Sample records for multiple semiconductor optical

  1. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  2. Semiconductor devices for optical communications in 1 micron band of wavelength. [gallium indium arsenide phosphide lasers and diodes

    NASA Technical Reports Server (NTRS)

    Suematsu, Y.; Iga, K.

    1980-01-01

    Crystal growth and the characteristics of semiconductor lasers and diodes for the long wavelength band used in optical communications are examined. It is concluded that to utilize the advantages of this band, it is necessary to have a large scale multiple wavelength communication, along with optical cumulative circuits and optical exchangers.

  3. Optical temperature indicator using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1995-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  4. Optical temperature indicator using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  5. Photonic Switching Devices Using Light Bullets

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    1999-01-01

    A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.

  6. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  7. Designing new classes of high-power, high-brightness VECSELs

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Zakharian, A. R.; Hader, J.; Koch, Stephan W.

    2005-10-01

    Optically-pumped vertical external cavity semiconductor lasers offer the exciting possibility of designing kW-class solid state lasers that provide significant advantages over their doped YAG, thin-disk YAG and fiber counterparts. The basic VECSEL/OPSL (optically-pumped semiconductor laser) structure consists of a very thin (approximately 6 micron thick) active mirror consisting of a DBR high-reflectivity stack followed by a multiple quantum well resonant periodic (RPG) structure. An external mirror (reflectivity typically between 94%-98%) provides conventional optical feedback to the active semiconductor mirror chip. The "cold" cavity needs to be designed to take into account the semiconductor sub-cavity resonance shift with temperature and, importantly, the more rapid shift of the semiconductor material gain peak with temperature. Thermal management proves critical in optimizing the device for serious power scaling. We will describe a closed-loop procedure that begins with a design of the semiconductor active epi structure. This feeds into the sub-cavity optimization, optical and thermal transport within the active structure and thermal transport though the various heat sinking elements. Novel schemes for power scaling beyond current record performances will be discussed.

  8. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  9. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  10. High-power microwave generation using optically activated semiconductor switches

    NASA Astrophysics Data System (ADS)

    Nunnally, William C.

    1990-12-01

    The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.

  11. Polymer waveguide grating sensor integrated with a thin-film photodetector

    PubMed Central

    Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo

    2014-01-01

    This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407

  12. Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1 - xAs multiple-quantum-well semiconductor

    NASA Astrophysics Data System (ADS)

    Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei

    2017-11-01

    We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.

  13. Wavelength-resonant surface-emitting semiconductor laser

    DOEpatents

    Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  14. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  15. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  16. Temperature dependence of the fundamental optical absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-04-01

    We present a first principles theory of the temperature dependence of the Urbach optical absorption edge in crystals and disordered semiconductors which incorporates the effects of short range correlated static disorder and the non-adiabatic quantum dynamics of the coupled electron-phonon system. At finite temperatures the dominant features of the Urbach tail are accounted for by multiple phonon absorption and emission side bands which accompany the optically induced electronic transition and which provide a dynamic polaronic potential well that localizes the electron. Excellent agreement is found with experimental data on both crystalline and amorphous silicon.

  17. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots.

    PubMed

    Zhou, Ming; Chang, Shoude; Grover, Chander

    2004-06-28

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  18. Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters.

    PubMed

    Yang, Jiwoong; Fainblat, Rachel; Kwon, Soon Gu; Muckel, Franziska; Yu, Jung Ho; Terlinden, Hendrik; Kim, Byung Hyo; Iavarone, Dino; Choi, Moon Kee; Kim, In Young; Park, Inchul; Hong, Hyo-Ki; Lee, Jihwa; Son, Jae Sung; Lee, Zonghoon; Kang, Kisuk; Hwang, Seong-Ju; Bacher, Gerd; Hyeon, Taeghwan

    2015-10-14

    Doping semiconductor nanocrystals with magnetic transition-metal ions has attracted fundamental interest to obtain a nanoscale dilute magnetic semiconductor, which has unique spin exchange interaction between magnetic spin and exciton. So far, the study on the doped semiconductor NCs has usually been conducted with NCs with larger than 2 nm because of synthetic challenges. Herein, we report the synthesis and characterization of Mn(2+)-doped (CdSe)13 clusters, the smallest doped semiconductors. In this study, single-sized doped clusters are produced in large scale. Despite their small size, these clusters have semiconductor band structure instead of that of molecules. Surprisingly, the clusters show multiple excitonic transitions with different magneto-optical activities, which can be attributed to the fine structure splitting. Magneto-optically active states exhibit giant Zeeman splittings up to elevated temperatures (128 K) with large g-factors of 81(±8) at 4 K. Our results present a new synthetic method for doped clusters and facilitate the understanding of doped semiconductor at the boundary of molecules and quantum nanostructure.

  19. Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianing; Pribil, Greg K.

    2017-11-01

    We investigated the optical behaviors of vanadium dioxide (VO2) films through the semiconductor-to-metal (STM) phase transition using spectroscopic ellipsometry. Correlations between film thickness and refractive index were observed resulting from the absorbing nature of these films. Simultaneously analyzing data at multiple temperatures using Kramers-Kronig consistent oscillator models help identify film thickness. Nontrivial variations in resulting optical constants were observed through STM transition. As temperature increases, a clear increase is observed in near infrared absorption due to Drude losses that accompany the transition from semiconducting to metallic phases. Thin films grown on silicon and sapphire substrate present different optical properties and thermal hysteresis due to lattice stress and compositional differences.

  20. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo

    2010-03-01

    In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.

  1. Multi-line triggering and interdigitated electrode structure for photoconductive semiconductor switches

    DOEpatents

    Mar, Alan [Albuquerque, NM; Zutavern, Fred J [Albuquerque, NM; Loubriel, Guillermo [Albuquerque, NM

    2007-02-06

    An improved photoconductive semiconductor switch comprises multiple-line optical triggering of multiple, high-current parallel filaments between the switch electrodes. The switch can also have a multi-gap, interdigitated electrode for the generation of additional parallel filaments. Multi-line triggering can increase the switch lifetime at high currents by increasing the number of current filaments and reducing the current density at the contact electrodes in a controlled manner. Furthermore, the improved switch can mitigate the degradation of switching conditions with increased number of firings of the switch.

  2. Optical orientation in ferromagnet/semiconductor hybrids

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  3. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  4. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  5. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  6. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, R.J.; Patterson, F.

    1996-05-07

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

  7. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, Robert J.; Patterson, Frank

    1996-01-01

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

  8. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng

    2013-10-07

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, themore » photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.« less

  9. Analysis of tuning methods in semiconductor frequency-selective surfaces

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey; Palm, Dominic; Fip, Tassilo; Rahm, Marco

    2017-02-01

    Advanced technology, such as sensing and communication equipment, has recently begun to combine optically sensitive nano-scale structures with customizable semiconductor material systems. Included within this broad field of study is the aptly named frequency-selective surface; which is unique in that it can be artificially designed to produce a specific electromagnetic or optical response. With the inherent utility of a frequency-selective surface, there has been an increased interest in the area of dynamic frequency-selective surfaces, which can be altered through optical or electrical tuning. This area has had exciting break throughs as tuning methods have evolved; however, these methods are typically energy intensive (optical tuning) or have met with limited success (electrical tuning). As such, this work investigates multiple structures and processes which implement semiconductor electrical biasing and/or optical tuning. Within this study are surfaces ranging from transmission meta-structures to metamaterial surface-waves and the associated coupling schemes. This work shows the utility of each design, while highlighting potential methods for optimizing dynamic meta-surfaces. As an added constraint, the structures were also designed to operate in unison with a state-of-the-art Ti:Sapphire Spitfire Ace and Spitfire Ace PA dual system (12 Watt) with pulse front matching THz generation and an EOS detection system. Additionally, the Ti:Sapphire laser system would provide the means for optical tunablity, while electrical tuning can be obtained through external power supplies.

  10. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.

    PubMed

    Zhou, Lin; Yu, Xiaoqiang; Zhu, Jia

    2014-02-12

    Nanostructure-based photovoltaic devices have exhibited several advantages, such as reduced reflection, extraordinary light trapping, and so forth. In particular, semiconductor nanostructures provide optical modes that have strong dependence on the size and geometry. Metallic nanostructures also attract a lot of attention because of the appealing plasmonic effect on the near-field enhancement. In this study, we propose a novel design, the metal-core/semiconductor-shell nanocones with the core radius varying in a linearly gradient style. With a thin layer of semiconductor absorber coated on a metallic cone, such a design can lead to significant and broadband absorption enhancement across the entire visible and near-infrared solar spectrum. As an example of demonstration, a layer of 16 nm thick crystalline silicon (c-Si) coated on a silver nanocone can absorb 27% of standard solar radiation across a broad spectral range of 300-1100 nm, which is equivalent to a 700 nm thick flat c-Si film. Therefore, the absorption enhancement factor approaching the Yablonovitch limit is achieved with this design. The significant absorption enhancement can be ascribed to three types of optical modes, that is, Fabry-Perot modes, plasmonic modes, and hybrid modes that combine the features of the previous two. In addition, the unique nanocone geometry enables the linearly gradient radius of the semiconductor shell, which can support multiple optical resonances, critical for the broadband absorption. Our design may find general usage as elements for the low cost, high efficiency solar conversion and water-splitting devices.

  11. Demonstration of an SOA-assisted open metro-access infrastructure for heterogeneous services.

    PubMed

    Schmuck, H; Bonk, R; Poehlmann, W; Haslach, C; Kuebart, W; Karnick, D; Meyer, J; Fritzsche, D; Weis, E; Becker, J; Freude, W; Pfeiffer, T

    2014-01-13

    An open converged metro-access network approach allows for sharing optical layer resources like fibers and optical spectrum among different services and operators. We demonstrated experimentally the feasibility of such a concept by the simultaneous operation of multiple services showing different modulation formats and multiplexing techniques. Flexible access nodes are implemented including semiconductor optical amplifiers to create a transparent and reconfigurable optical ring network. The impact of cascaded optical amplifiers on the signal quality is studied along the ring. In addition, the influence of high power rival signals in the same waveband and in the same fiber is analyzed.

  12. 22 W coherent GaAlAs amplifier array with 400 emitters

    NASA Technical Reports Server (NTRS)

    Krebs, D.; Herrick, R.; No, K.; Harting, W.; Struemph, F.

    1991-01-01

    Greater than 22 W of optical power has been demonstrated from a multiple-emitter, traveling-wave semiconductor amplifier, with approximately 87 percent of the output at the frequency of the injection source. The device integrates, in AlGaAs graded-index separate-confinement heterostructure single quantum well (GRINSCH-SQW) epitaxy, 400 ridge waveguide amplifiers with a coherent optical signal distribution circuit on a 12 x 6 mm chip.

  13. Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors

    DOE PAGES

    Akselrod, Gleb M.; Ming, Tian; Argyropoulos, Christos; ...

    2015-04-07

    Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths–critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of ~60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS 2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. Here, we observe a 2000-fold enhancement in the PLmore » intensity of MoS 2– which has intrinsically low absorption and small quantum yield–at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.« less

  14. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers.

    PubMed

    Su, Hui; Kondratko, Piotr; Chuang, Shun L

    2006-05-29

    We investigate variable optical delay of a microwave modulated optical beam in semiconductor optical amplifier/absorber waveguides with population oscillation (PO) and nearly degenerate four-wave-mixing (NDFWM) effects. An optical delay variable between 0 and 160 ps with a 1.0 GHz bandwidth is achieved in an InGaAsP/InP semiconductor optical amplifier (SOA) and shown to be electrically and optically controllable. An analytical model of optical delay is developed and found to agree well with the experimental data. Based on this model, we obtain design criteria to optimize the delay-bandwidth product of the optical delay in semiconductor optical amplifiers and absorbers.

  15. Semiconductor quantum dot-sensitized solar cells.

    PubMed

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  16. An optically detectable CO2 sensor utilizing polyethylenimine and starch functionalized InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Shih, H. Y.; Chen, J. Y.; Tan, W. J.; Chen, Y. F.

    2013-07-01

    An optically detectable gas sensor based on the high surface sensitivity of functionalized polyethylenimine/starch In0.15Ga0.85N/GaN strained semiconductor multiple quantum wells (MQWs) has been developed. Due to the excellent piezoelectricity of the MQWs, the change of surface charges caused by chemical interaction can introduce a strain and induce an internal field. In turn, it tilts the energy levels of the MQWs and modifies the optical properties. Through the measurement of the changes in photoluminescence as well as Raman scattering spectra under different concentrations of carbon dioxide gas, we demonstrate the feasibility and high sensitivity of the sensors derived from our methodology.

  17. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing

    PubMed Central

    Hu, Chenyuan; Bai, Wei

    2018-01-01

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263

  18. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    PubMed

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  19. Delay induced high order locking effects in semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Wishon, M. J.; Locquet, A.; Goulding, D.; Tykalewicz, B.; Huyet, G.; Viktorov, E. A.

    2017-11-01

    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  20. Delay induced high order locking effects in semiconductor lasers.

    PubMed

    Kelleher, B; Wishon, M J; Locquet, A; Goulding, D; Tykalewicz, B; Huyet, G; Viktorov, E A

    2017-11-01

    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types--a quantum dot based device and a quantum well based device-are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  1. Photovoltaic driven multiple quantum well optical modulator

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.

  2. Diamagnetic excitons and exciton magnetopolaritons in semiconductors

    NASA Astrophysics Data System (ADS)

    Seisyan, R. P.

    2012-05-01

    Interband magneto-absorption in semiconductors is reviewed in the light of the diamagnetic exciton (DE) concept. Beginning with a proof of the exciton nature of oscillating-magnetoabsorption (the DE discovery), development of the DE concept is discussed, including definition of observation conditions, quasi-cubic approximation for hexagonal crystals, quantum-well effects in artificial structures, and comprehension of an important role of the DE polariton. The successful use of the concept application to a broad range of substances is reviewed, namely quasi-Landau magnetic spectroscopy of the ‘Rydberg’ exciton states in cubic semiconductors such as InP and GaAs and in hexagonal ones such as CdSe, the proof of exciton participation in the formation of optical spectra in narrow-gap semiconductors such as InSb, InAs, and, especially, PbTe, observation of DE spectra in semiconductor solid solutions like InGaAs. The most fundamental findings of the DE spectroscopy for various quantum systems are brought together, including the ‘Coulomb-well’ effect, fine structure of discrete oscillatory states in the InGaAs/GaAs multiple quantum wells, the magneto-optical observation of above-barrier exciton. Prospects of the DE physics in ultrahigh magnetic field are discussed, including technological creation of controllable low-dimensional objects with extreme oscillator strengths, formation of magneto-quantum exciton polymer, and even modelling of the hydrogen behaviour in the atmosphere of a neutron star.

  3. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  4. Background-free balanced optical cross correlator

    DOEpatents

    Nejadmalayeri, Amir Hossein; Kaertner, Franz X

    2014-12-23

    A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.

  5. Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.

  6. Remote Optical Control of an Optical Flip-Flop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maywar, D.N.; Solomon, K.P.; Agrawal, G.P.

    2007-11-01

    We experimentally demonstrate control of a holding-beam–enabled optical flip-flop by means of optical signals that act in a remote fashion. These optical-control signals vary the holding-beam power by means of cross-gain modulation within a remotely located semiconductor optical amplifier (SOA). The power-modulated holding beam then travels through a resonant-type SOA, where flip-flop action occurs as the holding-beam power falls above and below the switching thresholds of the bistable hysteresis. Control is demonstrated using submilliwatt pulses whose wavelengths are not restricted to the vicinity of the holding beam. Benefits of remote control include the potential for controlling multiple flip-flops with amore » single pair of optical signals and for realizing all-optical control of any holding-beam–enabled flip-flop.« less

  7. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  8. Investigation of Surface Breakdown on Semiconductor Devices Using Optical Probing Techniques.

    DTIC Science & Technology

    1990-01-01

    18] L. Bovino , T. Burke, R. Youmans, M. Weiner, and J. Car, r, "Recent Advances in Optically C’ntrolled Bulk Semiconductor Switches," Digest of...Comp. Simul. 5 (3), 175 (1988). [321 M. Weiner, L. Bovino , R. Youmans, and T. Burke, "Modeling of the Optically Conrolled Semiconductor Switch," J

  9. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors.

    PubMed

    Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste

    2013-09-09

    We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.

  10. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.

  11. Ultrafast transient grating radiation to optical image converter

    DOEpatents

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  12. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    PubMed

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  13. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  14. Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices

    NASA Astrophysics Data System (ADS)

    Li, Zhibo; Wang, Mengqi; Fang, Xin; Li, Yajie; Zhou, Xuliang; Yu, Hongyan; Wang, Pengfei; Wang, Wei; Pan, Jiaoqing

    2018-02-01

    A direct epitaxy of III-V nanowires with InGaAs/InP multiple quantum wells on v-shaped trenches patterned silicon on insulator (SOI) substrates was realized by combining the standard semiconductor fabrication process with the aspect ratio trapping growth technique. Silicon thickness as well as the width and gap of each nanowire were carefully designed to accommodate essential optical properties and appropriate growth conditions. The III-V element ingredient, crystalline quality, and surface topography of the grown nanowires were characterized by X-ray diffraction spectroscopy, photoluminescence, and scanning electron microscope. Geometrical details and chemical information of multiple quantum wells were revealed by transmission electron microscopy and energy dispersive spectroscopy. Numerical simulations confirmed that the optical guided mode supported by one single nanowire was able to propagate 50 μm with ˜30% optical loss. This proposed integration scheme opens up an alternative pathway for future photonic integrations of III-V devices on the SOI platform at nanoscale.

  15. Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Pérot interferometer.

    PubMed

    Bahoura, Messaoud; Clairon, André

    2003-11-01

    We report a theoretical dynamical analysis on effect of semiconductor laser phase noise on the achievable linewidth when locked to a Fabry-Pérot cavity fringe using a modulation-demodulation frequency stabilization technique such as the commonly used Pound-Drever-Hall frequency locking scheme. We show that, in the optical domain, the modulation-demodulation operation produces, in the presence of semiconductor laser phase noise, two kinds of excess noise, which could be much above the shot noise limit, namely, conversion noise (PM-to-AM) and intermodulation noise. We show that, in typical stabilization conditions, the ultimate semiconductor laser linewidth reduction can be severely limited by the intermodulation excess noise. The modulation-demodulation operation produces the undesirable nonlinear intermodulation effect through which the phase noise spectral components of the semiconductor laser, in the vicinity of even multiples of the modulation frequency, are downconverted into the bandpass of the frequency control loop. This adds a spurious signal, at the modulation frequency, to the error signal and limits the performance of the locked semiconductor laser. This effect, reported initially in the microwave domain using the quasistatic approximation, can be considerably reduced by a convenient choice of the modulation frequency.

  16. Coherent Pump-Probe Interactions and Terahertz Intersubband Gain in Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    In recent years there has been considerable interest in intersubband-transition-based infrared semiconductor quantum well (QW) lasers because of their potential applications. In the mid-infrared range, both electrically-injected quantum cascade lasers [1] and optically-pumped multiple QW lasers [2] have been experimentally realized. In these studies, optical gain is due to population inversion between the lasing subbands. It was also proposed that stimulated Raman scattering in QW systems can produce net infrared optical gain [3j. In such a nonlinear optical scheme, the appearance of optical gain that may lead to intersubband Raman lasers does not rely on the population inversion. Since, in tile resonant Raman process (Raman gain is the largest in this case), the pump field induces population redistribution among subbands in the QW s ystem, it seems that a realistic estimate of the optical gain has to include this effect. Perturbative calculations used in the previous work [3] may overestimate the Raman gain. In this paper we present a nonperturbative calculation of terahertz gain of optically-pumped semiconductor step quantum wells. Limiting optical transitions within the conduction band of QW, we solve the pump-field-induced nonequilibrium distribution function for each subband of the QW system from a set of coupled rate equations. Both intrasubband and intersubband relaxation processes in the quantum well system are included. Taking into account the coherent interactions between pump and THz (signal) waves, we we derive the susceptibility of the QW system for the THz field. For a GaAs/AlGaAs step QW, we calculate the Thz gain spectrum for different pump frequencies and intensities. Under moderately strong pumping (approximately 0.3 MW/sq cm), a significant THz gain (approximately 300/m) is predicted. It is also shown that the coherent wave interactions (resonant stimulated Raman processes) contribute significantly to the THz gain.

  17. Semiconductor Optical Nonlinearities in the IR

    DTIC Science & Technology

    2007-09-01

    study of the nonlinear properties of semiconductors in the infrared spectral region to develop a fundamental understanding of their optical... infrared countermeasures. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b...absorption [I] B. S. Wherrett, "Scaling rules for multiphoton interband absorption in semiconductors", Journal of Optical Society ofAmerica B, 1, 67 (1984) [2

  18. Thermally robust semiconductor optical amplifiers and laser diodes

    DOEpatents

    Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William

    2002-01-01

    A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

  19. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, R.; Pocha, M.D.

    1994-08-23

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  20. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, Rex; Pocha, Michael D.

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  1. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites.

    PubMed

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-06-01

    Ultrafast spin manipulation for opto-spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength.

  2. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits

    PubMed Central

    Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee

    2016-01-01

    The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits. PMID:27892463

  3. Theoretical analysis of a method for extracting the phase of a phase-amplitude modulated signal generated by a direct-modulated optical injection-locked semiconductor laser

    NASA Astrophysics Data System (ADS)

    Lee, Hwan; Cho, Jun-Hyung; Sung, Hyuk-Kee

    2017-05-01

    The phase modulation (PM) and amplitude modulation (AM) of optical signals can be achieved using a direct-modulated (DM) optical injection-locked (OIL) semiconductor laser. We propose and theoretically analyze a simple method to extract the phase component of a PM signal produced by a DM-OIL semiconductor laser. The pure AM component of the combined PM-AM signal can be isolated by square-law detection in a photodetector and can then be used to compensate for the PM-AM signal based on an optical homodyne method. Using the AM compensation technique, we successfully developed a simple and cost-effective phase extraction method applicable to the PM-AM optical signal of a DM-OIL semiconductor laser.

  4. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, B.L.

    1995-07-04

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance. 5 figs.

  5. Dynamical regimes and intracavity propagation delay in external cavity semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Jayaprasath, E.; Sivaprakasam, S.

    2017-11-01

    Intracavity propagation delay, a delay introduced by a semiconductor diode laser, is found to significantly influence synchronization of multiple semiconductor diode lasers, operated either in stable or in chaotic regime. Two diode lasers coupled in unidirectional scheme is considered in this numerical study. A diode laser subjected to an optical feedback, also called an external cavity diode laser, acts as the transmitter laser (TL). A solitary diode laser acts as the receiver laser (RL). The optical output of the TL is coupled to the RL and laser operating parameters are optimized to achieve synchronization in their output intensities. The time-of-flight between the TL and RL introduces an intercavity time delay in the dynamics of RL. In addition to this, an intracavity propagation delay arises as the TL's field propagated within the RL. This intracavity propagation delay is evaluated by cross-correlation analysis between the output intensities of the lasers. The intracavity propagation delay is found to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay.

  6. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser.

    PubMed

    Pan, Feng; Yang, Lizhi; Xiao, Wen

    2017-09-04

    In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

  7. Engineered nanomaterials for solar energy conversion.

    PubMed

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  8. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  9. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  10. Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators

    PubMed Central

    Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2017-01-01

    We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962

  11. Optical power transfer and communication methods for wireless implantable sensing platforms.

    PubMed

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  12. Optical power transfer and communication methods for wireless implantable sensing platforms

    NASA Astrophysics Data System (ADS)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  13. A LATTICE THEORY OF THE ELECTRO-OPTIC EFFECTS IN SEMICONDUCTORS.

    DTIC Science & Technology

    A unified lattice theory of the electro - optic effect in semiconductor crystals, which encompasses the piezo-electric and elasto-optic effects, is...presented. Expressions are derived for the constant stress and constant strain electro - optic coefficients and the results are specialized to crystals of the zincblende structure. (Author)

  14. FIBER OPTICS. ACOUSTOOPTICS: Amplification of semiconductor laser radiation in the wavelength range 1.24-1.3 μm by stimulated Raman scattering in an optical fiber

    NASA Astrophysics Data System (ADS)

    Belotitskiĭ, V. I.; Kuzin, E. A.; Ovsyannikov, D. V.; Petrov, Mikhail P.

    1990-07-01

    An investigation was made of the influence of weak semiconductor laser radiation on the spectrum of stimulated Raman scattering in a single-mode optical waveguide pumped by a YAG:Nd3+ laser emitting at 1.06 μm. The scattered radiation power increased by a factor exceeding 10 at the semiconductor laser wavelength. A small-signal dynamic gain reached 47 dB. Simultaneous amplification was observed of several modes of multimode semiconductor laser radiation with an intermode spectral interval of 1.3 nm.

  15. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering

    PubMed Central

    2014-01-01

    Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030

  16. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  17. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    PubMed

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  18. Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations - Postprint

    DTIC Science & Technology

    2014-09-01

    Squeezed light from injection- locked quantum well lasers ,” Phys. Rev. Lett., vol. 71, pp. 3951–3954, 1993. [30] A. E. Siegman , Lasers , 1st ed...AFRL-RY-WP-TP-2014-0297 TUNABLE OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS -POSTPRINT...OSCILLATIONS IN OPTICALLY INJECTED SEMICONDUCTOR LASERS WITH REDUCED SENSITIVITY TO PERTURBATIONS - POSTPRINT 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER

  19. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  20. GHz Yb:KYW oscillators in time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changxiu; Krauß, Nico; Schäfer, Gerhard; Ebner, Lukas; Kliebisch, Oliver; Schmidt, Johannes; Winnerl, Stephan; Hettich, Mike; Dekorsy, Thomas

    2018-02-01

    A high-speed asynchronous optical sampling system (ASOPS) based on Yb:KYW oscillators with 1-GHz repetition rate is reported. Two frequency-offset-stabilized diode-pumped Yb:KYW oscillators are employed as pump and probe source, respectively. The temporal resolution of this system within 1-ns time window is limited to 500 fs and the noise floor around 10-6 (ΔR/R) close to the shot-noise level is obtained within an acquisition time of a few seconds. Coherent acoustic phonons are investigated by measuring multilayer semiconductor structures with multiple quantum wells and aluminum/silicon membranes in this ASOPS system. A wavepacket-like phonon sequence at 360 GHz range is detected in the semiconductor structures and a decaying sequence of acoustic oscillations up to 200 GHz is obtained in the aluminum/silicon membranes. Coherent acoustic phonons generated from semiconductor structures are further manipulated by a double pump scheme through pump time delay control.

  1. Optical devices integrated with semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Oh, Kwang R.; Park, Moon S.; Jeong, Jong S.; Baek, Yongsoon; Oh, Dae-Kon

    2000-07-01

    Semiconductor optical amplifiers (SOA's) have been used as a key optical component for the high capacity communication systems. The monolithic integration is necessary for the stable operation of these devices and the wider applications. In this paper, the coupling technique between different waveguides and the integration of SSC's are discussed and the research results of optical devices integrated with SOA's are presented.

  2. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  3. All-optical retro-modulation for free-space optical communication.

    PubMed

    Born, Brandon; Hristovski, Ilija R; Geoffroy-Gagnon, Simon; Holzman, Jonathan F

    2018-02-19

    This work presents device and system architectures for free-space optical and optical wireless communication at high data rates over multidirectional links. This is particularly important for all-optical networks, with high data rates, low latencies, and network protocol transparency, and for asymmetrical networks, with multidirectional links from one transceiver to multiple distributed transceivers. These two goals can be met by implementing a passive uplink via all-optical retro-modulation (AORM), which harnesses the optical power from an active downlink to form a passive uplink through retroreflection. The retroreflected optical power is modulated all-optically to ideally achieve terabit-per-second data rates. The proposed AORM architecture, for passive uplinks, uses high-refractive-index S-LAH79 hemispheres to realize effective retroreflection and an interior semiconductor thin film of CuO nanocrystals to realize ultrafast all-optical modulation on a timescale of approximately 770 fs. The AORM architecture is fabricated and tested, and ultimately shown to be capable of enabling multidirectional free-space optical communication with terabit-per-second aggregate data rates.

  4. Semiconductor ring lasers subject to both on-chip filtered optical feedback and external conventional optical feedback

    NASA Astrophysics Data System (ADS)

    Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy

    2016-05-01

    It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.

  5. Study on the characteristic and application of DFB semiconductor lasers under optical injection for microwave photonics

    NASA Astrophysics Data System (ADS)

    Pu, Tao; Wang, Wei wei

    2018-01-01

    In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.

  6. Effects of Hydrostatic Pressure and Electric Field on the Electron-Related Optical Properties in GaAs Multiple Quantum Well.

    PubMed

    Ospina, D A; Mora-Ramos, M E; Duque, C A

    2017-02-01

    The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.

  7. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  8. Recent developments in electroabsorption modulators at Acreo Swedish ICT

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhang, Andy Z.; Almqvist, Susanne; Junique, Stephane; Noharet, Bertrand; Platt, Duncan; Salter, Michael; Andersson, Jan Y.

    2015-03-01

    Three types of electroabsorption modulators (EAMs) based on III-V semiconductor multiple quantum wells (MQW) are presented in this work. One is a novel monolithic integration traveling-wave EAM for an analog optical transmitter/transceiver to achieve integrated photonic mm-wave functions for broadband connectivity. Another one is composed of an integrated EAM 1D array in a photonic beam-former as a Ku-band phased array antenna for seamless aeronautical networking through integration of data links, radios, and antennas. The third one addresses the use of MQW EAMs in free space optical links through biological tissue for transcutaneous communication.

  9. Fast optical detecting media based on semiconductor nanostructures for recording images obtained using charges of free photocarriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasherininov, P. G., E-mail: peter.kasherininov@mail.ioffe.ru; Tomasov, A. A.; Beregulin, E. V.

    2011-01-15

    Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informativemore » images and to fabrication of optoelectronic correlators of images for noncoherent light.« less

  10. Recent Results With Coupled Opto-Electronic Oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.

    1998-07-01

    We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  11. Recent results with the coupled opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-11-01

    We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  12. Nonlinear optical transmittance of semiconductors in the presence of high-intensity radiation fields

    NASA Astrophysics Data System (ADS)

    Dong, H. M.; Han, F. W.; Duan, Y. F.; Huang, F.; Liu, J. L.

    2018-04-01

    We developed a systematic theoretical study of nonlinear optical properties of semiconductors. The eight-band kṡp model and the energy-balance equation are employed to calculate the transmission and optical absorption coefficients in the presence of both the linear one-photon absorption and the nonlinear two-photon absorption (TPA) processes. A substantial reduction of the optical transmittance far below the band-gap can be observed under relatively high-intensity radiation fields due to the nonlinear TPA. The TPA-induced optical transmittance decreases with increasing intensity of the radiation fields. Our theoretical results are in line with those observed experimentally. The theoretical approach can be applied to understand the nonlinear optical properties of semiconductors under high-field conditions.

  13. Integrated semiconductor twin-microdisk laser under mutually optical injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due tomore » strong optical interaction between the two microdisks.« less

  14. Time Resolved Near Field Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Stark, J. B.

    1996-03-01

    We use broadband pulses to image the carrier dynamics of semiconductor microstructures on a 150 nm spatial scale, with a time resolution of 60 femtoseconds. Etched disks of GaAs/AlGaAs multiple quantum well material, 10 microns in diameter, are excited with a 30 fs pump from a Ti:Sapphire laser, and probed using a near-field optical microscope. The nonlinear transmission of the microdisks is measured using a double-modulation technique, sensitive to transmission changes of 0.0005 within a 150 nm diameter spot on the sample. This spot is scanned to produce an image of the sample. The nonlinear response is produced by the occupation of phase space by the excited distribution. Images of this evolving distribution are collected at time intervals following excitation, measuring the relaxation of carriers at each point in the microdisk. The resulting data can be viewed as a movie of the carrier dynamics of nonequilibrium distributions in excited semiconductor structures. Work done in collaboration with U. Mohideen and R. E. Slusher.

  15. Optical bistability and optical response of an infrared quantum dot hybridized to VO2 nanoparticle

    NASA Astrophysics Data System (ADS)

    Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza

    2017-08-01

    In this work, we theoretically investigate optical bistability and optical response of a hybrid system consisting of semiconductor quantum dot (SQD) coupled with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) regime. The VO2 material exists in semiconductor and metallic phases below and above the critical temperature, respectively where the particle optical properties dramatically change during this phase transition. In our calculations a filling fraction factor controls the VO2NP phase transition when the hybrid system interacts with a laser field. We demonstrate that the switch-up threshold for optical bistability is strongly controlled by filling fraction without changing the structure of the hybrid system. Also, it is shown that, the threshold of optical bistability increases when the VO2NP phases changes from semiconductor to metallic phase. The presented results have the potential to be applied in designing optical switching and optical storage.

  16. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  17. Theoretical, Experimental and Numerical Studies on Hybrid Acoustooptic Bistable Devices

    DTIC Science & Technology

    1991-06-01

    the nonlinear Fabri - Perot etalon, the linear/nonlinear interface and multiple quantum well semiconductor devices. In what follows, I will first...done in connection with absorptive and dispersive optical bistability in a nonlinear Fabri - Perot 3 etalon (for an excellent analysis, see ref. (3...While the first effect is observed when the operating frequency is close to the resonant frequency of the atoms constituting the Fabri - Perot , dispersive

  18. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    NASA Astrophysics Data System (ADS)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  19. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Zhou, T; Cao, J C

    2017-03-08

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.

  20. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation

    PubMed Central

    Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.

    2017-01-01

    Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492

  1. Photonic Arbitrary Waveform Generation Technology

    DTIC Science & Technology

    2006-06-01

    locked external- cavity semiconductor diode ring laser “, Optics Letters, Vol. 27, No. 9 , 719-721, (2002). [22] S. Gee, F. Quinlan, S. Ozharar... optical pulses that one is accustomed to. Modelocked semiconductor lasers are used to generate a set of phase locked optical frequencies on a periodic...The corresponding optical spectrum of the laser consists of a comb of periodically spaced, phase - locked

  2. Ultrafast Single and Multiexciton Energy Transfer in Semiconductor Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Schaller, Richard

    Photophysical processes such as fluorescence resonance energy transfer (FRET) enable optical antennas, wavelength down-conversion in light-emitting diodes (LEDs), and optical bio-sensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells and reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns), do not outpace biexciton Auger recombination (0.01-0.1 ns), which impedes multiexciton-driven applications including electrically-pumped lasers and carrier-multiplication-enhanced photovoltaics. Precisely controlled, few-monolayer thick semiconductor nano-platelets with tens-of-nanometer diameters exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

  3. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites

    PubMed Central

    Giovanni, David; Chong, Wee Kiang; Dewi, Herlina Arianita; Thirumal, Krishnamoorthy; Neogi, Ishita; Ramesh, Ramamoorthy; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2016-01-01

    Ultrafast spin manipulation for opto–spin logic applications requires material systems that have strong spin-selective light-matter interaction. Conventional inorganic semiconductor nanostructures [for example, epitaxial II to VI quantum dots and III to V multiple quantum wells (MQWs)] are considered forerunners but encounter challenges such as lattice matching and cryogenic cooling requirements. Two-dimensional halide perovskite semiconductors, combining intrinsic tunable MQW structures and large oscillator strengths with facile solution processability, can offer breakthroughs in this area. We demonstrate novel room-temperature, strong ultrafast spin-selective optical Stark effect in solution-processed (C6H4FC2H4NH3)2PbI4 perovskite thin films. Exciton spin states are selectively tuned by ~6.3 meV using circularly polarized optical pulses without any external photonic cavity (that is, corresponding to a Rabi energy of ~55 meV and equivalent to applying a 70 T magnetic field), which is much larger than any conventional system. The facile halide and organic replacement in these perovskites affords control of the dielectric confinement and thus presents a straightforward strategy for tuning light-matter coupling strength. PMID:27386583

  4. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  5. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  6. Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Cerkovnik, Logan Jerome; Nagpal, Prashant

    2014-08-01

    Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr02417f

  7. Optical XOR gate

    DOEpatents

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  8. Optical NOR gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  9. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-15

    was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier

  10. Frequency-doubled vertical-external-cavity surface-emitting laser

    DOEpatents

    Raymond, Thomas D.; Alford, William J.; Crawford, Mary H.; Allerman, Andrew A.

    2002-01-01

    A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.

  11. Broader, flatter optical spectra of passively mode-locked semiconductor lasers for a wavelength-division multiplexing source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, Danny; Yariv, Amnon

    1997-05-01

    Using the time domain master equation for a complex electric-field pulse envelope, we find analytical results for the optical spectra of passively mode-locked semiconductor lasers. The analysis includes the effect of optical nonlinearity of semiconductor lasers, which is characterized by a slow saturable amplifier and absorber. Group velocity dispersion, bandwidth limiting, and self-phase modulation were considered as well. The FWHM of the spectrum profile was found to have a strong dependence on group velocity dispersion and self-phase modulation. For large absolute values of the chirp parameter, the optical spectra result in equispaced continuous wave frequencies, a large fraction of whichmore » have equal power. {copyright} 1997 Optical Society of America« less

  12. Integration and manufacture of multifunctional planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul

    2001-11-01

    The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.

  13. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

    PubMed

    Kanemitsu, Yoshihiko

    2013-06-18

    Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials. In this Account, we discuss multiple exciton generation and recombination in SWCNTs and NCs for next-generation photovoltaics. Strongly correlated ensembles of conduction-band electrons and valence-band holes in semiconductors are complex quantum systems that exhibit unique optical phenomena. In bulk crystals, the carrier recombination dynamics can be described by a simple model, which includes the nonradiative single-carrier trapping rate, the radiative two-carrier recombination rate, and the nonradiative three-carrier Auger recombination rate. The nonradiative Auger recombination rate determines the carrier recombination dynamics at high carrier density and depends on the spatial localization of carriers in two-dimensional quantum wells. The Auger recombination and multiple exciton generation rates can be advantageously manipulated by nanomaterials with designated energy structures. In addition, SWCNTs and NCs show quantized recombination dynamics of multiple excitons and carriers. In one-dimensional SWCNTs, excitons have large binding energies and are very stable at room temperature. The extremely rapid Auger recombination between excitons determines the photoluminescence (PL) intensity, the PL linewidth, and the PL lifetime. SWCNTs can undergo multiple exciton generation, while strong exciton-exciton interactions and complicated exciton structures affect the quantized Auger rate and the multiple exciton generation efficiency. Interestingly, in zero-dimensional NC quantum dots, quantized Auger recombination causes unique optical phenomena. The breakdown of the k-conversion rule and strong Coulomb interactions between carriers in NCs enhance Auger recombination rate and decrease the energy threshold for multiple exciton generation. We discuss this impact of the k-conservation rule on two-carrier radiative recombination and the three-carrier Auger recombination processes in indirect-gap semiconductor Si NCs. In NCs and SWCNTs, multiple exciton generation competes with Auger recombination, surface trapping of excitons, and cooling of hot electrons or excitons. In addition, we explore heterostructured NCs and impurity-doped NCs in the context of the optimization of charge carrier extraction from excitons in NCs.

  14. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1994-01-01

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  15. Assessing the performance of the Tran-Blaha modified Becke-Johnson exchange potential for optical constants of semiconductors in the ultraviolet-visible light region

    NASA Astrophysics Data System (ADS)

    Nakano, Kousuke; Sakai, Tomohiro

    2018-01-01

    We report on the performance of density functional theory (DFT) with the Tran-Blaha modified Becke-Johnson exchange potential and the random phase approximation dielectric function for optical constants of semiconductors in the ultraviolet-visible (UV-Vis) light region. We calculate optical bandgaps Eg, refractive indices n, and extinction coefficients k of 70 semiconductors listed in the Handbook of Optical Constants of Solids [(Academic Press, 1985), Vol. 1; (Academic Press, 1991), Vol. 2; and (Academic Press, 1998), Vol. 3] and compare the results with experimental values. The results show that the calculated bandgaps and optical constants agree well with the experimental values to within 0.440 eV for Eg, 0.246-0.299 for n, and 0.207-0.598 for k in root mean squared error (RMSE). The small values of the RMSEs indicate that the optical constants of semiconductors in the UV-Vis region can be quantitatively predicted even by a low-cost DFT calculation of this type.

  16. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    PubMed

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-02

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  17. Ultrafast carrier capture and Auger recombination in single GaN/InGaN multiple quantum well nanowires

    DOE PAGES

    Boubanga-Tombet, Stephane; Wright, Jeremy B.; Lu, Ping; ...

    2016-11-04

    Ultrafast optical microscopy is an important tool for examining fundamental phenomena in semiconductor nanowires with high temporal and spatial resolution. In this paper, we used this technique to study carrier dynamics in single GaN/InGaN core–shell nonpolar multiple quantum well nanowires. We find that intraband carrier–carrier scattering is the main channel governing carrier capture, while subsequent carrier relaxation is dominated by three-carrier Auger recombination at higher densities and bimolecular recombination at lower densities. Finally, the Auger constants in these nanowires are approximately 2 orders of magnitude lower than in planar InGaN multiple quantum wells, highlighting their potential for future light-emitting devices.

  18. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis

    PubMed Central

    Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen

    2013-01-01

    Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422

  19. III-V semiconductor resonators: A new strategy for broadband light perfect absorbers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshan; Chen, Jian; Liu, Jiasong; Huang, Zhenping; Yu, Meidong; Pan, Pingping; Liu, Zhengqi

    2017-11-01

    Broadband light perfect absorbers (BPAs) are desirable for applications in numerous optoelectronics devices. In this work, a semiconductor-based broadband light perfect absorber (S-BPA) has been numerically demonstrated by utilizing plasmonlike resonances of high-index semiconductor resonators. A maximal absorption of 99.7% is observed in the near-infrared region. By taking the absorption above 80% into account, the spectral bandwidth reaches 340 nm. The absorption properties mainly originate from the optical cavity modes induced by the cylinder resonators and ultrathin semiconductor film. These optical properties and simple structural features can maintain the absorber platform with wide applications in semiconductor optoelectronics.

  20. External Cavity Coherent Transmitter Modules

    DTIC Science & Technology

    1990-11-01

    Lasers 141 Tunability Aspects of DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory...Linewidth Considerations for DFB External Cavity Semiconductor Lasers Harish R. D. Sunak & Clark P. Engert Fiber Optical Communications Laboratory

  1. REVIEW ARTICLE: Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.

    2009-10-01

    Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.

  2. Demonstration of the spin solar cell and spin photodiode effect

    PubMed Central

    Endres, B.; Ciorga, M.; Schmid, M.; Utz, M.; Bougeard, D.; Weiss, D.; Bayreuther, G.; Back, C.H.

    2013-01-01

    Spin injection and extraction are at the core of semiconductor spintronics. Electrical injection is one method of choice for the creation of a sizeable spin polarization in a semiconductor, requiring especially tailored tunnel or Schottky barriers. Alternatively, optical orientation can be used to generate spins in semiconductors with significant spin-orbit interaction, if optical selection rules are obeyed, typically by using circularly polarized light at a well-defined wavelength. Here we introduce a novel concept for spin injection/extraction that combines the principle of a solar cell with the creation of spin accumulation. We demonstrate that efficient optical spin injection can be achieved with unpolarized light by illuminating a p-n junction where the p-type region consists of a ferromagnet. The discovered mechanism opens the window for the optical generation of a sizeable spin accumulation also in semiconductors without direct band gap such as Si or Ge. PMID:23820766

  3. Absorption properties of metal-semiconductor hybrid nanoparticles.

    PubMed

    Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten

    2011-06-28

    The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.

  4. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  5. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  6. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  7. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    PubMed Central

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  8. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Semiconductor-laser Fourier processors of electric signals

    NASA Astrophysics Data System (ADS)

    Blok, A. S.; Bukhenskii, A. F.; Krupitskii, É. I.; Morozov, S. V.; Pelevin, V. Yu; Sergeenko, T. N.; Yakovlev, V. I.

    1995-10-01

    An investigation is reported of acousto-optical and fibre-optic Fourier processors of electric signals, based on semiconductor lasers. A description is given of practical acousto-optical processors with an analysis band 120 MHz wide, a resolution of 200 kHz, and 7 cm × 8 cm × 18 cm dimensions. Fibre-optic Fourier processors are considered: they represent a new class of devices which are promising for the processing of gigahertz signals.

  9. New nonlinear optical effect: self-reflection phenomenon due to exciton-biexciton-light interaction in semiconductors

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.

    2002-05-01

    The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.

  10. Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.

    PubMed

    De, Amrit; Pryor, Craig E

    2014-01-29

    Crystalline semiconductors may exist in different polytypic phases with significantly different electronic and optical properties. In this paper, we calculate the electronic structure and optical properties of diamond, Si and Ge in the lonsdaleite (hexagonal diamond) phase using a transferable model empirical pseudopotential method with spin–orbit interactions. We calculate their band structures and extract various relevant parameters. Differences between the cubic and hexagonal phases are highlighted by comparing their densities of states. While diamond and Si remain indirect gap semiconductors in the lonsdaleite phase, Ge transforms into a direct gap semiconductor with a much smaller bandgap. We also calculate complex dielectric functions for different optical polarizations and find strong optical anisotropy. We further provide expansion parameters for the dielectric functions in terms of Lorentz oscillators.

  11. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  12. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  13. Nonlinear Optical Interactions in Semiconductors

    DTIC Science & Technology

    1984-10-01

    TACAN Aerospace Corporation. 6 V. Coupling A. C.N.R.S., Physique du Solide et Energie Solaire We have an on-going interaction with Dr. Christian...optical fiber to the semiconductor sample and back to the analyzing electronics. The band-gap energy of the semiconductor decreases with increasing...temperature. Consequently, the absorption of light in the energy region of the band-gap changes with temperature. From the measured light absorption, the

  14. Emergence of transverse spin in optical modes of semiconductor nanowires

    DOE PAGES

    Alizadeh, M. H.; Reinhard, Bjorn M.

    2016-04-11

    The transverse spin angular momentum of light has recently received tremendous attention as it adds a new degree of freedom for controlling light-matter interactions. In this work we demonstrate the generation of transverse spin angular momentum by the weakly-guided mode of semiconductor nanowires. The evanescent field of these modes in combination with the transversality condition rigorously accounts for the occurrence of transverse spin angular momentum. Furthermore, the intriguing and nontrivial spin properties of optical modes in semiconductor nanowires are of high interest for a broad range of new applications including chiral optical trapping, quantum information processing, and nanophotonic circuitry.

  15. Thermo-optic locking of a semiconductor laser to a microcavity resonance.

    PubMed

    McRae, T G; Lee, Kwan H; McGovern, M; Gwyther, D; Bowen, W P

    2009-11-23

    We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microcavity. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast control is achieved by optical feedback induced by scattering centers within the microcavity, with thermal locking due to optical heating maintaining constructive interference between the cavity and the laser. Furthermore, the optical feedback acts to narrow the laser linewidth, with ultra high quality microtoroid resonances offering the potential for ultralow linewidth on-chip lasers.

  16. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  17. Laser Cooling of 2-6 Semiconductors

    DTIC Science & Technology

    2016-08-12

    practical optical refrigeration . The challenge is the stoichiometric defect in bulk crystal which introduces mid-gap states that manifest as broad-band...cooling in semiconductor has stimulated strong interest in further scaling up towards practical optical refrigeration . The challenge is the...energy. The upconversion process is facilitated by the annihilation of phonons and leads to cooling of the matter. The concept of optical refrigeration

  18. Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics

    NASA Astrophysics Data System (ADS)

    Jin, Yingdi; Li, Xingxing; Yang, Jinlong

    A serial of two dimensional titanium and zirconium trichalcogenides nanosheets MX3 (M=Ti, Zr; X=S, Se, Te) are investigated based on first-principles calculations. The evaluated low cleavage energy indicates that stable two dimensional monolayers can be exfoliated from their bulk crystals in experiment. Electronic studies reveal very rich electronic properties in these monolayers, including metallic TiTe3 and ZrTe3, direct band gap semiconductor TiS3 and indirect band gap semiconductors TiSe3, ZrS3 and ZrSe3. The band gaps of all the semiconductors are between 0.57~1.90 eV, which implies their potential applications in nano-electronics. And the calculated effective masses demonstrate highly anisotropic conduction properties for all the semiconductors. Optically, TiS3 and TiSe3 monolayers exhibit good light absorption in the visible and near-infrared region respectively, indicating their potential applications in optical devices. In particular, the highly anisotropic optical absorption of TiS3 monolayer suggests it could be used in designing nano optical waveguide polarizers.

  19. Circular electrode geometry metal-semiconductor-metal photodetectors

    NASA Technical Reports Server (NTRS)

    Mcaddo, James A. (Inventor); Towe, Elias (Inventor); Bishop, William L. (Inventor); Wang, Liang-Guo (Inventor)

    1994-01-01

    The invention comprises a high speed, metal-semiconductor-metal photodetector which comprises a pair of generally circular, electrically conductive electrodes formed on an optically active semiconductor layer. Various embodiments of the invention include a spiral, intercoiled electrode geometry and an electrode geometry comprised of substantially circular, concentric electrodes which are interposed. These electrode geometries result in photodetectors with lower capacitances, dark currents and lower inductance which reduces the ringing seen in the optical pulse response.

  20. Gain in three-dimensional metamaterials utilizing semiconductor quantum structures

    NASA Astrophysics Data System (ADS)

    Schwaiger, Stephan; Klingbeil, Matthias; Kerbst, Jochen; Rottler, Andreas; Costa, Ricardo; Koitmäe, Aune; Bröll, Markus; Heyn, Christian; Stark, Yuliya; Heitmann, Detlef; Mendach, Stefan

    2011-10-01

    We demonstrate gain in a three-dimensional metal/semiconductor metamaterial by the integration of optically active semiconductor quantum structures. The rolling-up of a metallic structure on top of strained semiconductor layers containing a quantum well allows us to achieve a tightly bent superlattice consisting of alternating layers of lossy metallic and amplifying gain material. We show that the transmission through the superlattice can be enhanced by exciting the quantum well optically under both pulsed or continuous wave excitation. This points out that our structures can be used as a starting point for arbitrary three-dimensional metamaterials including gain.

  1. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  2. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  3. Excitons in atomically thin 2D semiconductors and their applications

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang

    2017-06-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  4. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Simple pulsed semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Hulicius, E.; Abrahám, A.; Sĭmeček, T.

    1988-11-01

    A brief review is given of the main characteristics of pulsed GaAlAs/GaAs lasers made in Czechoslovakia. A description is given of laser structures with large optical cavities and their electrical, optical, and service life characteristics are reported.

  5. Optical Design of Plant Canopy Measurement System and Fabrication of Two-Dimensional High-Speed Metal-Semiconductor-Metal Photodetector Arrays

    NASA Technical Reports Server (NTRS)

    Sarto, Anthony; VanZeghbroeck, Bart; Vanderbilt, Vern C.

    1996-01-01

    Electrical and optical designs for the prototype plant canopy architecture measurement system, including specified component and parts lists, are presented. Six single Metal-Semiconductor-Metal (MSM) detectors are mounted in high-speed packages.

  6. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  7. Liquid crystal cells with built-in CdSe nanotubes for chromogenic smart emission devices.

    PubMed

    Lin, Tsung Ju; Chen, Chin-Chang; Cheng, Soofin; Chen, Yang Fang

    2008-01-21

    A simple and general approach for controlling optical anisotropy of nanostructured semiconductors is reported. Our design involves the fabrication of liquid crystal devices with built-in semiconductor nanotubes. Quite interestingly, it is found that semiconductor nanotubes can be well aligned along the orientation of liquid crystals molecules automatically, resulting in a very large emission anisotropy with the degree of polarization up to 72%. This intriguing result manifests a way to obtain well aligned semiconductor nanotubes and the emission anisotropy can be easily manipulated by an external bias. The ability to well control the emission anisotropy should open up new opportunities for nanostructured semiconductors, including optical filters, polarized light emitting diodes, flat panel displays, and many other chromogenic smart devices.

  8. Chirp-enhanced fast light in semiconductor optical amplifiers.

    PubMed

    Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J

    2007-12-24

    We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

  9. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Carson, R. F.

    1985-01-01

    A variety of techniques have been proposed for fabricating integrated optical devices using semiconductors, lithium niobate, and glasses as waveguides and substrates. The use of glass waveguides and their interaction with thin semiconductor cladding layers was studied. Though the interactions of these multilayer waveguide structures have been analyzed here using glass, they may be applicable to other types of materials as well. The primary reason for using glass is that it provides a simple, inexpensive way to construct waveguides and devices.

  10. NONLINEAR OPTICAL PHENOMENA: Self-reflection in a system of excitons and biexcitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Khadzhi, P. I.; Lyakhomskaya, K. D.

    1999-10-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.

  11. III-V quantum light source and cavity-QED on silicon.

    PubMed

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  12. Effect of additional optical pumping injection into the ground-state ensemble on the gain and the phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2014-02-01

    The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.

  13. Highly efficient quantum dot-based photoconductive THz materials and devices

    NASA Astrophysics Data System (ADS)

    Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.

    2013-09-01

    We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.

  14. Technological innovations for a sustainable business model in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2014-09-01

    Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.

  15. Optic probe for semiconductor characterization

    DOEpatents

    Sopori, Bhushan L [Denver, CO; Hambarian, Artak [Yerevan, AM

    2008-09-02

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  16. Excitons in atomically thin 2D semiconductors and their applications

    DOE PAGES

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; ...

    2017-01-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS 2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. Here in this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical meansmore » is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.« less

  17. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2014-05-13

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  18. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL

    2011-07-05

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  19. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2015-08-25

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  20. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2017-03-21

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  1. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  2. Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines

    NASA Astrophysics Data System (ADS)

    Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.

    1983-09-01

    The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.

  3. Kirstin Alberi | NREL

    Science.gov Websites

    basic research on the optical and electronic properties of semiconductor alloys for photovoltaic and , Berkeley in 2008, where she studied the optical and electronic properties of highly mismatched semiconductor alloys. She came to NREL as a postdoctoral researcher in the Silicon Materials and Devices group

  4. Semiconductor lasers for versatile applications from global communications to on-chip interconnects

    NASA Astrophysics Data System (ADS)

    Arai, Shigehisa

    2015-01-01

    Since semiconductor lasers were realized in 1962, various efforts have been made to enrich human life thorough novel equipments and services. Among them optical fiber communications in global communications have brought out marvelous information technology age represented by the internet. In this paper, emerging topics made on GaInAsP/InP based long-wavelength lasers toward ultra-low power consumption semiconductor lasers for optical interconnects in supercomputers as well as in future LSIs are presented.

  5. Device having two optical ports for switching applications

    DOEpatents

    Rosen, Ayre; Stabile, Paul J.

    1991-09-24

    A two-sided light-activatable semiconductor switch device having an optical port on each side thereof. The semiconductor device may be a p-i-n diode or of bulk intrinsic material. A two ported p-i-n diode, reverse-biased to "off" by a 1.3 kV dc power supply, conducted 192 A when activated by two 1 kW laser diode arrays, one for each optical port.

  6. Symposium on New Materials for Nonlinear Optics

    DTIC Science & Technology

    1991-01-01

    C. B. Aakeroy, N. Azoz, P. D. Calvert, M. Kadim, A. J. McCaffery, and K. R. Seddon 35 . Clathrasils: New Materials for Nonlinear Optical...of Quantum Confined Semiconductor Structures - D.S. Chemla 2: 35 Preparation and Characterization of Small Semiconductor Particulates - Norman Herron 3...presiding 2:00 Opening Remarks - John Sohn 2:05 Approaches for the Design of Materials for Nonlinear Optics - M. Lahav 2: 35 Control of Symmetry and Asymmetry

  7. Spiking Excitable Semiconductor Laser as Optical Neurons: Dynamics, Clustering and Global Emerging Behaviors

    DTIC Science & Technology

    2014-06-28

    constructed from inexpensive semiconductor lasers could lead to the development of novel neuro-inspired optical computing devices (threshold detectors ...optical computing devices (threshold detectors , logic gates, signal recognition, etc.). Other topics of research included the analysis of extreme events in...Extreme events is nowadays a highly active field of research. Rogue waves, earthquakes of high magnitude and financial crises are all rare and

  8. Creating semiconductor metafilms with designer absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate thatmore » near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.« less

  9. Optical NAND gate

    DOEpatents

    Skogen, Erik J [Albuquerque, NM; Raring, James [Goleta, CA; Tauke-Pedretti, Anna [Albuquerque, NM

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  10. Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires

    PubMed Central

    Piccione, Brian; Aspetti, Carlos O.; Cho, Chang-Hee; Agarwal, Ritesh

    2014-01-01

    Understanding interactions between light and matter is central to many fields, providing invaluable insights into the nature of matter. In its own right, a greater understanding of light-matter coupling has allowed for the creation of tailored applications, resulting in a variety of devices such as lasers, switches, sensors, modulators, and detectors. Reduction of optical mode volume is crucial to enhancing light-matter coupling strength, and among solid-state systems, self-assembled semiconductor and hybrid-plasmonic nanowires are amenable to creation of highly-confined optical modes. Following development of unique spectroscopic techniques designed for the nanowire morphology, carefully engineered semiconductor nanowire cavities have recently been tailored to enhance light-matter coupling strength in a manner previously seen in optical microcavities. Much smaller mode volumes in tailored hybrid-plasmonic nanowires have recently allowed for similar breakthroughs, resulting in sub-picosecond excited-state lifetimes and exceptionally high radiative rate enhancement. Here, we review literature on light-matter interactions in semiconductor and hybrid-plasmonic monolithic nanowire optical cavities to highlight recent progress made in tailoring light-matter coupling strengths. Beginning with a discussion of relevant concepts from optical physics, we will discuss how our knowledge of light-matter coupling has evolved with our ability to produce ever-shrinking optical mode volumes, shifting focus from bulk materials to optical microcavities, before moving on to recent results obtained from semiconducting nanowires. PMID:25093385

  11. Single photon sources with single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  12. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOEpatents

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  13. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.

    PubMed

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-10-27

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

  14. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

    PubMed Central

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-01-01

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321

  15. Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Vinnakota, Raj; Genov, Dentcho

    We present numerical modeling of an active electronically controlled highly confined charge-density waves, i.e. surface plasmon polaritons (SPPs) at the metallurgic interfaces of degenerate semiconductor materials. An electro-optic switching element for fully-functional plasmonic circuits based on p-n junction semiconductor Surface Plasmon Polariton (SPP) waveguide is shown. Two figures of merits are introduced and parametric study has been performed identifying the device optimal operation range. The Indium Gallium Arsenide (In0.53Ga0.47As) is identified as the best semiconductor material for the device providing high optical confinement, reduced system size and fast operation. The electro-optic SPP switching element is shown to operate at signal modulation up to -24dB and switching rates surpassing 100GHz, thus potentially providing a new pathway toward bridging the gap between electronic and photonic devices. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.

  16. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  17. Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nardin, Gaël; Li, Hebin; Autry, Travis M.

    2015-03-21

    We review our recent work on multi-dimensional coherent optical spectroscopy (MDCS) of semiconductor nanostructures. Two approaches, appropriate for the study of semiconductor materials, are presented and compared. A first method is based on a non-collinear geometry, where the Four-Wave-Mixing (FWM) signal is detected in the form of a radiated optical field. This approach works for samples with translational symmetry, such as Quantum Wells (QWs) or large and dense ensembles of Quantum Dots (QDs). A second method detects the FWM in the form of a photocurrent in a collinear geometry. This second approach extends the horizon of MDCS to sub-diffraction nanostructures,more » such as single QDs, nanowires, or nanotubes, and small ensembles thereof. Examples of experimental results obtained on semiconductor QW structures are given for each method. In particular, it is shown how MDCS can assess coupling between excitons confined in separated QWs.« less

  18. Synthesis of a potential semiconductor neutron detector crystal LiGa(Se/Te)2: materials purity and compatibility effects

    NASA Astrophysics Data System (ADS)

    Stowe, Ashley C.; Morrell, J.; Battacharya, Pijush; Tupitsyn, Eugene; Burger, Arnold

    2011-09-01

    Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. One of the primary challenges in growing a high quality crystal of such a material is the reactivity of lithium metal. The presence of nitrides, oxides, and a variety of alkali and alkaline earth metal impurities prevent pure synthesis and truncate crystal growth by introducing multiple nucleation centers during growth. Multiple lithium metal purification methods have been investigated which ultimately raised the metal purity to 99.996%. Multi-cycle vacuum distillation removed all but 40 ppm of metal impurities in lithium metal. LiGa(Se/Te)2 was then synthesized with the high purity lithium metal by a variety of conditions. Lithium metal reacts violently with many standard crucible materials, and thermodynamic studies were undertaken to insure that an appropriate crucible choice was made, with high purity iron and boron nitride crucibles being the least reactive practical materials. Once conditions were optimized for synthesis of the chalcopyrite, vertical Bridgman crystal growth resulted in red crystals. The optical, electronic, and thermodynamic properties were collected.

  19. Silicon Mie resonators for highly directional light emission from monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.

    2018-05-01

    Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.

  20. Methods for determining optical power, for power-normalizing laser measurements, and for stabilizing power of lasers via compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2015-04-07

    A method is disclosed for power normalization of spectroscopic signatures obtained from laser based chemical sensors that employs the compliance voltage across a quantum cascade laser device within an external cavity laser. The method obviates the need for a dedicated optical detector used specifically for power normalization purposes. A method is also disclosed that employs the compliance voltage developed across the laser device within an external cavity semiconductor laser to power-stabilize the laser mode of the semiconductor laser by adjusting drive current to the laser such that the output optical power from the external cavity semiconductor laser remains constant.

  1. Terahertz Optical Gain Based on Intersubband Transitions in Optically-Pumped Semiconductor Quantum Wells: Coherent Pumped-Probe Interactions

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.

  2. Optical data latch

    DOEpatents

    Vawter, G Allen [Corrales, NM

    2010-08-31

    An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.

  3. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  4. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  5. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  6. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  7. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  8. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  9. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  10. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2017-06-06

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  11. All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber.

    PubMed

    Pradhan, Rajib

    2014-06-10

    This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

  12. Linear electro-optic effect in semiconductors: Ab initio description of the electronic contribution

    NASA Astrophysics Data System (ADS)

    Prussel, Lucie; Véniard, Valérie

    2018-05-01

    We propose an ab initio framework to derive the electronic part of the second-order susceptibility tensor for the electro-optic effect in bulk semiconductors. We find a general expression for χ(2 ) evaluated within time-dependent density-functional theory, including explicitly the band-gap corrections at the level of the scissors approximation. Excitonic effects are accounted for, on the basis of a simple scalar approximation. We apply our formalism to the computation of the electro-optic susceptibilities for several semiconductors, such as GaAs, GaN, and SiC. Taking into account the ionic contribution according to the Faust-Henry coefficient, we obtain a good agreement with experimental results. Finally, using different types of strain to break centrosymmetry, we show that high electro-optic coefficients can be obtained in bulk silicon for a large range of frequencies.

  13. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications

    NASA Astrophysics Data System (ADS)

    Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming

    2013-06-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.

  14. Semiconductor quantum dots for bioimaging and biodiagnostic applications.

    PubMed

    Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.

  15. Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications

    PubMed Central

    Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming

    2013-01-01

    Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547

  16. Soliton all-optical logic AND gate with semiconductor optical amplifier-assisted Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Kotb, Amer; Zoiros, Kyriakos E.

    2016-08-01

    The concept of soliton provides a line in research in telecommunications systems. In the present study, a soliton all-optical logic AND gate with semiconductor optical amplifier (SOA)-assisted Mach-Zehnder interferometer has been numerically simulated and investigated. The dependence of the output quality factor (Q-factor) on the soliton characteristics and SOA parameters has been examined and assessed. The obtained results demonstrate that the soliton AND gate is capable of operating at a data rate of 80 Gb/s with logical correctness and high-output Q-factor.

  17. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    PubMed

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  18. Width-tunable pulse laser via optical injection induced gain modulation of semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan

    2018-03-01

    A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.

  19. Infrared light sources with semimetal electron injection

    DOEpatents

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  20. Weighted least-square approach for simultaneous measurement of multiple reflective surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Shouhong; Bills, Richard E.; Freischlad, Klaus

    2007-09-01

    Phase shifting interferometry (PSI) is a highly accurate method for measuring the nanometer-scale relative surface height of a semi-reflective test surface. PSI is effectively used in conjunction with Fizeau interferometers for optical testing, hard disk inspection, and semiconductor wafer flatness. However, commonly-used PSI algorithms are unable to produce an accurate phase measurement if more than one reflective surface is present in the Fizeau interferometer test cavity. Examples of test parts that fall into this category include lithography mask blanks and their protective pellicles, and plane parallel optical beam splitters. The plane parallel surfaces of these parts generate multiple interferograms that are superimposed in the recording plane of the Fizeau interferometer. When using wavelength shifting in PSI the phase shifting speed of each interferogram is proportional to the optical path difference (OPD) between the two reflective surfaces. The proposed method is able to differentiate each underlying interferogram from each other in an optimal manner. In this paper, we present a method for simultaneously measuring the multiple test surfaces of all underlying interferograms from these superimposed interferograms through the use of a weighted least-square fitting technique. The theoretical analysis of weighted least-square technique and the measurement results will be described in this paper.

  1. Extreme IR absorption in group IV-SiGeSn core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama

    2018-06-01

    Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.

  2. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  3. Optical Computing, 1991, Technical Digest Series, Vol. 6

    DTIC Science & Technology

    1992-05-22

    lasers). Compound semiconductors may satisfy these requirements. For example, optical signal amplification by two-beam coupling and amplified phase... compound semiconductors can provide this type of implementationi. This paper presents results from a detailed investigation on potentials of the...conductivity to achieve high multichannel cell performance. We describe several high performance Gallium Phosphide multichannel Bragg cells which employ these

  4. Electrons and Phonons in Semiconductor Multilayers

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    1996-11-01

    This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.

  5. Generation of multiphoton entangled quantum states by means of integrated frequency combs.

    PubMed

    Reimer, Christian; Kues, Michael; Roztocki, Piotr; Wetzel, Benjamin; Grazioso, Fabio; Little, Brent E; Chu, Sai T; Johnston, Tudor; Bromberg, Yaron; Caspani, Lucia; Moss, David J; Morandotti, Roberto

    2016-03-11

    Complex optical photon states with entanglement shared among several modes are critical to improving our fundamental understanding of quantum mechanics and have applications for quantum information processing, imaging, and microscopy. We demonstrate that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation. Our method is compatible with contemporary fiber and quantum memory infrastructures and with chip-scale semiconductor technology, enabling compact, low-cost, and scalable implementations. The exploitation of integrated Kerr frequency combs, with their ability to generate multiple, customizable, and complex quantum states, can provide a scalable, practical, and compact platform for quantum technologies. Copyright © 2016, American Association for the Advancement of Science.

  6. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors.

    PubMed

    Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A

    2017-03-01

    Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy ( g ) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging.

  7. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  8. Comparison of the optical responses of O-poor and O-rich thermochromic VOX films during semiconductor-to-metal transition

    NASA Astrophysics Data System (ADS)

    Luo, Zhenfei; Wu, Zhiming; Wang, Tao; Xu, Xiangdong; Li, Weizhi; Li, Wei; Jiang, Yadong

    2012-09-01

    O-poor and O-rich thermochromic vanadium oxide (VOX) nanostructured thin films were prepared by applying reactive direct current magnetron sputtering and post-annealing in oxygen ambient. UV-visible spectrophotometer and spectroscopic ellipsometry were used to investigate the optical properties of films. It was found that, when the O-poor VOX thin film underwent semiconductor-to-metal transition, the values of optical conductivity and extinction coefficient in the visible region increased due to the existence of occupied band-gap states. This noticeable feature, however, was not observed for the O-rich film, which showed a similar optical behavior with the stoichiometric crystalline VO2 films reported in the literatures. Moreover, the O-poor VOX film exhibits consistent variations of transmission values in the visible/near-infrared region when it undergoes semiconductor-to-metal transition.

  9. Characterization of a High-SpeedHigh-Power Semiconductor Master-Oscillator Power-Amplifier (MOPA) Laser as a Free-Space Transmitter

    NASA Astrophysics Data System (ADS)

    Wright, M. W.

    2000-04-01

    Semiconductor lasers offer promise as high-speed transmitters for free-space optical communication systems. This article examines the performance of a semiconductor laser system in a master-oscillator power-amplifier (MOPA) geometry developed through a Small Business Innovation Research (SBIR) contract with SDL, Inc. The compact thermo-electric cooler (TEC) packaged device is capable of 1-W output optical power at greater than 2-Gb/s data rates and a wavelength of 960 nm. In particular, we have investigated the effects of amplified spontaneous emission on the modulation extinction ratio and bit-error rate (BER) performance. BERs of up to 10^(-9) were possible at 1.4 Gb/s; however, the modulation extinction ratio was limited to 6 dB. Other key parameters for a free-space optical transmitter, such as the electrical-optical efficiency (24 percent) and beam quality, also were measured.

  10. A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.

    2013-03-01

    The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.

  11. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes

    NASA Astrophysics Data System (ADS)

    Armin, Ardalan; Jansen-van Vuuren, Ross D.; Kopidakis, Nikos; Burn, Paul L.; Meredith, Paul

    2015-02-01

    Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.

  12. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

    PubMed Central

    Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao

    2013-01-01

    Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823

  13. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  14. Narrowband Light Detection via Internal Quantum Efficiency Manipulation of Organic Photodiodes

    DOE PAGES

    Armin, A.; Jansen-van Vuuren, R. D.; Kopidakis, N.; ...

    2015-02-01

    Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (inputmore » filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is materialagnostic and applicable to other disordered and polycrystalline semiconductors.« less

  15. Controlling of the optical properties of the solutions of the PTCDI-C8 organic semiconductor

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Gündüz, Bayram

    2016-09-01

    N,N'-Dioctyl-3,4,9,10 perylenedicarboximide (PTCDI-C8) organic semiconductor have vast applications in solar cells, thermoelectric generators, thin film photovoltaics and many other optoelectronic devices. These applications of the materials are based on their spectral and optical properties. The solutions of the PTCDI-C8 for different molarities were prepared and the spectral and optical mesaurements were analyzed. Effects of the molarities on optical properties were investigated. Vibronic structure has been observed based on the absorption bands of PTCDI-C8 semiconductor with seven peaks at 2.292, 2.451, 2.616, 3.212, 3.851, 4.477 and 4.733 eV. The important spectral parameteres such as molar/mass extinction coefficients, absorption coefficient of the PTCDI-C8 molecule were calculated. Optical properties such as angle of incidence/refraction, optical band gap, real and imaginary parts of dielectric constant, loss factor and electrical susceptibility of the the PTCDI-C8 were obtained. Finally, we discussed these parameters for optoelectronic applications and compared with related parameters in literature.

  16. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun

    2018-03-01

    Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.

  17. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    1998-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.

  18. Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.

    PubMed

    Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2017-10-24

    We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.

  19. Piezo-Phototronic Matrix via a Nanowire Array.

    PubMed

    Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2017-12-01

    Piezoelectric semiconductors, such as ZnO and GaN, demonstrate multiproperty coupling effects toward various aspects of mechanical, electrical, and optical excitation. In particular, the three-way coupling among semiconducting, photoexcitation, and piezoelectric characteristics in wurtzite-structured semiconductors is established as a new field, which was first coined as piezo-phototronics by Wang in 2010. The piezo-phototronic effect can controllably modulate the charge-carrier generation, separation, transport, and/or recombination in optical-electronic processes by modifying the band structure at the metal-semiconductor or semiconductor-semiconductor heterojunction/interface. Here, the progress made in using the piezo-phototronic effect for enhancing photodetectors, pressure sensors, light-emitting diodes, and solar cells is reviewed. In comparison with previous works on a single piezoelectric semiconducting nanowire, piezo-phototronic nanodevices built using nanowire arrays provide a promising platform for fabricating integrated optoelectronics with the realization of high-spatial-resolution imaging and fast responsivity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Backscattered electron simulations to evaluate sensitivity against electron dosage of buried semiconductor features

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Thiel, Bradley

    2018-03-01

    In fabrication, overlay measurements of semiconductor device patterns have conventionally been performed using optical methods. Beginning with image-based techniques using box-in-box to the more recent diffraction-based overlay (DBO). Alternatively, use of SEM overlay is under consideration for in-device overlay. Two main application spaces are measurement features from multiple mask levels on the same surface and buried features. Modern CD-SEMs are adept at measuring overlay for cases where all features are on the surface. In order to measure overlay of buried features, HV-SEM is needed. Gate-to-fin and BEOL overlay are important use cases for this technique. A JMONSEL simulation exercise was performed for these two cases using 10 nm line/space gratings of graduated increase in depth of burial. Backscattered energy loss results of these simulations were used to calculate the sensitivity measurements of buried features versus electron dosage for an array of electron beam voltages.

  1. Semiconductor ring lasers coupled by a single waveguide

    NASA Astrophysics Data System (ADS)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  2. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  3. Tunable all-optical signal regenerator with a semiconductor optical amplifier and a Sagnac loop: principles of operation

    NASA Astrophysics Data System (ADS)

    Granot, Er'el; Zaibel, Reuven; Narkiss, Niv; Ben-Ezra, Shalva; Chayet, Haim; Shahar, Nir; Sternklar, Shmuel; Tsadka, Sagie; Prucnal, Paul R.

    2005-12-01

    In this paper we investigate the wavelength conversion and regeneration properties of a tunable all-optical signal regenerator (TASR). In the TASR, the wavelength conversion is done by a semiconductor optical amplifier, which is incorporated in an asymmetric Sagnac loop (ASL). We demonstrate both theoretically and experimentally that the ASL regenerates the incident signal's bit pattern, reduces its noise, increases the extinction ratio (which in many aspects is equivalent to noise reduction) and improves its bit-error rate. We also demonstrate the general behavior of the TASR with a numerical simulation.

  4. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, Adnah G.

    1988-01-01

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.

  5. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, A.G.

    1988-06-28

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.

  6. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    PubMed

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  7. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature

    NASA Astrophysics Data System (ADS)

    Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S.; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge

    2018-04-01

    Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibility for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode room-temperature lasing from 890 nm to 990 nm utilizing a novel design of single nanowires with GaAsSb-based multiple superlattices as gain medium under optical pumping. The wavelength tunability with comprehensively enhanced lasing performance is shown to result from the unique nanowire structure with efficient gain materials, which delivers a lasing quality factor as high as 1250, a reduced lasing threshold ~ 6 kW cm-2 and a high characteristic temperature ~ 129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way towards future nanoscale integrated optoelectronic systems with stunning performance.

  8. Coupled lasers: phase versus chaos synchronization.

    PubMed

    Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-10-15

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  9. Study of the pulse characteristics of semiconductor lasers with a broadened waveguide at low temperatures (110–120 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D. A.; Shashkin, I. S.; Bobretsova, Yu. K.

    2016-10-15

    Pulse-pumped MOVPE-fabricated (metal-organic vapor-phase epitaxy) semiconductor lasers emitting in the spectral ranges 1000–1100 and 1400–1600 nm at temperatures of 110–120 K are studied. It is found that cooling the lasers for both spectral ranges to low temperature results in their light–current curves approaching linearity, and an optical power of, respectively, 110 and 20 W can be attained. The low-temperature effect is reduced for lasers emitting in the spectral range 1400–1600 nm. The processes affecting a rise in the internal optical loss in semiconductor lasers are considered. It is shown that an increase in the carrier concentration in the waveguide ofmore » a laser structure greatly depends on temperature and is determined by the noninstantaneous capture (capture rate) of carriers from the waveguide into the active region. It is demonstrated that, upon lowering the temperature to 115K, the concentration of electrons and holes in the waveguide becomes lower, which leads to a significant decrease in the internal optical loss and to an increase in the output optical power of the semiconductor laser.« less

  10. Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films: A new design space for organic light-emitting diodes.

    PubMed

    Keum, Chang-Min; Liu, Shiyi; Al-Shadeedi, Akram; Kaphle, Vikash; Callens, Michiel Koen; Han, Lu; Neyts, Kristiaan; Zhao, Hongping; Gather, Malte C; Bunge, Scott D; Twieg, Robert J; Jakli, Antal; Lüssem, Björn

    2018-01-15

    Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the liquid-crystalline semiconductor improves charge transport in single charge carrier devices profoundly. Comparing the current-voltage characteristics of single charge carrier devices with simulations shows an excellent agreement and from this an in-depth understanding of single charge carrier transport in two-terminal devices is obtained. Finally, p-i-n type organic light-emitting diodes (OLEDs) compatible with vacuum processing techniques used in state-of-the-art OLEDs are demonstrated employing liquid-crystalline host matrix in the emission layer.

  11. Operation and biasing for single device equivalent to CMOS

    DOEpatents

    Welch, James D.

    2001-01-01

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  12. A novel approach to photonic generate microwave signals based on optical injection locking and four-wave mixing

    NASA Astrophysics Data System (ADS)

    Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong

    2017-10-01

    In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.

  13. III–V quantum light source and cavity-QED on Silicon

    PubMed Central

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  14. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    PubMed

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  15. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays.

    PubMed

    Anttu, Nicklas

    2013-03-01

    Semiconductor nanowire arrays have shown promise for next-generation photovoltaics and photodetection, but enhanced understanding of the light-nanowire interaction is still needed. Here, we study theoretically the absorption of light in an array of vertical InP nanowires by moving continuously, first from the electrostatic limit to the nanophotonic regime and then to the geometrical optics limit. We show how the absorption per volume of semiconductor material in the array can be varied by a factor of 200, ranging from 10 times weaker to 20 times stronger than in a bulk semiconductor sample.

  16. Tunable semiconductor laser at 1025-1095 nm range for OCT applications with an extended imaging depth

    NASA Astrophysics Data System (ADS)

    Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej

    2015-03-01

    Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.

  17. Beam collimation and focusing and error analysis of LD and fiber coupling system based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Qiao, Lvlin; Zhou, Dejian; Xiao, Lei

    2017-10-01

    Laser diodde has many advantages, such as high efficiency, small volume, low cost and easy integration, so it is widely used. Because of its poor beam quality, the application of semiconductor laser has also been seriously hampered. In view of the poor beam quality, the ZEMAX optical design software is used to simulate the far field characteristics of the semiconductor laser beam, and the coupling module of the semiconductor laser and the optical fiber is designed and optimized. And the beam is coupled into the fiber core diameter d=200µm, the numerical aperture NA=0.22 optical fiber, the output power can reach 95%. Finally, the influence of the three docking errors on the coupling efficiency during the installation process is analyzed.

  18. Optically switched graphene/4H-SiC junction bipolar transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrashekhar, MVS; Sudarshan, Tangali S.; Omar, Sabih U.

    A bi-polar device is provided, along with methods of making the same. The bi-polar device can include a semiconductor substrate doped with a first dopant, a semiconductor layer on the first surface of the semiconductor substrate, and a Schottky barrier layer on the semiconductor layer. The method of forming a bi-polar device can include: forming a semiconductor layer on a first surface of a semiconductor substrate, where the semiconductor substrate comprises a first dopant and where the semiconductor layer comprises a second dopant that has an opposite polarity than the first dopant; and forming a Schottky barrier layer on amore » first portion of the semiconductor layer while leaving a second portion of the semiconductor layer exposed.« less

  19. PREFACE: Proceedings of the First Workshop of the EU RT Network `Photon-Mediated Phenomena in Semiconductor Nanostructures' (Gregynog, Wales, UK, 28--31 March 2003)

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexei L.

    2004-09-01

    The EU Research Training Network `Photon-Mediated Phenomena in Semiconductor Nanostructures' (HPRN-CT-2002-00298) comprises seven teams from across Europe: Cambridge, Cardiff, Dortmund, Heraklion, Grenoble, Lund and Paderborn (for details see the Network website http://www.astro.cardiff.ac.uk/research/PMPnetwork/index.html). The first workshop of the Network was held at Gregynog Hall, a conference centre in the beautiful countryside of mid-Wales. There were 44 participants who attended the meeting (7 from France, 2 from Japan, 3 from Germany, 1 from Greece, 2 from Russia, 3 from Sweden, 23 from UK and 3 from USA). Of these, 57% were students and young postdoctoral research associates. The talks presented at the meeting were mainly devoted to linear and nonlinear optics of semiconductor nanostructures. Thus the review and research papers included in this special issue of Journal of Physics: Condensed Matter deal with the exciton-mediated optical phenomena in semiconductor quantum wires, quantum wells, planar and spherical microcavities and self-assembled quantum dots. The specific topics covered by the proceedings are exciton-mediated optics, including lasing, of semiconductor quantum wires Bose-Einstein condensation of excitons and microcavity polaritons diffusion, thermalization and photoluminescence of free carriers and excitons in GaAs coupled quantum wells polaritons in semiconductor microcavities exciton-mediated optics of semiconductor photonic dots optical nonlinearities of biexciton waves optics of self-assembled quantum dots photosensitive metal oxides films On the first day of the workshop, a special session on presentation skills, lead by Mike Edmunds, was organized for the young researchers. The meeting concluded with a round-table discussion at which key questions on research, organization and management of the Network were identified and discussed. The second workshop of the Network, organized and chaired by George Kiriakidis, took place at Hersonissos (Crete, Greece) in October 2003. The forthcoming third workshop, organized by Detlef Schikora and Ulrike Woggon, will be held in Paderborn (conference part) and Dortmund (training part) from 4 October 4 through 7 October 2004 (for details visit the Network website). Finally, I would like to thank my colleagues, Celestino Creatore, Nikolay Nikolaev, Lois Smallwood and Andrew Smith, for their help with preparation of the Proceedings.

  20. NASA Tech Briefs, October 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Protein Sensors Based on Optical Ring Resonators; Phase Sensor for Aligning a Segmented Telescope Mirror; Control Software for Advanced Video Guidance Sensor; Generating Control Commands From Gestures Sensed by EMG; Multiple-Flat-Panel System Displays Multidimensional Data; 3D X-Ray Luggage-Screening System; Probe Station and Near-Field Scanner for Testing Antennas; Photodetector Arrays for Multicolor Visible/Infrared Imaging; Semiconductor Bolometers Give Background-Limited Performance; Multichannel X-Band Dielectric-Resonator Oscillator; Automatic Alignment of Displacement-Measuring Interferometer; Earth Observing System Data Gateway; Power User Interface; Mercury Shopping Cart Interface; Cassini Archive Tracking System; Architecture Adaptive Computing Environment; Computing Fault Displacements from Surface Deformations; Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3; SiC Composite Turbine Vanes; Retaining Device for the Interior Structure of a Spacecraft Payload; Tool for Torquing Circular Electrical-Connector Collars; System for Continuous Deaeration of Hydraulic Oil; Solar-Powered Cooler and Heater for an Automobile Interior; Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics; Tool for Two Types of Friction Stir Welding; Stationary Apparatus Would Apply Forces of Walking to Feet; Instrument Would Detect and Collect Biological Aerosols; Boundary Condition for Modeling Semiconductor Nanostructures; Miniature Distillation Column for Producing LOX From Air; Even Illumination from Fiber-Optic-Coupled Laser Diodes; Optically Driven Deformable Mirrors; Algorithm for Automated Detection of Edges of Clouds; Exploiting Quantum Resonance to Solve Combinatorial Problems; Hybrid Terrain Database; On Release of Microbe-Laden Particles from Mars Landers; A Concept for Run-Time Support of the Chapel Language; Thermoelectric Inhomogeneities in (Ag(sub 1-y)SbTe2)(sub x)(PbTe)(sub 1-x); and Spacecraft Escape Capsule.

  1. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors

    PubMed Central

    Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A.; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A.

    2017-01-01

    Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging. PMID:28275728

  2. Context-based automated defect classification system using multiple morphological masks

    DOEpatents

    Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed

    2002-01-01

    Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.

  3. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  4. Ultrafast Silicon-based Modulators using Optical Switching of Vanadium Dioxide

    DTIC Science & Technology

    2014-12-04

    demonstrated by using photothermal heating to induce the VO2 semiconductor-to- metal phase transition and modulate the transmitted optical signal...speeds. By utilizing the sub-picosecond semiconductor-to- metal transition (SMT) in VO2 as the active switching mechanism that enables direct... metallic phases. The steep slope, high contrast, and relatively narrow hysteresis exhibited by these reflectivity measurements indicate the high quality

  5. Optical-microwave interactions in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Figueroa, L.; Slayman, C.; Yen, H. W.

    1980-02-01

    GaAs FETs with built-in optical waveguides are being developed. The purpose is to allow optical signals to be coupled into the active region of the devices efficiently. These FETs will be useful for optical mixing, optical injection locking, and optical detection purposes.

  6. Potentiometric Dye Imaging for Pheochromocytoma and Cortical Neurons with a Novel Measurement System Using an Integrated Complementary Metal-Oxide-Semiconductor Imaging Device

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2010-11-01

    The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.

  7. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    PubMed

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  8. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  9. Vertical-cavity surface-emitting laser sources for gigahertz-bandwidth, multiwavelength frequency-domain photon migration

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Thomas D.; No, Keunsik; Matlock, Alex; Warren, Robert V.; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.

    2017-10-01

    Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.

  10. Effect of laser cavity parameters on saturation of light – current characteristics of high-power pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselov, D A; Pikhtin, N A; Lyutetskiy, A V

    2015-07-31

    We report an experimental study of power characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures with a broadened waveguide as functions of cavity length, stripe contact width and mirror reflectivities. It is shown that at high current pump levels, the variation of the cavity parameters of a semiconductor laser (width, length and mirror reflectivities) influences the light – current (L – I) characteristic saturation and maximum optical power by affecting such laser characteristics, as the current density and the optical output loss. A model is elaborated and an optical power of semiconductor lasers is calculated by taking intomore » account the dependence of the internal optical loss on pump current density and concentration distribution of charge carriers and photons along the cavity axis of the cavity. It is found that only introduction of the dependence of the internal optical loss on pump current density to the calculation model provides a good agreement between experimental and calculated L – I characteristics for all scenarios of variations in the laser cavity parameters. (lasers)« less

  11. Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser

    NASA Astrophysics Data System (ADS)

    Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming

    2017-09-01

    A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.

  12. Semiconductor laser-based optoelectronics oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-08-01

    We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  13. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, Raymond J.; Benett, William J.; Mills, Steven T.

    1997-01-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

  14. Modeling of High-Quality Factor XNOR Gate Using Quantum-Dot Semiconductor Optical Amplifiers at 1 Tb/s

    NASA Astrophysics Data System (ADS)

    Kotb, Amer

    2015-06-01

    The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach-Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor ( Q-factor) on signals and QDs-SOAs' parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ˜1 Tb/s.

  15. Silicon carbide novel optical sensor for combustion systems and nuclear reactors

    NASA Astrophysics Data System (ADS)

    Lim, Geunsik; Kar, Aravinda

    2014-09-01

    Crystalline silicon carbide is a wide bandgap semiconductor material with excellent optical properties, chemical inertness, radiation hardness and high mechanical strength at high temperatures. It is an excellent material platform for sensor applications in harsh environments such as combustion systems and nuclear reactors. A laser doping technique is used to fabricate SiC sensors for different combustion gases such as CO2, CO, NO and NO2. The sensor operates based on the principle of semiconductor optics, producing optical signal in contrast to conventional electrical sensors that produces electrical signal. The sensor response is measured with a low power He-Ne or diode laser.

  16. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-05-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.

  17. Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, Xiaoli

    1989-01-01

    Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.

  18. Modulation Effects in Multi-Section Semiconductor Lasers (Postprint)

    DTIC Science & Technology

    2013-01-01

    resonant modulation of semiconductor lasers beyond relaxation oscillation frequency,” Appl. Phys. Lett., 63, 1459–1461 (1993). [26] J. Helms and K. Petermann ...5, 4–6 (1993). [28] K. Petermann , “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Elec- tron., 1, 480–489

  19. Optical activity of chirally distorted nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.

    2016-05-21

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ bymore » a factor of 10{sup 5}. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.« less

  20. Optical properties of transiently-excited semiconductor hyperbolic metamaterials

    DOE PAGES

    Campione, Salvatore; Luk, Ting S.; Liu, Sheng; ...

    2015-10-02

    Ultrafast optical excitation of photocarriers has the potential to transform undoped semiconductor superlattices into semiconductor hyperbolic metamaterials (SHMs). In this paper, we investigate the optical properties associated with such ultrafast topological transitions. We first show reflectance, transmittance, and absorption under TE and TM plane wave incidence. In the unpumped state, the superlattice exhibits a frequency region with high reflectance (>80%) and a region with low reflectance (<1%) for both TE and TM polarizations over a wide range of incidence angles. In contrast, in the photopumped state, the reflectance for both frequencies and polarizations is very low (<1%) for a similarmore » range of angles. Interestingly, this system can function as an all-optical reflection switch on ultrafast timescales. Furthermore, for TM incidence and close to the epsilon-near-zero point of the longitudinal permittivity, directional perfect absorption on ultrafast timescales may also be achieved. Lastly, we discuss the onset of negative refraction in the photopumped state.« less

  1. Analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Arun, E-mail: arunshuklaujn@gmail.com; Jat, K. L.

    2015-07-31

    An analytical study of acoustically perturbed Brillouin active magnetized semiconductor plasma has been reported. In the present analytical investigation, the lattice displacement, acousto-optical polarization, susceptibility, acousto-optical gain constant arising due to the induced nonlinear current density and acousto-optical process are deduced in an acoustically perturbed Brillouin active magnetized semiconductor plasma using the hydrodynamical model of plasma and coupled mode scheme. The influence of wave number and magnetic field has been explored. The analysis has been applied to centrosymmetric crystal. Numerical estimates are made for n-type InSb crystal duly irradiated by a frequency doubled 10.6 µm CO{sub 2} laser. It is foundmore » that lattice displacement, susceptibility and acousto-optical gain increase linearly with incident wave number and applied dc magnetic field, while decrease with scattering angle. The gain also increases with electric amplitude of incident laser beam. Results are found to be well in agreement with available literature.« less

  2. Scanning Tunneling Optical Resonance Microscopy Developed

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.; Lau, Janis E.; Jenkins, Phillip P.; Castro, Stephanie L.; Tin, Padetha; Wilt, David M.; Pal, Anna Maria; Fahey, Stephen D.

    2004-01-01

    The ability to determine the in situ optoelectronic properties of semiconductor materials has become especially important as the size of device architectures has decreased and the development of complex microsystems has increased. Scanning Tunneling Optical Resonance Microscopy, or STORM, can interrogate the optical bandgap as a function of its position within a semiconductor micro-structure. This technique uses a tunable solidstate titanium-sapphire laser whose output is "chopped" using a spatial light modulator and is coupled by a fiber-optic connector to a scanning tunneling microscope in order to illuminate the tip-sample junction. The photoenhanced portion of the tunneling current is spectroscopically measured using a lock-in technique. The capabilities of this technique were verified using semiconductor microstructure calibration standards that were grown by organometallic vapor-phase epitaxy. Bandgaps characterized by STORM measurements were found to be in good agreement with the bulk values determined by transmission spectroscopy and photoluminescence and with the theoretical values that were based on x-ray diffraction results.

  3. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  4. Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique.

    PubMed

    Qin, Fei; Meng, Zi-Ming; Zhong, Xiao-Lan; Liu, Ye; Li, Zhi-Yuan

    2012-06-04

    We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits.

  5. The Scanning Optical Microscope: An Overview

    NASA Astrophysics Data System (ADS)

    Kino, G. S.; Corte, T. R.; Xiao, G. Q.

    1988-07-01

    In the last few years there has been a resurgence in research on optical microscopes. One reason stems from the invention of the acoustic microscope by Quate and Lemons,1 and the realization that some of the same principles could be applied to the optical microscope. The acoustic microscope has better transverse definition for the same wavelength than the standard optical microscope and at the same time has far better range definition. Consequently, Kompfner, who was involved with the work on the early acoustic microscope, decided to try out similar scanning microscope principles with optics, and started a group with Wilson and Sheppard to carry out such research at Oxford.2 Sometime earlier, Petran et a13 had invented the tandem scanning microscope which used many of the same principles. Now, in our laboratory at Stanford, these ideas on the tandem scanning microscope and the scanning optical microscope are converging. Another aspect of this work, which stems from the earlier experience with the acoustic microscope, involves measurement of both phase and amplitude of the optical beam. It is also possible to use scanned optical microscopy for other purposes. For instance, an optical beam can be used to excite electrons and holes in semiconductors, and the generated current can be measured. By scanning the optical beam over the semiconductor, an image can be obtained of the regions where there is strong or weak electron hole generation. This type of microscope is called OBIC (Optical Beam Induced Current). A second application involves fluorescent imaging of biological materials. Here we have the excellent range definition of a scanning optical microscope which eliminates unwanted glare from regions of the material where the beam is unfocused.3 A third application is focused on the heating effect of the light beam. With such a system, images can be obtained which are associated with changes in the thermal properties of a material, changes in recombination rates in semiconductors, and differences in material properties associated with either acoustic or thermal effects.4,5 Thus, the range of scanning optical microscopy applications is very large. In the main, the most important applications have been to semiconductors and to biology.

  6. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

    PubMed

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S

    2006-01-01

    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  7. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  8. Optical Spectroscopy of Hybrid Semiconductor Quantum Dots and Metal Nanoparticles

    DTIC Science & Technology

    2014-11-07

    Theoretical studies of spin- photon entangled complementarity”. Mr. Anderson Hayes in physics finished B.S. degree in May 2013 with a capstone thesis entitled...working on “Semiconductor quantum dots and photon entanglement ”. Mr. Quinn Allen Hailes, undergraduate student in physics completed B.S. degree in...great interests for the Department of Defense’s (DoD) photonic applications. Our research focused on developing and characterizing advanced optical

  9. III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    DOE PAGES

    Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...

    2016-06-10

    We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

  10. Optoelectronic Devices and Materials

    NASA Astrophysics Data System (ADS)

    Sweeney, Stephen; Adams, Alfred

    Unlike the majority of electronic devices, which are silicon based, optoelectronic devices are predominantly made using III-V semiconductor compounds such as GaAs, InP, GaN and GaSb and their alloys due to their direct band gap. Understanding the properties of these materials has been of vital importance in the development of optoelectronic devices. Since the first demonstration of a semiconductor laser in the early 1960s, optoelectronic devices have been produced in their millions, pervading our everyday lives in communications, computing, entertainment, lighting and medicine. It is perhaps their use in optical-fibre communications that has had the greatest impact on humankind, enabling high-quality and inexpensive voice and data transmission across the globe. Optical communications spawned a number of developments in optoelectronics, leading to devices such as vertical-cavity surface-emitting lasers, semiconductor optical amplifiers, optical modulators and avalanche photodiodes. In this chapter we discuss the underlying theory of operation of the most important optoelectronic devices. The influence of carrier-photon interactions is discussed in the context of producing efficient emitters and detectors. Finally we discuss how the semiconductor band structure can be manipulated to enhance device properties using quantum confinement and strain effects, and how the addition of dilute amounts of elements such as nitrogen is having a profound effect on the next generation of optoelectronic devices.

  11. Ultrafast Modulation of Semiconductor Lasers Through a Terahertz Field

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Hughes, Steven; Citrin, David

    1998-01-01

    We demonstrate, by means of numerical simulation, a new mechanism to modulate and switch semiconductor lasers at THz and sub-THz frequency rates. A sinusoidal terahertz field applied to a semiconductor laser heats the electron-hole plasma and consequently modifies the optical susceptibility. This allows an almost linear modulation of the output power of tile semiconductor laser and leads to a faithful reproduction of the terahertz-field waveform in the emitted laser intensity.

  12. Spectroscopy of materials for terahertz photonics

    NASA Astrophysics Data System (ADS)

    Postava, K.; Chochol, J.; Mičica, M.; Vanwolleghem, M.; Kolejak, P.; Halagačka, L.; Cada, M.; Pištora, J.; Lampin, J.-F.

    2016-12-01

    In this paper we apply the terahertz time-domain spectroscopy (THz-TDS) to obtain optical function spectra in the range from 0.06 to 3 THz. Polarization sensitivity is obtained using azimuth-controlled wire-grid polarizers. We demonstrate general methods on characterization of plasmonic semiconductors. Detail characterization of optical and magneto-optical material properties is also motivated by a need of optical isolator in THz spectral range. The technique is applied to III-V semiconductors. The typical material is a single crystal undoped InSb having the plasma frequency in the range of interest. With appropriate magnetic field (in our case 0.4 T) we observed coupling of plasma and cyclotron behavior of free electrons with gigantic magneto-optic effect in the THz spectral range.

  13. Digital optical signal processing with polarization-bistable semiconductor lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jai-Ming Liu,; Ying-Chin Chen,

    1985-04-01

    The operations of a complete set of optical AND, NAND, OR, and NOR gates and clocked optical S-R, D, J-K, and T flip-flops are demonstrated, based on direct polarization switching and polarization bistability, which we have recently observed in InGaAsP/InP semiconductor lasers. By operating the laser in the direct-polarizationswitchable mode, the output of the laser can be directly switched between the TM00 and TE00 modes with high extinction ratios by changing the injection-current level, and optical logic gates are constructed with two optoelectronic switches or photodetectors. In the polarization-bistable mode, the laser exhibits controllable hysteresis loops in the polarization-resolved powermore » versus current characteristics. When the laser is biased in the middle of the hysteresis loop, the light output can be switched between the two polarization states by injection of short electrical or optical pulses, and clocked optical flip-flops are constructed with a few optoelectronic switches and/or photodetectors. The 1 and 0 states of these devices are defined through polarization changes of the laser and direct complement functions are obtainable from the TE and TM output signals from the same laser. Switching of the polarization-bistable lasers with fast-rising current pulses has an instrument-limited mode-switching time on the order of 1 ns. With fast optoelectronic switches and/or fast photodetectors, the overall switching speed of the logic gates and flip-flops is limited by the polarizationbistable laser to <1 ns. We have demonstrated the operations of these devices using optical signals generated by semiconductor lasers. The proposed schemes of our devices are compatible with monolithic integration based on current fabrication technology and are applicable to other types of bistable semiconductor lasers.« less

  14. Compensation of power drops in reflective semiconductor optical amplifier-based passive optical network with upstream data rate adjustment

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Chiang, Ming-Feng; Shih, Fu-Yuan; Pan, Ci-Ling

    2011-09-01

    In a wavelength division multiplexed-passive optical network (WDM-PON), different fiber lengths and optical components would introduce different power budgets to different optical networking units (ONUs). Besides, the power decay of the distributed optical carrier from the optical line terminal owing to aging of the optical transmitter could also reduce the injected power into the ONU. In this work, we propose and demonstrate a carrier distributed WDM-PON using a reflective semiconductor optical amplifier-based ONU that can adjust its upstream data rate to accommodate different injected optical powers. The WDM-PON is evaluated at standard-reach (25 km) and long-reach (100 km). Bit-error rate measurements at different injected optical powers and transmission lengths show that by adjusting the upstream data rate of the system (622 Mb/s, 1.25 and 2.5 Gb/s), error-free (<10-9) operation can still be achieved when the power budget drops.

  15. Multi-harmonic quantum dot optomechanics in fused LiNbO3-(Al)GaAs hybrids

    NASA Astrophysics Data System (ADS)

    Nysten, Emeline D. S.; Huo, Yong Heng; Yu, Hailong; Song, Guo Feng; Rastelli, Armando; Krenner, Hubert J.

    2017-11-01

    We fabricated an acousto-optic semiconductor hybrid device for strong optomechanical coupling of individual quantum emitters and a surface acoustic wave. Our device comprises of a surface acoustic wave chip made from highly piezoelectric LiNbO3 and a GaAs-based semiconductor membrane with an embedded layer of quantum dots. Employing multi-harmonic transducers, we generated sound waves on LiNbO3 over a wide range of radio frequencies. We monitored their coupling to and propagation across the semiconductor membrane, both in the electrical and optical domain. We demonstrate the enhanced optomechanical tuning of the embedded quantum dots with increasing frequencies. This effect was verified by finite element modelling of our device geometry and attributed to an increased localization of the acoustic field within the semiconductor membrane. For moderately high acoustic frequencies, our simulations predict strong optomechanical coupling, making our hybrid device ideally suited for applications in semiconductor based quantum acoustics.

  16. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  17. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    PubMed

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-09

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  18. Reflection technique for thermal mapping of semiconductors

    DOEpatents

    Walter, Martin J.

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  19. Testing methodologies and systems for semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable of ascertaining SOA performance based solely on the subthreshold differential resistance signature, and are a first step toward the inevitable integration of self-testing circuits into complex optoelectronic systems.

  20. Electrical and Optical Measurements of the Bandgap Energy of a Light-Emitting Diode

    ERIC Educational Resources Information Center

    Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Dumas, Philippe

    2016-01-01

    Semiconductor materials are at the core of electronics. Most electronic devices are made of semiconductors. The operation of these components is well described by quantum physics which is often a difficult concept for students to understand. One of the intrinsic parameters of semiconductors is their bandgap energy E[subscript g]. In the case of…

  1. Recognition of the optical packet header for two channels utilizing the parallel reservoir computing based on a semiconductor ring laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie

    2018-05-01

    In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.

  2. Semiconductor technology program. Progress briefs

    NASA Technical Reports Server (NTRS)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  3. Optical double-locked semiconductor lasers

    NASA Astrophysics Data System (ADS)

    AlMulla, Mohammad

    2018-06-01

    Self-sustained period-one (P1) nonlinear dynamics of a semiconductor laser are investigated when both optical injection and modulation are applied for stable microwave frequency generation. Locking the P1 oscillation through modulation on the bias current, injection strength, or detuning frequency stabilizes the P1 oscillation. Through the phase noise variance, the different modulation types are compared. It is demonstrated that locking the P1 oscillation through optical modulation on the output of the master laser outperforms bias-current modulation of the slave laser. Master laser modulation shows wider P1-oscillation locking range and lower phase noise variance. The locking characteristics of the P1 oscillation also depend on the operating conditions of the optical injection system

  4. Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal.

    PubMed

    Takahashi, S; Tandaechanurat, A; Igusa, R; Ota, Y; Tatebayashi, J; Iwamoto, S; Arakawa, Y

    2013-12-02

    Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.

  5. Power- or frequency-driven hysteresis for continuous-wave optically injected distributed-feedback semiconductor lasers.

    PubMed

    Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud

    2009-05-25

    Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.

  6. Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters

    NASA Astrophysics Data System (ADS)

    Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis

    2018-03-01

    We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.

  7. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  8. Access to long-term optical memories using photon echoes retrieved from semiconductor spins

    NASA Astrophysics Data System (ADS)

    Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2014-11-01

    The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

  9. Integrated all-optical programmable logic array based on semiconductor optical amplifiers.

    PubMed

    Dong, Wenchan; Huang, Zhuyang; Hou, Jie; Santos, Rui; Zhang, Xinliang

    2018-05-01

    The all-optical programmable logic array (PLA) is one of the most important optical complex logic devices that can implement combinational logic functions. In this Letter, we propose and experimentally demonstrate an integrated all-optical PLA at the operation speed of 40 Gb/s. The PLA mainly consists of a delay interferometer (DI) and semiconductor optical amplifiers (SOAs) of different lengths. The DI is used to pre-code the input signals and improve the reconfigurability of the scheme. The longer SOAs are nonlinear media for generating canonical logic units (CLUs) using four-wave mixing. The shorter SOAs are used to select the appropriate CLUs by changing the working states; then reconfigurable logic functions can be output directly. The results show that all the CLUs are realized successfully, and the optical signal-to-noise ratios are above 22 dB. The exclusive NOR gate and exclusive OR gate are experimentally demonstrated based on output CLUs.

  10. Phase Recovery Acceleration of Quantum-Dot Semiconductor Optical Amplifiers by Optical Pumping to Quantum-Well Wetting Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-11-01

    We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.

  11. Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor.

    PubMed

    Xie, Hongchao; Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-09

    We demonstrate robust optical bistability, the phenomenon of two well-discriminated stable states depending upon the history of the optical input, in fully suspended monolayers of WSe 2 at low temperatures near the exciton resonance. Optical bistability has been achieved under continuous-wave optical excitation that is red-detuned from the exciton resonance at an intensity level of 10 3 W/cm 2 . The observed bistability is originated from a photothermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. The low thermal conductance of suspended samples is primarily responsible for the low excitation intensities required for optical bistability. Under a finite out-of-plane magnetic field, the exciton bistability becomes helicity dependent due to the exciton valley Zeeman effect, which enables repeatable switching of the sample reflectance by light polarization. Our study has opened up exciting opportunities in controlling light with light, including its wavelength, power, and polarization, using monolayer semiconductors.

  12. Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.

    PubMed

    Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri

    2011-09-26

    We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America

  13. Investigation of 16 × 10 Gbps DWDM System Based on Optimized Semiconductor Optical Amplifier

    NASA Astrophysics Data System (ADS)

    Rani, Aruna; Dewra, Sanjeev

    2017-08-01

    This paper investigates the performance of an optical system based on optimized semiconductor optical amplifier (SOA) at 160 Gbps with 0.8 nm channel spacing. Transmission distances up to 280 km at -30 dBm input signal power and up to 247 km at -32 dBm input signal power with acceptable bit error rate (BER) and Q-factor are examined. It is also analyzed that the transmission distance up to 292 km has been covered at -28 dBm input signal power using Dispersion Shifted (DS)-Normal fiber without any power compensation methods.

  14. Crisis route to chaos in semiconductor lasers subjected to external optical feedback

    NASA Astrophysics Data System (ADS)

    Wishon, Michael J.; Locquet, Alexandre; Chang, C. Y.; Choi, D.; Citrin, D. S.

    2018-03-01

    Semiconductor lasers subjected to optical feedback have been intensively used as archetypical testbeds for high-speed (sub-ns) and high-dimensional nonlinear dynamics. By simultaneously extracting all the dynamical variables, we demonstrate that for larger current, the commonly named "quasiperiodic" route is in fact based on mixed external-cavity solutions that lock the oscillation frequency of the intensity, voltage, and separation in optical frequency through a mechanism involving successive rejections along the unstable manifold of an antimode. We show that chaos emerges from a crisis resulting from the inability to maintain locking as the unstable manifold becomes inaccessible.

  15. Enhanced 10 Gb/s operations of directly modulated reflective semiconductor optical amplifiers without electronic equalization.

    PubMed

    Presi, M; Chiuchiarelli, A; Corsini, R; Choudury, P; Bottoni, F; Giorgi, L; Ciaramella, E

    2012-12-10

    We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength drifts. This removes the need for wavelength lockers, additional electronic equalization or complex digital signal processing. Uniform C-band operations are obtained experimentally with < 2 dB power penalty within a wavelength drift of 10 GHz (which doubles the ITU-T standard recommendations).

  16. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, R.J.; Benett, W.J.; Mills, S.T.

    1997-04-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

  17. Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser.

    PubMed

    Juan, Yu-Shan; Lin, Fan-Yi

    2010-04-26

    We experimentally demonstrated the ultra-wideband (UWB) signal generation utilizing nonlinear dynamics of an optical pulse-injected semiconductor laser. The UWB signals generated are fully in compliant with the FCC mask for indoor radiation, while a large fractional bandwidth of 93% is achieved. To show the feasibility of UWB-over-fiber, transmission over a 2 km single-mode fiber and a wireless channel utilizing a pair of broadband antennas are examined. Moreover, proof of concept experiment on data encoding and decoding with 250 Mb/s in the optical pulse-injected laser is successfully demonstrated.

  18. Structure of CdTe nanoparticles in glass

    NASA Astrophysics Data System (ADS)

    Hayes, T. M.; Nagpal, Swati; Persans, P. D.

    2000-03-01

    Optical long-pass wavelength filters are generally made by growing small crystallites of appropriate semiconductors in a transparent glass matrix. Depending on the semiconductor, these systems are candidates for interesting and important nonlinear optical switching applications. The structure of these nanocrystals has been shown to be a valuable indicator of the chemical and thermodynamic processes during crystallite growth and dissolution. We have used x-ray absorption spectroscopy to study the structure of the crystallites produced during heat treatment of filter glasses containing Cd and Te and producing optical absorption edges at the band gap of bulk CdTe. The results will be discussed.

  19. Influence of optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-10-01

    We numerically investigate the influence of the optical pumping wavelength on the ultrafast gain and phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by solving 1088 coupled rate equations. The temporal variations of the gain and phase recovery response at the ground state (GS) of QDs are calculated at various signal wavelengths when the optical pumping wavelengths at the excited state (ES) of QDs are varied. The phase recovery response is fastest when the wavelength of the signal and pumping beams corresponds to the respective emission wavelength of the GS and the ES in the same size of QDs. The absorption efficiency of the optical pumping beam at the ES is determined by the Lorentzian line shape function of the homogeneous broadening.

  20. Optical-spectrum-synthesizer design within an all-optical semiconductor gate to reduce waveform distortion induced by carrier-cooling relaxation at sub-Teraherz frequencies

    NASA Astrophysics Data System (ADS)

    Ueno, Yoshiyasu; Nakamoto, Ryouichi; Sakaguchi, Jun; Suzuki, Rei

    2006-12-01

    In frequency ranges above 200-300 GHz, the second slowest relaxation in the optical response (such as carrier-cooling relaxation having a time constant of 1-2 ps) of a semiconductor optical amplifier inside the conventional delayed-interference signal-wavelength converter (DISC) scheme is thought to start the distortion of all-optically gated waveforms. In this work, we design a digital optical-spectrum-synthesizer block that is part of the expanded DISC scheme. Our numerically calculated spectra, waveforms, and eye diagrams with assumed pseudorandom digital data pulses indicate that this synthesizer significantly removes strong distortion from the gated waveforms. A signal-to-noise ratio of 20 dB was obtained from our random-data eye diagram, providing proof of effectiveness in principle.

  1. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  2. Transport Optical and Magnetic Properties of Solids.

    DTIC Science & Technology

    Solid state physics, Band theory of solids, Semiconductors, Strontium compounds, Superconductors, Magnetic properties, Chalcogens, Transport properties, Optical properties, Bibliographies, Scientific research, Magnons

  3. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  4. Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.

    2018-01-01

    We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.

  5. Distributed gain in plasmonic reflectors and its use for terahertz generation.

    PubMed

    Sydoruk, O; Syms, R R A; Solymar, L

    2012-08-27

    Semiconductor plasmons have potential for terahertz generation. Because practical device formats may be quasi-optical, we studied theoretically distributed plasmonic reflectors that comprise multiple interfaces between cascaded two-dimensional electron channels. Employing a mode-matching technique, we show that transmission through and reflection from a single interface depend on the magnitude and direction of a dc current flowing in the channels. As a result, plasmons can be amplified at an interface, and the cumulative effect of multiple interfaces increases the total gain, leading to plasmonic reflection coefficients exceeding unity. Reversing the current direction in a distributed reflector, however, has the opposite effect of plasmonic deamplification. Consequently, we propose structurally asymmetric resonators comprising two different distributed reflectors and predict that they are capable of terahertz oscillations at low threshold currents.

  6. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion.

    PubMed

    Schaller, R D; Klimov, V I

    2004-05-07

    We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.

  7. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakry, A.; Abdulrhmann, S.; Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding themore » second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.« less

  8. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    PubMed

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  9. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  10. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering

    DOE PAGES

    Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.; ...

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of themore » crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.« less

  11. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of themore » crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.« less

  12. Access to long-term optical memories using photon echoes retrieved from electron spins in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2016-10-01

    We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.

  13. 10-Gbps optical duobinary signal generated by bandwidth-limited reflective semiconductor optical amplifier in colorless optical network units and compensated by fiber Bragg grating-based equalizer in optical line terminal

    NASA Astrophysics Data System (ADS)

    Fu, Meixia; Zhang, Min; Wang, Danshi; Cui, Yue; Han, Huanhuan

    2016-10-01

    We propose a scheme of optical duobinary-modulated upstream transmission system for reflective semiconductor optical amplifier-based colorless optical network units in 10-Gbps wavelength-division multiplexed passive optical network (WDM-PON), where a fiber Bragg grating (FBG) is adopted as an optical equalizer for better performance. The demodulation module is extremely simple, only needing a binary intensity modulation direct detection receiver. A better received sensitivity of -16.98 dBm at bit rate error (BER)=1.0×10-4 can be achieved at 120 km without FBG, and the BER at the sensitivity of -18.49 dBm can be up to 2.1×10-5 at the transmission distance of 160 km with FBG, which demonstrates the feasibility of our proposed scheme. Moreover, it could be a high cost-effectiveness scheme for WDM-PON in the future.

  14. Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser

    NASA Astrophysics Data System (ADS)

    Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa

    2018-02-01

    A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.

  15. Exploration of operator method digital optical computers for application to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.

  16. Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Dutta, Niloy K.

    2018-01-01

    We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.

  17. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  18. Semiconductor composition containing iron, dysprosium, and terbium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.

    An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.

  19. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  20. Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications.

    PubMed

    Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E

    2006-03-15

    Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.

  1. Extraordinary plasticity of an inorganic semiconductor in darkness.

    PubMed

    Oshima, Yu; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2018-05-18

    Inorganic semiconductors generally tend to fail in a brittle manner. Here, we report that extraordinary "plasticity" can take place in an inorganic semiconductor if the deformation is carried out "in complete darkness." Room-temperature deformation tests of zinc sulfide (ZnS) were performed under varying light conditions. ZnS crystals immediately fractured when they deformed under light irradiation. In contrast, it was found that ZnS crystals can be plastically deformed up to a deformation strain of ε t = 45% in complete darkness. In addition, the optical bandgap of the deformed ZnS crystals was distinctly decreased after deformation. These results suggest that dislocations in ZnS become mobile in complete darkness and that multiplied dislocations can affect the optical bandgap over the whole crystal. Inorganic semiconductors are not necessarily intrinsically brittle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.

    2012-07-01

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  3. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.

    PubMed

    Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M

    2012-07-17

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  4. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    PubMed Central

    Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F.; Ross, Caroline A.

    2013-01-01

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4)O3−δ and polycrystalline (CeY2)Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2)Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates. PMID:28788379

  5. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  6. Optical feedback structures and methods of making

    DOEpatents

    None

    2014-11-18

    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  7. Frequency division multiplexed radio-over-fiber transmission using an optically injected laser diode

    NASA Astrophysics Data System (ADS)

    Chan, Sze-Chun

    2008-04-01

    Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is advantageous over conventional direct current modulation because it alleviates the modulation bandwidth limitation and naturally generates single sideband signals. The method is thus applicable to wireless communication systems even when the subcarrier frequency increases to 60 GHz. Because RoF is usually incorporated with standard wireless schemes that involve frequency division multiplexing (FDM), we investigate the performance of the optical injection system under simultaneous current injection of multiple data streams. Frequency mixings and competition for locking among subcarriers result in intermodulation distortion (IMD). The relative weightings of different channels should be optimized to ensure acceptable signal qualities. The results illustrate the feasibility of applying the optical injection system for FDM RoF transmission at high subcarrier frequencies.

  8. Methods and devices for optimizing the operation of a semiconductor optical modulator

    DOEpatents

    Zortman, William A.

    2015-07-14

    A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.

  9. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared.

    PubMed

    Zamiri, Reza; Abbastabar Ahangar, Hossein; Zakaria, Azmi; Zamiri, Golnoosh; Shabani, Mehdi; Singh, Budhendra; Ferreira, J M F

    2015-01-01

    In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime. Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports for the band gap energy of Ag2S nanoparticles (0.9-1.1 eV). The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K-K method. Graphical abstractThe Far-infrared optical constants of Ag2S semiconductor nanoparticles.

  10. Investigation of Optical Properties of Zinc Oxide Photodetector

    NASA Astrophysics Data System (ADS)

    Chism, Tyler

    UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today's photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this research a metal-semiconductor-metal UV photodetector has been fabricated by using a quartz substrate on top of which was deposited micropatterned gold in an interdigitated electrode design. On this, sparsely coated zinc oxide nano trees were hydrothermally grown. The UV photodetection device showed promise for detection applications, especially because zinc oxide is also very thermally stable, a quality which is highly sought after in today's UV photodetectors. Furthermore, the newly synthesized photodetector was used to investigate optical properties and how they respond to different stimuli. It was discovered that the photons transmitted through the sparsely coated zinc oxide nano trees decreased as the voltage across the device increased. This research is aimed at better understanding photons interaction with matter and also to open the door for new devices with tunable optical properties such as transmission.

  11. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    NASA Astrophysics Data System (ADS)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  12. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  13. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  14. Comparative assessment of erbium fiber ring lasers and reflective SOA linear lasers for fiber Bragg grating dynamic strain sensing.

    PubMed

    Wei, Heming; Krishnaswamy, Sridhar

    2017-05-01

    Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.

  15. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    PubMed

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  16. Optical-microwave interactions in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Figueroa, L.; Slayman, C. W.; Yen, H. W.

    1981-03-01

    The results of an extensive characterization of microwave-optical devices is presented. The study has concentrated in the optical injection locking of IMPATT oscillators, high-speed analog modulation of (GaAl)As injection laser, mode-locking of (GaAl)As injection laser, and high-speed optical detectors.

  17. Dynamic chirp control of all-optical format-converted pulsed data from a multi-wavelength inverse-optical-comb injected semiconductor optical amplifier.

    PubMed

    Lin, Gong-Ru; Pan, Ci-Ling; Yu, Kun-Chieh

    2007-10-01

    By spectrally and temporally reshaping the gain-window of a traveling-wave semiconductor optical amplifier (TWSOA) with a backward injected multi- or single-wavelength inverse-optical-comb, we theoretically and experimentally investigate the dynamic frequency chirp of the all-optical 10GBit/s Return-to-Zero (RZ) data-stream format-converted from the TWSOA under strong cross-gain depletion scheme. The multi-wavelength inverse-optical-comb injection effectively depletes the TWSOA gain spectrally and temporally, remaining a narrow gain-window and a reduced spectral linewidth and provide a converted RZ data with a smaller peak-to-peak frequency chirp of 6.7 GHz. Even at high inverse-optical-comb injection power and highly biased current condition for improving the operational bit-rate, the chirp of the multi-wavelength-injection converted RZ pulse is still 2.1-GHz smaller than that obtained by using single-wavelength injection at a cost of slight pulse-width broadening by 1 ps.

  18. Effect of wetting-layer density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kim, Jungho; Yu, Bong-Ahn

    2015-03-01

    We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases.

  19. Laser warning receiver to identify the wavelength and angle of arrival of incident laser light

    DOEpatents

    Sinclair; Michael B.; Sweatt, William C.

    2010-03-23

    A laser warning receiver is disclosed which has up to hundreds of individual optical channels each optically oriented to receive laser light from a different angle of arrival. Each optical channel has an optical wedge to define the angle of arrival, and a lens to focus the laser light onto a multi-wavelength photodetector for that channel. Each multi-wavelength photodetector has a number of semiconductor layers which are located in a multi-dielectric stack that concentrates the laser light into one of the semiconductor layers according to wavelength. An electrical signal from the multi-wavelength photodetector can be processed to determine both the angle of arrival and the wavelength of the laser light.

  20. Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds

    NASA Astrophysics Data System (ADS)

    Giller, Robin; Manning, Robert J.; Talli, Giuseppe; Webb, Roderick P.; Adams, Michael J.

    2007-02-01

    We investigate the dependence of the speed of recovery of optically excited semiconductor optical amplifiers (SOAs) on the active region dimensions. We use a picosecond pump-probe arrangement to experimentally measure and compare the gain and phase dynamics of four SOAs with varying active region dimensions. A sophisticated time domain SOA model incorporating amplified spontaneous emission (ASE) agrees well with the measurements and shows that, in the absence of a continuous wave (CW) beam, the ASE plays a similar role to such a holding beam. The experimental results are shown to be consistent with a recovery rate which is inversely proportional to the optical area. A significant speed increase is predicted for an appropriate choice of active region dimensions.

  1. Superabsorbing, Artificial Metal Films Constructed from Semiconductor Nanoantennas.

    PubMed

    Kim, Soo Jin; Park, Junghyun; Esfandyarpour, Majid; Pecora, Emanuele F; Kik, Pieter G; Brongersma, Mark L

    2016-06-08

    In 1934, Wilhelm Woltersdorff demonstrated that the absorption of light in an ultrathin, freestanding film is fundamentally limited to 50%. He concluded that reaching this limit would require a film with a real-valued sheet resistance that is exactly equal to R = η/2 ≈ 188.5Ω/□, where [Formula: see text] is the impedance of free space. This condition can be closely approximated over a wide frequency range in metals that feature a large imaginary relative permittivity εr″, that is, a real-valued conductivity σ = ε0εr″ω. A thin, continuous sheet of semiconductor material does not facilitate such strong absorption as its complex-valued permittivity with both large real and imaginary components preclude effective impedance matching. In this work, we show how a semiconductor metafilm constructed from optically resonant semiconductor nanostructures can be created whose optical response mimics that of a metallic sheet. For this reason, the fundamental absorption limit mentioned above can also be reached with semiconductor materials, opening up new opportunities for the design of ultrathin optoelectronic and light harvesting devices.

  2. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic semiconductor NCs with LSPRs covering the entire spectral range, from the mid- to the NIR. We focus on copper chalcogenide NCs and impurity doped metal oxide NCs as the most investigated alternatives to noble metals. We shed light on the structural changes upon LSPR tuning in vacancy doped copper chalcogenide NCs and deliver a picture for the fundamentally different mechanism of LSPR modification of impurity doped metal oxide NCs. We review on the peculiar optical properties of plasmonic degenerately doped NCs by highlighting the variety of different optical measurements and optical modeling approaches. These findings are merged in an exhaustive section on new and exciting applications based on the special characteristics that plasmonic semiconductor NCs bring along.

  3. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  4. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Y. F.; Perera, A. G. U., E-mail: uperera@gsu.edu; Center for Nano-Optics

    2016-03-14

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3–5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ{sub 0}, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μmmore » in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ{sub 0} is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ{sub 0}. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.« less

  5. Structural phase transition, electronic structure and optical properties of half Heusler alloys LiBeZ (Z = As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amudhavalli, A.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com

    2016-05-23

    Ab initio calculations are performed to investigate the structural stability, electronic structure, mechanical properties and optical properties of half Heusler alloys (LiBeAs and LiBeSb) for three different phases of zinc blende crystal structure. Among the considered phases, α- phase is found to be the most stable phase for these alloys at normal pressure. A pressure induced structural phase transition from α-phase to β- phase is observed for LiBeAs. The electronic structure reveals that these alloys are semiconductors. The optical properties confirm that these alloys are semiconductor in nature.

  6. Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen

    2010-01-01

    We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.

  7. Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices.

    PubMed

    Lim, Wen Xiang; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Cong, Longqing; Kumar, Abhishek; MacDonald, Kevin F; Singh, Ranjan

    2018-03-01

    Incorporating semiconductors as active media into metamaterials offers opportunities for a wide range of dynamically switchable/tunable, technologically relevant optical functionalities enabled by strong, resonant light-matter interactions within the semiconductor. Here, a germanium-thin-film-based flexible metaphotonic device for ultrafast optical switching of terahertz radiation is experimentally demonstrated. A resonant transmission modulation depth of 90% is achieved, with an ultrafast full recovery time of 17 ps. An observed sub-picosecond decay constant of 670 fs is attributed to the presence of trap-assisted recombination sites in the thermally evaporated germanium film. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  9. Electric currents induced by twisted light in Quantum Rings.

    PubMed

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  10. Laser pumping of thyristors for fast high current rise-times

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2013-06-11

    An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.

  11. Optical activity in chiral stacks of 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Poshakinskiy, Alexander V.; Kazanov, Dmitrii R.; Shubina, Tatiana V.; Tarasenko, Sergey A.

    2018-03-01

    We show that the stacks of two-dimensional semiconductor crystals with the chiral packing exhibit optical activity and circular dichroism. We develop a microscopic theory of these phenomena in the spectral range of exciton transitions that takes into account the spin-dependent hopping of excitons between the layers in the stack and the interlayer coupling of excitons via electromagnetic field. For the stacks of realistic two-dimensional semiconductors such as transition metal dichalcogenides, we calculate the rotation and ellipticity angles of radiation transmitted through such structures. The angles are resonantly enhanced at the frequencies of both bright and dark exciton modes in the stack. We also study the photoluminescence of chiral stacks and show that it is circularly polarized.

  12. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  13. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  14. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  15. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  16. Study of the spectral width of intermode beats and optical spectrum of an actively mode-locked three-mirror semiconductor laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M

    2005-09-30

    Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width ({approx}3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is {approx}3.7 THz. (control of laser radiation parameters)

  17. Intracavity dispersion effect on timing jitter of ultralow noise mode-locked semiconductor based external-cavity laser.

    PubMed

    Gee, S; Ozharar, S; Plant, J J; Juodawlkis, P W; Delfyett, P J

    2009-02-01

    We report the generation of optical pulse trains with 380 as of residual timing jitter (1 Hz-1 MHz) from a mode-locked external-cavity semiconductor laser, through a combination of optimizing the intracavity dispersion and utilizing a high-power, low-noise InGaAsP quantum-well slab-coupled optical waveguide amplifier gain medium. This is, to our knowledge, the lowest residual timing jitter reported to date from an actively mode-locked laser.

  18. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  19. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  20. Superlattice photoelectrodes for photoelectrochemical cells

    DOEpatents

    Nozik, Arthur J.

    1987-01-01

    A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.

  1. Two semiconductor ring lasers coupled by a single-waveguide for optical memory operation

    NASA Astrophysics Data System (ADS)

    Van der Sande, Guy; Coomans, Werner; Gelens, Lendert

    2014-05-01

    Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. Hence, information can be coded into the emission direction. This bistable operation allows SRLs to be used in systems for all-optical switching and as all-optical memories. For the demonstration of fast optical flip-flop operation, Hill et al. [Nature 432, 206 (2004)] fabricated two SRLs coupled by a single waveguide, rather than a solitary SRL. Nevertheless, the literature shows that a single SRL can also function perfectly as an all-optical memory. In our recent paper [W. Coomans et al., Phys. Rev. A 88, 033813, (2013)], we have raised the question whether coupling two SRLs to realize a single optical memory has any advantage over using a solitary SRL, taking into account the obvious disadvantage of a doubled footprint and power consumption. To provide the answer, we have presented in that paper a numerical study of the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide, both when weakly coupled and when strongly coupled. We have provided a detailed analysis of the multistable landscape in the coupled system, analyzed the stability of all solutions and related the internal dynamics in the individual lasers to the field effectively measured at the output of the waveguide. We have shown which coupling phases generally promote instabilities and therefore need to be avoided in the design. Regarding all-optical memory operation, we have demonstrated that there is no real advantage for bistable memory operation compared to using a solitary SRL. An increased power suppression ratio has been found to be mainly due to the destructive interference of the SRL fields at the low power port. Also, multistability between several modal configurations has been shown to remain unavoidable.

  2. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  3. External control of semiconductor nanostructure lasers

    NASA Astrophysics Data System (ADS)

    Naderi, Nader A.

    2011-12-01

    Novel semiconductor nanostructure laser diodes such as quantum-dot and quantum-dash are key optoelectronic candidates for many applications such as data transmitters in ultra fast optical communications. This is mainly due to their unique carrier dynamics compared to conventional quantum-well lasers that enables their potential for high differential gain and modified linewidth enhancement factor. However, there are known intrinsic limitations associated with semiconductor laser dynamics that can hinder the performance including the mode stability, spectral linewidth, and direct modulation capabilities. One possible method to overcome these limitations is through the use of external control techniques. The electrical and/or optical external perturbations can be implemented to improve the parameters associated with the intrinsic laser's dynamics, such as threshold gain, damping rate, spectral linewidth, and mode selectivity. In this dissertation, studies on the impact of external control techniques through optical injection-locking, optical feedback and asymmetric current bias control on the overall performance of the nanostructure lasers were conducted in order to understand the associated intrinsic device limitations and to develop strategies for controlling the underlying dynamics to improve laser performance. In turn, the findings of this work can act as a guideline for making high performance nanostructure lasers for future ultra fast data transmitters in long-haul optical communication systems, and some can provide an insight into making a compact and low-cost terahertz optical source for future implementation in monolithic millimeter-wave integrated circuits.

  4. 1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression.

    PubMed

    Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung

    2005-02-07

    Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.

  5. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  6. Nonlinear Optical Interactions in Semiconductors.

    DTIC Science & Technology

    1985-12-10

    Physique du Solide et Energie Solaire We had on-going interaction with Dr. Christian Verie on the growth of high quality narrow-gap semiconductor crystals...The band gap energy of the semiconductor decreases with increasing temperature. Consequently, the absorption of light in the energy region of the...gas and, more importantly, will modulate the electron energy at the difference frequency, wI - 02" Under ordinary circumstances such an energy (or

  7. Nonlinear Optical Interactions in Semiconductors

    DTIC Science & Technology

    1984-03-16

    aU internal audits for TACAN Corporation. 7 V. Coupling A, C. N. R. S., Physique du Solide et Energie Solaire We have an ongoing interaction with Dr...fiber to the semiconductor sample and back to the analyzing electronics. The band gap energy of the semiconductor decreases with increasing tem- perature...Consequently, the absorption of light in the energy region of the band gap changes with temperature. From the measured light absorp- tion, the

  8. Single photon detection with self-quenching multiplication

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  9. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  10. Electrical control of second-harmonic generation in a WSe 2 monolayer transistor

    DOE PAGES

    Seyler, Kyle L.; Schaibley, John R.; Gong, Pu; ...

    2015-04-20

    Nonlinear optical frequency conversion, in which optical fields interact with a nonlinear medium to produce new field frequencies, is ubiquitous in modern photonic systems. However, the nonlinear electric susceptibilities that give rise to such phenomena are often challenging to tune in a given material and, so far, dynamical control of optical nonlinearities remains confined to research laboratories as a spectroscopic tool. In this paper, we report a mechanism to electrically control second-order optical nonlinearities in monolayer WSe 2, an atomically thin semiconductor. We show that the intensity of second-harmonic generation at the A-exciton resonance is tunable by over an ordermore » of magnitude at low temperature and nearly a factor of four at room temperature through electrostatic doping in a field-effect transistor. Such tunability arises from the strong exciton charging effects in monolayer semiconductors, which allow for exceptional control over the oscillator strengths at the exciton and trion resonances. The exciton-enhanced second-harmonic generation is counter-circularly polarized to the excitation laser due to the combination of the two-photon and one-photon valley selection rules, which have opposite helicity in the monolayer. Finally, our study paves the way towards a new platform for chip-scale, electrically tunable nonlinear optical devices based on two-dimensional semiconductors.« less

  11. Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback

    NASA Astrophysics Data System (ADS)

    Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni

    2018-04-01

    Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.

  12. V-shaped resonators for addition of broad-area laser diode arrays

    DOEpatents

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  13. Optical properties of nanowire metamaterials with gain

    NASA Astrophysics Data System (ADS)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  14. Microscale fluid transport using optically controlled marangoni effect

    DOEpatents

    Thundat, Thomas G [Knoxville, TN; Passian, Ali [Knoxville, TN; Farahi, Rubye H [Oak Ridge, TN

    2011-05-10

    Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

  15. Optical Control of Intersubband Absorption in a Multiple Quantum Well-Embedded Semiconductor Microcravity

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    2000-01-01

    Optical intersubband response of a multiple quantum well (MQW)-embedded microcavity driven by a coherent pump field is studied theoretically. The n-type doped MQW structure with three subbands in the conduction band is sandwiched between a semi-infinite medium and a distributed Bragg reflector (DBR). A strong pump field couples the two upper subbands and a weak field probes the two lower subbands. To describe the optical response of the MQW-embedded microcavity, we adopt a semi-classical nonlocal response theory. Taking into account the pump-probe interaction, we derive the probe-induced current density associated with intersubband transitions from the single-particle density-matrix formalism. By incorporating the current density into the Maxwell equation, we solve the probe local field exactly by means of Green's function technique and the transfer-matrix method. We obtain an exact expression for the probe absorption coefficient of the microcavity. For a GaAs/Al(sub x)Ga(sub 1-x)As MQW structure sandwiched between a GaAs/AlAs DBR and vacuum, we performed numerical calculations of the probe absorption spectra for different parameters such as pump intensity, pump detuning, and cavity length. We find that the probe spectrum is strongly dependent on these parameters. In particular, we find that the combination of the cavity effect and the Autler-Townes effect results in a triplet in the optical spectrum of the MQW system. The optical absorption peak value and its location can be feasibly controlled by varying the pump intensity and detuning.

  16. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  17. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  18. Direct solar pumping of semiconductor lasers: A feasibility study

    NASA Technical Reports Server (NTRS)

    Anderson, Neal G.

    1991-01-01

    The primary goals of the feasibility study are the following: (1) to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space directly focused sunlight; and (2) to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or battery electrically pumping a current injection laser. With external modulation, such lasers may prove to be efficient sources for intersatellite communications. We proposed to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation for operation at low pump intensities. This report outlines our progress toward these goals. Discussion of several technical details are left to the attached summary abstract.

  19. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE PAGES

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; ...

    2016-02-01

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  20. Optical Properties of A GaInNAs Multi-Quantum Well Semiconductor

    NASA Astrophysics Data System (ADS)

    Hughes, Timothy S.; Ren, Shang-Fen; Jiang, De-Sheng; Xiaogan, Liang

    2002-03-01

    Optoelectronic devices used today depend on lasers that have wavelengths in the optical fiber transmission window of 1.3 to 1.55 micrometers. When using GaAs substrate semiconductor lasers, we typically see this range of light emission. Quaternary materials, such as GaInNAs grown on this substrate, not only allow us to control the output wavelength, but it also allows us to manipulate the lattice constant. Further research has potential to produce low-costing highly efficient Vertical Cavity Surface Emitting Lasers (VCSEL). Using a Fourier-Transform Spectrometer, a method of using a Michelson Interferometer to measure the interference between two coherent beams, we measured and analyzed the photoluminescence spectra of a GaInNAs multi-quantum well semiconductor, grown using the Molecular Beam Epitaxy (MBE) growth technique. The experiments of this research were carried out in an undergraduate international research experience at the Chinese Semiconductor Institute supported by the Division of International Programs of NSF.

  1. Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process

    NASA Astrophysics Data System (ADS)

    Zhang, Huihui; Xu, Qishu; Tan, Guolong

    2016-09-01

    CuSbS2 nanocrystals have been synthesized through mechanical alloying Cu, Sb and S elemental powders for 40 hs. The optical spectrum of as-milled CuSbS2 nano-powders demonstrates a direct gap of 1.35 eV and an indirect gap of 0.36 eV, which are similar to that of silicon and reveals the evidence for the indirect semiconductor characterization of CuSbS2. Afterwards, CuSbS2 nanocrystals were capped with trioctylphosphine oxide/trioctylphosphine/pyridine (TOPO/TOP). There appear four sharp absorption peaks within the region of 315 to 355 nm for the dispersion solution containing the capped nanocrystals. The multiple peaks are proposed to be originating from the energy level splitting of 1S electronic state into four discrete sub-levels, where electrons were excited into the conduction band and thus four exciton absorption peaks were produced.

  2. Quantum dots in imaging, drug delivery and sensor applications

    PubMed Central

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian

    2017-01-01

    Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications. PMID:28814860

  3. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    PubMed

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  4. Quantum dots in imaging, drug delivery and sensor applications.

    PubMed

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Pop, Teodora; Mosteanu, Ofelia; Puia, Cosmin; Iancu, Cornel; Mocan, Lucian

    2017-01-01

    Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.

  5. Electron localization and optical absorption of polygonal quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  6. High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities

    NASA Astrophysics Data System (ADS)

    Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu

    2018-04-01

    We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.

  7. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    PubMed

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  8. View from... JSAP Spring Meeting: A marriage of materials and optics

    NASA Astrophysics Data System (ADS)

    Horiuchi, Noriaki

    2017-04-01

    A laser-annealing technique for increasing the dopant concentration in semiconductors, the creation of a glass with second-order optical nonlinearity and the realization of optical topological insulators were highlights at the Japan Society of Applied Physics Spring Meeting.

  9. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry

    DOE PAGES

    Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; ...

    2015-02-09

    Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shellmore » retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Furthermore, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.« less

  10. Valley-selective photon-dressed states in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    LaMountain, Trevor; Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.

    2018-02-01

    When electronic excitations in a semiconductor interact with light, the relevant quasiparticles are hybrid lightmatter dressed states, or exciton-polaritons. In monolayer transition metal dichalcogenides, a class of 2D direct bandgap semiconductors, optical excitations selectively populate distinct momentum valleys with correlated spin projection. The combination of this spin-valley locking with photon dressed states can lead to new optical phenomena in these materials. We present spectroscopic measurements of valley-specific exciton-polaritons in monolayer 2D materials in distinct regimes. When a monolayer is embedded in a dielectric microcavity, strong coupling exciton-polaritons are achieved. Cavity-modified dynamics of the dressed states are inferred from emission. Polarization persists up to room temperature in monolayer MoS2, in contrast with bare material. We also show that distinct regimes of valley-polarized exciton-polaritons can be accessed with microcavity engineering by tuning system parameters such as cavity decay rate and exciton-photon coupling strength. Further, we report results showing that polarization-sensitive ultrafast spectroscopy can enable sensitive measurements of the valley optical Stark shift, a light-induced dressed state energy shift, in monolayer semiconductors such as WSe2 and MoS2. These findings demonstrate distinct approaches to manipulating the picosecond dynamics of valleysensitive dressed states in monolayer semiconductors.

  11. Proton Nonionizing Energy Loss (NIEL) for Device Applications

    NASA Technical Reports Server (NTRS)

    Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas

    2003-01-01

    Nonionizing energy loss (NIEL) is a quantity that describes the rate of energy loss due to atomic displacements as a particle traverses a material. The product of the NIEL and the particle fluence (time integrated flux) gives the displacement damage energy deposition per unit mass of material. NIEL plays the same role to the displacement damage energy deposition as the stopping power to the total ionizing dose (TID). The concept of NIEL has been very useful for correlating particle induced displacement damage effects in semiconductor and optical devices. Many studies have successfully demonstrated that the degradation of semiconductor devices or optical sensors in a radiation field can be linearly correlated to the displacement damage energy, and subsequently to the NIEL deposited in the semiconductor devices or optical sensors. In addition, the NIEL concept was also useful in the study of both Si and GaAs solar cells and of high temperature superconductors, and at predicting the survivability of detectors used at the LHC at CERN. On the other hand, there are some instances where discrepancies are observed in the application of NIEL, most notably in GaAs semiconductor devices. However, NIEL is still a valuable tool, and can be used to scale damages produced by different particles and in different environments, even though this is not understood at the microscopic level.

  12. Semiconductor quantum well irradiated by a two-mode electromagnetic field as a terahertz emitter

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Liew, T. C. H.; Kibis, O. V.

    2018-04-01

    We study theoretically the nonlinear optical properties of a semiconductor quantum well (QW) irradiated by a two-mode electromagnetic wave consisting of a strong resonant dressing field and a weak off-resonant driving field. In the considered strongly coupled electron-field system, the dressing field opens dynamic Stark gaps in the electron energy spectrum of the QW, whereas the driving field induces electron oscillations in the QW plane. Since the gapped electron spectrum restricts the amplitude of the oscillations, the emission of a frequency comb from the QW appears. Therefore, the doubly driven QW operates as a nonlinear optical element which can be used, particularly, for optically controlled generation of terahertz radiation.

  13. Electrically tunable infrared metamaterial devices

    DOEpatents

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  14. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  15. SEMICONDUCTOR PHYSICS Dose-rate dependence of optically stimulated luminescence signal

    NASA Astrophysics Data System (ADS)

    Pingqiang, Wei; Zhaoyang, Chen; Yanwei, Fan; Yurun, Sun; Yun, Zhao

    2010-10-01

    Optically stimulated luminescence (OSL) is the luminescence emitted from a semiconductor during its exposure to light. The OSL intensity is a function of the total dose absorbed by the sample. The dose-rate dependence of the OSL signal of the semiconductor CaS doped Ce and Sm was studied by numerical simulation and experiments. Based on a one-trap/one-center model, the whole OSL process was represented by a series of differential equations. The dose-rate properties of the materials were acquired theoretically by solving the equations. Good coherence was achieved between numerical simulation and experiments, both of which showed that the OSL signal was independent of dose rate. This result validates that when using OSL as a dosimetry technique, the dose-rate effect can be neglected.

  16. A semiconductor photon-sorter

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2016-10-01

    Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

  17. Ab initio description of the diluted magnetic semiconductor Ga1-xMnxAs: Ferromagnetism, electronic structure, and optical response

    NASA Astrophysics Data System (ADS)

    Craco, L.; Laad, M. S.; Müller-Hartmann, E.

    2003-12-01

    Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.

  18. Dynamics of a multimode semiconductor laser with optical feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koryukin, I. V.

    A new model of a multi-longitudinal-mode semiconductor laser with weak optical feedback is proposed. This model generalizes the well-known Tang-Statz-deMars equations, which are derived from the first principles and adequately describe solid-state lasers to a semiconductor active medium. Steady states of the model and the spectrum of relaxation oscillations are found, and the laser dynamics in the chaotic regime of low-frequency fluctuations of intensity is investigated. It is established that the dynamic properties of the proposed model depend mainly on the carrier diffusion, which controls mode-mode coupling in the active medium via spread of gratings of spatial inversion. The resultsmore » obtained are compared with the predictions of previous semiphenomenological models and the scope of applicability of these models is determined.« less

  19. Injection molding of high precision optics for LED applications made of liquid silicone rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopmann, Christian; Röbig, Malte

    Light Emitting Diodes (LED) conquer the growing global market of lighting technologies. Due to their advantages, they are increasingly used in consumer products, in lighting applications in the home and in the mobility sector as well as in industrial applications. Particularly, with regard to the increasing use of high-power LED (HP-LED) the materials in the surrounding area of the light emitting semiconductor chip are of utmost importance. While the materials behind the semiconductor chip are optimized for maximum heat dissipation, the materials currently used for the encapsulation of the semiconductor chip (primary optics) and the secondary optics encounter their limitsmore » due to the high temperatures. In addition certain amounts of blue UV radiation degrade the currently used materials such as epoxy resins or polyurethanes for primary optics. In the context of an ongoing joint research project with various partners from the industry, an innovative manufacturing method for high precision optics for LED applications made of liquid silicone rubber (LSR) is analyzed at the Institut of Plastics Processing (IKV), Aachen. The aim of this project is to utilize the material-specific advantages of high transparent LSR, especially the excellent high temperature resistance and the great freedom in design. Therefore, a high integrated injection molding process is developed. For the production of combined LED primary and secondary optics a LED board is placed in an injection mold and overmolded with LSR. Due to the integrated process and the reduction of subcomponents like the secondary optics the economics of the production process can be improved significantly. Furthermore combined LED optics offer an improved effectiveness, because there are no losses of the light power at the transition of the primary and secondary optics.« less

  20. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  1. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  2. Bacteria inside semiconductors as potential sensor elements: biochip progress.

    PubMed

    Sah, Vasu R; Baier, Robert E

    2014-06-24

    It was discovered at the beginning of this Century that living bacteria-and specifically the extremophile Pseudomonas syzgii-could be captured inside growing crystals of pure water-corroding semiconductors-specifically germanium-and thereby initiated pursuit of truly functional "biochip-based" biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips.

  3. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  4. Overview of microoptics: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Veldkamp, Wilfrid B.

    1993-01-01

    Through advances in semiconductor miniaturization technology, microrelief patterns, with characteristic dimensions as small as the wavelength of light, can now be mass reproduced to form high-quality and low-cost optical components. In a unique example of technology transfer, from electronics to optics, this capability is allowing optics designers to create innovative optical components that promise to solve key problems in optical sensors, optical communication channels, and optical processors.

  5. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    PubMed

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-07

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

  6. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  7. Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection

    NASA Astrophysics Data System (ADS)

    Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael

    2018-03-01

    Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.

  8. Carrier-envelope-offset phase control of ultrafast optical rectification in resonantly excited semiconductors.

    PubMed

    Van Vlack, C; Hughes, S

    2007-04-20

    Ultrashort pulse light-matter interactions in a semiconductor are investigated within the regime of resonant optical rectification. Using pulse envelope areas of around 1.5-3.5 pi, a single-shot dependence on carrier-envelope-offset phase (CEP) is demonstrated for 5 fs pulse durations. A characteristic phase map is predicted for several different frequency regimes using parameters for thin-film GaAs. We subsequently suggest a possible technique to extract the CEP, in both sign and amplitude, using a solid state detector.

  9. Macroporous Semiconductors

    PubMed Central

    Föll, Helmut; Leisner, Malte; Cojocaru, Ala; Carstensen, Jürgen

    2010-01-01

    Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal) and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  10. Electron transfer dynamics and yield from gold nanoparticle to different semiconductors induced by plasmon band excitation

    NASA Astrophysics Data System (ADS)

    Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.

    2018-06-01

    Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.

  11. All-optical 4-bit binary to binary coded decimal converter with the help of semiconductor optical amplifier-assisted Sagnac switch

    NASA Astrophysics Data System (ADS)

    Bhattachryya, Arunava; Kumar Gayen, Dilip; Chattopadhyay, Tanay

    2013-04-01

    All-optical 4-bit binary to binary coded decimal (BCD) converter has been proposed and described, with the help of semiconductor optical amplifier (SOA)-assisted Sagnac interferometric switches in this manuscript. The paper describes all-optical conversion scheme using a set of all-optical switches. BCD is common in computer systems that display numeric values, especially in those consisting solely of digital logic with no microprocessor. In many personal computers, the basic input/output system (BIOS) keep the date and time in BCD format. The operations of the circuit are studied theoretically and analyzed through numerical simulations. The model accounts for the SOA small signal gain, line-width enhancement factor and carrier lifetime, the switching pulse energy and width, and the Sagnac loop asymmetry. By undertaking a detailed numerical simulation the influence of these key parameters on the metrics that determine the quality of switching is thoroughly investigated.

  12. Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Wu, Y. F.; Shih, F. Y.; Chi, S.

    2011-10-01

    In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10 -9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10 -9.

  13. Plasma Properties of an Exploding Semiconductor Igniter

    NASA Astrophysics Data System (ADS)

    McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.

    1997-11-01

    Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.

  14. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  15. Electronegativity estimation of electronic polarizabilities of semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Keyan; Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn

    2010-03-15

    On the basis of the viewpoint of structure-property relationship in solid state matters, we proposed some useful relations to quantitatively calculate the electronic polarizabilities of binary and ternary chalcopyrite semiconductors, by using electronegativity and principal quantum number. The calculated electronic polarizabilities are in good agreement with reported values in the literature. Both electronegativity and principal quantum number can effectively reflect the detailed chemical bonding behaviors of constituent atoms in these semiconductors, which determines the magnitude of their electronic polarizabilities. The present work provides a useful guide to compositionally design novel semiconductor materials, and further explore advanced electro-optic devices.

  16. The Electronic and Electro-Optic Future of III-V Semiconductor Compounds.

    DTIC Science & Technology

    1978-12-01

    An assessment of material development of III-V compounds for electro - optic , microwave and millimeter wave technology is presented. Questions concerning material selection, needs and processing is addressed. (Author)

  17. Surface segregation effects of erbium in GaAs growth and their implications for optical devices containing ErAs nanostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Bank, Seth R.

    2011-03-01

    We report on the integration of semimetallic ErAs nanoparticles with high optical quality GaAs-based semiconductors, grown by molecular beam epitaxy. Secondary ion mass spectrometry and photoluminescence measurements provide evidence of surface segregation and incorporation of erbium into layers grown with the erbium cell hot, despite the closed erbium source shutter. We establish the existence of a critical areal density of the surface erbium layer, below which the formation of ErAs precipitates is suppressed. Based upon these findings, we demonstrate a method for overgrowing ErAs nanoparticles with III-V layers of high optical quality, using subsurface ErAs nanoparticles as a sink to deplete the surface erbium concentration. This approach provides a path toward realizing optical devices based on plasmonic effects in an epitaxially-compatible semimetal/semiconductor system.

  18. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    NASA Astrophysics Data System (ADS)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  19. Optical manipulation of valley pseduospin in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang

    Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.

  20. Lithography for enabling advances in integrated circuits and devices.

    PubMed

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  1. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  2. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.

  3. Total-dose radiation effects data for semiconductor devices, volume 1. [radiation resistance of components for the Galileo Project

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1981-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. Data are presented by JPL for various NASA space programs on diodes, bipolar transistors, field effect transistors, silicon-controlled rectifiers, and optical devices. A vendor identification code list is included along with semiconductor device electrical parameter symbols and abbreviations.

  4. MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection

    DTIC Science & Technology

    2012-09-01

    MSM) photodectors fabricated using black silicon-germanium on silicon substrate (Si1–xGex//Si) for I-V, optical response, external quantum ...material for Si for many applications in low-power and high-speed semiconductor device technologies (4, 5). It is a promising material for quantum well ...MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection by Fred

  5. Nano-Scale Fabrication Using Optical-Near-Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Ohtsu, Motoichi

    This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.

  6. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    PubMed

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  7. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng

    2017-07-01

    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  8. Large-scale atomistic simulations demonstrate dominant alloy disorder effects in GaBixAs1 -x/GaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    2018-04-01

    Bismide semiconductor materials and heterostructures are considered a promising candidate for the design and implementation of photonic, thermoelectric, photovoltaic, and spintronic devices. This work presents a detailed theoretical study of the electronic and optical properties of strongly coupled GaBixAs1 -x /GaAs multiple quantum well (MQW) structures. Based on a systematic set of large-scale atomistic tight-binding calculations, our results reveal that the impact of atomic-scale fluctuations in alloy composition is stronger than the interwell coupling effect, and plays an important role in the electronic and optical properties of the investigated MQW structures. Independent of QW geometry parameters, alloy disorder leads to a strong confinement of charge carriers, a large broadening of the hole energies, and a red-shift in the ground-state transition wavelength. Polarization-resolved optical transition strengths exhibit a striking effect of disorder, where the inhomogeneous broadening could exceed an order of magnitude for MQWs, in comparison to a factor of about 3 for single QWs. The strong influence of alloy disorder effects persists when small variations in the size and composition of MQWs typically expected in a realistic experimental environment are considered. The presented results highlight the limited scope of continuum methods and emphasize on the need for large-scale atomistic approaches to design devices with tailored functionalities based on the novel properties of bismide materials.

  9. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    PubMed

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Femtosecond Optical and X-Ray Measurement of the Semiconductor-to-Metal Transition in VO2

    NASA Astrophysics Data System (ADS)

    Cavalleri, Andrea; Toth, Csaba; Squier, Jeff; Siders, Craig; Raksi, Ferenc; Forget, Patrick; Kieffer, Jean-Claude

    2001-03-01

    While the use of ultrashort visible pulses allows access to ultrafast changes in the optical properties during phase transitions, measurement of the correlation between atomic movement and electronic rearrangement has proven more elusive. Here, we report on the conjunct measurement of ultrafast electronic and structural dynamics during a semiconductor-to-metal phase transition in VO2. Rearrangement of the unit cell from monoclinic to rutile (measured by ultrafast x-ray diffraction) is accompanied by a sharp increase in the electrical conductivity and perturbation of the optical properties (measured with ultrafast visible spectroscopy). Ultrafast x-ray diffraction experiments were performed using femtosecond bursts of Cu-Ka from a laser generated plasma source. A clear rise of the diffraction signal originating from the impulsively generated metallic phase was observable on the sub-picosecond timescale. Optical experiments were performed using time-resolved microscopy, providing temporally and spatially resolved measurements of the optical reflectivity at 800 nm. The data indicate that the reflectivity of the low-temperature semiconducting solid is driven to that of the equilibrium, high-temperature metallic phase within 400 fs after irradiation with a 50-fs laser pulse at fluences in excess of 10 mJ/cm2. In conclusion, the data presented in this contribution suggest that the semiconductor-to-metal transition in VO2 occurs within 500 fs after laser-irradiation. A nonthermal physical mechanism governs the re-arrangement.

  11. Interface and photoluminescence characteristics of graphene-(GaN/InGaN){sub n} multiple quantum wells hybrid structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liancheng, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn; Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Mind Star

    The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well bandmore » profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.« less

  12. Surface Plasmon Enhanced Sensitive Detection for Possible Signature of Majorana Fermions via a Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    PubMed Central

    Chen, Hua-Jun; Zhu, Ka-Di

    2015-01-01

    In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929

  13. Optical Absorption in Degenerately Doped Semiconductors: Mott Transition or Mahan Excitons?

    NASA Astrophysics Data System (ADS)

    Schleife, André; Rödl, Claudia; Fuchs, Frank; Hannewald, Karsten; Bechstedt, Friedhelm

    2011-12-01

    Electron doping turns semiconductors conductive even when they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states, e.g., of a transparent conducting oxide, drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical-absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example.

  14. Moore's law, lithography, and how optics drive the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Hutcheson, G. Dan

    2018-03-01

    When the subject of Moore's Law arises, the important role that lithography plays and how advances in optics have made it all possible is seldom brought up in the world outside of lithography itself. When lithography is mentioned up in the value chain, it's often a critique of how advances are coming too slow and getting far too expensive. Yet advances in lithography are at the core of how Moore's Law is viable. This presentation lays out how technology and the economics of optics in manufacturing interleave to drive the immense value that semiconductors have brought to the world by making it smarter. Continuing these advances will be critical as electronics make the move from smart to cognitive.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slipchenko, S. O., E-mail: serghpl@mail.ioffe.ru; Podoskin, A. A.; Pikhtin, N. A.

    Threshold conditions for generation of a closed mode in the crystal of the Fabry-Perot semiconductor laser with a quantum-well active region are analyzed. It is found that main parameters affecting the closed mode lasing threshold for the chosen laser heterostructure are as follows: the optical loss in the passive region, the optical confinement factor of the closed mode in the gain region, and material gain detuning. The relations defining the threshold conditions for closed mode lasing in terms of optical and geometrical characteristics of the semiconductor laser are derived. It is shown that the threshold conditions can be satisfied atmore » a lower material gain in comparison with the Fabry-Perot cavity mode due to zero output loss for the closed mode.« less

  16. Semiconductor Quantum Dots for Biomedicial Applications

    PubMed Central

    Shao, Lijia; Gao, Yanfang; Yan, Feng

    2011-01-01

    Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed. PMID:22247690

  17. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature.

    PubMed

    Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2018-04-11

    Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibilities for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode and room-temperature lasing from 890 to 990 nm, utilizing a novel design of single nanowires with GaAsSb-based multiple axial superlattices as a gain medium under optical pumping. The control of lasing wavelength via compositional tuning with excellent room-temperature lasing performance is shown to result from the unique nanowire structure with efficient gain material, which delivers a low lasing threshold of ∼6 kW/cm 2 (75 μJ/cm 2 per pulse), a lasing quality factor as high as 1250, and a high characteristic temperature of ∼129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way toward future nanoscale integrated optoelectronic systems with superior performance.

  18. Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Bertel, Erminald; Menzel, Alexander; Stöger-Pollach, Michael; Penner, Simon

    2018-03-01

    The electronic structure and optical properties of yttria-stabilized zirconia are investigated as a function of the yttria content using multiple experimental and theoretical methods, including electron energy-loss spectroscopy, Kramers-Kronig analysis to obtain the optical parameters, photoelectron spectroscopy, and density functional theory. It is shown that many properties, including the band gaps, the crystal field splitting, the so-called defect gap between acceptor (YZr') and donor (VO••) states, as well as the index of refraction in the visible range exhibit the same "zig-zag-like" trend as the unit cell height does, showing the influence of an increased yttria content as well as of the tetragonal-cubic phase transition between 8 mol % and 20 mol %Y2O3 . Also, with Čerenkov spectroscopy (CS), a new technique is presented, providing information complementary to electron energy-loss spectroscopy. In CS, the Čerenkov radiation emitted inside the TEM is used to measure the onset of optical absorption. The apparent absorption edges in the Čerenkov spectra correspond to the energetic difference between the disorder states close to the valence band and the oxygen-vacancy-related electronic states within the band gap. Theoretical computations corroborate this assignment: they find both, the acceptor states and the donor states, at the expected energies in the band structures for diverse yttria concentrations. In the end, a schematic electronic structure diagram of the area around the band gap is constructed, including the chemical potential of the electrons obtained from photoelectron spectroscopy. The latter reveal that tetragonal YSZ corresponds to a p -type semiconductor, whereas the cubic samples exhibit n -type semiconductor properties.

  19. Monolithically integrated solid state laser and waveguide using spin-on glass

    DOEpatents

    Ashby, C.I.H.; Hohimer, J.P.; Neal, D.R.; Vawter, G.A.

    1995-10-31

    A monolithically integrated photonic circuit is disclosed combining a semiconductor source of excitation light with an optically active waveguide formed on the substrate. The optically active waveguide is preferably formed of a spin-on glass to which are added optically active materials which can enable lasing action, optical amplification, optical loss, or frequency conversion in the waveguide, depending upon the added material. 4 figs.

  20. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  1. Optical properties of monolayer MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Wei, Guohua; Lenferink, Erik J.; Stern, Nathaniel P.

    Confinement of carriers in semiconductors is a powerful mechanism for manipulating optical and electronic properties of materials. Although atomically-thin monolayer semiconductors such as transition metal dichalcogenides naturally confine carriers in the out-of-plane direction, achieving appreciable confinement effects in the in-plane dimensions is less well-studied because their optical processes are dominated by tightly bound excitons. In earlier work, we have shown that lateral confinement effects can be controlled in monolayer MoS2 using high-resolution top-down nanopatterning. Here, we use similar techniques to create monolayer MoS2 nanoribbons that exhibit size-tunable photoluminescence and anisotropic Raman scattering. Our process also allows characterization of transport properties of the nanoribbons. This approach demonstrates how dimensionality influences monolayer semiconductors, which could impact charge and valley dynamics relevant to nano-scale opto-electronic devices. This work is supported by ISEN and ONR (N00014-16-1-3055). Use of the Center for Nanoscale Materials was supported by DOE Contract No. DE-AC02-06CH11357. N.P.S. is an Alfred P. Sloan Research Fellow.

  2. Electron optics with ballistic graphene junctions

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. Robust demonstration of these effects, however, has not been forthcoming. Here we employ transverse magnetic focusing to probe propagation across an electrostatically defined graphene junction. We find perfect agreement with the predicted Snell's law for electrons, including observation of both positive and negative refraction. Resonant transmission across the pn junction provides a direct measurement of the angle dependent transmission coefficient, and we demonstrate good agreement with theory. Comparing experimental data with simulation reveals the crucial role played by the effective junction width, providing guidance for future device design. Efforts toward sharper pn junction and possibility of zero field Veselago lensing will also be discussed. This work is supported by the Semiconductor Research Corporations NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

  3. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.

    PubMed

    Li, Zhigang; Stan, Liliana; Czaplewski, David A; Yang, Xiaodong; Gao, Jie

    2018-03-05

    Wavelength-selective metamaterial absorbers in the mid-infrared range are demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical parameters of cross resonators in single-sized unit cells, near-perfect absorption with single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of two, three, or four cross resonators of different sizes in one unit cell enables broadband near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit omnidirectionality and weak dependence on incident polarization. The underlying mechanism of near-perfect absorption with cross resonators is further explained by the optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, thermal analysis is performed to study the heat generation and temperature increase in the cross resonator absorbers, while the energy conversion efficiency is calculated for the thermophotovoltaic system made of the cross resonator thermal emitters and low-bandgap semiconductors.

  4. Roadmap on semiconductor-cell biointerfaces

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  5. Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay

    2008-10-01

    One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.

  6. Molecular profiling of single cancer cells and clinical tissue specimens with semiconductor quantum dots

    PubMed Central

    Xing, Yun; Smith, Andrew M; Agrawal, Amit; Ruan, Gang; Nie, Shuming

    2006-01-01

    Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens. PMID:17722280

  7. Canadian Semiconductor Technology Conference, 6th, Ottawa, Canada, Aug. 11-13, 1992, Proceedings

    NASA Astrophysics Data System (ADS)

    Baribeau, Jean-Marc

    1992-11-01

    This volume contains papers on the growth efficiency and distribution coefficient of GaInP-InP epilayers and heterostructures, X-ray photoelectron spectroscopy studies of Ge epilayers on Si(100), and mechanical properties of silicon carbide films for X-ray lithography application. Attention is also given to fine structure in Raman spectroscopy and X-ray reflectometry and its uses for the characterization of superlattices, phase formation in Fe-Si thin-film diffusion couples, process optimization for a micromachined silicon nonreverse valve, and a numerical study of heat transport in thermally isolated flow-rate microsensors. Particular consideration is given to a versatile 2D model for InGaAsP quantum-well semiconductor lasers, gallium arsenide electronics in the marketplace, and optical channel grading in p-type Si/SiGe MOSFETs. Other papers are on ultrafast electron tunneling in a reverse-biased high-efficiency quantum well laser structure, excess currents as a result of trap-assisted tunneling in double-barrier resonant tunneling diodes, and carrier lifetimes in strained InGaAsP multiple quantum-well laser structures.

  8. Coupling and Switching in Optically Resonant Periodic Electrode Structures

    NASA Astrophysics Data System (ADS)

    Bieber, Amy Erica

    This thesis describes coupling and switching of optical radiation using metal-semiconductor-metal (MSM) structures, specifically in a metal-on-silicon waveguide configuration. The structures which are the subject of this research have the special advantage of being VLSI -compatible; this is very important for the ultimate acceptance of any integrated optoelectronics technology by the mainstream semiconductor community. To date, research efforts in VLSI electronics, MSM detectors, metal devices, and optical switching have existed as separate entities with decidedly different goals. This work attempts to unite these specialties; an interdigitated array of metal fingers on a silicon waveguide allows for (1) fabrication processes which are well-understood and compatible with current or next-generation semiconductor manufacturing standards, (2) electrical bias capability which can potentially provide modulation, tuning, and enhanced speed, and (3) potentially efficient waveguide coupling which takes advantage of TM coupling. The latter two items are made possible by the use of metallic gratings, which sets this work apart from previous optical switching results. This MSM structure represents an important step in uniting four vital technologies which, taken together, can lead to switching performance and operational flexibility which could substantially advance the capabilities of current optoelectronic devices. Three different designs were successfully used to examine modulation and optical switching based upon nonlinear interactions in the silicon waveguide. First, a traditional Bragg reflector design with input and output couplers on either side was used to observe switching of nanosecond-regime Nd:YAG pulses. This structure was thermally tuned to obtain a variety of switching dynamics. Next, a phase-shift was incorporated into the Bragg reflector, and again thermally-tunable switching dynamics were observed, but with the added advantage of a reduction in the energy requirements for optical switching. Finally, the roles of the coupler and Bragg reflector were combined in a normal -incidence structure which exhibited nonlinear reflectivity modulation. This has not only been the first experimental demonstration of optical switching in a metal-semiconductor waveguide structure, but, to our knowledge, one of the first such demonstrations using a nonlinear phase-shifted or normal incidence grating of any kind.

  9. 32nd International Conference on the Physics of Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelikowsky, James

    The International Conference on the Physics of Semiconductors (ICPS) continues a series of biennial conferences that began in the 1950's. ICPS is the premier meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties with an emphasis on new materials and their applications. The meeting will reflect the state of art in the semiconductor physics field and will serve as a forum where scholars, researchers, and specialists can interact to discuss future research directions and technological advancements. The conference typically draws 1,000 international physicists, scientists, and students. This is one of the largest sciencemore » meetings on semiconductors and related materials to be held in the United States.« less

  10. Charge carrier transport and optical properties of SAM-induced conducting channel in organic semiconductors.

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly

    2009-03-01

    Certain types of self-assembled monolayers (SAM) grown directly at the surface of organic semiconductors can induce a high surface conductivity in these materials [1]. For example, the conductivity induced by perfluorinated alkyl silanes in organic molecular crystals approaches 10 to -5 Siemens per square. The observed large electronic effect opens new opportunities for nanoscale surface functionalization of organic semiconductors and provides experimental access to the regime of high carrier density. Here, we will discuss temperature variable measurements of SAM-induced conductivity in several types of organic semiconductors. [1]. M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson and V. Podzorov, ``Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers'', Nature Mat. 7, 84 (2008).

  11. Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures

    PubMed Central

    Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong

    2013-01-01

    The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors. PMID:23917790

  12. Structural, optical and morphological studies of Cd2+ doping in CH3NH3PbI3 perovskite semiconductor at Pb2+ site for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Parrey, Khursheed; Warish, Mohd.; Devi, Nisha; Niazi, A.; Aziz, A.; Ansari, S. G.

    2018-05-01

    Doping of semiconductors in a controlled mannner have paramount technological importance as far as the optical and electronic properties of the devices are concerned. Hybrid organic-inorganic perovskites (HOPs) as intrinsic semiconductors have sensational properties required for both the solar photovoltaics and perovskite light emitting diodes. However, undoped and complexity in the dpoing process of HOPs have limited their exploitation in the field of elcronics. In this papper we present the synthesis of HOP semiconductor (CH3NH3PbI3) doped in Pb2+ position by Cd2+. We studied the effect of the incorporation of Cd2+ into the crystalline structure and analysed the changes in the properties like crystal structure, optical absorption and the surface morphology. The structure of HOPs confirmed by X-ray diffraction analysis is tetragonal perovskite type. It can be found that the crystallinity of the samples was enhanced with the doping concentration as the intensity of diffraction peaks were observed to increase with doping. The absorption spectra as obtained from UV-Visible spectrophotometry and Tauc plot analysis indicated that the band gap observed (1.73 eV) is direct type and gets reduced to 1.67 eV with the doping concentration. The red shift may be due to the increase in the size of nanocrystalline material with doping.

  13. Gain Coupling of Class A Semiconductor Lasers (Postprint)

    DTIC Science & Technology

    2010-09-01

    Circuits (Wiley, 1995). 15. SimuLase Version 1.4.0.0 by Nonlinear Control Strategies, Inc. (2009). 16. A. Siegman , Lasers (University Science, 1986). 3062 OPTICS LETTERS / Vol. 35, No. 18 / September 15, 2010 3 ...AFRL-RY-WP-TP-2010-1250 GAIN COUPLING OF CLASS A SEMICONDUCTOR LASERS (POSTPRINT) Chris Hessenius, Mahmoud Fallahi, and Jerome Moloney...June 2010 4. TITLE AND SUBTITLE GAIN COUPLING OF CLASS A SEMICONDUCTOR LASERS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  14. Plasmonic giant quantum dots: hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry† †Electronic supplementary information (ESI) available: Further information on Au shelling chemistry and imaging of the Au shell by electron microscopy. Figures and Movie. See DOI: 10.1039/c5sc00020c

    PubMed Central

    Karan, Niladri S.; Keller, Aaron M.; Sampat, Siddharth; Roslyak, Oleksiy; Arefin, Ayesha; Hanson, Christina J.; Casson, Joanna L.; Desireddy, Anil; Ghosh, Yagnaseni; Piryatinski, Andrei; Iyer, Rashi; Htoon, Han; Malko, Anton V.

    2015-01-01

    Hybrid semiconductor–metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal–semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable ‘giant’ quantum dots when placed at the center of an ultrathin gold shell retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40–60 nm “inorganic” diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Importantly, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating. PMID:29163879

  15. Structural, electrical and optical characterization of high brightness phosphor-free white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Omiya, Hiromasa

    Much interest currently exists in GaN and related materials for applications such as light-emitting devices operating in the amber to ultraviolet range. Solid-state lighting (SSL) using these materials is widely being investigated worldwide, especially due to their high-energy efficiency and its impact on environmental issues. A new approach for solid-state lighting uses phosphor-free white light emitting diodes (LEDs) that consist of blue, green, and red quantum wells (QW), all in a single device. This approach leads to improved color rendering, and directionality, compared to the conventional white LEDs that use yellow phosphor on blue or ultraviolet emitters. Improving the brightness of these phosphor-free white LEDs should enhance and accelerate the development of SSL technology. The main objective of the research reported in this dissertation is to provide a comprehensive understanding of the nature of the multiple quantum wells used in phosphor-free white LEDs. This dissertation starts with an introduction to lighting history, the fundamental concepts of nitride semiconductors, and the evolution of LED technology. Two important challenges in LED technology today are metal-semiconductor contacts and internal piezoelectric fields present in quantum well structures. Thus, the main portion of this dissertation consists of three parts dealing with metal-semiconductor interfaces, single quantum well structures, and multiple quantum well devices. Gold-nickel alloys are widely used as contacts to the p-region of LEDs. We have performed a detailed study for its evolution under standard annealing steps. The atomic arrangement of gold at its interface with GaN gives a clear explanation for the improved ohmic contact performance. We next focus on the nature of InGaN QWs. The dynamic response of the QWs was studied with electron holography and time-resolved cathodoluminescence. Establishing the correlation between energy band structure and the light emission spectra elucidated the nature of light emission. Finally, we studied a more complex device, consisting of two red, one green, and two blue emitting quantum wells. A correlation between structural, electrical and optical measurements allows us to understand the dynamic performance of this device. The collective results of this dissertation lead to an improved understanding of the performance of high-brightness, phosphor-free, white LEDs.

  16. Optical and Electronic Transport Properties of Luminescent Semiconductors, Amorphous Materials and Metastable Solids.

    DTIC Science & Technology

    1979-02-26

    Williams, Electronic States of Semiconductors with Graded Periodic Inhomogeneities, Phys. Rev. Eli, 2200 (1975) . 7. P. DiBona and R. Ewing, ESR of...Fellow) - K. Daghir, Ph.D. (1974) (IBM) P. DiBona , M.S. (1967), Ph.D. (1974) (U.S. Navy, Surface Weapons Research Laboratory) D. Hoover (current

  17. Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis.

    PubMed

    Bajorowicz, Beata; Kobylański, Marek P; Gołąbiewska, Anna; Nadolna, Joanna; Zaleska-Medynska, Adriana; Malankowska, Anna

    2018-06-01

    Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Berry phase dependent quantum trajectories of electron-hole pairs in semiconductors under intense terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2013-03-01

    Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  19. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  20. Remote-seeded WDM-PON upgrade using linear semiconductor opticalamplifiers

    NASA Astrophysics Data System (ADS)

    Martínez, J. J.; Merayo, N.; Villafranca, A.; Garcés, I.

    2013-05-01

    In this work we have assessed the capacity of a linear (gain-clamped) semiconductor optical amplifier to enhance the budget of WDM PON network links for their evolution from FTTC to FTTH access. A wavelength-seeded network architecture has been considered, evaluating the performance improvement obtained by the use of an amplifier for the cases of link reach extension and optical splitting to reach end users. The evaluation measurements have shown that the extra budget is enough to compensate for the losses of a passive splitter up to atleast 1:16 division rate or to highly increment reach of the network.

  1. Multistate intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity.

    PubMed

    Choi, Daeyoung; Wishon, Michael J; Chang, C Y; Citrin, D S; Locquet, A

    2018-01-01

    We observe experimentally two regimes of intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity as the feedback level is increased. The first regime encountered corresponds to multistate intermittency involving two or three states composed of several combinations of periodic, quasiperiodic, and subharmonic dynamics. The second regime is observed for larger feedback levels and involves intermittency between period-doubled and chaotic regimes. This latter type of intermittency displays statistical properties similar to those of on-off intermittency.

  2. Frontiers of Glass Science. Scientific Research Conference Held at Los Angeles, California on 16-18 July 1980.

    DTIC Science & Technology

    1981-01-01

    AFB, DC 20332 102 NIFE r A- 14. MONI1TORING AGEN1CY N AME & AD1DRESS(II dllforenl I,,,,, Co111,11rng 0111c) IS SE7UPITY CL~ASS. t, ’?.,r Unclaiis s if...Optical and Electrical Properties , Amorphous Semiconductors and Electrical Proper-ties, Lens Common Class5es, ind ni nd Fur’acos and ’!-em-:ci’ Y...Scholze H. Kawazoe THURSDAY, 17 JULY SESSION II. OPTICAL & ELECTRICAL PROPERTIES S. Ovshinsky J. Isard SESSION III. AMORPHOUS SEMICONDUCTORS & ELECTRICAL

  3. 1.3-microm optically-pumped semiconductor disk laser by wafer fusion.

    PubMed

    Lyytikäinen, Jari; Rautiainen, Jussi; Toikkanen, Lauri; Sirbu, Alexei; Mereuta, Alexandru; Caliman, Andrei; Kapon, Eli; Okhotnikov, Oleg G

    2009-05-25

    We report a wafer-fused high power optically-pumped semiconductor disk laser operating at 1.3 microm. An InP-based active medium was fused with a GaAs/AlGaAs distributed Bragg reflector, resulting in an integrated monolithic gain mirror. Over 2.7 W of output power, obtained at temperature of 15 degrees C, represents the best achievement reported to date for this type of lasers. The results reveal an essential advantage of the wafer fusing technique over both monolithically grown AlGaInAs/GaInAsP- and GaInNAs-based structures.

  4. Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Dan, Nguyen Trung; Bechstedt, F.

    1996-02-01

    We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.

  5. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  6. III-V Semiconductor Optical Micro-Ring Resonators

    NASA Astrophysics Data System (ADS)

    Grover, Rohit; Absil, Philippe P.; Ibrahim, Tarek A.; Ho, Ping-Tong

    2004-05-01

    We describe the theory of optical ring resonators, and our work on GaAs-AlGaAs and GaInAsP-InP optical micro-ring resonators. These devices are promising building blocks for future all-optical signal processing and photonic logic circuits. Their versatility allows the fabrication of ultra-compact multiplexers/demultiplexers, optical channel dropping filters, lasers, amplifiers, and logic gates (to name a few), which will enable large-scale monolithic integration for optics.

  7. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    PubMed Central

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-01-01

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics. PMID:27577007

  8. Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

    PubMed Central

    Araujo, Karolline A S; Cury, Luiz A; Matos, Matheus J S; Fernandes, Thales F D; Cançado, Luiz G

    2018-01-01

    The influence of graphene and retinoic acid (RA) – a π-conjugated organic semiconductor – interface on their hybrid system is investigated. The physical properties of the interface are assessed via scanning probe microscopy, optical spectroscopy (photoluminescence and Raman) and ab initio calculations. The graphene/RA interaction induces the formation of a well-organized π-conjugated self-assembled monolayer (SAM) at the interface. Such structural organization leads to the high optical emission efficiency of the RA SAM, even at room temperature. Additionally, photo-assisted electrical force microscopy, photo-assisted scanning Kelvin probe microscopy and Raman spectroscopy indicate a RA-induced graphene doping and photo-charge generation. Finally, the optical excitation of the RA monolayer generates surface potential changes on the hybrid system. In summary, interface-induced organized structures atop 2D materials may have an important impact on both design and operation of π-conjugated nanomaterial-based hybrid systems. PMID:29600157

  9. Optics Communications: Special issue on Polymer Photonics and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing

    2016-03-01

    In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.

  10. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  11. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Zhu, Kai; ...

    2016-08-31

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spinmore » state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Lastly, our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.« less

  12. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitazawa, Takenori; Yamao, Takeshi, E-mail: yamao@kit.ac.jp; Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These aremore » detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.« less

  13. Demonstration of the feasibility of large-port-count optical switching using a hybrid Mach-Zehnder interferometer-semiconductor optical amplifier switch module in a recirculating loop.

    PubMed

    Cheng, Q; Wonfor, A; Wei, J L; Penty, R V; White, I H

    2014-09-15

    For what we believe is the first time, the feasibility of large-port-count nanosecond-reconfiguration-time optical switches is demonstrated using a hybrid approach, where Mach-Zehnder interferometric (MZI) switches provide low-loss, high-speed routing with short semiconductor optical amplifiers (SOAs) being integrated to enhance extinction. By repeatedly passing signals through a monolithic hybrid dilated 2×2 switch module in a recirculating loop, the potential performance of high-port-count switches using the hybrid approach is demonstrated. Experimentally, a single pass switch penalty of only 0.1 dB is demonstrated for the 2×2 module, while even after seven passes through the switch, equivalent to a 128×128 router, a penalty of only 2.4 dB is recorded at a data rate of 10 Gb/s.

  14. Thin Semiconductor/Metal Films For Infrared Devices

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Nagendra, Channamallappa L.

    1995-01-01

    Spectral responses of absorbers and reflectors tailored. Thin cermet films composites of metals and semiconductors undergoing development for use as broadband infrared reflectors and absorbers. Development extends concepts of semiconductor and dielectric films used as interference filters for infrared light and visible light. Composite films offer advantages over semiconductor films. Addition of metal particles contributes additional thermal conductivity, reducing thermal gradients and associated thermal stresses, with resultant enhancements of thermal stability. Because values of n in composite films made large, same optical effects achieved with lesser thicknesses. By decreasing thicknesses of films, one not only decreases weights but also contributes further to reductions of thermal stresses.

  15. Design and simulation of a semiconductor chip-based visible - NIR spectrometer for Earth observation

    NASA Astrophysics Data System (ADS)

    Coote, J.; Woolliams, E.; Fox, N.; Goodyer, I. D.; Sweeney, S. J.

    2014-03-01

    We present the development of a novel semiconductor chip-based spectrometer for calibration of Earth observation instruments. The chip follows the Solo spectroscopy approach utilising an array of microdisk resonators evanescently coupled to a central waveguide. Each resonator is tuned to select out a specific wavelength from the incoming spectrum, and forms a p-i-n junction in which current is generated when light of the correct wavelength is present. In this paper we discuss important design aspects including the choice of semiconductor material, design of semiconductor quantum well structures for optical absorption, and design and optimisation of the waveguide and resonators.

  16. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications

    NASA Astrophysics Data System (ADS)

    Sun, Yinghui; Wang, Rongming; Liu, Kai

    2017-03-01

    Substrate has great influences on materials syntheses, properties, and applications. The influences are particularly crucial for atomically thin 2-dimensional (2D) semiconductors. Their thicknesses are less than 1 nm; however, the lateral sizes can reach up to several inches or more. Therefore, these materials must be placed onto a variety of substrates before subsequent post-processing techniques for final electronic or optoelectronic devices. Recent studies reveal that substrates have been employed as ways to modulate the optical, electrical, mechanical, and chemical properties of 2D semiconductors. In this review, we summarize recent progress upon the effects of substrates on properties of 2D semiconductors, mostly focused on 2D transition metal dichalcogenides, through viewpoints of both fundamental physics and device applications. First, we discuss various effects of substrates, including interface strain, charge transfer, dielectric screening, and optical interference. Second, we show the modulation of 2D semiconductors by substrate engineering, including novel substrates (patterned substrates, 2D-material substrates, etc.) and active substrates (phase transition materials, ferroelectric materials, flexible substrates, etc.). Last, we present prospectives and challenges in this research field. This review provides a comprehensive understanding of the substrate effects, and may inspire new ideas of novel 2D devices based on substrate engineering.

  17. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    PubMed Central

    Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A.

    2013-01-01

    Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements have no direct translation to the optical domain, without being burdened by technological and conceptual difficulties. Of particular importance within the realm of optical negative-index metamaterials (NIM), is the issue of simultaneously achieving strong electric and magnetic responses and low associated losses. Here, hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative index of refraction in the near-infrared, with values of the real part well below −1, and extremely low losses (an order of magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in the whole telecom spectrum. The design is proven in configurations such as prisms and slabs, directly observing negative refraction. PMID:23514968

  18. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  19. Reflective optical imaging system

    DOEpatents

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  20. Reflective optical imaging method and circuit

    DOEpatents

    Shafer, David R.

    2001-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  1. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect.

    PubMed

    Qiu, Ciyuan; Yang, Yuxing; Li, Chao; Wang, Yifang; Wu, Kan; Chen, Jianping

    2017-12-06

    All-optical signal processing avoids the conversion between optical signals and electronic signals and thus has the potential to achieve a power efficient photonic system. Micro-scale all-optical devices for light manipulation are the key components in the all-optical signal processing and have been built on the semiconductor platforms (e.g., silicon and III-V semiconductors). However, the two-photon absorption (TPA) effect and the free-carrier absorption (FCA) effect in these platforms deteriorate the power handling and limit the capability to realize complex functions. Instead, silicon nitride (Si 3 N 4 ) provides a possibility to realize all-optical large-scale integrated circuits due to its insulator nature without TPA and FCA. In this work, we investigate the physical dynamics of all-optical control on a graphene-on-Si 3 N 4 chip based on thermo-optic effect. In the experimental demonstration, a switching response time constant of 253.0 ns at a switching energy of ~50 nJ is obtained with a device dimension of 60 μm × 60 μm, corresponding to a figure of merit (FOM) of 3.0 nJ mm. Detailed coupled-mode theory based analysis on the thermo-optic effect of the device has been performed.

  2. EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting

    NASA Astrophysics Data System (ADS)

    Ólafsson, Sveinn; Sveinbjörnsson, Einar

    2010-12-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a topical issue of Physica Scripta. All of the papers in this topical issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This meeting of the 23rd Nordic Semiconductor community, NSM 2009, was held at Háskólatorg at the campus of the University of Iceland, Reykjavik, Iceland, 14-17 June 2009. Support was provided by the University of Iceland. Almost 50 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The meeting aim was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. Topics Theory and fundamental physics of semiconductors Emerging semiconductor technologies (for example III-V integration on Si, novel Si devices, graphene) Energy and semiconductors Optical phenomena and optical devices MEMS and sensors Program 14 June Registration 13:00-17:00 15 June Meeting program 09:30-17:00 and Poster Session I 16 June Meeting program 09:30-17:00 and Poster Session II 17 June Excursion and dinner on Icelandic National Day In connection with the conference, a summer school for 40 research students was organized by the Nordic LENS network. The summer school took place in Reykjavik on 11-14 June. For more information on the school please visit the website. The next Nordic Semiconductor meeting, NSM 2011, is scheduled to take place in Aarhus, Denmark, 19-22 June 2011. A full participant list is available in the PDF of this article.

  3. Spectroscopy of organic semiconductors from first principles

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, Sahar; Biller, Ariel; Kronik, Leeor; Neaton, Jeffery

    2011-03-01

    Advances in organic optoelectronic materials rely on an accurate understanding their spectroscopy, motivating the development of predictive theoretical methods that accurately describe the excited states of organic semiconductors. In this work, we use density functional theory and many-body perturbation theory (GW/BSE) to compute the electronic and optical properties of two well-studied organic semiconductors, pentacene and PTCDA. We carefully compare our calculations of the bulk density of states with available photoemission spectra, accounting for the role of finite temperature and surface effects in experiment, and examining the influence of our main approximations -- e.g. the GW starting point and the application of the generalized plasmon-pole model -- on the predicted electronic structure. Moreover, our predictions for the nature of the exciton and its binding energy are discussed and compared against optical absorption data. We acknowledge DOE, NSF, and BASF for financial support and NERSC for computational resources.

  4. Modulation of Defects in Semiconductors by Facile and Controllable Reduction: The Case of p-type CuCrO2 Nanoparticles.

    PubMed

    Jiang, Tengfei; Li, Xueyan; Bujoli-Doeuff, Martine; Gautron, Eric; Cario, Laurent; Jobic, Stéphane; Gautier, Romain

    2016-08-01

    Optical and electrical characteristics of solid materials are well-known to be intimately related to the presence of intrinsic or extrinsic defects. Hence, the control of defects in semiconductors is of great importance to achieve specific properties, for example, transparency and conductivity. Herein, a facile and controllable reduction method for modulating the defects is proposed and used for the case of p-type delafossite CuCrO2 nanoparticles. The optical absorption in the infrared region of the CuCrO2 material can then be fine-tuned via the continuous reduction of nonstoichiometric Cu(II), naturally stabilized in small amounts. This reduction modifies the concentration of positive charge carriers in the material, and thus the conductive and reflective properties, as well as the flat band potential. Indeed, this controllable reduction methodology provides a novel strategy to modulate the (opto-) electronic characteristics of semiconductors.

  5. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE PAGES

    Donev, E. U.; Suh, J. Y.; Lopez, R.; ...

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  6. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE PAGES

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.; ...

    2017-03-30

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  7. High-efficiency, thin-film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Bohn, R. G.; Rajakarunanayake, Y.

    1995-08-01

    This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

  8. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  9. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials

    DOE PAGES

    Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.; ...

    2016-01-26

    The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less

  10. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.

    The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less

  11. 1.54 micron Emission from Erbium implanted GaN for Photonic Applications

    NASA Technical Reports Server (NTRS)

    Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.

    1998-01-01

    The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.

  12. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    NASA Technical Reports Server (NTRS)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  13. Optical Limiting Materials Based on Gold Nanoparticles

    DTIC Science & Technology

    2014-04-30

    of the electromagnetic spectrum. 2. Functionalization of the surface of the gold nanoparticles with selected organic and inorganic materials, with...F. A Review of Optical Limiting Mechanisms and Devices Using Organics, Fullerenes , Semiconductors and Other Materials. Prog. Quant. Electr. 1993

  14. Optics education for machine operators in the semiconductor industry: moving beyond button pushing

    NASA Astrophysics Data System (ADS)

    Karakekes, Meg; Currier, Deborah

    1995-10-01

    In the competitive semiconductor manufacturing industry, employees who operate equipment are able to make greater contributions if they understand how the equipment works. By understanding the 'why' behind the 'what', the equipment operators can better partner with other technical staff to produce quality integrated circuits efficiently and effectively. This additional knowledge also opens equipment operators to job enrichment and enlargement opportunities. Advanced Micro Devices (AMD) is in the process of upgrading the skills of its equipment operators. This paper is an overview of a pilot program that employs optics education to upgrade stepper operators' skills. The paper starts with stepper tasks that require optics knowledge, examines teaching methods, reports both end-of-course and three months post-training knowledge retention, and summarizes how the training has impacted the production floor.

  15. Metasurface Mirrors for External Control of Mie Resonances.

    PubMed

    van de Groep, Jorik; Brongersma, Mark L

    2018-06-13

    The ability to control and structurally tune the optical resonances of semiconductor nanostructures has far-reaching implications for a wide range of optical applications, including photodetectors, (bio)sensors, and photovoltaics. Such control is commonly obtained by tailoring the nanostructure's geometry, material, or dielectric environment. Here, we combine insights from the field of coherent optics and metasurface mirrors to effectively turn Mie resonances on and off with high spatial control and in a polarization-dependent fashion. We illustrate this in an integrated device by manipulating the photocurrent spectra of a single-nanowire photodetector placed on a metasurface mirror. This approach can be generalized to control spectral, angle-dependent, absorption, and scattering properties of semiconductor nanostructures with an engineered metasurface and without a need to alter their geometric or materials properties.

  16. Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop.

    PubMed

    Luo, Bowen; Dong, Jianji; Yu, Yuan; Yang, Ting; Zhang, Xinliang

    2012-06-15

    We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.

  17. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    2000-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths. In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors. With an energy gap of 2.7 eV at room temperature, and an efficient band- to-band transition, ZnSe has been studied extensively as the primary candidate for a blue light emitting diode for optical displays, high density recording, and military communications. By employing a ternary or quaternary system, the energy band gap of II-VI materials can be tuned to a specific range. While issues related to the compositional inhomogeneity and defect incorporation are still to be fully resolved, ZnSe bulk crystals and ZnSe-based heterostructures such as ZnSe/ZnSeS, ZnSe/ZnCdSe and ZnCdSe/ZnSeS have showed photopumped lasing capability in the blue-green region at a low threshold power and high temperatures. The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk H-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology.

  18. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  19. Theoretical and experimental investigations of superconductivity. Amorphous semiconductors, superconductivity and magnetism

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.

    1973-01-01

    The research activities from 1 March 1963 to 28 February 1973 are summarized. Major lectures are listed along with publications on superconductivity, superfluidity, electronic structures and Fermi surfaces of metals, optical spectra of solids, electronic structure of insulators and semiconductors, theory of magnetic metals, physics of surfaces, structures of metals, and molecular physics.

  20. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

Top