completely asymptomatic within six months. The present case demonstrates that echinococcal cysts may be at risk of spontaneous rupture, even after many years of clinical stability, thus supporting the case for resection of asymptomatic cysts suspected of being echinococcal at the time of diagnosis. In addition, the case illustrates that medical therapy with albendazole and praziquantel, in conjunction with surgical drainage, can be successful in the treatment of echinococcal empyema.

  9. Growth of Matrix Cracks During Intermediate Temperature Stress Rupture of a SiC/SiC Composite in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2000-01-01

    The crack density of woven Hi-Nicalon(sup TM) (Nippon Carbon, Japan) fiber, BN interphase, melt-infiltrated SiC matrix composites was determined for specimens subjected to tensile stress rupture at 815 C. A significant amount of matrix cracking occurs due to the growth of fiber-bridged microcracks even at stresses below the run-out condition. This increased cracking corresponded to time dependent strain accumulation and acoustic emission activity during the constant load test. However, the portion of the rupture specimens subjected to cooler temperatures (< 600 C than the hot section had significantly lower crack densities compared to the hotter regions. From the acoustic emission and time dependent strain data it can be inferred that most of the matrix crack growth occurred within the first few hours of the tensile rupture experiment. The crack growth was attributed to an interphase recession mechanism that is enhanced by the presence of a thin carbon layer between the fiber and the matrix as a result of the composite fabrication process. One important consequence of matrix crack growth at the lower stresses is poor retained strength at room temperature for specimens that did not fail.

  10. Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation

    USGS Publications Warehouse

    Mori, J.; Abercrombie, R.E.

    1997-01-01

    Statistics of earthquakes in California show linear frequency-magnitude relationships in the range of M2.0 to M5.5 for various data sets. Assuming Gutenberg-Richter distributions, there is a systematic decrease in b value with increasing depth of earthquakes. We find consistent results for various data sets from northern and southern California that both include and exclude the larger aftershock sequences. We suggest that at shallow depth (???0 to 6 km) conditions with more heterogeneous material properties and lower lithospheric stress prevail. Rupture initiations are more likely to stop before growing into large earthquakes, producing relatively more smaller earthquakes and consequently higher b values. These ideas help to explain the depth-dependent observations of foreshocks in the western United States. The higher occurrence rate of foreshocks preceding shallow earthquakes can be interpreted in terms of rupture initiations that are stopped before growing into the mainshock. At greater depth (9-15 km), any rupture initiation is more likely to continue growing into a larger event, so there are fewer foreshocks. If one assumes that frequency-magnitude statistics can be used to estimate probabilities of a small rupture initiation growing into a larger earthquake, then a small (M2) rupture initiation at 9 to 12 km depth is 18 times more likely to grow into a M5.5 or larger event, compared to the same small rupture initiation at 0 to 3 km. Copyright 1997 by the American Geophysical Union.

  11. Frequency-Dependent Rupture Processes for the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Miyake, H.

    2012-12-01

    The 2011 Tohoku earthquake is characterized by frequency-dependent rupture process [e.g., Ide et al., 2011; Wang and Mori, 2011; Yao et al., 2011]. For understanding rupture dynamics of this earthquake, it is extremely important to investigate wave-based source inversions for various frequency bands. The above frequency-dependent characteristics have been derived from teleseismic analyses. This study challenges to infer frequency-dependent rupture processes from strong motion waveforms of K-NET and KiK-net stations. The observations suggested three or more S-wave phases, and ground velocities at several near-source stations showed different arrivals of their long- and short-period components. We performed complex source spectral inversions with frequency-dependent phase weighting developed by Miyake et al. [2002]. The technique idealizes both the coherent and stochastic summation of waveforms using empirical Green's functions. Due to the limitation of signal-to-noise ratio of the empirical Green's functions, the analyzed frequency bands were set within 0.05-10 Hz. We assumed a fault plane with 480 km in length by 180 km in width with a single time window for rupture following Koketsu et al. [2011] and Asano and Iwata [2012]. The inversion revealed source ruptures expanding from the hypocenter, and generated sharp slip-velocity intensities at the down-dip edge. In addition to test the effects of empirical/hybrid Green's functions and with/without rupture front constraints on the inverted solutions, we will discuss distributions of slip-velocity intensity and a progression of wave generation with increasing frequency.

  12. Mast cell curve-response in partial Achilles tendon rupture after 830 nm phototherapy.

    PubMed

    Pinfildi, Carlos E; da Silva, Érika P Rampazo; Folha, Roberta A C; Turchetto, Paola C G; Monteiro, Paola Pkp; Antunes, Arainy; Hochman, Bernardo S

    2014-02-01

    The aim of this study was to quantify mast cells at different time intervals after partial Achilles tendon rupture in rats treated with low-level laser therapy (LLLT). There is a high incidence of lesions and ruptures in the Achilles tendon that can take weeks and even months to heal completely. As the mast cells help in the healing repair phase, and LLLT has favorable effects on this tissue repair process, study of this modality on the quantity of mastocytes in the ruptured tendon is relevant. Sixty Wistar rats were subjected to partial Achilles' tendon rupture by direct trauma, randomized into 10 groups, and then divided into the group treated with 80 mW aluminum gallium arsenide infrared laser diode, continuous wave, 2.8 W/cm(2) power density, 40 J/cm(2) energy density, and 1.12 J total energy, and the simulation group. Both the groups were subdivided according to the histological assessment period of the sample, either 6 h, 12 h, 24 h, 2 days, or 3 days after the rupture, to quantify the mastocytes in the Achilles' tendon. The group subjected to LLLT presented a greater quantity of mastocytes in the periods of 6 h, 12 h, 24 h, 2 days, and 3 days after rupture, compared with the simulation groups, but differences were detected between the sample assessment periods only in the simulation group. LLLT was shown to increase the quantity of mastocytes in the assessment periods compared with the simulation groups.

  13. Stratigraphic and microfossil evidence for a 4500-year history of Cascadia subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, USA

    USGS Publications Warehouse

    Graehl, Nicholas A; Kelsey, Harvey M.; Witter, Robert C.; Hemphill-Haley, Eileen; Engelhart, Simon E.

    2015-01-01

    The Sallys Bend swamp and marsh area on the central Oregon coast onshore of the Cascadia subduction zone contains a sequence of buried coastal wetland soils that extends back ∼4500 yr B.P. The upper 10 of the 12 soils are represented in multiple cores. Each soil is abruptly overlain by a sandy deposit and then, in most cases, by greater than 10 cm of mud. For eight of the 10 buried soils, times of soil burial are constrained through radiocarbon ages on fine, delicate detritus from the top of the buried soil; for two of the buried soils, diatom and foraminifera data constrain paleoenvironment at the time of soil burial.We infer that each buried soil represents a Cascadia subduction zone earthquake because the soils are laterally extensive and abruptly overlain by sandy deposits and mud. Preservation of coseismically buried soils occurred from 4500 yr ago until ∼500–600 yr ago, after which preservation was compromised by cessation of gradual relative sea-level rise, which in turn precluded drowning of marsh soils during instances of coseismic subsidence. Based on grain-size and microfossil data, sandy deposits overlying buried soils accumulated immediately after a subduction zone earthquake, during tsunami incursion into Sallys Bend. The possibility that the sandy deposits were sourced directly from landslides triggered upstream in the Yaquina River basin by seismic shaking was discounted based on sedimentologic, microfossil, and depositional site characteristics of the sandy deposits, which were inconsistent with a fluvial origin. Biostratigraphic analyses of sediment above two buried soils—in the case of two earthquakes, one occurring shortly after 1541–1708 cal. yr B.P. and the other occurring shortly after 3227–3444 cal. yr B.P.—provide estimates that coseismic subsidence was a minimum of 0.4 m. The average recurrence interval of subduction zone earthquakes is 420–580 yr, based on an ∼3750–4050-yr-long record and seven to nine interearthquake intervals.The comparison of the Yaquina Bay earthquake record to similar records at other Cascadia coastal sites helps to define potential patterns of rupture for different earthquakes, although inherent uncertainty in dating precludes definitive statements about rupture length during earthquakes. We infer that in the first half of the last millennia, the northern Oregon part of the subduction zone had a different rupture history than the southern Oregon part of the subduction zone, and we also infer that at ca. 1.6 ka, two earthquakes closely spaced in time together ruptured a length of the megathrust that extends at least from southwestern Washington to southern Oregon.

  14. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duru, Kenneth, E-mail: kduru@stanford.edu; Dunham, Eric M.; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a)more » enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.« less

  15. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.

  16. [Avulsion of the Proximal Hamstring Insertion. Case Reports].

    PubMed

    Mizera, R; Harcuba, R; Kratochvíl, J

    2016-01-01

    Proximal hamstring avulsion is an uncommon muscle injury with a lack of consensus on indications and the timing and technique of surgery. Poor clinical symptoms and difficulties in the diagnostic process can lead to a false diagnosis. The authors present three cases of proximal hamstring avulsion, two complete and one partial ruptures of the biceps femoris muscle. MRI and ultrasound scans were used for optimal treatment alignment. Acute surgery reconstruction (< 4 weeks) was done in two patients. Re-attachment of the full thickness ruptures was performed to the original place and secured by suture anchors, the partial rupture was fixed by a simple suture. Two patients were free of any symptoms at 6 months after surgery, the last one had pain in the subgluteal area and a mild deficit in hamstring strength. Two interesting systematic reviews published on the treatment of proximal hamstring avulsion are discussed in the final part of the paper. Key words: hamstring, rupture, avulsion.

  17. Right ventricular rupture after lateral thoracotomy for removal of rib-associated telangiectatic osteosarcoma in a dog.

    PubMed

    Barmettler, Reto; Spreng, David E; Gorgas, Daniela; Scharf, Gernot; Posthaus, Horst; Sigrist, Nadja E

    2009-06-01

    To describe a case of a focal right ventricular rupture following removal of a rib-associated telangiectatic osteosarcoma (TOS) in a dog. A 2-year-old spayed female mixed-breed dog, weighing 20 kg, was presented in compensated hypovolemic shock due to active bleeding into the thoracic cavity. The dog was stabilized with appropriate fluid administration. Subsequent computed tomographic examination revealed a large mineralized mass originating from the body of a rib and displacing the heart. Two days after surgical removal of this mass, focal right ventricular rupture occurred and the dog died. The mass was later identified as a TOS. Although hemothorax secondary to TOS has been described previously, this report describes for the first time, spontaneous focal right ventricular rupture as a rare complication of thoracotomy and rib resection for the removal of a rib-associated, intrathoracic TOS.

  18. Pre-breakdown cavitation nanopores in the dielectric fluid in the inhomogeneous, pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Pekker, Mikhail; Shneider, Mikhail N.

    2015-10-01

    This paper discusses the nanopores emerging and developing in a liquid dielectric under the action of the ponderomotive electrostrictive forces in a nonuniform electric field. It is shown that the gradient of the electric field in the vicinity of the rupture (cavitation nanopore) substantially increases and determines whether the rupture grows or collapses. The cavitation rupture in the liquid (nanopore) tends to stretch along the lines of the original field. The mechanism of the breakdown associated with the generation of secondary ruptures in the vicinity of the poles of the nanopore is proposed. The estimations of the extension time for nanopore in water and oil (polar and nonpolar liquids, respectively) are presented. A new mechanism of nano- and subnanosecond breakdown in the insulating (transformer) oil that can be realized in the vicinity of water microdroplets in nanosecond high-voltage devices is considered.

  19. Resistance, rupture and repetition: Civil society strategies against intimate partner violence in Cambodia.

    PubMed

    Lilja, Mona; Baaz, Mikael

    2016-01-01

    This paper offers a new interpretation of the 'resistance' carried out by local civil society organisations in Cambodia against intimate partner violence (IPV). In this, the paper explores the nexus between 'rupture', 'resistance' and 'repetition' and concludes that different 'repetitions' can contribute to acts of violence while simultaneously creating possibilities for resisting IPV. In regard to the latter, the concept of 'rupture' is investigated as a performative politics through which organisations try to disrupt the 'repetitions' of violent masculinities. Furthermore, it is argued that the importance of 'repetitions' and the concept of time should be acknowledged. The French criminal defence lawyer Jacques Vergès' understanding of 'rupture' and the French philosopher Gilles Deleuze's notions of 'repetition' inform the analysis. To exemplify our discussion and findings, the paper embraces stories of a number of civil society workers who facilitate various men's groups in Cambodia in order to negotiate the practice of IPV.

  20. [A case of ruptured thoracoabdominal aortic aneurysm with aortitis syndrome--operation with selective cold visceral arteries perfusion].

    PubMed

    Furukawa, K; Ohteki, H; Doi, K

    1997-10-01

    We report a successful result of treatment for a ruptured thoracoabdominal aortic aneurysm with aortitis syndrome. A 43-year-old male suffered sudden low back pain, that was diagnosed as a ruptured thoracoabdominal aortic aneurysm based on abdominal computed tomography. Preoperative angiography revealed a thoracoabdominal aortic aneurysm with occlusion of the superior mesenteric artery, and well developed Riolan's archade. The aneurysm was replaced by a prosthetic graft with partial femoro-femoral bypass in conjunction with selective cold perfusion for the visceral arteries. Total extracorporeal circulation time, and aortic clamptime, was 187 minutes and 132 minutes, respectively. The postoperative courses of liver and renal function were excellent. The patient recovered from surgery uneventfully. It was suggested that selective cold visceral perfusion was effective for prevention of renal and liver dysfunction associated with a ruptured thoracoabdominal aneurysm.

  1. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    NASA Astrophysics Data System (ADS)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  2. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  3. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  4. Need for lung resection in patients with intact or ruptured hydatid cysts.

    PubMed

    Vasquez, J C; Montesinos, E; Peralta, J; Rojas, L; DeLaRosa, J; Leon, J J

    2009-08-01

    Lung hydatid cyst caused by Echinococcus granulosus is endemic in many areas of the world. We aimed to compare the outcome of surgical treatment in intact and ruptured (infected or noninfected) cysts. We reviewed the medical records of 115 patients with lung hydatid disease who were surgically treated between 2001 and 2005 in a tertiary hospital in Lima, Peru. Patients were divided into 3 groups based on cyst characteristics: intact cysts (n = 41), ruptured noninfected cysts (n = 47) and ruptured infected cysts (n = 27). If a patient had more than one type of cyst, the most severe form of disease was recorded. Data related to symptoms, morbidity and mortality were recorded and compared. We also calculated direct patient costs. Mean age of patients was 23.6 +/- 15.1 years old. Ruptured cysts were present in 64 % of patients and giant cysts (> 10 cm diameter) were present in 26 % of patients. Hemoptysis was present in 47.0 % of patients and was more frequent in patients with ruptured infected cysts. Lung resection was performed in 58 % of patients. The most common postoperative complication was infection of the operative wound (6.08 %). Perioperative mortality was zero. Patients with ruptured cysts had a longer hospitalization time and higher total cost (12.28 +/- 0.92 days, US$ 890.34 +/- 303.35) than patients with intact cysts (10.17 +/- 0.79 days, US$ 724.81 +/- 14.38). Surgical treatment of lung hydatid disease is safe, with a good outcome and a low mortality rate. The lung resection rate was higher than most published series and reflects the relatively high proportion of patients with giant and ruptured infected cysts.

  5. New investigations of the October 1999 Hector Mine Earthquake surface rupture

    NASA Astrophysics Data System (ADS)

    Sousa, F.; Harvey, J. C.; Hudnut, K. W.; Akciz, S. O.; Stock, J. M.

    2013-12-01

    We report on new field and computer based investigation of the surface rupture of the October 16, 1999 Hector Mine Earthquake. In cooperation with the United States Marine Corps Air Ground Combat Center Twentynine Palms (MCAGCC), our team was allowed ground and aerial access to the extent of the surface rupture for limited times during October - December 2012. As far as we know, this was the first scientific access granted to the entire surface rupture since the immediate aftermath of the earthquake, and the first scientific access of any kind to some parts of the maximum slip zone since before the event. This locale is an excellent natural laboratory for detailed study of a major earthquake surface rupture because: 1) complete circumscription within the boundaries of MCAGCC severely limit both past and future human disruption of the rupture, particularly in the mountainous maximum slip zone; 2) groundbreaking aerial LiDAR survey carried out six months after the earthquake was followed up by a higher density, wider swath LiDAR survey in May 2012, making the temporal evolution of this rupture perhaps the most completely physically documented of any major rupture; and 3) field investigation immediately following the event was followed up by computer based offset measurements using the April 2000 LiDAR dataset, providing a database of published offset measurements. Due to time constraints imposed by MCAGGC we focused our new research effort along the ~8 km long maximum slip zone of the rupture, roughly corresponding to the zone of >4 m dextral offset. Our investigation includes 1) walking this entire section of the fault and making >30 measurements of dextral slip while photo documenting the current state of the rupture; 2) creating a difference raster for the entire 8 km maximum slip zone from exactly congruent DEM's made from the 2000 and 2012 LiDAR data sets; 3) documenting the fault traces with a Trimble GeoXH high precision handheld GPS unit (+/- 10 cm); 4) carrying out field checks of a small number of computer-based offset measurements made using the 2000 LiDAR dataset; and 5) high-resolution low-altitude (<100 m AGL) photography of the maximum slip zone during a helicopter overflight. To date, important results include 1) identification of two new maximum slip locations where features are offset 7.9 m +/- 0.5 m and 6.7 m +/- 0.5 m; 2) a database of >30 offset measurements (georeferenced and photo documented) made by our team on the ground; 3) clear changes in fracture visibility in the field, with some fractures more visible, and others no longer visible, compared to the 1999-2000 studies; and 4) examples of a few field checks that both strongly agree and disagree with computer based LiDAR offset measurements.

  6. A Brownian model for recurrent earthquakes

    USGS Publications Warehouse

    Matthews, M.V.; Ellsworth, W.L.; Reasenberg, P.A.

    2002-01-01

    We construct a probability model for rupture times on a recurrent earthquake source. Adding Brownian perturbations to steady tectonic loading produces a stochastic load-state process. Rupture is assumed to occur when this process reaches a critical-failure threshold. An earthquake relaxes the load state to a characteristic ground level and begins a new failure cycle. The load-state process is a Brownian relaxation oscillator. Intervals between events have a Brownian passage-time distribution that may serve as a temporal model for time-dependent, long-term seismic forecasting. This distribution has the following noteworthy properties: (1) the probability of immediate rerupture is zero; (2) the hazard rate increases steadily from zero at t = 0 to a finite maximum near the mean recurrence time and then decreases asymptotically to a quasi-stationary level, in which the conditional probability of an event becomes time independent; and (3) the quasi-stationary failure rate is greater than, equal to, or less than the mean failure rate because the coefficient of variation is less than, equal to, or greater than 1/???2 ??? 0.707. In addition, the model provides expressions for the hazard rate and probability of rupture on faults for which only a bound can be placed on the time of the last rupture. The Brownian relaxation oscillator provides a connection between observable event times and a formal state variable that reflects the macromechanics of stress and strain accumulation. Analysis of this process reveals that the quasi-stationary distance to failure has a gamma distribution, and residual life has a related exponential distribution. It also enables calculation of "interaction" effects due to external perturbations to the state, such as stress-transfer effects from earthquakes outside the target source. The influence of interaction effects on recurrence times is transient and strongly dependent on when in the loading cycle step pertubations occur. Transient effects may be much stronger than would be predicted by the "clock change" method and characteristically decay inversely with elapsed time after the perturbation.

  7. The Physics of Earthquakes: In the Quest for a Unified Theory (or Model) That Quantitatively Describes the Entire Process of an Earthquake Rupture, From its Nucleation to the Dynamic Regime and to its Arrest

    NASA Astrophysics Data System (ADS)

    Ohnaka, M.

    2004-12-01

    For the past four decades, great progress has been made in understanding earthquake source processes. In particular, recent progress in the field of the physics of earthquakes has contributed substantially to unraveling the earthquake generation process in quantitative terms. Yet, a fundamental problem remains unresolved in this field. The constitutive law that governs the behavior of earthquake ruptures is the basis of earthquake physics, and the governing law plays a fundamental role in accounting for the entire process of an earthquake rupture, from its nucleation to the dynamic propagation to its arrest, quantitatively in a unified and consistent manner. Therefore, without establishing the rational constitutive law, the physics of earthquakes cannot be a quantitative science in a true sense, and hence it is urgent to establish the rational constitutive law. However, it has been controversial over the past two decades, and it is still controversial, what the constitutive law for earthquake ruptures ought to be, and how it should be formulated. To resolve the controversy is a necessary step towards a more complete, unified theory of earthquake physics, and now the time is ripe to do so. Because of its fundamental importance, we have to discuss thoroughly and rigorously what the constitutive law ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid evidence. There are prerequisites for the constitutive formulation. The brittle, seismogenic layer and individual faults therein are characterized by inhomogeneity, and fault inhomogeneity has profound implications for earthquake ruptures. In addition, rupture phenomena including earthquakes are inherently scale dependent; indeed, some of the physical quantities inherent in rupture exhibit scale dependence. To treat scale-dependent physical quantities inherent in the rupture over a broad scale range quantitatively in a unified and consistent manner, it is critical to formulate the governing law properly so as to incorporate the scaling property. Thus, the properties of fault inhomogeneity and physical scaling are indispensable prerequisites to be incorporated into the constitutive formulation. Thorough discussion in this context necessarily leads to the consistent conclusion that the constitutive law must be formulated in such a manner that the shear traction is a primary function of the slip displacement, with the secondary effect of slip rate or stationary contact time. This constitutive formulation makes it possible to account for the entire process of an earthquake rupture over a broad scale range quantitatively in a unified and consistent manner.

  8. Regularization of rupture dynamics along bi-material interfaces: a parametric study and simulations of the Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre

    2015-04-01

    Faults are often interfaces between materials with different elastic properties. This is generally the case of plate boundaries in subduction zones, where the ruptures extend for many kilometers crossing materials with strong impedance contrasts (oceanic crust, continental crust, mantle wedge, accretionary prism). From a physical point of view, several peculiar features emerged both from analogic experiments and numerical simulations for a rupture propagating along a bimaterial interface. The elastodynamic flux at the rupture tip breaks its symmetry, inducing normal stress changes and an asymmetric propagation. This latter was widely shown for rupture velocity and slip rate (e.g. Xia et al, 2005) and was supposed to generate an asymmetric distribution of the aftershocks (Rubin and Ampuero, 2007). The bimaterial problem coupled with a Coulomb friction law is ill-posed for a wide range of impedance contrasts, due to a missing length scale in the instantaneous response to the normal traction changes. The ill-posedness also results into simulations no longer independent of the grid size. A regularization can be introduced by delaying the tangential traction from the normal traction as suggested by Cochard and Rice (2000) and Ranjith and Rice (2000) δσeff α|v|+-v* δt = δσ (σn - σeff) where σeff represents the effective normal stress to be used in the Coulomb friction. This regularization introduces two delays depending on the slip rate and on a fixed time scale. In this study we performed a large number of 2D numerical simulations of in plane rupture with the spectral element method dynamic and we systematically investigated the effect of parameter selection on the rupture propagation, dissipation and radiation, by also performing a direct comparison with solutions provided by numerical and experimental results. We found that a purely time-dependent regularization requires a fine tuning rapidly jumping from a too fast, ineffective delay to a slow, invasive, regularization as a function of the actual slip rate. Conversely, the choice of a fixed relaxation length, smaller than the critical slip weakening distance, provides a reliable class of solutions for a wide range of elastic and frictional parameters. Nevertheless critical rupture stages, such as the nucleation or the very fast steady-state propagation may show resolution problems and may take advantage of adaptive schemes, with a space/time variation of the parameters. We used recipes for bimaterial regularization to perform along-dip dynamic simulations of the Tohoku earthquake in the framework of a slip weakening model, with a realistic description of the geometry of the interface and the geological structure. We finely investigated the role of the impedance contrasts on the evolution of the rupture and short wavelength radiation. We also show that pathological effects may arise from a bad selection of regularization parameters.

  9. Aftershock Distribution of the Mw=7.8 April 16, 2016 Pedernales Ecuador Subduction Earthquake: Constraints from 3D Earthquake Locations

    NASA Astrophysics Data System (ADS)

    Font, Y.; Agurto-Detzel, H.; Alvarado, A. P.; Regnier, M. M.; Rolandone, F.; Charvis, P.; Mothes, P. A.; Nocquet, J. M.; Jarrin, P.; Ambrois, D.; Maron, C.; Deschamps, A.; Cheze, J.; Peix, F., Sr.; Ruiz, M. C.; Gabriela, P.; Acero, W.; Singaucho, J. C.; Viracucha, C.; Vasconez, F.; De Barros, L.; Mercerat, D.; Courboulex, F.; Galve, A.; Godano, M.; Monfret, T.; Ramos, C.; Martin, X.; Rietbrock, A.; Beck, S. L.; Metlzer, A.

    2017-12-01

    The Mw7.8 Pedernales earthquake is associated with the subduction of the Nazca Plate beneath the South American Plate. The mainshock caused many casualties and widespread damage across the Manabi province. The 150 km-long coseismic rupture area extends beneath the coastline, near 25 km depth. The rupture propagated southward and involved the successive rupture of two discrete asperities, with a maximum slip ( 5 m) on the southern patch. The rupture area is consistent with the highly locked regions observed on interseismic coupling models, overlaps the 7.2 Mw rupture zone, and terminates near where the 1906 Mw 8.8 megathrust earthquake rupture zone is estimated to have ended. Two neighboring highly coupled patches remain locked: (A) south and updip of the coseismic rupture zone and (B) north and downdip. In this study, we are working on the earthquake locations of the first month of aftershocks and compare the seismicity distribution to the interseismic coupling, the rupture area and to early afterslip. We use continuous seismic traces recorded on the permanent network partly installed in the framework of the collaboration between l'Institut de Recherche pour le Développement (France) and the Instituto Geofísico, Escuela Politécnica Nacional (IGEPN), Quito, Ecuador. Detections are conducted using Seiscomp in play-back mode and arrival-times are manually picked. To improve earthquake locations, we use the MAXi technique and a heterogeneous a priori P-wave velocity model that approximates the large velocity variations of the Ecuadorian subduction system. Aftershocks align along 3 to 4 main clusters that strike perpendicularly to the trench, and mostly updip of the co-seismic rupture. Seismicity develops over portions of plate interface that are known to be strongly locked or almost uncoupled. The seismicity pattern is similar to the one observed during a decade of observation during the interseismic period with swarms such as the Galera alignment, Jama and Cabo Pasado, Manta to Puerto Lopez.

  10. Risk factors of pre-operational aortic rupture in acute and subacute Stanford type A aortic dissection patients.

    PubMed

    Li, Zhuo-Dong; Liu, Yang; Zhu, Jiang; Wang, Jun; Lu, Fang-Lin; Han, Lin; Xu, Zhi-Yun

    2017-12-01

    Aortic rupture is one of the main causes of early death in acute and subacute Stanford type A aortic dissection (ATAAD) patients. This study aimed to analyze potential risk factors for pre-operational aortic rupture in ATAAD patients. We retrospectively reviewed aortic dissection cases treated between May 2013 and May 2016 in Changhai Hospital, Shanghai. A total of 329 patients with ATAAD were included in the final analysis, and 31 patients died of aortic rupture before surgery. Clinical data on basic characteristics, clinical presentation, and biochemical measurements for all 329 patients were analyzed. The in-hospital aortic rupture rate was 9.4% (31/329), and the rupture accounted for 47% (31/66) of all in-hospital deaths of ATAAD patients. Patients who experienced rupture were significantly older (P<0.001), had lower systolic blood pressure (P=0.040), had more painful manifestation (P<0.001), had more systematic complications [shock (P=0.001), coma (P<0.001), hypoxemia (P=0.006), kidney and liver dysfunctions, and myocardial injury (higher troponin, P=0.009)], and had worse blood coagulability [lower platelet count (P=0.012), longer prothrombin time (P<0.001), and higher D-dimer (P=0.003)]. Multivariable analysis identified the following independent risk factors: shock [odds ratio (OR): 8.12; 95% confidence interval (CI), 1.10-59.85, P=0.040], pain requiring medication (OR: 12.67; 95% CI, 2.43-66.09; P=0.003), troponin level >0.7 ng/mL (OR: 9.28; 95% CI, 1.72-50.06; P=0.010), and D-dimer level ≥10 µg/mL (OR: 13.37; 95% CI, 2.18-81.97; P=0.005). Aortic rupture accounted for 47% of all in-hospital deaths among patient with ATAAD. Shock, pain requiring medication, a troponin level >0.7 ng/mL and a D-dimer level ≥10 µg/mL are independent risk factors for aortic rupture in these patients.

  11. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  12. Investigation of Stainless Steel Corrosion in Ultrahigh-Purity Water and Steam Systems by Surface Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Iacocca, Ronald G.; Bustard, Bethany L.; Kemp, Craig A. J.

    2010-02-01

    Stainless steel pipes with different degrees of rouging and a Teflon®-coated rupture disc with severe corrosion were thoroughly investigated by combining multiple surface analytical techniques. The surface roughness and iron oxide layer thickness increase with increasing rouge severity, and the chromium oxide layer coexists with the iron oxide layer in samples with various degrees of rouging. Unlike the rouging observed for stainless steel pipes, the fast degradation of the rupture disc was caused by a crevice corrosion environment created by perforations in the protective Teflon coating. This failure analysis clearly shows the highly corrosive nature of ultrapure water used in the manufacture of pharmaceutical products, and demonstrates some of the unexpected corrosion mechanisms that can be encountered in these environments.

  13. Accidental Overdose Intoxication: A Hazard of Drug Smuggling

    PubMed Central

    Arora, Sudhir; Tafreshi, Michael; Sobo, Steven; Krochmal, Paul; Alexander, Leslie L.

    1982-01-01

    Three patients involved in illicit drug smuggling via the swallowing of high dose, high purity drugs packed in multiple condoms are reported. Two of these patients experienced drug overdose symptoms due to leakage or rupture of the condoms in the GI tract. They were treated successfully. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:7120497

  14. Investigating Along-Strike Variations of Source Parameters for Relocated Thrust Earthquakes Along the Sumatra-Java Subduction Zone

    NASA Astrophysics Data System (ADS)

    El Hariri, M.; Bilek, S. L.; Deshon, H. R.; Engdahl, E. R.

    2009-12-01

    Some earthquakes generate anomalously large tsunami waves relative to their surface wave magnitudes (Ms). This class of events, known as tsunami earthquakes, is characterized by having a long rupture duration and low radiated energy at long periods. These earthquakes are relatively rare. There have been only 9 documented cases, including 2 in the Java subduction zone (1994 Mw=7.8 and the 2006 Mw=7.7). Several models have been proposed to explain the unexpectedly large tsunami, such as displacement along high-angle splay faults, landslide-induced tsunami due to coseismic shaking, or large seismic slip within low rigidity sediments or weaker material along the shallowest part of the subduction zone. Slow slip has also been suggested along portions of the 2004 Mw=9.2 Sumatra-Andaman earthquake zone. In this study we compute the source parameters of 90 relocated shallow thrust events (Mw 5.1-7.8) along the Sumatra-Java subduction zone including the two Java tsunami earthquakes. Events are relocated using a modification to the Engdahl, van der Hilst and Buland (EHB) earthquake relocation method that incorporates an automated frequency-dependent phase detector. This allows for the use of increased numbers of phase arrival times, especially depth phases, and improves hypocentral locations. Source time functions, rupture duration and depth estimates are determined using multi-station deconvolution of broadband teleseismic P and SH waves. We seek to correlate any along-strike variation in rupture characteristics with tectonic features and rupture characteristics of the previous slow earthquakes along this margin to gain a better understanding of the conditions resulting in slow ruptures. Preliminary results from the analysis of these events show that in addition to depth-dependent variations there are also along-strike variations in rupture duration. We find that along the Java segment, the longer duration event locates in a highly coupled region corresponding to the location of a proposed subducting seamount. This correlation is less clear along the southern Sumatran segment. One longer duration event is located within the high slip area of the Mw=8.4 2007 rupture, while another is located in the weakly coupled region of the 1935 Mw=7.7 rupture area.

  15. Solving the dynamic rupture problem with different numerical approaches and constitutive laws

    USGS Publications Warehouse

    Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo

    2001-01-01

    We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time necessary for the crack to reach the half-length Ic. We compare the Tn values resulting from distinct simulations calculated using different constitutive laws and different sets of constitutive parameters. Our results confirm that the DR law provides a different description of the nucleation process than the SW law adopted in this study. We emphasize that the DR law yields a complete description of the rupture process, which includes the most prominent features of SW.

  16. The SCEC/USGS dynamic earthquake rupture code verification exercise

    USGS Publications Warehouse

    Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.

    2009-01-01

    Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous rupture (hereafter called “spontaneous rupture”) solutions. For these types of numerical simulations, rather than prescribing the slip function at each location on the fault(s), just the friction constitutive properties and initial stress conditions are prescribed. The subsequent stresses and fault slip spontaneously evolve over time as part of the elasto-dynamic solution. Therefore, spontaneous rupture computer simulations of earthquakes allow us to include everything that we know, or think that we know, about earthquake dynamics and to test these ideas against earthquake observations.

  17. A Search for Characteristic Seismic Energy Radiation Patterns to Identify Possible Fast-Rupturing Activity Associated with Tsunamigenic and Other Earthquakes Around the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Barama, L.; Newman, A. V.; Convers, J.

    2016-12-01

    The Solomon Islands are heavily affected by frequent and destructive tsunamigenic earthquakes. Many of these earthquakes have rupture very near the trench, a feature normally associated with slow-source "tsunami earthquakes" as defined by Kanamori [Kanamori, PEPI 1972]. However, prior evaluation of energetic behavior of some recent larger tsunamigenic earthquakes have revealed little evidence for such a slow nature [Convers and Newman, JGR 2011; Newman et al., GJI 2011]. In this study, we evaluate all regional earthquakes surrounding the Solomon Islands with moment magnitude greater than 5.5 since 1976. We will use a newly developed methodology for more robustly characterizing the rupture duration along with seismic energy radiation from teleseismically located broad-band seismic stations, called the Time-Averaged Cumulative Energy Rate (TACER) [Convers and Newman, GRL 2013], for evaluating the slow-source nature. This methodology uniquely identifies the slow-rupture often associated with tsunami earthquakes due to the contrasting nature of the up-to order-of-magnitude negative deviation in energy and up-to three-fold excess in rupture duration in such events for a particular seismic moment [Newman et al., GRL 2011]. A ubiquitous slow-nature in this region would be surprising due to the spatial variance of the subducting features, and lack of any known slow-source tsunami earthquakes in the past century. It is more likely this region is not solely characterized by such slow-nature events, but instead have rupture energies comparable to what we see for events elsewhere and occuring in deeper segments of the megathrust interface. The most recent tsunamigenic earthquakes in the Solomon islands include the 2007 April 1, MW 8.1, 2010 January 3, MW 7.1 and 2013 February 6, MW 7.9 events, that display higher radiated seismic energies and shorter rupture durations than expected in recognized tsunami earthquakes that are observed at higher magnitudes (MW >7.5) elsewhere [Convers and Newman, 2011]. It is possible that characteristics of the Solomon Islands subduction zone produce near-trench earthquakes that are energetic, with shorter rupture duration times, like observed elsewhere but deeper, however are highly tsunamigenic because of large slip and deep-water excitation that occurs near the trench.

  18. Ground Motion Synthetics For Spontaneous Versus Prescribed Rupture On A 45(o) Thrust Fault

    NASA Astrophysics Data System (ADS)

    Gottschämmer, E.; Olsen, K. B.

    We have compared prescribed (kinematic) and spontaneous dynamic rupture propaga- tion on a 45(o) dipping thrust fault buried up to 5 km in a half-space model, as well as ground motions on the free surface for frequencies less than 1 Hz. The computa- tions are carried out using a 3D finite-difference method with rate-and-state friction on a planar, 20 km by 20 km fault. We use a slip-weakening distance of 15 cm and a slip- velocity weakening distance of 9.2 cm/s, similar to those for the dynamic study for the 1994 M6.7 Northridge earthquake by Nielsen and Olsen (2000) which generated satis- factory fits to selected strong motion data in the San Fernando Valley. The prescribed rupture propagation was designed to mimic that of the dynamic simulation at depth in order to isolate the dynamic free-surface effects. In this way, the results reflect the dy- namic (normal-stress) interaction with the free surface for various depths of burial of the fault. We find that the moment, peak slip and peak sliprate for the rupture breaking the surface are increased by up to 60%, 80%, and 10%, respectively, compared to the values for the scenario buried 5 km. The inclusion of these effects increases the peak displacements and velocities above the fault by factors up 3.4 and 2.9 including the increase in moment due to normal-stress effects at the free surface, and up to 2.1 and 2.0 when scaled to a Northridge-size event with surface rupture. Similar differences were found by Aagaard et al. (2001). Significant dynamic effects on the ground mo- tions include earlier arrival times caused by super-shear rupture velocities (break-out phases), in agreement with the dynamic finite-element simulations by Oglesby et al. (1998, 2000). The presence of shallow low-velocity layers tend to increase the rup- ture time and the sliprate. In particular, they promote earlier transitions to super-shear velocities and decrease the rupture velocity within the layers. Our results suggest that dynamic interaction with the free surface can significantly affect the ground motion for faults buried less than 1-3 km. We therefore recommend that strong ground motion for these scenarios be computed including such dynamic rupture effects.

  19. Delayed Development of Multiple Pancreaticoduodenal Arcade Pseudoaneurysms after Abdominal Trauma.

    PubMed

    Prosper, Ashley; Saremi, Farhood

    2016-10-01

    This case report demonstrates development and progressive enlargement of multiple pancreaticoduodenal arcade pseudoaneurysms using computed tomography angiographies over a period of 5 weeks after abdominal trauma. The mechanism of pseudoaneurysm formation, as shown by serial imaging, attributed to preexisting celiac axis stenosis by the median arcuate ligament, posttraumatic celiac artery dissection, and secondary occlusion of proper hepatic artery resulting in elevation of pressure and flow in the pancreaticoduodenal arcade and rupture of small arterial branches. Successful pseudoaneurysm occlusion was achieved through arterial embolization. Published by Elsevier Inc.

  20. [PART-KESSLER TECHNIQUE WITH SUTURE ANCHOR IN REPAIR OF SPONTANEOUS Achilles TENDON RUPTURE].

    PubMed

    Qi, Jie; Duan, Liang; Li, Weiwei; Wei, Wenbo

    2016-02-01

    To summarize the application and experience of repairing spontaneous Achilles tendon rupture by part-Kessler technique with suture anchor. Between January 2011 and December 2013, 31 patients with spontaneous Achilles tendon rupture were treated by part-Kessler technique with suture anchor. Of 31 cases, 23 were male and 8 were female, aged 16-53 years (mean, 38 years). The left side was involved in 15 cases and the right side in 16 cases. The causes of injury included sudden heel pain and walking weakness during sports in 22 cases; no surefooted down-stairs, slip, and carrying heavy loads in 9 cases. The distance from broken site to the calcaneus adhension of Achilles tendon was 3-6 cm (mean, 4.2 cm). The time from injury to operation was 7 hours to 4 days (mean, 36.8 hours). All incisions healed by first intention without nerve injury or adhering with skin. The patients were followed up 6-24 months (mean, 15 months). All patients could complete 25 times heel raising without difficulty at 6 months after operation. No Achilles tendon rupture occurred again during follow-up. At 6 months after operation, the range of motion of the ankle joint in dorsiflexion and plantar flexion showed no significant difference between normal and affected sides (t=0.648, P=0.525; t=0.524, P=0.605). The circumference of the affected leg was significantly smaller than that of normal leg at 6 months after operation (t=2.074, P=0.041), but no significant difference was found between affected and normal sides at 12 months after operation (t=0.905, P=0.426). The American Orthopedic Foot and Ankle Society (AOFAS) scores at 6, 12, 18, and 24 months after operation were significantly higher than preoperative score (P<0.05); the score at 6 months after operation was significantly lower than that at other time points (P<0.05), but no significant difference was shown between the other time points (P>0.05). Repairing spontaneous Achilles tendon rupture by part-Kessler technique with suture anchor can supply strong strain and decrease the shear forces of suture. So part-Kessler technique with suture anchor is successful in repairing spontaneous Achilles tendon rupture.

  1. Slip complexity and frictional heterogeneities in dynamic fault models

    NASA Astrophysics Data System (ADS)

    Bizzarri, A.

    2005-12-01

    The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.

  2. The predictive role of health-promoting behaviours and perceived stress in aneurysmal rupture.

    PubMed

    Lee, Mi-Sun; Park, Chang G; Hughes, Tonda L; Jun, Sang-Eun; Whang, Kum; Kim, Nahyun

    2018-03-01

    To examine the roles of two modifiable factors-health-promoting behaviours and perceived stress-in predicting aneurysmal rupture. Unruptured intracranial aneurysm detection produces significant stress and anxiety in patients because of the risk of rupture. Compared to nonmodifiable risk factors for rupture such as age, gender and aneurysm size/location, less attention has been given to modifiable risk factors. Two modifiable factors, health-promoting behaviours and perceived stress, have hardly been examined as potential predictors of rupture. This study used a cross-sectional design. We assessed 155 patients with intracranial aneurysms-that is, subarachnoid haemorrhage (n = 77) or unruptured intracranial aneurysm (n = 78)-to examine (i) baseline characteristics (patient and aneurysmal factors), (ii) health-related factors (lifestyle habits and health-promoting behaviour) and (iii) perceived stress levels (psychological stress and physical stress). Patient records provided medical histories and aneurysmal factors; other data were collected using a structured questionnaire addressing lifestyle habits, the Health-Promoting Lifestyle Profile-II to measure health-promoting behaviour and the Perceived Stress Questionnaire to measure perceived-psychological stress and perceived-physical stress levels. Bivariate analysis indicated that aneurysm rupture risk was associated with female gender, aneurysm size/location, defecation frequency, hyperlipidaemia, sedentary time, low Health-Promoting Lifestyle Profile-II mean scores and high perceived-psychological stress scores. After adjusting for known risk factors, the mean Health-Promoting Lifestyle Profile-II and perceived-psychological stress scores remained robust predictors of rupture. Furthermore, known risk factors combined with these scores had greater predictive power than known risk factors alone. Health-promoting behaviour and psychological stress are promising modifiable factors for reducing risk of aneurysmal rupture. Our findings may stimulate greater understanding of mechanisms underlying aneurysmal rupture and suggest practical strategies for nurses to employ in optimising conservative management of rupture risk by teaching patients how to modify their risk. Both health-promoting behaviour and perceived stress should be addressed when designing preventive nursing interventions for patients with unruptured intracranial aneurysm. © 2017 John Wiley & Sons Ltd.

  3. Ruptured cervical arteriovenous fistulas presenting with subarachnoid hemorrhage and quadriplegia: an uncommon case.

    PubMed

    Liu, Chien-Liang; Su, Yung-Cheng; Chen, Chien-Chih; Chong, Chee-Fah; Wang, Tzong-Luen

    2008-02-01

    Nontraumatic subarachnoid hemorrhage is a neurologic emergency, and prompt treatment is necessary to avoid catastrophic result. We present a patient with subarachnoid hemorrhage caused by ruptured cervical intradural extramedullary arteriovenous fistulas, which rapidly progressed to quadriplegia. Because of the timely management, the patient had a good recovery. This is a rare but important case that emergency physicians should be aware of.

  4. Implications of the 26 December 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction-zone earthquakes

    USGS Publications Warehouse

    Geist, Eric L.; Titov, Vasily V.; Arcas, Diego; Pollitz, Fred F.; Bilek, Susan L.

    2007-01-01

    Results from different tsunami forecasting and hazard assessment models are compared with observed tsunami wave heights from the 26 December 2004 Indian Ocean tsunami. Forecast models are based on initial earthquake information and are used to estimate tsunami wave heights during propagation. An empirical forecast relationship based only on seismic moment provides a close estimate to the observed mean regional and maximum local tsunami runup heights for the 2004 Indian Ocean tsunami but underestimates mean regional tsunami heights at azimuths in line with the tsunami beaming pattern (e.g., Sri Lanka, Thailand). Standard forecast models developed from subfault discretization of earthquake rupture, in which deep- ocean sea level observations are used to constrain slip, are also tested. Forecast models of this type use tsunami time-series measurements at points in the deep ocean. As a proxy for the 2004 Indian Ocean tsunami, a transect of deep-ocean tsunami amplitudes recorded by satellite altimetry is used to constrain slip along four subfaults of the M >9 Sumatra–Andaman earthquake. This proxy model performs well in comparison to observed tsunami wave heights, travel times, and inundation patterns at Banda Aceh. Hypothetical tsunami hazard assessments models based on end- member estimates for average slip and rupture length (Mw 9.0–9.3) are compared with tsunami observations. Using average slip (low end member) and rupture length (high end member) (Mw 9.14) consistent with many seismic, geodetic, and tsunami inversions adequately estimates tsunami runup in most regions, except the extreme runup in the western Aceh province. The high slip that occurred in the southern part of the rupture zone linked to runup in this location is a larger fluctuation than expected from standard stochastic slip models. In addition, excess moment release (∼9%) deduced from geodetic studies in comparison to seismic moment estimates may generate additional tsunami energy, if the exponential time constant of slip is less than approximately 1 hr. Overall, there is significant variation in assessed runup heights caused by quantifiable uncertainty in both first-order source parameters (e.g., rupture length, slip-length scaling) and spatiotemporal complexity of earthquake rupture.

  5. A Numerical Solution Routine for Investigating Oxidation-Induced Strength Degradation Mechanisms in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2015-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide (SiCSiC) composites with a boron nitride (BN) fiber coating decreases with time within the intermediate temperature range of 700-950 C. Various theories have been proposed to explain the cause of the time dependent stress rupture strength. Some previous authors have suggested that the observed composite strength behavior is due to the inherent time dependent strength of the fibers, which is caused by the slow growth of flaws within the fibers. Flaw growth is supposedly enabled by oxidation of free carbon at the grain boundaries. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of SiCSiC composites. This is achieved through the development of a numerically-based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time dependent behavior.

  6. Robust real-time fault tracking for the 2011 Mw 9.0 Tohoku earthquake based on the phased-array-interference principle

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Parolai, Stefano; Zschau, Jochen

    2013-04-01

    Based on the principle of the phased array interference, we have developed an Iterative Deconvolution Stacking (IDS) method for real-time kinematic source inversion using near-field strong-motion and GPS networks. In this method, the seismic and GPS stations work like an array radar. The whole potential fault area is scanned patch by patch by stacking the apparent source time functions, which are obtained through deconvolution between the recorded seismograms and synthetic Green's functions. Once some significant source signals are detected any when and where, their signatures are removed from the observed seismograms. The procedure is repeated until the accumulative seismic moment being found converges and the residual seismograms are reduced below the noise level. The new approach does not need any artificial constraint used in the source parameterization such as, for example, fixing the hypocentre, restricting the rupture velocity and rise time, etc. Thus, it can be used for automatic real-time source inversion. In the application to the 2011 Tohoku earthquake, the IDS method is proved to be robust and reliable on the fast estimation of moment magnitude, fault area, rupture direction, and maximum slip, etc. About at 100 s after the rupture initiation, we can get the information that the rupture mainly propagates along the up-dip direction and causes a maximum slip of 17 m, which is enough to release a tsunami early warning. About two minutes after the earthquake occurrence, the maximum slip is found to be 31 m, and the moment magnitude reaches Mw8.9 which is very close to the final moment magnitude (Mw9.0) of this earthquake.

  7. Poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event

    NASA Astrophysics Data System (ADS)

    McCormack, K. A.; Hesse, M. A.

    2017-12-01

    Following an earthquake, surface deformation is influenced by a myriad of post-seismic processes including after-slip, poroelastic and viscoelastic relaxation. Geodetic measurements record the combined result of all these processes, which makes studying the effects of any single process difficult. To constrain the poroelastic component of post-seismic deformation, we model the subsurface hydrologic response to the Mw 7.6 subduction zone earthquake beneath the Nicoya peninsula on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. Following the earthquake, continuous surface deformation was observed with high-rate GPS monitoring directly above the rupture zone. By modeling the time-dependent deformation associated with poroelastic relaxation, we can begin to remove the contribution of groundwater flow from the observed geodetic signal. For this study we used both 2D and 3D numerical models. In 2D we investigate more general trends in the poroelastic response of a subduction zone earthquake. In 3D we model the poroelastic response to the 2012 Nicoya event using a fixed set of best fit parameters and the real earthquake slip data. The slip distribution of 2012 event is obtained by inverting the co-seismic surface GPS displacements for fault slip. The 2D model shows that thrust earthquakes with a rupture width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. In the 3D model, the small width to depth ratio of the Nicoya rupture leads to a multi-lobed initial pore pressure distribution. This creates complex groundwater flow patterns, non-monotonic variations in well head and surface deformation, and poroelastic relaxation over multiple, distinct time scales. Different timescales arise because the earthquake causes pressure perturbations with different wavelengths. In the shallow, permeable region of the upper crust, two relaxation timescales of approximately 21 days and 18 months arise for the 2012 event. In the 18 months following the earthquake, the magnitude of the poroelastic surface deformation can be up to 3 cm for the vertical component and 2 cm for the trench-perpendicular component.

  8. Stress Drop and Directivity Patterns Observed in Small-Magnitude (

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Hatch, R. L.; Abercrombie, R. E.; Smith, K.

    2017-12-01

    Recent improvements in seismic instrumentation and network coverage in the Reno, NV area have provided high-quality records of abundant microseismicity, including several swarms and clusters. Here, we discuss stress drop and directivity patterns of small-magnitude seismicity in the 2008 Mw4.9 Mogul earthquake swarm in Reno, NV and in the nearby region of an ML3.2 sequence near Virginia City, NV. In both sequences, double-difference relocated earthquakes cluster on multiple distinct structures consistent with focal mechanism and moment tensor fault plane solutions. Both sequences also show migration potentially related to fluid flow. We estimate corner frequency and stress drop using EGF-derived spectral ratios, convolving earthquake pairs (target*EGF) such that we preserve phase and recover source-time functions (STF) on a station-by-station basis. We then stack individual STFs per station for all EGF-target pairs per target earthquake, increasing the signal-to-noise of our results. By applying an azimuthal- and incidence-angle-dependent stretching factor to STFs in the time domain, we are able to invert for rupture directivity and velocity assuming both unilateral and bilateral rupture. Earthquakes in both sequences, some as low as ML2.1, show strong unilateral directivity consistent with independent fault plane solutions. We investigate and compare the relationship between rupture and migration directions on subfaults within each sequence. Average stress drops for both sequences are 4 MPa, but there is large variation in individual estimates for both sequences. Although this variation is not explained simply by any one parameter (e.g., depth), spatiotemporal variation in the Mogul swarm is distinct: coherent clusters of high and low stress drop earthquakes along the mainshock fault plane are seen, and high-stress-drop foreshocks correlate with an area of reduced aftershock productivity. These observations are best explained by a difference in rheology along the fault plane. The unprecedented detail achieved for these small magnitude earthquakes confirms that stress drop, when measured precisely, is a valuable observation of physically-meaningful fault zone properties and earthquake behavior.

  9. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng

    2013-03-01

    We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.

  10. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  11. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  12. Randomized clinical trial of remote ischaemic preconditioning versus no preconditioning in the prevention of perioperative myocardial infarction during open surgery for ruptured abdominal aortic aneurysm.

    PubMed

    Pedersen, T F; Budtz-Lilly, J; Petersen, C N; Hyldgaard, J; Schmidt, J-O; Kroijer, R; Grønholdt, M-L; Eldrup, N

    2018-06-01

    Remote ischaemic preconditioning (RIPC) has been suggested as a means of protecting vital organs from reperfusion injury during major vascular surgery. This study was designed to determine whether RIPC could reduce the incidence of perioperative myocardial infarction (MI) during open surgery for ruptured abdominal aortic aneurysm (AAA). Secondary aims were to see if RIPC could reduce 30-day mortality, multiple organ failure, acute intestinal ischaemia, acute kidney injury and ischaemic stroke. This randomized, non-blinded clinical trial was undertaken at three vascular surgery centres in Denmark. Patients who had open surgery for ruptured AAA were randomized to intervention with RIPC or control in a 1 : 1 ratio. Postoperative complications and deaths were registered, and ECG and blood samples were obtained daily during the hospital stay. Of 200 patients randomized, 142 (72 RIPC, 70 controls) were included. There was no difference in rates of perioperative MI between the RIPC and control groups (36 versus 43 per cent respectively), or in rates of organ failure. However, in the per-protocol analysis 30-day mortality was significantly reduced in the RIPC group (odds ratio 0·46, 95 per cent c.i. 0·22 to 0·99; P = 0·048). RIPC did not reduce the incidence of perioperative MI in patients undergoing open surgery for ruptured AAA. Registration number: NCT00883363 ( http://www.clinicaltrials.gov).

  13. Studying the Effects of Transparent vs. Opaque Shallow Thrust Faults Using Synthetic P and SH Seismograms

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Aagaard, B. T.; Heaton, T. H.

    2001-12-01

    It has been hypothesized (Brune, 1996) that teleseismic inversions may underestimate the moment of shallow thrust fault earthquakes if energy becomes trapped in the hanging wall of the fault, i.e. if the fault boundary becomes opaque. We address this by creating and analyzing synthetic P and SH seismograms for a variety of friction models. There are a total of five models: (1) crack model (slip weakening) with instantaneous healing (2) crack model without healing (3) crack model with zero sliding friction (4) pulse model (slip and rate weakening) (5) prescribed model (Haskell-like rupture with the same final slip and peak slip-rate as model 4). Models 1-4 are all dynamic models where fault friction laws determine the rupture history. This allows feedback between the ongoing rupture and waves from the beginning of the rupture that hit the surface and reflect downwards. Hence, models 1-4 can exhibit opaque fault characteristics. Model 5, a prescribed rupture, allows for no interaction between the rupture and reflected waves, therefore, it is a transparent fault. We first produce source time functions for the different friction models by rupturing shallow thrust faults in 3-D dynamic finite-element simulations. The source time functions are used as point dislocations in a teleseismic body-wave code. We examine the P and SH waves for different azimuths and epicentral distances. The peak P and S first arrival displacement amplitudes for the crack, crack with healing and pulse models are all very similar. These dynamic models with opaque faults produce smaller peak P and S first arrivals than the prescribed, transparent fault. For example, a fault with strike = 90 degrees, azimuth = 45 degrees has P arrivals smaller by about 30% and S arrivals smaller by about 15%. The only dynamic model that doesn't fit this pattern is the crack model with zero sliding friction. It oscillates around its equilibrium position; therefore, it overshoots and yields an excessively large peak first arrival. In general, it appears that the dynamic, opaque faults have smaller peak teleseismic displacements that would lead to lower moment estimates by a modest amount.

  14. The natural history of splanchnic artery aneurysms and outcomes after operative intervention.

    PubMed

    Corey, Michael R; Ergul, Emel A; Cambria, Richard P; English, Sean J; Patel, Virendra I; Lancaster, R Todd; Kwolek, Christopher J; Conrad, Mark F

    2016-04-01

    Splanchnic artery aneurysms (SAAs) are uncommon, and standards for surveillance and intervention are lacking. The goal of this study was to review our 20-year experience with managing SAAs. The Research Patient Data Registry at the Massachusetts General Hospital was queried, and all patients with SAAs identified by axial imaging from 1994 to 2014 were included. Aneurysms were stratified into two cohorts: those that underwent early intervention (<6 months after lesion discovery) and those that received surveillance. Primary study end points included aneurysm growth or rupture during surveillance and patient 30-day morbidity or mortality after aneurysm repair. There were 264 SAAs identified in 250 patients. In 166 patients, 176 SAAs (66.6%) were placed into the surveillance cohort; 38 SAAs (21.6%) did not have subsequent axial imaging and were considered lost to follow-up. Mean aneurysm size in the surveillance cohort at first imaging study was 16.28 mm (8-41 mm), and mean surveillance time was 36.1 months (2-155 months); 126 SAAs (91.3%) remained stable in size over time, and 8 SAAs (5.8%) required intervention for aneurysm growth after a mean of 24 months. There were no ruptures in the surveillance cohort. There were 88 SAAs (33.3%) repaired early. Mean size of SAAs that were repaired early was 31.1 mm (10-140 mm). For intact SAAs, 30-day morbidity and mortality rates after repair were 13% and 3%, respectively. In the early repair cohort, 13 SAAs (14.7%) were ruptured at presentation. The 30-day morbidity and mortality rates after rupture were 54% and 8%, respectively. Five ruptured SAAs (38%) were anatomically located in the pancreaticoduodenal arcade. On univariate analysis, pancreaticoduodenal aneurysms were strongly associated with rupture (P = .0002). Small SAAs (≤25 mm) are not prone to significant expansion and do not require frequent surveillance imaging. Imaging every 3 years for small SAAs is adequate. Aneurysms of the pancreaticoduodenal arcade and gastroduodenal aneurysms are more likely to rupture and therefore warrant a more aggressive interventional approach. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. Source and Aftershock Analysis of a Large Deep Earthquake in the Tonga Flat Slab

    NASA Astrophysics Data System (ADS)

    Cai, C.; Wiens, D. A.; Warren, L. M.

    2013-12-01

    The 9 November 2009 (Mw 7.3) deep focus earthquake (depth = 591 km) occurred in the Tonga flat slab region, which is characterized by limited seismicity but has been imaged as a flat slab in tomographic imaging studies. In addition, this earthquake occurred immediately beneath the largest of the Fiji Islands and was well recorded by a temporary array of 16 broadband seismographs installed in Fiji and Tonga, providing an excellent opportunity to study the source mechanism of a deep earthquake in a partially aseismic flat slab region. We determine the positions of main shock hypocenter, its aftershocks and moment release subevents relative to the background seismicity using a hypocentroidal decomposition relative relocation method. We also investigate the rupture directivity by measuring the variation of rupture durations at different azimuth [e.g., Warren and Silver, 2006]. Arrival times picked from the local seismic stations together with teleseismic arrival times from the International Seismological Centre (ISC) are used for the relocation. Teleseismic waveforms are used for directivity study. Preliminary results show this entire region is relatively aseismic, with diffuse background seismicity distributed between 550-670 km. The main shock happened in a previously aseismic region, with only 1 small earthquake within 50 km during 1980-2012. 11 aftershocks large enough for good locations all occurred within the first 24 hours following the earthquake. The aftershock zone extends about 80 km from NW to SE, covering a much larger area than the mainshock rupture. The aftershock distribution does not correspond to the main shock fault plane, unlike the 1994 March 9 (Mw 7.6) Fiji-Tonga earthquake in the steeply dipping, highly seismic part of the Tonga slab. Mainshock subevent locations suggest a sub-horizontal SE-NW rupture direction. However, the directivity study shows a complicated rupture process which could not be solved with simple rupture assumption. We will present the result of this example earthquake and some other deep earthquakes at the fall meeting. Warren, L. M., and P. G. Silver (2006), Measurement of differential rupture durations as constraints on the source finiteness of deep earthquakes, J. Geophys. Res., 111, B06304, doi:10.1029/2005JB004001.

  16. Some characteristics of the complex El Mayor-Cucapah, MW7.2, April 4, 2010, Baja California, Mexico, earthquake, from well-located aftershock data from local and regional networks.

    NASA Astrophysics Data System (ADS)

    Frez, J.; Nava Pichardo, F. A.; Acosta, J.; Munguia, L.; Carlos, J.; García, R.

    2015-12-01

    Aftershocks from the El Mayor-Cucapah (EMC), MW7.2, April 4, 2010, Baja California, Mexico, earthquake, were recorded over two months by a 31 station local array (Reftek RT130 seismographs loaned from IRIS-PASSCAL), complemented by regional data from SCSN, and CICESE. The resulting data base includes 518 aftershocks with ML ≥ 3.0, plus 181 smaller events. Reliable hypocenters were determined using HYPODD and a velocity structure determined from refraction data for a mesa located to the west of the Mexicali-Imperial Valley. Aftershock hypocenters show that the El Mayor-Cucapah earthquake was a multiple event comprising two or three different ruptures of which the last one constituted the main event. The main event rupture, which extends in a roughly N45°W direction, is complex with well-defined segments having different characteristics. The main event central segment, located close to the first event epicenter is roughly vertical, the northwest segment dips ~68°NE, while the two southeast segments dip ~60°SW and ~52°SW, respectively, which agrees with results of previous studies based on teleseismic long periods and on GPS-INSAR. All main rupture aftershock hypocenters have depths above 10-11km and, except for the central segment, they delineate the edges of zones with largest coseismic displacement. The two southern segments show seismicity concentrated below 5km and 3.5km, respectively; the paucity of shallow seismicity may be caused by the thick layer of non-consolidated sediments in this region. The ruptures delineated by aftershocks in the southern regions correspond to the Indiviso fault, unidentified until the occurrence of the EMC earthquake. The first event was relocated together with the aftershocks; the epicenter lies slightly westwards of published locations, but it definitely does not lie on, or close to, the main rupture. The focal mechanism of the first event, based on first arrival polarities, is predominantly strike-slip; the focal plane coinciding with neighboring aftershocks has N13°E and left-lateral slip. From the above, we conclude that the EMC earthquake consisted of a first event that triggered the main right-lateral strike-slip rupture and probably another rupture indicated by a NS trending aftershock alignment.

  17. High-resolution stratigraphy and multiple luminescence dating techniques to reveal the paleoseismic history of the central Dead Sea fault (Yammouneh fault, Lebanon)

    NASA Astrophysics Data System (ADS)

    Le Béon, Maryline; Tseng, Ya-Chu; Klinger, Yann; Elias, Ata; Kunz, Alexander; Sursock, Alexandre; Daëron, Mathieu; Tapponnier, Paul; Jomaa, Rachid

    2018-07-01

    Continuous sedimentation and detailed stratigraphy are key parameters for a complete paleo-earthquake record. Here, we present a new paleoseismological study across the main strike-slip fault branch of the Dead Sea fault in Lebanon. We aim to expand the current knowledge on local paleoseismicity and seismic behavior of strike-slip plate boundary faults and to explore the limitations of paleoseismology and dating methods. The trench, dug in the Jbab el-Homr basin, reveals a succession of remarkable, very thin (0.1 to 5 cm) palustrine and lacustrine layers, ruptured by at least 17 earthquakes. Absolute ages of 4 samples are obtained from three luminescence-dating techniques targeting fine-grain minerals. Blue-green stimulated luminescence (BGSL) on quartz and post-infrared infrared-stimulated luminescence at 225 °C on polymineral aliquots led to consistent ages, while ages from infrared-stimulated luminescence at 50 °C on polymineral aliquots appeared underestimated. The quartz BGSL ages are 26.9 ± 2.3 ka at 0.50 m depth and 30.8 ± 2.9 ka at 3.65 m depth. During this time period of 3.9 ka ([0; 9.1 ka]), 14 surface-rupturing events occurred with a mean return time of 280 years ([0; 650 years]) and probable clustering. This return time is much shorter than the 1127 ± 135 years return time previously determined at the Yammouneh site, located 30 km south. Although fault segmentation and temporal variations in the earthquake cycle remain possible causes for such different records, we argue that the high-resolution stratigraphy in Jbab is the main factor, enabling us to record small deformations related to smaller-magnitude events that may have been missed in the rougher strata of Yammouneh. Indeed, focusing only on larger events of Jbab, we obtain a mean return time of 720 years ([0; 1670 years]) that is compatible with the Yammouneh record.

  18. Irregular earthquake recurrence patterns and slip variability on a plate-boundary Fault

    NASA Astrophysics Data System (ADS)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.

    2015-12-01

    The Dead Sea fault in the Levant represents a simple, segmented plate boundary from the Gulf of Aqaba northward to the Sea of Galilee, where it changes its character into a complex plate boundary with multiple sub-parallel faults in northern Israel, Lebanon and Syria. The studied Jordan Gorge (JG) segment is the northernmost part of the simple section, before the fault becomes more complex. Seven fault-crossing buried paleo-channels, offset by the Dead Sea fault, were investigated using paleoseismic and geophysical methods. The mapped offsets capture the long-term rupture history and slip-rate behavior on the JG fault segment for the past 4000 years. The ~20 km long JG segment appears to be more active (in term of number of earthquakes) than its neighboring segments to the south and north. The rate of movement on this segment varies considerably over the studied period: the long-term slip-rate for the entire 4000 years is similar to previously observed rates (~4 mm/yr), yet over shorter time periods the rate varies from 3-8 mm/yr. Paleoseismic data on both timing and displacement indicate a high COV >1 (clustered) with displacement per event varying by nearly an order of magnitude. The rate of earthquake production does not produce a time predictable pattern over a period of 2 kyr. We postulate that the seismic behavior of the JG fault is influenced by stress interactions with its neighboring faults to the north and south. Coulomb stress modelling demonstrates that an earthquake on any neighboring fault will increase the Coulomb stress on the JG fault and thus promote rupture. We conclude that deriving on-fault slip-rates and earthquake recurrence patterns from a single site and/or over a short time period can produce misleading results. The definition of an adequately long time period to resolve slip-rate is a question that needs to be addressed and requires further work.

  19. Heterogeneity of direct aftershock productivity of the main shock rupture

    NASA Astrophysics Data System (ADS)

    Guo, Yicun; Zhuang, Jiancang; Hirata, Naoshi; Zhou, Shiyong

    2017-07-01

    The epidemic type aftershock sequence (ETAS) model is widely used to describe and analyze the clustering behavior of seismicity. Instead of regarding large earthquakes as point sources, the finite-source ETAS model treats them as ruptures that extend in space. Each earthquake rupture consists of many patches, and each patch triggers its own aftershocks isotropically. We design an iterative algorithm to invert the unobserved fault geometry based on the stochastic reconstruction method. This model is applied to analyze the Japan Meteorological Agency (JMA) catalog during 1964-2014. We take six great earthquakes with magnitudes >7.5 after 1980 as finite sources and reconstruct the aftershock productivity patterns on each rupture surface. Comparing results from the point-source ETAS model, we find the following: (1) the finite-source model improves the data fitting; (2) direct aftershock productivity is heterogeneous on the rupture plane; (3) the triggering abilities of M5.4+ events are enhanced; (4) the background rate is higher in the off-fault region and lower in the on-fault region for the Tohoku earthquake, while high probabilities of direct aftershocks distribute all over the source region in the modified model; (5) the triggering abilities of five main shocks become 2-6 times higher after taking the rupture geometries into consideration; and (6) the trends of the cumulative background rate are similar in both models, indicating the same levels of detection ability for seismicity anomalies. Moreover, correlations between aftershock productivity and slip distributions imply that aftershocks within rupture faults are adjustments to coseismic stress changes due to slip heterogeneity.

  20. Creep rupture of polymer-matrix composites

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Morris, D. H.; Griffith, W. I.

    1981-01-01

    The time-dependent creep-rupture process in graphite-epoxy laminates is examined as a function of temperature and stress level. Moisture effects are not considered. An accelerated characterization method of composite-laminate viscoelastic modulus and strength properties is reviewed. It is shown that lamina-modulus master curves can be obtained using a minimum of normally performed quality-control-type testing. Lamina-strength master curves, obtained by assuming a constant-strain-failure criterion, are presented along with experimental data, and reasonably good agreement is shown to exist between the two. Various phenomenological delayed failure models are reviewed and two (the modified rate equation and the Larson-Miller parameter method) are compared to creep-rupture data with poor results.

Top