A novel approach to multiple sequence alignment using hadoop data grids.
Sudha Sadasivam, G; Baktavatchalam, G
2010-01-01
Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.
SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments
Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric
2014-01-01
This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831
Simultaneous phylogeny reconstruction and multiple sequence alignment
Yue, Feng; Shi, Jian; Tang, Jijun
2009-01-01
Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110
FASMA: a service to format and analyze sequences in multiple alignments.
Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M
2007-12-01
Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.
MANGO: a new approach to multiple sequence alignment.
Zhang, Zefeng; Lin, Hao; Li, Ming
2007-01-01
Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state of the art multiple sequence alignment programs suffer from the 'once a gap, always a gap' phenomenon. Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0.
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Embedding strategies for effective use of information from multiple sequence alignments.
Henikoff, S.; Henikoff, J. G.
1997-01-01
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452
Multiple DNA and protein sequence alignment on a workstation and a supercomputer.
Tajima, K
1988-11-01
This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.
DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.
Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard
2004-09-09
Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.
Score distributions of gapped multiple sequence alignments down to the low-probability tail
NASA Astrophysics Data System (ADS)
Fieth, Pascal; Hartmann, Alexander K.
2016-08-01
Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.
A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band
NASA Astrophysics Data System (ADS)
Zou, Quan; Shan, Xiao; Jiang, Yi
Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.
DNA Multiple Sequence Alignment Guided by Protein Domains: The MSA-PAD 2.0 Method.
Balech, Bachir; Monaco, Alfonso; Perniola, Michele; Santamaria, Monica; Donvito, Giacinto; Vicario, Saverio; Maggi, Giorgio; Pesole, Graziano
2018-01-01
Multiple sequence alignment (MSA) is a fundamental component in many DNA sequence analyses including metagenomics studies and phylogeny inference. When guided by protein profiles, DNA multiple alignments assume a higher precision and robustness. Here we present details of the use of the upgraded version of MSA-PAD (2.0), which is a DNA multiple sequence alignment framework able to align DNA sequences coding for single/multiple protein domains guided by PFAM or user-defined annotations. MSA-PAD has two alignment strategies, called "Gene" and "Genome," accounting for coding domains order and genomic rearrangements, respectively. Novel options were added to the present version, where the MSA can be guided by protein profiles provided by the user. This allows MSA-PAD 2.0 to run faster and to add custom protein profiles sometimes not present in PFAM database according to the user's interest. MSA-PAD 2.0 is currently freely available as a Web application at https://recasgateway.cloud.ba.infn.it/ .
Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei
2007-01-01
Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966
Zhou, Carol L Ecale
2015-01-01
In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.
Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment
2013-01-01
Background Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. Results In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Conclusion Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA. PMID:24564200
Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.
Nagar, Anurag; Hahsler, Michael
2013-01-01
Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA.
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.
Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S
2007-10-11
By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
Roca, Alberto I
2014-01-01
The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.
DNAAlignEditor: DNA alignment editor tool
Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D
2008-01-01
Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684
Mango: multiple alignment with N gapped oligos.
Zhang, Zefeng; Lin, Hao; Li, Ming
2008-06-01
Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.
Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy
2015-05-01
We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.
Bellerophon: A program to detect chimeric sequences in multiple sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip
2003-12-23
Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
COACH: profile-profile alignment of protein families using hidden Markov models.
Edgar, Robert C; Sjölander, Kimmen
2004-05-22
Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. COACH is freely available from www.drive5.com/lobster
2014-01-01
Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393
Fast alignment-free sequence comparison using spaced-word frequencies.
Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard
2014-07-15
Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.
Simple chained guide trees give high-quality protein multiple sequence alignments
Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G.
2014-01-01
Guide trees are used to decide the order of sequence alignment in the progressive multiple sequence alignment heuristic. These guide trees are often the limiting factor in making large alignments, and considerable effort has been expended over the years in making these quickly or accurately. In this article we show that, at least for protein families with large numbers of sequences that can be benchmarked with known structures, simple chained guide trees give the most accurate alignments. These also happen to be the fastest and simplest guide trees to construct, computationally. Such guide trees have a striking effect on the accuracy of alignments produced by some of the most widely used alignment packages. There is a marked increase in accuracy and a marked decrease in computational time, once the number of sequences goes much above a few hundred. This is true, even if the order of sequences in the guide tree is random. PMID:25002495
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences
Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong
2015-01-01
Abstract We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate—slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory. PMID:25549288
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Differential evolution-simulated annealing for multiple sequence alignment
NASA Astrophysics Data System (ADS)
Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.
2017-10-01
Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.
Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach
NASA Astrophysics Data System (ADS)
Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.
2012-10-01
In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.
Ajawatanawong, Pravech; Atkinson, Gemma C; Watson-Haigh, Nathan S; Mackenzie, Bryony; Baldauf, Sandra L
2012-07-01
Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.
AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis
Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn
2010-01-01
Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys. PMID:20530533
Evolutionary distances in the twilight zone--a rational kernel approach.
Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian
2010-12-31
Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.
Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio
2013-09-01
Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.
DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.
Eernisse, D J
1992-04-01
DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Biclustering as a method for RNA local multiple sequence alignment.
Wang, Shu; Gutell, Robin R; Miranker, Daniel P
2007-12-15
Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/
Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V
2003-01-01
In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.
eShadow: A tool for comparing closely related sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.
2004-01-15
Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less
Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.
Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip
2004-09-22
Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl
Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment
2011-01-01
Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510
Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.
The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less
Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.
Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel
2011-05-20
Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.
Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.
Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias
2011-01-01
The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.
Heuristics for multiobjective multiple sequence alignment.
Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B
2016-07-15
Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show that our approaches can obtain better results than TCoffee and Clustal Omega in terms of the first ratio.
Sequence harmony: detecting functional specificity from alignments
Feenstra, K. Anton; Pirovano, Walter; Krab, Klaas; Heringa, Jaap
2007-01-01
Multiple sequence alignments are often used for the identification of key specificity-determining residues within protein families. We present a web server implementation of the Sequence Harmony (SH) method previously introduced. SH accurately detects subfamily specific positions from a multiple alignment by scoring compositional differences between subfamilies, without imposing conservation. The SH web server allows a quick selection of subtype specific sites from a multiple alignment given a subfamily grouping. In addition, it allows the predicted sites to be directly mapped onto a protein structure and displayed. We demonstrate the use of the SH server using the family of plant mitochondrial alternative oxidases (AOX). In addition, we illustrate the usefulness of combining sequence and structural information by showing that the predicted sites are clustered into a few distinct regions in an AOX homology model. The SH web server can be accessed at www.ibi.vu.nl/programs/seqharmwww. PMID:17584793
Wan, Shixiang; Zou, Quan
2017-01-01
Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
Notredame, Cedric
2018-05-02
Cedric Notredame from the Centre for Genomic Regulation gives a presentation on New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era at the JGI/Argonne HPC Workshop on January 26, 2010.
Ranwez, Vincent
2016-01-01
Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.
CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.
Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan
2017-06-24
The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https://github.com/wangvsa/CMSA .
Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen
2010-07-01
We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.
A distributed system for fast alignment of next-generation sequencing data.
Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D
2010-12-01
We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.
Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization.
Bauer, Markus; Klau, Gunnar W; Reinert, Knut
2007-07-27
The discovery of functional non-coding RNA sequences has led to an increasing interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely determines their function, and therefore RNA alignment algorithms have to take structural information into account. We present a graph-based representation for sequence-structure alignments, which we model as an integer linear program (ILP). We sketch how we compute an optimal or near-optimal solution to the ILP using methods from combinatorial optimization, and present results on a recently published benchmark set for RNA alignments. The implementation of our algorithm yields better alignments in terms of two published scores than the other programs that we tested: This is especially the case with an increasing number of input sequences. Our program LARA is freely available for academic purposes from http://www.planet-lisa.net.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Edgar, Robert C
2004-01-01
We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
Adhikari, Badri; Hou, Jie; Cheng, Jianlin
2018-03-01
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.
Prediction of β-turns in proteins from multiple alignment using neural network
Kaur, Harpreet; Raghava, Gajendra Pal Singh
2003-01-01
A neural network-based method has been developed for the prediction of β-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published β-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach. PMID:12592033
IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.
Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam
2015-01-01
IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.
Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard
2010-03-31
Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.
Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver
2012-07-15
In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.
Worley, K C; Wiese, B A; Smith, R F
1995-09-01
BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search-launcher/launcher.html > ).
Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.
Sakai, Ryo; Aerts, Jan
2014-01-01
The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.
A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.
Luczak, Brian B; James, Benjamin T; Girgis, Hani Z
2017-12-06
Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have developed tens of alignment-free statistics for measuring the similarity between two sequences. We surveyed tens of alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involving sequence length difference or Earth Mover's distance, which takes the length difference into account, are always among the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth Mover's distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands of computational hours. The source code of the benchmarking tool is available as Supplementary Materials. © The Author 2017. Published by Oxford University Press.
Reconstructing evolutionary trees in parallel for massive sequences.
Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam
2017-12-14
Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .
SEAN: SNP prediction and display program utilizing EST sequence clusters.
Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek
2006-02-15
SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.
Fine-tuning structural RNA alignments in the twilight zone.
Bremges, Andreas; Schirmer, Stefanie; Giegerich, Robert
2010-04-30
A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
Is multiple-sequence alignment required for accurate inference of phylogeny?
Höhl, Michael; Ragan, Mark A
2007-04-01
The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.
Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV)
Martin, Andrew C. R.
2014-01-01
The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and ’dotifying’ repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/. PMID:25653836
Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).
Martin, Andrew C R
2014-01-01
The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/.
Multiple alignment-free sequence comparison
Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine
2013-01-01
Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418
Fine-tuning structural RNA alignments in the twilight zone
2010-01-01
Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index. PMID:20433706
Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal
2012-01-01
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.
GeneSilico protein structure prediction meta-server.
Kurowski, Michal A; Bujnicki, Janusz M
2003-07-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.
GeneSilico protein structure prediction meta-server
Kurowski, Michal A.; Bujnicki, Janusz M.
2003-01-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313
Evolutionary profiles from the QR factorization of multiple sequence alignments
Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida
2005-01-01
We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270
Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.
Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut
2018-05-03
Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.
ADOMA: A Command Line Tool to Modify ClustalW Multiple Alignment Output.
Zaal, Dionne; Nota, Benjamin
2016-01-01
We present ADOMA, a command line tool that produces alternative outputs from ClustalW multiple alignments of nucleotide or protein sequences. ADOMA can simplify the output of alignments by showing only the different residues between sequences, which is often desirable when only small differences such as single nucleotide polymorphisms are present (e.g., between different alleles). Another feature of ADOMA is that it can enhance the ClustalW output by coloring the residues in the alignment. This tool is easily integrated into automated Linux pipelines for next-generation sequencing data analysis, and may be useful for researchers in a broad range of scientific disciplines including evolutionary biology and biomedical sciences. The source code is freely available at https://sourceforge. net/projects/adoma/. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generating Models of Surgical Procedures using UMLS Concepts and Multiple Sequence Alignment
Meng, Frank; D’Avolio, Leonard W.; Chen, Andrew A.; Taira, Ricky K.; Kangarloo, Hooshang
2005-01-01
Surgical procedures can be viewed as a process composed of a sequence of steps performed on, by, or with the patient’s anatomy. This sequence is typically the pattern followed by surgeons when generating surgical report narratives for documenting surgical procedures. This paper describes a methodology for semi-automatically deriving a model of conducted surgeries, utilizing a sequence of derived Unified Medical Language System (UMLS) concepts for representing surgical procedures. A multiple sequence alignment was computed from a collection of such sequences and was used for generating the model. These models have the potential of being useful in a variety of informatics applications such as information retrieval and automatic document generation. PMID:16779094
QuickProbs 2: Towards rapid construction of high-quality alignments of large protein families
Gudyś, Adam; Deorowicz, Sebastian
2017-01-01
The ever-increasing size of sequence databases caused by the development of high throughput sequencing, poses to multiple alignment algorithms one of the greatest challenges yet. As we show, well-established techniques employed for increasing alignment quality, i.e., refinement and consistency, are ineffective when large protein families are investigated. We present QuickProbs 2, an algorithm for multiple sequence alignment. Based on probabilistic models, equipped with novel column-oriented refinement and selective consistency, it offers outstanding accuracy. When analysing hundreds of sequences, Quick-Probs 2 is noticeably better than ClustalΩ and MAFFT, the previous leaders for processing numerous protein families. In the case of smaller sets, for which consistency-based methods are the best performing, QuickProbs 2 is also superior to the competitors. Due to low computational requirements of selective consistency and utilization of massively parallel architectures, presented algorithm has similar execution times to ClustalΩ, and is orders of magnitude faster than full consistency approaches, like MSAProbs or PicXAA. All these make QuickProbs 2 an excellent tool for aligning families ranging from few, to hundreds of proteins. PMID:28139687
TaxI: a software tool for DNA barcoding using distance methods
Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel
2005-01-01
DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755
Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.
Li, Guang; Wang, Yadong; Su, Xiaohong
2012-10-01
When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
BlockLogo: visualization of peptide and sequence motif conservation
Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L.; Zhang, Guang Lan; Brusic, Vladimir
2013-01-01
BlockLogo is a web-server application for visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://methilab.bu.edu/blocklogo/ PMID:24001880
Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.
Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter
2015-01-01
To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.
Neuwald, Andrew F
2009-08-01
The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.
Customisation of the exome data analysis pipeline using a combinatorial approach.
Pattnaik, Swetansu; Vaidyanathan, Srividya; Pooja, Durgad G; Deepak, Sa; Panda, Binay
2012-01-01
The advent of next generation sequencing (NGS) technologies have revolutionised the way biologists produce, analyse and interpret data. Although NGS platforms provide a cost-effective way to discover genome-wide variants from a single experiment, variants discovered by NGS need follow up validation due to the high error rates associated with various sequencing chemistries. Recently, whole exome sequencing has been proposed as an affordable option compared to whole genome runs but it still requires follow up validation of all the novel exomic variants. Customarily, a consensus approach is used to overcome the systematic errors inherent to the sequencing technology, alignment and post alignment variant detection algorithms. However, the aforementioned approach warrants the use of multiple sequencing chemistry, multiple alignment tools, multiple variant callers which may not be viable in terms of time and money for individual investigators with limited informatics know-how. Biologists often lack the requisite training to deal with the huge amount of data produced by NGS runs and face difficulty in choosing from the list of freely available analytical tools for NGS data analysis. Hence, there is a need to customise the NGS data analysis pipeline to preferentially retain true variants by minimising the incidence of false positives and make the choice of right analytical tools easier. To this end, we have sampled different freely available tools used at the alignment and post alignment stage suggesting the use of the most suitable combination determined by a simple framework of pre-existing metrics to create significant datasets.
Hidden Markov models of biological primary sequence information.
Baldi, P; Chauvin, Y; Hunkapiller, T; McClure, M A
1994-01-01
Hidden Markov model (HMM) techniques are used to model families of biological sequences. A smooth and convergent algorithm is introduced to iteratively adapt the transition and emission parameters of the models from the examples in a given family. The HMM approach is applied to three protein families: globins, immunoglobulins, and kinases. In all cases, the models derived capture the important statistical characteristics of the family and can be used for a number of tasks, including multiple alignments, motif detection, and classification. For K sequences of average length N, this approach yields an effective multiple-alignment algorithm which requires O(KN2) operations, linear in the number of sequences. PMID:8302831
Gemi: PCR Primers Prediction from Multiple Alignments
Sobhy, Haitham; Colson, Philippe
2012-01-01
Designing primers and probes for polymerase chain reaction (PCR) is a preliminary and critical step that requires the identification of highly conserved regions in a given set of sequences. This task can be challenging if the targeted sequences display a high level of diversity, as frequently encountered in microbiologic studies. We developed Gemi, an automated, fast, and easy-to-use bioinformatics tool with a user-friendly interface to design primers and probes based on multiple aligned sequences. This tool can be used for the purpose of real-time and conventional PCR and can deal efficiently with large sets of sequences of a large size. PMID:23316117
Query-seeded iterative sequence similarity searching improves selectivity 5–20-fold
Li, Weizhong; Lopez, Rodrigo
2017-01-01
Abstract Iterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination. psiblast PSSMs are built from the query-based multiple sequence alignment (MSA) implied by the pairwise alignments between the query model (PSSM, HMM) and the subject sequences in the library. When the original query sequence residues are inserted into gapped positions in the aligned subject sequence, the resulting PSSM rarely produces alignment over-extensions or alignments to unrelated sequences. This simple step, which tends to anchor the PSSM to the original query sequence and slightly increase target percent identity, can reduce the frequency of false-positive alignments more than 20-fold compared with psiblast and jackhmmer, with little loss in search sensitivity. PMID:27923999
NASA Astrophysics Data System (ADS)
Amiroch, S.; Pradana, M. S.; Irawan, M. I.; Mukhlash, I.
2017-09-01
Multiple Alignment (MA) is a particularly important tool for studying the viral genome and determine the evolutionary process of the specific virus. Application of MA in the case of the spread of the Severe acute respiratory syndrome (SARS) epidemic is an interesting thing because this virus epidemic a few years ago spread so quickly that medical attention in many countries. Although there has been a lot of software to process multiple sequences, but the use of pairwise alignment to process MA is very important to consider. In previous research, the alignment between the sequences to process MA algorithm, Super Pairwise Alignment, but in this study used a dynamic programming algorithm Needleman wunchs simulated in Matlab. From the analysis of MA obtained and stable region and unstable which indicates the position where the mutation occurs, the system network topology that produced the phylogenetic tree of the SARS epidemic distance method, and system area networks mutation.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
High-throughput sequence alignment using Graphics Processing Units
Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh
2007-01-01
Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356
Sequence alignment visualization in HTML5 without Java.
Gille, Christoph; Birgit, Weyand; Gille, Andreas
2014-01-01
Java has been extensively used for the visualization of biological data in the web. However, the Java runtime environment is an additional layer of software with an own set of technical problems and security risks. HTML in its new version 5 provides features that for some tasks may render Java unnecessary. Alignment-To-HTML is the first HTML-based interactive visualization for annotated multiple sequence alignments. The server side script interpreter can perform all tasks like (i) sequence retrieval, (ii) alignment computation, (iii) rendering, (iv) identification of a homologous structural models and (v) communication with BioDAS-servers. The rendered alignment can be included in web pages and is displayed in all browsers on all platforms including touch screen tablets. The functionality of the user interface is similar to legacy Java applets and includes color schemes, highlighting of conserved and variable alignment positions, row reordering by drag and drop, interlinked 3D visualization and sequence groups. Novel features are (i) support for multiple overlapping residue annotations, such as chemical modifications, single nucleotide polymorphisms and mutations, (ii) mechanisms to quickly hide residue annotations, (iii) export to MS-Word and (iv) sequence icons. Alignment-To-HTML, the first interactive alignment visualization that runs in web browsers without additional software, confirms that to some extend HTML5 is already sufficient to display complex biological data. The low speed at which programs are executed in browsers is still the main obstacle. Nevertheless, we envision an increased use of HTML and JavaScript for interactive biological software. Under GPL at: http://www.bioinformatics.org/strap/toHTML/.
A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.
Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas
2011-03-15
Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.
Coan, Heather B.; Youker, Robert T.
2017-01-01
Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information. PMID:28674656
DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.
Kelly, Steven; Maini, Philip K
2013-01-01
The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.
2010-01-01
Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162
Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo
2016-07-19
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .
CoSMoS: Conserved Sequence Motif Search in the proteome
Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I
2006-01-01
Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915
Biological intuition in alignment-free methods: response to Posada.
Ragan, Mark A; Chan, Cheong Xin
2013-08-01
A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.
R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server
Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles
2015-01-01
The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960
MACSIMS : multiple alignment of complete sequences information management system
Thompson, Julie D; Muller, Arnaud; Waterhouse, Andrew; Procter, Jim; Barton, Geoffrey J; Plewniak, Frédéric; Poch, Olivier
2006-01-01
Background In the post-genomic era, systems-level studies are being performed that seek to explain complex biological systems by integrating diverse resources from fields such as genomics, proteomics or transcriptomics. New information management systems are now needed for the collection, validation and analysis of the vast amount of heterogeneous data available. Multiple alignments of complete sequences provide an ideal environment for the integration of this information in the context of the protein family. Results MACSIMS is a multiple alignment-based information management program that combines the advantages of both knowledge-based and ab initio sequence analysis methods. Structural and functional information is retrieved automatically from the public databases. In the multiple alignment, homologous regions are identified and the retrieved data is evaluated and propagated from known to unknown sequences with these reliable regions. In a large-scale evaluation, the specificity of the propagated sequence features is estimated to be >99%, i.e. very few false positive predictions are made. MACSIMS is then used to characterise mutations in a test set of 100 proteins that are known to be involved in human genetic diseases. The number of sequence features associated with these proteins was increased by 60%, compared to the features available in the public databases. An XML format output file allows automatic parsing of the MACSIM results, while a graphical display using the JalView program allows manual analysis. Conclusion MACSIMS is a new information management system that incorporates detailed analyses of protein families at the structural, functional and evolutionary levels. MACSIMS thus provides a unique environment that facilitates knowledge extraction and the presentation of the most pertinent information to the biologist. A web server and the source code are available at . PMID:16792820
Kuraku, Shigehiro; Zmasek, Christian M; Nishimura, Osamu; Katoh, Kazutaka
2013-07-01
We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology.
Kuraku, Shigehiro; Zmasek, Christian M.; Nishimura, Osamu; Katoh, Kazutaka
2013-01-01
We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology. PMID:23677614
Zemali, El-Amine; Boukra, Abdelmadjid
2015-08-01
The multiple sequence alignment (MSA) is one of the most challenging problems in bioinformatics, it involves discovering similarity between a set of protein or DNA sequences. This paper introduces a new method for the MSA problem called biogeography-based optimization with multiple populations (BBOMP). It is based on a recent metaheuristic inspired from the mathematics of biogeography named biogeography-based optimization (BBO). To improve the exploration ability of BBO, we have introduced a new concept allowing better exploration of the search space. It consists of manipulating multiple populations having each one its own parameters. These parameters are used to build up progressive alignments allowing more diversity. At each iteration, the best found solution is injected in each population. Moreover, to improve solution quality, six operators are defined. These operators are selected with a dynamic probability which changes according to the operators efficiency. In order to test proposed approach performance, we have considered a set of datasets from Balibase 2.0 and compared it with many recent algorithms such as GAPAM, MSA-GA, QEAMSA and RBT-GA. The results show that the proposed approach achieves better average score than the previously cited methods.
Muth, Thilo; García-Martín, Juan A; Rausell, Antonio; Juan, David; Valencia, Alfonso; Pazos, Florencio
2012-02-15
We have implemented in a single package all the features required for extracting, visualizing and manipulating fully conserved positions as well as those with a family-dependent conservation pattern in multiple sequence alignments. The program allows, among other things, to run different methods for extracting these positions, combine the results and visualize them in protein 3D structures and sequence spaces. JDet is a multiplatform application written in Java. It is freely available, including the source code, at http://csbg.cnb.csic.es/JDet. The package includes two of our recently developed programs for detecting functional positions in protein alignments (Xdet and S3Det), and support for other methods can be added as plug-ins. A help file and a guided tutorial for JDet are also available.
Treangen, Todd J; Ondov, Brian D; Koren, Sergey; Phillippy, Adam M
2014-01-01
Whole-genome sequences are now available for many microbial species and clades, however existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.
A parallel approach of COFFEE objective function to multiple sequence alignment
NASA Astrophysics Data System (ADS)
Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.
2015-09-01
The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.
A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments.
Rajan, Vaibhav
2013-03-01
Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.
R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server.
Cannone, Jamie J; Sweeney, Blake A; Petrov, Anton I; Gutell, Robin R; Zirbel, Craig L; Leontis, Neocles
2015-07-01
The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.
Bonizzoni, Paola; Rizzi, Raffaella; Pesole, Graziano
2005-10-05
Currently available methods to predict splice sites are mainly based on the independent and progressive alignment of transcript data (mostly ESTs) to the genomic sequence. Apart from often being computationally expensive, this approach is vulnerable to several problems--hence the need to develop novel strategies. We propose a method, based on a novel multiple genome-EST alignment algorithm, for the detection of splice sites. To avoid limitations of splice sites prediction (mainly, over-predictions) due to independent single EST alignments to the genomic sequence our approach performs a multiple alignment of transcript data to the genomic sequence based on the combined analysis of all available data. We recast the problem of predicting constitutive and alternative splicing as an optimization problem, where the optimal multiple transcript alignment minimizes the number of exons and hence of splice site observations. We have implemented a splice site predictor based on this algorithm in the software tool ASPIC (Alternative Splicing PredICtion). It is distinguished from other methods based on BLAST-like tools by the incorporation of entirely new ad hoc procedures for accurate and computationally efficient transcript alignment and adopts dynamic programming for the refinement of intron boundaries. ASPIC also provides the minimal set of non-mergeable transcript isoforms compatible with the detected splicing events. The ASPIC web resource is dynamically interconnected with the Ensembl and Unigene databases and also implements an upload facility. Extensive bench marking shows that ASPIC outperforms other existing methods in the detection of novel splicing isoforms and in the minimization of over-predictions. ASPIC also requires a lower computation time for processing a single gene and an EST cluster. The ASPIC web resource is available at http://aspic.algo.disco.unimib.it/aspic-devel/.
Aligning the unalignable: bacteriophage whole genome alignments.
Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M
2016-01-13
In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).
BarraCUDA - a fast short read sequence aligner using graphics processing units
2012-01-01
Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497
CodonLogo: a sequence logo-based viewer for codon patterns.
Sharma, Virag; Murphy, David P; Provan, Gregory; Baranov, Pavel V
2012-07-15
Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/.
Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome
Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend
2007-01-01
A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995
Li, Man; Ling, Cheng; Xu, Qi; Gao, Jingyang
2018-02-01
Sequence classification is crucial in predicting the function of newly discovered sequences. In recent years, the prediction of the incremental large-scale and diversity of sequences has heavily relied on the involvement of machine-learning algorithms. To improve prediction accuracy, these algorithms must confront the key challenge of extracting valuable features. In this work, we propose a feature-enhanced protein classification approach, considering the rich generation of multiple sequence alignment algorithms, N-gram probabilistic language model and the deep learning technique. The essence behind the proposed method is that if each group of sequences can be represented by one feature sequence, composed of homologous sites, there should be less loss when the sequence is rebuilt, when a more relevant sequence is added to the group. On the basis of this consideration, the prediction becomes whether a query sequence belonging to a group of sequences can be transferred to calculate the probability that the new feature sequence evolves from the original one. The proposed work focuses on the hierarchical classification of G-protein Coupled Receptors (GPCRs), which begins by extracting the feature sequences from the multiple sequence alignment results of the GPCRs sub-subfamilies. The N-gram model is then applied to construct the input vectors. Finally, these vectors are imported into a convolutional neural network to make a prediction. The experimental results elucidate that the proposed method provides significant performance improvements. The classification error rate of the proposed method is reduced by at least 4.67% (family level I) and 5.75% (family Level II), in comparison with the current state-of-the-art methods. The implementation program of the proposed work is freely available at: https://github.com/alanFchina/CNN .
Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang
2006-01-01
Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074
MSAViewer: interactive JavaScript visualization of multiple sequence alignments.
Yachdav, Guy; Wilzbach, Sebastian; Rauscher, Benedikt; Sheridan, Robert; Sillitoe, Ian; Procter, James; Lewis, Suzanna E; Rost, Burkhard; Goldberg, Tatyana
2016-11-15
The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is 'web ready': written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/Supplementary information: Supplementary data are available at Bioinformatics online. msa@bio.sh. © The Author 2016. Published by Oxford University Press.
MSAViewer: interactive JavaScript visualization of multiple sequence alignments
Yachdav, Guy; Wilzbach, Sebastian; Rauscher, Benedikt; Sheridan, Robert; Sillitoe, Ian; Procter, James; Lewis, Suzanna E.; Rost, Burkhard; Goldberg, Tatyana
2016-01-01
Summary: The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is ‘web ready’: written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. Availability and Implementation: The MSAViewer is released as open source software under the Boost Software License 1.0. Documentation, source code and the viewer are available at http://msa.biojs.net/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: msa@bio.sh PMID:27412096
WEB-server for search of a periodicity in amino acid and nucleotide sequences
NASA Astrophysics Data System (ADS)
E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.
2017-12-01
A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.
Jossinet, Fabrice; Westhof, Eric
2005-08-01
Efficient RNA sequence manipulations (such as multiple alignments) need to be constrained by rules of RNA structure folding. The structural knowledge has increased dramatically in the last years with the accumulation of several large RNA structures similar to those of the bacterial ribosome subunits. However, no tool in the RNA community provides an easy way to link and integrate progress made at the sequence level using the available three-dimensional information. Sequence to Structure (S2S) proposes a framework in which an user can easily display, manipulate and interconnect heterogeneous RNA data, such as multiple sequence alignments, secondary and tertiary structures. S2S has been implemented using the Java language and has been developed and tested under UNIX systems, such as Linux and MacOSX. S2S is available at http://bioinformatics.org/S2S/.
KinView: A visual comparative sequence analysis tool for integrated kinome research
McSkimming, Daniel Ian; Dastgheib, Shima; Baffi, Timothy R.; Byrne, Dominic P.; Ferries, Samantha; Scott, Steven Thomas; Newton, Alexandra C.; Eyers, Claire E.; Kochut, Krzysztof J.; Eyers, Patrick A.
2017-01-01
Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats. PMID:27731453
Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E
2014-06-10
Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.
JavaScript DNA translator: DNA-aligned protein translations.
Perry, William L
2002-12-01
There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).
RBT-GA: a novel metaheuristic for solving the Multiple Sequence Alignment problem.
Taheri, Javid; Zomaya, Albert Y
2009-07-07
Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences.
De novo identification of highly diverged protein repeats by probabilistic consistency.
Biegert, A; Söding, J
2008-03-15
An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID
Using hidden Markov models to align multiple sequences.
Mount, David W
2009-07-01
A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.
Accelerated probabilistic inference of RNA structure evolution
Holmes, Ian
2005-01-01
Background Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License. PMID:15790387
Recapitulating phylogenies using k-mers: from trees to networks.
Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin
2016-01-01
Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k -mers (subsequences at fixed length k ). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k -mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.
RBT-GA: a novel metaheuristic for solving the multiple sequence alignment problem
Taheri, Javid; Zomaya, Albert Y
2009-01-01
Background Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. Results This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. Conclusion RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences. PMID:19594869
GibbsCluster: unsupervised clustering and alignment of peptide sequences.
Andreatta, Massimo; Alvarez, Bruno; Nielsen, Morten
2017-07-03
Receptor interactions with short linear peptide fragments (ligands) are at the base of many biological signaling processes. Conserved and information-rich amino acid patterns, commonly called sequence motifs, shape and regulate these interactions. Because of the properties of a receptor-ligand system or of the assay used to interrogate it, experimental data often contain multiple sequence motifs. GibbsCluster is a powerful tool for unsupervised motif discovery because it can simultaneously cluster and align peptide data. The GibbsCluster 2.0 presented here is an improved version incorporating insertion and deletions accounting for variations in motif length in the peptide input. In basic terms, the program takes as input a set of peptide sequences and clusters them into meaningful groups. It returns the optimal number of clusters it identified, together with the sequence alignment and sequence motif characterizing each cluster. Several parameters are available to customize cluster analysis, including adjustable penalties for small clusters and overlapping groups and a trash cluster to remove outliers. As an example application, we used the server to deconvolute multiple specificities in large-scale peptidome data generated by mass spectrometry. The server is available at http://www.cbs.dtu.dk/services/GibbsCluster-2.0. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
2014-01-01
Background Ambiscript is a graphically-designed nucleic acid notation that uses symbol symmetries to support sequence complementation, highlight biologically-relevant palindromes, and facilitate the analysis of consensus sequences. Although the original Ambiscript notation was designed to easily represent consensus sequences for multiple sequence alignments, the notation’s black-on-white ambiguity characters are unable to reflect the statistical distribution of nucleotides found at each position. We now propose a color-augmented ambigraphic notation to encode the frequency of positional polymorphisms in these consensus sequences. Results We have implemented this color-coding approach by creating an Adobe Flash® application ( http://www.ambiscript.org) that shades and colors modified Ambiscript characters according to the prevalence of the encoded nucleotide at each position in the alignment. The resulting graphic helps viewers perceive biologically-relevant patterns in multiple sequence alignments by uniquely combining color, shading, and character symmetries to highlight palindromes and inverted repeats in conserved DNA motifs. Conclusion Juxtaposing an intuitive color scheme over the deliberate character symmetries of an ambigraphic nucleic acid notation yields a highly-functional nucleic acid notation that maximizes information content and successfully embodies key principles of graphic excellence put forth by the statistician and graphic design theorist, Edward Tufte. PMID:24447494
2009-01-01
Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286
Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment
2013-01-01
Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem. PMID:24148814
Accuracy Estimation and Parameter Advising for Protein Multiple Sequence Alignment
DeBlasio, Dan
2013-01-01
Abstract We develop a novel and general approach to estimating the accuracy of multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new task that we call parameter advising: the problem of choosing values for alignment scoring function parameters from a given set of choices to maximize the accuracy of a computed alignment. For protein alignments, we consider twelve independent features that contribute to a quality alignment. An accuracy estimator is learned that is a polynomial function of these features; its coefficients are determined by minimizing its error with respect to true accuracy using mathematical optimization. Compared to prior approaches for estimating accuracy, our new approach (a) introduces novel feature functions that measure nonlocal properties of an alignment yet are fast to evaluate, (b) considers more general classes of estimators beyond linear combinations of features, and (c) develops new regression formulations for learning an estimator from examples; in addition, for parameter advising, we (d) determine the optimal parameter set of a given cardinality, which specifies the best parameter values from which to choose. Our estimator, which we call Facet (for “feature-based accuracy estimator”), yields a parameter advisor that on the hardest benchmarks provides more than a 27% improvement in accuracy over the best default parameter choice, and for parameter advising significantly outperforms the best prior approaches to assessing alignment quality. PMID:23489379
Chen, Jonathan S.; Reddy, Vamsee; Chen, Joshua H.; Shlykov, Maksim A.; Zheng, Wei Hao; Cho, Jaehoon; Yen, Ming Ren; Saier, Milton H.
2012-01-01
Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation: Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids. PMID:22286036
An intuitive graphical webserver for multiple-choice protein sequence search.
Banky, Daniel; Szalkai, Balazs; Grolmusz, Vince
2014-04-10
Every day tens of thousands of sequence searches and sequence alignment queries are submitted to webservers. The capitalized word "BLAST" becomes a verb, describing the act of performing sequence search and alignment. However, if one needs to search for sequences that contain, for example, two hydrophobic and three polar residues at five given positions, the query formation on the most frequently used webservers will be difficult. Some servers support the formation of queries with regular expressions, but most of the users are unfamiliar with their syntax. Here we present an intuitive, easily applicable webserver, the Protein Sequence Analysis server, that allows the formation of multiple choice queries by simply drawing the residues to their positions; if more than one residue are drawn to the same position, then they will be nicely stacked on the user interface, indicating the multiple choice at the given position. This computer-game-like interface is natural and intuitive, and the coloring of the residues makes possible to form queries requiring not just certain amino acids in the given positions, but also small nonpolar, negatively charged, hydrophobic, positively charged, or polar ones. The webserver is available at http://psa.pitgroup.org. Copyright © 2014 Elsevier B.V. All rights reserved.
Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming
2016-07-08
The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
2012-01-01
Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants. PMID:22883984
Zuiter, Afnan Saeid; Sawwan, Jammal; Al Abdallat, Ayed
2012-08-10
Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.
Garrido-Martín, Diego; Pazos, Florencio
2018-02-27
The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding how the sequence content of the databases affects them is relevant and timely. In this work we evaluate how the growth and change with time in the content of sequence databases affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating historical versions of the multiple sequence alignments that would have been obtained in the past based on the database contents at different time points, covering a period of 20 years. Applying the methods to these historical alignments allows quantifying the temporal variation in their performance. Our results show that the number of families to which these methods can be applied sharply increases with time, while their ability to detect potentially functional residues remains almost constant. These results are informative for the methods' developers and final users, and may have implications in the design of new sequencing initiatives.
Adaptive Local Realignment of Protein Sequences.
DeBlasio, Dan; Kececioglu, John
2018-06-11
While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.
GRIL: genome rearrangement and inversion locator.
Darling, Aaron E; Mau, Bob; Blattner, Frederick R; Perna, Nicole T
2004-01-01
GRIL is a tool to automatically identify collinear regions in a set of bacterial-size genome sequences. GRIL uses three basic steps. First, regions of high sequence identity are located. Second, some of these regions are filtered based on user-specified criteria. Finally, the remaining regions of sequence identity are used to define significant collinear regions among the sequences. By locating collinear regions of sequence, GRIL provides a basis for multiple genome alignment using current alignment systems. GRIL also provides a basis for using current inversion distance tools to infer phylogeny. GRIL is implemented in C++ and runs on any x86-based Linux or Windows platform. It is available from http://asap.ahabs.wisc.edu/gril
SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.
Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile
2015-01-01
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.
WebLogo: A Sequence Logo Generator
Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc; Brenner, Steven E.
2004-01-01
WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization. PMID:15173120
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring
2012-01-01
Background Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. Results The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Conclusions Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family. PMID:22793672
Statistical discovery of site inter-dependencies in sub-molecular hierarchical protein structuring.
Durston, Kirk K; Chiu, David Ky; Wong, Andrew Kc; Li, Gary Cl
2012-07-13
Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families. The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function. Our results demonstrate that the method we present here using a k-modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A
2016-07-01
Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.
Sela, Itamar; Ashkenazy, Haim; Katoh, Kazutaka; Pupko, Tal
2015-07-01
Inference of multiple sequence alignments (MSAs) is a critical part of phylogenetic and comparative genomics studies. However, from the same set of sequences different MSAs are often inferred, depending on the methodologies used and the assumed parameters. Much effort has recently been devoted to improving the ability to identify unreliable alignment regions. Detecting such unreliable regions was previously shown to be important for downstream analyses relying on MSAs, such as the detection of positive selection. Here we developed GUIDANCE2, a new integrative methodology that accounts for: (i) uncertainty in the process of indel formation, (ii) uncertainty in the assumed guide tree and (iii) co-optimal solutions in the pairwise alignments, used as building blocks in progressive alignment algorithms. We compared GUIDANCE2 with seven methodologies to detect unreliable MSA regions using extensive simulations and empirical benchmarks. We show that GUIDANCE2 outperforms all previously developed methodologies. Furthermore, GUIDANCE2 also provides a set of alternative MSAs which can be useful for downstream analyses. The novel algorithm is implemented as a web-server, available at: http://guidance.tau.ac.il. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Measuring the distance between multiple sequence alignments.
Blackburne, Benjamin P; Whelan, Simon
2012-02-15
Multiple sequence alignment (MSA) is a core method in bioinformatics. The accuracy of such alignments may influence the success of downstream analyses such as phylogenetic inference, protein structure prediction, and functional prediction. The importance of MSA has lead to the proliferation of MSA methods, with different objective functions and heuristics to search for the optimal MSA. Different methods of inferring MSAs produce different results in all but the most trivial cases. By measuring the differences between inferred alignments, we may be able to develop an understanding of how these differences (i) relate to the objective functions and heuristics used in MSA methods, and (ii) affect downstream analyses. We introduce four metrics to compare MSAs, which include the position in a sequence where a gap occurs or the location on a phylogenetic tree where an insertion or deletion (indel) event occurs. We use both real and synthetic data to explore the information given by these metrics and demonstrate how the different metrics in combination can yield more information about MSA methods and the differences between them. MetAl is a free software implementation of these metrics in Haskell. Source and binaries for Windows, Linux and Mac OS X are available from http://kumiho.smith.man.ac.uk/whelan/software/metal/.
Acceleration of the Smith-Waterman algorithm using single and multiple graphics processors
NASA Astrophysics Data System (ADS)
Khajeh-Saeed, Ali; Poole, Stephen; Blair Perot, J.
2010-06-01
Finding regions of similarity between two very long data streams is a computationally intensive problem referred to as sequence alignment. Alignment algorithms must allow for imperfect sequence matching with different starting locations and some gaps and errors between the two data sequences. Perhaps the most well known application of sequence matching is the testing of DNA or protein sequences against genome databases. The Smith-Waterman algorithm is a method for precisely characterizing how well two sequences can be aligned and for determining the optimal alignment of those two sequences. Like many applications in computational science, the Smith-Waterman algorithm is constrained by the memory access speed and can be accelerated significantly by using graphics processors (GPUs) as the compute engine. In this work we show that effective use of the GPU requires a novel reformulation of the Smith-Waterman algorithm. The performance of this new version of the algorithm is demonstrated using the SSCA#1 (Bioinformatics) benchmark running on one GPU and on up to four GPUs executing in parallel. The results indicate that for large problems a single GPU is up to 45 times faster than a CPU for this application, and the parallel implementation shows linear speed up on up to 4 GPUs.
Genome alignment with graph data structures: a comparison
2014-01-01
Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884
Panwar, Priyankar; Verma, A K; Dubey, Ashutosh
2018-05-01
Barnyard ( Echinochloa frumentacea ) and finger ( Eleusine coracana ) millet growing at northwestern Himalaya were explored for the α-amylase inhibitor (α-AI). The mature seeds of barnyard millet variety PRJ1 had maximum α-AI activity which increases in different developmental stage. α-AI was purified up to 22.25-fold from barnyard millet variety PRJ1. Semi-quantitative PCR of different developmental stages of barnyard millet seeds showed increased levels of the transcript from 7 to 28 days. Sequence analysis revealed that it contained 315 bp nucleotide which encodes 104 amino acid sequence with molecular weight 10.72 kDa. The predicted 3D structure of α-AI was 86.73% similar to a bifunctional inhibitor of ragi. In silico analysis of 71 α-AI protein sequences were carried out for biochemical features, homology search, multiple sequence alignment, phylogenetic tree construction, motif, and superfamily distribution of protein sequences. Analysis of multiple sequence alignment revealed the existence of conserved regions NPLP[S/G]CRWYVV[S/Q][Q/R]TCG[V/I] throughout sequences. Superfam analysis revealed that α-AI protein sequences were distributed among seven different superfamilies.
Cui, Zhihua; Zhang, Yi
2014-02-01
As a promising and innovative research field, bioinformatics has attracted increasing attention recently. Beneath the enormous number of open problems in this field, one fundamental issue is about the accurate and efficient computational methodology that can deal with tremendous amounts of data. In this paper, we survey some applications of swarm intelligence to discover patterns of multiple sequences. To provide a deep insight, ant colony optimization, particle swarm optimization, artificial bee colony and artificial fish swarm algorithm are selected, and their applications to multiple sequence alignment and motif detecting problem are discussed.
Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric
2005-03-10
Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
CHROMA: consensus-based colouring of multiple alignments for publication.
Goodstadt, L; Ponting, C P
2001-09-01
CHROMA annotates multiple protein sequence alignments by consensus to produce formatted and coloured text suitable for incorporation into other documents for publication. The package is designed to be flexible and reliable, and has a simple-to-use graphical user interface running under Microsoft Windows. Both the executables and source code for CHROMA running under Windows and Linux (portable command-line only) are freely available at http://www.lg.ndirect.co.uk/chroma. Software enquiries should be directed to CHROMA@lg.ndirect.co.uk.
Paiardini, Alessandro; Bossa, Francesco; Pascarella, Stefano
2004-01-01
The wealth of biological information provided by structural and genomic projects opens new prospects of understanding life and evolution at the molecular level. In this work, it is shown how computational approaches can be exploited to pinpoint protein structural features that remain invariant upon long evolutionary periods in the fold-type I, PLP-dependent enzymes. A nonredundant set of 23 superposed crystallographic structures belonging to this superfamily was built. Members of this family typically display high-structural conservation despite low-sequence identity. For each structure, a multiple-sequence alignment of orthologous sequences was obtained, and the 23 alignments were merged using the structural information to obtain a comprehensive multiple alignment of 921 sequences of fold-type I enzymes. The structurally conserved regions (SCRs), the evolutionarily conserved residues, and the conserved hydrophobic contacts (CHCs) were extracted from this data set, using both sequence and structural information. The results of this study identified a structural pattern of hydrophobic contacts shared by all of the superfamily members of fold-type I enzymes and involved in native interactions. This profile highlights the presence of a nucleus for this fold, in which residues participating in the most conserved native interactions exhibit preferential evolutionary conservation, that correlates significantly (r = 0.70) with the extent of mean hydrophobic contact value of their apolar fraction. PMID:15498941
Sequence analysis by iterated maps, a review.
Almeida, Jonas S
2014-05-01
Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, 'Chaos Game Representation'. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results.
Hal: an automated pipeline for phylogenetic analyses of genomic data.
Robbertse, Barbara; Yoder, Ryan J; Boyd, Alex; Reeves, John; Spatafora, Joseph W
2011-02-07
The rapid increase in genomic and genome-scale data is resulting in unprecedented levels of discrete sequence data available for phylogenetic analyses. Major analytical impasses exist, however, prior to analyzing these data with existing phylogenetic software. Obstacles include the management of large data sets without standardized naming conventions, identification and filtering of orthologous clusters of proteins or genes, and the assembly of alignments of orthologous sequence data into individual and concatenated super alignments. Here we report the production of an automated pipeline, Hal that produces multiple alignments and trees from genomic data. These alignments can be produced by a choice of four alignment programs and analyzed by a variety of phylogenetic programs. In short, the Hal pipeline connects the programs BLASTP, MCL, user specified alignment programs, GBlocks, ProtTest and user specified phylogenetic programs to produce species trees. The script is available at sourceforge (http://sourceforge.net/projects/bio-hal/). The results from an example analysis of Kingdom Fungi are briefly discussed.
Multiple network alignment via multiMAGNA+.
Vijayan, Vipin; Milenkovic, Tijana
2017-08-21
Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while multiple NA (MNA) can align more than two networks. We focus on MNA. Existing MNA methods aim to maximize total similarity over all aligned nodes (node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Directly optimizing edge conservation during alignment construction in addition to node conservation may result in superior alignments. Thus, we present a novel MNA method called multiMAGNA++ that can achieve this. Indeed, multiMAGNA++ outperforms or is on par with existing MNA methods, while often completing faster than existing methods. That is, multiMAGNA++ scales well to larger network data and can be parallelized effectively. During method evaluation, we also introduce new MNA quality measures to allow for more fair MNA method comparison compared to the existing alignment quality measures. MultiMAGNA++ code is available on the method's web page at http://nd.edu/~cone/multiMAGNA++/.
Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania
2015-01-01
This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.
Kiryu, Hisanori; Kin, Taishin; Asai, Kiyoshi
2007-02-15
Recent transcriptomic studies have revealed the existence of a considerable number of non-protein-coding RNA transcripts in higher eukaryotic cells. To investigate the functional roles of these transcripts, it is of great interest to find conserved secondary structures from multiple alignments on a genomic scale. Since multiple alignments are often created using alignment programs that neglect the special conservation patterns of RNA secondary structures for computational efficiency, alignment failures can cause potential risks of overlooking conserved stem structures. We investigated the dependence of the accuracy of secondary structure prediction on the quality of alignments. We compared three algorithms that maximize the expected accuracy of secondary structures as well as other frequently used algorithms. We found that one of our algorithms, called McCaskill-MEA, was more robust against alignment failures than others. The McCaskill-MEA method first computes the base pairing probability matrices for all the sequences in the alignment and then obtains the base pairing probability matrix of the alignment by averaging over these matrices. The consensus secondary structure is predicted from this matrix such that the expected accuracy of the prediction is maximized. We show that the McCaskill-MEA method performs better than other methods, particularly when the alignment quality is low and when the alignment consists of many sequences. Our model has a parameter that controls the sensitivity and specificity of predictions. We discussed the uses of that parameter for multi-step screening procedures to search for conserved secondary structures and for assigning confidence values to the predicted base pairs. The C++ source code that implements the McCaskill-MEA algorithm and the test dataset used in this paper are available at http://www.ncrna.org/papers/McCaskillMEA/. Supplementary data are available at Bioinformatics online.
MultiSETTER: web server for multiple RNA structure comparison.
Čech, Petr; Hoksza, David; Svozil, Daniel
2015-08-12
Understanding the architecture and function of RNA molecules requires methods for comparing and analyzing their tertiary and quaternary structures. While structural superposition of short RNAs is achievable in a reasonable time, large structures represent much bigger challenge. Therefore, we have developed a fast and accurate algorithm for RNA pairwise structure superposition called SETTER and implemented it in the SETTER web server. However, though biological relationships can be inferred by a pairwise structure alignment, key features preserved by evolution can be identified only from a multiple structure alignment. Thus, we extended the SETTER algorithm to the alignment of multiple RNA structures and developed the MultiSETTER algorithm. In this paper, we present the updated version of the SETTER web server that implements a user friendly interface to the MultiSETTER algorithm. The server accepts RNA structures either as the list of PDB IDs or as user-defined PDB files. After the superposition is computed, structures are visualized in 3D and several reports and statistics are generated. To the best of our knowledge, the MultiSETTER web server is the first publicly available tool for a multiple RNA structure alignment. The MultiSETTER server offers the visual inspection of an alignment in 3D space which may reveal structural and functional relationships not captured by other multiple alignment methods based either on a sequence or on secondary structure motifs.
Java bioinformatics analysis web services for multiple sequence alignment--JABAWS:MSA.
Troshin, Peter V; Procter, James B; Barton, Geoffrey J
2011-07-15
JABAWS is a web services framework that simplifies the deployment of web services for bioinformatics. JABAWS:MSA provides services for five multiple sequence alignment (MSA) methods (Probcons, T-coffee, Muscle, Mafft and ClustalW), and is the system employed by the Jalview multiple sequence analysis workbench since version 2.6. A fully functional, easy to set up server is provided as a Virtual Appliance (VA), which can be run on most operating systems that support a virtualization environment such as VMware or Oracle VirtualBox. JABAWS is also distributed as a Web Application aRchive (WAR) and can be configured to run on a single computer and/or a cluster managed by Grid Engine, LSF or other queuing systems that support DRMAA. JABAWS:MSA provides clients full access to each application's parameters, allows administrators to specify named parameter preset combinations and execution limits for each application through simple configuration files. The JABAWS command-line client allows integration of JABAWS services into conventional scripts. JABAWS is made freely available under the Apache 2 license and can be obtained from: http://www.compbio.dundee.ac.uk/jabaws.
Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M
2018-05-01
Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.
Template-based protein structure modeling using the RaptorX web server.
Källberg, Morten; Wang, Haipeng; Wang, Sheng; Peng, Jian; Wang, Zhiyong; Lu, Hui; Xu, Jinbo
2012-07-19
A key challenge of modern biology is to uncover the functional role of the protein entities that compose cellular proteomes. To this end, the availability of reliable three-dimensional atomic models of proteins is often crucial. This protocol presents a community-wide web-based method using RaptorX (http://raptorx.uchicago.edu/) for protein secondary structure prediction, template-based tertiary structure modeling, alignment quality assessment and sophisticated probabilistic alignment sampling. RaptorX distinguishes itself from other servers by the quality of the alignment between a target sequence and one or multiple distantly related template proteins (especially those with sparse sequence profiles) and by a novel nonlinear scoring function and a probabilistic-consistency algorithm. Consequently, RaptorX delivers high-quality structural models for many targets with only remote templates. At present, it takes RaptorX ~35 min to finish processing a sequence of 200 amino acids. Since its official release in August 2011, RaptorX has processed ~6,000 sequences submitted by ~1,600 users from around the world.
Template-based protein structure modeling using the RaptorX web server
Källberg, Morten; Wang, Haipeng; Wang, Sheng; Peng, Jian; Wang, Zhiyong; Lu, Hui; Xu, Jinbo
2016-01-01
A key challenge of modern biology is to uncover the functional role of the protein entities that compose cellular proteomes. To this end, the availability of reliable three-dimensional atomic models of proteins is often crucial. This protocol presents a community-wide web-based method using RaptorX (http://raptorx.uchicago.edu/) for protein secondary structure prediction, template-based tertiary structure modeling, alignment quality assessment and sophisticated probabilistic alignment sampling. RaptorX distinguishes itself from other servers by the quality of the alignment between a target sequence and one or multiple distantly related template proteins (especially those with sparse sequence profiles) and by a novel nonlinear scoring function and a probabilistic-consistency algorithm. Consequently, RaptorX delivers high-quality structural models for many targets with only remote templates. At present, it takes RaptorX ~35 min to finish processing a sequence of 200 amino acids. Since its official release in August 2011, RaptorX has processed ~6,000 sequences submitted by ~1,600 users from around the world. PMID:22814390
Dinucleotide controlled null models for comparative RNA gene prediction.
Gesell, Tanja; Washietl, Stefan
2008-05-27
Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered. SISSIz is available as open source C code that can be compiled for every major platform and downloaded here: http://sourceforge.net/projects/sissiz.
Thomas, Paul D; Kejariwal, Anish; Campbell, Michael J; Mi, Huaiyu; Diemer, Karen; Guo, Nan; Ladunga, Istvan; Ulitsky-Lazareva, Betty; Muruganujan, Anushya; Rabkin, Steven; Vandergriff, Jody A; Doremieux, Olivier
2003-01-01
The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.
Solving the problem of Trans-Genomic Query with alignment tables.
Parker, Douglass Stott; Hsiao, Ruey-Lung; Xing, Yi; Resch, Alissa M; Lee, Christopher J
2008-01-01
The trans-genomic query (TGQ) problem--enabling the free query of biological information, even across genomes--is a central challenge facing bioinformatics. Solutions to this problem can alter the nature of the field, moving it beyond the jungle of data integration and expanding the number and scope of questions that can be answered. An alignment table is a binary relationship on locations (sequence segments). An important special case of alignment tables are hit tables ? tables of pairs of highly similar segments produced by alignment tools like BLAST. However, alignment tables also include general binary relationships, and can represent any useful connection between sequence locations. They can be curated, and provide a high-quality queryable backbone of connections between biological information. Alignment tables thus can be a natural foundation for TGQ, as they permit a central part of the TGQ problem to be reduced to purely technical problems involving tables of locations.Key challenges in implementing alignment tables include efficient representation and indexing of sequence locations. We define a location datatype that can be incorporated naturally into common off-the-shelf database systems. We also describe an implementation of alignment tables in BLASTGRES, an extension of the open-source POSTGRESQL database system that provides indexing and operators on locations required for querying alignment tables. This paper also reviews several successful large-scale applications of alignment tables for Trans-Genomic Query. Tables with millions of alignments have been used in queries about alternative splicing, an area of genomic analysis concerning the way in which a single gene can yield multiple transcripts. Comparative genomics is a large potential application area for TGQ and alignment tables.
YAHA: fast and flexible long-read alignment with optimal breakpoint detection.
Faust, Gregory G; Hall, Ira M
2012-10-01
With improved short-read assembly algorithms and the recent development of long-read sequencers, split mapping will soon be the preferred method for structural variant (SV) detection. Yet, current alignment tools are not well suited for this. We present YAHA, a fast and flexible hash-based aligner. YAHA is as fast and accurate as BWA-SW at finding the single best alignment per query and is dramatically faster and more sensitive than both SSAHA2 and MegaBLAST at finding all possible alignments. Unlike other aligners that report all, or one, alignment per query, or that use simple heuristics to select alignments, YAHA uses a directed acyclic graph to find the optimal set of alignments that cover a query using a biologically relevant breakpoint penalty. YAHA can also report multiple mappings per defined segment of the query. We show that YAHA detects more breakpoints in less time than BWA-SW across all SV classes, and especially excels at complex SVs comprising multiple breakpoints. YAHA is currently supported on 64-bit Linux systems. Binaries and sample data are freely available for download from http://faculty.virginia.edu/irahall/YAHA. imh4y@virginia.edu.
Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment
Kam, Alfred; Kwak, Daniel; Leung, Clarence; Wu, Chu; Zarour, Eleyine; Sarmenta, Luis; Blanchette, Mathieu; Waldispühl, Jérôme
2012-01-01
Background Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. Methodology/Principal Findings We introduce Phylo, a human-based computing framework applying “crowd sourcing” techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. Conclusions/Significance We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of “human-brain peta-flops” of computation that are spent every day playing games. Phylo is available at: http://phylo.cs.mcgill.ca. PMID:22412834
The Saccharomyces Genome Database Variant Viewer
Sheppard, Travis K.; Hitz, Benjamin C.; Engel, Stacia R.; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C.; Dalusag, Kyla S.; Demeter, Janos; Hellerstedt, Sage T.; Karra, Kalpana; Nash, Robert S.; Paskov, Kelley M.; Skrzypek, Marek S.; Weng, Shuai; Wong, Edith D.; Cherry, J. Michael
2016-01-01
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. PMID:26578556
Bioinformatic prediction and in vivo validation of residue-residue interactions in human proteins
NASA Astrophysics Data System (ADS)
Jordan, Daniel; Davis, Erica; Katsanis, Nicholas; Sunyaev, Shamil
2014-03-01
Identifying residue-residue interactions in protein molecules is important for understanding both protein structure and function in the context of evolutionary dynamics and medical genetics. Such interactions can be difficult to predict using existing empirical or physical potentials, especially when residues are far from each other in sequence space. Using a multiple sequence alignment of 46 diverse vertebrate species we explore the space of allowed sequences for orthologous protein families. Amino acid changes that are known to damage protein function allow us to identify specific changes that are likely to have interacting partners. We fit the parameters of the continuous-time Markov process used in the alignment to conclude that these interactions are primarily pairwise, rather than higher order. Candidates for sites under pairwise epistasis are predicted, which can then be tested by experiment. We report the results of an initial round of in vivo experiments in a zebrafish model that verify the presence of multiple pairwise interactions predicted by our model. These experimentally validated interactions are novel, distant in sequence, and are not readily explained by known biochemical or biophysical features.
Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R
2001-10-01
The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.
TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.
Menges, Fabian; Narzisi, Giuseppe; Mishra, Bud
2011-09-01
Currently, re-sequencing approaches use multiple modules serially to interpret raw sequencing data from next-generation sequencing platforms, while remaining oblivious to the genomic information until the final alignment step. Such approaches fail to exploit the full information from both raw sequencing data and the reference genome that can yield better quality sequence reads, SNP-calls, variant detection, as well as an alignment at the best possible location in the reference genome. Thus, there is a need for novel reference-guided bioinformatics algorithms for interpreting analog signals representing sequences of the bases ({A, C, G, T}), while simultaneously aligning possible sequence reads to a source reference genome whenever available. Here, we propose a new base-calling algorithm, TotalReCaller, to achieve improved performance. A linear error model for the raw intensity data and Burrows-Wheeler transform (BWT) based alignment are combined utilizing a Bayesian score function, which is then globally optimized over all possible genomic locations using an efficient branch-and-bound approach. The algorithm has been implemented in soft- and hardware [field-programmable gate array (FPGA)] to achieve real-time performance. Empirical results on real high-throughput Illumina data were used to evaluate TotalReCaller's performance relative to its peers-Bustard, BayesCall, Ibis and Rolexa-based on several criteria, particularly those important in clinical and scientific applications. Namely, it was evaluated for (i) its base-calling speed and throughput, (ii) its read accuracy and (iii) its specificity and sensitivity in variant calling. A software implementation of TotalReCaller as well as additional information, is available at: http://bioinformatics.nyu.edu/wordpress/projects/totalrecaller/ fabian.menges@nyu.edu.
QuickProbs—A Fast Multiple Sequence Alignment Algorithm Designed for Graphics Processors
Gudyś, Adam; Deorowicz, Sebastian
2014-01-01
Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE, PREFAB, OXBench-X) on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors. PMID:24586435
NASA Astrophysics Data System (ADS)
Novianti, T.; Sadikin, M.; Widia, S.; Juniantito, V.; Arida, E. A.
2018-03-01
Development of unidentified specific gene is essential to analyze the availability these genes in biological process. Identification unidentified specific DNA of HIF 1α genes is important to analyze their contribution in tissue regeneration process in lizard tail (Hemidactylus platyurus). Bioinformatics and PCR techniques are relatively an easier method to identify an unidentified gene. The most widely used method is BLAST (Basic Local Alignment Sequence Tools) method for alignment the sequences from the other organism. BLAST technique is online software from website https://blast.ncbi.nlm.nih.gov/Blast.cgi that capable to generate the similar sequences from closest kinship to distant kindship. Gecko japonicus is a species that it has closest kinship with H. platyurus. Comparing HIF 1 α gene sequence of G. japonicus with the other species used multiple alignment methods from Mega7 software. Conserved base areas were identified using Clustal IX method. Primary DNA of HIF 1 α gene was design by Primer3 software. HIF 1α gene of lizard (H. platyurus) was successfully amplified using a real-time PCR machine by primary DNA that we had designed from Gecko japonicus. Identification unidentified gene of HIF 1a lizard has been done successfully with multiple alignment method. The study was conducted by analyzing during the growth of tail on day 1, 3, 5, 7, 10, 13 and 17 of lizard tail after autotomy. Process amplification of HIF 1α gene was described by CT value in real time PCR machine. HIF 1α expression of gene is quantified by Livak formula. Chi-square statistic test is 0.000 which means that there is a different expression of HIF 1 α gene in every growth day treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poliakov, Alexander; Couronne, Olivier
2002-11-04
Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program tomore » find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less
Introducing difference recurrence relations for faster semi-global alignment of long sequences.
Suzuki, Hajime; Kasahara, Masahiro
2018-02-19
The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .
MultiSeq: unifying sequence and structure data for evolutionary analysis
Roberts, Elijah; Eargle, John; Wright, Dan; Luthey-Schulten, Zaida
2006-01-01
Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural visualization program for analyzing molecular dynamics simulations. Both are freely distributed by the NIH Resource for Macromolecular Modeling and Bioinformatics and MultiSeq is included with VMD starting with version 1.8.5. The MultiSeq website has details on how to download and use the software: PMID:16914055
Suwannasai, Nuttika; Martín, María P; Phosri, Cherdchai; Sihanonth, Prakitsin; Whalley, Anthony J S; Spouge, John L
2013-01-01
Thailand, a part of the Indo-Burma biodiversity hotspot, has many endemic animals and plants. Some of its fungal species are difficult to recognize and separate, complicating assessments of biodiversity. We assessed species diversity within the fungal genera Annulohypoxylon and Hypoxylon, which produce biologically active and potentially therapeutic compounds, by applying classical taxonomic methods to 552 teleomorphs collected from across Thailand. Using probability of correct identification (PCI), we also assessed the efficacy of automated species identification with a fungal barcode marker, ITS, in the model system of Annulohypoxylon and Hypoxylon. The 552 teleomorphs yielded 137 ITS sequences; in addition, we examined 128 GenBank ITS sequences, to assess biases in evaluating a DNA barcode with GenBank data. The use of multiple sequence alignment in a barcode database like BOLD raises some concerns about non-protein barcode markers like ITS, so we also compared species identification using different alignment methods. Our results suggest the following. (1) Multiple sequence alignment of ITS sequences is competitive with pairwise alignment when identifying species, so BOLD should be able to preserve its present bioinformatics workflow for species identification for ITS, and possibly therefore with at least some other non-protein barcode markers. (2) Automated species identification is insensitive to a specific choice of evolutionary distance, contributing to resolution of a current debate in DNA barcoding. (3) Statistical methods are available to address, at least partially, the possibility of expert misidentification of species. Phylogenetic trees discovered a cryptic species and strongly supported monophyletic clades for many Annulohypoxylon and Hypoxylon species, suggesting that ITS can contribute usefully to a barcode for these fungi. The PCIs here, derived solely from ITS, suggest that a fungal barcode will require secondary markers in Annulohypoxylon and Hypoxylon, however. The URL http://tinyurl.com/spouge-barcode contains computer programs and other supplementary material relevant to this article.
Discovering Sequence Motifs with Arbitrary Insertions and Deletions
Frith, Martin C.; Saunders, Neil F. W.; Kobe, Bostjan; Bailey, Timothy L.
2008-01-01
Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. glam2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for “motif-like” alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2. PMID:18437229
O'Donoghue, Patrick; Luthey-Schulten, Zaida
2005-02-25
We present a new algorithm, based on the multidimensional QR factorization, to remove redundancy from a multiple structural alignment by choosing representative protein structures that best preserve the phylogenetic tree topology of the homologous group. The classical QR factorization with pivoting, developed as a fast numerical solution to eigenvalue and linear least-squares problems of the form Ax=b, was designed to re-order the columns of A by increasing linear dependence. Removing the most linear dependent columns from A leads to the formation of a minimal basis set which well spans the phase space of the problem at hand. By recasting the problem of redundancy in multiple structural alignments into this framework, in which the matrix A now describes the multiple alignment, we adapted the QR factorization to produce a minimal basis set of protein structures which best spans the evolutionary (phase) space. The non-redundant and representative profiles obtained from this procedure, termed evolutionary profiles, are shown in initial results to outperform well-tested profiles in homology detection searches over a large sequence database. A measure of structural similarity between homologous proteins, Q(H), is presented. By properly accounting for the effect and presence of gaps, a phylogenetic tree computed using this metric is shown to be congruent with the maximum-likelihood sequence-based phylogeny. The results indicate that evolutionary information is indeed recoverable from the comparative analysis of protein structure alone. Applications of the QR ordering and this structural similarity metric to analyze the evolution of structure among key, universally distributed proteins involved in translation, and to the selection of representatives from an ensemble of NMR structures are also discussed.
Spatio-temporal alignment of multiple sensors
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao
2018-01-01
Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.
Zemla, Adam T; Lang, Dorothy M; Kostova, Tanya; Andino, Raul; Ecale Zhou, Carol L
2011-06-02
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory--still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could help overcome these difficulties by facilitating the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV (structure-alignment sequence variability), a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus, and we demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique, or that share structural similarity with proteins that would be considered distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local structural alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position. StralSV is provided as a web service at http://proteinmodel.org/AS2TS/STRALSV/.
The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures.
Goldenberg, Ofir; Erez, Elana; Nimrod, Guy; Ben-Tal, Nir
2009-01-01
ConSurf-DB is a repository for evolutionary conservation analysis of the proteins of known structures in the Protein Data Bank (PDB). Sequence homologues of each of the PDB entries were collected and aligned using standard methods. The evolutionary conservation of each amino acid position in the alignment was calculated using the Rate4Site algorithm, implemented in the ConSurf web server. The algorithm takes into account the phylogenetic relations between the aligned proteins and the stochastic nature of the evolutionary process explicitly. Rate4Site assigns a conservation level for each position in the multiple sequence alignment using an empirical Bayesian inference. Visual inspection of the conservation patterns on the 3D structure often enables the identification of key residues that comprise the functionally important regions of the protein. The repository is updated with the latest PDB entries on a monthly basis and will be rebuilt annually. ConSurf-DB is available online at http://consurfdb.tau.ac.il/
The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures
Goldenberg, Ofir; Erez, Elana; Nimrod, Guy; Ben-Tal, Nir
2009-01-01
ConSurf-DB is a repository for evolutionary conservation analysis of the proteins of known structures in the Protein Data Bank (PDB). Sequence homologues of each of the PDB entries were collected and aligned using standard methods. The evolutionary conservation of each amino acid position in the alignment was calculated using the Rate4Site algorithm, implemented in the ConSurf web server. The algorithm takes into account the phylogenetic relations between the aligned proteins and the stochastic nature of the evolutionary process explicitly. Rate4Site assigns a conservation level for each position in the multiple sequence alignment using an empirical Bayesian inference. Visual inspection of the conservation patterns on the 3D structure often enables the identification of key residues that comprise the functionally important regions of the protein. The repository is updated with the latest PDB entries on a monthly basis and will be rebuilt annually. ConSurf-DB is available online at http://consurfdb.tau.ac.il/ PMID:18971256
Characterization of tannase protein sequences of bacteria and fungi: an in silico study.
Banerjee, Amrita; Jana, Arijit; Pati, Bikash R; Mondal, Keshab C; Das Mohapatra, Pradeep K
2012-04-01
The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon-carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389-469 and 482-523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.
The Saccharomyces Genome Database Variant Viewer.
Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael
2016-01-04
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Protein Sectors: Statistical Coupling Analysis versus Conservation
Teşileanu, Tiberiu; Colwell, Lucy J.; Leibler, Stanislas
2015-01-01
Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed “sectors”. The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation. PMID:25723535
Huang, Fengying; Meng, Qiuping; Tan, Guanghong; Huang, Yonghao; Wang, Hua; Mei, Wenli; Dai, Haofu
2011-06-01
To analysis and identify a bacterium strain isolated from laboratory breeding mouse far away from a hospital. Phenotype of the isolate was investigated by conventional microbiological methods, including Gram-staining, colony morphology, tests for haemolysis, catalase, coagulase, and antimicrobial susceptibility test. The mecA and 16S rRNA genes were amplified by the polymerase chain reaction (PCR) and sequenced. The base sequence of the PCR product was compared with known 16S rRNA gene sequences in the GenBank database by phylogenetic analysis and multiple sequence alignment. The isolate in this study was a gram positive, coagulase negative, and catalase positive coccus. The isolate was resistant to oxacillin, methicillin, penicillin, ampicillin, cefazolin, ciprofloxacin erythromycin, et al. PCR results indicated that the isolate was mecA gene positive and its 16S rRNA was 1 465 bp. Phylogenetic analysis of the resultant 16S rRNA indicated the isolate belonged to genus Saphylococcus, and multiple sequence alignment showed that the isolate was Saphylococcus haemolyticus with only one base difference from the corresponding 16S rRNA deposited in the GenBank. 16S rRNA gene sequencing is a suitable technique for non-specialist researchers. Laboratory animals are possible sources of lethal pathogens, and researchers must adapt protective measures when they manipulate animals. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Consensus generation and variant detection by Celera Assembler.
Denisov, Gennady; Walenz, Brian; Halpern, Aaron L; Miller, Jason; Axelrod, Nelson; Levy, Samuel; Sutton, Granger
2008-04-15
We present an algorithm to identify allelic variation given a Whole Genome Shotgun (WGS) assembly of haploid sequences, and to produce a set of haploid consensus sequences rather than a single consensus sequence. Existing WGS assemblers take a column-by-column approach to consensus generation, and produce a single consensus sequence which can be inconsistent with the underlying haploid alleles, and inconsistent with any of the aligned sequence reads. Our new algorithm uses a dynamic windowing approach. It detects alleles by simultaneously processing the portions of aligned reads spanning a region of sequence variation, assigns reads to their respective alleles, phases adjacent variant alleles and generates a consensus sequence corresponding to each confirmed allele. This algorithm was used to produce the first diploid genome sequence of an individual human. It can also be applied to assemblies of multiple diploid individuals and hybrid assemblies of multiple haploid organisms. Being applied to the individual human genome assembly, the new algorithm detects exactly two confirmed alleles and reports two consensus sequences in 98.98% of the total number 2,033311 detected regions of sequence variation. In 33,269 out of 460,373 detected regions of size >1 bp, it fixes the constructed errors of a mosaic haploid representation of a diploid locus as produced by the original Celera Assembler consensus algorithm. Using an optimized procedure calibrated against 1 506 344 known SNPs, it detects 438 814 new heterozygous SNPs with false positive rate 12%. The open source code is available at: http://wgs-assembler.cvs.sourceforge.net/wgs-assembler/
MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems.
González-Domínguez, Jorge; Liu, Yongchao; Touriño, Juan; Schmidt, Bertil
2016-12-15
MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at http://msaprobs.sourceforge.net CONTACT: jgonzalezd@udc.esSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Finding similar nucleotide sequences using network BLAST searches.
Ladunga, Istvan
2009-06-01
The Basic Local Alignment Search Tool (BLAST) is a keystone of bioinformatics due to its performance and user-friendliness. Beginner and intermediate users will learn how to design and submit blastn and Megablast searches on the Web pages at the National Center for Biotechnology Information. We map nucleic acid sequences to genomes, find identical or similar mRNA, expressed sequence tag, and noncoding RNA sequences, and run Megablast searches, which are much faster than blastn. Understanding results is assisted by taxonomy reports, genomic views, and multiple alignments. We interpret expected frequency thresholds, biological significance, and statistical significance. Weak hits provide no evidence, but hints for further analyses. We find genes that may code for homologous proteins by translated BLAST. We reduce false positives by filtering out low-complexity regions. Parsed BLAST results can be integrated into analysis pipelines. Links in the output connect to Entrez, PUBMED, structural, sequence, interaction, and expression databases. This facilitates integration with a wide spectrum of biological knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Androulakis, Ioannis P., E-mail: yannis@rci.rutgers.edu; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854
2013-09-15
Pathway-based information has become an important source of information for both establishing evolutionary relationships and understanding the mode of action of a chemical or pharmaceutical among species. Cross-species comparison of pathways can address two broad questions: comparison in order to inform evolutionary relationships and to extrapolate species differences used in a number of different applications including drug and toxicity testing. Cross-species comparison of metabolic pathways is complex as there are multiple features of a pathway that can be modeled and compared. Among the various methods that have been proposed, reaction alignment has emerged as the most successful at predicting phylogeneticmore » relationships based on NCBI taxonomy. We propose an improvement of the reaction alignment method by accounting for sequence similarity in addition to reaction alignment method. Using nine species, including human and some model organisms and test species, we evaluate the standard and improved comparison methods by analyzing glycolysis and citrate cycle pathways conservation. In addition, we demonstrate how organism comparison can be conducted by accounting for the cumulative information retrieved from nine pathways in central metabolism as well as a more complete study involving 36 pathways common in all nine species. Our results indicate that reaction alignment with enzyme sequence similarity results in a more accurate representation of pathway specific cross-species similarities and differences based on NCBI taxonomy.« less
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-12-01
The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-01-01
Motivation: The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. Results: We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. Availability and implementation: BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Contact: Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254488
HIPPI: highly accurate protein family classification with ensembles of HMMs.
Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy
2016-11-11
Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .
Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses
Villegas-Rosales, Paula M; Méndez-Tenorio, Alfonso; Ortega-Soto, Elizabeth; Barrón, Blanca L
2012-01-01
Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery. PMID:22829722
Using structure to explore the sequence alignment space of remote homologs.
Kuziemko, Andrew; Honig, Barry; Petrey, Donald
2011-10-01
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.
Collins, Kodi; Warnow, Tandy
2018-06-19
PASTA is a multiple sequence method that uses divide-and-conquer plus iteration to enable base alignment methods to scale with high accuracy to large sequence datasets. By default, PASTA included MAFFT L-INS-i; our new extension of PASTA enables the use of MAFFT G-INS-i, MAFFT Homologs, CONTRAlign, and ProbCons. We analyzed the performance of each base method and PASTA using these base methods on 224 datasets from BAliBASE 4 with at least 50 sequences. We show that PASTA enables the most accurate base methods to scale to larger datasets at reduced computational effort, and generally improves alignment and tree accuracy on the largest BAliBASE datasets. PASTA is available at https://github.com/kodicollins/pasta and has also been integrated into the original PASTA repository at https://github.com/smirarab/pasta. Supplementary data are available at Bioinformatics online.
2015-06-01
Love, and S. Gupta at the Whitehead Genome Core for assistance with genome sequencing . This research was supported by NIH K08 HL105678, The Wat...efficient alignment of short DNA sequences to the human genome . Genome Bioi. 10, R25. LeRoy, G., Rickards, B., and Flint, S.J. (2008). The double...of the beginning. Nature reviews. Cancer 12, 818-834, doi:10.1038/nrc3410 (2012). 12 Kool, M. et al. Genome sequencing of SHH medulloblastoma
Nawrocki, Eric P.; Burge, Sarah W.
2013-01-01
The development of RNA bioinformatic tools began more than 30 y ago with the description of the Nussinov and Zuker dynamic programming algorithms for single sequence RNA secondary structure prediction. Since then, many tools have been developed for various RNA sequence analysis problems such as homology search, multiple sequence alignment, de novo RNA discovery, read-mapping, and many more. In this issue, we have collected a sampling of reviews and original research that demonstrate some of the many ways bioinformatics is integrated with current RNA biology research. PMID:23948768
Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.
Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R
2009-07-01
The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/
Yu, Xiaoyu; Reva, Oleg N
2018-01-01
Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA.
Yu, Xiaoyu; Reva, Oleg N
2018-01-01
Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA. PMID:29511354
Quantiprot - a Python package for quantitative analysis of protein sequences.
Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold
2017-07-17
The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.
Prediction of protein secondary structure content for the twilight zone sequences.
Homaeian, Leila; Kurgan, Lukasz A; Ruan, Jishou; Cios, Krzysztof J; Chen, Ke
2007-11-15
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure. (c) 2007 Wiley-Liss, Inc.
Limit cycles in piecewise-affine gene network models with multiple interaction loops
NASA Astrophysics Data System (ADS)
Farcot, Etienne; Gouzé, Jean-Luc
2010-01-01
In this article, we consider piecewise affine differential equations modelling gene networks. We work with arbitrary decay rates, and under a local hypothesis expressed as an alignment condition of successive focal points. The interaction graph of the system may be rather complex (multiple intricate loops of any sign, multiple thresholds, etc.). Our main result is an alternative theorem showing that if a sequence of region is periodically visited by trajectories, then under our hypotheses, there exists either a unique stable periodic solution, or the origin attracts all trajectories in this sequence of regions. This result extends greatly our previous work on a single negative feedback loop. We give several examples and simulations illustrating different cases.
Skeleton-based human action recognition using multiple sequence alignment
NASA Astrophysics Data System (ADS)
Ding, Wenwen; Liu, Kai; Cheng, Fei; Zhang, Jin; Li, YunSong
2015-05-01
Human action recognition and analysis is an active research topic in computer vision for many years. This paper presents a method to represent human actions based on trajectories consisting of 3D joint positions. This method first decompose action into a sequence of meaningful atomic actions (actionlets), and then label actionlets with English alphabets according to the Davies-Bouldin index value. Therefore, an action can be represented using a sequence of actionlet symbols, which will preserve the temporal order of occurrence of each of the actionlets. Finally, we employ sequence comparison to classify multiple actions through using string matching algorithms (Needleman-Wunsch). The effectiveness of the proposed method is evaluated on datasets captured by commodity depth cameras. Experiments of the proposed method on three challenging 3D action datasets show promising results.
Andersson, P; Klein, M; Lilliebridge, R A; Giffard, P M
2013-09-01
Ultra-deep Illumina sequencing was performed on whole genome amplified DNA derived from a Chlamydia trachomatis-positive vaginal swab. Alignment of reads with reference genomes allowed robust SNP identification from the C. trachomatis chromosome and plasmid. This revealed that the C. trachomatis in the specimen was very closely related to the sequenced urogenital, serovar F, clade T1 isolate F-SW4. In addition, high genome-wide coverage was obtained for Prevotella melaninogenica, Gardnerella vaginalis, Clostridiales genomosp. BVAB3 and Mycoplasma hominis. This illustrates the potential of metagenome data to provide high resolution bacterial typing data from multiple taxa in a diagnostic specimen. ©2013 The Authors Clinical Microbiology and Infection ©2013 European Society of Clinical Microbiology and Infectious Diseases.
Díaz, David; Esteban, Francisco J.; Hernández, Pilar; Caballero, Juan Antonio; Guevara, Antonio
2014-01-01
We have developed the MC64-ClustalWP2 as a new implementation of the Clustal W algorithm, integrating a novel parallelization strategy and significantly increasing the performance when aligning long sequences in architectures with many cores. It must be stressed that in such a process, the detailed analysis of both the software and hardware features and peculiarities is of paramount importance to reveal key points to exploit and optimize the full potential of parallelism in many-core CPU systems. The new parallelization approach has focused into the most time-consuming stages of this algorithm. In particular, the so-called progressive alignment has drastically improved the performance, due to a fine-grained approach where the forward and backward loops were unrolled and parallelized. Another key approach has been the implementation of the new algorithm in a hybrid-computing system, integrating both an Intel Xeon multi-core CPU and a Tilera Tile64 many-core card. A comparison with other Clustal W implementations reveals the high-performance of the new algorithm and strategy in many-core CPU architectures, in a scenario where the sequences to align are relatively long (more than 10 kb) and, hence, a many-core GPU hardware cannot be used. Thus, the MC64-ClustalWP2 runs multiple alignments more than 18x than the original Clustal W algorithm, and more than 7x than the best x86 parallel implementation to date, being publicly available through a web service. Besides, these developments have been deployed in cost-effective personal computers and should be useful for life-science researchers, including the identification of identities and differences for mutation/polymorphism analyses, biodiversity and evolutionary studies and for the development of molecular markers for paternity testing, germplasm management and protection, to assist breeding, illegal traffic control, fraud prevention and for the protection of the intellectual property (identification/traceability), including the protected designation of origin, among other applications. PMID:24710354
Identifying functionally informative evolutionary sequence profiles.
Gil, Nelson; Fiser, Andras
2018-04-15
Multiple sequence alignments (MSAs) can provide essential input to many bioinformatics applications, including protein structure prediction and functional annotation. However, the optimal selection of sequences to obtain biologically informative MSAs for such purposes is poorly explored, and has traditionally been performed manually. We present Selection of Alignment by Maximal Mutual Information (SAMMI), an automated, sequence-based approach to objectively select an optimal MSA from a large set of alternatives sampled from a general sequence database search. The hypothesis of this approach is that the mutual information among MSA columns will be maximal for those MSAs that contain the most diverse set possible of the most structurally and functionally homogeneous protein sequences. SAMMI was tested to select MSAs for functional site residue prediction by analysis of conservation patterns on a set of 435 proteins obtained from protein-ligand (peptides, nucleic acids and small substrates) and protein-protein interaction databases. Availability and implementation: A freely accessible program, including source code, implementing SAMMI is available at https://github.com/nelsongil92/SAMMI.git. andras.fiser@einstein.yu.edu. Supplementary data are available at Bioinformatics online.
Iterative refinement of structure-based sequence alignments by Seed Extension
Kim, Changhoon; Tai, Chin-Hsien; Lee, Byungkook
2009-01-01
Background Accurate sequence alignment is required in many bioinformatics applications but, when sequence similarity is low, it is difficult to obtain accurate alignments based on sequence similarity alone. The accuracy improves when the structures are available, but current structure-based sequence alignment procedures still mis-align substantial numbers of residues. In order to correct such errors, we previously explored the possibility of replacing the residue-based dynamic programming algorithm in structure alignment procedures with the Seed Extension algorithm, which does not use a gap penalty. Here, we describe a new procedure called RSE (Refinement with Seed Extension) that iteratively refines a structure-based sequence alignment. Results RSE uses SE (Seed Extension) in its core, which is an algorithm that we reported recently for obtaining a sequence alignment from two superimposed structures. The RSE procedure was evaluated by comparing the correctly aligned fractions of residues before and after the refinement of the structure-based sequence alignments produced by popular programs. CE, DaliLite, FAST, LOCK2, MATRAS, MATT, TM-align, SHEBA and VAST were included in this analysis and the NCBI's CDD root node set was used as the reference alignments. RSE improved the average accuracy of sequence alignments for all programs tested when no shift error was allowed. The amount of improvement varied depending on the program. The average improvements were small for DaliLite and MATRAS but about 5% for CE and VAST. More substantial improvements have been seen in many individual cases. The additional computation times required for the refinements were negligible compared to the times taken by the structure alignment programs. Conclusion RSE is a computationally inexpensive way of improving the accuracy of a structure-based sequence alignment. It can be used as a standalone procedure following a regular structure-based sequence alignment or to replace the traditional iterative refinement procedures based on residue-level dynamic programming algorithm in many structure alignment programs. PMID:19589133
A generalized global alignment algorithm.
Huang, Xiaoqiu; Chao, Kun-Mao
2003-01-22
Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.
Shahinyan, Grigor; Margaryan, Armine; Panosyan, Hovik; Trchounian, Armen
2017-05-02
Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5-70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98-99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. Newly isolated bacilli strains could be prospective source for thermostable lipases and their genes.
A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm
Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay
2012-01-01
A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747
W-curve alignments for HIV-1 genomic comparisons.
Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H
2010-06-01
The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5 sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap problem.
Petrova, I D; Kononova, Iu V; Chausov, E V; Shestopalov, A M; Tishkova, F Kh
2013-01-01
506 Hyalomma anatolicum ticks were collected and assayed in two Crimean-Congo hemorrhagic fever (CCHF) endemic regions of Tajikistan. Antigen and RNA of CCHF virus were detected in 3.4% of tick pools from Rudaki district using ELISA and RT-PCR tests. As of Tursunzade district, viral antigen was identified in 9.0% of samples and viral RNA was identified in 8.1% of samples. The multiple alignment of the obtained nucleotide sequences of CCHF virus genome S-segment 287-nt region (996-1282) and multiple alignment of deduced amino acid sequences of the samples, carried out to compare with CCHF virus strains from the GenBank database, as well as phylogenetic analysis, enabled us to conclude that Asia 1 and Asia 2 genotypes of CCHF virus are circulating in Tajikistan. It is important to note that the genotype Asia 1 virus was detected for the first time in Tajikistan.
Yu, Yi-Kuo; Capra, John A.; Stojmirović, Aleksandar; Landsman, David; Altschul, Stephen F.
2015-01-01
Motivation: DNA and protein patterns are usefully represented by sequence logos. However, the methods for logo generation in common use lack a proper statistical basis, and are non-optimal for recognizing functionally relevant alignment columns. Results: We redefine the information at a logo position as a per-observation multiple alignment log-odds score. Such scores are positive or negative, depending on whether a column’s observations are better explained as arising from relatedness or chance. Within this framework, we propose distinct normalized maximum likelihood and Bayesian measures of column information. We illustrate these measures on High Mobility Group B (HMGB) box proteins and a dataset of enzyme alignments. Particularly in the context of protein alignments, our measures improve the discrimination of biologically relevant positions. Availability and implementation: Our new measures are implemented in an open-source Web-based logo generation program, which is available at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/logoddslogo/index.html. A stand-alone version of the program is also available from this site. Contact: altschul@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25294922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sandeep; Rao, Basuthkar J.; Baker, Nathan A.
2013-04-01
Phylogenetic analysis of proteins using multiple sequence alignment (MSA) assumes an underlying evolutionary relationship in these proteins which occasionally remains undetected due to considerable sequence divergence. Structural alignment programs have been developed to unravel such fuzzy relationships. However, none of these structure based methods have used electrostatic properties to discriminate between spatially equivalent residues. We present a methodology for MSA of a set of related proteins with known structures using electrostatic properties as an additional discriminator (STEEP). STEEP first extracts a profile, then generates a multiple structural superimposition providing a consolidated spatial framework for comparing residues and finally emits themore » MSA. Residues that are aligned differently by including or excluding electrostatic properties can be targeted by directed evolution experiments to transform the enzymatic properties of one protein into another. We have compared STEEP results to those obtained from a MSA program (ClustalW) and a structural alignment method (MUSTANG) for chymotrypsin serine proteases. Subsequently, we used PhyML to generate phylogenetic trees for the serine and metallo-β-lactamase superfamilies from the STEEP generated MSA, and corroborated the accepted relationships in these superfamilies. We have observed that STEEP acts as a functional classifier when electrostatic congruence is used as a discriminator, and thus identifies potential targets for directed evolution experiments. In summary, STEEP is unique among phylogenetic methods for its ability to use electrostatic congruence to specify mutations that might be the source of the functional divergence in a protein family. Based on our results, we also hypothesize that the active site and its close vicinity contains enough information to infer the correct phylogeny for related proteins.« less
Robust object matching for persistent tracking with heterogeneous features.
Guo, Yanlin; Hsu, Steve; Sawhney, Harpreet S; Kumar, Rakesh; Shan, Ying
2007-05-01
This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching. Most notably, we employ a heterogeneous collection of features such as lines, points, and regions in an integrated matching framework. Heterogeneous features are shown to be important. Line and point features provide accurate localization and are employed for robust alignment across disparate views. The challenges of change in pose, aspect, and appearances across two disparate observations are handled by combining a novel feature-based quasi-rigid alignment with flexible matching between two or more sequences. However, since lines and points are relatively sparse, they are not adequate to delineate the object and provide a comprehensive matching set that covers the complete object. Region features provide a high degree of coverage and are employed for continuous frames to provide a delineation of the vehicle region for subsequent generation of a match measure. Our approach reliably delineates objects by representing regions as robust blob features and matching multiple regions to multiple regions using Earth Mover's Distance (EMD). Extensive experimentation under a variety of real-world scenarios and over hundreds of thousands of Confirmatory Identification (CID) trails has demonstrated about 95 percent accuracy in vehicle reacquisition with both visible and Infrared (IR) imaging cameras.
CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment
Manavski, Svetlin A; Valle, Giorgio
2008-01-01
Background Searching for similarities in protein and DNA databases has become a routine procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than 25 years. It is based on a dynamic programming approach that explores all the possible alignments between two sequences; as a result it returns the optimal local alignment. Unfortunately, the computational cost is very high, requiring a number of operations proportional to the product of the length of two sequences. Furthermore, the exponential growth of protein and DNA databases makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of sequences. For these reasons heuristic approaches such as those implemented in FASTA and BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The main motivation of our work is to exploit the huge computational power of commonly available graphic cards, to develop high performance solutions for sequence alignment. Results In this paper we present what we believe is the fastest solution of the exact Smith-Waterman algorithm running on commodity hardware. It is implemented in the recently released CUDA programming environment by NVidia. CUDA allows direct access to the hardware primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5 GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800 GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST, running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These tests show that our implementation performs from 2 to 30 times faster than any other previous attempt available on commodity hardware. Conclusions The results show that graphic cards are now sufficiently advanced to be used as efficient hardware accelerators for sequence alignment. Their performance is better than any alternative available on commodity hardware platforms. The solution presented in this paper allows large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm instead of the largely adopted heuristic approaches. PMID:18387198
Local alignment of two-base encoded DNA sequence
Homer, Nils; Merriman, Barry; Nelson, Stanley F
2009-01-01
Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732
Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.
Oliveira, Francisco P M; Tavares, João Manuel R S
2013-03-01
This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.
HAL: a hierarchical format for storing and analyzing multiple genome alignments.
Hickey, Glenn; Paten, Benedict; Earl, Dent; Zerbino, Daniel; Haussler, David
2013-05-15
Large multiple genome alignments and inferred ancestral genomes are ideal resources for comparative studies of molecular evolution, and advances in sequencing and computing technology are making them increasingly obtainable. These structures can provide a rich understanding of the genetic relationships between all subsets of species they contain. Current formats for storing genomic alignments, such as XMFA and MAF, are all indexed or ordered using a single reference genome, however, which limits the information that can be queried with respect to other species and clades. This loss of information grows with the number of species under comparison, as well as their phylogenetic distance. We present HAL, a compressed, graph-based hierarchical alignment format for storing multiple genome alignments and ancestral reconstructions. HAL graphs are indexed on all genomes they contain. Furthermore, they are organized phylogenetically, which allows for modular and parallel access to arbitrary subclades without fragmentation because of rearrangements that have occurred in other lineages. HAL graphs can be created or read with a comprehensive C++ API. A set of tools is also provided to perform basic operations, such as importing and exporting data, identifying mutations and coordinate mapping (liftover). All documentation and source code for the HAL API and tools are freely available at http://github.com/glennhickey/hal. hickey@soe.ucsc.edu or haussler@soe.ucsc.edu Supplementary data are available at Bioinformatics online.
Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms.
Ortegon, Patricia; Poot-Hernández, Augusto C; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya
2015-01-01
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case.
Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms
Ortegon, Patricia; Poot-Hernández, Augusto C.; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya
2015-01-01
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case. PMID:25973143
B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.
Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang
2016-03-01
Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.
A new method to cluster genomes based on cumulative Fourier power spectrum.
Dong, Rui; Zhu, Ziyue; Yin, Changchuan; He, Rong L; Yau, Stephen S-T
2018-06-20
Analyzing phylogenetic relationships using mathematical methods has always been of importance in bioinformatics. Quantitative research may interpret the raw biological data in a precise way. Multiple Sequence Alignment (MSA) is used frequently to analyze biological evolutions, but is very time-consuming. When the scale of data is large, alignment methods cannot finish calculation in reasonable time. Therefore, we present a new method using moments of cumulative Fourier power spectrum in clustering the DNA sequences. Each sequence is translated into a vector in Euclidean space. Distances between the vectors can reflect the relationships between sequences. The mapping between the spectra and moment vector is one-to-one, which means that no information is lost in the power spectra during the calculation. We cluster and classify several datasets including Influenza A, primates, and human rhinovirus (HRV) datasets to build up the phylogenetic trees. Results show that the new proposed cumulative Fourier power spectrum is much faster and more accurately than MSA and another alignment-free method known as k-mer. The research provides us new insights in the study of phylogeny, evolution, and efficient DNA comparison algorithms for large genomes. The computer programs of the cumulative Fourier power spectrum are available at GitHub (https://github.com/YaulabTsinghua/cumulative-Fourier-power-spectrum). Copyright © 2018. Published by Elsevier B.V.
BatMis: a fast algorithm for k-mismatch mapping.
Tennakoon, Chandana; Purbojati, Rikky W; Sung, Wing-Kin
2012-08-15
Second-generation sequencing (SGS) generates millions of reads that need to be aligned to a reference genome allowing errors. Although current aligners can efficiently map reads allowing a small number of mismatches, they are not well suited for handling a large number of mismatches. The efficiency of aligners can be improved using various heuristics, but the sensitivity and accuracy of the alignments are sacrificed. In this article, we introduce Basic Alignment tool for Mismatches (BatMis)--an efficient method to align short reads to a reference allowing k mismatches. BatMis is a Burrows-Wheeler transformation based aligner that uses a seed and extend approach, and it is an exact method. Benchmark tests show that BatMis performs better than competing aligners in solving the k-mismatch problem. Furthermore, it can compete favorably even when compared with the heuristic modes of the other aligners. BatMis is a useful alternative for applications where fast k-mismatch mappings, unique mappings or multiple mappings of SGS data are required. BatMis is written in C/C++ and is freely available from http://code.google.com/p/batmis/
CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design
Rose, Timothy M.; Henikoff, Jorja G.; Henikoff, Steven
2003-01-01
We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3–4 highly conserved amino acids within a 3′ degenerate core. A longer 5′ non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org). PMID:12824413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, Gavin E.
WebLogo is a web based application designed to make the generation of sequence logos as easy and painless as possible. Sequesnce logos are a graphical representation of an amino acid or nucleic acid multiple sequence alignment developed by Tom Schneider and Mike Stephens. Each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of the stack indicates the sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each amino or nucleic acid at that position. In general, a sequence logo provides a richermore » and more precise description of, for example, a binding site, than would a consensus sequence.« less
Overcoming Sequence Misalignments with Weighted Structural Superposition
Khazanov, Nickolay A.; Damm-Ganamet, Kelly L.; Quang, Daniel X.; Carlson, Heather A.
2012-01-01
An appropriate structural superposition identifies similarities and differences between homologous proteins that are not evident from sequence alignments alone. We have coupled our Gaussian-weighted RMSD (wRMSD) tool with a sequence aligner and seed extension (SE) algorithm to create a robust technique for overlaying structures and aligning sequences of homologous proteins (HwRMSD). HwRMSD overcomes errors in the initial sequence alignment that would normally propagate into a standard RMSD overlay. SE can generate a corrected sequence alignment from the improved structural superposition obtained by wRMSD. HwRMSD’s robust performance and its superiority over standard RMSD are demonstrated over a range of homologous proteins. Its better overlay results in corrected sequence alignments with good agreement to HOMSTRAD. Finally, HwRMSD is compared to established structural alignment methods: FATCAT, SSM, CE, and Dalilite. Most methods are comparable at placing residue pairs within 2 Å, but HwRMSD places many more residue pairs within 1 Å, providing a clear advantage. Such high accuracy is essential in drug design, where small distances can have a large impact on computational predictions. This level of accuracy is also needed to correct sequence alignments in an automated fashion, especially for omics-scale analysis. HwRMSD can align homologs with low sequence identity and large conformational differences, cases where both sequence-based and structural-based methods may fail. The HwRMSD pipeline overcomes the dependency of structural overlays on initial sequence pairing and removes the need to determine the best sequence-alignment method, substitution matrix, and gap parameters for each unique pair of homologs. PMID:22733542
The number of reduced alignments between two DNA sequences
2014-01-01
Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679
QUASAR--scoring and ranking of sequence-structure alignments.
Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf
2005-12-15
Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.
Palmer, Lance E; Dejori, Mathaeus; Bolanos, Randall; Fasulo, Daniel
2010-01-15
With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps. We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies. Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.
ExoLocator--an online view into genetic makeup of vertebrate proteins.
Khoo, Aik Aun; Ogrizek-Tomas, Mario; Bulovic, Ana; Korpar, Matija; Gürler, Ece; Slijepcevic, Ivan; Šikic, Mile; Mihalek, Ivana
2014-01-01
ExoLocator (http://exolocator.eopsf.org) collects in a single place information needed for comparative analysis of protein-coding exons from vertebrate species. The main source of data--the genomic sequences, and the existing exon and homology annotation--is the ENSEMBL database of completed vertebrate genomes. To these, ExoLocator adds the search for ostensibly missing exons in orthologous protein pairs across species, using an extensive computational pipeline to narrow down the search region for the candidate exons and find a suitable template in the other species, as well as state-of-the-art implementations of pairwise alignment algorithms. The resulting complements of exons are organized in a way currently unique to ExoLocator: multiple sequence alignments, both on the nucleotide and on the peptide levels, clearly indicating the exon boundaries. The alignments can be inspected in the web-embedded viewer, downloaded or used on the spot to produce an estimate of conservation within orthologous sets, or functional divergence across paralogues.
The twilight zone of cis element alignments.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-02-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.
The twilight zone of cis element alignments
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-01-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451
Oliani, L C; Lidani, K C F; Gabriel, J E
2015-10-16
MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.
Multiple sequence alignment in HTML: colored, possibly hyperlinked, compact representations.
Campagne, F; Maigret, B
1998-02-01
Protein sequence alignments are widely used in protein structure prediction, protein engineering, modeling of proteins, etc. This type of representation is useful at different stages of scientific activity: looking at previous results, working on a research project, and presenting the results. There is a need to make it available through a network (intranet or WWW), in a way that allows biologists, chemists, and noncomputer specialists to look at the data and carry on research--possibly in a collaborative research. Previous methods (text-based, Java-based) are reported and their advantages are discussed. We have developed two novel approaches to represent the alignments as colored, hyper-linked HTML pages. The first method creates an HTML page that uses efficiently the image cache mechanism of a WWW browser, thereby allowing the user to browse different alignments without waiting for the images to be loaded through the network, but only for the first viewed alignment. The generated pages can be browsed with any HTML2.0-compliant browser. The second method that we propose uses W3C-CSS1-style sheets to render alignments. This new method generates pages that require recent browsers to be viewed. We implemented these methods in the Viseur program and made a WWW service available that allows a user to convert an MSF alignment file in HTML for WWW publishing. The latter service is available at http:@www.lctn.u-nancy.fr/viseur/services.htm l.
Evidence for Widespread Reticulate Evolution within Human Duplicons
Jackson, Michael S. ; Oliver, Karen ; Loveland, Jane ; Humphray, Sean ; Dunham, Ian ; Rocchi, Mariano ; Viggiano, Luigi ; Park, Jonathan P. ; Hurles, Matthew E. ; Santibanez-Koref, Mauro
2005-01-01
Approximately 5% of the human genome consists of segmental duplications that can cause genomic mutations and may play a role in gene innovation. Reticulate evolutionary processes, such as unequal crossing-over and gene conversion, are known to occur within specific duplicon families, but the broader contribution of these processes to the evolution of human duplications remains poorly characterized. Here, we use phylogenetic profiling to analyze multiple alignments of 24 human duplicon families that span >8 Mb of DNA. Our results indicate that none of them are evolving independently, with all alignments showing sharp discontinuities in phylogenetic signal consistent with reticulation. To analyze these results in more detail, we have developed a quartet method that estimates the relative contribution of nucleotide substitution and reticulate processes to sequence evolution. Our data indicate that most of the duplications show a highly significant excess of sites consistent with reticulate evolution, compared with the number expected by nucleotide substitution alone, with 15 of 30 alignments showing a >20-fold excess over that expected. Using permutation tests, we also show that at least 5% of the total sequence shares 100% sequence identity because of reticulation, a figure that includes 74 independent tracts of perfect identity >2 kb in length. Furthermore, analysis of a subset of alignments indicates that the density of reticulation events is as high as 1 every 4 kb. These results indicate that phylogenetic relationships within recently duplicated human DNA can be rapidly disrupted by reticulate evolution. This finding has important implications for efforts to finish the human genome sequence, complicates comparative sequence analysis of duplicon families, and could profoundly influence the tempo of gene-family evolution. PMID:16252241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemla, A; Lang, D; Kostova, T
2010-11-29
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory - still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could overcome these difficulties and facilitatemore » the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV, a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus and demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique or that shared structural similarity with structures that are distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position.« less
Non-lethal sampling for the detection of Myxobolus cerebralis in asymptomatic rainbow trout
Schill, Bane; Waldrop, Thomas; Densmore, Christine; Blazer, Vicki
1999-01-01
We have described in previous reports (Schill et al., 1998) the development of a polymerase chain reaction (PCR) amplification of 18S ribosomal RNA for the detection of Myxozoan parasites. Oligonucleotide primers were developed by multiple alignment of Myxozoan sequence information and analysis by a custom-written computer program (PRIM). Candidate pairs of primer sequences were then analyzed for specificity by BLAST (Basic Local Alignment Search Tool). From these, a set of promising primers (MYXFWD and MYXREV) was chosen for further testing. These were chosen because they should direct detection of a number of Myxozoan species (Table 1). PCR using MXYFWD and MYXREV proved to be robust and relatively free of artifact products. Further, we were able to routinely detect Myxobolus cerebralis in fish tissues (Figure 1).
GLAD: a system for developing and deploying large-scale bioinformatics grid.
Teo, Yong-Meng; Wang, Xianbing; Ng, Yew-Kwong
2005-03-01
Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid. GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.
NoFold: RNA structure clustering without folding or alignment.
Middleton, Sarah A; Kim, Junhyong
2014-11-01
Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Nair, Pradeep S; John, Eugene B
2007-01-01
Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.
An Accurate Scalable Template-based Alignment Algorithm
Gardner, David P.; Xu, Weijia; Miranker, Daniel P.; Ozer, Stuart; Cannone, Jamie J.; Gutell, Robin R.
2013-01-01
The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly. We have developed a program that utilizes the different dimensions of information in rCAD, a large RNA informatics resource, to establish a profile for each position in an alignment. The most significant include sequence identity and column composition in different phylogenetic taxa. We have compared our methods with a maximum of eight alternative alignment methods on different sets of 16S and 23S rRNA sequences with sequence percent identities ranging from 50% to 100%. The results showed that CRWAlign outperformed the other alignment methods in both speed and accuracy. A web-based alignment server is available at http://www.rna.ccbb.utexas.edu/SAE/2F/CRWAlign. PMID:24772376
Majoros, William H; Ohler, Uwe
2010-12-16
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.
Detecting false positive sequence homology: a machine learning approach.
Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M
2016-02-24
Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.
MaxAlign: maximizing usable data in an alignment.
Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G
2007-08-28
The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.
RNAcode: Robust discrimination of coding and noncoding regions in comparative sequence data
Washietl, Stefan; Findeiß, Sven; Müller, Stephan A.; Kalkhof, Stefan; von Bergen, Martin; Hofacker, Ivo L.; Stadler, Peter F.; Goldman, Nick
2011-01-01
With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors. It uses an explicit statistical model with no machine learning component and can therefore be applied “out of the box,” without any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding potential of RNAs previously annotated as “noncoding.” RNAcode is open source software and available for all major platforms at http://wash.github.com/rnacode. PMID:21357752
RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data.
Washietl, Stefan; Findeiss, Sven; Müller, Stephan A; Kalkhof, Stefan; von Bergen, Martin; Hofacker, Ivo L; Stadler, Peter F; Goldman, Nick
2011-04-01
With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors. It uses an explicit statistical model with no machine learning component and can therefore be applied "out of the box," without any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding potential of RNAs previously annotated as "noncoding." RNAcode is open source software and available for all major platforms at http://wash.github.com/rnacode.
Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.
Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin
2015-01-01
Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.
FEAST: sensitive local alignment with multiple rates of evolution.
Hudek, Alexander K; Brown, Daniel G
2011-01-01
We present a pairwise local aligner, FEAST, which uses two new techniques: a sensitive extension algorithm for identifying homologous subsequences, and a descriptive probabilistic alignment model. We also present a new procedure for training alignment parameters and apply it to the human and mouse genomes, producing a better parameter set for these sequences. Our extension algorithm identifies homologous subsequences by considering all evolutionary histories. It has higher maximum sensitivity than Viterbi extensions, and better balances specificity. We model alignments with several submodels, each with unique statistical properties, describing strongly similar and weakly similar regions of homologous DNA. Training parameters using two submodels produces superior alignments, even when we align with only the parameters from the weaker submodel. Our extension algorithm combined with our new parameter set achieves sensitivity 0.59 on synthetic tests. In contrast, LASTZ with default settings achieves sensitivity 0.35 with the same false positive rate. Using the weak submodel as parameters for LASTZ increases its sensitivity to 0.59 with high error. FEAST is available at http://monod.uwaterloo.ca/feast/.
2011-01-01
Background Global positioning systems (GPS) are increasingly being used in health research to determine the location of study participants. Combining GPS data with data collected via travel/activity diaries allows researchers to assess where people travel in conjunction with data about trip purpose and accompaniment. However, linking GPS and diary data is problematic and to date the only method has been to match the two datasets manually, which is time consuming and unlikely to be practical for larger data sets. This paper assesses the feasibility of a new sequence alignment method of linking GPS and travel diary data in comparison with the manual matching method. Methods GPS and travel diary data obtained from a study of children's independent mobility were linked using sequence alignment algorithms to test the proof of concept. Travel diaries were assessed for quality by counting the number of errors and inconsistencies in each participant's set of diaries. The success of the sequence alignment method was compared for higher versus lower quality travel diaries, and for accompanied versus unaccompanied trips. Time taken and percentage of trips matched were compared for the sequence alignment method and the manual method. Results The sequence alignment method matched 61.9% of all trips. Higher quality travel diaries were associated with higher match rates in both the sequence alignment and manual matching methods. The sequence alignment method performed almost as well as the manual method and was an order of magnitude faster. However, the sequence alignment method was less successful at fully matching trips and at matching unaccompanied trips. Conclusions Sequence alignment is a promising method of linking GPS and travel diary data in large population datasets, especially if limitations in the trip detection algorithm are addressed. PMID:22142322
A Novel Partial Sequence Alignment Tool for Finding Large Deletions
Aruk, Taner; Ustek, Duran; Kursun, Olcay
2012-01-01
Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777
Fast single-pass alignment and variant calling using sequencing data
USDA-ARS?s Scientific Manuscript database
Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...
Four RNA families with functional transient structures
Zhu, Jing Yun A; Meyer, Irmtraud M
2015-01-01
Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here. PMID:25751035
Four RNA families with functional transient structures.
Zhu, Jing Yun A; Meyer, Irmtraud M
2015-01-01
Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.
Dcode.org anthology of comparative genomic tools.
Loots, Gabriela G; Ovcharenko, Ivan
2005-07-01
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.
SFESA: a web server for pairwise alignment refinement by secondary structure shifts.
Tong, Jing; Pei, Jimin; Grishin, Nick V
2015-09-03
Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.
REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era
Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.
2009-01-01
The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722
Nonparametric Combinatorial Sequence Models
NASA Astrophysics Data System (ADS)
Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa
This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.
Pairwise Sequence Alignment Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Daily, PNNL
2015-05-20
Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less
Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer.
Bromberg, Raquel; Grishin, Nick V; Otwinowski, Zbyszek
2016-06-01
Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz.
Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer
Grishin, Nick V.; Otwinowski, Zbyszek
2016-01-01
Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. PMID:27336403
SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.
Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf
2015-08-01
RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.
Wang, Lei; You, Zhu-Hong; Chen, Xing; Li, Jian-Qiang; Yan, Xin; Zhang, Wei; Huang, Yu-An
2017-01-01
Protein–Protein Interactions (PPI) is not only the critical component of various biological processes in cells, but also the key to understand the mechanisms leading to healthy and diseased states in organisms. However, it is time-consuming and cost-intensive to identify the interactions among proteins using biological experiments. Hence, how to develop a more efficient computational method rapidly became an attractive topic in the post-genomic era. In this paper, we propose a novel method for inference of protein-protein interactions from protein amino acids sequences only. Specifically, protein amino acids sequence is firstly transformed into Position-Specific Scoring Matrix (PSSM) generated by multiple sequences alignments; then the Pseudo PSSM is used to extract feature descriptors. Finally, ensemble Rotation Forest (RF) learning system is trained to predict and recognize PPIs based solely on protein sequence feature. When performed the proposed method on the three benchmark data sets (Yeast, H. pylori, and independent dataset) for predicting PPIs, our method can achieve good average accuracies of 98.38%, 89.75%, and 96.25%, respectively. In order to further evaluate the prediction performance, we also compare the proposed method with other methods using same benchmark data sets. The experiment results demonstrate that the proposed method consistently outperforms other state-of-the-art method. Therefore, our method is effective and robust and can be taken as a useful tool in exploring and discovering new relationships between proteins. A web server is made publicly available at the URL http://202.119.201.126:8888/PsePSSM/ for academic use. PMID:28029645
Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C
2007-09-01
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.
Defining and predicting structurally conserved regions in protein superfamilies
Huang, Ivan K.; Grishin, Nick V.
2013-01-01
Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics Online PMID:23193223
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.
Daily, Jeff
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.
Alignment-free inference of hierarchical and reticulate phylogenomic relationships.
Bernard, Guillaume; Chan, Cheong Xin; Chan, Yao-Ban; Chua, Xin-Yi; Cong, Yingnan; Hogan, James M; Maetschke, Stefan R; Ragan, Mark A
2017-06-30
We are amidst an ongoing flood of sequence data arising from the application of high-throughput technologies, and a concomitant fundamental revision in our understanding of how genomes evolve individually and within the biosphere. Workflows for phylogenomic inference must accommodate data that are not only much larger than before, but often more error prone and perhaps misassembled, or not assembled in the first place. Moreover, genomes of microbes, viruses and plasmids evolve not only by tree-like descent with modification but also by incorporating stretches of exogenous DNA. Thus, next-generation phylogenomics must address computational scalability while rethinking the nature of orthogroups, the alignment of multiple sequences and the inference and comparison of trees. New phylogenomic workflows have begun to take shape based on so-called alignment-free (AF) approaches. Here, we review the conceptual foundations of AF phylogenetics for the hierarchical (vertical) and reticulate (lateral) components of genome evolution, focusing on methods based on k-mers. We reflect on what seems to be successful, and on where further development is needed. © The Author 2017. Published by Oxford University Press.
New Insight Into the Diversity of SemiSWEET Sugar Transporters and the Homologs in Prokaryotes
Jia, Baolei; Hao, Lujiang; Xuan, Yuan Hu; Jeon, Che Ok
2018-01-01
Sugars will eventually be exported transporters (SWEETs) and SemiSWEETs represent a family of sugar transporters in eukaryotes and prokaryotes, respectively. SWEETs contain seven transmembrane helices (TMHs), while SemiSWEETs contain three. The functions of SemiSWEETs are less studied. In this perspective article, we analyzed the diversity and conservation of SemiSWEETs and further proposed the possible functions. 1,922 SemiSWEET homologs were retrieved from the UniProt database, which is not proportional to the sequenced prokaryotic genomes. However, these proteins are very diverse in sequences and can be classified into 19 clusters when >50% sequence identity is required. Moreover, a gene context analysis indicated that several SemiSWEETs are located in the operons that are related to diverse carbohydrate metabolism. Several proteins with seven TMHs can be found in bacteria, and sequence alignment suggested that these proteins in bacteria may be formed by the duplication and fusion. Multiple sequence alignments showed that the amino acids for sugar translocation are still conserved and coevolved, although the sequences show diversity. Among them, the functions of a few amino acids are still not clear. These findings highlight the challenges that exist in SemiSWEETs and provide future researchers the foundation to explore these uncharted areas. PMID:29872447
New Insight Into the Diversity of SemiSWEET Sugar Transporters and the Homologs in Prokaryotes.
Jia, Baolei; Hao, Lujiang; Xuan, Yuan Hu; Jeon, Che Ok
2018-01-01
Sugars will eventually be exported transporters (SWEETs) and SemiSWEETs represent a family of sugar transporters in eukaryotes and prokaryotes, respectively. SWEETs contain seven transmembrane helices (TMHs), while SemiSWEETs contain three. The functions of SemiSWEETs are less studied. In this perspective article, we analyzed the diversity and conservation of SemiSWEETs and further proposed the possible functions. 1,922 SemiSWEET homologs were retrieved from the UniProt database, which is not proportional to the sequenced prokaryotic genomes. However, these proteins are very diverse in sequences and can be classified into 19 clusters when >50% sequence identity is required. Moreover, a gene context analysis indicated that several SemiSWEETs are located in the operons that are related to diverse carbohydrate metabolism. Several proteins with seven TMHs can be found in bacteria, and sequence alignment suggested that these proteins in bacteria may be formed by the duplication and fusion. Multiple sequence alignments showed that the amino acids for sugar translocation are still conserved and coevolved, although the sequences show diversity. Among them, the functions of a few amino acids are still not clear. These findings highlight the challenges that exist in SemiSWEETs and provide future researchers the foundation to explore these uncharted areas.
Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng
2017-05-10
Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .
Yamada, Kazunori D.; Tomii, Kentaro; Katoh, Kazutaka
2016-01-01
Motivation: Large multiple sequence alignments (MSAs), consisting of thousands of sequences, are becoming more and more common, due to advances in sequencing technologies. The MAFFT MSA program has several options for building large MSAs, but their performances have not been sufficiently assessed yet, because realistic benchmarking of large MSAs has been difficult. Recently, such assessments have been made possible through the HomFam and ContTest benchmark protein datasets. Along with the development of these datasets, an interesting theory was proposed: chained guide trees increase the accuracy of MSAs of structurally conserved regions. This theory challenges the basis of progressive alignment methods and needs to be examined by being compared with other known methods including computationally intensive ones. Results: We used HomFam, ContTest and OXFam (an extended version of OXBench) to evaluate several methods enabled in MAFFT: (1) a progressive method with approximate guide trees, (2) a progressive method with chained guide trees, (3) a combination of an iterative refinement method and a progressive method and (4) a less approximate progressive method that uses a rigorous guide tree and consistency score. Other programs, Clustal Omega and UPP, available for large MSAs, were also included into the comparison. The effect of method 2 (chained guide trees) was positive in ContTest but negative in HomFam and OXFam. Methods 3 and 4 increased the benchmark scores more consistently than method 2 for the three datasets, suggesting that they are safer to use. Availability and Implementation: http://mafft.cbrc.jp/alignment/software/ Contact: katoh@ifrec.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27378296
2013-01-01
Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988
K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.
Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue
2018-05-15
Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.
Alignment methods: strategies, challenges, benchmarking, and comparative overview.
Löytynoja, Ari
2012-01-01
Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.
OrthoSelect: a protocol for selecting orthologous groups in phylogenomics.
Schreiber, Fabian; Pick, Kerstin; Erpenbeck, Dirk; Wörheide, Gert; Morgenstern, Burkhard
2009-07-16
Phylogenetic studies using expressed sequence tags (EST) are becoming a standard approach to answer evolutionary questions. Such studies are usually based on large sets of newly generated, unannotated, and error-prone EST sequences from different species. A first crucial step in EST-based phylogeny reconstruction is to identify groups of orthologous sequences. From these data sets, appropriate target genes are selected, and redundant sequences are eliminated to obtain suitable sequence sets as input data for tree-reconstruction software. Generating such data sets manually can be very time consuming. Thus, software tools are needed that carry out these steps automatically. We developed a flexible and user-friendly software pipeline, running on desktop machines or computer clusters, that constructs data sets for phylogenomic analyses. It automatically searches assembled EST sequences against databases of orthologous groups (OG), assigns ESTs to these predefined OGs, translates the sequences into proteins, eliminates redundant sequences assigned to the same OG, creates multiple sequence alignments of identified orthologous sequences and offers the possibility to further process this alignment in a last step by excluding potentially homoplastic sites and selecting sufficiently conserved parts. Our software pipeline can be used as it is, but it can also be adapted by integrating additional external programs. This makes the pipeline useful for non-bioinformaticians as well as to bioinformatic experts. The software pipeline is especially designed for ESTs, but it can also handle protein sequences. OrthoSelect is a tool that produces orthologous gene alignments from assembled ESTs. Our tests show that OrthoSelect detects orthologs in EST libraries with high accuracy. In the absence of a gold standard for orthology prediction, we compared predictions by OrthoSelect to a manually created and published phylogenomic data set. Our tool was not only able to rebuild the data set with a specificity of 98%, but it detected four percent more orthologous sequences. Furthermore, the results OrthoSelect produces are in absolut agreement with the results of other programs, but our tool offers a significant speedup and additional functionality, e.g. handling of ESTs, computing sequence alignments, and refining them. To our knowledge, there is currently no fully automated and freely available tool for this purpose. Thus, OrthoSelect is a valuable tool for researchers in the field of phylogenomics who deal with large quantities of EST sequences. OrthoSelect is written in Perl and runs on Linux/Mac OS X. The tool can be downloaded at (http://gobics.de/fabian/orthoselect.php).
MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer
Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.
2016-01-01
The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264
AmpliVar: mutation detection in high-throughput sequence from amplicon-based libraries.
Hsu, Arthur L; Kondrashova, Olga; Lunke, Sebastian; Love, Clare J; Meldrum, Cliff; Marquis-Nicholson, Renate; Corboy, Greg; Pham, Kym; Wakefield, Matthew; Waring, Paul M; Taylor, Graham R
2015-04-01
Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data. © 2015 WILEY PERIODICALS, INC.
Wright, Imogen A.; Travers, Simon A.
2014-01-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618
PASS2: an automated database of protein alignments organised as structural superfamilies.
Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan
2004-04-02
The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html
Simultaneous gene finding in multiple genomes.
König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario
2016-11-15
As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
Dunn, Joshua G; Weissman, Jonathan S
2016-11-22
Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at https://plastid.readthedocs.io .
Guzzi, Pietro Hiram; Milenkovic, Tijana
2018-05-01
Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology.
RPG: the Ribosomal Protein Gene database.
Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya
2004-01-01
RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.
RPG: the Ribosomal Protein Gene database
Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya
2004-01-01
RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes. PMID:14681386
Evol and ProDy for bridging protein sequence evolution and structural dynamics
Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet
2014-01-01
Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. Availability and implementation: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. Contact: bahar@pitt.edu PMID:24849577
Eddy, Sean R.
2008-01-01
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236
A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment
Freschi, Valerio; Bogliolo, Alessandro
2012-01-01
In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086
Biopython: freely available Python tools for computational molecular biology and bioinformatics.
Cock, Peter J A; Antao, Tiago; Chang, Jeffrey T; Chapman, Brad A; Cox, Cymon J; Dalke, Andrew; Friedberg, Iddo; Hamelryck, Thomas; Kauff, Frank; Wilczynski, Bartek; de Hoon, Michiel J L
2009-06-01
The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Biopython is freely available, with documentation and source code at (www.biopython.org) under the Biopython license.
Identification and cloning of four riboswitches from Burkholderia pseudomallei strain K96243
NASA Astrophysics Data System (ADS)
Munyati-Othman, Noor; Fatah, Ahmad Luqman Abdul; Piji, Mohd Al Akmarul Fizree Bin Md; Ramlan, Effirul Ikhwan; Raih, Mohd Firdaus
2015-09-01
Structured RNAs referred as riboswitches have been predicted to be present in the genome sequence of Burkholderia pseudomallei strain K96243. Four of the riboswitches were identified and analyzed through BLASTN, Rfam search and multiple sequence alignment. The RNA aptamers belong to the following riboswitch classifications: glycine riboswitch, cobalamin riboswitch, S-adenosyl-(L)-homocysteine (SAH) riboswitch and flavin mononucleotide (FMN) riboswitch. The conserved nucleotides for each aptamer were identified and were marked on the secondary structure generated by RNAfold. These riboswitches were successfully amplified and cloned for further study.
JCoDA: a tool for detecting evolutionary selection.
Steinway, Steven N; Dannenfelser, Ruth; Laucius, Christopher D; Hayes, James E; Nayak, Sudhir
2010-05-27
The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda.
JCoDA: a tool for detecting evolutionary selection
2010-01-01
Background The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. Results JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. Conclusions JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda. PMID:20507581
Negrisolo, Enrico; Kuhl, Heiner; Forcato, Claudio; Vitulo, Nicola; Reinhardt, Richard; Patarnello, Tomaso; Bargelloni, Luca
2010-12-01
Comparative genomics holds the promise to magnify the information obtained from individual genome sequencing projects, revealing common features conserved across genomes and identifying lineage-specific characteristics. To implement such a comparative approach, a robust phylogenetic framework is required to accurately reconstruct evolution at the genome level. Among vertebrate taxa, teleosts represent the second best characterized group, with high-quality draft genome sequences for five model species (Danio rerio, Gasterosteus aculeatus, Oryzias latipes, Takifugu rubripes, and Tetraodon nigroviridis), and several others are in the finishing lane. However, the relationships among the acanthomorph teleost model fishes remain an unresolved taxonomic issue. Here, a genomic region spanning over 1.2 million base pairs was sequenced in the teleost fish Dicentrarchus labrax. Together with genomic data available for the above fish models, the new sequence was used to identify unique orthologous genomic regions shared across all target taxa. Different strategies were applied to produce robust multiple gene and genomic alignments spanning from 11,802 to 186,474 amino acid/nucleotide positions. Ten data sets were analyzed according to Bayesian inference, maximum likelihood, maximum parsimony, and neighbor joining methods. Extensive analyses were performed to explore the influence of several factors (e.g., alignment methodology, substitution model, data set partitions, and long-branch attraction) on the tree topology. Although a general consensus was observed for a closer relationship between G. aculeatus (Gasterosteidae) and Di. labrax (Moronidae) with the atherinomorph O. latipes (Beloniformes) sister taxon of this clade, with the tetraodontiform group Ta. rubripes and Te. nigroviridis (Tetraodontiformes) representing a more distantly related taxon among acanthomorph model fish species, conflicting results were obtained between data sets and methods, especially with respect to the choice of alignment methodology applied to noncoding parts of the genomic region under study. This may limit the use of intergenic/noncoding sequences in phylogenomics until more robust alignment algorithms are developed.
Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H
2016-10-21
Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
Daily, Jeffrey A.
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-05-01
Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-01-01
Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913
2011-01-01
Background Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. Methods We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. Results Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%. We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines. Conclusions Deep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as MSMB-NCOA4, may play functional roles in cancer. PMID:21261984
Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns
Tian, Wenhong; Samatova, Nagiza F.
2013-01-01
A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 User Guide
User Guide to describe the complete functionality of the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 online tool. The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqa...
SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics
Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf
2015-01-01
Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465
GATA: A graphic alignment tool for comparative sequenceanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, David A.; Eisen, Michael B.
2005-01-01
Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less
AMAS: a fast tool for alignment manipulation and computing of summary statistics.
Borowiec, Marek L
2016-01-01
The amount of data used in phylogenetics has grown explosively in the recent years and many phylogenies are inferred with hundreds or even thousands of loci and many taxa. These modern phylogenomic studies often entail separate analyses of each of the loci in addition to multiple analyses of subsets of genes or concatenated sequences. Computationally efficient tools for handling and computing properties of thousands of single-locus or large concatenated alignments are needed. Here I present AMAS (Alignment Manipulation And Summary), a tool that can be used either as a stand-alone command-line utility or as a Python package. AMAS works on amino acid and nucleotide alignments and combines capabilities of sequence manipulation with a function that calculates basic statistics. The manipulation functions include conversions among popular formats, concatenation, extracting sites and splitting according to a pre-defined partitioning scheme, creation of replicate data sets, and removal of taxa. The statistics calculated include the number of taxa, alignment length, total count of matrix cells, overall number of undetermined characters, percent of missing data, AT and GC contents (for DNA alignments), count and proportion of variable sites, count and proportion of parsimony informative sites, and counts of all characters relevant for a nucleotide or amino acid alphabet. AMAS is particularly suitable for very large alignments with hundreds of taxa and thousands of loci. It is computationally efficient, utilizes parallel processing, and performs better at concatenation than other popular tools. AMAS is a Python 3 program that relies solely on Python's core modules and needs no additional dependencies. AMAS source code and manual can be downloaded from http://github.com/marekborowiec/AMAS/ under GNU General Public License.
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC
Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-01-01
Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC.
Satija, Rahul; Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-08-28
We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the alpha-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/
DNA motif alignment by evolving a population of Markov chains.
Bi, Chengpeng
2009-01-30
Deciphering cis-regulatory elements or de novo motif-finding in genomes still remains elusive although much algorithmic effort has been expended. The Markov chain Monte Carlo (MCMC) method such as Gibbs motif samplers has been widely employed to solve the de novo motif-finding problem through sequence local alignment. Nonetheless, the MCMC-based motif samplers still suffer from local maxima like EM. Therefore, as a prerequisite for finding good local alignments, these motif algorithms are often independently run a multitude of times, but without information exchange between different chains. Hence it would be worth a new algorithm design enabling such information exchange. This paper presents a novel motif-finding algorithm by evolving a population of Markov chains with information exchange (PMC), each of which is initialized as a random alignment and run by the Metropolis-Hastings sampler (MHS). It is progressively updated through a series of local alignments stochastically sampled. Explicitly, the PMC motif algorithm performs stochastic sampling as specified by a population-based proposal distribution rather than individual ones, and adaptively evolves the population as a whole towards a global maximum. The alignment information exchange is accomplished by taking advantage of the pooled motif site distributions. A distinct method for running multiple independent Markov chains (IMC) without information exchange, or dubbed as the IMC motif algorithm, is also devised to compare with its PMC counterpart. Experimental studies demonstrate that the performance could be improved if pooled information were used to run a population of motif samplers. The new PMC algorithm was able to improve the convergence and outperformed other popular algorithms tested using simulated and biological motif sequences.
Occurrence and characterization of hitherto unknown Streptomyces species in semi-arid soils.
Kumar, Surendra; Priya, E; Singh Solanki, Dilip; Sharma, Ruchika; Gehlot, Praveen; Pathak, Rakesh; Singh, S K
2016-09-01
Streptomyces the predominant genus of Actinobacteria and plays an important role in the recycling of soil organic matter and production of important secondary metabolites. The occurrence and diversity assessment of Streptomyces species revealed alkaline and poor nutrient status of soils of semi-arid region of Jodhpur, Rajasthan. The morphological and biochemical characterization of 21 Streptomyces isolates facilitated Genus level identification but were insufficient to designate species. Species designation based on 16S rRNA gene delineated 21 isolates into 14 Streptomyces species. Upon BLAST search, the test isolates exhibited 98 to 100% identities with that of the best aligned sequences of the NCBI database. The GC content of 16S rRNA gene sequences of all the Streptomyces isolates tested ranged from 59.03% to 60.94%. The multiple sequence alignment of all the 21 Streptomyces isolates generated a phylogram with high bootstrap values indicating reliable grouping of isolates based on nucleotide sequence variations by way of insertion, deletion and substitutions and 16S rRNA length polymorphism. Some of the Streptomyces species molecularly identified under present study are reported for the first time from semi-arid region of Jodhpur.
Sockeye: A 3D Environment for Comparative Genomics
Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.
2004-01-01
Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592
Long Read Alignment with Parallel MapReduce Cloud Platform
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887
Wright, Imogen A; Travers, Simon A
2014-07-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Long Read Alignment with Parallel MapReduce Cloud Platform.
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.
LookSeq: a browser-based viewer for deep sequencing data.
Manske, Heinrich Magnus; Kwiatkowski, Dominic P
2009-11-01
Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.
PVT: an efficient computational procedure to speed up next-generation sequence analysis.
Maji, Ranjan Kumar; Sarkar, Arijita; Khatua, Sunirmal; Dasgupta, Subhasis; Ghosh, Zhumur
2014-06-04
High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat's serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during 'spliced alignment' and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system.
HIA: a genome mapper using hybrid index-based sequence alignment.
Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen
2015-01-01
A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.
Spatio-temporal alignment of pedobarographic image sequences.
Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S
2011-07-01
This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.
Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data
Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei
2013-01-01
Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042
Multi-Harmony: detecting functional specificity from sequence alignment
Brandt, Bernd W.; Feenstra, K. Anton; Heringa, Jaap
2010-01-01
Many protein families contain sub-families with functional specialization, such as binding different ligands or being involved in different protein–protein interactions. A small number of amino acids generally determine functional specificity. The identification of these residues can aid the understanding of protein function and help finding targets for experimental analysis. Here, we present multi-Harmony, an interactive web sever for detecting sub-type-specific sites in proteins starting from a multiple sequence alignment. Combining our Sequence Harmony (SH) and multi-Relief (mR) methods in one web server allows simultaneous analysis and comparison of specificity residues; furthermore, both methods have been significantly improved and extended. SH has been extended to cope with more than two sub-groups. mR has been changed from a sampling implementation to a deterministic one, making it more consistent and user friendly. For both methods Z-scores are reported. The multi-Harmony web server produces a dynamic output page, which includes interactive connections to the Jalview and Jmol applets, thereby allowing interactive analysis of the results. Multi-Harmony is available at http://www.ibi.vu.nl/ programs/shmrwww. PMID:20525785
Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.
Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad
2010-11-27
MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.
Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome
Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad
2010-01-01
MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs. PMID:21364831
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Next-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain u...
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly
Wala, Jeremiah; Beroukhim, Rameen
2017-01-01
Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.
Wala, Jeremiah; Beroukhim, Rameen
2017-03-01
We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Chang, Suhua; Zhang, Jiajie; Liao, Xiaoyun; Zhu, Xinxing; Wang, Dahai; Zhu, Jiang; Feng, Tao; Zhu, Baoli; Gao, George F; Wang, Jian; Yang, Huanming; Yu, Jun; Wang, Jing
2007-01-01
Frequent outbreaks of highly pathogenic avian influenza and the increasing data available for comparative analysis require a central database specialized in influenza viruses (IVs). We have established the Influenza Virus Database (IVDB) to integrate information and create an analysis platform for genetic, genomic, and phylogenetic studies of the virus. IVDB hosts complete genome sequences of influenza A virus generated by Beijing Institute of Genomics (BIG) and curates all other published IV sequences after expert annotation. Our Q-Filter system classifies and ranks all nucleotide sequences into seven categories according to sequence content and integrity. IVDB provides a series of tools and viewers for comparative analysis of the viral genomes, genes, genetic polymorphisms and phylogenetic relationships. A search system has been developed for users to retrieve a combination of different data types by setting search options. To facilitate analysis of global viral transmission and evolution, the IV Sequence Distribution Tool (IVDT) has been developed to display the worldwide geographic distribution of chosen viral genotypes and to couple genomic data with epidemiological data. The BLAST, multiple sequence alignment and phylogenetic analysis tools were integrated for online data analysis. Furthermore, IVDB offers instant access to pre-computed alignments and polymorphisms of IV genes and proteins, and presents the results as SNP distribution plots and minor allele distributions. IVDB is publicly available at http://influenza.genomics.org.cn.
2016-01-01
Abstract Background Metabarcoding is becoming a common tool used to assess and compare diversity of organisms in environmental samples. Identification of OTUs is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task. This publication evaluates the quality of reference datasets, alongside with several alignment and phylogeny inference methods used in one of the taxonomy assignment methods, called tree-based approach. This approach assigns anonymous OTUs to taxonomic categories based on relative placements of OTUs and reference sequences on the cladogram and support that these placements receive. New information In tree-based taxonomy assignment approach, reliable identification of anonymous OTUs is based on their placement in monophyletic and highly supported clades together with identified reference taxa. Therefore, it requires high quality reference dataset to be used. Resolution of phylogenetic trees is strongly affected by the presence of erroneous sequences as well as alignment and phylogeny inference methods used in the process. Two preparation steps are essential for the successful application of tree-based taxonomy assignment approach. Curated collections of genetic information do include erroneous sequences. These sequences have detrimental effect on the resolution of cladograms used in tree-based approach. They must be identified and excluded from the reference dataset beforehand. Various combinations of multiple sequence alignment and phylogeny inference methods provide cladograms with different topology and bootstrap support. These combinations of methods need to be tested in order to determine the one that gives highest resolution for the particular reference dataset. Completing the above mentioned preparation steps is expected to decrease the number of unassigned OTUs and thus improve the results of the tree-based taxonomy assignment approach. PMID:27932919
Mallatt, Jon; Craig, Catherine Waggoner; Yoder, Matthew J
2010-04-01
This study (1) uses nearly complete rRNA-gene sequences from across Metazoa (197 taxa) to reconstruct animal phylogeny; (2) presents a highly annotated, manual alignment of these sequences with special reference to rRNA features including paired sites (http://purl.oclc.org/NET/rRNA/Metazoan_alignment) and (3) tests, after eliminating as few disruptive, rogue sequences as possible, if a likelihood framework can recover the main metazoan clades. We found that systematic elimination of approximately 6% of the sequences, including the divergent or unstably placed sequences of cephalopods, arrowworm, symphylan and pauropod myriapods, and of myzostomid and nemertodermatid worms, led to a tree that supported Ecdysozoa, Lophotrochozoa, Protostomia, and Bilateria. Deuterostomia, however, was never recovered, because the rRNA of urochordates goes (nonsignificantly) near the base of the Bilateria. Counterintuitively, when we modeled the evolution of the paired sites, phylogenetic resolution was not increased over traditional tree-building models that assume all sites in rRNA evolve independently. The rRNA genes of non-bilaterians contain a higher % AT than do those of most bilaterians. The rRNA genes of Acoela and Myzostomida were found to be secondarily shortened, AT-enriched, and highly modified, throwing some doubt on the location of these worms at the base of Bilateria in the rRNA tree--especially myzostomids, which other evidence suggests are annelids instead. Other findings are marsupial-with-placental mammals, arrowworms in Ecdysozoa (well supported here but contradicted by morphology), and Placozoa as sister to Cnidaria. Finally, despite the difficulties, the rRNA-gene trees are in strong concordance with trees derived from multiple protein-coding genes in supporting the new animal phylogeny. (c) 2009 Elsevier Inc. All rights reserved.
Holovachov, Oleksandr
2016-01-01
Metabarcoding is becoming a common tool used to assess and compare diversity of organisms in environmental samples. Identification of OTUs is one of the critical steps in the process and several taxonomy assignment methods were proposed to accomplish this task. This publication evaluates the quality of reference datasets, alongside with several alignment and phylogeny inference methods used in one of the taxonomy assignment methods, called tree-based approach. This approach assigns anonymous OTUs to taxonomic categories based on relative placements of OTUs and reference sequences on the cladogram and support that these placements receive. In tree-based taxonomy assignment approach, reliable identification of anonymous OTUs is based on their placement in monophyletic and highly supported clades together with identified reference taxa. Therefore, it requires high quality reference dataset to be used. Resolution of phylogenetic trees is strongly affected by the presence of erroneous sequences as well as alignment and phylogeny inference methods used in the process. Two preparation steps are essential for the successful application of tree-based taxonomy assignment approach. Curated collections of genetic information do include erroneous sequences. These sequences have detrimental effect on the resolution of cladograms used in tree-based approach. They must be identified and excluded from the reference dataset beforehand.Various combinations of multiple sequence alignment and phylogeny inference methods provide cladograms with different topology and bootstrap support. These combinations of methods need to be tested in order to determine the one that gives highest resolution for the particular reference dataset.Completing the above mentioned preparation steps is expected to decrease the number of unassigned OTUs and thus improve the results of the tree-based taxonomy assignment approach.
enoLOGOS: a versatile web tool for energy normalized sequence logos
Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.
2005-01-01
enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495
Roettger, Mayo; Martin, William; Dagan, Tal
2009-09-01
Among the methods currently used in phylogenomic practice to detect the presence of lateral gene transfer (LGT), one of the most frequently employed is the comparison of gene tree topologies for different genes. In cases where the phylogenies for different genes are incompatible, or discordant, for well-supported branches there are three simple interpretations for the result: 1) gene duplications (paralogy) followed by many independent gene losses have occurred, 2) LGT has occurred, or 3) the phylogeny is well supported but for reasons unknown is nonetheless incorrect. Here, we focus on the third possibility by examining the properties of 22,437 published multiple sequence alignments, the Bayesian maximum likelihood trees for which either do or do not suggest the occurrence of LGT by the criterion of discordant branches. The alignments that produce discordant phylogenies differ significantly in several salient alignment properties from those that do not. Using a support vector machine, we were able to predict the inference of discordant tree topologies with up to 80% accuracy from alignment properties alone.
Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M
2009-01-01
A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.
Processing and population genetic analysis of multigenic datasets with ProSeq3 software.
Filatov, Dmitry A
2009-12-01
The current tendency in molecular population genetics is to use increasing numbers of genes in the analysis. Here I describe a program for handling and population genetic analysis of DNA polymorphism data collected from multiple genes. The program includes a sequence/alignment editor and an internal relational database that simplify the preparation and manipulation of multigenic DNA polymorphism datasets. The most commonly used DNA polymorphism analyses are implemented in ProSeq3, facilitating population genetic analysis of large multigenic datasets. Extensive input/output options make ProSeq3 a convenient hub for sequence data processing and analysis. The program is available free of charge from http://dps.plants.ox.ac.uk/sequencing/proseq.htm.
A Guide to the PLAZA 3.0 Plant Comparative Genomic Database.
Vandepoele, Klaas
2017-01-01
PLAZA 3.0 is an online resource for comparative genomics and offers a versatile platform to study gene functions and gene families or to analyze genome organization and evolution in the green plant lineage. Starting from genome sequence information for over 35 plant species, precomputed comparative genomic data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, and genomic colinearity information within and between species. Complementary functional data sets, a Workbench, and interactive visualization tools are available through a user-friendly web interface, making PLAZA an excellent starting point to translate sequence or omics data sets into biological knowledge. PLAZA is available at http://bioinformatics.psb.ugent.be/plaza/ .
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Pervouchine, Dmitri D
2018-06-15
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.
Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L
2016-01-04
The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
HSA: a heuristic splice alignment tool.
Bu, Jingde; Chi, Xuebin; Jin, Zhong
2013-01-01
RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.
Selvan, A. Sakthivel; Gupta, I. D.; Verma, A.; Chaudhari, M. V.; Magotra, A.
2016-01-01
Aim: The present study was undertaken with the objectives to characterize and to analyze combined genotypes of cluster of differentiation 14 (CD14) gene to explore its association with clinical mastitis in Karan Fries (KF) cows maintained in the National Dairy Research Institute herd, Karnal. Materials and Methods: Genomic DNA was extracted using blood of randomly selected 94 KF lactating cattle by phenol-chloroform method. After checking its quality and quantity, polymerase chain reaction (PCR) was carried out using six sets of reported gene-specific primers to amplify complete KF CD14 gene. The forward and reverse sequences for each PCR fragments were assembled to form complete sequence for the respective region of KF CD14 gene. The multiple sequence alignments of the edited sequence with the corresponding reference with reported Bos taurus sequence (EU148610.1) were performed with ClustalW software to identify single nucleotide polymorphisms (SNPs). Basic Local Alignment Search Tool analysis was performed to compare the sequence identity of KF CD14 gene with other species. The restriction fragment length polymorphism (RFLP) analysis was carried out in all KF cows using Helicobacter pylori 188I (Hpy188I) (contig 2) and Haemophilus influenzae I (HinfI) (contig 4) restriction enzyme (RE). Cows were assigned genotypes obtained by PCR-RFLP analysis, and association study was done using Chi-square (χ2) test. The genotypes of both contigs (loci) number 2 and 4 were combined with respect to each animal to construct combined genotype patterns. Results: Two types of sequences of KF were obtained: One with 2630 bp having one insertion at 616 nucleotide (nt) position and one deletion at 1117 nt position, and the another sequence was of 2629 bp having only one deletion at 615 nt position. ClustalW, multiple alignments of KF CD14 gene sequence with B. taurus cattle sequence (EU148610.1), revealed 24 nt changes (SNPs). Cows were also screened using PCR-RFLP with Hpy188I (contig 2) and HinfI (contig 4) RE, which revealed three genotypes each that differed significantly regarding mastitis incidence. The maximum possible combination of these two loci shown nine combined genotype patterns and it was observed only eight combined genotypes out of nine: AACC, AACD, AADD, ABCD, ABDD, BBCC, BBCD, and BBDD. The combined genotype ABCC was not observed in the studied population of KF cows. Out of 94 animals, AACD combined genotype animals (10.63%) were found to be not affected with mastitis, and ABDD combined genotyped animals was observed having the highest mastitis incidence of 15.96%. Conclusion: AACD typed cows were found to be least susceptible to mastitis incidence as compared to other combined genotypes. PMID:27536026
Selvan, A Sakthivel; Gupta, I D; Verma, A; Chaudhari, M V; Magotra, A
2016-07-01
The present study was undertaken with the objectives to characterize and to analyze combined genotypes of cluster of differentiation 14 (CD14) gene to explore its association with clinical mastitis in Karan Fries (KF) cows maintained in the National Dairy Research Institute herd, Karnal. Genomic DNA was extracted using blood of randomly selected 94 KF lactating cattle by phenol-chloroform method. After checking its quality and quantity, polymerase chain reaction (PCR) was carried out using six sets of reported gene-specific primers to amplify complete KF CD14 gene. The forward and reverse sequences for each PCR fragments were assembled to form complete sequence for the respective region of KF CD14 gene. The multiple sequence alignments of the edited sequence with the corresponding reference with reported Bos taurus sequence (EU148610.1) were performed with ClustalW software to identify single nucleotide polymorphisms (SNPs). Basic Local Alignment Search Tool analysis was performed to compare the sequence identity of KF CD14 gene with other species. The restriction fragment length polymorphism (RFLP) analysis was carried out in all KF cows using Helicobacter pylori 188I (Hpy188I) (contig 2) and Haemophilus influenzae I (HinfI) (contig 4) restriction enzyme (RE). Cows were assigned genotypes obtained by PCR-RFLP analysis, and association study was done using Chi-square (χ (2)) test. The genotypes of both contigs (loci) number 2 and 4 were combined with respect to each animal to construct combined genotype patterns. Two types of sequences of KF were obtained: One with 2630 bp having one insertion at 616 nucleotide (nt) position and one deletion at 1117 nt position, and the another sequence was of 2629 bp having only one deletion at 615 nt position. ClustalW, multiple alignments of KF CD14 gene sequence with B. taurus cattle sequence (EU148610.1), revealed 24 nt changes (SNPs). Cows were also screened using PCR-RFLP with Hpy188I (contig 2) and HinfI (contig 4) RE, which revealed three genotypes each that differed significantly regarding mastitis incidence. The maximum possible combination of these two loci shown nine combined genotype patterns and it was observed only eight combined genotypes out of nine: AACC, AACD, AADD, ABCD, ABDD, BBCC, BBCD, and BBDD. The combined genotype ABCC was not observed in the studied population of KF cows. Out of 94 animals, AACD combined genotype animals (10.63%) were found to be not affected with mastitis, and ABDD combined genotyped animals was observed having the highest mastitis incidence of 15.96%. AACD typed cows were found to be least susceptible to mastitis incidence as compared to other combined genotypes.
Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.
Brodie, Ryan; Smith, Alex J; Roper, Rachel L; Tcherepanov, Vasily; Upton, Chris
2004-07-14
With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools. A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1) rapidly identify and correct alignment errors in large, multiple genome alignments; and 2) generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs) to retrieve detailed annotation information about the aligned genomes or use information from text files. Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.
SAbPred: a structure-based antibody prediction server
Dunbar, James; Krawczyk, Konrad; Leem, Jinwoo; Marks, Claire; Nowak, Jaroslaw; Regep, Cristian; Georges, Guy; Kelm, Sebastian; Popovic, Bojana; Deane, Charlotte M.
2016-01-01
SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens. The server is available at http://opig.stats.ox.ac.uk/webapps/sabpred. PMID:27131379
Detecting and Analyzing Genetic Recombination Using RDP4.
Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev
2017-01-01
Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.
Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?
Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm
2001-01-01
Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227
The MIGenAS integrated bioinformatics toolkit for web-based sequence analysis
Rampp, Markus; Soddemann, Thomas; Lederer, Hermann
2006-01-01
We describe a versatile and extensible integrated bioinformatics toolkit for the analysis of biological sequences over the Internet. The web portal offers convenient interactive access to a growing pool of chainable bioinformatics software tools and databases that are centrally installed and maintained by the RZG. Currently, supported tasks comprise sequence similarity searches in public or user-supplied databases, computation and validation of multiple sequence alignments, phylogenetic analysis and protein–structure prediction. Individual tools can be seamlessly chained into pipelines allowing the user to conveniently process complex workflows without the necessity to take care of any format conversions or tedious parsing of intermediate results. The toolkit is part of the Max-Planck Integrated Gene Analysis System (MIGenAS) of the Max Planck Society available at (click ‘Start Toolkit’). PMID:16844980
Multiplexing Short Primers for Viral Family PCR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S N; Hiddessen, A L; Hara, C A
We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets for large, diverse, and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers ({approx}3700 18-mers or {approx}2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and formore » several diverse species such as foot-and-mouth disease virus, hemagglutinin and neuraminidase segments of influenza A virus, Norwalk virus, and HIV-1.« less
New powerful statistics for alignment-free sequence comparison under a pattern transfer model.
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu
2011-09-07
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.
New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu
2011-01-01
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298
GuiTope: an application for mapping random-sequence peptides to protein sequences.
Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert
2012-01-03
Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
2012-01-01
Background The NCBI Conserved Domain Database (CDD) consists of a collection of multiple sequence alignments of protein domains that are at various stages of being manually curated into evolutionary hierarchies based on conserved and divergent sequence and structural features. These domain models are annotated to provide insights into the relationships between sequence, structure and function via web-based BLAST searches. Results Here we automate the generation of conserved domain (CD) hierarchies using a combination of heuristic and Markov chain Monte Carlo (MCMC) sampling procedures and starting from a (typically very large) multiple sequence alignment. This procedure relies on statistical criteria to define each hierarchy based on the conserved and divergent sequence patterns associated with protein functional-specialization. At the same time this facilitates the sequence and structural annotation of residues that are functionally important. These statistical criteria also provide a means to objectively assess the quality of CD hierarchies, a non-trivial task considering that the protein subgroups are often very distantly related—a situation in which standard phylogenetic methods can be unreliable. Our aim here is to automatically generate (typically sub-optimal) hierarchies that, based on statistical criteria and visual comparisons, are comparable to manually curated hierarchies; this serves as the first step toward the ultimate goal of obtaining optimal hierarchical classifications. A plot of runtimes for the most time-intensive (non-parallelizable) part of the algorithm indicates a nearly linear time complexity so that, even for the extremely large Rossmann fold protein class, results were obtained in about a day. Conclusions This approach automates the rapid creation of protein domain hierarchies and thus will eliminate one of the most time consuming aspects of conserved domain database curation. At the same time, it also facilitates protein domain annotation by identifying those pattern residues that most distinguish each protein domain subgroup from other related subgroups. PMID:22726767
ARYANA: Aligning Reads by Yet Another Approach
2014-01-01
Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881
ARYANA: Aligning Reads by Yet Another Approach.
Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi
2014-01-01
Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.
Munger, Steven C.; Raghupathy, Narayanan; Choi, Kwangbom; Simons, Allen K.; Gatti, Daniel M.; Hinerfeld, Douglas A.; Svenson, Karen L.; Keller, Mark P.; Attie, Alan D.; Hibbs, Matthew A.; Graber, Joel H.; Chesler, Elissa J.; Churchill, Gary A.
2014-01-01
Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. PMID:25236449
Transcription Factor Map Alignment of Promoter Regions
Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic
2006-01-01
We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547
The UCSC genome browser and associated tools
Haussler, David; Kent, W. James
2013-01-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting. PMID:22908213
The UCSC genome browser and associated tools.
Kuhn, Robert M; Haussler, David; Kent, W James
2013-03-01
The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.
Rubin, D A; Dores, R M
1995-06-01
In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810
Identification of missing variants by combining multiple analytic pipelines.
Ren, Yingxue; Reddy, Joseph S; Pottier, Cyril; Sarangi, Vivekananda; Tian, Shulan; Sinnwell, Jason P; McDonnell, Shannon K; Biernacka, Joanna M; Carrasquillo, Minerva M; Ross, Owen A; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hudson, Matthew; Mainzer, Liudmila Sergeevna; Asmann, Yan W
2018-04-16
After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. Identification of the complete variant set from sequencing data is the prerequisite of genetic association analyses. The current analytic practice of calling genetic variants from sequencing data using a single bioinformatics pipeline is no longer adequate with the increasingly large projects. The number and percentage of quality variants that passed quality filters but are missed by the one-pipeline approach rapidly increased with sample size.
Amino acid sequence analysis of the annexin super-gene family of proteins.
Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J
1991-06-15
The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of the predictions and shows the power of techniques for the determination of tertiary structural information from the amino acid sequences of an aligned protein family.
Automatic prediction of protein domains from sequence information using a hybrid learning system.
Nagarajan, Niranjan; Yona, Golan
2004-06-12
We describe a novel method for detecting the domain structure of a protein from sequence information alone. The method is based on analyzing multiple sequence alignments that are derived from a database search. Multiple measures are defined to quantify the domain information content of each position along the sequence and are combined into a single predictor using a neural network. The output is further smoothed and post-processed using a probabilistic model to predict the most likely transition positions between domains. The method was assessed using the domain definitions in SCOP and CATH for proteins of known structure and was compared with several other existing methods. Our method performs well both in terms of accuracy and sensitivity. It improves significantly over the best methods available, even some of the semi-manual ones, while being fully automatic. Our method can also be used to suggest and verify domain partitions based on structural data. A few examples of predicted domain definitions and alternative partitions, as suggested by our method, are also discussed. An online domain-prediction server is available at http://biozon.org/tools/domains/
Molecular Cloning and Sequence Analysis of a Phenylalanine Ammonia-Lyase Gene from Dendrobium
Cai, Yongping; Lin, Yi
2013-01-01
In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748) has 2,458 bps and contains a complete open reading frame (ORF) of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum. PMID:23638048
Characterization and functional analyses of a novel chicken CD8a variant X1 (CD8a1)
USDA-ARS?s Scientific Manuscript database
We provide the first description of cloning, as well as structural and functional analysis of a novel variant in the chicken CD8alpha family, termed the CD8-alpha X1 (CD8alpha1) gene. Multiple alignment of CD8alpha1 with known CD8alpha and beta sequences of other species revealed relatively low con...
Cocco, Simona; Monasson, Remi; Weigt, Martin
2013-01-01
Various approaches have explored the covariation of residues in multiple-sequence alignments of homologous proteins to extract functional and structural information. Among those are principal component analysis (PCA), which identifies the most correlated groups of residues, and direct coupling analysis (DCA), a global inference method based on the maximum entropy principle, which aims at predicting residue-residue contacts. In this paper, inspired by the statistical physics of disordered systems, we introduce the Hopfield-Potts model to naturally interpolate between these two approaches. The Hopfield-Potts model allows us to identify relevant ‘patterns’ of residues from the knowledge of the eigenmodes and eigenvalues of the residue-residue correlation matrix. We show how the computation of such statistical patterns makes it possible to accurately predict residue-residue contacts with a much smaller number of parameters than DCA. This dimensional reduction allows us to avoid overfitting and to extract contact information from multiple-sequence alignments of reduced size. In addition, we show that low-eigenvalue correlation modes, discarded by PCA, are important to recover structural information: the corresponding patterns are highly localized, that is, they are concentrated in few sites, which we find to be in close contact in the three-dimensional protein fold. PMID:23990764
Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.
da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos
2013-12-01
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.
Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data
da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos
2013-01-01
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862
Padial, José M; Grant, Taran; Frost, Darrel R
2014-06-26
Brachycephaloidea is a monophyletic group of frogs with more than 1000 species distributed throughout the New World tropics, subtropics, and Andean regions. Recently, the group has been the target of multiple molecular phylogenetic analyses, resulting in extensive changes in its taxonomy. Here, we test previous hypotheses of phylogenetic relationships for the group by combining available molecular evidence (sequences of 22 genes representing 431 ingroup and 25 outgroup terminals) and performing a tree-alignment analysis under the parsimony optimality criterion using the program POY. To elucidate the effects of alignment and optimality criterion on phylogenetic inferences, we also used the program MAFFT to obtain a similarity-alignment for analysis under both parsimony and maximum likelihood using the programs TNT and GARLI, respectively. Although all three analytical approaches agreed on numerous points, there was also extensive disagreement. Tree-alignment under parsimony supported the monophyly of the ingroup and the sister group relationship of the monophyletic marsupial frogs (Hemiphractidae), while maximum likelihood and parsimony analyses of the MAFFT similarity-alignment did not. All three methods differed with respect to the position of Ceuthomantis smaragdinus (Ceuthomantidae), with tree-alignment using parsimony recovering this species as the sister of Pristimantis + Yunganastes. All analyses rejected the monophyly of Strabomantidae and Strabomantinae as originally defined, and the tree-alignment analysis under parsimony further rejected the recently redefined Craugastoridae and Pristimantinae. Despite the greater emphasis in the systematics literature placed on the choice of optimality criterion for evaluating trees than on the choice of method for aligning DNA sequences, we found that the topological differences attributable to the alignment method were as great as those caused by the optimality criterion. Further, the optimal tree-alignment indicates that insertions and deletions occurred in twice as many aligned positions as implied by the optimal similarity-alignment, confirming previous findings that sequence turnover through insertion and deletion events plays a greater role in molecular evolution than indicated by similarity-alignments. Our results also provide a clear empirical demonstration of the different effects of wildcard taxa produced by missing data in parsimony and maximum likelihood analyses. Specifically, maximum likelihood analyses consistently (81% bootstrap frequency) provided spurious resolution despite a lack of evidence, whereas parsimony correctly depicted the ambiguity due to missing data by collapsing unsupported nodes. We provide a new taxonomy for the group that retains previously recognized Linnaean taxa except for Ceuthomantidae, Strabomantidae, and Strabomantinae. A phenotypically diagnosable superfamily is recognized formally as Brachycephaloidea, with the informal, unranked name terrarana retained as the standard common name for these frogs. We recognize three families within Brachycephaloidea that are currently diagnosable solely on molecular grounds (Brachycephalidae, Craugastoridae, and Eleutherodactylidae), as well as five subfamilies (Craugastorinae, Eleutherodactylinae, Holoadeninae, Phyzelaphryninae, and Pristimantinae) corresponding in large part to previous families and subfamilies. Our analyses upheld the monophyly of all tested genera, but we found numerous subgeneric taxa to be non-monophyletic and modified the taxonomy accordingly.
Accurate prediction of protein–protein interactions from sequence alignments using a Bayesian method
Burger, Lukas; van Nimwegen, Erik
2008-01-01
Accurate and large-scale prediction of protein–protein interactions directly from amino-acid sequences is one of the great challenges in computational biology. Here we present a new Bayesian network method that predicts interaction partners using only multiple alignments of amino-acid sequences of interacting protein domains, without tunable parameters, and without the need for any training examples. We first apply the method to bacterial two-component systems and comprehensively reconstruct two-component signaling networks across all sequenced bacteria. Comparisons of our predictions with known interactions show that our method infers interaction partners genome-wide with high accuracy. To demonstrate the general applicability of our method we show that it also accurately predicts interaction partners in a recent dataset of polyketide synthases. Analysis of the predicted genome-wide two-component signaling networks shows that cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans (which lie isolated) form two relatively independent components of the signaling network in each genome. In addition, while most genes are predicted to have only a small number of interaction partners, we find that 10% of orphans form a separate class of ‘hub' nodes that distribute and integrate signals to and from up to tens of different interaction partners. PMID:18277381
Introduction to bioinformatics.
Can, Tolga
2014-01-01
Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.
Darwin v. 2.0: an interpreted computer language for the biosciences.
Gonnet, G H; Hallett, M T; Korostensky, C; Bernardin, L
2000-02-01
We announce the availability of the second release of Darwin v. 2.0, an interpreted computer language especially tailored to researchers in the biosciences. The system is a general tool applicable to a wide range of problems. This second release improves Darwin version 1.6 in several ways: it now contains (1) a larger set of libraries touching most of the classical problems from computational biology (pairwise alignment, all versus all alignments, tree construction, multiple sequence alignment), (2) an expanded set of general purpose algorithms (search algorithms for discrete problems, matrix decomposition routines, complex/long integer arithmetic operations), (3) an improved language with a cleaner syntax, (4) better on-line help, and (5) a number of fixes to user-reported bugs. Darwin is made available for most operating systems free of char ge from the Computational Biochemistry Research Group (CBRG), reachable at http://chrg.inf.ethz.ch. darwin@inf.ethz.ch
MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution
Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian
2015-01-01
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928
MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.
Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian
2015-01-01
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. © The Author(s) 2015. Published by Oxford University Press.
Spreadsheet-based program for alignment of overlapping DNA sequences.
Anbazhagan, R; Gabrielson, E
1999-06-01
Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.
Blom, Mozes P K
2015-08-05
Recently developed molecular methods enable geneticists to target and sequence thousands of orthologous loci and infer evolutionary relationships across the tree of life. Large numbers of genetic markers benefit species tree inference but visual inspection of alignment quality, as traditionally conducted, is challenging with thousands of loci. Furthermore, due to the impracticality of repeated visual inspection with alternative filtering criteria, the potential consequences of using datasets with different degrees of missing data remain nominally explored in most empirical phylogenomic studies. In this short communication, I describe a flexible high-throughput pipeline designed to assess alignment quality and filter exonic sequence data for subsequent inference. The stringency criteria for alignment quality and missing data can be adapted based on the expected level of sequence divergence. Each alignment is automatically evaluated based on the stringency criteria specified, significantly reducing the number of alignments that require visual inspection. By developing a rapid method for alignment filtering and quality assessment, the consistency of phylogenetic estimation based on exonic sequence alignments can be further explored across distinct inference methods, while accounting for different degrees of missing data.
Yang, Rendong; Nelson, Andrew C; Henzler, Christine; Thyagarajan, Bharat; Silverstein, Kevin A T
2015-12-07
Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel.
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
Limited utility of residue masking for positive-selection inference.
Spielman, Stephanie J; Dawson, Eric T; Wilke, Claus O
2014-09-01
Errors in multiple sequence alignments (MSAs) can reduce accuracy in positive-selection inference. Therefore, it has been suggested to filter MSAs before conducting further analyses. One widely used filter, Guidance, allows users to remove MSA positions aligned with low confidence. However, Guidance's utility in positive-selection inference has been disputed in the literature. We have conducted an extensive simulation-based study to characterize fully how Guidance impacts positive-selection inference, specifically for protein-coding sequences of realistic divergence levels. We also investigated whether novel scoring algorithms, which phylogenetically corrected confidence scores, and a new gap-penalization score-normalization scheme improved Guidance's performance. We found that no filter, including original Guidance, consistently benefitted positive-selection inferences. Moreover, all improvements detected were exceedingly minimal, and in certain circumstances, Guidance-based filters worsened inferences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
González, Carolina; Tabernero, David; Cortese, Maria Francesca; Gregori, Josep; Casillas, Rosario; Riveiro-Barciela, Mar; Godoy, Cristina; Sopena, Sara; Rando, Ariadna; Yll, Marçal; Lopez-Martinez, Rosa; Quer, Josep; Esteban, Rafael; Buti, Maria; Rodríguez-Frías, Francisco
2018-05-21
To detect hyper-conserved regions in the hepatitis B virus (HBV) X gene ( HBX ) 5' region that could be candidates for gene therapy. The study included 27 chronic hepatitis B treatment-naive patients in various clinical stages (from chronic infection to cirrhosis and hepatocellular carcinoma, both HBeAg-negative and HBeAg-positive), and infected with HBV genotypes A-F and H. In a serum sample from each patient with viremia > 3.5 log IU/mL, the HBX 5' end region [nucleotide (nt) 1255-1611] was PCR-amplified and submitted to next-generation sequencing (NGS). We assessed genotype variants by phylogenetic analysis, and evaluated conservation of this region by calculating the information content of each nucleotide position in a multiple alignment of all unique sequences (haplotypes) obtained by NGS. Conservation at the HBx protein amino acid (aa) level was also analyzed. NGS yielded 1333069 sequences from the 27 samples, with a median of 4578 sequences/sample (2487-9279, IQR 2817). In 14/27 patients (51.8%), phylogenetic analysis of viral nucleotide haplotypes showed a complex mixture of genotypic variants. Analysis of the information content in the haplotype multiple alignments detected 2 hyper-conserved nucleotide regions, one in the HBX upstream non-coding region (nt 1255-1286) and the other in the 5' end coding region (nt 1519-1603). This last region coded for a conserved amino acid region (aa 63-76) that partially overlaps a Kunitz-like domain. Two hyper-conserved regions detected in the HBX 5' end may be of value for targeted gene therapy, regardless of the patients' clinical stage or HBV genotype.
Exact calculation of distributions on integers, with application to sequence alignment.
Newberg, Lee A; Lawrence, Charles E
2009-01-01
Computational biology is replete with high-dimensional discrete prediction and inference problems. Dynamic programming recursions can be applied to several of the most important of these, including sequence alignment, RNA secondary-structure prediction, phylogenetic inference, and motif finding. In these problems, attention is frequently focused on some scalar quantity of interest, a score, such as an alignment score or the free energy of an RNA secondary structure. In many cases, score is naturally defined on integers, such as a count of the number of pairing differences between two sequence alignments, or else an integer score has been adopted for computational reasons, such as in the test of significance of motif scores. The probability distribution of the score under an appropriate probabilistic model is of interest, such as in tests of significance of motif scores, or in calculation of Bayesian confidence limits around an alignment. Here we present three algorithms for calculating the exact distribution of a score of this type; then, in the context of pairwise local sequence alignments, we apply the approach so as to find the alignment score distribution and Bayesian confidence limits.
PipeOnline 2.0: automated EST processing and functional data sorting.
Ayoubi, Patricia; Jin, Xiaojing; Leite, Saul; Liu, Xianghui; Martajaja, Jeson; Abduraham, Abdurashid; Wan, Qiaolan; Yan, Wei; Misawa, Eduardo; Prade, Rolf A
2002-11-01
Expressed sequence tags (ESTs) are generated and deposited in the public domain, as redundant, unannotated, single-pass reactions, with virtually no biological content. PipeOnline automatically analyses and transforms large collections of raw DNA-sequence data from chromatograms or FASTA files by calling the quality of bases, screening and removing vector sequences, assembling and rewriting consensus sequences of redundant input files into a unigene EST data set and finally through translation, amino acid sequence similarity searches, annotation of public databases and functional data. PipeOnline generates an annotated database, retaining the processed unigene sequence, clone/file history, alignments with similar sequences, and proposed functional classification, if available. Functional annotation is automatic and based on a novel method that relies on homology of amino acid sequence multiplicity within GenBank records. Records are examined through a function ordered browser or keyword queries with automated export of results. PipeOnline offers customization for individual projects (MyPipeOnline), automated updating and alert service. PipeOnline is available at http://stress-genomics.org.
TCW: Transcriptome Computational Workbench
Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R.
2013-01-01
Background The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. Methodology The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. Conclusion It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw. PMID:23874959
TCW: transcriptome computational workbench.
Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R
2013-01-01
The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.
A statistical physics perspective on alignment-independent protein sequence comparison.
Chattopadhyay, Amit K; Nasiev, Diar; Flower, Darren R
2015-08-01
Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from 'first passage probability distribution' to summarize statistics of ensemble averaged amino acid propensity values. In this article, we introduce and elaborate this approach. © The Author 2015. Published by Oxford University Press.
PVT: An Efficient Computational Procedure to Speed up Next-generation Sequence Analysis
2014-01-01
Background High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat’s serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. Results We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during ‘spliced alignment’ and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. Conclusions PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system. PMID:24894600
Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
Hong, Changjin; Tewfik, Ahmed H
2009-01-01
Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.
SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform.
Lin, Jie; Wei, Jing; Adjeroh, Donald; Jiang, Bing-Hua; Jiang, Yue
2018-05-02
Alignment-free sequence similarity analysis methods often lead to significant savings in computational time over alignment-based counterparts. A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification. Using two different types of applications, namely, clustering and classification, we compared SSAW against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the rapidly increasing volumes of sequence data required by most modern applications.
CAFE: aCcelerated Alignment-FrEe sequence analysis.
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu
2017-07-03
Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Evol and ProDy for bridging protein sequence evolution and structural dynamics.
Bakan, Ahmet; Dutta, Anindita; Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R; Bahar, Ivet
2014-09-15
Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.
2015-01-01
Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996
Xu, Qifang; Dunbrack, Roland L
2012-11-01
Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM-HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly.
DEMO: Sequence Alignment to Predict Across Species Susceptibility
The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqapass.epa.gov/seqapass/) was developed to comparatively evaluate protein sequence and structural similarity across species as a means to extrapolate toxic...
New Tools For Understanding Microbial Diversity Using High-throughput Sequence Data
NASA Astrophysics Data System (ADS)
Knight, R.; Hamady, M.; Liu, Z.; Lozupone, C.
2007-12-01
High-throughput sequencing techniques such as 454 are straining the limits of tools traditionally used to build trees, choose OTUs, and perform other essential sequencing tasks. We have developed a workflow for phylogenetic analysis of large-scale sequence data sets that combines existing tools, such as the Arb phylogeny package and the NAST multiple sequence alignment tool, with new methods for choosing and clustering OTUs and for performing phylogenetic community analysis with UniFrac. This talk discusses the cyberinfrastructure we are developing to support the human microbiome project, and the application of these workflows to analyze very large data sets that contrast the gut microbiota with a range of physical environments. These tools will ultimately help to define core and peripheral microbiomes in a range of environments, and will allow us to understand the physical and biotic factors that contribute most to differences in microbial diversity.
GWFASTA: server for FASTA search in eukaryotic and microbial genomes.
Issac, Biju; Raghava, G P S
2002-09-01
Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.
Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks*
Bandeira, Nuno
2016-01-01
Peptide and protein identification remains challenging in organisms with poorly annotated or rapidly evolving genomes, as are commonly encountered in environmental or biofuels research. Such limitations render tandem mass spectrometry (MS/MS) database search algorithms ineffective as they lack corresponding sequences required for peptide-spectrum matching. We address this challenge with the spectral networks approach to (1) match spectra of orthologous peptides across multiple related species and then (2) propagate peptide annotations from identified to unidentified spectra. We here present algorithms to assess the statistical significance of spectral alignments (Align-GF), reduce the impurity in spectral networks, and accurately estimate the error rate in propagated identifications. Analyzing three related Cyanothece species, a model organism for biohydrogen production, spectral networks identified peptides from highly divergent sequences from networks with dozens of variant peptides, including thousands of peptides in species lacking a sequenced genome. Our analysis further detected the presence of many novel putative peptides even in genomically characterized species, thus suggesting the possibility of gaps in our understanding of their proteomic and genomic expression. A web-based pipeline for spectral networks analysis is available at http://proteomics.ucsd.edu/software. PMID:27609420
Population entropies estimates of proteins
NASA Astrophysics Data System (ADS)
Low, Wai Yee
2017-05-01
The Shannon entropy equation provides a way to estimate variability of amino acids sequences in a multiple sequence alignment of proteins. Knowledge of protein variability is useful in many areas such as vaccine design, identification of antibody binding sites, and exploration of protein 3D structural properties. In cases where the population entropies of a protein are of interest but only a small sample size can be obtained, a method based on linear regression and random subsampling can be used to estimate the population entropy. This method is useful for comparisons of entropies where the actual sequence counts differ and thus, correction for alignment size bias is needed. In the current work, an R based package named EntropyCorrect that enables estimation of population entropy is presented and an empirical study on how well this new algorithm performs on simulated dataset of various combinations of population and sample sizes is discussed. The package is available at https://github.com/lloydlow/EntropyCorrect. This article, which was originally published online on 12 May 2017, contained an error in Eq. (1), where the summation sign was missing. The corrected equation appears in the Corrigendum attached to the pdf.
Quinn, Terrance; Sinkala, Zachariah
2014-01-01
We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Spreadsheet macros for coloring sequence alignments.
Haygood, M G
1993-12-01
This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.
Validation of Splicing Events in Transcriptome Sequencing Data
Kaisers, Wolfgang; Ptok, Johannes; Schwender, Holger; Schaal, Heiner
2017-01-01
Genomic alignments of sequenced cellular messenger RNA contain gapped alignments which are interpreted as consequence of intron removal. The resulting gap-sites, genomic locations of alignment gaps, are landmarks representing potential splice-sites. As alignment algorithms report gap-sites with a considerable false discovery rate, validations are required. We describe two quality scores, gap quality score (gqs) and weighted gap information score (wgis), developed for validation of putative splicing events: While gqs solely relies on alignment data wgis additionally considers information from the genomic sequence. FASTQ files obtained from 54 human dermal fibroblast samples were aligned against the human genome (GRCh38) using TopHat and STAR aligner. Statistical properties of gap-sites validated by gqs and wgis were evaluated by their sequence similarity to known exon-intron borders. Within the 54 samples, TopHat identifies 1,000,380 and STAR reports 6,487,577 gap-sites. Due to the lack of strand information, however, the percentage of identified GT-AG gap-sites is rather low. While gap-sites from TopHat contain ≈89% GT-AG, gap-sites from STAR only contain ≈42% GT-AG dinucleotide pairs in merged data from 54 fibroblast samples. Validation with gqs yields 156,251 gap-sites from TopHat alignments and 166,294 from STAR alignments. Validation with wgis yields 770,327 gap-sites from TopHat alignments and 1,065,596 from STAR alignments. Both alignment algorithms, TopHat and STAR, report gap-sites with considerable false discovery rate, which can drastically be reduced by validation with gqs and wgis. PMID:28545234
Yu, Jia; Blom, Jochen; Sczyrba, Alexander; Goesmann, Alexander
2017-09-10
The introduction of next generation sequencing has caused a steady increase in the amounts of data that have to be processed in modern life science. Sequence alignment plays a key role in the analysis of sequencing data e.g. within whole genome sequencing or metagenome projects. BLAST is a commonly used alignment tool that was the standard approach for more than two decades, but in the last years faster alternatives have been proposed including RapSearch, GHOSTX, and DIAMOND. Here we introduce HAMOND, an application that uses Apache Hadoop to parallelize DIAMOND computation in order to scale-out the calculation of alignments. HAMOND is fault tolerant and scalable by utilizing large cloud computing infrastructures like Amazon Web Services. HAMOND has been tested in comparative genomics analyses and showed promising results both in efficiency and accuracy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Lu, Yang Young; Chen, Ting; Fuhrman, Jed A; Sun, Fengzhu
2017-03-15
The advent of next-generation sequencing technologies enables researchers to sequence complex microbial communities directly from the environment. Because assembly typically produces only genome fragments, also known as contigs, instead of an entire genome, it is crucial to group them into operational taxonomic units (OTUs) for further taxonomic profiling and down-streaming functional analysis. OTU clustering is also referred to as binning. We present COCACOLA, a general framework automatically bin contigs into OTUs based on sequence composition and coverage across multiple samples. The effectiveness of COCACOLA is demonstrated in both simulated and real datasets in comparison with state-of-art binning approaches such as CONCOCT, GroopM, MaxBin and MetaBAT. The superior performance of COCACOLA relies on two aspects. One is using L 1 distance instead of Euclidean distance for better taxonomic identification during initialization. More importantly, COCACOLA takes advantage of both hard clustering and soft clustering by sparsity regularization. In addition, the COCACOLA framework seamlessly embraces customized knowledge to facilitate binning accuracy. In our study, we have investigated two types of additional knowledge, the co-alignment to reference genomes and linkage of contigs provided by paired-end reads, as well as the ensemble of both. We find that both co-alignment and linkage information further improve binning in the majority of cases. COCACOLA is scalable and faster than CONCOCT, GroopM, MaxBin and MetaBAT. The software is available at https://github.com/younglululu/COCACOLA . fsun@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Performances of Different Fragment Sizes for Reduced Representation Bisulfite Sequencing in Pigs.
Yuan, Xiao-Long; Zhang, Zhe; Pan, Rong-Yang; Gao, Ning; Deng, Xi; Li, Bin; Zhang, Hao; Sangild, Per Torp; Li, Jia-Qi
2017-01-01
Reduced representation bisulfite sequencing (RRBS) has been widely used to profile genome-scale DNA methylation in mammalian genomes. However, the applications and technical performances of RRBS with different fragment sizes have not been systematically reported in pigs, which serve as one of the important biomedical models for humans. The aims of this study were to evaluate capacities of RRBS libraries with different fragment sizes to characterize the porcine genome. We found that the Msp I-digested segments between 40 and 220 bp harbored a high distribution peak at 74 bp, which were highly overlapped with the repetitive elements and might reduce the unique mapping alignment. The RRBS library of 110-220 bp fragment size had the highest unique mapping alignment and the lowest multiple alignment. The cost-effectiveness of the 40-110 bp, 110-220 bp and 40-220 bp fragment sizes might decrease when the dataset size was more than 70, 50 and 110 million reads for these three fragment sizes, respectively. Given a 50-million dataset size, the average sequencing depth of the detected CpG sites in the 110-220 bp fragment size appeared to be deeper than in the 40-110 bp and 40-220 bp fragment sizes, and these detected CpG sties differently located in gene- and CpG island-related regions. In this study, our results demonstrated that selections of fragment sizes could affect the numbers and sequencing depth of detected CpG sites as well as the cost-efficiency. No single solution of RRBS is optimal in all circumstances for investigating genome-scale DNA methylation. This work provides the useful knowledge on designing and executing RRBS for investigating the genome-wide DNA methylation in tissues from pigs.
ComplexContact: a web server for inter-protein contact prediction using deep learning.
Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo
2018-05-22
ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete (Wang and Jiang, 1994). Traditionally, point estimations of hypothetical ancestral sequences have been used to gain heuristic, upper bounds on cladogram cost. These include procedures with such diverse approaches as non-additive optimization of multiple sequence alignment, direct optimization (Wheeler, 1996), and fixed-state character optimization (Wheeler, 1999). A method is proposed here which, by extending fixed-state character optimization, replaces the estimation process with a search. This form of optimization examines a diversity of potential state solutions for cost-efficient hypothetical ancestral sequences and can result in greatly more parsimonious cladograms. Additionally, such an approach can be applied to other NP-complete phylogenetic optimization problems such as genomic break-point analysis. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
A Mathematical Optimization Problem in Bioinformatics
ERIC Educational Resources Information Center
Heyer, Laurie J.
2008-01-01
This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…
Kashuk, Carl S.; Stone, Eric A.; Grice, Elizabeth A.; Portnoy, Matthew E.; Green, Eric D.; Sidow, Arend; Chakravarti, Aravinda; McCallion, Andrew S.
2005-01-01
The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (≥116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease. PMID:15956201
Cheng, Y Z; Xu, T J; Jin, X X; Tang, D; Wei, T; Sun, Y Y; Meng, F Q; Shi, G; Wang, R X
2012-01-01
Through multiple alignment analysis of mitochondrial tRNA-Thr and tRNA-Phe sequences from 161 fishes, new universal primers specially targeting the entire mitochondrial control region were designed. This new primer set successfully amplified the expected PCR products from various kinds of marine fish species, belonging to various families, and the amplified segments were confirmed to be the control region by sequencing. These primers provide a useful tool to study the control region diversity in economically important fish species, the possible mechanism of control region evolution, and the functions of the conserved motifs in the control region.
Gupta, Saurabh; Bector, Shruti
2013-05-01
Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.
Method and apparatus for biological sequence comparison
Marr, T.G.; Chang, W.I.
1997-12-23
A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.
Method and apparatus for biological sequence comparison
Marr, Thomas G.; Chang, William I-Wei
1997-01-01
A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.
Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra
2017-07-01
This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.
Dong, Runze; Pan, Shuo; Peng, Zhenling; Zhang, Yang; Yang, Jianyi
2018-05-21
With the rapid increase of the number of protein structures in the Protein Data Bank, it becomes urgent to develop algorithms for efficient protein structure comparisons. In this article, we present the mTM-align server, which consists of two closely related modules: one for structure database search and the other for multiple structure alignment. The database search is speeded up based on a heuristic algorithm and a hierarchical organization of the structures in the database. The multiple structure alignment is performed using the recently developed algorithm mTM-align. Benchmark tests demonstrate that our algorithms outperform other peering methods for both modules, in terms of speed and accuracy. One of the unique features for the server is the interplay between database search and multiple structure alignment. The server provides service not only for performing fast database search, but also for making accurate multiple structure alignment with the structures found by the search. For the database search, it takes about 2-5 min for a structure of a medium size (∼300 residues). For the multiple structure alignment, it takes a few seconds for ∼10 structures of medium sizes. The server is freely available at: http://yanglab.nankai.edu.cn/mTM-align/.
Improve homology search sensitivity of PacBio data by correcting frameshifts.
Du, Nan; Sun, Yanni
2016-09-01
Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuiken, Carla; Foley, Brian; Leitner, Thomas
This compendium is an annual printed summary of the data contained in the HIV sequence database. In these compendia we try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2010. Hence, though it is called the 2010 Compendium, its contents correspond to the 2009 curated alignments on our website. The number of sequences in the HIV database is stillmore » increasing exponentially. In total, at the time of printing, there were 339,306 sequences in the HIV Sequence Database, an increase of 45% since last year. The number of near complete genomes (>7000 nucleotides) increased to 2576 by end of 2009, reflecting a smaller increase than in previous years. However, as in previous years, the compendium alignments contain only a small fraction of these. Included in the alignments are a small number of sequences representing each of the subtypes and the more prevalent circulating recombinant forms (CRFs) such as 01 and 02, as well as a few outgroup sequences (group O and N and SIV-CPZ). Of the rarer CRFs we included one representative each. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html. Reprints are available from our website in the form of both HTML and PDF files. As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.« less
Optimization of sequence alignment for simple sequence repeat regions.
Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C
2011-07-20
Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.
First detection of canine parvovirus type 2b from diarrheic dogs in Himachal Pradesh.
Sharma, Shalini; Dhar, Prasenjit; Thakur, Aneesh; Sharma, Vivek; Sharma, Mandeep
2016-09-01
The present study was conducted to detect the presence of canine parvovirus (CPV) among diarrheic dogs in Himachal Pradesh and to identify the most prevalent antigenic variant of CPV based on molecular typing and sequence analysis of VP2 gene. A total of 102 fecal samples were collected from clinical cases of diarrhea or hemorrhagic gastroenteritis from CPV vaccinated or non-vaccinated dogs. Samples were tested using CPV-specific polymerase chain reaction (PCR) targeting VP2 gene, multiplex PCR for detection of CPV-2a and CPV-2b antigenic variants, and a PCR for the detection of CPV-2c. CPV-2b isolate was cultured on Madin-Darby canine kidney (MDCK) cell lines and sequenced using VP2 structural protein gene. Multiple alignment and phylogenetic analysis was done using ClustalW and MEGA6 and inferred using the Neighbor-Joining method. No sample was found positive for the original CPV strain usually present in the vaccine. However, about 50% (52 out of 102) of the samples were found to be positive with CPV-2ab PCR assay that detects newer variants of CPV circulating in the field. In addition, multiplex PCR assay that identifies both CPV-2ab and CPV-2b revealed that CPV-2b was the major antigenic variant present in the affected dogs. A PCR positive isolate of CPV-2b was adapted to grow in MDCK cells and produced characteristic cytopathic effect after 5 th passage. Multiple sequence alignment of VP2 structural gene of CPV-2b isolate (Accession number HG004610) used in the study was found to be similar to other sequenced isolates in NCBI sequence database and showed 98-99% homology. This study reports the first detection of CPV-2b in dogs with hemorrhagic gastroenteritis in Himachal Pradesh and absence of other antigenic types of CPV. Further, CPV-specific PCR assay can be used for rapid confirmation of circulating virus strains under field conditions.
Dunbrack, Roland L.
2012-01-01
Motivation: Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. Results: We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM–HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. Availability: The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly. Contact: Roland.Dunbracks@fccc.edu PMID:22942020
Ventura, Marco; Canchaya, Carlos; Meylan, Valèrie; Klaenhammer, Todd R.; Zink, Ralf
2003-01-01
We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobacillus species and 8 Bifidobacterium species. The tuf sequences were aligned and used to infer phylogenesis among species of lactobacilli and bifidobacteria. We demonstrated that the synonymous substitution affecting this gene renders elongation factor Tu a reliable molecular clock for investigating evolutionary distances of lactobacilli and bifidobacteria. In fact, the phylogeny generated by these tuf sequences is consistent with that derived from 16S rRNA analysis. The investigation of a multiple alignment of tuf sequences revealed regions conserved among strains belonging to the same species but distinct from those of other species. PCR primers complementary to these regions allowed species-specific identification of closely related species, such as Lactobacillus casei group members. These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species. Since a variable number of tuf genes have been described for bacteria, the presence of multiple genes was examined. Southern analysis revealed one tuf gene in the genomes of lactobacilli and bifidobacteria, but the tuf gene was arranged differently in the genomes of these two taxa. Our results revealed that the tuf gene in bifidobacteria is flanked by the same gene constellation as the str operon, as originally reported for Escherichia coli. In contrast, bioinformatic and transcriptional analyses of the DNA region flanking the tuf gene in four Lactobacillus species indicated the same four-gene unit and suggested a novel tuf operon specific for the genus Lactobacillus. PMID:14602655
pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.
Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter
2018-01-01
Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.
CLAST: CUDA implemented large-scale alignment search tool.
Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken
2014-12-11
Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Brian Thomas; Leitner, Thomas Kenneth; Apetrei, Cristian
This compendium is an annual printed summary of the data contained in the HIV sequence database. We try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2015. Hence, though it is published in 2015 and called the 2015 Compendium, its contents correspond to the 2014 curated alignments on our website. The number of sequences in the HIV database ismore » still increasing. In total, at the end of 2014, there were 624,121 sequences in the HIV Sequence Database, an increase of 7% since the previous year. This is the first year that the number of new sequences added to the database has decreased compared to the previous year. The number of near complete genomes (>7000 nucleotides) increased to 5834 by end of 2014. However, as in previous years, the compendium alignments contain only a fraction of these. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/ content/sequence/NEWALIGN/align.html As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.« less
Scherer, N M; Basso, D M
2008-09-16
DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.
Rapid Threat Organism Recognition Pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kelly P.; Solberg, Owen D.; Schoeniger, Joseph S.
2013-05-07
The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has also been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on qualitymore » and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.« less
PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.
2008-01-01
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945
Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan
2008-12-01
Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences. In this paper, a novel building block of proteins called Top-n-grams is presented, which contains the evolutionary information extracted from the protein sequence frequency profiles. The protein sequence frequency profiles are calculated from the multiple sequence alignments outputted by PSI-BLAST and converted into Top-n-grams. The protein sequences are transformed into fixed-dimension feature vectors by the occurrence times of each Top-n-gram. The training vectors are evaluated by SVM to train classifiers which are then used to classify the test protein sequences. We demonstrate that the prediction performance of remote homology detection and fold recognition can be improved by combining Top-n-grams and latent semantic analysis (LSA), which is an efficient feature extraction technique from natural language processing. When tested on superfamily and fold benchmarks, the method combining Top-n-grams and LSA gives significantly better results compared to related methods. The method based on Top-n-grams significantly outperforms the methods based on many other building blocks including N-grams, patterns, motifs and binary profiles. Therefore, Top-n-gram is a good building block of the protein sequences and can be widely used in many tasks of the computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the prediction of protein binding sites.
Clustalnet: the joining of Clustal and CORBA.
Campagne, F
2000-07-01
Performing sequence alignment operations from a different program than the original sequence alignment code, and/or through a network connection, is often required. Interactive alignment editors and large-scale biological data analysis are common examples where such a flexibility is important. Interoperability between the alignment engine and the client should be obtained regardless of the architectures and programming languages of the server and client. Clustalnet, a Clustal alignment CORBA server is described, which was developed on the basis of Clustalw. This server brings the robustness of the algorithms and implementations of Clustal to a new level of reuse. A Clustalnet server object can be accessed from a program, transparently through the network. We present interfaces to perform the alignment operations and to control these operations via immutable contexts. The interfaces that select the contexts do not depend on the nature of the operation to be performed, making the design modular. The IDL interfaces presented here are not specific to Clustal and can be implemented on top of different sequence alignment algorithm implementations.
Modular and configurable optimal sequence alignment software: Cola.
Zamani, Neda; Sundström, Görel; Höppner, Marc P; Grabherr, Manfred G
2014-01-01
The fundamental challenge in optimally aligning homologous sequences is to define a scoring scheme that best reflects the underlying biological processes. Maximising the overall number of matches in the alignment does not always reflect the patterns by which nucleotides mutate. Efficiently implemented algorithms that can be parameterised to accommodate more complex non-linear scoring schemes are thus desirable. We present Cola, alignment software that implements different optimal alignment algorithms, also allowing for scoring contiguous matches of nucleotides in a nonlinear manner. The latter places more emphasis on short, highly conserved motifs, and less on the surrounding nucleotides, which can be more diverged. To illustrate the differences, we report results from aligning 14,100 sequences from 3' untranslated regions of human genes to 25 of their mammalian counterparts, where we found that a nonlinear scoring scheme is more consistent than a linear scheme in detecting short, conserved motifs. Cola is freely available under LPGL from https://github.com/nedaz/cola.
Singh, Aditya; Bhatia, Prateek
2016-12-01
Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28.
Fast and accurate phylogeny reconstruction using filtered spaced-word matches
Sohrabi-Jahromi, Salma; Morgenstern, Burkhard
2017-01-01
Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754
Fast and accurate phylogeny reconstruction using filtered spaced-word matches.
Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard
2017-04-01
Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
SVM-dependent pairwise HMM: an application to protein pairwise alignments.
Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F
2017-12-15
Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer
2017-09-26
Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .
The Papillomavirus Episteme: a major update to the papillomavirus sequence database.
Van Doorslaer, Koenraad; Li, Zhiwen; Xirasagar, Sandhya; Maes, Piet; Kaminsky, David; Liou, David; Sun, Qiang; Kaur, Ramandeep; Huyen, Yentram; McBride, Alison A
2017-01-04
The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. This update describes the addition of major new features. The papillomavirus genomes within PaVE have been further annotated, and now includes the major spliced mRNA transcripts. Viral genes and transcripts can be visualized on both linear and circular genome browsers. Evolutionary relationships among PaVE reference protein sequences can be analysed using multiple sequence alignments and phylogenetic trees. To assist in viral discovery, PaVE offers a typing tool; a simplified algorithm to determine whether a newly sequenced virus is novel. PaVE also now contains an image library containing gross clinical and histopathological images of papillomavirus infected lesions. Database URL: https://pave.niaid.nih.gov/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Ye, Kai; Kosters, Walter A; Ijzerman, Adriaan P
2007-03-15
Pattern discovery in protein sequences is often based on multiple sequence alignments (MSA). The procedure can be computationally intensive and often requires manual adjustment, which may be particularly difficult for a set of deviating sequences. In contrast, two algorithms, PRATT2 (http//www.ebi.ac.uk/pratt/) and TEIRESIAS (http://cbcsrv.watson.ibm.com/) are used to directly identify frequent patterns from unaligned biological sequences without an attempt to align them. Here we propose a new algorithm with more efficiency and more functionality than both PRATT2 and TEIRESIAS, and discuss some of its applications to G protein-coupled receptors, a protein family of important drug targets. In this study, we designed and implemented six algorithms to mine three different pattern types from either one or two datasets using a pattern growth approach. We compared our approach to PRATT2 and TEIRESIAS in efficiency, completeness and the diversity of pattern types. Compared to PRATT2, our approach is faster, capable of processing large datasets and able to identify the so-called type III patterns. Our approach is comparable to TEIRESIAS in the discovery of the so-called type I patterns but has additional functionality such as mining the so-called type II and type III patterns and finding discriminating patterns between two datasets. The source code for pattern growth algorithms and their pseudo-code are available at http://www.liacs.nl/home/kosters/pg/.
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
Hv 1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence?
Kigundu, Gabriel; Cooper, Jennifer L; Smith, Susan M E
2018-04-26
Bioluminescence in dinoflagellates is controlled by H V 1 proton channels. Database searches of dinoflagellate transcriptomes and genomes yielded hits with sequence features diagnostic of all confirmed H V 1, and show that H V 1 is widely distributed in the dinoflagellate phylogeny including the basal species Oxyrrhis marina. Multiple sequence alignments followed by phylogenetic analysis revealed three major subfamilies of H V 1 that do not correlate with presence of theca, autotrophy, geographic location, or bioluminescence. These data suggest that most dinoflagellates express a H V 1 which has a function separate from bioluminescence. Sequence evidence also suggests that dinoflagellates can contain more than one H V 1 gene. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
STELLAR: fast and exact local alignments
2011-01-01
Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882
NASA Astrophysics Data System (ADS)
Cornelissen, Frans; De Backer, Steve; Lemeire, Jan; Torfs, Berf; Nuydens, Rony; Meert, Theo; Schelkens, Peter; Scheunders, Paul
2008-08-01
Peripheral neuropathy can be caused by diabetes or AIDS or be a side-effect of chemotherapy. Fibered Fluorescence Microscopy (FFM) is a recently developed imaging modality using a fiber optic probe connected to a laser scanning unit. It allows for in-vivo scanning of small animal subjects by moving the probe along the tissue surface. In preclinical research, FFM enables non-invasive, longitudinal in vivo assessment of intra epidermal nerve fibre density in various models for peripheral neuropathies. By moving the probe, FFM allows visualization of larger surfaces, since, during the movement, images are continuously captured, allowing to acquire an area larger then the field of view of the probe. For analysis purposes, we need to obtain a single static image from the multiple overlapping frames. We introduce a mosaicing procedure for this kind of video sequence. Construction of mosaic images with sub-pixel alignment is indispensable and must be integrated into a global consistent image aligning. An additional motivation for the mosaicing is the use of overlapping redundant information to improve the signal to noise ratio of the acquisition, because the individual frames tend to have both high noise levels and intensity inhomogeneities. For longitudinal analysis, mosaics captured at different times must be aligned as well. For alignment, global correlation-based matching is compared with interest point matching. Use of algorithms working on multiple CPU's (parallel processor/cluster/grid) is imperative for use in a screening model.
Accelerated Profile HMM Searches
Eddy, Sean R.
2011-01-01
Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches. PMID:22039361
Swain, Timothy D
2018-01-01
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.
Arnica (Asteraceae) phylogeny revisited using RPB2: complex patterns and multiple d-paralogues.
Ekenäs, Catarina; Heidari, Nahid; Andreasen, Katarina
2012-08-01
The region coding for the second largest subunit of RNA polymerase II (RPB2) was explored for resolving interspecific relationships in Arnica and lower level taxa in general. The region between exons 17 and 23 was cloned and sequenced for 33 accessions of Arnica and four outgroup taxa. Three paralogues of the RPB2-d copy (RPB2-dA, B and C) were detected in Arnica and outgroup taxa, indicating that the duplications must have occurred before the divergence of Arnica. Parsimony and Bayesian analyses of separate alignments of the three copies reveal complex patterns in Arnica, likely reflecting a history of lineage sorting in combination with apomixis, polyploidization, and possibly hybridization. Cloned sequences of some taxa do not form monophyletic clades within paralogues, but form multiple strongly supported clades with sequences of other taxa. Some well supported groups are present in more than one paralogue and many groups are in line with earlier hypotheses regarding interspecific relationships within the genus. Low levels of homoplasy in combination with relatively high sequence variation indicates that the introns of the RPB2 region could be suitable for phylogenetic studies in low level taxonomy. Copyright © 2012. Published by Elsevier Inc.
CoCoNUT: an efficient system for the comparison and analysis of genomes
2008-01-01
Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477
SNPServer: a real-time SNP discovery tool.
Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David
2005-07-01
SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.
Automated design of degenerate codon libraries.
Mena, Marco A; Daugherty, Patrick S
2005-12-01
Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.
Gardner, Shea N; Wagner, Mark C
2005-01-01
Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493
Akkuratov, Evgeny E; Walters, Lorraine; Saha-Mandal, Arnab; Khandekar, Sushant; Crawford, Erin; Zirbel, Craig L; Leisner, Scott; Prakash, Ashwin; Fedorova, Larisa; Fedorov, Alexei
2014-09-10
Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Carlson, Eric D.; Foley, Lee M.; Guzman, Edward; Korblova, Eva D.; Visvanathan, Rayshan; Ryu, SeongHo; Gim, Min-Jun; Tuchband, Michael R.; Yoon, Dong Ki; Clark, Noel A.; Walba, David M.
2017-08-01
The control of the molecular orientation of liquid crystals (LCs) is important in both understanding phase properties and the continuing development of new LC technologies including displays, organic transistors, and electro-optic devices. Many techniques have been developed for successfully inducing alignment of calamitic LCs, though these techniques typically do not translate to the alignment of bent-core liquid crystals (BCLCs). Some techniques have been utilized to align various phases of BCLCs, but these techniques are often unsuccessful for general alignment of multiple materials and/or multiple phases. Here, we demonstrate that glass cells treated with polydimethylsiloxane (PDMS) thin films induce high quality homeotropic alignment of multiple mesophases of four BCLCs. On cooling to the lowest temperature phase the homeotropic alignment is lost, and spherulitic growth is seen in crystal and crystal-like phases including the dark conglomerate (DC) and helical nanofilament (HNF) phases. Evidence of homeotropic alignment is observed using polarized optical microscopy. We speculate that the methyl groups on the surface of the PDMS films strongly interact with the aliphatic tails of each mesogens, resulting in homeotropic alignment.
A new version of the RDP (Ribosomal Database Project)
NASA Technical Reports Server (NTRS)
Maidak, B. L.; Cole, J. R.; Parker, C. T. Jr; Garrity, G. M.; Larsen, N.; Li, B.; Lilburn, T. G.; McCaughey, M. J.; Olsen, G. J.; Overbeek, R.;
1999-01-01
The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.
NASA Technical Reports Server (NTRS)
Springer, E.; Sachs, M. S.; Woese, C. R.; Boone, D. R.
1995-01-01
Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.
Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas
2006-03-09
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
JVM: Java Visual Mapping tool for next generation sequencing read.
Yang, Ye; Liu, Juan
2015-01-01
We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.
Comparative Analysis and Distribution of Omega-3 lcPUFA Biosynthesis Genes in Marine Molluscs
Surm, Joachim M.; Prentis, Peter J.; Pavasovic, Ana
2015-01-01
Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the required enzymes for the synthesis of lcPUFAs. PMID:26308548
Parkin, Derek B; Archer, Linda L; Childress, April L; Wellehan, James F X
2009-07-01
Bearded dragons (Pogona vitticeps) are popular pets in the United States. Agamid Adenovirus 1 (AgAdV1) is an important infectious agent of bearded dragons. The only AgAdV1 sequences available to date are from a highly conserved region of the DNA polymerase gene. Degenerate primers were designed to amplify a variable region of the AgAdV1 hexon gene for sequencing. Genetic differences were identified within the hexon gene of 17 bearded dragons from 4 collections. Much less diversity was present in the polymerase gene. Bayesian analysis of the hexon nucleotide alignment identified two larger groups and two isolates that did not tightly cluster with these two groups. Multiple genotypes were identified within collections, and individual genotypes were seen in different collections. Three bearded dragons appeared to be infected by multiple strains. These findings show that this hexon region is useful for AgAdV1 genotyping, which can be used epidemiologically as well as in future investigations of AgAdV1 evolution and clinical implications of strain differences.
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology
Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron
2016-01-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094
CAFE: aCcelerated Alignment-FrEe sequence analysis
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A.; Waterman, Michael S.
2017-01-01
Abstract Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^*$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^S$\\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. PMID:28472388
Biopython: freely available Python tools for computational molecular biology and bioinformatics
Cock, Peter J. A.; Antao, Tiago; Chang, Jeffrey T.; Chapman, Brad A.; Cox, Cymon J.; Dalke, Andrew; Friedberg, Iddo; Hamelryck, Thomas; Kauff, Frank; Wilczynski, Bartek; de Hoon, Michiel J. L.
2009-01-01
Summary: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Availability: Biopython is freely available, with documentation and source code at www.biopython.org under the Biopython license. Contact: All queries should be directed to the Biopython mailing lists, see www.biopython.org/wiki/_Mailing_listspeter.cock@scri.ac.uk. PMID:19304878
Fröhlich, K U
1994-04-01
A new method for the presentation of alignments of long sequences is described. The degree of identity for the aligned sequences is averaged for sections of a fixed number of residues. The resulting values are converted to shades of gray, with white corresponding to lack of identity and black corresponding to perfect identity. A sequence alignment is represented as a bar filled with varying shades of gray. The display is compact and allows for a fast and intuitive recognition of the distribution of regions with a high similarity. It is well suited for the presentation of alignments of long sequences, e.g. of protein superfamilies, in plenary lectures. The method is implemented as a HyperCard stack for Apple Macintosh computers. Several options for the modification of the output are available (e.g. background reduction, size of the summation window, consideration of amino acid similarity, inclusion of graphic markers to indicate specific domains). The output is a PostScript file which can be printed, imported as EPS or processed further with Adobe Illustrator.
Analysis Tool Web Services from the EMBL-EBI.
McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo
2013-07-01
Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.
Analysis Tool Web Services from the EMBL-EBI
McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo
2013-01-01
Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338
Hackenberg, Michael; Rodríguez-Ezpeleta, Naiara; Aransay, Ana M.
2011-01-01
We present a new version of miRanalyzer, a web server and stand-alone tool for the detection of known and prediction of new microRNAs in high-throughput sequencing experiments. The new version has been notably improved regarding speed, scope and available features. Alignments are now based on the ultrafast short-read aligner Bowtie (granting also colour space support, allowing mismatches and improving speed) and 31 genomes, including 6 plant genomes, can now be analysed (previous version contained only 7). Differences between plant and animal microRNAs have been taken into account for the prediction models and differential expression of both, known and predicted microRNAs, between two conditions can be calculated. Additionally, consensus sequences of predicted mature and precursor microRNAs can be obtained from multiple samples, which increases the reliability of the predicted microRNAs. Finally, a stand-alone version of the miRanalyzer that is based on a local and easily customized database is also available; this allows the user to have more control on certain parameters as well as to use specific data such as unpublished assemblies or other libraries that are not available in the web server. miRanalyzer is available at http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php. PMID:21515631
Approximate matching of regular expressions.
Myers, E W; Miller, W
1989-01-01
Given a sequence A and regular expression R, the approximate regular expression matching problem is to find a sequence matching R whose optimal alignment with A is the highest scoring of all such sequences. This paper develops an algorithm to solve the problem in time O(MN), where M and N are the lengths of A and R. Thus, the time requirement is asymptotically no worse than for the simpler problem of aligning two fixed sequences. Our method is superior to an earlier algorithm by Wagner and Seiferas in several ways. First, it treats real-valued costs, in addition to integer costs, with no loss of asymptotic efficiency. Second, it requires only O(N) space to deliver just the score of the best alignment. Finally, its structure permits implementation techniques that make it extremely fast in practice. We extend the method to accommodate gap penalties, as required for typical applications in molecular biology, and further refine it to search for sub-strings of A that strongly align with a sequence in R, as required for typical data base searches. We also show how to deliver an optimal alignment between A and R in only O(N + log M) space using O(MN log M) time. Finally, an O(MN(M + N) + N2log N) time algorithm is presented for alignment scoring schemes where the cost of a gap is an arbitrary increasing function of its length.
Sequence comparison alignment-free approach based on suffix tree and L-words frequency.
Soares, Inês; Goios, Ana; Amorim, António
2012-01-01
The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.
Minimap2: pairwise alignment for nucleotide sequences.
Li, Heng
2018-05-10
Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.
Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Doss, C George Priya; Agoramoorthy, Govindasamy
2015-04-01
Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1-2%) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein-protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein-protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein-protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272
Villard, Pierre; Malausa, Thibaut
2013-07-01
SP-Designer is an open-source program providing a user-friendly tool for the design of specific PCR primer pairs from a DNA sequence alignment containing sequences from various taxa. SP-Designer selects PCR primer pairs for the amplification of DNA from a target species on the basis of several criteria: (i) primer specificity, as assessed by interspecific sequence polymorphism in the annealing regions, (ii) the biochemical characteristics of the primers and (iii) the intended PCR conditions. SP-Designer generates tables, detailing the primer pair and PCR characteristics, and a FASTA file locating the primer sequences in the original sequence alignment. SP-Designer is Windows-compatible and freely available from http://www2.sophia.inra.fr/urih/sophia_mart/sp_designer/info_sp_designer.php. © 2013 John Wiley & Sons Ltd.
Aligner optimization increases accuracy and decreases compute times in multi-species sequence data.
Robinson, Kelly M; Hawkins, Aziah S; Santana-Cruz, Ivette; Adkins, Ricky S; Shetty, Amol C; Nagaraj, Sushma; Sadzewicz, Lisa; Tallon, Luke J; Rasko, David A; Fraser, Claire M; Mahurkar, Anup; Silva, Joana C; Dunning Hotopp, Julie C
2017-09-01
As sequencing technologies have evolved, the tools to analyze these sequences have made similar advances. However, for multi-species samples, we observed important and adverse differences in alignment specificity and computation time for bwa- mem (Burrows-Wheeler aligner-maximum exact matches) relative to bwa-aln. Therefore, we sought to optimize bwa-mem for alignment of data from multi-species samples in order to reduce alignment time and increase the specificity of alignments. In the multi-species cases examined, there was one majority member (i.e. Plasmodium falciparum or Brugia malayi ) and one minority member (i.e. human or the Wolbachia endosymbiont w Bm) of the sequence data. Increasing bwa-mem seed length from the default value reduced the number of read pairs from the majority sequence member that incorrectly aligned to the reference genome of the minority sequence member. Combining both source genomes into a single reference genome increased the specificity of mapping, while also reducing the central processing unit (CPU) time. In Plasmodium , at a seed length of 18 nt, 24.1 % of reads mapped to the human genome using 1.7±0.1 CPU hours, while 83.6 % of reads mapped to the Plasmodium genome using 0.2±0.0 CPU hours (total: 107.7 % reads mapping; in 1.9±0.1 CPU hours). In contrast, 97.1 % of the reads mapped to a combined Plasmodium- human reference in only 0.7±0.0 CPU hours. Overall, the results suggest that combining all references into a single reference database and using a 23 nt seed length reduces the computational time, while maximizing specificity. Similar results were found for simulated sequence reads from a mock metagenomic data set. We found similar improvements to computation time in a publicly available human-only data set.
NASA Astrophysics Data System (ADS)
Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.
2017-07-01
DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.
Alignment-Annotator web server: rendering and annotating sequence alignments.
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-07-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alignment-Annotator web server: rendering and annotating sequence alignments
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-01-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Jones, David T; Kandathil, Shaun M
2018-04-26
In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. DeepCov is freely available at https://github.com/psipred/DeepCov. d.t.jones@ucl.ac.uk.
Muangkram, Yuttamol; Amano, Akira; Wajjwalku, Worawidh; Pinyopummintr, Tanu; Thongtip, Nikorn; Kaolim, Nongnid; Sukmak, Manakorn; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Tipkantha, Wanlaya; Maikaew, Umaporn; Thomas, Warisara; Polsrila, Kanda; Dongsaard, Kwanreaun; Sanannu, Saowaphang; Wattananorrasate, Anuwat
2017-07-01
The Asian tapir (Tapirus indicus) has been classified as Endangered on the IUCN Red List of Threatened Species (2008). Genetic diversity data provide important information for the management of captive breeding and conservation of this species. We analyzed mitochondrial control region (CR) sequences from 37 captive Asian tapirs in Thailand. Multiple alignments of the full-length CR sequences sized 1268 bp comprised three domains as described in other mammal species. Analysis of 16 parsimony-informative variable sites revealed 11 haplotypes. Furthermore, the phylogenetic analysis using median-joining network clearly showed three clades correlated with our earlier cytochrome b gene study in this endangered species. The repetitive motif is located between first and second conserved sequence blocks, similar to the Brazilian tapir. The highest polymorphic site was located in the extended termination associated sequences domain. The results could be applied for future genetic management based in captivity and wild that shows stable populations.
Genetic analysis of duck circovirus in Pekin ducks from South Korea.
Cha, S-Y; Kang, M; Cho, J-G; Jang, H-K
2013-11-01
The genetic organization of the 24 duck circovirus (DuCV) strains detected in commercial Pekin ducks from South Korea between 2011 and 2012 is described in this study. Multiple sequence alignment and phylogenetic analyses were performed on the 24 viral genome sequences as well as on 45 genome sequences available from the GenBank database. Phylogenetic analyses based on the genomic and open reading frame 2/cap sequences demonstrated that all DuCV strains belonged to genotype 1 and were designated in a subcluster under genotype 1. Analysis of the capsid protein amino acid sequences of the 24 Korean DuCV strains showed 10 substitutions compared with that of other genotype 1 strains. Our analysis showed that genotype 1 is predominant and circulating in South Korea. These present results serve as incentive to add more data to the DuCV database and provide insight to conduct further intensive study on the geographic relationships among these virus strains.
Illuminator, a desktop program for mutation detection using short-read clonal sequencing.
Carr, Ian M; Morgan, Joanne E; Diggle, Christine P; Sheridan, Eamonn; Markham, Alexander F; Logan, Clare V; Inglehearn, Chris F; Taylor, Graham R; Bonthron, David T
2011-10-01
Current methods for sequencing clonal populations of DNA molecules yield several gigabases of data per day, typically comprising reads of < 100 nt. Such datasets permit widespread genome resequencing and transcriptome analysis or other quantitative tasks. However, this huge capacity can also be harnessed for the resequencing of smaller (gene-sized) target regions, through the simultaneous parallel analysis of multiple subjects, using sample "tagging" or "indexing". These methods promise to have a huge impact on diagnostic mutation analysis and candidate gene testing. Here we describe a software package developed for such studies, offering the ability to resolve pooled samples carrying barcode tags and to align reads to a reference sequence using a mutation-tolerant process. The program, Illuminator, can identify rare sequence variants, including insertions and deletions, and permits interactive data analysis on standard desktop computers. It facilitates the effective analysis of targeted clonal sequencer data without dedicated computational infrastructure or specialized training. Copyright © 2011 Elsevier Inc. All rights reserved.
Chen, Wenbin; Hendrix, William; Samatova, Nagiza F
2017-12-01
The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.
Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T
2016-02-24
Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for larger effect sizes. The Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis pipelines to enhance the resolution of fungal community differences and improve understanding of these communities in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees. ghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD license at https://github.com/JTFouquier/ghost-tree .
Accurate Simulation and Detection of Coevolution Signals in Multiple Sequence Alignments
Ackerman, Sharon H.; Tillier, Elisabeth R.; Gatti, Domenico L.
2012-01-01
Background While the conserved positions of a multiple sequence alignment (MSA) are clearly of interest, non-conserved positions can also be important because, for example, destabilizing effects at one position can be compensated by stabilizing effects at another position. Different methods have been developed to recognize the evolutionary relationship between amino acid sites, and to disentangle functional/structural dependencies from historical/phylogenetic ones. Methodology/Principal Findings We have used two complementary approaches to test the efficacy of these methods. In the first approach, we have used a new program, MSAvolve, for the in silico evolution of MSAs, which records a detailed history of all covarying positions, and builds a global coevolution matrix as the accumulated sum of individual matrices for the positions forced to co-vary, the recombinant coevolution, and the stochastic coevolution. We have simulated over 1600 MSAs for 8 protein families, which reflect sequences of different sizes and proteins with widely different functions. The calculated coevolution matrices were compared with the coevolution matrices obtained for the same evolved MSAs with different coevolution detection methods. In a second approach we have evaluated the capacity of the different methods to predict close contacts in the representative X-ray structures of an additional 150 protein families using only experimental MSAs. Conclusions/Significance Methods based on the identification of global correlations between pairs were found to be generally superior to methods based only on local correlations in their capacity to identify coevolving residues using either simulated or experimental MSAs. However, the significant variability in the performance of different methods with different proteins suggests that the simulation of MSAs that replicate the statistical properties of the experimental MSA can be a valuable tool to identify the coevolution detection method that is most effective in each case. PMID:23091608
Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.
Baeissa, Hanadi; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G
2017-03-28
The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domainsWe find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation.We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).
The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...
MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.
2016-01-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193
MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T
2016-11-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.
The web server of IBM's Bioinformatics and Pattern Discovery group.
Huynh, Tien; Rigoutsos, Isidore; Parida, Laxmi; Platt, Daniel; Shibuya, Tetsuo
2003-07-01
We herein present and discuss the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server is operational around the clock and provides access to a variety of methods that have been published by the group's members and collaborators. The available tools correspond to applications ranging from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences and the interactive annotation of amino acid sequences. Additionally, annotations for more than 70 archaeal, bacterial, eukaryotic and viral genomes are available on-line and can be searched interactively. The tools and code bundles can be accessed beginning at http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/.
The web server of IBM's Bioinformatics and Pattern Discovery group
Huynh, Tien; Rigoutsos, Isidore; Parida, Laxmi; Platt, Daniel; Shibuya, Tetsuo
2003-01-01
We herein present and discuss the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server is operational around the clock and provides access to a variety of methods that have been published by the group's members and collaborators. The available tools correspond to applications ranging from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences and the interactive annotation of amino acid sequences. Additionally, annotations for more than 70 archaeal, bacterial, eukaryotic and viral genomes are available on-line and can be searched interactively. The tools and code bundles can be accessed beginning at http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/. PMID:12824385
galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.
Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M
2004-06-12
The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se
DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability
Little, Damon P.
2011-01-01
For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897
EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity
Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D
2006-01-01
Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150