The Perception of "Sine-Wave Speech" by Adults with Developmental Dyslexia.
ERIC Educational Resources Information Center
Rosner, Burton S.; Talcott, Joel B.; Witton, Caroline; Hogg, James D.; Richardson, Alexandra J.; Hansen, Peter C.; Stein, John F.
2003-01-01
"Sine-wave speech" sentences contain only four frequency-modulated sine waves, lacking many acoustic cues present in natural speech. Adults with (n=19) and without (n=14) dyslexia were asked to reproduce orally sine-wave utterances in successive trials. Results suggest comprehension of sine-wave sentences is impaired in some adults with dyslexia.…
Linear sine wave profiling to machine instability targets
Schmidt, Derek William; Martinez, John Israel
2016-08-01
Specialized machining processes and programming have been developed to deliver thin tin and copper Richtmyer-Meshkov instability targets that have different amplitude perturbations across the face of one 4-in.-diameter target. Typical targets have anywhere from two to five different regions of sine waves that have different amplitudes varying from 4 to 200 μm across the face of the target. The puck is composed of multiple rings that are zero press fit together and diamond turned to create a flat platform with a tolerance of 2 μm for the shock experiment. A custom software program was written in Labview to write themore » point-to-point program for the diamond-turning profiler through the X-Y-Z movements to cut the pure planar straight sine wave geometry. As a result, the software is optimized to push the profile of the whole part into the face while eliminating any unneeded passes that do not cut any material.« less
Kinematic analysis of tandem gait on a sine wave walkway
Kawakami, Shingo; Fujisawa, Hiroyuki; Tomizawa, Yoshiyuki; Murakami, Kenichi
2016-01-01
[Purpose] The purpose of this study was to ascertain the kinematic characteristics on a horizontal plane, including knee joint rotation, when walking with a tandem gait on a sine wave walkway. [Subjects and Methods] Eighteen healthy adults were enrolled as subjects in this study. They walked with a tandem gait on a sine wave walkway. A three-dimensional motion analysis system was used to record data and calculate the trunk, hip joint, and knee joint rotation angles. [Results] The rotation angle ranges for the trunk, hip joint, and knee joint were 23.3°, 53.3°, and 47.3°, respectively. The trunk generally rotated towards the direction of movement, and when turning left using the left leg as the pivot, the hip joint was internally rotated and the knee joint was externally rotated. In contrast, when making a directional change to the right using the left leg as the pivot, the hip joint was externally rotated and the knee joint was internally rotated. [Conclusion] Through tandem gait analysis on a sine wave walkway, knee joint rotation was found to be important in changes of direction. PMID:27799663
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.
2014-01-01
NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.
Recognition of sine wave modeled consonants by normal hearing and hearing-impaired individuals
NASA Astrophysics Data System (ADS)
Balachandran, Rupa
Sine wave modeling is a parametric tool for representing the speech signal with a limited number of sine waves. It involves replacing the peaks of the speech spectrum with sine waves and discarding the rest of the lower amplitude components during synthesis. It has the potential to be used as a speech enhancement technique for hearing-impaired adults. The present study answers the following basic questions: (1) Are sine wave synthesized speech tokens more intelligible than natural speech tokens? (2) What is the effect of varying the number of sine waves on consonant recognition in quiet? (3) What is the effect of varying the number of sine waves on consonant recognition in noise? (4) How does sine wave modeling affect the transmission of speech feature in quiet and in noise? (5) Are there differences in recognition performance between normal hearing and hearing-impaired listeners? VCV syllables representing 20 consonants (/p/, /t/, /k/, /b/, /d/, /g/, /f/, /theta/, /s/, /∫/, /v/, /z/, /t∫/, /dy/, /j/, /w/, /r/, /l/, /m/, /n/) in three vowel contexts (/a/, /i/, /u/) were modeled with 4, 8, 12, and 16 sine waves. A consonant recognition task was performed in quiet, and in background noise (+10 dB and 0 dB SNR). Twenty hearing-impaired listeners and six normal hearing listeners were tested under headphones at their most comfortable listening level. The main findings were: (1) Recognition of unprocessed speech was better that of sine wave modeled speech. (2) Asymptotic performance was reached with 8 sine waves in quiet for both normal hearing and hearing-impaired listeners. (3) Consonant recognition performance in noise improved with increasing number of sine waves. (4) As the number of sine waves was decreased, place information was lost first, followed by manner, and finally voicing. (5) Hearing-impaired listeners made more errors then normal hearing listeners, but there were no differences in the error patterns made by both groups.
Rapid fabrication and characterization of sine wave targets
Day, R.D.; Armijo, E.; Gobby, P.; Hatch, D.; Rivera, G.; Salzer, L.; Townsend, J.
1997-09-01
The effect of surface perturbations on Inertial Confinement Fusion target performance is currently being researched at Los Alamos National Laboratory (LANL). These perturbations can cause hydrodynamic instabilities which in turn reduce the targets` yield. To systematically measure the growth of these instabilities requires targets to be produced which have perturbations of a known amplitude and spatial frequency. The authors have recently assembled hardware onto one of their diamond turning lathes which enables them to machine and measure these sine waves in about 15 minutes. This is a significant reduction in time from the two and one half hours required by the previous method. This paper discusses the hardware, how it works, and how well the system is working for them to produce these targets.
AUDITORY-PHONETIC PROJECTION AND LEXICAL STRUCTURE IN THE RECOGNITION OF SINE-WAVE WORDS
Remez, Robert E.; Dubowski, Kathryn R.; Broder, Robin S.; Davids, Morgana L.; Grossman, Yael S.; Moskalenko, Marina; Pardo, Jennifer S.; Hasbun, Sara Maria
2010-01-01
Speech remains intelligible despite the elimination of canonical acoustic correlates of phonemes from the spectrum. A portion of this perceptual flexibility can be attributed to modulation sensitivity in the auditory-to-phonetic projection, though signal-independent properties of lexical neighborhoods also affect intelligibility in utterances composed of words. Three tests were conducted to estimate the effects of exposure to natural and sine-wave samples of speech in this kind of perceptual versatility. First, sine-wave versions of the easy/hard word sets were created, modeled on the speech samples of a single talker. The performance difference in recognition of easy and hard words was used to index the perceptual reliance on signal-independent properties of lexical contrasts. Second, several kinds of exposure produced familiarity with an aspect of sine-wave speech: 1) sine-wave sentences modeled on the same talker; 2) sine-wave sentences modeled on a different talker, to create familiarity with a sine-wave carrier; and 3) natural sentences spoken by the same talker, to create familiarity with the idiolect expressed in the sine-wave words. Recognition performance with both easy and hard sine-wave words improved after exposure only to sine-wave sentences modeled on the same talker. Third, a control test showed that signal-independent uncertainty is a plausible cause of differences in recognition of easy and hard sine-wave words. The conditions of beneficial exposure reveal the specificity of attention underlying versatility in speech perception. PMID:20865138
Brain-wave representation of words by superposition of a few sine waves
Suppes, Patrick; Han, Bing
2000-01-01
Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and selected those frequencies with high energy, in no case more than nine in number. The superpositions of these selected sine waves were taken as prototypes. The averaged unfiltered data were the test samples. The prototypes were used to classify the test samples according to a least-squares criterion of fit. The results were seven of seven correct classifications for the first experiment using only three frequencies, six of eight for the second experiment using nine frequencies, and eight of eight for the third experiment using five frequencies. PMID:10890906
Analog circuit for the measurement of phase difference between two noisy sine-wave signals
Shakkottai, P.; Kwack, E.Y.; Back, L.H. )
1989-09-01
A simple circuit for the measurement of phase difference between two noisy sine waves is described. The circuit locks over a wide range of frequencies and produces an output proportional to the phase difference of signals that vary rather rapidly.
Plane wave holonomies in quantum gravity. II. A sine wave solution
NASA Astrophysics Data System (ADS)
Neville, Donald E.
2015-08-01
This paper constructs an approximate sinusoidal wave packet solution to the equations of canonical gravity. The theory uses holonomy-flux variables with support on a lattice (LHF =lattice-holonomy flux ). There is an SU(2) holonomy on each edge of the LHF simplex, and the goal is to study the behavior of these holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine approximation: holonomies are expanded in powers of sines and terms beyond sin2 are dropped; also, fields vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave, estimate the lifetime of the coherent state packet, discuss circular polarization and coarse-graining, and determine the behavior of the spinors used in the U(N) SHO realization of LQG.
Sine-wave and noise-vocoded sine-wave speech in a tone language: Acoustic details matter.
Rosen, Stuart; Hui, Sze Ngar Catherine
2015-12-01
Sine-wave speech (SWS) is a highly simplified version of speech consisting only of frequency- and amplitude-modulated sinusoids representing the formants. That listeners can successfully understand SWS has led to claims that speech perception must be based on abstract properties of the stimuli far removed from their specific acoustic form. Here it is shown, in bilingual Cantonese/English listeners, that performance with Cantonese SWS is improved by noise vocoding, with no effect on English SWS utterances. This manipulation preserves the abstract informational structure in the signals but changes its surface form. The differential effects of noise vocoding likely arise from the fact that Cantonese is a tonal language and hence more reliant on fundamental frequency (F0) contours for its intelligibility. SWS does not preserve tonal information from the original speech but does have false tonal information signalled by the lowest frequency sinusoid. Noise vocoding SWS appears to minimise the tonal percept, which thus interferes less in the perception of Cantonese. It has no effect in English, which is minimally reliant on F0 variations for intelligibility. Therefore it is not only the informational structure of a sound that is important but also how its acoustic detail interacts with the phonological structure of a given language.
Sine-wave and noise-vocoded sine-wave speech in a tone language: Acoustic details matter.
Rosen, Stuart; Hui, Sze Ngar Catherine
2015-12-01
Sine-wave speech (SWS) is a highly simplified version of speech consisting only of frequency- and amplitude-modulated sinusoids representing the formants. That listeners can successfully understand SWS has led to claims that speech perception must be based on abstract properties of the stimuli far removed from their specific acoustic form. Here it is shown, in bilingual Cantonese/English listeners, that performance with Cantonese SWS is improved by noise vocoding, with no effect on English SWS utterances. This manipulation preserves the abstract informational structure in the signals but changes its surface form. The differential effects of noise vocoding likely arise from the fact that Cantonese is a tonal language and hence more reliant on fundamental frequency (F0) contours for its intelligibility. SWS does not preserve tonal information from the original speech but does have false tonal information signalled by the lowest frequency sinusoid. Noise vocoding SWS appears to minimise the tonal percept, which thus interferes less in the perception of Cantonese. It has no effect in English, which is minimally reliant on F0 variations for intelligibility. Therefore it is not only the informational structure of a sound that is important but also how its acoustic detail interacts with the phonological structure of a given language. PMID:26723325
Toddlers' comprehension of degraded signals: Noise-vocoded versus sine-wave analogs
Newman, Rochelle S.; Chatterjee, Monita; Morini, Giovanna; Remez, Robert E.
2015-01-01
Recent findings suggest that development changes the ability to comprehend degraded speech. Preschool children showed greater difficulties perceiving noise-vocoded speech (a signal that integrates amplitude over broad frequency bands) than sine-wave speech (which maintains the spectral peaks without the spectrum envelope). In contrast, 27-month-old children in the present study could recognize speech with either type of degradation and performed slightly better with eight-channel vocoded speech than with sine-wave speech. This suggests that children's identification performance depends critically on the degree of degradation and that their success in recognizing unfamiliar speech encodings is encouraging overall. PMID:26428832
Toddlers' comprehension of degraded signals: Noise-vocoded versus sine-wave analogs.
Newman, Rochelle S; Chatterjee, Monita; Morini, Giovanna; Remez, Robert E
2015-09-01
Recent findings suggest that development changes the ability to comprehend degraded speech. Preschool children showed greater difficulties perceiving noise-vocoded speech (a signal that integrates amplitude over broad frequency bands) than sine-wave speech (which maintains the spectral peaks without the spectrum envelope). In contrast, 27-month-old children in the present study could recognize speech with either type of degradation and performed slightly better with eight-channel vocoded speech than with sine-wave speech. This suggests that children's identification performance depends critically on the degree of degradation and that their success in recognizing unfamiliar speech encodings is encouraging overall. PMID:26428832
Sine wave artifact as a means of calibrating structured light systems
NASA Astrophysics Data System (ADS)
Harding, Kevin G.
1999-11-01
Structured light systems made to provide dense data over full image fields present a unique challenge to the task of calibration. Localized artifacts made for CMM or hard gages are often a poor fit for testing actual 3D performance. This paper considers the use of a sine wave artifact to provide a mapping of a calibration matched to full-field capabilities. The sine wave offers the advantages of a continuous function across the full field, with a well defined and easy to analyze shape. Changes in scale in all dimensions, as well as localized variations can be mapped in clear detail using this method.
Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions.
Cavalcanti-Galdino, M K; Silva, J A da; Mendes, L C; Santos, N A da; Simas, M L B
2014-04-01
The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions.
Acute effect of alcohol intake on sine-wave Cartesian and polar contrast sensitivity functions
Cavalcanti-Galdino, M.K.; da Silva, J.A.; Mendes, L.C.; dos Santos, N.A.; Simas, M.L.B.
2014-01-01
The aim of this study was to assess contrast sensitivity for angular frequency stimuli as well as for sine-wave gratings in adults under the effect of acute ingestion of alcohol. We measured the contrast sensitivity function (CSF) for gratings of 0.25, 1.25, 2.5, 4, 10, and 20 cycles per degree of visual angle (cpd) as well as for angular frequency stimuli of 1, 2, 4, 24, 48, and 96 cycles/360°. Twenty adults free of ocular diseases, with normal or corrected-to-normal visual acuity, and no history of alcoholism were enrolled in two experimental groups: 1) no alcohol intake (control group) and 2) alcohol ingestion (experimental group). The average concentration of alcohol in the experimental group was set to about 0.08%. We used a paradigm involving a forced-choice method. Maximum sensitivity to contrast for sine-wave gratings in the two groups occurred at 4 cpd sine-wave gratings and at 24 and 48 cycles/360° for angular frequency stimuli. Significant changes in contrast sensitivity were observed after alcohol intake compared with the control condition at spatial frequency of 4 cpd and 1, 24, and 48 cycles/360° for angular frequency stimuli. Alcohol intake seems to affect the processing of sine-wave gratings at maximum sensitivity and at the low and high frequency ends for angular frequency stimuli, both under photopic luminance conditions. PMID:24676473
A watt-class 1-THz backward-wave oscillator based on sine waveguide
Xu Xiong; Wei Yanyu; Shen Fei; Yin Hairong; Xu Jin; Gong Yubin; Wang Wenxiang
2012-01-15
A novel backward wave oscillator was proposed by utilizing a concise sine waveguide slow-wave structure combined with sheet electron beam to operate at terahertz frequency band. First, the design method was described, and the dispersion curve and interaction impedance of the sine waveguide were calculated, then the device oscillation frequency and operating voltage were determined. Next, the circuit transmission losses were learned over the tunable frequency range. Finally, the particle-in-cell simulation method was applied to predict its signal generation performance. The investigation results show that, the backward wave oscillator can produce over 1.9 -W peak power output at the central operating frequency of 1-THz under 27-kV operating voltage and 5-mA beam current. And the interaction efficiency at 1-THz is more than 1.4% with a circuit length of 7.2-mm. It, therefore, will be considered as a promising watt-class terahertz radiation source.
Synchrony of two uncoupled neurons under half wave sine current stimulation
NASA Astrophysics Data System (ADS)
Peng, Yueping; Wang, Jue; Jian, Zhong
2009-04-01
Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.
Spectral averaging of small-amplitude sine-Gordon wave trains
NASA Astrophysics Data System (ADS)
Larson, J. W.; Tracy, E. R.
1988-11-01
It is well known that the nonlinear Schrödinger equation is the generic envelope description of nonlinear wave trains in the small-amplitude limit. V. E. Zakharov and E. A. Kuznetsov [Physica 18D, 455 (1986)] have shown that for many systems integrable via inverse-scattering techniques it is possible, through the use of multiscale techniques, to derive the nonlinear Schrödinger Lax pair from the Lax pair of the system that is being modulated. It will be shown that this technique of ``multiscale averaging'' can be applied to the sine-Gordon theory to obtain not only the nonlinear Schrödinger Lax pair from the sine-Gordon Lax pair, but also the nonlinear Schrödinger spectral data, conservation laws, Θ-function solutions, and reality constraint from their sine-Gordon counterparts. This allows a physical interpretation of the mathematical elements of the nonlinear Schrödinger envelope in terms of the physical characteristics of the sine-Gordon system that is being modulated.
On the solution of the generalized wave and generalized sine-Gordon equations
NASA Technical Reports Server (NTRS)
Ablowitz, M. J.; Beals, R.; Tenenblat, K.
1986-01-01
The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.
Pulsed dc- and sine-wave-excited cold atmospheric plasma plumes: A comparative analysis
NASA Astrophysics Data System (ADS)
Xiong, Q.; Lu, X. P.; Ostrikov, K.; Xian, Y.; Zou, C.; Xiong, Z.; Pan, Y.
2010-04-01
Cold atmospheric-pressure plasma plumes are generated in the ambient air by a single-electrode plasma jet device powered by pulsed dc and ac sine-wave excitation sources. Comprehensive comparisons of the plasma characteristics, including electrical properties, optical emission spectra, gas temperatures, plasma dynamics, and bacterial inactivation ability of the two plasmas are carried out. It is shown that the dc pulse excited plasma features a much larger discharge current and stronger optical emission than the sine-wave excited plasma. The gas temperature in the former discharge remains very close to the room temperature across the entire plume length; the sine-wave driven discharge also shows a uniform temperature profile, which is 20-30 degrees higher than the room temperature. The dc pulse excited plasma also shows a better performance in the inactivation of gram-positive staphylococcus aureus bacteria. These results suggest that the pulsed dc electric field is more effective for the generation of nonequilibrium atmospheric pressure plasma plumes for advanced plasma health care applications.
Baart, Martijn; Bortfeld, Heather; Vroomen, Jean
2015-01-01
The correspondence between auditory speech and lip-read information can be detected based on a combination of temporal and phonetic cross-modal cues. Here, we determined the point in developmental time at which children start to effectively use phonetic information to match a speech sound with one of two articulating faces. We presented 4- to 11-year-olds (N=77) with three-syllabic sine-wave speech replicas of two pseudo-words that were perceived as non-speech and asked them to match the sounds with the corresponding lip-read video. At first, children had no phonetic knowledge about the sounds, and matching was thus based on the temporal cues that are fully retained in sine-wave speech. Next, we trained all children to perceive the phonetic identity of the sine-wave speech and repeated the audiovisual (AV) matching task. Only at around 6.5 years of age did the benefit of having phonetic knowledge about the stimuli become apparent, thereby indicating that AV matching based on phonetic cues presumably develops more slowly than AV matching based on temporal cues.
Scenario based approach for multiple source Tsunami Hazard assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, M.; Omira, R.; Baptista, M. A.
2015-08-01
In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines - Portugal, one of the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING a Non-linear Shallow Water Model With Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water), MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawback, runup and inundation distance. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at Sines test site considering the single scenarios at mean sea level, the aggregate scenario and the influence of the tide on the aggregate scenario. The results confirm the composite of Horseshoe and Marques Pombal fault as the worst case scenario. It governs the aggregate scenario with about 60 % and inundates an area of 3.5 km2.
Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, M.; Omira, R.; Baptista, M. A.
2015-11-01
In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.
Taylor, D N; Lee, C T
1992-01-01
In a double-blind protocol, ninety healthy volunteer subjects received 30 minutes of constant current sine-wave cranial transcutaneous electrical nerve stimulation (TENS) of 5 Hertz (Hz), 100 Hz, or 2000 Hz frequency (current maintained below .5 mA for safety), placebo TENS, or no treatment. The five groups were compared on pre- to posttreatment changes in blood pressure, heart rate, peripheral temperature, and anxiety. Analysis showed significant reductions in systolic and diastolic blood pressure and heart rate after 100 Hz cranial TENS as compared to the other groups. No other differences achieved significance. PMID:1357927
Criteria for representing circular arc and sine wave spar webs by non-curved elements
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
The basic problem of how to simply represent a curved web of a spar in a finite element structural model was addressed. The ratio of flat web to curved web axial deformations and longitudinal rotations were calculated using NASTRAN models. Multiplying factors were developed from these calculations for various web thicknesses. These multiplying factors can be applied directly to the area and moment of inertia inputs of the finite element model. This allows the thermal stress relieving configurations of sine wave and circular arc webs to be simply accounted for in finite element structural models.
NASA Astrophysics Data System (ADS)
Bucz, Štefan; Marič, Ladislav; Harsányi, Ladislav; Veselý, Vojtech
2010-05-01
The paper deals with the development and application of a new simple empirical approach to the design of robust PID controllers for technological processes in industrial practice. The main advantage of the proposed approach is the possibility to specify the required performance before the design algorithm implementation. Identification of characteristic data of the black-box type plant with varying parameters is carried out using the sine wave excitation signal, thus allowing to design the controller without necessarily knowing the mathematical model of the plant. The proposed approach has been verified on a real-world physical process.
Sun, Xiaoli; Abshire, James B
2012-09-10
We use theoretical models to compare the receiver signal to noise ratio (SNR) vs. average rate of detected signal photons for an integrated path differential absorption (IPDA) lidar using coherent detection with continuous wave (CW) lasers and direct detection with sine-wave and pulse modulations. The results show the coherent IPDA lidar has high receiver gain and narrow bandwidth to overcome the effects of detector circuit noise and background light, but the actual receiver performance can be limited by the coherent mixing efficiency, speckle and other factors. For direct detection, using sine-wave modulation allows the use of a low peak power laser transmitter and synchronous detection. The pulse modulation technique requires higher laser peak powers but is more efficient than sine-wave modulation in terms of average detected signal photon rate required to achieve a given receiver SNR. We also conducted experiments for the direct detection cases and the results agreed well with theory.
Speech perception of sine-wave signals by children with cochlear implants
Nittrouer, Susan; Kuess, Jamie; Lowenstein, Joanna H.
2015-01-01
Children need to discover linguistically meaningful structures in the acoustic speech signal. Being attentive to recurring, time-varying formant patterns helps in that process. However, that kind of acoustic structure may not be available to children with cochlear implants (CIs), thus hindering development. The major goal of this study was to examine whether children with CIs are as sensitive to time-varying formant structure as children with normal hearing (NH) by asking them to recognize sine-wave speech. The same materials were presented as speech in noise, as well, to evaluate whether any group differences might simply reflect general perceptual deficits on the part of children with CIs. Vocabulary knowledge, phonemic awareness, and “top-down” language effects were all also assessed. Finally, treatment factors were examined as possible predictors of outcomes. Results showed that children with CIs were as accurate as children with NH at recognizing sine-wave speech, but poorer at recognizing speech in noise. Phonemic awareness was related to that recognition. Top-down effects were similar across groups. Having had a period of bimodal stimulation near the time of receiving a first CI facilitated these effects. Results suggest that children with CIs have access to the important time-varying structure of vocal-tract formants. PMID:25994709
2010-01-01
Background We recently characterized HAmo SINE and its partner LINE in silver carp and bighead carp based on hybridization capture of repetitive elements from digested genomic DNA in solution using a bead-probe [1]. To reveal the distribution and evolutionary history of SINEs and LINEs in cyprinid genomes, we performed a multi-species search for HAmo SINE and its partner LINE using the bead-probe capture and internal-primer-SINE polymerase chain reaction (PCR) techniques. Results Sixty-seven full-size and 125 internal-SINE sequences (as well as 34 full-size and 9 internal sequences previously reported in bighead carp and silver carp) from 17 species of the family Cyprinidae were aligned as well as 14 new isolated HAmoL2 sequences. Four subfamilies (type I, II, III and IV), which were divided based on diagnostic nucleotides in the tRNA-unrelated region, expanded preferentially within a certain lineage or within the whole family of Cyprinidae as multiple active source genes. The copy numbers of HAmo SINEs were estimated to vary from 104 to 106 in cyprinid genomes by quantitative RT-PCR. Over one hundred type IV members were identified and characterized in the primitive cyprinid Danio rerio genome but only tens of sequences were found to be similar with type I, II and III since the type IV was the oldest subfamily and its members dispersed in almost all investigated cyprinid fishes. For determining the taxonomic distribution of HAmo SINE, inter-primer SINE PCR was conducted in other non-cyprinid fishes, the results shows that HAmo SINE- related sequences may disperse in other families of order Cypriniforms but absent in other orders of bony fishes: Siluriformes, Polypteriformes, Lepidosteiformes, Acipenseriformes and Osteoglossiforms. Conclusions Depending on HAmo LINE2, multiple source genes (subfamilies) of HAmo SINE actively expanded and underwent retroposition in a certain lineage or within the whole family of Cyprinidae. From this perspective, HAmo SINE should
Study of a high power sine waveguide traveling wave tube amplifier centered at 8 GHz
NASA Astrophysics Data System (ADS)
Hoff, Brad W.; Simon, David S.; French, David M.; Lau, Y. Y.; Wong, Patrick
2016-10-01
Performance of a 20-stage X-band sine waveguide amplifier, driven by a 40 A, 100 kV, cylindrical electron beam, is studied using numerical simulation and interpreted using Pierce's classical traveling wave tube theory. For an input signal power level of 1.8 kW, particle-in-cell simulations predict gain and bandwidth values exceeding 14 dB and 13%, respectively. For an input signal power level of 7.2 kW, particle-in-cell simulations predict gain and bandwidth values exceeding 12 dB and 15%, respectively, with output power levels exceeding 110 kW at peak gain. Also given are: an assessment of the space charge factor (Pierce's QC parameter) for the complex circuit using simulation data, and an evaluation of the harmonic contents in the beam current.
Obtaining changes in calibration-coil to seismometer output constants using sine waves
Ringler, Adam T.; Hutt, Charles R.; Gee, Lind S.; Sandoval, Leo D.; Wilson, David C.
2013-01-01
The midband sensitivity of a broadband seismometer is one of the most commonly used parameters from station metadata. Thus, it is critical for station operators to robustly estimate this quantity with a high degree of accuracy. We develop an in situ method for estimating changes in sensitivity using sine‐wave calibrations, assuming the calibration coil and its drive are stable over time and temperature. This approach has been used in the past for passive instruments (e.g., geophones) but has not been applied, to our knowledge, to derive sensitivities of modern force‐feedback broadband seismometers. We are able to detect changes in sensitivity to well within 1%, and our method is capable of detecting these sensitivity changes using any frequency of sine calibration within the passband of the instrument.
Nonlinear disintegration of sine wave in the framework of the Gardner equation
NASA Astrophysics Data System (ADS)
Kurkin, Andrey; Talipova, Tatiana; Kurkina, Oxana; Rouvinskaya, Ekaterina; Pelinovsky, Efim
2016-04-01
Nonlinear disintegration of sine wave is studied in the framework of the Gardner equation (extended version of the Korteweg - de Vries equation with both quadratic and cubic nonlinear terms). Undular bores appear here as an intermediate stage of wave evolution. Our numerical computations demonstrate the features of undular bore developing for different signs of the cubic nonlinear term. If cubic nonlinear term is negative, and initial wave amplitude is large enough, two undular bores are generated from the two breaking points formed on both crest slopes (within dispersionless Gardner equation). Undular bore consists of one table-top soliton and a group of small soliton-like waves passing through the table-top soliton. If the cubic nonlinear term is positive and again the wave amplitude is large enough, the breaking points appear on crest and trough generating groups of positive and negative solitary-like pulses. It is shown that nonlinear interaction of waves happens according to one of scenarios of two-soliton interaction of "exchange" or "overtake" types with a phase shift. If small-amplitude pulses interact with large-amplitude soliton-like pulses, their speed in average is negative in the case when "free" velocity is positive. Nonlinear interaction leads to the generation of higher harmonics and spectrum width increases with amplitude increase independently of the sign of cubic nonlinear term. The breaking asymptotic k4/3 predicted within the dispersionless Gardner equation emerges during the process of undular bore development. The formation of soliton-like perturbations leads to appearance of several spectral peaks which are downshifting with time.
Scenario Based Approach for Multiple Source Tsunami Hazard Assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, Martin; Omira, Rachid; Baptista, Maria Ana
2015-04-01
In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines, Portugal one the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean to the southwest facing the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, a total of five scenarios were selected to assess tsunami impact at the test site. These scenarios correspond to the worst-case credible scenario approach based upon the largest events of the historical and paleo tsunami catalogues. The tsunami simulations from the source area towards the coast is carried out using NSWING a Non-linear Shallow Water Model With Nested Grids. The code solves the non-linear shallow water equations using the discretization and explicit leap-frog finite difference scheme, in a Cartesian or Spherical frame. The initial sea surface displacement is assumed to be equal to the sea bottom deformation that is computed by Okada equations. Both uniform and non-uniform slip conditions are used. The presented results correspond to the models using non-uniform slip conditions. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water) MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawdown, run-up and inundation distance. Synthetic waveforms are computed at virtual tide gages at specific locations outside and inside the harbour. The final results consist of Aggregate Scenario Maps presented for the different inundation parameters. This work is funded by ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839
Audio-visual integration of speech with time-varying sine wave speech replicas
NASA Astrophysics Data System (ADS)
Tuomainen, Jyrki; Andersen, Tobias; Tiippana, Kaisa; Sams, Mikko
2002-11-01
We tested whether listener's knowledge about the nature of the auditory stimuli had an effect on audio-visual (AV) integration of speech. First, subjects were taught to categorize two sine-wave (sw) replicas of the real speech tokens /omso/ and /onso/ into two arbitrary nonspeech categories without knowledge of the speech-like nature of the sounds. A test with congruent and incongruent AV-stimulus condition (together with auditory-only presentations of the sw stimuli) demonstrated no AV integration, but instead close to perfect categorization of stimuli in the two arbitrary categories according to the auditory presentation channel. Then, the same subjects (of which most were still under the impression that the sw-stimuli were nonspeech sounds) were taught to categorize the sw stimuli as /omso/ and /onso/, and again tested with the same AV stimuli as used in the nonspeech sw condition. This time, subjects showed highly reliable AV integration similar to integration obtained with real speech stimuli in a separate test. We suggest that AV integration only occurs when subject are in a so-called ''speech mode.''
NASA Astrophysics Data System (ADS)
Funck, Torsten; Spiegel, Thomas
2015-09-01
Thermal converters show significant ac-dc transfer differences at low frequencies due to nonlinearities of the heat transport mechanism and of the thermal-to-electric conversion. It is assumed that the ac-dc transfer differences at low frequencies are proportional to the input power. We have proved this assumption by an independent method with sampling techniques. A novel approach based on sine-wave fitting is used to calculate the RMS value of the sampled signal from the samples. It makes use of the low noise in a metrological environment. Expanded uncertainties in the order of 1.2 μV/V have been achieved.
Nonlinear disintegration of sine wave in the framework of the Gardner equation
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Kurkin, Andrey; Pelinovsky, Efim
2016-10-01
Internal tidal wave entering shallow waters transforms into an undular bore and this process can be described in the framework of the Gardner equation (extended version of the Korteweg-de Vries equation with both quadratic and cubic nonlinear terms). Our numerical computations demonstrate the features of undular bore developing for different signs of the cubic nonlinear term. If cubic nonlinear term is negative, and initial wave amplitude is large enough, two undular bores are generated from the two breaking points formed on both crest slopes (within dispersionless Gardner equation). Undular bore consists of one table-top soliton and a group of small soliton-like waves passing through the table-top soliton. If the cubic nonlinear term is positive and again the wave amplitude is large enough, the breaking points appear on crest and trough generating groups of positive and negative soliton-like pulses. This is the main difference with respect to the classic Korteweg-de Vries equation, where the breaking point is single. It is shown also that nonlinear interaction of waves happens similarly to one of scenarios of two-soliton interaction of "exchange" or "overtake" types with a phase shift. If small-amplitude pulses interact with large-amplitude soliton-like pulses, their speed in average is negative in the case when "free" velocity is positive. Nonlinear interaction leads to the generation of higher harmonics and spectrum width increases with amplitude increase independently of the sign of cubic nonlinear term. The breaking asymptotic k 4 / 3 predicted within the dispersionless Gardner equation emerges during the process of undular bore development. The formation of soliton-like perturbations leads to appearance of several spectral peaks which are downshifting with time.
Koenderink, J J; Bouman, M A; Bueno de Mesquita, A E; Slappendel, S
1978-06-01
Contrast detection thresholds for moving sine wave gratings were obtained at the fovea and at eccentricities of 6 degrees, 21 degrees, and 50 degrees on the nasal horizontal meridian. The targets subtended from 30 X 30 minutes of arc up to 16 degrees X 16 degrees. Mean retinal illuminance was varied between 10 and 0.01 trolands. The transition from the de Vries-Rose to the Weber region occurs in the far peripheral visual field at a 2-3 decades lower illuminance level than at the fovea. The spatio-temporal contrast detection thresholds become comparable over the whole visual field if the mean distance between retinal ganglion cells is taken as a yardstick, and field width, spatial frequency, and quantum density are scaled accordingly. This means that at scotopic illuminance levels coarse or medium gratings are preferentially detected at other than foveal locations. (The fine gratings cannot be resolved at all at such levels.) It is argued that both electrophysiological and psychophysical evidence indicates that Weber behavior starts whenever some small fixed number of quantum absorptions occur within an area of 1 mean interganglion cell distance across. Or, equivalently, if a fixed small number of "neural quanta" enters a 100 X 100 micron2 area of the visual cortex.
Franklin, Brandon M; Maroudas, Eleni; Osborn, Jeffrey L
2016-06-01
Soft tissue repair is a complex process that requires specific communication between multiple cell types to orchestrate effective restoration of physiological functions. Macrophages play a critical role in this wound healing process beginning at the onset of tissue injury. Understanding the signaling mechanisms involved in macrophage recruitment to the wound site is an essential step for developing more effective clinical therapies. Macrophages are known to respond to electrical fields, but the underlying cellular mechanisms mediating this response is unknown. This study demonstrated that low-amplitude sine-wave electrical stimulation (ES) initiates a soft tissue response in the absence of injury in Procambarus clarkii This cellular response was characterized by recruitment of macrophage-like hemocytes to the stimulation site indicated by increased hemocyte density at the site. ES also increased tissue collagen deposition compared to sham treatment (P < 0.05). Voltage-gated potassium (KV) channel inhibition with either 4-aminopyridine or astemizole decreased both hemocyte recruitment and collagen deposition compared to saline infusion (P < 0.05), whereas inhibition of calcium-permeable channels with ruthenium red did not affect either response to ES Thus, macrophage-like hemocytes in P. clarkii elicit a wound-like response to exogenous ES and this is accompanied by collagen deposition. This response is mediated by KV channels but independent of Ca(2+) channels. We propose a significant role for KV channels that extends beyond facilitating Ca(2+) transport via regulation of cellular membrane potentials during ES of soft tissue.
Modulated Sine Waves for Differential Absorption Measurements Using a CW Laser System
NASA Technical Reports Server (NTRS)
Campbell, Joel F. (Inventor); Lin, Bing (Inventor); Nehrir, Amin R. (Inventor)
2015-01-01
A continuous wave Light Detection and Ranging (CW LiDAR) system utilizes two or more laser frequencies and time or range shifted pseudorandom noise (PN) codes to discriminate between the laser frequencies. The performance of these codes can be improved by subtracting out the bias before processing. The CW LiDAR system may be mounted to an artificial satellite orbiting the earth, and the relative strength of the return signal for each frequency can be utilized to determine the concentration of selected gases or other substances in the atmosphere.
Franklin, Brandon M; Maroudas, Eleni; Osborn, Jeffrey L
2016-06-01
Soft tissue repair is a complex process that requires specific communication between multiple cell types to orchestrate effective restoration of physiological functions. Macrophages play a critical role in this wound healing process beginning at the onset of tissue injury. Understanding the signaling mechanisms involved in macrophage recruitment to the wound site is an essential step for developing more effective clinical therapies. Macrophages are known to respond to electrical fields, but the underlying cellular mechanisms mediating this response is unknown. This study demonstrated that low-amplitude sine-wave electrical stimulation (ES) initiates a soft tissue response in the absence of injury in Procambarus clarkii This cellular response was characterized by recruitment of macrophage-like hemocytes to the stimulation site indicated by increased hemocyte density at the site. ES also increased tissue collagen deposition compared to sham treatment (P < 0.05). Voltage-gated potassium (KV) channel inhibition with either 4-aminopyridine or astemizole decreased both hemocyte recruitment and collagen deposition compared to saline infusion (P < 0.05), whereas inhibition of calcium-permeable channels with ruthenium red did not affect either response to ES Thus, macrophage-like hemocytes in P. clarkii elicit a wound-like response to exogenous ES and this is accompanied by collagen deposition. This response is mediated by KV channels but independent of Ca(2+) channels. We propose a significant role for KV channels that extends beyond facilitating Ca(2+) transport via regulation of cellular membrane potentials during ES of soft tissue. PMID:27335435
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.
2011-01-01
seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.
NASA Astrophysics Data System (ADS)
Tallman, T. N.
2016-04-01
Electrical impedance tomography (EIT) has incredible potential for structural health monitoring (SHM) when applied to structures in which mechanical damage is coupled with changes in electrical conductivity. Practically, however, the potential of EIT for SHM is largely nullified by requiring both non-negligible computational resources and accurate initial conductivity estimates. By working in resistivity instead of conductivity and constraining the change in resistivity to be a series of two-dimensional sine waves, a novel resistivity-based EIT formulation is herein developed that significantly abates the computational requirements of EIT and is independent of initial estimates. This approach is explored analytically and then demonstrated experimentally by locating impact damage to a glass fiber/epoxy/carbon black laminate.
Zarmi, Yair
2015-01-01
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.
Zarmi, Yair
2015-01-01
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions. PMID:26020922
Multiple scattering of electromagnetic waves by rain
NASA Technical Reports Server (NTRS)
Tsolakis, A.; Stutzman, W. L.
1982-01-01
As the operating frequencies of communications systems move higher into the millimeter wave region, the effects of multiple scattering in precipitation media become more significant. In this paper, general formulations are presented for single, first-order multiple, and complete multiple scattering. Included specifically are distributions of particle size, shape, and orientation angle, as well as variation in the medium density along the direction of wave propagation. Calculations are performed for rain. It is shown that the effects of higher-order scattering are not noticeable in either attenuation or channel isolation on a dual-polarized system until frequencies of about 30 GHz are reached. The complete multiple-scattering formulation presented gives accurate results at high millimeter wave frequencies as well as including realistic medium parameter distributions. Furthermore, it is numerically efficient.
Multiple M-Wave Interaction with Fluxes
Bandos, Igor A.
2010-08-13
We present the equations of motion for multiple M0-brane (multiple M-wave) systems in general 11 dimensional supergravity background. These are obtained in the frame of superembedding approach, but have a rigid structure: they can be restored from SO(1,1)xSO(9) symmetry characteristic for M0. BPS (Bogomol'nyi-Prasad-Sommerfield) conditions for the 1/2 supersymmetric solution of these equations have the fuzzy 2-sphere solution modeling M2-brane.
NASA Astrophysics Data System (ADS)
Abdullah, Alyasa Gan; Wah, Yap Bee
2015-02-01
The computation of the approximate values of the trigonometric sines was discovered by Bhaskara I (c. 600-c.680), a seventh century Indian mathematician and is known as the Bjaskara's I's sine approximation formula. The formula is given in his treatise titled Mahabhaskariya. In the 14th century, Madhava of Sangamagrama, a Kerala mathematician astronomer constructed the table of trigonometric sines of various angles. Madhava's table gives the measure of angles in arcminutes, arcseconds and sixtieths of an arcsecond. The search for more accurate formulas led to the discovery of the power series expansion by Madhava of Sangamagrama (c.1350-c. 1425), the founder of the Kerala school of astronomy and mathematics. In 1715, the Taylor series was introduced by Brook Taylor an English mathematician. If the Taylor series is centered at zero, it is called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. Some of the important Maclaurin series expansions include trigonometric functions. This paper introduces the genetic code of the sine of an angle without using power series expansion. The genetic code using square root approach reveals the pattern in the signs (plus, minus) and sequence of numbers in the sine of an angle. The square root approach complements the Pythagoras method, provides a better understanding of calculating an angle and will be useful for teaching the concepts of angles in trigonometry.
Coinfection can trigger multiple pandemic waves.
Merler, Stefano; Poletti, Piero; Ajelli, Marco; Caprile, Bruno; Manfredi, Piero
2008-09-21
Sequences of epidemic waves have been observed in past influenza pandemics, such as the Spanish influenza. Possible explanations may be sought either in mechanisms altering the structure of the network of contacts, such as those induced by changes in the rates of movement of people or by public health measures, or in the genetic drift of the influenza virus, since the appearance of new strains can reduce or eliminate herd immunity. The pandemic outbreaks may also be influenced by coinfection with other acute respiratory infections (ARI) that increase transmissibility of influenza virus (by coughing, sneezing, running nose). In fact, some viruses (e.g., Rhinovirus and Adenovirus) have been found to induce "clouds" of bacteria and increase the transmissibility of Staphylococcus aureus. Moreover, Rhinovirus and Adenovirus were detected in patients during past pandemics, and their presence is linked to superspreading events. In this paper, by assuming increased transmissibility in coinfected individuals, we propose and study a model where multiple pandemic waves are triggered by coinfection with ARI. The model agrees well with mortality excess data during the 1918 pandemic influenza, thereby providing indications for potential pandemic mitigation.
Localization of the sine-Gordon equation solutions
NASA Astrophysics Data System (ADS)
Porubov, A. V.; Fradkov, A. L.; Bondarenkov, R. S.; Andrievsky, B. R.
2016-10-01
Localization of the waves of the sine-Gordon equation depends on the shape of the initial condition. It is shown how initially motionless Gaussian distribution may be modified to obtain propagation of localized waves in both directions. However, the resulting localized wave profile is described neither by an asymptotic envelope- wave solution to the sine-Gordon equation nor by its exact traveling breather solution. The distributed control algorithms are developed to achieve wave localization independent of the shape of the initial condition. It is shown that localization of the waves in both directions is achieved by means of a feedforward (nonfeedback) control. The waves are similar to the envelope wave solution. The feedback distributed algorithm is shown to provide both localized waves according to analytical solutions and their unidirectional propagation.
MetaSINEs: Broad Distribution of a Novel SINE Superfamily in Animals
Nishihara, Hidenori; Plazzi, Federico; Passamonti, Marco; Okada, Norihiro
2016-01-01
SINEs (short interspersed elements) are transposable elements that typically originate independently in each taxonomic clade (order/family). However, some SINE families share a highly similar central sequence and are thus categorized as a SINE superfamily. Although only four SINE superfamilies (CORE-SINEs, V-SINEs, DeuSINEs, and Ceph-SINEs) have been reported so far, it is expected that new SINE superfamilies would be discovered by deep exploration of new SINEs in metazoan genomes. Here we describe 15 SINEs, among which 13 are novel, that have a similar 66-bp central region and therefore constitute a new SINE superfamily, MetaSINEs. MetaSINEs are distributed from fish to cnidarians, suggesting their common evolutionary origin at least 640 Ma. Because the 3′ tails of MetaSINEs are variable, these SINEs most likely survived by changing their partner long interspersed elements for retrotransposition during evolution. Furthermore, we examined the presence of members of other SINE superfamilies in bivalve genomes and characterized eight new SINEs belonging to the CORE-SINEs, V-SINEs, and DeuSINEs, in addition to the MetaSINEs. The broad distribution of bivalve SINEs suggests that at least three SINEs originated in the common ancestor of Bivalvia. Our comparative analysis of the central domains of the SINEs revealed that, in each superfamily, only a restricted region is shared among all of its members. Because the functions of the central domains of the SINE superfamilies remain unknown, such structural information of SINE superfamilies will be useful for future experimental and comparative analyses to reveal why they have been retained in metazoan genomes during evolution. PMID:26872770
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Duan, Kuaikuai; Liang, Junli
2016-05-01
A secure double-image sharing scheme is proposed by using the Shamir's three-pass protocol in the discrete multiple-parameter fractional angular transform domain. First, an enlarged image is formed by assembling two plain images successively in the horizontal direction and scrambled in the chaotic permutation process, in which the sequences of chaotic pairs are generated by the two-dimensional Sine Logistic modulation map. Second, the scrambled image is divided into two components which are used to constitute a complex image. One component is normalized and regarded as the phase part of the complex image as well as other is considered as the amplitude part. Finally, the complex image is shared between the sender and the receiver by using the Shamir's three-pass protocol, in which the discrete multiple-parameter fractional angular transform is used as the encryption function due to its commutative property. The proposed double-image sharing scheme has an obvious advantage that the key management is convenient without distributing the random phase mask keys in advance. Moreover, the security of the image sharing scheme is enhanced with the help of extra parameters of the discrete multiple-parameter fractional angular transform. To the best of our knowledge, this is the first report on integrating the Shamir's three-pass protocol with double-image sharing scheme in the information security field. Simulation results and security analysis verify the feasibility and effectiveness of the proposed scheme.
Control of antikinks of the Sine Gordon equation
NASA Astrophysics Data System (ADS)
Porubov, A. V.; Bondarenkov, R. S.; Fradkov, A. L.; Andrievsky, B. R.
2016-06-01
The control of the smoothness of an antikink profile of the Sine Gordon equation is considered. It is shown that variations in the initial conditions give rise to oscillations on the profile of the antikink. The control algorithm based on variation of one of the coefficient of the equation is developed to recover the smooth wave shape and the phase velocity of the antikink.
Multiple scattering induced negative refraction of matter waves
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
Multiple scattering induced negative refraction of matter waves.
Pinsker, Florian
2016-02-09
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to 'untouchable' quantum systems in analogy to cloaking devices for electromagnetic waves.
Multiple scattering induced negative refraction of matter waves.
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to 'untouchable' quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
Erlangga, Mokhammad Puput
2015-04-16
Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.
Application of the sine-Poisson equation in solar magnetostatics
NASA Technical Reports Server (NTRS)
Webb, G. M.; Zank, G. P.
1990-01-01
Solutions of the sine-Poisson equations are used to construct a class of isothermal magnetostatic atmospheres, with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry. The distributed current in the model (j) is directed along the x-axis, where x is the horizontal ignorable coordinate; (j) varies as the sine of the magnetostatic potential and falls off exponentially with distance vertical to the base with an e-folding distance equal to the gravitational scale height. Solutions for the magnetostatic potential A corresponding to the one-soliton, two-soliton, and breather solutions of the sine-Gordon equation are studied. Depending on the values of the free parameters in the soliton solutions, horizontally periodic magnetostatic structures are obtained possessing either a single X-type neutral point, multiple neural X-points, or solutions without X-points.
Mathematics of oscillations and waves
NASA Astrophysics Data System (ADS)
Antonyuk, P. N.
2016-07-01
Analytical definition of the sine function and the number π which is related to sine function allows to understand, how harmonic oscillations and waves appear. The functional equation for the sine is received. The new fast algorithm of calculation of the π number is formulated. In the elementary case oscillations and waves are harmonious or sinusoidal. The sine function appears not accidentally. This function can be defined as the solution of the functional equation characterizing periodic properties of oscillations and waves.
ECG manifestations of multiple electrolyte imbalance: peaked T wave to P wave ("tee-pee sign").
Johri, Amer M; Baranchuk, Adrian; Simpson, Christopher S; Abdollah, Hoshiar; Redfearn, Damian P
2009-04-01
The surface electrocardiogram (ECG) is a useful instrument in the detection of metabolic disturbances. The accurate characterization of these disturbances, however, may be considerably more difficult when more than one metabolic abnormality is present in the same individual. While "classic" ECG presentations of common electrolyte disturbances are well described, multiple electrolyte disturbances occurring simultaneously may generate ECG abnormalities that are not as readily recognizable. We report a case of hyperkalemia, with concurrent hypocalcemia and hypomagnesemia resulting in (1) peaking of the T wave, (2) a prominent U wave, and (3) prolongation of the descending limb of the T wave such that it overlapped with the next P wave. In this particular ECG from a patient with combined electrolyte imbalance, we have dubbed the unusual appearance of the segment between the peak of the T wave to the next P wave as the "tee-pee" sign. PMID:19419407
The Dynamical Sine-Gordon Model
NASA Astrophysics Data System (ADS)
Hairer, Martin; Shen, Hao
2016-02-01
We introduce the dynamical sine-Gordon equation in two space dimensions with parameter {β}, which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when {β2 in (0, 16π/3)} the Wick renormalised equation is well-posed. In the regime {β2 in (0, 4π)}, the Da Prato-Debussche method [J Funct Anal 196(1):180-210, 2002; Ann Probab 31(4):1900-1916, 2003] applies, while for {β2 in [4π, 16π/3)}, the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269-504, 2014]. We also show that this model arises naturally from a class of {2 + 1} -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569-632, 2015].
Parameter estimation on gravitational waves from multiple coalescing binaries
Mandel, Ilya
2010-04-15
Future ground-based and space-borne interferometric gravitational-wave detectors may capture between tens and thousands of binary coalescence events per year. There is a significant and growing body of work on the estimation of astrophysically relevant parameters, such as masses and spins, from the gravitational-wave signature of a single event. This paper introduces a robust Bayesian framework for combining the parameter estimates for multiple events into a parameter distribution of the underlying event population. The framework can be readily deployed as a rapid post-processing tool.
MyrSINEs: a novel SINE family in the anteater genomes.
Nishihara, Hidenori; Kuno, Shuichi; Nikaido, Masato; Okada, Norihiro
2007-10-01
Recent rapid generation of genomic sequence data has allowed many researchers to perform comparative analyses in various mammalian species. However, characterization of transposable elements, such as short interspersed repetitive elements (SINEs), has not been reported for several mammalian groups. Because SINEs occupy a large portion of the mammalian genome, they are believed to have contributed to the constitution and diversification of the host genomes during evolution. In the present study, we characterized a novel SINE family in the anteater genomes and designated it the MyrSINE family. Typical SINEs consist of a tRNA-related, a tRNA-unrelated and an AT-rich (or poly-A) region. MyrSINEs have only tRNA-related and poly-A regions; they are included in a group called t-SINE. The tRNA-related regions of the MyrSINEs were found to be derived from tRNA(Gly). We demonstrate that the MyrSINE family can be classified into three subfamilies. Two of the MyrSINE subfamilies are distributed in the genomes of both giant anteater and tamandua, while the other is present only in the giant anteater. We discuss the evolutionary history of MyrSINEs and their relationship to the evolution of anteaters. We also speculate that the simple structure of t-SINEs may be a potential evolutionary source for the generation of the typical SINE structure.
MyrSINEs: a novel SINE family in the anteater genomes.
Nishihara, Hidenori; Kuno, Shuichi; Nikaido, Masato; Okada, Norihiro
2007-10-01
Recent rapid generation of genomic sequence data has allowed many researchers to perform comparative analyses in various mammalian species. However, characterization of transposable elements, such as short interspersed repetitive elements (SINEs), has not been reported for several mammalian groups. Because SINEs occupy a large portion of the mammalian genome, they are believed to have contributed to the constitution and diversification of the host genomes during evolution. In the present study, we characterized a novel SINE family in the anteater genomes and designated it the MyrSINE family. Typical SINEs consist of a tRNA-related, a tRNA-unrelated and an AT-rich (or poly-A) region. MyrSINEs have only tRNA-related and poly-A regions; they are included in a group called t-SINE. The tRNA-related regions of the MyrSINEs were found to be derived from tRNA(Gly). We demonstrate that the MyrSINE family can be classified into three subfamilies. Two of the MyrSINE subfamilies are distributed in the genomes of both giant anteater and tamandua, while the other is present only in the giant anteater. We discuss the evolutionary history of MyrSINEs and their relationship to the evolution of anteaters. We also speculate that the simple structure of t-SINEs may be a potential evolutionary source for the generation of the typical SINE structure. PMID:17628355
Exploring multiple degrees of freedom in Rydberg wave packets
NASA Astrophysics Data System (ADS)
Wen, Haidan
2006-12-01
selection rules and give an intuitive classical interpretation of angular momentum redistribution by an HCP. In short, new dynamics involving multiple degrees of freedom of an electron wave packet are discovered, observed and understood.
Sine-Gordon solitons in networks: Scattering and transmission at vertices
NASA Astrophysics Data System (ADS)
Sobirov, Zarif; Babajanov, Doniyor; Matrasulov, Davron; Nakamura, Katsuhiro; Uecker, Hannes
2016-09-01
We consider the sine-Gordon equation on metric graphs with simple topologies and derive vertex boundary conditions from the fundamental conservation laws together with successive space-derivatives of sine-Gordon equation. We analytically obtain traveling-wave solutions in the form of standard sine-Gordon solitons such as kinks and antikinks for star and tree graphs. We show that for this case the sine-Gordon equation becomes completely integrable just as in case of a simple 1D chain. This simple analysis provides a cornerstone for the numerical solution of the general case, including a quantification of the vertex scattering. Applications of the obtained results to Josephson junction networks and DNA double helix are discussed.
Analysis of millimetre-wave polarization diverse multiple-input multiple-output capacity.
Lawrence, Nicholas P; Ng, Brian W-H; Hansen, Hedley J; Abbott, Derek
2015-12-01
Millimetre-waves offer the possibility of wide bandwidth and consequently high data rate for wireless communications. For both uni- and dual-polarized systems, signals sent over a link may suffer severe degradation due to antenna misalignment. Orientation robustness may be enhanced by the use of mutual orthogonality in three dimensions. Multiple-input multiple-output polarization diversity offers a way of improving signal reception without the limitations associated with spatial diversity. Scattering effects often assist propagation through multipath. However, high path loss at millimetre-wave frequencies may limit any reception enhancement through scattering. We show that the inclusion of a third orthogonal dipole provides orientation robustness in this setting, as well as in a rich scattering environment, by means of a Rician fading channel model covering all orientations for a millimetre-wave, tri-orthogonal, half-wave dipole transmitter and receiver employing polarization diversity. Our simulation extends the analysis into three dimensions, fully exploiting individual sub-channel paths. In both the presence and absence of multipath effects, capacity is observed to be higher than that of a dual-polarized system over the majority of a field of view. PMID:27019723
Analysis of millimetre-wave polarization diverse multiple-input multiple-output capacity
Lawrence, Nicholas P.; Ng, Brian W.-H.; Hansen, Hedley J.
2015-01-01
Millimetre-waves offer the possibility of wide bandwidth and consequently high data rate for wireless communications. For both uni- and dual-polarized systems, signals sent over a link may suffer severe degradation due to antenna misalignment. Orientation robustness may be enhanced by the use of mutual orthogonality in three dimensions. Multiple-input multiple-output polarization diversity offers a way of improving signal reception without the limitations associated with spatial diversity. Scattering effects often assist propagation through multipath. However, high path loss at millimetre-wave frequencies may limit any reception enhancement through scattering. We show that the inclusion of a third orthogonal dipole provides orientation robustness in this setting, as well as in a rich scattering environment, by means of a Rician fading channel model covering all orientations for a millimetre-wave, tri-orthogonal, half-wave dipole transmitter and receiver employing polarization diversity. Our simulation extends the analysis into three dimensions, fully exploiting individual sub-channel paths. In both the presence and absence of multipath effects, capacity is observed to be higher than that of a dual-polarized system over the majority of a field of view. PMID:27019723
Analysis of millimetre-wave polarization diverse multiple-input multiple-output capacity.
Lawrence, Nicholas P; Ng, Brian W-H; Hansen, Hedley J; Abbott, Derek
2015-12-01
Millimetre-waves offer the possibility of wide bandwidth and consequently high data rate for wireless communications. For both uni- and dual-polarized systems, signals sent over a link may suffer severe degradation due to antenna misalignment. Orientation robustness may be enhanced by the use of mutual orthogonality in three dimensions. Multiple-input multiple-output polarization diversity offers a way of improving signal reception without the limitations associated with spatial diversity. Scattering effects often assist propagation through multipath. However, high path loss at millimetre-wave frequencies may limit any reception enhancement through scattering. We show that the inclusion of a third orthogonal dipole provides orientation robustness in this setting, as well as in a rich scattering environment, by means of a Rician fading channel model covering all orientations for a millimetre-wave, tri-orthogonal, half-wave dipole transmitter and receiver employing polarization diversity. Our simulation extends the analysis into three dimensions, fully exploiting individual sub-channel paths. In both the presence and absence of multipath effects, capacity is observed to be higher than that of a dual-polarized system over the majority of a field of view.
Multiple spherically converging shock waves in liquid deuterium
Boehly, T. R.; Goncharov, V. N.; Seka, W.; Hu, S. X.; Marozas, J. A.; Meyerhofer, D. D.; Celliers, P. M.; Hicks, D. G.; Barrios, M. A.; Fratanduono, D.; Collins, G. W.
2011-09-15
To achieve ignition, inertial confinement fusion target designs use a sequence of shocks to compress the target before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of these shocks will be precisely set during a series of tuning experiments that adjust the laser pulse to achieve optimal conditions. We report measurements of the velocity and timing of multiple, converging shock waves inside spherical targets filled with liquid (cryogenic) deuterium. These experiments produced the highest reported shock velocity observed in liquid deuterium (U{sub s} = 135 km/s at {approx}25 Mb) and observed an increase in shock velocity due to spherical convergence. These direct-drive experiments are best simulated when hydrodynamic codes use a nonlocal model for the transport of absorbed laser energy from the coronal plasma to the ablation surface.
Nonsymmorphic Phononic Metamaterials: shaping waves over multiple length scales
NASA Astrophysics Data System (ADS)
Koh, Cheongyang; Thomas, Edwin
2012-02-01
The vector nature of the phonon makes rational design of phononic metamaterials challenging, despite potential in unique wave propagation behavior, such as negative refraction and hyper-lensing. While most designs to date focus on the ``meta-atom'' (building block) design, their ``spatial arrangement'' (non-locality) is equally instrumental in dispersion engineering. Here, we present a generalized design framework (DF) for PMM design, utilizing both ``global'' and ``local'' symmetry concepts. We demonstrate, utilizing specific properties of nonsymmorphic plane groups, PMMs possessing i) a low-frequency in-plane complete spectral gap (ICSG) of 102% (CSG of 88%), ii) a set of polychromatic ICSGs totaling over 100% in normalized gap size. Within the same DF, we further integrate broken symmetry states (BSS) (edge states, waveguides, etc) with designed polarization, (de)localization and group velocities. In particular, we demonstrate how these BSS may be utilized to elucidate signatures of complex polarization fields through phonon-structure interactions, leading to interesting applications in elastic-wave imaging, as well as information retrieval by probing polarization states of scattering bodies over multiple scales.
The Sine Qua Non of Organizational Effectiveness
ERIC Educational Resources Information Center
Konnert, William; Graff, Orin B.
1976-01-01
The thesis of this article is that the effectiveness of an organization depends on the philosophical bases of the individuals involved. Thus, the philosophical bases from which the individuals operate are the sine qua non for organizational effectiveness. (Author)
Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing
NASA Technical Reports Server (NTRS)
Rost, Robert W.; Brown, David L.
1988-01-01
An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing.
On the Generation of Multiple Atmospheric Pressure Waves Observed During Violent Volcanic Eruptions.
NASA Astrophysics Data System (ADS)
Medici, E. F.; Waite, G. P.
2015-12-01
One or more atmospheric pressure waves followed by a supersonic jet may be generated during the over pressurized vapor-solid-liquid mixture ejection of a violent volcanic eruption. The source of these multiple atmospheric pressure waves could have different origins. Among the physical mechanisms that could explain these behaviors are pulsating eruptions, the dynamics of shock waves, coupled pressure wave-supersonic jet interaction, or a combination of all these factors. In order to elucidate the causes of these complex fluid flow dynamics, a series of analog volcanic eruption experiments using an atmospheric shock tube were performed. During the testing, single and multiple pressure waves and the subsequent supersonic jet were generated. The controlled laboratory conditions enable studies of the most relevant variables potentially responsible for the formation of the multiple pressure waves. The tests were performed using dry, compressed nitrogen at standard room temperature that was free of particles. Yet, under this idealization of a real volcanic eruption, multiple pressure waves were observed on the high-speed video imaging and recorded on the pressure transducer. The amount of energy being released on each test was varied to achieve different discharge dynamics and the formation of single and multiple pressure waves. The preliminary experimental observations indicate a coupled pressure wave-jet interaction as source of multiple pressure waves.
Sine-Gordon quantum mechanics on the complex plane and N=2 gauge theory
He Wei
2010-05-15
We study the relation between the N=2 gauge theory in the {Omega} background and the quantized integral system recently proposed by Nekrasov and Shatashvili. We focus on the simplest case, the pure Yang-Mills theory with the SU(2) gauge group and the corresponding sine-Gordon integral model on the complex plane. We analyze the periodic wave function and the corresponding energy spectrum of the sine-Gordon quantum mechanics, and find this model contains information of the low energy effective theory of the gauge theory.
Carnivore-Specific SINEs (Can-SINEs): Distribution, Evolution, and Genomic Impact
Johnson, Diana L.E.; Allard, Marc W.; Pecon-Slattery, Jill
2011-01-01
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics. PMID:21846743
Benjamin Banneker and the Law of Sines
ERIC Educational Resources Information Center
Mahoney, John F.
2005-01-01
Benjamin Banneker, a self-taught mathematician, surveyor and astronomer published annual almanacs containing his astronomical observations and predictions. Banneker who also used logarithms to apply the Law of Sines believed that the method used to solve a mathematical problem depends on the tools available.
Sine-Fitting Software for IEEE Standard 1057
Blair, Jerome
1999-05-01
Software application that performs the calculations related to the sine-fit tests of IEEE Standard 1057/94. Example outputs and explainations of these outputs to determine the important characteristics of the device under test. This application performs the calculations related to sine-fit tests and uses 4-parameter sine fit from IEEE Standard 1057-1994.
Swiontek, Stephen E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2013-01-01
The commonly used optical sensor based on surface plasmon-polariton wave phenomenon can sense just one chemical, because only one SPP wave can be guided by the interface of a metal and a dielectric material contained in the sensor. Multiple analytes could be detected and/or the sensing reliability for a single analyte could be enhanced, if multiple SPP-wave modes could be excited on a single metal/dielectric interface. For that to happen, the partnering dielectric material must be periodically non-homogeneous. Using a chiral sculptured thin film (CSTF) as that material in a SPP-wave platform, we show that the angular locations of multiple SPP-wave modes shift when the void regions of the CSTF are infiltrated with a fluid. The sensitivities realized in the proof-of-concept experiments are comparable to state-of-research values. PMID:23474988
Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves.
Xavier, Jolly; Vyas, Sunil; Senthilkumaran, Paramasivam; Joseph, Joby
2012-04-20
As three-plane waves are the minimum number required for the formation of vortex-embedded lattice structures by plane wave interference, we present our experimental investigation on the formation of complex 3D photonic vortex lattice structures by a designed superposition of multiples of phase-engineered three-plane waves. The unfolding of the generated complex photonic lattice structures with higher order helical phase is realized by perturbing the superposition of a relatively phase-encoded, axially equidistant multiple of three noncoplanar plane waves. Through a programmable spatial light modulator assisted single step fabrication approach, the unfolded 3D vortex lattice structures are experimentally realized, well matched to our computer simulations. The formation of higher order intertwined helices embedded in these 3D spiraling vortex lattice structures by the superposition of the multiples of phase-engineered three-plane waves interference is also studied.
Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication.
Zhang, Jian; Chen, Hongwei; Chen, Minghua; Wang, Tianliang; Xie, Shizhong
2007-05-01
A millimeter-wave signal with sextuple-frequency multiplication of a microwave source is obtained with two cascaded optical modulators, which are driven by the same microwave source with phase deviation of pi/2 introduced by an electrical phase shifter. Without any optical filter, a wideband continuously tunable millimeter-wave signal is easily generated.
Seismic Waves within Earth's Outer Core: Multiple Reflection.
Engdahl, E R
1968-07-19
Seismic waves reflected as many as four times within Earth's outer core are routinely recorded from large earthquakes. Observations of these waves are confined to rays near grazing incidence on the core-mantle boundary, in agreement with theoretical expectation. Minor adjustments to outer-core velocities may be necessary to account for certain of these arrivals that are not predicted by present core models. A change of 10 kilometers or more in the currently accepted core radius, 3473 kilometers, is not corroborated by the new data.
Rocket measurements of electron density irregularities during MAC/SINE
NASA Technical Reports Server (NTRS)
Ulwick, J. C.
1989-01-01
Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.
Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.
Walstead, Sean P; Deane, Grant B
2014-08-01
Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there. PMID:25096095
Properties of an adjustable quarter-wave system under conditions of multiple beam interference.
Bibikova, Evelina A; Kundikova, Nataliya D
2013-03-20
We investigate the polarimetric properties of an adjustable two plate quarter-wave system. We take into account multiple beam interference within single wave plates. Different adjustments of an adjustable two plate quarter-wave system are required for the production of the left-handed and the right-handed circular polarized coherent light. We investigate experimentally laser light polarization conversion by the systems consisting of two birefringent mica plates. An adjustable two plate quarter-wave system produces high-quality circularly polarized coherent light with the intensity-related ellipticity better than 0.99 at any wavelength.
Air bubbles in water: a strongly multiple scattering medium for acoustic waves.
Kafesaki, M; Penciu, R S; Economou, E N
2000-06-26
Using a newly developed multiple scattering scheme, we calculate band structure and transmission properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects are responsible for the creation of wide gaps in the transmission even in the presence of strong positional and size disorder.
Linking multiple relaxation, power-law attenuation, and fractional wave equations.
Näsholm, Sven Peter; Holm, Sverre
2011-11-01
The acoustic wave attenuation is described by an experimentally established frequency power law in a variety of complex media, e.g., biological tissue, polymers, rocks, and rubber. Recent papers present a variety of acoustical fractional derivative wave equations that have the ability to model power-law attenuation. On the other hand, a multiple relaxation model is widely recognized as a physically based description of the acoustic loss mechanisms as developed by Nachman et al. [J. Acoust. Soc. Am. 88, 1584-1595 (1990)]. Through assumption of a continuum of relaxation mechanisms, each with an effective compressibility described by a distribution related to the Mittag-Leffler function, this paper shows that the wave equation corresponding to the multiple relaxation approach is identical to a given fractional derivative wave equation. This work therefore provides a physically based motivation for use of fractional wave equations in acoustic modeling.
A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial
NASA Technical Reports Server (NTRS)
Lock, James A.; Mishchenko, Michael I.
2015-01-01
The equations for frequency-domain multiple scattering are derived for a scalar or electromagnetic plane wave incident on a collection of particles at known positions, and in the time-domain for a plane wave pulse incident on the same collection of particles. The calculation is carried out for five different combinations of wave types and particle types of increasing geometrical complexity. The results are used to illustrate and discuss a number of physical and mathematical characteristics of multiple scattering in the frequency- and time-domains. We argue that frequency-domain multiple scattering is a purely mathematical construct since there is no temporal sequencing information in the frequency-domain equations and since the multi-particle path information can be dispelled by writing the equations in another mathematical form. However, multiple scattering becomes a definite physical phenomenon in the time-domain when the collection of particles is illuminated by an appropriately short localized pulse.
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.
Generalized F-statistic: Multiple detectors and multiple gravitational wave pulsars
Cutler, Curt; Schutz, Bernard F.
2005-09-15
The F-statistic, derived by Jaranowski, Krolak and Schutz (1998), is the optimal (frequentist) statistic for the detection of nearly periodic gravitational waves from known neutron stars, in the presence of stationary, Gaussian detector noise. The F-statistic was originally derived for the case of a single detector, whose noise spectral density was assumed constant in time, and for a single known neutron star. Here we show how the F-statistic can be straightforwardly generalized to the cases of (1) a network of detectors with time-varying noise curves, and (2) a collection of known sources (e.g., all known millisecond pulsars within some fixed distance). Fortunately, all the important ingredients that go into our generalized F-statistics are already calculated in the single-source/single-detector searches that are currently implemented, e.g., in the Laser Interferometer Gravitational-Wave Observatory software library, so implementation of optimal multidetector, multisource searches should require negligible additional cost in computational power or software development. This paper also includes an analysis of the likely efficacy of a collection-type search, and derives criteria for deciding which candidate sources should be included in a collection, if one is trying to maximize the detectability of the whole. In particular we show that for sources distributed uniformly in a thin disk, the strongest source in the collection should have signal-to-noise-squared {approx}5 times larger than weakest source, for an optimized collection. We show that gravitational waves from collection of the few brightest (in gravitational waves) neutron stars could perhaps be detected before the single brightest source, but that this is far from guaranteed. Once gravitational waves from the few brightest neutron stars have been discovered, grouping more distant (individually undetectable) pulsars into collections, and then searching for those collections, should be an effective way of
Generalized F-statistic: Multiple detectors and multiple gravitational wave pulsars
NASA Astrophysics Data System (ADS)
Cutler, Curt; Schutz, Bernard F.
2005-09-01
The F-statistic, derived by Jaranowski, Krolak and Schutz (1998), is the optimal (frequentist) statistic for the detection of nearly periodic gravitational waves from known neutron stars, in the presence of stationary, Gaussian detector noise. The F-statistic was originally derived for the case of a single detector, whose noise spectral density was assumed constant in time, and for a single known neutron star. Here we show how the F-statistic can be straightforwardly generalized to the cases of (1) a network of detectors with time-varying noise curves, and (2) a collection of known sources (e.g., all known millisecond pulsars within some fixed distance). Fortunately, all the important ingredients that go into our generalized F-statistics are already calculated in the single-source/single-detector searches that are currently implemented, e.g., in the Laser Interferometer Gravitational-Wave Observatory software library, so implementation of optimal multidetector, multisource searches should require negligible additional cost in computational power or software development. This paper also includes an analysis of the likely efficacy of a collection-type search, and derives criteria for deciding which candidate sources should be included in a collection, if one is trying to maximize the detectability of the whole. In particular we show that for sources distributed uniformly in a thin disk, the strongest source in the collection should have signal-to-noise-squared ˜5 times larger than weakest source, for an optimized collection. We show that gravitational waves from collection of the few brightest (in gravitational waves) neutron stars could perhaps be detected before the single brightest source, but that this is far from guaranteed. Once gravitational waves from the few brightest neutron stars have been discovered, grouping more distant (individually undetectable) pulsars into collections, and then searching for those collections, should be an effective way of
[Research on the Method of Blood Pressure Monitoring Based on Multiple Parameters of Pulse Wave].
Miao, Changyun; Mu, Dianwei; Zhang, Cheng; Miao, Chunjiao; Li, Hongqiang
2015-10-01
In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTT(PCG)). We experimentally verified the detection of blood pressure based on PWTT(PCG) and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTT(PCG). The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy. PMID:26964321
Coherent transmission of an ultrasonic shock wave through a multiple scattering medium
NASA Astrophysics Data System (ADS)
Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2013-08-01
We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.
Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves
Shera, Christopher A.; Cooper, Nigel P.
2013-01-01
At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves. PMID:23556591
Shera, Christopher A; Cooper, Nigel P
2013-04-01
At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.
Multiple scattering of surface waves by cavities in a half-space
Phan, Haidang; Cho, Younho; Ju, Taeho; Achenbach, Jan D.
2014-02-18
Scattering of surface waves from multiple two-dimensional cavities at the surface of a homogenous, isotropic, linearly elastic half-space is analyzed in this work. For the case of multiple cavities, the scattered field is shown to be equivalent to the total radiation from the distributions of tractions, calculated from the incident wave, over the surfaces of the cavities. The multiple-scattering model is obtained from known single-scattering calculation for a cavity by the use of the self-consistent method. The second order approximation to the multiple-scattering problem by a random distribution of cavities is then considered and solved analytically. The vertical displacement at some distance from the cavities is calculated and verified by the solution of the same problem obtained by the boundary element method (BEM). The analytical and BEM results are graphically displayed and show good agreement when the depths of the cavities are small compared to the wavelength.
Spatial Stochastic Systems Theory and Multiple Scattering of Waves.
NASA Astrophysics Data System (ADS)
Liu, Keh-Chung
In this thesis, two methods are established for deriving the expressions of the space-time correlation function of the multiply scattered fields caused by discontinuous random media, including randomly distributed discrete scatterers and irregular interfaces. These two methods are: (1) method of spatial stochastic systems, (2) method of discontinuous stochastic field. For the first method, the basic concept and theory about the spatial stochastic system and the generalized convolution estab- lished in the author's earlier papers are developed, and the problem of determining the multiply scattered field in complex media is reduced to a simple algebraic operation of generalized convolutions that is obtained from a system decomposition diagram and the corresponding operator equations (Chapter II). By means of this method, the general formulas for the mean value, mean square value and space correlation function of the multiply scattered field are established. These formulas consist of only a single summation and a single integration, and the integrands can be obtained from a recurrence formula (Chapters III -V). For the second method, a discontinuous stochastic field (beta)((')r,(omega)), which represents the properties of the random medium (randomly distributed discrete scatterers), is defined. Because of the intro- duction of (beta)((')r,(omega)) the whole process of solving the stochastic wave equation by means of the stochastic integral equation and the Neumann series expansion is greatly simplified. The result shows that the space correlation function of the multiply scattered field can be exactly expressed as the form of a series, each term of which is an integral of the statistical moment of (beta)((')r,(omega)) of corresponding order. The convergence speed of this series mainly depends on the contrast in speed between the scatterer material and the surrounding medium, i.e., the fluctuation of the random medium. Thus, the task is reduced to the calculation of
NASA Astrophysics Data System (ADS)
Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.
2011-12-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
A Cryogenic Half-Wave Plate Module to Measure Polarization at Multiple FIR Passbands
NASA Technical Reports Server (NTRS)
Rennick, Timothy S.; Vaillancourt, John E.; Hildebrand, Roger H.; Heimsath, Stephen J.
2002-01-01
One of the key components in a far-infrared polarimeter that is being designed at the University of Chicago is a locally-powered half-wave plate module. This compact, lightweight, and reliable module will operate at cryogenic temperatures, rotating a half-wave plate about its axis within the optical path. By doing so, polarization measurements can be made. Further, by utilizing multiple half-wave plate modules within the polarimeter, multiple wavelengths or passbands can be studied. In this paper, we describe the design and performance of a relatively inexpensive prototype module that was assembled and tested successfully, outline the difficulties that had to be overcome, and recommend improvements to future modules. This effort now lays some of the groundwork for a next-generation polarimeter for far-infrared astronomy.
Influence of multiple ion species on low-frequency electromagnetic wave instabilities
Brinca, A.L.; Tsurutani, B.T. )
1989-10-01
Analysis of the stability of low-frequency electromagnetic modes excited by coexisting newborn ion species shows that the effect to multiple (singly ionized) ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. Whereas each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species, if ion masses are disparate, newborn ions of similar masses can strongly catalyze wave growth of fluidlike, nonresonant modes, but only bring about weak growth enhancements in cyclotron resonant instabilities. The authors contrast wave characteristics due to the coexistence of hydronium, water vapor, and oxygen newborn ions with previous results involving cometary hydrogen and oxygen ions and provide a physical interpretation of the results.
Damage evaluation based on a wave energy flow map using multiple PZT sensors.
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi, Emptyyn Y; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-23
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-01
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430
Shear wavelength estimation based on inverse filtering and multiple-point shear wave generation
NASA Astrophysics Data System (ADS)
Kitazaki, Tomoaki; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
2016-07-01
Elastography provides important diagnostic information because tissue elasticity is related to pathological conditions. For example, in a mammary gland, higher grade malignancies yield harder tumors. Estimating shear wave speed enables the quantification of tissue elasticity imaging using time-of-flight. However, time-of-flight measurement is based on an assumption about the propagation direction of a shear wave which is highly affected by reflection and refraction, and thus might cause an artifact. An alternative elasticity estimation approach based on shear wavelength was proposed and applied to passive configurations. To determine the elasticity of tissue more quickly and more accurately, we proposed a new method for shear wave elasticity imaging that combines the shear wavelength approach and inverse filtering with multiple shear wave sources induced by acoustic radiation force (ARF). The feasibility of the proposed method was verified using an elasticity phantom with a hard inclusion.
FIRST SDO AIA OBSERVATIONS OF A GLOBAL CORONAL EUV 'WAVE': MULTIPLE COMPONENTS AND 'RIPPLES'
Liu Wei; Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.
2010-11-01
We present the first Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) observations of a global coronal EUV disturbance (so-called 'EIT wave') revealed in unprecedented detail. The disturbance observed on 2010 April 8 exhibits two components: one diffuse pulse superimposed, on which are multiple sharp fronts that have slow and fast components. The disturbance originates in front of erupting coronal loops and some sharp fronts undergo accelerations, both effects implying that the disturbance is driven by a coronal mass ejection. The diffuse pulse, propagating at a uniform velocity of 204-238 km s{sup -1} with very little angular dependence within its extent in the south, maintains its coherence and stable profile for {approx}30 minutes. Its arrival at increasing distances coincides with the onsets of loop expansions and the slow sharp front. The fast sharp front overtakes the slow front, producing multiple 'ripples' and steepening the local pulse, and both fronts propagate independently afterward. This behavior resembles the nature of real waves. Unexpectedly, the amplitude and FWHM of the diffuse pulse decrease linearly with distance. A hybrid model, combining both wave and non-wave components, can explain many, but not all, of the observations. Discoveries of the two-component fronts and multiple ripples were made possible for the first time thanks to AIA's high cadences ({<=}20 s) and high signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph
2015-08-01
Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.
Lambert, Simon A; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph
2015-08-28
Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μm in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.
Campanelli, Mark; Gedeon, Tomás
2010-04-01
Somitogenesis is a process common to all vertebrate embryos in which repeated blocks of cells arise from the presomitic mesoderm (PSM) to lay a foundational pattern for trunk and tail development. Somites form in the wake of passing waves of periodic gene expression that originate in the tailbud and sweep posteriorly across the PSM. Previous work has suggested that the waves result from a spatiotemporally graded control protein that affects the oscillation rate of clock-gene expression. With a minimally constructed mathematical model, we study the contribution of two control mechanisms to the initial formation of this gene-expression wave. We test four biologically motivated model scenarios with either one or two clock protein transcription binding sites, and with or without differential decay rates for clock protein monomers and dimers. We examine the sensitivity of wave formation with respect to multiple model parameters and robustness to heterogeneity in cell population. We find that only a model with both multiple binding sites and differential decay rates is able to reproduce experimentally observed waveforms. Our results show that the experimentally observed characteristics of somitogenesis wave initiation constrain the underlying genetic control mechanisms.
Cheng, Tonglei; Tuan, Tong Hoang; Xue, Xiaojei; Liu, Lai; Deng, Dinghuan; Suzuki, Takenobu; Ohishi, Yasutake
2015-08-10
We experimentally demonstrate multiple dispersive waves (DWs) emitted by multiple mid-infrared solitons in a birefringence tellurite microstuctured optical fiber (BTMOF). To the best of our knowledge, this is the first demonstration of multiple DWs in the non-silica fibers. By using a pulse of ~80 MHz and ~200 fs emitted from an optical parametric oscillator (OPO) as the pump source, DWs and solitons are investigated on the fast and slow axes of the BTMOF at the pump wavelength of ~1800 nm. With the average pump power increasing from ~200 to 450 mW, the center wavelength of the 1st DW decreases from ~956 to 890 nm, the 2nd DW from ~1039 to 997 nm, the 3rd DW from ~1101 to 1080 nm, and the 4th DW from ~1160 to 1150 nm. Meanwhile, obvious multiple soliton self-frequency shifts (SSFSs) are observed in the mid-infrared region. Furthermore, DWs and solitons at the pump wavelength of ~1400 and 2000 nm are investigated at the average pump power of ~350 mW. PMID:26367917
Zarmi, Yair
2016-01-01
Slower-than-light multi-front solutions of the Sine-Gordon in (1+2) dimensions, constructed through the Hirota algorithm, are mapped onto spatially localized structures, which emulate free, spatially extended, massive relativistic particles. A localized structure is an image of the junctions at which the fronts intersect. It propagates together with the multi-front solution at the velocity of the latter. The profile of the localized structure obeys the linear wave equation in (1+2) dimensions, to which a term that represents interaction with a slower-than-light, Sine-Gordon-multi-front solution has been added. This result can be also formulated in terms of a (1+2)-dimensional Lagrangian system, in which the Sine-Gordon and wave equations are coupled. Expanding the Euler-Lagrange equations in powers of the coupling constant, the zero-order part of the solution reproduces the (1+2)-dimensional Sine-Gordon fronts. The first-order part is the spatially localized structure. PACS: 02.30.Ik, 03.65.Pm, 05.45.Yv, 02.30.Ik. PMID:26930077
Methods of mapping from phase to sine amplitude in direct digital synthesis.
Vankka, J
1997-01-01
There are many methods for performing functional mapping from phase to sine amplitude (e.g., ROM look-up, coarse/fine segmentation into multiple ROM's, Taylor series, CORDIC algorithm). The spectral purity of the conventional direct digital synthesizer (DDS) is also determined by the resolution of the values stored in the sine table ROM. Therefore, it is desirable to increase the resolution of the ROM. Unfortunately, larger ROM storage means higher power consumption, lower reliability, lower speed, and greatly increased costs. Different memory compression and algorithmic techniques and their effect on distortion and trade-offs are investigated in detail. A computer program has been created to simulate the effects of the memory compression and algorithmic techniques on the output spectrum of the DDS. For each memory compression and algorithmic technique, the worst case spurious response is calculated using the computer program. PMID:18244150
Numerical simulation of seismic wave field in graded geological media containing multiple cavities
NASA Astrophysics Data System (ADS)
Fontara, Ioanna-Kleoniki; Dineva, Petia S.; Manolis, George D.; Wuttke, Frank
2016-08-01
In this study, we develop an efficient boundary integral equation method for estimation of seismic motion in a graded medium with multiple cavities under antiplane strain conditions. This inhomogeneous and heterogeneous medium is subjected to either time-harmonic incident shear seismic waves or to body waves radiating from a point seismic source. Three different types of soil material gradient are considered: (i) density and shear modulus vary proportionally as quadratic functions of depth, but the wave velocity remains constant; (ii) the soil material is viscoelastic, with a shear modulus and density that vary with respect to the spatial coordinates in an arbitrary fashion, so that the wave velocity is both frequency and position-dependent and (iii) the soil material has position-dependent shear modulus and constant density, yielding a linear profile for the wave velocity. Three different, frequency-dependent boundary integral equation schemes are respectively developed for the aforementioned three types of graded soil materials based on: (i) Green's function for the quadratically graded elastic half-plane; (ii) a fundamental solution for the viscoelastic full-plane with position-dependent wave speed profiles and (iii) a fundamental solution for an elastic full-plane with a linearly varying wave speed profile. Next, a number of cases involving geological media with position-dependent material properties and any number of cavities of various shapes and geometry are solved in the frequency domain. The numerical results reveal the dependency of the wave fields and zones of stress concentration on the following key factors: (i) type and properties of the soil material gradient; (ii) type and characteristics of the applied seismic load; (iii) shape, position and number of cavities and (iv) interaction phenomena between the cavities and the free surface.
Critical immune and vaccination thresholds for determining multiple influenza epidemic waves
Matrajt, Laura; Longini, Ira M.
2013-01-01
Previous influenza pandemics (1918, 1957, and 1968) have all had multiple waves. The 2009 pandemic influenza A(H1N1) (pandemic H1N1) started in April 2009 and was followed, in the United States (US) and temperate Northern Hemisphere, by a second wave during the fall of 2009. The ratio of susceptible and immune individuals in a population at the end of a wave determines the potential and magnitude of a subsequent wave. As influenza vaccines are not completely protective, there was a combined immunity in the population at the beginning of 2010 (due to vaccination and due to previous natural infection), and it was uncertain if this mixture of herd immunity was enough to prevent a third wave of pandemic influenza during the winter of 2010. Motivated by this problem, we developed a mathematical deterministic two-group epidemic model with vaccination and calibrated it for the 2009 pandemic H1N1. Then, applying methods from mathematical epidemiology we developed a scheme that allowed us to determine critical thresholds for vaccine-induced and natural immunity that would prevent the spread of influenza. Finally, we estimated the level of combined immunity in the US during winter 2010. Our results suggest that a third wave was unlikely if the basic reproduction number R0 were below 1.6, plausible if the original R0 was 1.6, and likely if the original R0 was 1.8 or higher. Given that the estimates for the basic reproduction number for pandemic influenza place it in the range between 1.4 and 1.6 [1, 2, 3, 4, 5, 6, 7], our approach accurately predicted the absence of a third wave of influenza in the US during the winter of 2010. We also used this scheme to accurately predict the second wave of pandemic influenza in London and the West Midlands, UK during the fall of 2009. PMID:22325011
A multiple scattering theory for EM wave propagation in a dense random medium
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Wong, K. W.
1985-01-01
For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.
NASA Astrophysics Data System (ADS)
Nienhuis, J.; Ashton, A. D.; Giosan, L.
2012-12-01
The plan-view morphologies of fluvial- and wave-dominated deltas are clearly distinctive, but transitional forms are numerous. A quantitative, process-based description of this transition remains unexplored, particularly for river deltas with multiple active channels. Previous studies focused on general attributes of the fluvial and marine environment, such as the balance between wave energy and river discharge. Here, we propose that the transition between fluvial and wave dominance is directly related to the magnitude of the fluvial bedload flux to the nearshore region versus the alongshore sediment transport capacity of waves removing sediment away from the mouth. In the case of a single-channel delta, this balance can be computed for a given distribution of waves approaching shore. Fluvial dominance occurs when fluvial sediment input exceeds the wave-sustained maximum alongshore sediment transport for all potential shoreline orientations both up- and downdrift of the river mouth. However, deltaic channels have the tendency to bifurcate with increasing fluvial strength. Initial bifurcation splits the fluvial sediment flux among individual channels, while the potential sediment transport by waves remains constant for both river mouths. At higher bifurcation orders, multiple channels interact with each other alongshore, a situation more complicated than the single channel case and one that cannot be simple addressed analytically. We apply a model of plan-view shoreline evolution to simulate the evolution of a deltaic environment with multiple active channels. A highly simplified fluvial domain is represented by deposition of sediment where channels meet the coast. We investigate two scenarios of fluvial delivery. The first scenario deposits fluvial sediment alongshore on a self-similar predefined network of channels. We analyze the effects of different network geometrical parameters, such as bifurcation length, bifurcation angle, and sediment partitioning. In the
Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo.
Zulfikri, Habiburrahman; Amovilli, Claudio; Filippi, Claudia
2016-03-01
We introduce a novel class of local multideterminant Jastrow-Slater wave functions for the efficient and accurate treatment of excited states in quantum Monte Carlo. The wave function is expanded as a linear combination of excitations built from multiple sets of localized orbitals that correspond to the bonding patterns of the different Lewis resonance structures of the molecule. We capitalize on the concept of orbital domains of local coupled-cluster methods, which is here applied to the active space to select the orbitals to correlate and construct the important transitions. The excitations are further grouped into classes, which are ordered in importance and can be systematically included in the Jastrow-Slater wave function to ensure a balanced description of all states of interest. We assess the performance of the proposed wave function in the calculation of vertical excitation energies and excited-state geometry optimization of retinal models whose π → π* state has a strong intramolecular charge-transfer character. We find that our multiresonance wave functions recover the reference values of the total energies of the ground and excited states with only a small number of excitations and that the same expansion can be flexibly used at very different geometries. Furthermore, significant computational saving can also be gained in the orbital optimization step by selectively mixing occupied and virtual orbitals based on spatial considerations without loss of accuracy on the excitation energy. Our multiresonance wave functions are therefore compact, accurate, and very promising for the calculation of multiple excited states of different character in large molecules.
Digital calibration circuit employing composite sine wave signals
NASA Astrophysics Data System (ADS)
Blackmon, Fletcher A.; Reid, Robert J.
1991-10-01
A digital calibration circuit provides 1/3 octave center frequencies in the range of 50 Hz-12.5 kHz (25 tones) simultaneously, at the output, and at repeatable levels. The system converts digital data to an analog representation for use in calibrating hydrophones. The calibration circuit is comprised of a clock section, a counting section, a clearing section, a data storage/transfer section, and a signal conditioning section. The information that is provided to the output in analog form is stored in digital form in an EPROM within the data storage/transfer section.
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Fischer, Sebastian; Mueller, Wolf; Schulte, Matthias; Kiefer, Jurij; Hirche, Christoph; Heimer, Sina; Köllensperger, Eva; Germann, Günter; Reichenberger, Matthias A
2015-03-01
Capsular fibrosis is the most frequent long-term complication after insertion of silicone devices. Today, mainly direct immunostimulation and subclinical infection are held responsible for inducing and maintaining inflammatory reactions, which lead to overwhelming extracellular matrix formation. Extracorporeal shock waves (ESWs) are capable of inhibiting inflammatory processes and revealing antibacterial capacity. In our previous study, we observed decelerated capsule development after application of a single shock wave immediately after surgery. The purpose of this study was to evaluate the effects of multiple ESWT after insertion of silicone implants in the same rodent model. Therefore, silicone prostheses were inserted into a submuscular pocket in 12 additional male Lewis rats, and shock waves were administered over a 14-d interval. At 35 d (n = 6) and 100 d (n = 6) after insertion, silicone implants and surrounding capsule tissue were removed and prepared for histologic and immunohistochemical analysis, as well as polymerase chain reaction (Ccl2, CD68, transforming growth factor β1, matrix metalloproteinase 2). Compared with the control group, multiple ESWT had no effect on day 35, but resulted in a significantly thinner capsule on day 100 (825.8 ± 313.2 vs. 813.3 ± 47.9, p = 0.759, and 1062.3 ± 151.9 vs. 495.4 ± 220.4, p < 0.001, respectively). The capsule was even thinner than after a single shock wave application, which had been found to result in thinner capsules at every time point in our previous study. This active degradation of the fibrous envelope caused by multiple ESWs was accompanied by synergistic alterations in pro- and anti-fibrotic proteins (transforming growth factor β1 and matrix metalloproteinase 2, respectively). In conclusion, after insertion of silicone devices, single ESWT is capable of decelerating capsule formation in contrast to multiple ESWT, which degrades fibrotic tissue. These findings seem to be associated with inhibition of
Atomic multiple-wave interferometer phase-shifted by the scalar Aharonov-Bohm effect
Aoki, Takatoshi; Yasuhara, Makoto; Morinaga, Atsuo
2003-05-01
A time-domain atomic multiple-wave interferometer using laser-cooled and trapped sodium atoms has been developed under pulsed magnetic fields. Each atomic phase was shifted due to the scalar Aharonov-Bohm effect by applying spatially homogeneous pulsed magnetic fields between numerous Raman excitation laser pulses. Interference fringes with a finesse of 11 were demonstrated for 11 successive Raman pulses and ten magnetic-field pulses.
Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.
Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K
2012-02-01
We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. PMID:21908011
Multiple harmonic ULF waves in the plasma sheet boundary layer observed by Cluster
NASA Astrophysics Data System (ADS)
Engebretson, M. J.; Kahlstorf, C. R. G.; Posch, J. L.; Keiling, A.; Walsh, A. P.; Denton, R. E.; Broughton, M. C.; Owen, C. J.; FornaçOn, K.-H.; RèMe, H.
2010-12-01
The passage of the Cluster satellites in a polar orbit through Earth's magnetotail has provided numerous observations of harmonically related Pc 1-2 ULF wave events, with the fundamental near the local proton cyclotron frequency Ωcp. Broughton et al. (2008) reported observations by Cluster of three such events in the plasma sheet boundary layer, and used the wave telescope technique to determine that their wave vectors k were nearly perpendicular to B. This paper reports the results of a search for such waves throughout the 2003 Cluster tail passage. During the 4 month period of July-October 2003, 35 multiple-harmonic wave events were observed, all in the plasma sheet boundary layer (PSBL). From the first observed event (22 July) to the last (28 October), 13 of Cluster's 42 tail passes had at least one event. The wave events were rather evenly distributed from XGSE = -7 RE out to the Cluster apogee distance of -18 RE, with one event observed at -4 RE. ZGSE for these events ranged from -10 to -3 RE and +3 to +7 RE (i.e., there were no events for ∣Z∣ < 3 RE). The wave events, with durations from ˜1 to 50 min, were consistently associated with signatures of the PSBL: elevated fluxes of counterstreaming ions with energies ranging from ˜3 to 30 keV, and elevated fluxes of electrons with energies ranging from 0.25 to ˜5 keV. Analysis of plasma parameters suggests that although waves occurred only when the ion beta exceeded 0.1 (somewhat larger than typical for the PSBL), ion particle pressure may be of more physical importance in controlling wave occurrence. Electron distributions were more isotropic in pitch angles than the ion distributions, but some evidence of counterstreaming electrons was detected in 83% of the events. The ions also showed clear signatures of shell-like or ring-like distributions; i.e., with reduced fluxes below the energy of maximum flux. The suprathermal ion fluxes were asymmetric in all events studied, with more ions streaming earthward
NASA Astrophysics Data System (ADS)
Liu, Chein-Shan; Kuo, Chung-Lun
2016-09-01
In this paper we first express the wave equation in terms of the Minkowskian polar coordinates and generate a set of complete hyperbolic type Trefftz bases: rk cosh (kθ) and rk sinh (kθ), which are further transformed to wave polynomials as the trial solution bases for the one-dimensional wave equation. In order to stably solve the wave propagation problems long-term we develop a multiple-scale Trefftz method (MSTM), of which the scales are determined a priori by the collocation points. Then we derive a very simple method of multi-dimensional wave polynomials, equipped with different spatial directions which being the normalized wavenumber vectors, as the polynomial Trefftz bases for solving the multi-dimensional wave equations, which is named a multiple-direction Trefftz method (MDTM). Several numerical examples of two- and three-dimensional wave equations demonstrate that the present method is efficient and stable.
Virtual sine arm kinematic mount system
Xu, Z.; Randall, K.J.
1997-09-01
A novel kinematic mount system for a vertical focusing mirror of the soft x-ray spectroscopy beamline at the Advanced Photon Source is described. The system contains three points in a horizontal plane. Each point consists of two horizontal linear precision stages, a spherical ball bearing, and a vertical precision stage. The horizontal linear stages are aligned orthogonally and are conjoined by a spherical ball bearing, supported by the vertical linear stage at each point. The position of each confined horizontal stage is controlled by a motorized micrometer head by spring-loading the flat tip of the micrometer head onto a tooling ball fixing on the carriage of the stage. A virtual sine arm is formed by tilting the upstream horizontal stage down and the two downstream horizontal stages up by a small angle. The fine pitch motion is achieved by adjusting the upstream stage. This supporting structure is extremely steady due to a relatively large span across the supporting points and yields extremely high resolution on the pitch motion. With a one degree tilt and a microstepping motor, the authors achieved a 0.4 nanoradian resolution on the mirror pitch motion.
NASA Astrophysics Data System (ADS)
Li, Yu-Ye; Jia, Bing; Gu, Hua-Guang; An, Shu-Cheng
2012-05-01
Diversity in the neurons and noise are inevitable in the real neuronal network. In this paper, parameter diversity induced spiral waves and multiple spatial coherence resonances in a two-dimensional neuronal network without or with noise are simulated. The relationship between the multiple resonances and the multiple transitions between patterns of spiral waves are identified. The coherence degrees induced by the diversity are suppressed when noise is introduced and noise density is increased. The results suggest that natural nervous system might profit from both parameter diversity and noise, provided a possible approach to control formation and transition of spiral wave by the cooperation between the diversity and noise.
Optimized {gamma}-Multiplicity Based Spin Assignments of s-Wave Neutron Resonances
Becvar, F.; Koehler, Paul Edward; Krticka, Milan; Mitchell, G. E.; Ullmann, J. L.
2011-01-01
The multiplicity of -ray emission following neutron capture at isolated resonances carries valuable information on the resonance spin. Several methods utilizing this information have been developed. The latest method was recently introduced for analyzing the data from time-of-flight measurements with 4 -calorimetric detection systems. The present paper describes a generalization of this method. The goal is the separation of the -emission yields belonging to the two neutron capturing state spins of isolated (or even unresolved) s-wave neutron resonances on targets with non-zero spin. The formalism for performing this separation is described and then tested on artificially generated data. This new method was applied to the -multiplicity data obtained for the 147Sm(n, )148Sm reaction using the DANCE detector system at the LANSCE facility at Los Alamos National Laboratory. The analyzing power of the upgraded method is supported by combined dicebox and geant4 simulations of the fluctuation properties of the multiplicity distributions.
Statistical Analysis of EMIC Waves in Multiple Component Plasma Including Heavy Ions
NASA Astrophysics Data System (ADS)
Matsuda, S.; Kasahara, Y.; Goto, Y.
2013-12-01
It is well known that Earth's radiation belts are located around geomagnetic equator, where wide ranges of energetic particles from several hundred keV to several tens MeV are contained. According to the recent study, it is suggested that ELF/VLF waves such as EMIC waves and chorus emissions deeply contribute to the generation and loss mechanism of relativistic electrons in the radiation belt. The ERG mission[1] is expected to provide important clues for solving plasma dynamics in the Earth's radiation belts by means of integrated observation of wide energy range of plasma particles and high resolution plasma waves. On the other hand, long-term observation data which covers over 2 cycles of solar activity obtained by the Akebono satellite is very valuable to work out the strategy of the ERG mission. The ELF receiver, which is a sub-system of the VLF instruments onboard Akebono, measures waveforms below 50 Hz for one component of electric field and three components of magnetic field, or waveforms below 100 Hz for one component of electric and magnetic field, respectively. It was reported that ion cyclotron waves were observed near magnetic equator by the receiver[2]. In our previous study[3], we introduced four events of characteristic EMIC waves observed by Akebono in April, 1989. These waves have sudden decrease of intensity just above half of proton cyclotron frequency changing along the trajectories of Akebono. Comparing the observed data with the dispersion relation in multiple species of ions under cold plasma approximation, we demonstrate that a few percent of 'M / Z = 2 ions (M = mass of ions, Z = charge of ions)' such as alpha particles (He++) or deuterons (D+) cause such characteristic attenuation of EMIC at lower hybrid frequency. In the present study, we performed polarization analysis and direction finding of the waves. It was found that these EMIC waves were left-handed polarized in the higher frequency part, while the polarization gradually changes to
Characterization of multiple spiral wave dynamics as a stochastic predator-prey system
NASA Astrophysics Data System (ADS)
Otani, Niels F.; Mo, Alisa; Mannava, Sandeep; Fenton, Flavio H.; Cherry, Elizabeth M.; Luther, Stefan; Gilmour, Robert F., Jr.
2008-08-01
A perspective on systems containing many action potential waves that, individually, are prone to spiral wave breakup is proposed. The perspective is based on two quantities, “predator” and “prey,” which we define as the fraction of the system in the excited state and in the excitable but unexcited state, respectively. These quantities exhibited a number of properties in both simulations and fibrillating canine cardiac tissue that were found to be consistent with a proposed theory that assumes the existence of regions we call “domains of influence,” each of which is associated with the activity of one action potential wave. The properties include (i) a propensity to rotate in phase space in the same sense as would be predicted by the standard Volterra-Lotka predator-prey equations, (ii) temporal behavior ranging from near periodic oscillation at a frequency close to the spiral wave rotation frequency (“type-1” behavior) to more complex oscillatory behavior whose power spectrum is composed of a range of frequencies both above and, especially, below the spiral wave rotation frequency (“type-2” behavior), and (iii) a strong positive correlation between the periods and amplitudes of the oscillations of these quantities. In particular, a rapid measure of the amplitude was found to scale consistently as the square root of the period in data taken from both simulations and optical mapping experiments. Global quantities such as predator and prey thus appear to be useful in the study of multiple spiral wave systems, facilitating the posing of new questions, which in turn may help to provide greater understanding of clinically important phenomena such as ventricular fibrillation.
Characterization of multiple spiral wave dynamics as a stochastic predator-prey system.
Otani, Niels F; Mo, Alisa; Mannava, Sandeep; Fenton, Flavio H; Cherry, Elizabeth M; Luther, Stefan; Gilmour, Robert F
2008-08-01
A perspective on systems containing many action potential waves that, individually, are prone to spiral wave breakup is proposed. The perspective is based on two quantities, "predator" and "prey," which we define as the fraction of the system in the excited state and in the excitable but unexcited state, respectively. These quantities exhibited a number of properties in both simulations and fibrillating canine cardiac tissue that were found to be consistent with a proposed theory that assumes the existence of regions we call "domains of influence," each of which is associated with the activity of one action potential wave. The properties include (i) a propensity to rotate in phase space in the same sense as would be predicted by the standard Volterra-Lotka predator-prey equations, (ii) temporal behavior ranging from near periodic oscillation at a frequency close to the spiral wave rotation frequency ("type-1" behavior) to more complex oscillatory behavior whose power spectrum is composed of a range of frequencies both above and, especially, below the spiral wave rotation frequency ("type-2" behavior), and (iii) a strong positive correlation between the periods and amplitudes of the oscillations of these quantities. In particular, a rapid measure of the amplitude was found to scale consistently as the square root of the period in data taken from both simulations and optical mapping experiments. Global quantities such as predator and prey thus appear to be useful in the study of multiple spiral wave systems, facilitating the posing of new questions, which in turn may help to provide greater understanding of clinically important phenomena such as ventricular fibrillation. PMID:18850871
Multiple scattering dynamics of fermions at an isolated p-wave resonance
Thomas, R.; Roberts, K. O.; Tiesinga, E.; Wade, A. C. J.; Blakie, P. B.; Deb, A. B.; Kjærgaard, N.
2016-01-01
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance. PMID:27396294
Multiple scattering dynamics of fermions at an isolated p-wave resonance
NASA Astrophysics Data System (ADS)
Thomas, R.; Roberts, K. O.; Tiesinga, E.; Wade, A. C. J.; Blakie, P. B.; Deb, A. B.; Kjærgaard, N.
2016-07-01
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.
Multiple scattering dynamics of fermions at an isolated p-wave resonance.
Thomas, R; Roberts, K O; Tiesinga, E; Wade, A C J; Blakie, P B; Deb, A B; Kjærgaard, N
2016-01-01
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic (40)K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for (40)K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance. PMID:27396294
Multiple scattering dynamics of fermions at an isolated p-wave resonance.
Thomas, R; Roberts, K O; Tiesinga, E; Wade, A C J; Blakie, P B; Deb, A B; Kjærgaard, N
2016-07-11
The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic (40)K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for (40)K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.
Borodulina, O R; Kramerov, D A
2001-10-01
Four tRNA-related SINE families were isolated from the genome of the shrew Sorex araneus (SOR element), mole Mogera robusta (TAL element), and hedgehog Mesechinus dauuricus (ERI-1 and ERI-2 elements). Each of these SINEs families is specific for a single Insectivora family: SOR, for Soricidae (shrews); TAL, for Talpidae (moles and desmans); ERI-1 and ERI-2, for Erinaceidae (hedgehogs). There is a long polypyrimidine region (TC-motif) in TAL, ERI-1, and ERI-2 elements located immediately upstream of an A-rich tail with polyadenylation signals (AATAAA) and an RNA polymerase III terminator (T(4-6)) or TCT(3-4)). Ten out of 14 analyzed mammalian tRNA-related SINE families have an A-rich tail similar to that of TAL, ERI-1, and ERI-2 elements. These elements were assigned to class T+. The other four SINEs including SOR element have no polyadenylation signal and transcription terminator in their A-rich tail and were assigned to class T-. Class T+ SINEs occur only in mammals, and most of them have a long polypyrimidine region. Possible models of retroposition of class T+ and T- SINEs are discussed.
NASA Astrophysics Data System (ADS)
Andrushchenko, V. A.; Murashkin, I. V.; Shevelev, Yu. D.
2016-06-01
Within the investigation of various aspects of asteroid and comet danger and, in particular, the explosion of several fragments of meteoroids in the atmosphere above the Earth surface, the toy problem about four point explosions in the case of their special arrangement above the underlying surface is numerically solved. Complex interactions of primary and secondary shock waves between themselves, with the hard surface, and with tangential discontinuities are examined. The structure of flow inside gas regions disturbed by the explosions—the occurrence of eddy structures in them and the influence of reflected shocks waves on them—are investigated. The tendency of the external wave fronts of each explosion to form a unified front and the tendency of their internal hot domains to merge into a joined configuration (where the second process proceeds a little later than the first one) is revealed. This unified front and joined configuration are qualitatively identical to the external internal structure for the solitary explosion. The specially arranged explosions are chosen because the effects of multiple diffraction, interference, and, the main thing, cumulation of spherical waves are manifested more clearly in this caseTwo variants with different altitude of the explosions above the surface are calculated.
NASA Astrophysics Data System (ADS)
Barniol, Pablo; Zavala, Genaro
2016-06-01
In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of several test questions that had some problems in their original design, (ii) standardization of the number of options for each question to five, (iii) conversion of the two-tier questions to multiple-choice questions, and (iv) modification of some questions to make them independent of others. To obtain a final version of the test, we administered both the original and modified versions several times to students at a large private university in Mexico. These students were completing a course that covers the topics tested by the survey. The final modified version of the test was administered to 234 students. In this study we present the modifications for each question, and discuss the reasons behind them. We also analyze the results obtained by the final modified version and offer a comparison between the original and modified versions. In the Supplemental Material we present the final modified version of the test. It can be used by teachers and researchers to assess students' understanding of, and learning about, mechanical waves.
Cruz-Delgado, Daniel; Monroy-Ruz, Jorge; Barragan, Angela M; Ortiz-Ricardo, Erasto; Cruz-Ramirez, Hector; Ramirez-Alarcon, Roberto; Garay-Palmett, Karina; U'Ren, Alfred B
2014-06-15
We present an experimental and theoretical study of photon pairs generated by spontaneous four-wave mixing (SFWM), based on birefringent phasematching, in a fiber that supports more than one transverse mode. We present SFWM spectra, obtained through single-channel and coincidence photon counting, which exhibit multiple peaks shown here to be the result of multiple SFWM processes associated with different combinations of transverse modes for the pump, signal, and idler waves.
Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves
NASA Astrophysics Data System (ADS)
Qiu, S.; Eliasson, V.
2016-05-01
Interaction of multiple blast waves can be used to direct energy toward a target while simultaneously reducing collateral damage away from the target area. In this paper, simulations of multiple point source explosives were performed and the resulting shock interaction and coalescence behavior were explored. Three to ten munitions were placed concentrically around the target, and conditions at the target area were monitored and compared to those obtained using a single munition. For each simulation, the energy summed over all munitions was kept constant, while the radial distances between target and munitions and the munition initiation times were varied. Each munition was modeled as a point source explosion. The resulting blast wave propagation and shock front coalescence were solved using the inviscid Euler equations of gas dynamics on overlapping grids employing a finite difference scheme. Results show that multiple munitions can be beneficial for creating extreme conditions at the intended target area; over 20 times higher peak pressure is obtained for ten simultaneous munitions compared to a single munition. Moreover, peak pressure at a point away from the target area is reduced by more than a factor of three.
Serebryannikov, Andriy E; Cakmak, A Ozgur; Colak, Evrim; Caglayan, Humeyra; Kurt, Hamza; Ozbay, Ekmel
2014-09-01
The dispersion properties of rod-type chirped photonic crystals (PhCs) and non-channeled transmission in the direction of the variation of structural parameters from one cell of such a PhC to another are studied. Two types of configurations that enable multiple slow waves but differ in the utilized chirping scheme are compared. It is demonstrated that the multiple, nearly flat bands with a group index of refraction exceeding 180 can be obtained. For these bands, transmission is characterized by multiple narrow peaks of perfect transmission, strong field enhancement inside the slab, and large values of the Q-factor. Among the bands, there are some that show negative phase velocity. Symmetry with respect to the slab mid-plane must be kept in order to obtain constructive interferences that are necessary for reflection-free transmission. It is shown that 15 and more slow wave bands can be obtained in one configuration. The corresponding transmission peaks are well separated from each other, being the only significant feature of the transmission spectrum, while the Q-factor can exceed 10⁵. The observed features are preserved in a wide range of the incidence angle variation. They can be used for tuning the locations and spectral widths of the transmission peaks. Some comparisons with the chirped multilayer structures have been carried out.
New calibration technique for multiple-component stress wave force balances
Abdel-jawad, Madhat M.; Mee, David J.; Morgan, Richard G.
2007-06-15
The measurement of forces in hypervelocity expansion tubes is not possible using conventional techniques. The stress wave force balance technique can be applied in expansion tubes to measure forces despite the short test times involved. This article presents a new calibration technique for multiple-component stress wave force balances where an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist. This new technique relies on the tensorial superposition of single-component impulse responses analogous to the vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads cannot be applied.
New calibration technique for multiple-component stress wave force balances
NASA Astrophysics Data System (ADS)
Abdel-jawad, Madhat M.; Mee, David J.; Morgan, Richard G.
2007-06-01
The measurement of forces in hypervelocity expansion tubes is not possible using conventional techniques. The stress wave force balance technique can be applied in expansion tubes to measure forces despite the short test times involved. This article presents a new calibration technique for multiple-component stress wave force balances where an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist. This new technique relies on the tensorial superposition of single-component impulse responses analogous to the vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads cannot be applied.
Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes
NASA Astrophysics Data System (ADS)
Hanson, Chris S.; Cally, Paul S.
2015-07-01
Our previous semi-analytic treatment of - and -mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125, 2014a; 791, 129, 2014b) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident - and -modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.
Critical immune and vaccination thresholds for determining multiple influenza epidemic waves.
Matrajt, Laura; Longini, Ira M
2012-03-01
Previous influenza pandemics (1918, 1957, and 1968) have all had multiple waves. The 2009 pandemic influenza A (H1N1) (pandemic H1N1) started in April 2009 and was followed, in the United States (US) and temperate Northern Hemisphere, by a second wave during the fall of 2009. The ratio of susceptible and immune individuals in a population at the end of a wave determines the potential and magnitude of a subsequent wave. As influenza vaccines are not completely protective, there was a combined immunity in the population at the beginning of 2010 (due to vaccination and due to previous natural infection), and it was uncertain if this mixture of herd immunity was enough to prevent a third wave of pandemic influenza during the winter of 2010. Motivated by this problem, we developed a mathematical deterministic two-group epidemic model with vaccination and calibrated it for the 2009 pandemic H1N1. Then, applying methods from mathematical epidemiology we developed a scheme that allowed us to determine critical thresholds for vaccine-induced and natural immunity that would prevent the spread of influenza. Finally, we estimated the level of combined immunity in the US during winter 2010. Our results suggest that a third wave was unlikely if the basic reproduction number R(0) were below 1.6, plausible if the original R(0) was 1.6, and likely if the original R(0) was 1.8 or higher. Given that the estimates for the basic reproduction number for pandemic influenza place it in the range between 1.4 and 1.6 (Bacaer and Ait Dads, 2011; Fraser et al., 2009; Munayco et al., 2009; Pourbohloul et al., 2009; Tuite et al., 2010; White et al., 2009; Yang et al., 2009), our approach accurately predicted the absence of a third wave of influenza in the US during the winter of 2010. We also used this scheme to accurately predict the second wave of pandemic influenza in London and the West Midlands, UK during the fall of 2009. PMID:22325011
NASA Astrophysics Data System (ADS)
Vas'kov, V. V.; Ryabova, N. A.
1996-03-01
We consider the conditions for four-wave decay of two primary plasmons with wave vectorěc k_{_0 } and frequency ω0 close to the multiple gyroresonance frequency nωBe into two secondary plasmons with frequencies ω1 > ω0 and ω2 < ω0. The secondary plasmons belong to the upper hybrid and the electron cyclotron branches. It is shown that the main features of the broad upshifted maximum (BUM) in the SEE spectrum can be explained in the context of the proposed process. The BUM feature appears in the region of frequencies having a positive shift from the high-power radio wave frequency. In particular the broad band nature of the BUM can be a result of the broad spectrum of wave number k0 of the primary plasma waves. In this case the observed cut-off frequency Δfcutoff limiting the BUM spectrum on the lower side can result from the lower bound of k0 (the increase in ω1 corresponds to decay of shorter wave plasmons). In our approach we assume that the generation of primary plasma oscillations by the high-power radio wave and the conversion of secondary plasma waves into the electromagnetic waves is due to coherent scattering of corresponding waves by small-scale magnetic-field-aligned artificial irregularities or to another nonlinear processes.
Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis
NASA Astrophysics Data System (ADS)
Denton, R. E.; Engebretson, M. J.; Keiling, A.; Walsh, A. P.; Gary, S. P.; DéCréAu, P. M. E.; Cattell, C. A.; RèMe, H.
2010-12-01
Multiple-harmonic electromagnetic waves in the ULF band have occasionally been observed in Earth's magnetosphere, both near the magnetic equator in the outer plasmasphere and in the plasma sheet boundary layer (PSBL) in Earth's magnetotail. Observations by the Cluster spacecraft of multiple-harmonic electromagnetic waves with fundamental frequency near the local proton cyclotron frequency, Ωcp, were recently reported in the plasma sheet boundary layer by Broughton et al. (2008). A companion paper surveys the entire magnetotail passage of Cluster during 2003, and reports 35 such events, all in the PSBL, and all associated with elevated fluxes of counterstreaming ions and electrons. In this study we use observed pitch angle distributions of ions and electrons during a wave event observed by Cluster on 9 September 2003 to perform an instability analysis. We use a semiautomatic procedure for developing model distributions composed of bi-Maxwellian components that minimizes the difference between modeled and observed distribution functions. Analysis of wave instability using the WHAMP electromagnetic plasma wave dispersion code and these model distributions reveals an instability near Ωcp and its harmonics. The observed and model ion distributions exhibit both beam-like and ring-like features which might lead to instability. Further instability analysis with simple beam-like and ring-like model distribution functions indicates that the instability is due to the ring-like feature. Our analysis indicates that this instability persists over an enormous range in the effective ion beta (based on a best fit for the observed distribution function using a single Maxwellian distribution), β', but that the character of the instability changes with β'. For β' of order unity (for instance, the observed case with β' ˜ 0.4), the instability is predominantly electromagnetic; the fluctuating magnetic field has components in both the perpendicular and parallel directions, but the
NASA Astrophysics Data System (ADS)
Liang, Fei; Chen, Yucong; Li, Junbing
2016-08-01
In this paper, we discuss an initial boundary value problem of stochastic viscoelastic wave equation driven by multiplicative noise involving the nonlinear damping term |" separators=" u t | q - 2 u t and a source term of the type |" separators=" u | p - 2 u . We first establish the local existence and uniqueness of solution by the iterative technique truncation function method. Moreover, we also show that the solution is global for q ≥ p. Lastly, by modifying the energy functional, we give sufficient conditions such that the local solution of the stochastic equations will blow up with positive probability or explode in energy sense for p > q.
Proposal of Multiple Detection Method in Human Detection System using Terrestrial Digital TV Waves
NASA Astrophysics Data System (ADS)
Nishi, Masahiro; Shin, Koichi; Yoshida, Teruaki
This paper newly proposes Multiple Detection (MD) method in the human detection system using terrestrial digital TV broadcasting waves. In the conventional human detection system using analog TV waves, human motion in a room can be detected by monitoring Received Signal Strength Indicator (RSSI) of the TV waves. The human detection system using TV waves works in the environments where there are no disturbances such as moving car and passing human outside the room. However, the digitalization of the terrestrial TV system deteriorates the detection performance of this system even in such environments. The radio propagation properties of the digital TV system are different from those of the analog one since the digital system is operated in the Single Frequency Network (SFN). In the SFN environment, there are some rooms under the condition that the received TV waves come from several broadcasting stations with same frequency. In such case, our measurement results indicate that the RSSI hardly fluctuates even under condition of human presence and the detection method only using RSSI has a possibility of overlooking the human motion. In the proposed MD method, not only RSSI but also Carrier to Noise Ratio (CNR) and Bit Error Rate (BER) are utilized for human detection. Today most digital TV tuners are capable of monitoring the quality of received signal, such as CNR and BER in addition to RSSI. In this paper, based on the practical measurements by using the digital TV tuners, we evaluate the fluctuation performances of RSSI, CNR and BER affected by human motion in a wooden detached house, and clarify that the MD method can effectively detect human motion even in the SFN environment.
Multiple scattering from finite inhomogeneous media. [internal reflection of electromagnetic waves
NASA Technical Reports Server (NTRS)
Tang, C. C. H.
1974-01-01
Utilizing the characteristic information concerning the apparent phase constant difference between the electric and magnetic fields propagating in an inhomogeneous medium, a theoretical analysis of the multiple scattering of electromagnetic waves in finite inhomogeneous media is presented. The solution is obtained by first approximating the coefficients of a pair of exact coupled first-order differential equations and then solving the equations by first-order iteration. The present first-order approximate solution with multiple scattering considerations is shown to be more accurate than the WKB solution. Methods to improve the accuracy of the first-order solution further are discussed. Application of the solution to slowly varying finite media with periodic properties demonstrates the validity of the solution. The same approach can be extended to frequencies in the optical region by retaining additional terms in the coefficients of the coupled differential equations.
Murukeshan, Vadakke Matham; Chua, Jeun Kee; Tan, Sia Kim; Lin, Qun Yin
2008-09-01
In this paper, fabrication of nano-scale 3-D features by total internal reflection generated single exposure counter propagating multiple evanescent waves interference lithography (TIR-MEWIL) in a positive tone resist is investigated numerically. Using a four incident plane waves configuration from an 364nm wavelength illumination source, the simulated results indicate that the proposed technique shows potential in realizing periodic surface relief features with diameter as small as 0.08lambda and height-to-diameter aspect ratio as high as 10. It is also demonstrated that the sensitivity of multiple evanescent waves' interference depends on the polarization and phase of the incident plane waves, and can be tailored to obtain different geometry features. A modified cellular automata algorithm has been employed to simulate three-dimensional photoresist profiles that would result from exposure to the studied evanescent waves interference configurations.
Stochastic D-bifurcation for a damped sine-Gordon equation with noise
Huang, Qiongwei; Xue, Changfeng; Tang, Jiashi
2015-04-15
We investigate the stochastic bifurcation of a damped sine-Gordon equation with Dirichlet boundary conditions under the influence of multiplicative Gaussian white noise. Introducing a slow time scale, we derive the amplitude equations near the trivial solution by multiscale analysis. And the stationary probability density functions are formulated analytically using the stochastic averaging of energy envelope. The numerical calculations show that the system undergoes a stochastic D-bifurcation of energy envelope from a delta measure to new stationary measures when the control parameter crosses a critical point.
NASA Astrophysics Data System (ADS)
Cranmer, Steven R.
2016-05-01
The solar corona has been revealed in the past few decades to be a highly dynamic nonequilibrium plasma environment. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be strongly turbulent, and models that invoke the dissipation of incompressible Alfvenic fluctuations have had some success in explaining the heating. However, many of these models neglect the mounting evidence that density and pressure variations may play an important role in the mass and energy balance of this system. In this presentation I will briefly review observations of both compressible and incompressible MHD fluctuations in the corona and solar wind, and discuss future prospects with DKIST. I will also attempt to outline the many ways that these different fluctuation modes have been proposed to interact with one another -- usually with an eye on finding ways to enhance their dissipation and heating. One under-appreciated type of interaction is the fact that Alfven waves will undergo multiple reflections and refractions in a "background plasma" filled with localized density fluctuations. It is becoming increasingly clear that models must not only include the effects of longitudinal variability (e.g., magnetoacoustic waves and pulse-like jets) but also transverse "striations" that appear naturally in a structured magnetic field with small-scale footpoint variability. Future off-limb observations, such as those with DKIST's Cryo-NIRSP instrument, will be crucial for providing us with a detailed census of MHD waves and their mutual interactions in the corona.
Broadband Lamb Wave Trapping in Cellular Metamaterial Plates with Multiple Local Resonances
Zhao, De-Gang; Li, Yong; Zhu, Xue-Feng
2015-01-01
We have investigated the Lamb wave propagation in cellular metamaterial plates constructed by bending-dominated and stretch-dominated unit-cells with the stiffness differed by orders of magnitude at an ultralow density. The simulation results show that ultralight metamaterial plates with textured stubs deposited on the surface can support strong local resonances for both symmetric and anti-symmetric modes at low frequencies, where Lamb waves at the resonance frequencies are highly localized in the vibrating stubs. The resonance frequency is very sensitive to the geometry of textured stubs. By reasonable design of the geometry of resonant elements, we establish a simple loaded-bar model with the array of oscillators having a gradient relative density (or weight) that can support multiple local resonances, which permits the feasibility of a broadband Lamb wave trapping. Our study could be potentially significant in designing ingenious weight-efficient acoustic devices for practical applications, such as shock absorption, cushioning, and vibrations traffic, etc. PMID:25790858
Abuturab, Muhammad Rafiq
2014-10-10
A new optical interference-based multiple-image encryption using spherical wave illumination and gyrator transform is proposed. In this proposal, each secret color image is divided into normalized red, green, and blue component images and independently encoded into corresponding phase-only component images. Then each phase-only component image of all the images are combined together to produce a single-phase-only component image as an input component image, which is bounded with a random phase mask to form a complex image. The two phase-only masks are analytically obtained from the inverse Fourier transformation of the complex image. The host image is chosen as the first phase-only mask, and the complex image hidden in the host image is regarded as the second phase-only mask. The spherical wave is generated to simultaneously illuminate phase-only masks. Then two modulated masks are gyrator transformed. The corresponding transformed images are phase truncated to obtain encrypted images and amplitude truncated to construct decryption keys. The decryption keys, angles of gyrator transform, wavelength and radius of the spherical wave, and individual decryption keys for authorized users are sensitive keys, which enhance the security layers of the system. The proposed system can be implemented by using optoelectronic architecture. Numerical simulation results demonstrate the flexibility of the system.
Monte Carlo simulations of elastic wave multiple scattering in polycrystalline media
NASA Astrophysics Data System (ADS)
Ghoshal, Goutam; Turner, Joseph A.
2005-09-01
The scattering of elastic waves in polycrystalline media is primarily due to the orientation distribution of the crystal axes of the grains. This scattering may be used to extract microstructural parameters of the material such as grain size and grain texture. In particular, diffuse ultrasonic backscatter measurements have been especially useful for extracting microstructural information. Diffuse backscatter is often modeled analytically under a single scattering assumption. Beyond single scattering, the elastic radiative transfer equation (RTE) governs the evolution of diffuse energy and includes all multiple scattering effects. In this presentation, a rigorous connection between the RTE theory and the backscatter experiments is discussed. Specific solutions are obtained for a specimen excited by a normally incident longitudinal wave. Results are compared with previous backscatter theories. In addition, numerical results are presented using Monte Carlo simulations including various levels of scattering to observe differences between single and multiple scattering solutions. The Monte Carlo solutions are based on the analogy between the RTE and the Boltzmann theory of gas. Relevant applications for materials of common interest are discussed. These results are anticipated to impact ultrasonic nondestructive evaluation of polycrystalline media. [Work supported by U.S. DOE.
Multiple phase screen calculation of two-way spherical wave propagation in the ionosphere
NASA Astrophysics Data System (ADS)
Knepp, Dennis L.
2016-04-01
This paper presents a numerical solution to the parabolic wave equation for spherical wave propagation in a disturbed ionosphere. The solution uses the Fourier/split step approach where the propagation medium is modeled using multiple phase-changing screens separated by free space. The phase screens can consist of deterministic or random components describing spatial scales of any size. This solution consists of realizations of the signal (i.e., the ionospheric transfer function) after two-way propagation from a transmitter, through the medium to a target, and back. The transmitter and target can be comprised of multiple, independent point scatterers. The solution is applicable to many propagation problems including synthetic aperture radar and is not subject to the small-scene limitation, where all scatterers in the scene experience identical propagation conditions. Several examples are given illustrating some features of the solution including reciprocity, relationship between one- and two-way (monostatic and bistatic) scintillation index, and reflection from a large target.
ERIC Educational Resources Information Center
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…
NASA Astrophysics Data System (ADS)
Shen, W.; Ritzwoller, M. H.; Xie, J.; Zheng, Y.; Zhou, L.; Xu, Z.
2013-12-01
Since 2005, EarthScope/USArray Transportable Array (TA) has deployed more than 1,500 stations in the continental US, which provides an unprecedented dense and high quality seismic dataset on a continental scale. Similarly, in China there are more than 800 permanent stations and 300 portable broadband seismic stations that have been deployed by various institutions/bureaus from China and the US. Together with seismic arrays off the mainland (e.g. Taiwan, Japan) these stations form comparable seismic observation infrastructure to USArray. I discuss the latest modeling efforts that use multiple seismic observables to constrain the crust and uppermost mantle structure beneath these two arrays. These efforts include: (1) With USArray, a new generation of isotropic Vs models is constructed using a combination of three types of seismic data: (a) Rayleigh wave phase/group velocity measurements from both ambient noise cross-correlations and teleseismic earthquakes, (b) azimuthally independent receiver functions, and (c) Rayleigh wave ellipticity (H/V ratio) measurements. These datasets are interpreted within a Bayesian Monte-Carlo inversion framework to infer both Vs and uncertainty. (2) For arrays in China, we construct Rayleigh wave phase velocity maps from ambient noise cross-correlations and common-Moho-convergence-point stacked receiver functions. We combine these two data sets to construct a 3-D isotropic Vs model for E. Tibet and S. China. We also present evidence for a mid-crust discontinuity within this region. These new isotropic Vs models form a basis for future azimuthal/radial anisotropy studies of the crust and uppermost mantle for the two continents and provide new information about diverse geological/tectonic features and processes (continent-continent collision; lithospheric rejuvenation/delamination; active/failed continent rifts) beneath the two arrays. Finally, they serve as a starting point for other seismic studies such as body wave tomography and full
Optimized γ-multiplicity-based spin assignments of s-wave neutron resonances
NASA Astrophysics Data System (ADS)
Bečvář, F.; Koehler, P. E.; Krtička, M.; Mitchell, G. E.; Ullmann, J. L.
2011-08-01
The multiplicity of γ-ray emission following neutron capture at isolated resonances carries valuable information on the resonance spin. Several methods utilizing this information have been developed. The latest method was recently introduced for analyzing the data from time-of-flight measurements with 4πγ-calorimetric detection systems. The present paper describes a generalization of this method. The goal is the separation of the γ-emission yields belonging to the two neutron capturing state spins of isolated (or even unresolved) s-wave neutron resonances on targets with non-zero spin. The formalism for performing this separation is described and then tested on artificially generated data. This new method was applied to the γ-multiplicity data obtained for the Sm147(n,γ)Sm148 reaction using the DANCE detector system at the LANSCE facility at Los Alamos National Laboratory. The analyzing power of the upgraded method is supported by combined DICEBOX and GEANT4 simulations of the fluctuation properties of the γ-multiplicity distributions.
On the multiple scattering of VHF/UHF waves in the equatorial ionosphere
NASA Technical Reports Server (NTRS)
Vats, H. O.
1981-01-01
Using amplitude data of radio beacons at 40, 140, and 360 MHz from ATS 6 (phase II), an attempt has been made to study scattering of these waves in the equatorial ionosphere. A comparison of observed scintillation index S sub 4 with the theoretical results of the multiple scattering approach and variation of autocorrelation time with frequency indicates that this theory explains the results to a large extent. A comparison of power spectra of amplitude records with the ionograms of a nearby equatorial station has led to the following conclusions: the change from a weak scattering regime to a strong scattering regime is gradual and occurs because of the gradual decrease in the scale size of the irregularities (i.e., broadening of the spectra) and the gradual increase in the thickness of the irregular region.
High-power optical millimeter-wave signal generation with tunable frequency multiplication factor
NASA Astrophysics Data System (ADS)
Han, Yi-shi; Zheng, Zhenyu; Luo, Zhixiao; Min, Zhixuan; Xu, Ou; Liu, Jie
2015-01-01
This work demonstrates a simple and novel scheme for millimeter-wave (MMW) signal generation using optical multi-sidebands (OMSB) modulation. In the proposed methods, several pairs of optical sidebands can be generated by employing parallel phase modulators driven by a low frequency radio frequency (RF) signal. The optical sidebands will beat at a photodetector (PD) to generate high frequency MMW signal with tunable frequency multiplication factor, such as frequency octupling, 12-tupling, 16-tupling and 18-tupling. Since no optical filters or DC bias are used, the MMW signal has the evident character of high-power output. A generalized analytic expression and simulation verification for generating the frequency multi-tupling MMW signal are developed. The influences caused by non-ideal factors are discussed in detail, and undesired power ratios versus non-ideal factors are plotted and analyzed.
Toroidal rotation of multiple species of ions in tokamak plasma driven by lower-hybrid-waves
NASA Astrophysics Data System (ADS)
Zuo, Yang; Wang, Shaojie; Pan, Chengkang
2012-10-01
A numerical simulation is carried out to investigate the toroidal rotation of multiple species of ions and the radial electric field in a tokamak plasma driven by the lower-hybrid-wave (LHW). The theoretical model is based on the neoclassical transport theory associated with the anomalous transport model. Three species of ions (primary ion and two species of impurity ions) are taken into consideration. The predicted toroidal velocity of the trace impurities during the LHW injection agrees reasonably well with the experimental observation. It is shown that the toroidal rotation velocities of the trace impurity ions and the primary ions are close, therefore the trace impurity ions are representative of the primary ions in the toroidal rotation driven by the LHW.
Wave-optical analysis of parallax-image generation based on multiple diffraction gratings.
Jang, Jae-Young; Ser, Jang-Il; Kim, Eun-Soo
2013-06-01
We propose an approach to generate as many parallax images (PIs) having different viewpoints of a 3-D object as required by use of multiple diffraction gratings (MDG) and confirm its feasibility through theoretical analysis and optical experiments. Here, the PIs generated from the MDG are derived as a convolution integral between the scaled object intensity and each δ-function array of m number of diffraction gratings based on wave-optics, which means the total number of PIs and viewpoints to be generated with the MDG may increase with the mth power of that generated with the single diffraction grating. In addition, optical experiments show that the number of PIs for the case of m=2 has been increased up to the second power of that for the case of m=1, which may validate the theoretical analysis and confirm its feasibility in the practical application.
Toroidal rotation of multiple species of ions in tokamak plasma driven by lower-hybrid-waves
Zuo Yang; Wang Shaojie; Pan Chengkang
2012-10-15
A numerical simulation is carried out to investigate the toroidal rotation of multiple species of ions and the radial electric field in a tokamak plasma driven by the lower-hybrid-wave (LHW). The theoretical model is based on the neoclassical transport theory associated with the anomalous transport model. Three species of ions (primary ion and two species of impurity ions) are taken into consideration. The predicted toroidal velocity of the trace impurities during the LHW injection agrees reasonably well with the experimental observation. It is shown that the toroidal rotation velocities of the trace impurity ions and the primary ions are close, therefore the trace impurity ions are representative of the primary ions in the toroidal rotation driven by the LHW.
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
Generalized universality in the massive sine-Gordon model
Nagy, S.; Sailer, K.; Nandori, I.; Polonyi, J.
2008-01-15
A nontrivial interplay of the UV and IR scaling laws, a generalization of the universality is demonstrated in the framework of the massive sine-Gordon model, as a result of a detailed study of the global behavior of the renormalization group flow and the phase structure.
NASA Astrophysics Data System (ADS)
Liu, Hai-Ying; Liang, Sen; Dai, Qiao-Feng; Wu, Li-Jun; Lan, Sheng; Venu Gopal, Achanta; Trofimov, Vyacheslav A.; Lysak, Tatiana M.
2011-10-01
We investigated numerically and experimentally the transmission of terahertz (THz) waves through single and multiple metallic defects created in a one-dimensional (1D) photonic crystal (PC) by inserting single metallic wires or arrays of parallel metallic wires into the air-gap defect of the 1D PC. The transmission properties of the metallic defect modes generated in the photonic bandgap (PBG) were characterized by using THz time-domain spectroscopy. For single metallic defects, it was found that the appearance the defect mode depends not only on the diameter of the metallic wires but also on the polarization of the THz wave. For transverse magnetic (TM) polarized waves whose electric fields are parallel to the metallic wires, the incident THz wave is generally split into two identical parts. In sharp contrast, the excitation of surface plasmon polaritons (SPPs) with enhanced field intensity is observed for transverse electric (TE) polarized waves whose electric fields are perpendicular to the metallic wires. In both cases, two resonant modes with reduced transmittance are observed in the PBG. While the resonant mode related to SPPs is found at the long-wavelength side of the original defect mode, the resonant mode without the excitation of SPPs appears at the short-wavelength side. Numerical simulation based on the finite-difference time-domain (FDTD) technique revealed that the electric field of SPPs is more tightly confined at the surface of the metallic wire when it is placed in the PC, implying that the confinement of a THz wave in the propagation direction will facilitate the localization of SPPs in the transverse direction. For two parallel metallic wires, the defect mode was found to depend on the separation between them. If they are widely separated, then the excitation of SPPs is similar to that observed in single metallic wires. However, the excitation of dipole-like SPPs does not occur for two closely packed metallic wires because of their large lateral
Peng, Junsong; Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry
2016-09-19
We report for the first time, rogue waves generation in a mode-locked fiber laser that worked in multiple-soliton state in which hundreds of solitons occupied the whole laser cavity. Using real-time spatio-temporal intensity dynamics measurements, it is unveiled that nonlinear soliton collision accounts for the formation of rogue waves in this laser state. The nature of interactions between solitons are also discussed. Our observation may suggest similar formation mechanisms of rogue waves in other systems. PMID:27661869
Quantum sine-Gordon dynamics on analogue curved spacetime in a weakly imperfect scalar Bose gas
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Fischer, Uwe R.
2016-07-01
Using the coherent state functional integral expression of the partition function, we show that the sine-Gordon model on an analogue curved spacetime arises as the effective quantum field theory for phase fluctuations of a weakly imperfect Bose gas on an incompressible background superfluid flow when these fluctuations are restricted to a subspace of the single-particle Hilbert space. We consider bipartitions of the single-particle Hilbert space relevant to experiments on ultracold bosonic atomic or molecular gases, including, e.g., restriction to high- or low-energy sectors of the dynamics and spatial bipartition corresponding to tunnel-coupled planar Bose gases. By assuming full unitary quantum control in the low-energy subspace of a trapped gas, we show that (1) appropriately tuning the particle number statistics of the lowest-energy mode partially decouples the low- and high-energy sectors, allowing any low-energy single-particle wave function to define a background for sine-Gordon dynamics on curved spacetime and (2) macroscopic occupation of a quantum superposition of two states of the lowest two modes produces an analogue curved spacetime depending on two background flows, with respective weights continuously dependent on the corresponding weights of the superposed quantum states.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Tournat, V.; Abraham, O.; Durand, O.; Letourneur, S.; Le Duff, A.; Lascoup, B.
2013-02-01
An ultrasonic method providing for an efficient global detection of defects in complex media (multiple scattering or reverberating media) is reported herein; this method is based on the nonlinear acoustic mixing of coda waves (stemming from multiple scattering) with lower frequency-swept pump waves. Such a nonlinear mixing step is made possible by the presence of nonlinear scatterers, such as cracks and delamination, yet remains absent when the waves are scattered only by linear scatterers, as is the case in a complex but defect-free medium. A global inspection is achieved thanks to the use of wide-band coda and pump signals, which ensure the excitation of many resonances along with a homogeneous acoustic energy distribution in the medium. We introduce the existing sensitivity tools developed for Coda Wave Interferometry in extracting the pump amplitude-dependent parameters of the coda waves associated with effective nonlinear parameters of the medium. By comparing results at two damage levels, these effective nonlinear parameters are shown to be correlated with crack presence in glass samples. The mechanisms potentially responsible for the observed amplitude dependence on the tested elastic parameters and waveform modification are discussed.
NASA Astrophysics Data System (ADS)
Viard, Nicolas; Gianmarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2014-04-01
Whereas multiple scattering and shock wave formation are known to be antagonistic phenomena, this work concentrates on the interaction of an ultrasonic shock wave with a random multiple scattering medium. The shock wave is generated by long distance propagation of a short pulse (4 periods at a 3.5 MHz central frequency) in water before it encounters the scattering medium (a slab-shaped random set of parallel metallic rods). Transmitted waves are recorded over hundreds of positions along the lateral dimension of the slab to estimate the ensemble-averaged transmitted field langlephi(t)rangle, also known as the coherent wave. Experiments are repeated for different thicknesses L of the slab and different emission amplitudes. The elastic mean free path le (i.e the typical distance for the decreasing of the coherent intensity |langlephi(t)rangle|2 due to scattering) is determined as well as the harmonic rate of the averaged transmitted wave. Experimental results are discussed and compared to the linear case.
Predicting heat waves and cold snaps in the United States across multiple time scales
NASA Astrophysics Data System (ADS)
Guirguis, K.; Gershunov, A.; Schwartz, R.
2011-12-01
Wintertime cold snaps and summertime heat waves increase energy demand and draw heavily on emergency resources of state and local governments. Adequate planning for these events requires improved predictions on timescales beyond the short range where numerical models perform well. Comprehensive probabilistic tools relating temperature extremes to weather/climate conditions on multiple time scales from the extended range to seasonal-scales and longer are needed. We have quantified heat waves and cold snaps for different regions of the U.S. over a 60-year period and used a probabilistic approach to relate these historic events to precursor weather patterns. Using principal components analysis applied to atmospheric data from NCEP Reanalysis, we identified circulation patterns (predictors) that precede extreme cold/heat events at various lead times in the range of 0-35 days. By studying the evolution of predictor patterns, we find subtle but important differences in the atmospheric states that lead to an extreme temperature event versus those that are not followed by such an event. In some cases, low-frequency climate forcing appears to modulate whether an extreme temperature event develops in the extended range, which may provide a link between seasonal and subseasonal scales. To address long-term planning, we apply the methodology to model simulations under different climate change scenarios to determine if the same relationships exist between predictor patterns and cold/heat events in the historical period and if/how we can expect these relationships to change in a future climate. These results have applications for operational forecasting of extreme temperatures, particular for energy load forecasting, as well as for short- and long-term emergency resource planning.
NASA Astrophysics Data System (ADS)
Le Bihan, Nicolas; Margerin, Ludovic
2009-07-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
Le Bihan, Nicolas; Margerin, Ludovic
2009-07-01
In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
Lu, Ye; Ye, Lin; Wang, Dong; Wang, Xiaoming; Su, Zhongqing
2010-09-01
Conjunctive and compromised data fusion schemes were applied to aggregate perceptions from individual actuator-sensor paths, for the purpose of evaluating positions of multiple notches in an aluminum plate, with the signatures extracted from the scattered Lamb wave signals captured by sensors. An active sensor network consisting of piezoelectric (lead zirconium tantalate, PZT) wafers was employed to activate and capture Lamb wave signals, where two-level configurations hierarchically provided global and local evaluations of the location of damage. A signal processing algorithm featuring signal correlation was proposed to facilitate accurate extraction of the arrival time of damage-scattered waves in the time domain. The diagnostic results demonstrate that the proposed approach is capable of identifying the locations of multiple notches with good accuracy.
The Construction of a 'Relativistic' Wave-Particle: The Soliton.
ERIC Educational Resources Information Center
Isenberg, Cyril
1982-01-01
Although most waves studied by students satisfy the linear equation, particle physicists have become interested in nonlinear waves--those not satisfying the superposition principle. A mechanical wave system, satisfying the sine-Gordon equation, can be constructed using a modified transverse wave system to demonstrate nonlinear wave-particle…
NASA Technical Reports Server (NTRS)
Motschmann, Uwe; Raeder, Joachim
1992-01-01
The behavior of minor ions just downstream of a low Mach number quasi-perpendicular shock is investigated both theoretically and by computer simulations. Because all ions see the same cross shock electric field their deceleration depends on their charge to mass ratio, yielding different downstream velocities. It is shown that these differences in velocity can lead to coherent wave structures in the downstream region of quasi-perpendicular shocks with a narrow transition layer. These waves are shown to be multi ion hybrid waves in contrast to mirror waves and ion cyclotron waves. Under favorable conditions these waves should be observable both at interplanetary shocks and at planetary bowshocks.
NASA Astrophysics Data System (ADS)
Sanchez, B.; Fernandez, X.; Reig, S.; Bragos, R.
2014-01-01
We report the development of a field programmable gate array (FPGA) based frequency response analyzer (FRA) for impedance frequency response function (FRF) measurements using periodic excitations, i.e. sine waves and multisines. The stepped sine measurement uses two dedicated hardware-built digital embedded multiplier blocks to extract the phase and quadrature components of the output signal. The multisine FRF measurements compute the fast Fourier transform (FFT) of the input/output signals. In this paper, we describe its design, implementation and performance evaluation, performing electrical impedance spectroscopy (EIS) measurements on phantoms. The stepped sine accuracy is 1.21% at 1 kΩ (1%), the precision is 35 mΩ and the total harmonic distortion plus noise (THD+N) is -120 dB. As for the multisine impedance FRF measurements, the magnitude and phase precision are, respectively, 0.23 Ω at 48.828 kHz and 0.021 deg at 8.087 MHz when measuring a resistor 505 Ω (1%). The magnitude accuracy is 0.55% at 8.087 MHz while the phase accuracy is 0.17 deg at 6.54 MHz. In all, the stepped sine signal-to-noise ratio (SNR) is 84 dB and 65 dB at frequencies below and above 1 MHz respectively. The SNR for the multisine FRF measurements is above 65 dB (30 kHz-10 MHz). The FRA bandwidth is 610.4 mHz-12.5 MHz and the maximum FRF measurement rate exciting with multisines starting at 30 kHz is 200 spectra s-1. Based on its technical specifications and versatility, the FRA presented can be used in many applications, e.g. for getting insight quickly into the instantaneous impedance FRF of the time-varying impedance under test.
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Adrian, M. L.; Green, J. L.; Sandel, B. R.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The IMAGE EUV imager has observed several instances where the outer plasmasphere is populated by multiple radially aligned structures resembling "plasmaspheric fingers". The observation of these plasmaspheric structures suggests the presence of an azimuthal standing hydromagnetic wave mode. Eiganmodes appear to explain finger-like. nearly radial density structures that sometimes divide into two structures with increasing radial distance. The implication is of boundaries at fixed local times, which results in a widening "box" in which standing waves are developed. The structures also suggest a single driving frequency for the source of the waves. We present EUV observations of plasmaspheric fingers observed on August 2000 as well as plasmaspheric modeling of azimuthal wave modes in an effort to quantify the origin of these observed structures
Gryba, T; Lefebvre, J-E; Elmaimouni, L; Ratolojanahary, F E
2015-10-10
An analysis of a ZnO/MgO multiple quantum well (MQW) acousto-optic modulator with Lamb waves is performed. With the MQW thickness in the range of 0.2 times the Lamb wavelength, the only observed Lamb modes are the lowest-order symmetric S_{0} and antisymmetric A_{0} modes. These modes induce strain and electric field components which influence the absorption coefficient of the modulator by the associated variation of the excitonic energies of MQW. The optical absorption coefficient spectra of the modulator as a function of the Lamb waves' power is presented. The Lamb-wave-based modulator gives a better absorption coefficient than the Rayleigh-wave-based one. An analysis of a classical acousto-optic modulator is also performed for comparison of performance. PMID:26479819
Radial sine-Gordon kinks as sources of fast breathers.
Caputo, J-G; Soerensen, M P
2013-08-01
We consider radial sine-Gordon kinks in two, three, and higher dimensions. A full two-dimensional simulation showing that azimuthal perturbations remain small allows us to reduce the problem to the one-dimensional radial sine-Gordon equation. We solve this equation on an interval [r(0),r(1)] and absorb all outgoing radiation. As the kink shrinks toward r(0), before the collision, its motion is well described by a simple law derived from the conservation of energy. In two dimensions for r(0)≤2, the collision disintegrates the kink into a fast breather, while for r(0)≥4 we obtain a kink-breather metastable state where breathers are shed at each kink "return." In three and higher dimensions d, an additional kink-oscillon state appears for small r(0). On the application side, the kink disintegration opens the way for new types of terahertz microwave generators.
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; Singh, Talwinder; Ofman, Leon; Dwivedi, Bhola N.
2016-08-01
We analyze the observations from Solar TErrestrial RElations Observatory (STEREO) of an oscillating coronal streamer. STEREO-B Extreme Ultraviolet Imaging (EUVI) temporal data on 7 March 2012 shows an evolution of two consecutive EUV waves that interact with footpoint of a coronal streamer clearly evident in the co-spatial and co-temporal STEREO-B/COR-1 observations. The waves are observed in the STEREO-B/EUVI too, and its apparent energy exchange with coronal streamer generates kink oscillations. We apply the methodology of MHD seismology of the observed waves and determine the magnetic field profile of the coronal streamer. In particular, we estimate the phase velocities of the kink wave perturbations by tracking them at different heights. We also estimate electron densities inside and outside the streamer using spherically symmetric inversion of polarized brightness images in STEREO-B/COR-1. We detect two large scale kink wave oscillations that diagnose exponentially decaying radial profiles of magnetic field in streamer up to 3 solar radii. Within the limit of observational and systematic uncertainties, we find that magnetic field of streamer varies slowly at various heights, although its nature always remains exponentially decaying with height. It is seen that during evolution of second kink motion in streamer, it increases in brightness (thus mass density), and also in areal extent slightly, which may be associated with decreased photospheric magnetic flux at footpoint of streamer. As a result, magnetic field profile produced by second kink wave is reduced within streamer compared to the one diagnosed by the first one.
Polypteridae (Actinopterygii: Cladistia) and DANA-SINEs insertions.
Morescalchi, Maria Alessandra; Barucca, Marco; Stingo, Vincenzo; Capriglione, Teresa
2010-06-01
SINE sequences are interspersed throughout virtually all eukaryotic genomes and greatly outnumber the other repetitive elements. These sequences are of increasing interest for phylogenetic studies because of their diagnostic power for establishing common ancestry among taxa, once properly characterized. We identified and characterized a peculiar family of composite tRNA-derived short interspersed SINEs, DANA-SINEs, associated with mutational activities in Danio rerio, in a group of species belonging to one of the most basal bony fish families, the Polypteridae, in order to investigate their own inner specific phylogenetic relationships. DANA sequences were identified, sequenced and then localized, by means of fluorescent in situ hybridization (FISH), in six Polypteridae species (Polypterus delhezi, P. ornatipinnis, P. palmas, P. buettikoferi P. senegalus and Erpetoichthys calabaricus) After cloning, the sequences obtained were aligned for phylogenetic analysis, comparing them with three Dipnoan lungfish species (Protopterus annectens, P. aethiopicus, Lepidosiren paradoxa), and Lethenteron reissneri (Petromyzontidae)was used as outgroup. The obtained overlapping MP, ML and NJ tree clustered together the species belonging to the two taxonomically different Osteichthyans groups: the Polypteridae, by one side, and the Protopteridae by the other, with the monotypic genus Erpetoichthys more distantly related to the Polypterus genus comprising three distinct groups: P. palmas and P. buettikoferi, P. delhezi and P. ornatipinnis and P. senegalus. In situ hybridization with DANA probes marked along the whole chromosome arms in the metaphases of all the Polypteridae species examined. PMID:21798200
Nonlinear Fourier analysis with cnoidal waves
Osborne, A.R.
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods
NASA Astrophysics Data System (ADS)
Kim, J. H. K.; Pullan, A. J.; Cheng, L. K.
2012-08-01
One approach for non-invasively characterizing gastric electrical activity, commonly used in the field of electrocardiography, involves solving an inverse problem whereby electrical potentials on the stomach surface are directly reconstructed from dense potential measurements on the skin surface. To investigate this problem, an anatomically realistic torso model and an electrical stomach model were used to simulate potentials on stomach and skin surfaces arising from normal gastric electrical activity. The effectiveness of the Greensite-Tikhonov or the Tikhonov inverse methods were compared under the presence of 10% Gaussian noise with either 84 or 204 body surface electrodes. The stability and accuracy of the Greensite-Tikhonov method were further investigated by introducing varying levels of Gaussian signal noise or by increasing or decreasing the size of the stomach by 10%. Results showed that the reconstructed solutions were able to represent the presence of propagating multiple wave fronts and the Greensite-Tikhonov method with 204 electrodes performed best (correlation coefficients of activation time: 90%; pacemaker localization error: 3 cm). The Greensite-Tikhonov method was stable with Gaussian noise levels up to 20% and 10% change in stomach size. The use of 204 rather than 84 body surface electrodes improved the performance; however, for all investigated cases, the Greensite-Tikhonov method outperformed the Tikhonov method.
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2016-01-01
In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of…
NASA Astrophysics Data System (ADS)
Nguyen, Lu Trong Khiem
2016-07-01
A finite difference formula based on the predictor-corrector technique is presented to integrate the cylindrically and spherically symmetric sine-Gordon equations numerically. Based on various numerical observations, one property of the waves of kink type is conjectured and used to explain their returning effect. Several numerical experiments are carried out and they are in excellent agreement with the existing results. In addition, the corresponding modulation solution for the two-dimensional ring-shaped kink is extended to that in three-dimension. Both numerical and theoretical aspects are utilized to verify the reliability of the proposed numerical scheme and thus the analytical modulation solutions.
Evaluation of quasi-square wave inverter as a power source for induction motors
NASA Technical Reports Server (NTRS)
Guynes, B. V.; Haggard, R. L.; Lanier, J. R., Jr.
1977-01-01
The relative merits of quasi-square wave inverter-motor technology versus a sine wave inverter-motor system were investigated. The empirical results of several tests on various sizes of wye-wound induction motors are presented with mathematical analysis to support the conclusions of the study. It was concluded that, within the limitations presented, the quasi-square wave inverter-motor system is superior to the more complex sine wave system for most induction motor applications in space.
Applicability of the Multiple-event Stacking Technique for Shear-wave Splitting Analysis
NASA Astrophysics Data System (ADS)
Kong, F.; Gao, S. S.; Liu, K. H.
2015-12-01
For several decades, shear wave splitting (SWS) parameters (fast polarization orientations and splitting times) have been widely measured to reveal the orientation and strength of mantle anisotropy. One of the most popularly used techniques for obtaining station averaged SWS parameters is the multiple-event stacking technique (MES). Results from previous studies suggest that the splitting times obtained using MES are frequently smaller than those derived from simple averaging of splitting times obtained using the event-specific technique of Silver and Chan (1991) (SC). To confirm such apparent discrepancies between the two popularly used methods and to explore the causes, we conduct numerical experiments using both synthetic and observed data. The results show that when the anisotropic structure can be represented by a horizontal single layer of anisotropy with constant or spatially varying splitting times, MES can accurately retrieve the splitting parameters. However, when the fast orientations or both splitting parameters vary azimuthally due to lateral heterogeneities or double-layer anisotropy, the station averaged fast orientations from MES and SC are mostly comparable, but the splitting times obtained using MES are underestimated. For laterally varying fast orientations in the vicinity of a station, the magnitude of the underestimation is dependent on the arriving azimuth of the events participated in the stacking; for two-layer models of anisotropy, the resulting splitting parameters using MES are biased towards those of the top layer, due to the dominance of events with a back azimuth parallel or orthogonal to the fast orientation of the lower layer. Obviously, MES can still be applied in areas with complex or spatially varying anisotropy to obtain reliable results by stacking events from narrow back-azimuthal windows, especially when limited amounts of high-quality data are present.
The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms
2014-01-01
Background Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. Results We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. Conclusions We demonstrate the existence of at least two SINE families within the Feliformia suborder, one
ERIC Educational Resources Information Center
van der Ven, Sanne H. G.; Boom, Jan; Kroesbergen, Evelyn H.; Leseman, Paul P. M.
2012-01-01
Variability in strategy selection is an important characteristic of learning new skills such as mathematical skills. Strategies gradually come and go during this development. In 1996, Siegler described this phenomenon as ''overlapping waves.'' In the current microgenetic study, we attempted to model these overlapping waves statistically. In…
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
Sine-square deformation and supersymmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Okunishi, Kouichi; Katsura, Hosho
2015-11-01
We investigate the sine-square deformation (SSD) of free fermions in one-dimensional continuous space. On the basis of supersymmetric quantum mechanics, we prove the correspondence between the many-body ground state of the system with SSD and that of the uniform system with periodic boundary conditions. We also discuss the connection between the SSD in the continuous space and its lattice version, where the geometric correction due to the real-space deformation plays an important role in relating the eigenstates of the lattice SSD with those of the continuous SSD.
A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves
Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian
2016-01-01
Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system—for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave. PMID:27527183
A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves.
Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian
2016-01-01
Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system-for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave. PMID:27527183
A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves.
Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian
2016-08-05
Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system-for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave.
Observation of multiple mechanisms for stimulating ion waves in ignition scale plasmas. Revision 1
Kirkwood, R.K.; MacGowan, B.J.; Montgomery, D.S.
1997-03-03
The laser and plasma conditions expected in ignition experiments using indirect drive inertial confinement have been studied experimentally. It has been shown that there are at least three ways in which ion waves can be stimulated in these plasmas and have significant effect on the energy balance and distribution in the target. First ion waves can be stimulated by a single laser beam by the process of Stimulated Brillouin Scattering (SBS) in which an ion acoustic and a scattered electromagnetic wave grow from noise. Second, in a plasma where more than one beam intersect, ion waves can Lie excited at the `beat` frequency and wave number of the intersecting beams,, causing the side scatter instability to be seeded, and substantial energy to be transferred between the beams [R. K. Kirkwood et. al. Phys. Rev. Lett. 76, 2065 (1996)]. And third, ion waves may be stimulated by the decay of electron plasma waves produced by Stimulated Raman Scattering (SRS), thereby inhibiting the SRS process [R. K. Kirkwood et. al. Phys. Rev. Lett. 77, 2706 (1996)].
Multiple scattering of electromagnetic waves by an aggregate of uniaxial anisotropic spheres.
Li, Zheng-Jun; Wu, Zhen-Sen; Shi, Yan'e; Bai, Lu; Li, Hai-Ying
2012-01-01
An exact analytical solution is obtained for the scattering of electromagnetic waves from a plane wave with arbitrary directions of propagation and polarization by an aggregate of interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes. The expansion coefficients of a plane wave with arbitrary directions of propagation and polarization, for both TM and TE modes, are derived in terms of spherical vector wave functions. The effects of the incident angle α and the polarization angle β on the radar cross sections (RCSs) of several types of collective uniaxial anisotropic spheres are numerically analyzed in detail. The characteristics of the forward and backward RCSs in relation to the incident wavelength are also numerically studied. Selected results on the forward and backward RCSs of several types of square arrays of SiO₂ spheres illuminated by a plane wave with different incident angles are described. The accuracy of the expansion coefficients of the incident fields is verified by comparing them with the results obtained from references when the plane wave is degenerated to a z-propagating and x- or y-polarized plane wave. The validity of the theory is also confirmed by comparing the numerical results with those provided by a CST simulation.
Energy propagation by transverse waves in multiple flux tube systems using filling factors
Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk
2014-11-01
In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.
NASA Astrophysics Data System (ADS)
Neuville, C.; Tassin, V.; Pesme, D.; Monteil, M.-C.; Masson-Laborde, P.-E.; Baccou, C.; Fremerye, P.; Philippe, F.; Seytor, P.; Teychenné, D.; Seka, W.; Katz, J.; Bahr, R.; Depierreux, S.
2016-06-01
The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments.
Neuville, C; Tassin, V; Pesme, D; Monteil, M-C; Masson-Laborde, P-E; Baccou, C; Fremerye, P; Philippe, F; Seytor, P; Teychenné, D; Seka, W; Katz, J; Bahr, R; Depierreux, S
2016-06-10
The indirect-drive scheme to inertial confinement fusion uses a large number of laser beams arranged in a symmetric angular distribution. Collective laser plasma instabilities can therefore develop that couple all the incident laser waves located in a cone to the daughter wave growing along the cone symmetry axis [D. F. DuBois et al., Phys. Fluids B 4, 241 (1992)]. With complementary diagnostics of Thomson scattering and of the scattered light, we demonstrate the occurrence of collective stimulated Brillouin sidescattering driving collective acoustic waves in indirect-drive experiments. PMID:27341238
The effect of sine-Wiener noises on transition in a genotype selection model with time delays
NASA Astrophysics Data System (ADS)
Juan Ning, Li; Liu, Pei
2016-09-01
A genotype selection system interplay with sine-Wiener noises and time delays is investigated. Stationary probability distribution function is obtained by numerical simulations. Results show that the multiplicative bounded noise can facilitate the gene separation, while the additive bounded noise suppresses the gene separation. Besides, local time delays α and β, being in gene transformation and gene heredity progress respectively, play opposite roles in the gene selection process. What is more interesting is that there is no transition during the process of gene select when time delays α = β (i.e., the system is subjected to global time delay).
Breather-like structures in modified sine-Gordon models
NASA Astrophysics Data System (ADS)
Ferreira, L. A.; Zakrzewski, Wojtek J.
2016-05-01
We report analytical and numerical results on breather-like field configurations in a theory which is a deformation of the integrable sine-Gordon model in (1 + 1) dimensions. The main motivation of our study is to test the ideas behind the recently proposed concept of quasi-integrability, which emerged from the observation that some field theories possess an infinite number of quantities which are asymptotically conserved in the scattering of solitons, and periodic in time in the case of breather-like configurations. Even though the mechanism responsible for such phenomena is not well understood yet, it is clear that special properties of the solutions under a space-time parity transformation play a crucial role. The numerical results of the present paper give support for the ideas on quasi-integrability, as it is found that extremely long-lived breather configurations satisfy these parity properties. We also report on a mechanism, particular to the theory studied here, that favours the existence of long lived breathers even in cases of significant deformations of the sine-Gordon potential. We also find numerically that our breather-like configurations decay through the gradual increase of their frequency of oscillations.
Locally tuned inverse sine nonlinear technique for color image enhancement
NASA Astrophysics Data System (ADS)
Arigela, Saibabu; Asari, Vijayan K.
2013-02-01
In this paper, a novel inverse sine nonlinear transformation based image enhancement technique is proposed to improve the visual quality of images captured in extreme lighting conditions. This method is adaptive, local and simple. The proposed technique consists of four main stages namely histogram adjustment, dynamic range compression, contrast enhancement and nonlinear color restoration. Histogram adjustment on each spectral band is performed to belittle the effect of illumination. Dynamic range compression is accomplished by an inverse sine nonlinear function with a locally tunable image dependent parameter based on the local statistics of each pixel's neighborhood regions of the luminance image. A nonlinear color restoration process based on the chromatic information and luminance of the original image is employed. A statistical quantitative evaluation is performed with the state of the art techniques to analyze and compare the performance of the proposed technique. The proposed technique is also tested on face detection in complex lighting conditions. The results of this technique on images captured in hazy/foggy weather environment are also presented. The evaluation results confirm that the proposed method can be applied to surveillance, security applications in complex lighting environments.
Criticality in self-dual sine-Gordon models
NASA Astrophysics Data System (ADS)
Lecheminant, P.; Gogolin, Alexander O.; Nersesyan, Alexander A.
2002-09-01
We discuss the nature of criticality in the β2=2 πN self-dual extension of the sine-Gordon model. This field theory is related to the two-dimensional classical XY model with a N-fold degenerate symmetry-breaking field. We briefly overview the already studied cases N=2,4 and analyze in detail the case N=3 where a single phase transition in the three-state Potts universality class is expected to occur. The Z3 infrared critical properties of the β2=6 π self-dual sine-Gordon model are derived using two non-perturbative approaches. On one hand, we map the model onto an integrable deformation of the Z4 parafermion theory. The latter is known to flow to a massless Z3 infrared fixed point. Another route is based on the connection with a chirally asymmetric, su(2) 4⊗su(2) 1 Wess-Zumino-Novikov-Witten model with anisotropic current-current interaction, where we explore the existence of a decoupling (Toulouse) point.
Resonant phase dynamics in 0- π Sine-Gordon facets
NASA Astrophysics Data System (ADS)
Rotoli, Giacomo; Stornaiuolo, Daniela; Cedergren, Karin; Leo, Antonio; Bauch, Thilo; Lombardi, Filomena; Tafuri, Francesco
2015-09-01
A locally phase-shifted Sine-Gordon model well accounts for the phenomenology of unconventional Josephson junctions. The phase dynamics shows resonant modes similar to Fiske modes that appear both in the presence and in the absence of the external magnetic field in standard junctions. In the latter case, they are also in competition with zero field propagation of Sine-Gordon solitons, i.e., fluxons, which give rise to the so-called zero field steps in the current-voltage (I-V) of the junction. We numerically study the I-V characteristics and the resonances magnetic field patterns for some different faceting configurations, in various dissipative regimes, as a function of temperature. The simulated dynamics of the phase is analyzed for lower-order resonances. We give evidence of a nontrivial dynamics due to the interaction of propagating fluxons with localized semifluxons. Numerical results are compared with experimental outcomes obtained on high-quality high-Tc grain boundary YBCO junctions.
Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe
NASA Astrophysics Data System (ADS)
Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine
2016-04-01
Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.
Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu
2015-04-20
We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less
Ogiwara, Ikuo; Miya, Masaki; Ohshima, Kazuhiko; Okada, Norihiro
2002-01-01
We have identified a new superfamily of vertebrate short interspersed repetitive elements (SINEs), designated V-SINEs, that are widespread in fishes and frogs. Each V-SINE includes a central conserved domain preceded by a 5′-end tRNA-related region and followed by a potentially recombinogenic (TG)n tract, with a 3′ tail derived from the 3′ untranslated region (UTR) of the corresponding partner long interspersed repetitive element (LINE) that encodes a functional reverse transcriptase. The central domain is strongly conserved and is even found in SINEs in the lamprey genome, suggesting that V-SINEs might be ∼550 Myr old or older in view of the timing of divergence of the lamprey lineage from the bony fish lineage. The central conserved domain might have been subject to some form of positive selection. Although the contemporary 3′ tails of V-SINEs differ from one another, it is possible that the original 3′ tail might have been replaced, via recombination, by the 3′ tails of more active partner LINEs, thereby retaining retropositional activity and the ability to survive for long periods on the evolutionary time scale. It seems plausible that V-SINEs may have some function(s) that have been maintained by the coevolution of SINEs and LINEs during the evolution of vertebrates. [The sequences reported in this paper have been deposited in the DDBJ/GenBank database under accession nos. AB072981–AB073004. Supplemental figures are available online at http://www.genome.org.] PMID:11827951
Inverse PCR-based method for isolating novel SINEs from genome.
Han, Yawei; Chen, Liping; Guan, Lihong; He, Shunping
2014-04-01
Short interspersed elements (SINEs) are moderately repetitive DNA sequences in eukaryotic genomes. Although eukaryotic genomes contain numerous SINEs copy, it is very difficult and laborious to isolate and identify them by the reported methods. In this study, the inverse PCR was successfully applied to isolate SINEs from Opsariichthys bidens genome in Eastern Asian Cyprinid. A group of SINEs derived from tRNA(Ala) molecular had been identified, which were named Opsar according to Opsariichthys. SINEs characteristics were exhibited in Opsar, which contained a tRNA(Ala)-derived region at the 5' end, a tRNA-unrelated region, and AT-rich region at the 3' end. The tRNA-derived region of Opsar shared 76 % sequence similarity with tRNA(Ala) gene. This result indicated that Opsar could derive from the inactive or pseudogene of tRNA(Ala). The reliability of method was tested by obtaining C-SINE, Ct-SINE, and M-SINEs from Ctenopharyngodon idellus, Megalobrama amblycephala, and Cyprinus carpio genomes. This method is simpler than the previously reported, which successfully omitted many steps, such as preparation of probes, construction of genomic libraries, and hybridization. PMID:24122282
Mobile Element Evolution Playing Jigsaw—SINEs in Gastropod and Bivalve Mollusks
Matetovici, Irina; Sajgo, Szilard; Ianc, Bianca; Ochis, Cornelia; Bulzu, Paul; Popescu, Octavian; Damert, Annette
2016-01-01
SINEs (Short INterspersed Elements) are widely distributed among eukaryotes. Some SINE families are organized in superfamilies characterized by a shared central domain. These central domains are conserved across species, classes, and even phyla. Here we report the identification of two novel such superfamilies in the genomes of gastropod and bivalve mollusks. The central conserved domain of the first superfamily is present in SINEs in Caenogastropoda and Vetigastropoda as well as in all four subclasses of Bivalvia. We designated the domain MESC (Romanian for MElc—snail and SCoica—mussel) because it appears to be restricted to snails and mussels. The second superfamily is restricted to Caenogastropoda. Its central conserved domain—Snail—is related to the Nin-DC domain. Furthermore, we provide evidence that a 40-bp subdomain of the SINE V-domain is conserved in SINEs in mollusks and arthropods. It is predicted to form a stable stem-loop structure that is preserved in the context of the overall SINE RNA secondary structure in invertebrates. Our analysis also recovered short retrotransposons with a Long INterspersed Element (LINE)-derived 5′ end. These share the body and/or the tail with transfer RNA (tRNA)-derived SINEs within and across species. Finally, we identified CORE SINEs in gastropods and bivalves—extending the distribution range of this superfamily. PMID:26739168
Multiple continuous-wave and pulsed modes of a figure-of-eight fibre laser
NASA Astrophysics Data System (ADS)
Pottiez, O.; Martinez-Rios, A.; Monzon-Hernandez, D.; Salceda-Delgado, G.; Hernandez-Garcia, J. C.; Ibarra-Escamilla, B.; Kuzin, E. A.
2013-03-01
We study experimentally a figure-of-eight fibre laser including a polarization-imbalanced nonlinear optical loop mirror and a Mach-Zehnder optical filter formed by two fibre tapers placed in series. Depending on the adjustments of two wave retarders included in the setup, different modes of operation of the laser are found. In continuous-wave mode, tunable single-wavelength operation as well as multiwavelength lasing are observed. For some adjustments, self-pulsing also takes place, although the pulses are very unstable. Finally, for some adjustments a mechanical stimulation (a kick) leads to the onset of passive mode locking. Measurements reveal that the mode-locked pulses actually are noise-like pulses. Both stable fundamental mode locking and second-harmonic mode locking with particular dynamics were obtained. In this work, we analyse how simple wave plate adjustments can lead to such a variety of operational modes of the fibre laser.
Particle Acceleration by Multiple Shock Waves: A model for Solar Flares
NASA Astrophysics Data System (ADS)
Anastasiadis, A.
We study the acceleration, the transport and radiation of energetic particles (electrons and ions) inside an active region. The acceleration of particles is due to the presence of an ensemble of oblique shock waves inside an evolving active region and is based on the shock drift mechanism. The high-energy particles are transported inside a chaotic magnetic field and are subject to Coulomb collisions and radiation. We calculate the energy distribution of the particles, their acceleration time and their maximum energy as a function to the number of shock waves present. Preliminary results on the the duffusive nature of the process are presented. Finally we compare our results with the observations.
NASA Astrophysics Data System (ADS)
Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet
2016-08-01
In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).
Zero temperature landscape of the random sine-Gordon model
Sanchez, A.; Bishop, A.R.; Cai, D.
1997-04-01
We present a preliminary summary of the zero temperature properties of the two-dimensional random sine-Gordon model of surface growth on disordered substrates. We found that the properties of this model can be accurately computed by using lattices of moderate size as the behavior of the model turns out to be independent of the size above certain length ({approx} 128 x 128 lattices). Subsequently, we show that the behavior of the height difference correlation function is of (log r){sup 2} type up to a certain correlation length ({xi} {approx} 20), which rules out predictions of log r behavior for all temperatures obtained by replica-variational techniques. Our results open the way to a better understanding of the complex landscape presented by this system, which has been the subject of very many (contradictory) analysis.
Chlamydia trachomatis infection in "sine causa" recurrent abortion.
Olliaro, P; Regazzetti, A; Gorini, G; Milano, F; Marchetti, A; Rondanelli, E G
One hundred and one women suffering from "sine causa" recurrent abortion were screened for Chlamydia trachomatis (C.T.) infection by using direct examination, cultural and serological procedures. In this series, C.T. infection did not appear to be related to increased risk of recurrent abortion. The culture-positive and serology-positive rates (14.85% and 34.65%, respectively) did not differ from other unselected populations. Neither time from last abortion nor type of abortion were significantly related to C.T. infection. Nonetheless, the women who underwent examination within one year from last abortion and had a culture-positive partner as well, were more likely to present with a C.T.-positive culture.
Mode structure in the far field radiation of a leaky-wave multiple quantum well laser
Nekorkin, S M; Zvonkov, B N; Karzanova, Maria V; Dikareva, Natalia V; Aleshkin, V Ya; Dubinov, A A
2012-10-31
The radiation patterns of a leaky-wave InGaAs/GaAs/InGaP laser are studied. In the subthreshold regime, several peaks are found, corresponding to the emission of fundamental and excited modes. The dependences of the amplitude, position and width of the peaks on the pump current are investigated and explained. (measurement of laser radiation parameters)
Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity
NASA Astrophysics Data System (ADS)
Fenton, Flavio H.; Cherry, Elizabeth M.; Hastings, Harold M.; Evans, Steven J.
2002-09-01
It has become widely accepted that the most dangerous cardiac arrhythmias are due to reentrant waves, i.e., electrical wave(s) that recirculate repeatedly throughout the tissue at a higher frequency than the waves produced by the heart's natural pacemaker (sinoatrial node). However, the complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, have made it extremely difficult to pinpoint the detailed dynamics of these life-threatening reentrant arrhythmias. A simplified ionic model of the cardiac action potential (AP), which can be fitted to a wide variety of experimentally and numerically obtained mesoscopic characteristics of cardiac tissue such as AP shape and restitution of AP duration and conduction velocity, is used to explain many different mechanisms of spiral wave breakup which in principle can occur in cardiac tissue. Some, but not all, of these mechanisms have been observed before using other models; therefore, the purpose of this paper is to demonstrate them using just one framework model and to explain the different parameter regimes or physiological properties necessary for each mechanism (such as high or low excitability, corresponding to normal or ischemic tissue, spiral tip trajectory types, and tissue structures such as rotational anisotropy and periodic boundary conditions). Each mechanism is compared with data from other ionic models or experiments to illustrate that they are not model-specific phenomena. Movies showing all the breakup mechanisms are available at http://arrhythmia.hofstra.edu/breakup and at ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-12-039203/ INDEX.html. The fact that many different breakup mechanisms exist has important implications for antiarrhythmic drug design and for comparisons of fibrillation experiments using different species, electromechanical uncoupling drugs, and initiation protocols.
NASA Astrophysics Data System (ADS)
Krivoruchko, V. N.
2016-08-01
Motivated by the existing controversy about the physical mechanisms that govern longitudinal magnetization dynamics under the effect of ultrafast laser pulses, in this paper we study the microscopic model of longitudinal spin excitations in a two-sublattice ferrimagnet using the diagrammatic technique for spin operators. The diagrammatic approach provides us with an efficient procedure to derive graphical representations for perturbation expansion series for different spin Green's functions and thus to overcome limitations typical for phenomenological approaches. The infinite series involving all distinct loops built from spin wave propagators are summed up. These result in an expression for the longitudinal spin susceptibility χz z(q ,ω ) applicable in all regions of frequency ω and wave vector q space beyond the hydrodynamical and critical regimes. A strong renormalization of the longitudinal spin oscillations due to processes of virtual creation and annihilation of transverse spin waves has been found. We have shown that the spectrum of longitudinal excitations consists of a quasirelaxation mode forming a central peak in χz z(q ,ω ) and two (acoustic and exchange) precessionlike modes. As the main result, it is predicted that both acoustic and exchange longitudinal excitations are energetically above similar modes of transverse spin waves at the same temperature and wave vector. The existence of the exchange longitudinal mode at such frequencies can result in a new form of excitation behavior in ferrimagnetic system, which could be important for understanding the physics of nonequilibrium magnetic dynamics under the effect of ultrafast laser pulses in multisublattice magnetic materials.
Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types
Kondrashov, I. S.; Simakov, D. A.; Khalili, F. Ya.; Danilishin, S. L.
2008-09-15
We developed algorithms which allow us to find regimes of the signal-recycled Fabry-Perot-Michelson interferometer [for example, the Advanced Laser Interferometric Gravitational Wave Observatory (LIGO)], optimized concurrently for two (binary inspirals + bursts) and three (binary inspirals + bursts + millisecond pulsars) types of gravitational wave sources. We show that there exists a relatively large area in the interferometer parameters space where the detector sensitivity to the first two kinds of sources differs only by a few percent from the maximal ones for each kind of source. In particular, there exists a specific regime where this difference is {approx_equal}0.5% for both of them. Furthermore, we show that even more multipurpose regimes are also possible that provide significant sensitivity gain for millisecond pulsars with only minor sensitivity degradation for binary inspirals and bursts.
Hall, Anthony Shoji; Faryad, Muhammad; Barber, Greg D; Liu, Liu; Erten, Sema; Mayer, Theresa S; Lakhtakia, Akhlesh; Mallouk, Thomas E
2013-06-25
Light incident upon a periodically corrugated metal/dielectric interface can generate surface plasmon polariton (SPP) waves. This effect is used in many sensing applications. Similar metallodielectric nanostructures are used for light trapping in solar cells, but the gains are modest because SPP waves can be excited only at specific angles and with one linear polarization state of incident light. Here we report the optical absorptance of a metallic grating coupled to silicon oxide/oxynitride layers with a periodically varying refractive index, i.e., a 1D photonic crystal. These structures show a dramatic enhancement relative to those employing a homogeneous dielectric material. Multiple SPP waves can be activated, and both s- and p-polarized incident light can be efficiently trapped. Many SPP modes are weakly bound and display field enhancements that extend throughout the dielectric layers. These modes have significantly longer propagation lengths than the single SPP modes excited at the interface of a metallic grating and a uniform dielectric. These results suggest that metallic gratings coupled to photonic crystals could have utility for light trapping in photovoltaics, sensing, and other applications.
A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach
NASA Astrophysics Data System (ADS)
Gaeta, Maria Gabriella; Samaras, Achilleas G.; Federico, Ivan; Archetti, Renata; Maicu, Francesco; Lorenzetti, Giuliano
2016-09-01
The present work describes an operational strategy for the development of a multiscale modeling system, based on a multiple-nesting approach and open-source numerical models. The strategy was applied and validated for the Gulf of Taranto in southern Italy, scaling large-scale oceanographic model results to high-resolution coupled wave-3-D hydrodynamics simulations for the area of Mar Grande in the Taranto Sea. The spatial and temporal high-resolution simulations were performed using the open-source TELEMAC suite, forced by wind data from the COSMO-ME database, boundary wave spectra from the RON buoy at Crotone and results from the Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) regarding sea levels and current fields. Model validation was carried out using data collected in the Mar Grande basin from a fixed monitoring station and during an oceanographic campaign in October 2014. The overall agreement between measurements and model results in terms of waves, sea levels, surface currents, circulation patterns and vertical velocity profiles is deemed to be satisfactory, and the methodology followed in the process can constitute a useful tool for both research and operational applications in the same field and as support of decisions for management and design of infrastructures.
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-01-01
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898
NASA Astrophysics Data System (ADS)
Betney, M. R.; Tully, B.; Hawker, N. A.; Ventikos, Y.
2015-03-01
This study presents a computational investigation of the interactions of a single shock wave with multiple gas-filled bubbles in a liquid medium. This work illustrates how multiple bubbles may be used in shock-bubble interactions to intensify the process on a local level. A high resolution front-tracking approach is used, which enables explicit tracking of the gas-liquid interface. The collapse of two identical bubbles, one placed behind the other is investigated in detail, demonstrating that peak pressures in a two bubble arrangement can exceed those seen in single bubble collapse. Additionally, a parametric investigation into the effect of bubble separation is presented. It is found that the separation distance has a significant effect on both the shape and velocity of the main transverse jet of the second bubble. Extending this analysis to effects of relative bubble size, we show that if the first bubble is sufficiently small relative to the second, it may become entirely entrained in the second bubble main transverse jet. In contrast, if the first bubble is substantially larger than the second, it may offer it significant protection from the incident shock. This protection is utilised in the study of a triangular array of three bubbles, with the central bubble being significantly smaller than the outer bubbles. It is demonstrated that, through shielding of bubbles until later in the collapse process, pressures over five times higher than the maximum pressure observed in the single bubble case may be achieved. This corresponds to a peak pressure that is approximately 40 times more intense than the incident shock wave. This work has applications in a number of different fields, including cavitation erosion, explosives, targeted drug delivery/intensification, and shock wave lithotripsy.
Selective inhibitors of nuclear export (SINE) as novel therapeutics for prostate cancer.
Mendonca, Janet; Sharma, Anup; Kim, Hae-Soo; Hammers, Hans; Meeker, Alan; De Marzo, Angelo; Carducci, Michael; Kauffman, Michael; Shacham, Sharon; Kachhap, Sushant
2014-08-15
Mislocalization of proteins is a common feature of cancer cells. Since localization of proteins is tightly linked to its function, cancer cells can inactivate function of a tumor suppressor protein through mislocalization. The nuclear exportin CRM1/XPO 1 is upregulated in many cancers. Targeting XPO 1 can lead to nuclear retention of cargo proteins such as p53, Foxo, and BRCA1 leading to cell cycle arrest and apoptosis. We demonstrate that selective inhibitors of nuclear export (SINE) can functionally inactivate XPO 1 in prostate cancer cells. Unlike the potent, but toxic, XPO 1 inhibitor leptomycin B, SINE inhibitors (KPT-185, KPT-330, and KPT-251) cause a decrease in XPO 1 protein level through the proteasomal pathway. Treatment of prostate cancer cells with SINE inhibitors lead to XPO 1 inhibition, as evaluated by RevGFP export assay, leading to nuclear retention of p53 and Foxo proteins, consequently, triggering apoptosis. Our data reveal that treatment with SINE inhibitors at nanomolar concentrations results in decrease in proliferation and colonogenic capacity of prostate cancer cells by triggering apoptosis without causing any cell cycle arrest. We further demonstrate that SINE inhibitors can be combined with other chemotherapeutics like doxorubicin to achieve enhanced growth inhibition of prostate cancer cells. Since SINE inhibitors offer increased bioavailability, reduced toxicity to normal cells, and are orally available they can serve as effective therapeutics against prostate cancer. In conclusion, our data reveals that nucleocytoplasmic transport in prostate cancer can be effectively targeted by SINE inhibitors.
Sine-Gordon modulation solutions: Application to macroscopic non-lubricant friction
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Bambakidis, Gust; Skinner, Thomas E.
2016-10-01
The Frenkel-Kontorova (FK) model and its continuum approximation, the sine-Gordon (SG) equation, are widely used to model a variety of important nonlinear physical systems. Many practical applications require the wave-train solution, which includes many solitons. In such cases, an important and relevant extension of these models applies Whitham's averaging procedure to the SG equation. The resulting SG modulation equations describe the behavior of important measurable system parameters that are the average of the small-scale solutions given by the SG equation. A fundamental problem of modern physics that is the topic of this paper is the description of the transitional process from a static to a dynamic frictional regime. We have shown that the SG modulation equations are a suitable apparatus for describing this transition. The model provides relations between kinematic (rupture and slip velocities) and dynamic (shear and normal stresses) parameters of the transition process. A particular advantage of the model is its ability to describe frictional processes over a wide range of rupture and slip velocities covering seismic events ranging from regular earthquakes, with rupture velocities on the order of a few km/s, to slow slip events, with rupture velocities on the order of a few km/day.
Kirby, Patrick J; Greaves, Ian K; Koina, Edda; Waters, Paul D; Marshall Graves, Jennifer A
2007-01-01
The genomes of the egg-laying platypus and echidna are of particular interest because monotremes are the most basal mammal group. The chromosomal distribution of an ancient family of short interspersed repeats (SINEs), the core-SINEs, was investigated to better understand monotreme genome organization and evolution. Previous studies have identified the core-SINE as the predominant SINE in the platypus genome, and in this study we quantified, characterized and localized subfamilies. Dot blot analysis suggested that a very large fraction (32% of the platypus and 16% of the echidna genome) is composed of Mon core-SINEs. Core-SINE-specific primers were used to amplify PCR products from platypus and echidna genomic DNA. Sequence analysis suggests a common consensus sequence Mon 1-B, shared by platypus and echidna, as well as platypus-specific Mon 1-C and echidna specific Mon 1-D consensus sequences. FISH mapping of the Mon core-SINE products to platypus metaphase spreads demonstrates that the Mon-1C subfamily is responsible for the striking Mon core-SINE accumulation in the distal regions of the six large autosomal pairs and the largest X chromosome. This unusual distribution highlights the dichotomy between the seven large chromosome pairs and the 19 smaller pairs in the monotreme karyotype, which has some similarity to the macro- and micro-chromosomes of birds and reptiles, and suggests that accumulation of repetitive sequences may have enlarged small chromosomes in an ancestral vertebrate. In the forthcoming sequence of the platypus genome there are still large gaps, and the extensive Mon core-SINE accumulation on the distal regions of the six large autosomal pairs may provide one explanation for this missing sequence. PMID:18185983
The Development of Love Wave-Based Humidity Sensors Incorporating Multiple Layers
Wang, Lijun; Liu, Jiansheng; He, Shitang
2015-01-01
A Love wave humidity sensor is developed by using a multilayer structure consisting of PVA/SiO2 layers on an ST-90°X quartz substrate. The theoretical result shows that the sensor with such a two-layer structure can achieve a higher sensitivity and a smaller loss than the structures with a single polymer layer. Comparative experiments are performed for the sensor incorporating PVA/SiO2 layers and the sensor incorporating a PVA layer. The experimental results agree well with the theoretical predication. PMID:25875187
Multiple source frequency-modulated continuous-wave optical reflectometry: theory and experiment.
Vasilyev, Arseny; Satyan, Naresh; Xu, Shengbo; Rakuljic, George; Yariv, Amnon
2010-04-01
We propose and demonstrate a novel approach to increase the effective bandwidth of a frequency-modulated continuous-wave (FMCW) ranging system. This is achieved by algorithmically stitching together the swept spectra of separate laser sources. The result is an improvement in the range resolution proportional to the increase in the swept-frequency range. An analysis of this system as well as the outline of the stitching algorithm are presented. Using three distinct swept-frequency optical waveforms, we experimentally demonstrate a threefold improvement in the range resolution of a three-sweep approach over the conventional FMCW method. PMID:20357879
Lu, Li; Li, Changzhi; Lie, Donald Y C
2010-01-01
In this paper, two Doppler radars are used to monitor the pulse movements at the heart and the calf in order to measure the pulse wave velocity (PWV) wirelessly. Both simulation and experiment have been performed to demonstrate the feasibility of the proposed noncontact PWV monitoring. A three-stage calibration procedure, including DC offset calibration, circuit delay calibration and antenna radiation pattern calibration, has been developed for reliable long-term PWV monitoring. The measurement results have been verified by wired contact measurement with pulse transducers.
Schröder, Christiane; Bleidorn, Christoph; Hartmann, Stefanie; Tiedemann, Ralph
2009-12-15
Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (dog-like carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony-informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae. PMID:19563867
Schröder, Christiane; Bleidorn, Christoph; Hartmann, Stefanie; Tiedemann, Ralph
2009-12-15
Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (dog-like carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony-informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.
Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths
NASA Astrophysics Data System (ADS)
Singh, Shailendra K.; Abak, M. Kurtulus; Tasgin, Mehmet Emre
2016-01-01
Recent experiments demonstrate that plasmonic resonators can enhance the four-wave mixing (FWM) process by several orders of magnitude, due to the localization of the incident fields. We show that, when the plasmonic resonator is coupled to two quantum emitters, a three orders of magnitude enhancement can be obtained on top of the enhancement due to the localization. We explicitly demonstrate—on an expression for the steady-state FWM amplitude—how the presence of a Fano resonance leads to the cancellation of nonresonant terms in a FWM process. A cancellation in the denominator gives rise to an enhancement in the nonlinearity. The explicit demonstration we present here guides one to a method for achieving even larger enhancement factors by introducing additional coupling terms. The method is also applicable to Fano resonances induced by all-plasmonic couplings, which are easier to control in experiments.
Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones
Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.
2014-01-01
Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8 Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.
NASA Astrophysics Data System (ADS)
Nielsen, L.; Thybo, H.
2003-10-01
Teleseismic Pn arrivals with an extensive coda are observed to offsets beyond 3000 km along the peaceful nuclear explosion seismic profiles Quartz and Ruby, which were recorded in the western part of the former Soviet Union. We interpret these arrivals as multiply reflected sub-Moho refractions that travel over large distances due to a positive vertical upper mantle velocity gradient, which is characteristic for the study area. Analysis of the observed data shows that the teleseismic Pn and its coda contain significant amounts of energy at all frequencies between 0 and 10 Hz. Our modeling results show that crustal scattering may fully explain the teleseismic Pn coda contrary to another published model with upper mantle heterogeneity in the ˜35-130 km depth range. These conclusions are based on two-dimensional viscoelastic finite-difference seismic wave field simulations in 2000-km-long and 250-km-deep models of the crust and upper mantle. The computationally demanding calculations are facilitated by the use of supercomputer systems. Our preferred model of crustal scattering is consistent with the results of other high-resolution wide-angle and normal-incidence seismic investigations of the crust and upper mantle. They show pronounced reflectivity of the lower crust above an almost transparent uppermost mantle down to ˜80-100 km depth. Our model includes a high vertical velocity gradient in the upper mantle based on the results from seismic refraction studies. We suggest that the teleseismic Pn wave travels as an upper mantle whispering gallery phase and that the origin of its long coda is crustal scattering.
Evolution of SINE S1 retroposons in Cruciferae plant species.
Lenoir, A; Cournoyer, B; Warwick, S; Picard, G; Deragon, J M
1997-09-01
The S1 element is a plant short interspersed element (SINE) that was first described and studied in Brassica napus. In this work, we investigated the distribution and the molecular phylogeny of the S1 element within the Cruciferae (= Brassicaceae). S1 elements were found to be widely distributed within the Cruciferae, especially in species of the tribe Brassiceae. The molecular phylogeny of S1 elements in eight Cruciferae species (Brassica oleracea, Brassica rapa, Brassica napus, Brassica nigra, Sinapis, arvensis, Sinapis pubescens, Coincya monensis, and Vella spinosa) was inferred using 14-36 elements per species. Significant neighbor-joining and maximum-parsimony phylogenetic clusters, supported by high bootstrap P values and/or represented in 100% of the most-parsimonious trees, were observed for each species. Most of these clusters probably correspond to recent species-specific bursts of S1 amplification. Since these species diverged recently, S1 amplification in Cruciferae plants is proposed to be a highly dynamic process that could contribute to genome rearrangements and eventually lead to reproductive isolation. S1 sequence analysis also revealed putative gene conversion events that occurred between different S1 elements of a given species. These events suggest that gene conversion is a minor but significant component of the molecular drive governing S1 concerted evolution.
LINE-1 ORF1 protein enhances Alu SINE retrotransposition.
Wallace, Nicholas; Wagstaff, Bradley J; Deininger, Prescott L; Roy-Engel, Astrid M
2008-08-01
Retroelements have contributed over one third of the human genome mass. The currently active LINE-1 (L1) codes for two proteins (ORF1p and ORF2p), both strictly required for retrotransposition. In contrast, the non-coding parasitic SINE (Alu) only appears to need the L1 ORF2p for its own amplification. This requirement was previously determined using a tissue culture assay system in human cells (HeLa). Because HeLa are likely to express functional L1 proteins, it is possible that low levels of endogenous ORF1p are necessary for the observed tagged Alu mobilization. By individually expressing ORF1 and ORF2 proteins from both human (L1RP and LRE3) and rodent (L1A102 and L1spa) L1 sources, we demonstrate that increasing amounts of ORF1 expressing vector enhances tagged Alu mobilization in HeLa cells. In addition, using chicken fibroblast cells as an alternate cell culture source, we confirmed that ORF1p is not strictly required for Alu mobilization in our assay. Supporting our observations in HeLa cells, we find that tagged Alu retrotransposition is improved by supplementation of ORF1p in the cultured chicken cells. We postulate that L1 ORF1p plays either a direct or indirect role in enhancing the interaction between the Alu RNA and the required factors needed for its retrotransposition.
Perish, then publish: Thomas Harriot and the sine law of refraction.
Fishman, R S
2000-03-01
A talented young scientist, Thomas Harriot, wrote the first English account of the New World, "A Briefe and True Report of the New Found Land of Virginia," distinguished by its serious effort to describe and understand the American Indian. Harriot went on to make innovations in mathematics and was one of the first astronomers to use the telescope. His largely unappreciated contribution to the history of ophthalmology was the first formulation of the sine law of refraction of light, found in his unpublished papers long after his death in 1621. Willebrord Snell discovered the sine law in Holland in 1621 but also died without formally publishing it. Rene Descartes first published the sine law in 1637. The sine law of refraction became not only the prime law of all lens systems but ushered in a new world of physical laws.
Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot
Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul
2016-01-01
This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance. PMID:27490549
Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot.
Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul
2016-08-02
This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance.
Sine Rotation Vector Method for Attitude Estimation of an Underwater Robot.
Ko, Nak Yong; Jeong, Seokki; Bae, Youngchul
2016-01-01
This paper describes a method for estimating the attitude of an underwater robot. The method employs a new concept of sine rotation vector and uses both an attitude heading and reference system (AHRS) and a Doppler velocity log (DVL) for the purpose of measurement. First, the acceleration and magnetic-field measurements are transformed into sine rotation vectors and combined. The combined sine rotation vector is then transformed into the differences between the Euler angles of the measured attitude and the predicted attitude; the differences are used to correct the predicted attitude. The method was evaluated according to field-test data and simulation data and compared to existing methods that calculate angular differences directly without a preceding sine rotation vector transformation. The comparison verifies that the proposed method improves the attitude estimation performance. PMID:27490549
NASA Technical Reports Server (NTRS)
Stankiewicz, N.
1982-01-01
The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; Cheng, Hai-Ping
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; Cheng, Hai-Ping
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, we calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.
NASA Astrophysics Data System (ADS)
Viholainen, Ari; Alhava, Juuso; Renfors, Markku
2006-12-01
The recently introduced exponentially modulated filter bank (EMFB) is a[InlineEquation not available: see fulltext.]-channel uniform, orthogonal, critically sampled, and frequency-selective complex modulated filter bank that satisfies the perfect reconstruction (PR) property if the prototype filter of an[InlineEquation not available: see fulltext.]-channel PR cosine modulated filter bank (CMFB) is used. The purpose of this paper is to present various implementation structures for the EMFBs in a unified framework. The key idea is to use cosine and sine modulated filter banks as building blocks and, therefore, polyphase, lattice, and extended lapped transform (ELT) type of implementation solutions are studied. The ELT-based EMFBs are observed to be very competitive with the existing modified discrete Fourier transform filter banks (MDFT-FBs) when comparing the number of multiplications/additions and the structural simplicity. In addition, EMFB provides an alternative channel stacking arrangement that could be more natural in certain subband processing applications and data transmission systems.
A comparison of heat wave climatologies and trends in China based on multiple definitions
NASA Astrophysics Data System (ADS)
You, Qinglong; Jiang, Zhihong; Kong, Lei; Wu, Zhiwei; Bao, Yutao; Kang, Shichang; Pepin, Nick
2016-08-01
Heat waves (HWs) can have disastrous impacts on human activities and natural systems, and are one of the current foci of scientific research, particularly in the context of global warming. However, there is no standard definition of a HW, which makes assessment of temporal trends a challenge. In this study, based on daily mean, maximum and minimum temperature, and relative humidity datasets from China Meteorological Administration, the patterns, trends and variations of HW in China during 1961-2014 are investigated. Sixteen previously published HW indices (HIs) are calculated, which are divided into two types using relative and absolute threshold temperatures, respectively. During 1961-2014, both relative and absolute threshold HIs show the highest number of HW in Jianghua and South China, geographically consistent with the climate characteristics of China. The majority of HIs shows negative/positive trends of HW days before/after 1990 over the whole of China, but especially in Jianghua and South China, which reflects rapid warming since 1990. There are significant correlations among different HIs in the same type (both absolute and relative), but correlations are weak between relative and absolute threshold HIs. Because relative and absolute HIs show contrasting trends, the choice of HI is therefore critical for future analysis
Ingber, Lester; Nunez, Paul L
2011-02-01
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model.
Transposable B2 SINE elements can provide mobile RNA polymerase II promoters.
Ferrigno, O; Virolle, T; Djabari, Z; Ortonne, J P; White, R J; Aberdam, D
2001-05-01
Short interspersed elements (SINEs) are highly abundant components of mammalian genomes that are propagated by retrotransposition. SINEs are recognized as a causal agent of human disease and must also have had a profound influence in shaping eukaryotic genomes. The B2 SINE family constitutes approximately 0.7% of total mouse genomic DNA (ref. 2) and is also found at low abundance in humans. It resembles the Alu family in several respects, such as its mechanism of propagation. B2 SINEs are derived from tRNA and are transcribed by RNA polymerase (pol) III to generate short transcripts that are not translated. We find here, however, that one B2 SINE also carries an active pol II promoter located outside the tRNA region. Indeed, a B2 element is responsible for the production of a mouse Lama3 transcript. The B2 pol II promoters can be bound and stimulated by the transcription factor USF (for upstream stimulatory factor), as shown by transient transfection experiments. Moreover, this pol II activity does not preclude the pol III transcription necessary for retrotransposition. Dispersal of B2 SINEs by retrotransposition may therefore have provided numerous opportunities for creating regulated pol II transcription at novel genomic sites. This mechanism may have allowed the evolution of new transcription units and new genes. PMID:11326281
A New Class of SINEs with snRNA Gene-Derived Heads
Kojima, Kenji K.
2015-01-01
Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5′ region (head) of the majority of SINEs is derived from one of the three types of RNA genes—7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)—and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5′ end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar. PMID:26019167
A New Class of SINEs with snRNA Gene-Derived Heads.
Kojima, Kenji K
2015-05-27
Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5' region (head) of the majority of SINEs is derived from one of the three types of RNA genes--7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)--and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5' end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar.
A New Class of SINEs with snRNA Gene-Derived Heads.
Kojima, Kenji K
2015-06-01
Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5' region (head) of the majority of SINEs is derived from one of the three types of RNA genes--7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)--and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5' end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar. PMID:26019167
Rigorous 3-D coupled wave diffraction analysis of multiple superposed gratings in anisotropic media.
Glytsis, E N; Gaylord, T K
1989-06-15
The diffraction by two planar slanted fringe gratings superposed in the same volume of an anisotropic medium is treated using rigorous 3-D vector coupled wave analysis. Arbitrary angle of incidence and polarization are included. Both phase and/or amplitude slanted gratings in anisotropic media are treated in the analysis. The external boundary regions can be either isotropic (for bulk applications) or uniaxial anisotropic (for integrated applications). Both forward- and backward-diffracted orders are characterized by a number pair (i(l),i(2)), where i(l) and i(2) are integers. The Floquet condition is discussed for the case of two superposed gratings. When the external regions are anisotropic, each diffracted order has an ordinary (O), and an extraordinary (E) component. The analysis is also generalized for an arbitrary number of superposed gratings. The numerical complexity is discussed. In the case of equal grating periodicities along the boundaries, the diffracted orders become degenerate in the external regions. In this case, an alternative analysis that utilizes a cascaded stack of unslanted gratings can be used. Limiting cases are also presented. The various Bragg conditions are identified and quantified. Sample calculations presented include the quantification of the crosstalk between two superposed gratings, the evaluation of the effects of coupled Bragg conditions in beam combining applications, design and analysis of a beam splitter and a beam combiner, demonstration of the use of a cascaded stack of unslanted gratings of constant modulation to represent two superposed gratings that have the same periodicity along the boundaries, and finally evaluation of the effect of the phase difference between two gratings. The same analysis applies in the limiting cases of isotropic materials, single slanted gratings, etc. Applications of this analysis include optical storage, optical digital truth table look-up processing, neural nets, optical interconnects, beam
Multiple charge density wave transitions in the antiferromagnets R NiC2 (R =Gd ,Tb)
NASA Astrophysics Data System (ADS)
Shimomura, S.; Hayashi, C.; Hanasaki, N.; Ohnuma, K.; Kobayashi, Y.; Nakao, H.; Mizumaki, M.; Onodera, H.
2016-04-01
X-ray scattering and electrical resistivity measurements were performed on GdNiC2 and TbNiC2. We found a set of satellite peaks characterized by q1=(0.5 ,η ,0 ) below T1, at which the resistivity shows a sharp inflection, suggesting the charge density wave (CDW) formation. The value of η decreases with decreasing temperature below T1, and then a transition to a commensurate phase with q1 C=(0.5 ,0.5 ,0 ) takes place. The diffuse scattering observed above T1 indicates the presence of soft phonon modes associated with CDW instabilities at q1 and q2=(0.5 ,0.5 ,0.5 ) . The long-range order given by q2 is developed in addition to that given by q1 C in TbNiC2, while the short-range correlation with q2 persists even at 6 K in GdNiC2. The amplitude of the q1 C lattice modulation is anomalously reduced below an antiferromagnetic transition temperature TN in GdNiC2. In contrast, the q2 order vanishes below TN in TbNiC2. We demonstrate that R NiC2 (R = rare earth) compounds exhibit similarities with respect to their CDW phenomena, and discuss the effects of magnetic transitions on CDWs. We offer a possible displacement pattern of the modulated structure characterized by q1 C and q2 in terms of frustration.
Grechko, Vernata V; Kosushkin, Sergei A; Borodulina, Olga R; Butaeva, Fatima G; Darevsky, Ilya S
2011-05-15
Short interspersed elements (SINEs) are important nuclear molecular markers of the evolution of many eukaryotes. However, the SINEs of squamate reptile genomes have been little studied. We first identified two families of SINEs, termed Squam1 and Squam2, in the DNA of meadow lizard Darevskia praticola (Lacertidae) by performing DNA hybridization and PCR. Later, the same families of retrotransposons were found using the same methods in members of another 25 lizard families (from Iguania, Scincomorpha, Gekkota, Varanoidea, and Diploglossa infraorders) and two snake families, but their abundances in these taxa varied greatly. Both SINEs were Squamata-specific and were absent from mammals, birds, crocodiles, turtles, amphibians, and fish. Squam1 possessed some characteristics common to tRNA-related SINEs from fish and mammals, while Squam2 belonged to the tRNA(Ala) group of SINEs and had a more unusual and divergent structure. Squam2-related sequences were found in several unannotated GenBank sequences of squamate reptiles. Squam1 abundance in the Polychrotidae, Agamidae, Leiolepididae, Chamaeleonidae, Scincidae, Lacertidae, Gekkonidae, Varanidae, Helodermatidae, and two snake families were 10(2) -10(4) times higher than those in other taxa (Corytophanidae, Iguanidae, Anguidae, Cordylidae, Gerrhosauridae, Pygopodidae, and Eublepharidae). A less dramatic degree of copy number variation was observed for Squam2 in different taxa. Several Squam1 copies from Lacertidae, Chamaeleonidae, Gekkonidae, Varanidae, and Colubridae were sequenced and found to have evident orthologous features, as well as taxa-specific autapomorphies. Squam1 from Lacertidae and Chamaeleonidae could be divided into several subgroups based on sequence differences. Possible applications of these SINEs as Squamata phylogeny markers are discussed. PMID:21462315
NASA Astrophysics Data System (ADS)
Yamashita, H.; Mogi, T.; Moriya, T.; Takada, M.; Morisada, M.
2010-12-01
The VHF radio wave transmission anomalies propagated beyond line of site prior to earthquakes (M>4), (hereafter termed EQ-echo) have been observed more than 20 times from 2004 at the Erimo observatory (ERM) in Hokkaido, Northern Japan. A statistical relationship between magnitude of preceding earthquake and total duration time of the EQ-echo has been proposed (Moriya et al.2009). To confirm a region where the EQ-echo simultaneously observed for each earthquake, we installed another 3 observatory with approximately 5 km spacing in the surroundings of ERM. The EQ-echoes have been observed simultaneously at two observatories prior to four earthquakes since 2008. The initial time and duration of each EQ echo were same time in several cases but different at some minutes each other in other cases. The wave forms of the EQ-echoes were similar in both records. In the Fuyushima observatory (FYS, 10km away from ERM) , three-way antennas were installed at every 120 degree to detect an arrival direction of EQ-echoes. Simultaneous observations of EQ-echoes at ERM and FYS for the preceding EQ (M=4.7) that occurred in the Hidaka mountains revealed that this EQ-echo came from direction of the epicenter based on the FYS observation and this direction was consistent with that of EQ-echo observed simultaneously in ERM. Although some of simultaneous observed EQ-echoes were observed in same time completely at both observatories, but some of them were with time rag of duration of each EQ-echo between multiple observed sites. We discussed what these time rags mean by considering possibilities of moving of scattering objects, generation of a radio duct, and so on, as in response to this fact.
Kovalyov, Mikhail
2010-06-15
In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.
NASA Astrophysics Data System (ADS)
Castelle, Bruno; Bonneton, Philippe; Sénéchal, Nadia; Dupuis, Hélène; Butel, Rémi; Michel, Denis
2006-01-01
This paper presents field investigation and numerical modelling of waves and wave-induced currents on a wave-dominated and non-alongshore uniform multiple barred beach. This study aims at establishing the first analysis of the dynamics of horizontal flows on the French Aquitanian coast. The spectral wave program SWAN is coupled with the time- and depth-averaged (2DH) coastal area model MORPHODYN. This coupled-model is applied to Truc Vert Beach, and results are compared with field data. From the 14th to the 19th of October 2001, a field experiment was carried out in order to characterize hydrodynamics and sediment transport over a complex bathymetry in the presence of oceanic wave conditions. From this data we calibrated three parameters: the bottom friction for wave propagation from the Aquitanian continental shelf to the nearshore zone, the spatially constant bottom friction coefficient due to waves and currents, and lateral mixing. Despite model approximations and the fact that the offshore wave boundary condition was located 15 km off the coast, the model is in good agreement with measurements. During weak wind conditions, computed waves and longshore currents fit well with field data on the ridge and runnel system. The strong tidal modulation of surf zone processes over this system is revealed. Hydrodynamics are strongly controlled by the beach morphology. For near-normally incident swells, the ridge and runnel system is responsible for a strong rip current located at the runnel outlet, associated with a circulation cell. Prediction of the tidal modulation and the sensitivity of the rip current to offshore wave conditions are in agreement with observations. Maximum rip current flow velocities occur approximately at mid-tide, which differs from what most researchers have found in other environments.
NASA Astrophysics Data System (ADS)
Saha, T. T.
1984-01-01
An equation similar to the Abbe sine condition is derived for a Wolter type II telescope. This equation and the sine condition are then combined to produce a so called generalized sine condition. Using the law of reflection, Fermat's principle, the generalized sine condition, and simple geometry the surface equations for a Wolter type II telescope and an equivalent Wolter-Schwarzschild telescope are calculated. The performances of the telescopes are compared in terms of rms blur circle radius at the gaussian focal plane and at best focus.
Allnutt, T R; Roper, K; Henry, C
2008-01-23
A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.
Allnutt, T R; Roper, K; Henry, C
2008-01-23
A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed. PMID:18092752
Luchetti, Andrea; Mantovani, Barbara
2009-12-01
Studies on transposable elements in termites are of interest because their genome is in a permanent condition of inbreeding. In this situation, an increase in transposon copy number should be mainly due to a Muller's ratchet effect, with selection against deleterious insertions playing a major role. Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, known to be stable components of eukaryotic genomes. The SINE Talua, first isolated from Reticulitermes lucifugus (Rhinotermitidae), is the only mobile element described so far in termites. In the present survey, Talua has been found widespread in the Isoptera order. In comparison with other non-termite SINEs, Talua diversity and distribution in the Reticulitermes genome demonstrate that Talua is an ancient component of termite genome and that it is significantly associated with other repeats. In particular, the element is found to be involved with microsatellite motifs either as their generator or because inserted in their nearby. Further, two new SINEs and a putative retrotranscriptase-like sequence were found linked to Talua. Talua's genomic distribution is discussed in the light of the available models on transposable element dynamics within inbred genomes, also taking into account SINE role as drivers of genetic diversity in counteracting inbreeding depression.
Rinehart, T A; Grahn, R A; Wichman, H A
2005-01-01
Short Interspersed Nuclear Elements, or SINEs, retrotranspose despite lacking protein-coding capability. It has been proposed that SINEs utilize enzymes produced in trans by Long Interspersed Nuclear Elements, or LINEs. Strong support for this hypothesis is found in LINE and SINE pairs that share sequence homology; however, LINEs and SINEs in primates and rodents are only linked by an insertion site motif. We have now profiled L1 LINE and B1 SINE activity in 24 rodent species including candidate taxa for the first documented L1 extinction. As expected, there was no evidence for recent activity of B1s in species that also lack L1 activity. However, B1 silencing appears to have preceded L1 extinction, since B1 activity is also lacking in the genus most closely related to those lacking active L1s despite the presence of active L1s in this genus. A second genus with active L1s but inactive B1s was also identified.
NASA Astrophysics Data System (ADS)
Wang, Z. L.
1996-10-01
In reflection high-energy electron diffraction (RHEED) of growing surfaces in molecular beam epitaxy (MBE), diffuse scattering is generated by atom vibrations, point vacancies and growth islands (or surface roughness). Most of the existing RHEED theories have been developed under the first-order diffuse scattering approximation, and thus they are restricted for surfaces whose roughness is relatively low. In fact, crystal surfaces grown by MBE are usually rough; the change of surface coverage from 0 to 1 monolayer accounts for the observed RHEED oscillation. In this paper, a formal dynamical theory of RHEED has been developed to calculate the diffuse scattering produced by both atom vibrations and point vacancies at surfaces. The theory is aimed at recovering the multiple diffuse scattering that has been dropped by the distorted-wave Born approximation (DWBA). With the inclusion of a complex potential in the dynamical calculation, a rigorous proof is given to show that the high-order diffuse scattering terms are recovered in the calculation using the equation originally derived under the DWBA. This conclusion establishes the basis for expanding the RHEED theories developed under the first-order diffuse scattering to cases where the degree of surface roughness is high, allowing dynamical calculation of RHEED rocking curves for any growing surface. The statistical time and structure averages over the distorted crystal potential are evaluated analytically before numerical calculation. The dynamic form factor is calculated with consideration of anisotropic surface atom vibration and point vacancies at a growing surface.
Regan, D; Murray, T J; Silver, R
1977-11-01
Seven multiple sclerosis patients were cooled and four heated, but evoked potential delay changed in only five out 11 experiments. Control limits were set by cooling eight and heating four control subjects. One patient gave anomalous results in that although heating degraded perceptual delay and visual acuity, and depressed the sine wave grating MTF, double-flash resolution was improved. An explanation is proposed in terms of the pattern of axonal demyelination. The medium frequency flicker evoked potential test seems to be a less reliable means of monitoring the progress of demyelination in multiple sclerosis patients than is double-flash campimetry or perceptual delay campimetry, although in some situations the objectivity of the evoked potential test would be advantageous.
NASA Astrophysics Data System (ADS)
Hayami, Satoru; Ozawa, Ryo; Motome, Yukitoshi
2016-07-01
Magnetic orders characterized by multiple ordering vectors harbor noncollinear and noncoplanar spin textures and can be a source of unusual electronic properties through the spin Berry phase mechanism. We theoretically show that such multiple-Q states are stabilized in itinerant magnets in the form of superpositions of collinear up-up-down-down (UUDD) spin states, which accompany the density waves of vector and scalar chirality. The result is drawn by examining the ground state of the Kondo lattice model with classical localized moments, especially when the Fermi surface is tuned to be partially nested by the symmetry-related commensurate vectors. We unveil the instability toward a double-Q UUDD state with vector chirality density waves on the square lattice and a triple-Q UUDD state with scalar chirality density waves on the triangular lattice, using the perturbative theory and variational calculations. The former double-Q state is also confirmed by large-scale Langevin dynamics simulations. We also show that, for a sufficiently large exchange coupling, the chirality density waves can induce rich nontrivial topology of electronic structures, such as the massless Dirac semimetal, Chern insulator with quantized topological Hall response, and peculiar edge states which depend on the phase of chirality density waves at the edges.
Galland, Paul
2002-09-01
The quantitative relation between gravitropism and phototropism was analyzed for light-grown coleoptiles of Avena sativa (L.). With respect to gravitropism the coleoptiles obeyed the sine law. To study the interaction between light and gravity, coleoptiles were inclined at variable angles and irradiated for 7 h with unilateral blue light (466 nm) impinging at right angles relative to the axis of the coleoptile. The phototropic stimulus was applied from the side opposite to the direction of gravitropic bending. The fluence rate that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle. To achieve balance, a linear increase in the gravitropic stimulus required compensation by an exponential increase in the counteracting phototropic stimulus. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law for phototropism described in this work. PMID:12244443
Tropisms in Phycomyces: sine law for gravitropism, exponential law for photogravitropic equilibrium.
Galland, P; Wallacher, Y; Finger, H; Hannappel, M; Tröster, S; Bold, E; Grolig, F
2002-04-01
Sporangiophores of Phycomyces blakesleeanus that are gravitropically stimulated by inclining them relative to the earth's gravitational vector obey the sine law for inclination angles between 0 degrees and 150 degrees. The quantitative relation between gravitropism and phototropism was analyzed for sporangiophores that were kept in balance between opposing gravitational and phototropic stimuli. The gravitropism of inclined sporangiophores was compensated with unilateral light impinging at right angles relative to the axis of the sporangiophore. The fluence rate of unilateral blue light (466 nm) that was required to counteract the negative gravitropism increased exponentially with the sine of the inclination angle of the sporangiophore. The establishment of photogravitropic equilibrium during continuous unilateral irradiation is thus determined by two different laws: the well-known sine law for gravitropism and a novel exponential law of phototropism described in this work. Furthermore, the specific form of the exponential relationship depends on the presence of statoliths (vacuolar protein crystals) and on wavelength. PMID:11941470
Almendros, J.; Chouet, B.; Dawson, P.; Huber, Caleb G.
2002-01-01
Seismic antennas constitute a powerful tool for the analysis of complex wave fields. Well-designed antennas can identify and separate components of a complex wave field based on their distinct propagation properties. The combination of several antennas provides the basis for a more complete understanding of volcanic wave fields, including an estimate of the location of each individual wave-field component identified simultaneously by at least two antennas. We used frequency-slowness analyses of data from three antennas to identify and locate the different components contributing to the wave fields recorded at Kilauea volcano, Hawaii, in February 1997. The wave-field components identified are (1) a sustained background volcanic tremor in the form of body waves generated in a shallow hydrothermal system located below the northeastern edge of the Halemaumau pit crater; (2) surface waves generated along the path between this hydrothermal source and the antennas; (3) back-scattered surface wave energy from a shallow reflector located near the southeastern rim of Kilauea caldera; (4) evidence for diffracted wave components originating at the southeastern edge of Halemaumau; and (5) body waves reflecting the activation of a deeper tremor source between 02 hr 00 min and 16 hr 00 min Hawaii Standard Time on 11 February.
Symmetries and soliton solutions of the Galilean complex Sine-Gordon equation
NASA Astrophysics Data System (ADS)
de Melo, G. R.; de Montigny, M.; Pinfold, J.; Tuszynski, J. A.
2016-03-01
We discuss a new equation, the Galilean version of the complex Sine-Gordon equation in 1 + 1 dimensions, Ψxx (1 -Ψ* Ψ) + 2 imΨt +Ψ* Ψx2- Ψ(1 -Ψ* Ψ) 2 = 0, derived from its relativistic counterpart via Galilean covariance. We determine its Lie point symmetries, discuss some group-invariant solutions, and examine some soliton solutions. The reduction under Galilean symmetry leads to an equation similar to the stationary Gross-Pitaevskii equation. This work is motivated in part by recent applications of the relativistic complex Sine-Gordon equation to the dynamics of Q-balls.
{pi} kinks in the parametrically driven sine-Gordon equation and applications
Zharnitsky, V.; Mitkov, I.
1997-07-08
Parametrically driven sine-Gordon equation with a mean-zero forcing is considered. It is shown that the system is well approximated by the double sine-Gordon equation using the normal form technique. The reduced equation possesses {pi}-kink solutions, which are also observed numerically in the original system. This result is applied to domain walls dynamics in one-dimensional easy-plane ferromagnets. For such system the existence of {pi}-kinks implies the true domain structure in the presence of high-frequency magnetic field.
Smith, Robert; Fuss, Franz Konstantin
2013-01-01
This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin. PMID:24018954
Smith, Robert; Fuss, Franz Konstantin
2013-09-06
This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.
NASA Astrophysics Data System (ADS)
Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.
2014-12-01
Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham
2015-04-01
Mantle plumes have been invoked as the likely cause of East African Rift volcanism and extension. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to one or more distinct lower-mantle sources along the rift. We present a new relative travel-time tomography model that images detailed P- and S- wave velocities from P,S and SKS phases below the northern East-African, Red Sea and Gulf of Aden rift. Data comes from stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time structures of ~100 km length scale down to depths of 900 km beneath this region. Our images provide evidence of at least two low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first extends to at least 900 km beneath Afar, and a second reaching at least 750 km depth just west of the Main Ethiopian Rift, a region with off-rift volcanism. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of 100±50 K. The scale of the upwellings is smaller than any of the previously proposed lower mantle plume sources. This suggests the ponding or flow of deep-plume material below the transition zone may be spawning smaller upper-mantle upwellings.
NASA Astrophysics Data System (ADS)
Zaroli, C.; Sambridge, M.; Lévêque, J.-J.; Debayle, E.; Nolet, G.
2013-10-01
In a linear ill-posed inverse problem, the regularisation parameter (damping) controls the balance between minimising both the residual data misfit and the model norm. Poor knowledge of data uncertainties often makes the selection of damping rather arbitrary. To go beyond that subjectivity, an objective rationale for the choice of damping is presented, which is based on the coherency of delay-time estimates in different frequency bands. Our method is tailored to the problem of global multiple-frequency tomography (MFT), using a data set of 287 078 S-wave delay times measured in five frequency bands (10, 15, 22, 34, and 51 s central periods). Whereas for each ray path the delay-time estimates should vary coherently from one period to the other, the noise most likely is not coherent. Thus, the lack of coherency of the information in different frequency bands is exploited, using an analogy with the cross-validation method, to identify models dominated by noise. In addition, a sharp change of behaviour of the model ℓ∞-norm, as the damping becomes lower than a threshold value, is interpreted as the signature of data noise starting to significantly pollute at least one model component. Models with damping larger than this threshold are diagnosed as being constructed with poor data exploitation. Finally, a preferred model is selected from the remaining range of permitted model solutions. This choice is quasi-objective in terms of model interpretation, as the selected model shows a high degree of similarity with almost all other permitted models (correlation superior to 98% up to spherical harmonic degree 80). The obtained tomographic model is displayed in the mid lower-mantle (660-1910 km depth), and is shown to be compatible with three other recent global shear-velocity models. A wider application of the presented rationale should permit us to converge towards more objective seismic imaging of Earth's mantle.
Multiple-pass laser beam deflection probe for detection of acoustic and weak shock waves in fluids
NASA Astrophysics Data System (ADS)
Diaci, Janez; Možina, Janez
1995-09-01
We examine a novel laser beam deflection arrangement for detection of acoustic and weak shock waves in fluids. Novelty of the arrangement is folding of the probe beam by two parallel plane mirrors in such a way that the probe beam passes the wave propagation region several times before it reaches the deflection-detecting photodetector. In this way the probed wave interacts with several segments of the probing beam in sequence. A single oscilloscope trace of the photodetector output thus gives us the possibility to study the evolution of the probed wave at several distances from the source. To demonstrate the potentials of the arrangement we present wave forms of spherical blast waves detected in air during laser ablation of solid samples. We also discuss a simple theoretical model that qualitatively explains the most characteristic features of this arrangement.
Auditory-Phonetic Projection and Lexical Structure in the Recognition of Sine-Wave Words
ERIC Educational Resources Information Center
Remez, Robert E.; Dubowski, Kathryn R.; Broder, Robin S.; Davids, Morgana L.; Grossman, Yael S.; Moskalenko, Marina; Pardo, Jennifer S.; Hasbun, Sara Maria
2011-01-01
Speech remains intelligible despite the elimination of canonical acoustic correlates of phonemes from the spectrum. A portion of this perceptual flexibility can be attributed to modulation sensitivity in the auditory-to-phonetic projection, although signal-independent properties of lexical neighborhoods also affect intelligibility in utterances…
NASA Astrophysics Data System (ADS)
Strom, Brandon William
In an effort to assist in the paradigm shift from schedule based maintenance to conditioned based maintenance, we derive measurement models to be used within structural health monitoring algorithms. Our models are physics based, and use scattered Lamb waves to detect and quantify pitting corrosion. After covering the basics of Lamb waves and the reciprocity theorem, we develop a technique for the scattered wave solution. The first application is two-dimensional, and is employed in two different ways. The first approach integrates a traction distribution and replaces it by an equivalent force. The second approach is higher order and uses the actual traction distribution. We find that the equivalent force version of the solution technique holds well for small pits at low frequencies. The second application is three-dimensional. The equivalent force caused by the scattered wave of an arbitrary equivalent force is calculated. We obtain functions for the scattered wave displacements as a function of equivalent forces, equivalent forces as a function of incident wave, and scattered wave amplitudes as a function of incident amplitude. The third application uses self-consistency to derive governing equations for the scattered waves due to multiple corrosion pits. We decouple the implicit set of equations and solve explicitly by using a recursive series solution. Alternatively, we solve via an undetermined coefficient method which results in an interaction operator and solution via matrix inversion. The general solution is given for N pits including mode conversion. We show that the two approaches are equivalent, and give a solution for three pits. Various approximations are advanced to simplify the problem while retaining the leading order physics. As a final application, we use the multiple scattering model to investigate resonance of Lamb waves. We begin with a one-dimensional problem and progress to a three-dimensional problem. A directed graph enables interpretation of
SunSine300 AC module. Annual report, July 25, 1995--December 31, 1996
Russell, M.C.; Handleman, C.K.P.
1997-08-01
Under Photovoltaic Manufacturing Technology (PVMaT) 4A1, Ascension Technology (AT) is developing the SunSine300 AC PV module. AT`s goals in this project are to meet Underwriters Laboratory (UL) 1741 requirements, obtain Federal Communications Commission (FCC) Class B verification, complete the AC module system design and development, advance the inverter design, design for manufacture, design for reliability, design for serviceability, and demonstrate commercialization through production and sale of about 100 units. To meet these goals, AT corrected a number of deficiencies identified by UL`s preliminary investigation before proceeding to the full UL investigation; a SunSine300 prototype was tested and found to comply with FCC Class B requirements; AT designed a complete line of balance-of-systems hardware for the SunSine 300; AT`s design and performance advancements include accomplishing a total harmonic distortion drop from 5% to 2%, devising a method to eliminate false detection of zero crossings that could damage the inverter, improving the anti-islanding with the addition of AT`s proprietary ZEBRA technique, and redesigning the enclosure for thermal performance, manufacturability, and UL and FCC approval; performing extensive testing in Phase 2 to discover failure modes and susceptibility to aging; and designing the SunSine300 to be easily and safely serviced. 3 figs., 3 tabs.
Emotional Intelligence: The Sine Qua Non for a Clinical Leadership Toolbox
ERIC Educational Resources Information Center
Rao, Paul R.
2006-01-01
Over the past decade, it has become increasingly clear that although IQ and technical skills are important, emotional intelligence is the Sine Qua Non of leadership. According to Goleman [Goleman, D. (1998). What makes a leader? "Harvard Business Review," 93-102] "effective leaders are alike in one crucial way: they all have a high degree of…
The Use of the Arc-Sine Transformation in the Analysis of Variance.
ERIC Educational Resources Information Center
Milligan, Glenn W.
1987-01-01
The use of the arc-sine transformation in analysis of variance can lead to difficult inference situations and pose problems in interpretation. It can also produce tests of noticeably lower power when the null hypothesis is false, and is not recommended as a standard tool. Simulated illustrations are provided. (Author/GDC)
Fatigue Damage Spectrum calculation in a Mission Synthesis procedure for Sine-on-Random excitations
NASA Astrophysics Data System (ADS)
Angeli, Andrea; Cornelis, Bram; Troncossi, Marco
2016-09-01
In many real-life environments, certain mechanical and electronic components may be subjected to Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic (sinusoidal) contributions, in particular sine tones due to some rotating parts of the system (e.g. helicopters, engine-mounted components,...). These components must be designed to withstand the fatigue damage induced by the “composed” vibration environment, and qualification tests are advisable for the most critical ones. In the case of an accelerated qualification test, a proper test tailoring which starts from the real environment (measured vibration signals) and which preserves not only the accumulated fatigue damage but also the “nature” of the excitation (i.e. sinusoidal components plus random process) is important to obtain reliable results. In this paper, the classic time domain approach is taken as a reference for the comparison of different methods for the Fatigue Damage Spectrum (FDS) calculation in case of Sine-on-Random vibration environments. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is proposed.
Short interspersed CAN SINE elements as prognostic markers in canine mammary neoplasia.
Gelaleti, Gabriela B; Granzotto, Adriana; Leonel, Camila; Jardim, Bruna V; Moschetta, Marina G; Carareto, Claudia M A; Zuccari, Debora Ap P C
2014-01-01
The genome of mammals is characterized by a large number of non-LTR retrotransposons, and among them, the CAN SINEs are characteristics of the canine species. Small amounts of DNA freely circulate in normal blood serum and high amounts are found in human patients with cancer, characterizing it as a candidate tumor-biomarker. The aim of this study was to estimate, through its absolute expression, the number of copies of CAN SINE sequences present in free circulating DNA of female dogs with mammary cancer, in order to correlate with the clinical and pathological characteristics and the follow-up period. The copy number of CAN SINE sequences was estimated by qPCR in 28 female dogs with mammary neoplasia. The univariate analysis showed an increased number of copies in female dogs with mammary tumor in female dogs >10 years old (p=0.02) and tumor time >18 months (p<0.05). The Kaplan-Meier test demonstrated a negative correlation between an increased number of copies and survival time (p=0.03). High amounts of CAN SINE fragments can be good markers for the detection of tumor DNA in blood and may characterize it as a marker of poor prognosis, being related to female dogs with shorter survival times. This estimate can be used as a prognostic marker in non-invasive breast cancer research and is useful in predicting tumor progression and patient monitoring. PMID:24173085
The LINEs and SINEs of Entamoeba histolytica: comparative analysis and genomic distribution.
Bakre, Abhijeet A; Rawal, Kamal; Ramaswamy, Ram; Bhattacharya, Alok; Bhattacharya, Sudha
2005-07-01
Autonomous non-long terminal repeat retrotransposons are commonly referred to as long interspersed elements (LINEs). Short non-autonomous elements that borrow the LINE machinery are called SINES. The Entamoeba histolytica genome contains three classes of LINEs and SINEs. Together the EhLINEs/SINEs account for about 6% of the genome. The recognizable functional domains in all three EhLINEs included reverse transcriptase and endonuclease. A novel feature was the presence of two types of members-some with a single long ORF (less frequent) and some with two ORFs (more frequent) in both EhLINE1 and 2. The two ORFs were generated by conserved changes leading to stop codon. Computational analysis of the immediate flanking sequences for each element showed that they inserted in AT-rich sequences, with a preponderance of Ts in the upstream site. The elements were very frequently located close to protein-coding genes and other EhLINEs/SINEs. The possible influence of these elements on expression of neighboring genes needs to be determined.
A new explicit solution to the lattice sine-Gordon equation
NASA Astrophysics Data System (ADS)
Xu, Xiaoxue; Cao, Cewen
2016-03-01
Based on a new discrete Lax pair, an elementary explicit solution is found for the lattice sine-Gordon equation through Riemann surface method. It contains only exponential functions, quite different from the usual higher genus solutions, expressed with complicated theta functions. The solutions to the associated models, the lattice potential MKdV equation and a special H3 equation are also discussed.
Understanding the mechanisms of length scale competition: The sine-Gordan soliton case
Sanchez, A.; Bishop, A.R.; Dominguez-Adame, F.
1994-08-01
We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. We report on a novel occurrence of length scale competition in this system and show how it can be understood by means of linear stability analysis.
Martin, S.J.; Ricco, A.J.
1993-08-10
A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.
Renormalization-group analysis of layered sine-Gordon type models
NASA Astrophysics Data System (ADS)
Nándori, I.; Nagy, S.; Sailer, K.; Jentschura, U. D.
2005-10-01
We analyze the phase structure and the renormalization group (RG) flow of the generalized sine-Gordon models with nonvanishing mass terms, using the Wegner-Houghton RG method in the local potential approximation. Particular emphasis is laid upon the layered sine-Gordon (LSG) model, which is the bosonized version of the multi-flavour Schwinger model and approaches the sum of two "normal", massless sine-Gordon (SG) models in the limit of a vanishing interlayer coupling J. Another model of interest is the massive sine-Gordon (MSG) model. The leading-order approximation to the UV (ultraviolet) RG flow predicts two phases for the LSG as well as for the MSG, just as it would be expected for the SG model, where the two phases are known to be separated by the Coleman fixed point. The presence of finite mass terms (for the LSG and the MSG) leads to corrections to the UV RG flow, which are naturally identified as the "mass corrections". The leading-order mass corrections are shown to have the following consequences: (i) for the MSG model, only one phase persists, and (ii) for the LSG model, the transition temperature is modified. Within the mass-corrected UV scaling laws, the limit of J→0 is thus nonuniform with respect to the phase structure of the model. The modified phase structure of general massive sine-Gordon models is connected with the breaking of symmetries in the internal space spanned by the field variables. For the LSG, the second-order subleading mass corrections suggest that there exists a cross-over regime before the IR scaling sets in, and the nonlinear terms show explicitly that higher-order Fourier modes appear in the periodic blocked potential.
Expansion of CORE-SINEs in the genome of the Tasmanian devil
2012-01-01
Background The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species’ survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. Results The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. Conclusions The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome. PMID:22559330
Kanhayuwa, Lakkhana; Coutts, Robert H. A.
2016-01-01
Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4–14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140–493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3’-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50–65% and 60–75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259–343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity. PMID:27736869
NASA Astrophysics Data System (ADS)
Zaroli, C.; Sambridge, M.; Leveque, J. J.; Debayle, E.; Nolet, G.
2014-12-01
In a linear ill-posed inverse problem, the regularisation parameter (damping) controls the balance between minimising both the residual data misfit and the model norm. Poor knowledge of data uncertainties often makes the selection of damping rather arbitrary. To go beyond that subjectivity, an objective rationale for the choice of damping is presented, which is based on the coherency of delay-time estimates in different frequency bands. Our method is tailored to the problem of global Multiple-Frequency Tomography, using a data set of 287078 S-wave delay-times measured in five frequency bands (10, 15, 22, 34, 51 s central periods). Whereas for each ray path the delay-time estimates should vary coherently from one period to the other, the noise most likely is not coherent. Thus, the lack of coherency of the information in different frequency bands is exploited, using an analogy with the cross-validation method, to identify models dominated by noise.In addition, a sharp change of behaviour of the model infinity-norm, as the damping becomes lower than a threshold value, is interpreted as the signature of data noise starting to significantly pollute at least one model component. Models with damping larger than this threshold are diagnosed as being constructed with poor data exploitation.Finally, a preferred model is selected from the remaining range of permitted model solutions. This choice is quasi-objective in terms of model interpretation, as the selected model shows a high degree of similarity with almost all other permitted models. The obtained tomographic model is displayed in mid lower-mantle (660-1910 km depth), and is shown to be mostly compatible with three other recent global shear-velocity models, while significant differences can be noticed. A wider application of the presented rationale should permit us to converge towards more objective seismic imaging of the Earth's mantle, using as much as possible of the relevant structural information in the data
NASA Astrophysics Data System (ADS)
Naito, Koki; Asami, Takuya; Miura, Hikaru
2015-07-01
Intense aerial acoustic waves can be produced by an ultrasonic source consisting of a transverse vibrating plate and an external jutting driving point. Previously, we studied the dimensional parameters of vibrating plates to produce stripe-mode patterns and thereby determine the plate dimensions that generate high-quality patterns. In this research, we use four transverse vibrating plates as ultrasonic sources to produce intense standing wave fields in air. As a result, an aerial standing wave field was formed in the field surrounded by four vibrating plates. Furthermore, for a total input power of 30 W for the two ultrasonic sources, a very strong (sound pressure level, 167 dB) wave field is obtained.
A SINE species from hippopotamus and its distribution among animal species.
Nomura, O; Lin, Z H; Muladno; Wada, Y; Yasue, H
1998-07-01
Thirty sequences of a short interspersed repetitive element (SINE) were isolated from genomic DNA of Hippopotamus amphibius (hippopotamus). RNA polymerase III split promoter sequence was observed in all of the 30 sequences; and poly(A)-like structure at 3'-end, as well as direct repeat flanking to the repetitive sequence in many of the 30 sequences. A comparison of the consensus sequence of the 30 sequences with sequences in a DNA database (DDBJ/GENBANK/EMBL) revealed 93% homology to the consensus sequence of a whale SINE, CHR-2, and 73% homology to mouse glutamic acid tRNA. Phylogenetic analysis of tRNA-related regions of the sequences with all of the mouse tRNAs revealed that glutamic acid tRNA was genetically closest to the hippopotamus SINE. In addition, the tRNA-related region of the consensus sequence was folded into a cloverleaf structure as with mouse glutamic acid tRNA. These findings led us to conclude that the SINE of hippopotamus was genetically related to a whale SINE, CHR-2 [the hippopotamus SINE was named CHR-2(hippo)] and was a retroposon derived from glutamic acid tRNA. Hipo53 and hipo95, which were the genetically most separated CHR-2(hippo) sequences in the present study, were used as a probe for dot-blot hybridization to examine the distribution of their homologous sequences among animal species. Although the distribution spectra of hipo53 and hipo95 homologous sequences in animal species differed to some extent, large amounts of both sequences were found in Hippopotamus amphibius and Globicephala macrorhynchus (whale); and small amounts in most of the animal species in Artiodactyla examined. These findings indicated that the hippopotamus and whale had more recently branched off from the clade that includes chevrotain and pecorans than the other animal species in the clade. The 30 CHR-2(hippo) sequences were aligned, and the substitution rates among the sequences were calculated with a different substitution rate model for transition and for
Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu
2015-04-20
We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement with previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.
Lemeshko, Mikhail; Friedrich, Bretislav
2010-08-15
We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines the Wentzel-Kramers-Brillouin (WKB) treatment of the long-range attraction with the Fraunhofer model treatment of the short-range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey et al. [Phys. Rev. Lett. 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two-dimensional 'hard core' of the potential, is essential for obtaining a correct imaginary part of the refractive index.
NASA Astrophysics Data System (ADS)
Peyret, Nicolas; Dion, Jean-Luc; Chevallier, Gael
2016-10-01
This paper deals with the use of piezoelectric patches for nonlinear dynamic identification. The patches are glued on the structure to identify amplitude-dependent damping and natural frequency; their positions are defined in order to perform the excitation concentrated on the first bending mode. Their locations on the structure allow to perform "stop sines" tests, as, unlike electrodynamic shakers, piezos are embedded on structures and do not modify the studied structure after the excitation signal is switched off. Although, despite the piezo and the stop-sine, the signal is still modulated by other frequency components or polluted by random signals, a post processing with the extended Kalman Filter allows a very good determination of the modal damping and the natural frequency, especially when they depends on the free vibration amplitude.
NASA Astrophysics Data System (ADS)
Novak, Antonin; Simon, Laurent; Lotton, Pierrick
2010-12-01
A new method of identification, based on an input synchronized exponential swept-sine signal, is used to analyze and synthesize nonlinear audio systems like overdrive pedals for guitar. Two different pedals are studied; the first one exhibiting a strong influence of the input signal level on its input/output law and the second one exhibiting a weak influence of this input signal level. The Synchronized Swept Sine method leads to a Generalized Polynomial Hammerstein model equivalent to the pedals under test. The behaviors of both pedals are illustrated through model-based resynthesized signals. Moreover, it is also shown that this method leads to a criterion allowing the classification of the nonlinear systems under test, according to the influence of the input signal levels on their input/output law.
Darboux Transformation for the Vector Sine-Gordon Equation and Integrable Equations on a Sphere
NASA Astrophysics Data System (ADS)
Mikhailov, Alexander V.; Papamikos, Georgios; Wang, Jing Ping
2016-07-01
We propose a method for construction of Darboux transformations, which is a new development of the dressing method for Lax operators invariant under a reduction group. We apply the method to the vector sine-Gordon equation and derive its Bäcklund transformations. We show that there is a new Lax operator canonically associated with our Darboux transformation resulting an evolutionary differential-difference system on a sphere. The latter is a generalised symmetry for the chain of Bäcklund transformations. Using the re-factorisation approach and the Bianchi permutability of the Darboux transformations, we derive new vector Yang-Baxter map and integrable discrete vector sine-Gordon equation on a sphere.
A Unique Presentation of Anti-RNA Polymerase III Positive Systemic Sclerosis Sine Scleroderma.
Lee, Cody M; Girnita, Diana; Sharma, Arundhati; Khanna, Surabhi; Elwing, Jean M
2016-01-01
Systemic sclerosis is a rare autoimmune disorder with a wide spectrum of clinical manifestations and a multitude of autoantibodies that are associated with it. In the past several years, advances in serologic testing have led to research indicating important prognostic and phenotypic associations with certain subsets of autoantibodies. In particular, anti-RNA polymerase III (anti-RNAP III) has been associated with diffuse cutaneous disease, scleroderma renal crisis, a temporal relationship with malignancy, myositis, synovitis, joint contractures, and gastric antral vascular ectasia. However, anti-RNAP III has not been associated with systemic sclerosis sine scleroderma. We describe a patient with an atypical presentation of anti-RNAP III positive systemic sclerosis sine scleroderma who presented without the typical features of anti-RNAP III disease. Instead, she presented with critical digital ischemia, pulmonary arterial hypertension, gastroesophageal reflux disease, interstitial lung disease, and no clinically detectable sclerodactyly. PMID:27559487
A Unique Presentation of Anti-RNA Polymerase III Positive Systemic Sclerosis Sine Scleroderma
2016-01-01
Systemic sclerosis is a rare autoimmune disorder with a wide spectrum of clinical manifestations and a multitude of autoantibodies that are associated with it. In the past several years, advances in serologic testing have led to research indicating important prognostic and phenotypic associations with certain subsets of autoantibodies. In particular, anti-RNA polymerase III (anti-RNAP III) has been associated with diffuse cutaneous disease, scleroderma renal crisis, a temporal relationship with malignancy, myositis, synovitis, joint contractures, and gastric antral vascular ectasia. However, anti-RNAP III has not been associated with systemic sclerosis sine scleroderma. We describe a patient with an atypical presentation of anti-RNAP III positive systemic sclerosis sine scleroderma who presented without the typical features of anti-RNAP III disease. Instead, she presented with critical digital ischemia, pulmonary arterial hypertension, gastroesophageal reflux disease, interstitial lung disease, and no clinically detectable sclerodactyly. PMID:27559487
Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam
Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu
2016-01-01
We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications. PMID:27443798
NASA Astrophysics Data System (ADS)
Baron, H. E.; Zakrzewski, W. J.
2016-06-01
We investigate the validity of collective coordinate approximations to the scattering of two solitons in several classes of (1+1) dimensional field theory models. We consider models which are deformations of the sine-Gordon (SG) or the nonlinear Schrödinger (NLS) model which posses soliton solutions (which are topological (SG) or non-topological (NLS)). Our deformations preserve their topology (SG), but change their integrability properties, either completely or partially (models become `quasi-integrable').
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew
2016-05-01
In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.
Dressing method for the vector sine-Gordon equation and its soliton interactions
NASA Astrophysics Data System (ADS)
Mikhailov, Alexander V.; Papamikos, Georgios; Wang, Jing Ping
2016-06-01
In this paper, we develop the dressing method to study the exact solutions for the vector sine-Gordon equation. The explicit formulas for one kink and one breather are derived. The method can be used to construct multi-soliton solutions. Two soliton interactions are also studied. The formulas for position shift of the kink and position and phase shifts of the breather are given. These quantities only depend on the pole positions of the dressing matrices.
Interconnection between static regimes in the LJJs described by the double sine-Gordon equation
NASA Astrophysics Data System (ADS)
Atanasova, P. Kh; Zemlyanaya, E. V.; Shukrinov, Yu M.
2012-11-01
The second harmonic contribution to the current-phase relation changes the properties of the static magnetic flux distributions in the long Josephson junction (LJJ) and inspires new homogenious and fluxon static states. We study stability properties and bifurcations of these static regimes within the frame of a model described by the double sine-Gordon equation. The critical curves behavior and the interconnection between different types of magnetic flux distributions are analyzed.
Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution
Kass, D.H.; Batzer, M.A.; Deininger, P.L. |
1995-01-01
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolutions. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.
Schmitz, J; Ohme, M; Zischler, H
2001-01-01
Transpositions of Alu sequences, representing the most abundant primate short interspersed elements (SINE), were evaluated as molecular cladistic markers to analyze the phylogenetic affiliations among the primate infraorders. Altogether 118 human loci, containing intronic Alu elements, were PCR analyzed for the presence of Alu sequences at orthologous sites in each of two strepsirhine, New World and Old World monkey species, Tarsius bancanus, and a nonprimate outgroup. Fourteen size-polymorphic amplification patterns exhibited longer fragments for the anthropoids (New World and Old World monkeys) and T. bancanus whereas shorter fragments were detected for the strepsirhines and the outgroup. From these, subsequent sequence analyses revealed three Alu transpositions, which can be regarded as shared derived molecular characters linking tarsiers and anthropoid primates. Concerning the other loci, scenarios are represented in which different SINE transpositions occurred independently in the same intron on the lineages leading both to the common ancestor of anthropoids and to T. bancanus, albeit at different nucleotide positions. Our results demonstrate the efficiency and possible pitfalls of SINE transpositions used as molecular cladistic markers in tracing back a divergence point in primate evolution over 40 million years old. The three Alu insertions characterized underpin the monophyly of haplorhine primates (Anthropoidea and Tarsioidea) from a novel perspective. PMID:11156996
L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells.
Dewannieux, Marie; Heidmann, Thierry
2005-06-01
SINEs are short interspersed nucleotide elements with transpositional activity, present at a high copy number (up to a million) in mammalian genomes. They are 80-400 bp long, non-coding sequences which derive either from the 7SL RNA (e.g. human Alus, murine B1s) or tRNA (e.g. murine B2s) polymerase III-driven genes. We have previously demonstrated that Alus very efficiently divert the enzymatic machinery of the autonomous L1 LINE (long interspersed nucleotide element) retrotransposons to transpose at a high rate. Here we show, using an ex vivo assay for transposition, that both B1 and B2 SINEs can be mobilized by murine LINEs, with the hallmarks of a bona fide retrotransposition process, including target site duplications of varying lengths and integrations into A-rich sequences. Despite different phylogenetic origins, transposition of the tRNA-derived B2 sequences is as efficient as that of the human Alus, whereas that of B1s is 20-100-fold lower despite a similar high copy number of these elements in the mouse genome. We provide evidence, via an appropriate nucleotide substitution within the B1 sequence in a domain essential for its intracellular targeting, that the current B1 SINEs are not optimal for transposition, a feature most probably selected for the host sake in the course of evolution.
Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs.
Cheng, Chaoyang; Motohashi, Reiko; Tsuchimoto, Suguru; Fukuta, Yoshimichi; Ohtsubo, Hisako; Ohtsubo, Eiichi
2003-01-01
The wild rice species Oryza rufipogon with wide intraspecific variation is thought to be the progenitor of the cultivated rice species Oryza sativa with two ecotypes, japonica and indica. To determine the origin of cultivated rice, subfamily members of the rice retroposon p-SINE1, which show insertion polymorphism in the O. sativa -O. rufipogon population, were identified and used to "bar code" each of 101 cultivated and wild rice strains based on the presence or absence of the p-SINE1 members at the respective loci. A phylogenetic tree constructed based on the bar codes given to the rice strains showed that O. sativa strains were classified into two groups corresponding to japonica and indica, whereas O. rufipogon strains were in four groups, in which annual O. rufipogon strains formed a single group, differing from the perennial O. rufipogon strains of the other three groups. Japonica strains were closely related to the O. rufipogon perennial strains of one group, and the indica strains were closely related to the O. rufipogon annual strains, indicating that O. sativa has been derived polyphyletically from O. rufipogon. The subfamily members of p-SINE1 constitute a powerful tool for studying the classification and relationship of rice strains, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains. PMID:12519908
NASA Astrophysics Data System (ADS)
Yurchenko, A. V.; Gorlov, N. I.; Alkina, A. D.; Mekhtiev, A. D.; Kovtun, A. A.
2016-01-01
Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of “Kazaktelekom” AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment — the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative.
Tachida, Hidenori
1996-06-01
A transient population genetic model of SINE (short interspersed repetitive element) evolution is presented, assuming the master copy model is theoretically investigated. Means and variances of consensus frequency of nucleotides, nucleotide homozygosity, and the number of shared differences that are considered to have been caused by mutations occurring in the master copy lineages are computed. All quantities investigated are shown to be monotone functions of the duration of the expansion period. Thus, they can be used to estimate the expansion period although their sampling variances are generally large. Using the theoretical results, the Sb subfamily of human Alu sequences is analyzed. First, the expansion period is estimated from the observed mean and variance of homozygosity. The expansion period is shown to be short compared to the time since the end of the expansion of the subfamily. However, the observed number of the shared differences is more than twice that expected under the master copy model with the estimated expansion period. Alternative models to explain this observation are discussed, including one with multiple master copy loci. 38 refs., 5 figs., 4 tabs.
Morillo, Santiago A; Braid, Lorena R; Verheyen, Esther M; Rebay, Ilaria
2012-05-01
The retinal determination gene network comprises a collection of transcription factors that respond to multiple signaling inputs to direct Drosophila eye development. Previous genetic studies have shown that nemo (nmo), a gene encoding a proline-directed serine/threonine kinase, can promote retinal specification through interactions with the retinal determination gene network, although the molecular point of cross-talk was not defined. Here, we report that the Nemo kinase positively and directly regulates Eyes absent (Eya). Genetic assays show that Nmo catalytic activity enhances Eya-mediated ectopic eye formation and potentiates induction of the Eya-Sine oculis (So) transcriptional targets dachshund and lozenge. Biochemical analyses demonstrate that Nmo forms a complex with and phosphorylates Eya at two consensus mitogen-activated protein kinase (MAPK) phosphorylation sites. These same sites appear crucial for Nmo-mediated activation of Eya function in vivo. Thus, we propose that Nmo phosphorylation of Eya potentiates its transactivation function to enhance transcription of Eya-So target genes during eye specification and development. PMID:22394486
Martin, Stephen J.; Ricco, Antonio J.
1993-01-01
A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.
Single actuator wave-like robot (SAW): design, modeling, and experiments.
Zarrouk, David; Mann, Moshe; Degani, Nir; Yehuda, Tal; Jarbi, Nissan; Hess, Amotz
2016-01-01
In this paper, we present a single actuator wave-like robot, a novel bioinspired robot which can move forward or backward by producing a continuously advancing wave. The robot has a unique minimalistic mechanical design and produces an advancing sine wave, with a large amplitude, using only a single motor but with no internal straight spine. Over horizontal surfaces, the robot does not slide relative to the surface and its direction of locomotion is determined by the direction of rotation of the motor. We developed a kinematic model of the robot that accounts for the two-dimensional mechanics of motion and yields the speed of the links relative to the motor. Based on the optimization of the kinematic model, and accounting for the mechanical constraints, we have designed and built multiple versions of the robot with different sizes and experimentally tested them (see movie). The experimental results were within a few percentages of the expectations. The larger version attained a top speed of 57 cm s(-1) over a horizontal surface and is capable of climbing vertically when placed between two walls. By optimizing the parameters, we succeeded in making the robot travel by 13% faster than its own wave speed. PMID:27367548
Single actuator wave-like robot (SAW): design, modeling, and experiments.
Zarrouk, David; Mann, Moshe; Degani, Nir; Yehuda, Tal; Jarbi, Nissan; Hess, Amotz
2016-07-01
In this paper, we present a single actuator wave-like robot, a novel bioinspired robot which can move forward or backward by producing a continuously advancing wave. The robot has a unique minimalistic mechanical design and produces an advancing sine wave, with a large amplitude, using only a single motor but with no internal straight spine. Over horizontal surfaces, the robot does not slide relative to the surface and its direction of locomotion is determined by the direction of rotation of the motor. We developed a kinematic model of the robot that accounts for the two-dimensional mechanics of motion and yields the speed of the links relative to the motor. Based on the optimization of the kinematic model, and accounting for the mechanical constraints, we have designed and built multiple versions of the robot with different sizes and experimentally tested them (see movie). The experimental results were within a few percentages of the expectations. The larger version attained a top speed of 57 cm s(-1) over a horizontal surface and is capable of climbing vertically when placed between two walls. By optimizing the parameters, we succeeded in making the robot travel by 13% faster than its own wave speed.
Regularization of multi-soliton form factors in sine-Gordon model
NASA Astrophysics Data System (ADS)
Pálmai, T.
2012-08-01
A general and systematic regularization is developed for the exact solitonic form factors of exponential operators in the (1+1)-dimensional sine-Gordon model by analytical continuation of their integral representations. The procedure is implemented in Mathematica. Test results are shown for four- and six-soliton form factors. Catalogue identifier: AEMG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1462 No. of bytes in distributed program, including test data, etc.: 15 488 Distribution format: tar.gz Programming language: Mathematica [1] Computer: PC Operating system: Cross-platform Classification: 7.7, 11.1, 23 Nature of problem: The multi-soliton form factors of the sine-Gordon model (relevant in two-dimensional physics) were given only by highly non-trivial integral representation with a limited domain of convergence. Practical applications of the form factors, e.g. calculation of correlation functions in two-dimensional condensed matter systems, were not possible in general. Solution method: Using analytic continuation techniques an efficient algorithm is found and implemented in Mathematica, which provides a general and systematic way to calculate multi-soliton form factors in the sine-Gordon model. The package contains routines to compute the two-, four- and six-soliton form factors. Running time: Strongly dependent on the desired accuracy and the number of solitons. For physical rapidities after an initialization of about 30 s, the calculation of the two-, four- and six-soliton form factors at a single point takes approximately 0.5 s, 2.5 s and 8 s, respectively. Wolfram Research, Inc., Mathematica Edition: Version 7.0, Wolfram Research, Inc., Champaign, Illinois, 2008.
Berginc, G
2013-11-30
We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)
Selective inhibitors of nuclear export (SINE)--a novel class of anti-cancer agents.
Parikh, Kaushal; Cang, Shundong; Sekhri, Arunabh; Liu, Delong
2014-10-15
Dysregulation of the nucleo-cytoplasmic transport of proteins plays an important role in carcinogenesis. The nuclear export of proteins depends on the activity of transport proteins, exportins. Exportins belong to the karyopherin β superfamily. Exportin-1 (XPO1), also known as chromosomal region maintenance 1 (CRM1), mediates transport of around 220 proteins. In this review, we summarized the development of a new class of antitumor drugs, collectively known as selective inhibitors of nuclear export (SINE). KPT-330 (selinexor) as an oral agent is showing activities in early clinical trials in both solid tumors and hematological malignancies.
Quantum Creep and Quantum-Creep Transitions in 1D Sine-Gordon Chains.
Krajewski, Florian R; Müser, Martin H
2004-01-23
Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder on the chain's dynamics depend on the potential's roughness exponent H. For example, quantum fluctuations are generally too small to depin the chain if H=1/2, while an H=0 chain can be pinned or unpinned depending on the bead masses. Thermal fluctuations always depin the chain. PMID:14753858
Amplitude estimation of a sine function based on confidence intervals and Bayes' theorem
NASA Astrophysics Data System (ADS)
Eversmann, D.; Pretz, J.; Rosenthal, M.
2016-05-01
This paper discusses the amplitude estimation using data originating from a sine-like function as probability density function. If a simple least squares fit is used, a significant bias is observed if the amplitude is small compared to its error. It is shown that a proper treatment using the Feldman-Cousins algorithm of likelihood ratios allows one to construct improved confidence intervals. Using Bayes' theorem a probability density function is derived for the amplitude. It is used in an application to show that it leads to better estimates compared to a simple least squares fit.
Mass of the sine-Gordon soliton in the Hartree approximation
NASA Astrophysics Data System (ADS)
Altenbokum, M.; Kaulfuss, U.; Verbaarschot, J. J. M.
1986-09-01
We derive the quantum corrections to the mass of the one-soliton solution of the sine-Gordon system in the Hartree approximation. In the weak-coupling limit we reproduce the semiclassical correction to the soliton mass. This happens only after a nontrivial cancellation of contributions related to the deformation of the soliton due to quantum fluctuations. Numerical results are obtained up to the critical value of the coupling constant as given by Coleman. In approaching the critical point we find an increasing number of discrete modes which seem to build up a new continuum with a lower mass.
Chaos in a model of the forced and damped Sine-Gordon equation
Kovacic, G.
1990-01-01
The author analytically determines two of the mechanisms which cause chaotic dynamics to appear in a model of the forced and damped Sine Gordon equation. In particular, he finds orbits homoclinic to periodic orbits, and orbits homoclinic to fixed points which satisfy conditions sufficient to guarantee the existence of nearby chaotic invariant sets. One of these homoclinic orbits is a so-called Silnikov-type loop. A proof the existence of a symmetric pair of such loops is the main result. This proof consists of a modified Melnikov perturbation analysis, augmented by some techniques from the field of geometric singular perturbation theory.
Nonperturbative study of the two-frequency sine-Gordon model
NASA Astrophysics Data System (ADS)
Bajnok, Z.; Palla, L.; Takács, G.; Wágner, F.
2001-05-01
The two-frequency sine-Gordon model is examined. The focus is mainly on the case when the ratio of the frequencies is 1/2, given the recent interest in the literature. We discuss the model both in a perturbative (form factor perturbation theory) and a nonperturbative (truncated conformal space approach) framework, and give particular attention to a phase transition conjectured earlier by Delfino and Mussardo. We give substantial evidence that the transition is of second order and that it is in the Ising universality class. Furthermore, we check the UV-IR operator correspondence and conjecture the phase diagram of the theory.
Nonperturbative Analysis of the Two-Frequency Sine-Gordon Model
NASA Astrophysics Data System (ADS)
Bajnok, Z.; Palla, L.; Takács, G.; Wágner, F.
2001-04-01
The two-frequency sine-Gordon model is examined. The focus is mainly on the case when the ratio of the frequencies is 1/2, given the recent interest in the literature. We discuss the model both in a perturbative (form factor perturbation theory) and a nonperturbative (truncated conformal space approach) framework, and give particular attention to a phase transition conjectured earlier by Delfino and Mussardo. We give substantial evidence that the transition is of second order and that it is in the Ising universality class. Furthermore, we check the UV-IR operator correspondence and conjecture the phase diagram of the theory.
Exact Mass-Coupling Relation for the Homogeneous Sine-Gordon Model
NASA Astrophysics Data System (ADS)
Bajnok, Zoltán; Balog, János; Ito, Katsushi; Satoh, Yuji; Tóth, Gábor Zsolt
2016-05-01
We derive the exact mass-coupling relation of the simplest multiscale quantum integrable model, i.e., the homogeneous sine-Gordon model with two mass scales. The relation is obtained by comparing the perturbed conformal field theory description of the model valid at short distances to the large distance bootstrap description based on the model's integrability. In particular, we find a differential equation for the relation by constructing conserved tensor currents, which satisfy a generalization of the Θ sum rule Ward identity. The mass-coupling relation is written in terms of hypergeometric functions.
Navon, P; Halevi, A; Brand, A; Branski, D; Rubinow, A
1993-01-01
Progressive systemic sclerosis sine scleroderma, as well as neurological manifestations of progressive systemic sclerosis are rare in adult-onset cases. Neither have been reported in children with progressive systemic sclerosis, either separately or together. We describe a six-year-old girl with nocturnal seizures and Raynaud's phenomenon of three years' duration. She died of cardiopulmonary sclerosis without ever fitting the required criteria of systemic sclerosis. Nailfold capillaroscopy revealed the specific "scleroderma-pattern" and provided the only clue for a diagnosis of progressive systemic sclerosis, confirmed eventually by skin biopsy.
Breaking integrability at the boundary: the sine-Gordon model with Robin boundary conditions
NASA Astrophysics Data System (ADS)
Arthur, Robert; Dorey, Patrick; Parini, Robert
2016-04-01
We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associated with the inverse scattering method. We find that an antikink may be reflected into various combinations of an antikink, a kink, and one or more breathers, depending on the values of the initial antikink velocity and a parameter associated with the boundary condition. In addition we observe regions with an intricate resonance structure arising from the creation of an intermediate breather whose recollision with the boundary is highly dependent on the breather phase.
NASA Astrophysics Data System (ADS)
Retailleau, L.; Shapiro, N.; Guilbert, J.; Campillo, M.; Roux, P.
2015-12-01
Detection methods are usually developed to observe earthquakes, and are not relevant to observe long event with emergent signals (e. g. event with long source duration). We present a new method to detect and localize seismic events without prior information about their source. This method explores the consistency and characteristic behavior of teleseismic body waves recorded by a large-scale seismic network. We show that the use of a seismic network as an antenna is a powerful tool to analyze sources without the need to pick phases arrivals. This allows the characterization of low amplitude events that compose the noise.The procedure consists of three steps. First, for every tested source location we perform a time-slowness analysis and compute the Tau-p transform from the dataset. For waves emitted by teleseismic sources, the amplitude of this transform has a very characteristic behavior with maxima corresponding to different seismic phases arrivals. Relative location of these maxima on the time-slowness plane strongly depends on the distance to the earthquake. In a second step, we convolve the Tau-P amplitude with a time-slowness filter whose maxima are computed based on prediction of global travel-time calculator (Buland and Chapman, 1983) in order to explore this dependence. As a third step we gather the results obtained with different sources to get a space/time likelihood function for the occurrence of a seismic event. This process is performed at different frequency bands to observe possible variations in time.We apply this method to continuous vertical-component seismograms of USArray. We highlight non earthquake events that occurred during 2010. We then compare our results with datasets of stations closer to the events and a numerical model for ocean low frequency noise. We identify several low frequency microseisms occurring all along the year.
Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas
2016-05-01
Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions.
Jaoudé, Simon Abou; Salamé, Elie; Azar, Rabih; Kassab, Roland
2003-12-01
Implantable cardioverter-defibrillator (ICD) is highly effective in treating life-threatening ventricular arrhythmias, but it can also have proarrhythmic effect in some cases. We report the case of a 72 years old patient with an ischemic cardiomyopathy in whom an ICD was implanted for a poorly tolerated ventricular tachycardia (Profiles MD-Ventritex). Forty-eight hours after implantation, the patient suddenly received 15 successive shocks. ECG tracings and intracardiac EGM showed the presence of several VT episodes, all induced by the antibradycardia pacing of the ICD: the automatic gain control function of the device failed to detect ventricular premature beats in this patient, leading to a bradycardia pacing falling on the T wave and inducing multiple VTs and shocks.
Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping
2015-11-20
In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication. PMID:26836558
NASA Astrophysics Data System (ADS)
Chen, Xi; Kramer, G. J.; Heidbrink, W. W.; Fisher, R. K.; Pace, D. C.; Petty, C. C.; Podesta, M.; Van Zeeland, M. A.
2014-08-01
A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE—a change in wave-particle phase k · r by one mode alters the force exerted by the next. The loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ion transport.
Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping
2015-11-20
In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication.
NASA Astrophysics Data System (ADS)
Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.
2011-12-01
LLNL-G3D is a global-scale model of P-wave velocity designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The underlying goal of the model is to provide enhanced seismic event location capabilities. Previous versions of LLNL-G3D (versions 1 and 2) provide substantial improvements in event location accuracy via 3-D ray tracing. The latest models are based on ~2.7 million P and Pn arrivals that are re-processed using our global multi-event locator known as BayesLoc. Bayesloc is a formulation of the joint probability distribution across multiple-event location parameters, including hypocenters, travel time corrections, pick precision, and phase labels. Modeling the whole multiple-event system results in accurate locations and an internally consistent data set that is ideal for tomography. Our recently developed inversion approach (called Progressive Multi-level Tessellation Inversion or PMTI) captures regional trends and fine details where data warrant. Using PMTI, we model multiple heterogeneity scale lengths without defining parameter grids with variable densities based on some ad hoc criteria. LLNL-G3Dv3 (version 3) is produced with data generated with the BayesLoc procedure, recently modified to account for localized travel time trends via a multiple event clustering technique. We demonstrate the significance of BayesLoc processing, the impact on the resulting tomographic images, and the application of LLNL-G3D to seismic event location. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491805.
Mori, J.
1991-01-01
Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author
NASA Astrophysics Data System (ADS)
Holding, Shannon; Allen, Diana M.
2015-10-01
Wave overwash events have the potential to result in severe consequences to the freshwater resources of small islands as a result of salt contamination of the aquifer. Due to the significant impact of overwash, it is important to characterise the susceptibility of small islands to these events. This study uses numerical modelling to evaluate the freshwater lens response and recovery to overwash events for various island hydrogeological settings (island types) observed worldwide. Models were developed for an example of each island type using a fully coupled surface-subsurface, density-dependent flow and solute transport modelling code. A theoretical overwash event was simulated, and the response and recovery of the freshwater lens were observed for 20 years. The freshwater lens response (degree of aquifer contamination) was largely determined by the vadose zone thickness. Lens recovery ranged from 1 to 19 years for the different island types, and was strongly affected by recharge rate. However, the recovery of potable water in the lens (and restoration of a water supply) was dominantly influenced by geological heterogeneities. The model results demonstrate the cumulative impact of the different factors affecting the freshwater lens response and recovery to the overwash event for each island type, and provide a generalised assessment of island susceptibility to overwash on a global scale, despite limited data availability for many small islands.
Reverberation time measurement using integrated impulse response and sweep sine excitation
NASA Astrophysics Data System (ADS)
Nabuco, Marco; Brando, Paulo
2002-11-01
As the capacity and speed of digital processing systems becomes much higher, the integrated impulsive response for reverberation time measurements by the indirect method also becomes more feasible and faster. The MLS technique to obtain the impulse response for LTI has been developed during the last several years and it is very well reported by the bibliography. Some frequency analyzers available in the market are capable to generate and process MLS to get the impulse responses very easily. Sometimes, when the room to be tested is very reverberant, sequences of higher order and a certain number of average are necessary to assure acceptable signal-to-noise ratio. The sweep sine technique or the deconvolution method to obtain impulsive responses presents many new advantages, most of them still reported in various technical documents. This paper presents the results of application of this technique to measure the reverberation time in two different reverberation rooms. Comparisons with MLS, ensemble, and reverberation time averages are presented. The sweep sine technique repeatability was verified in a reverberation chamber for a polyurethane foam sample and showed smaller standard deviations when compared with other techniques. (To be presented in Portuguese.)
Targeted Capture of Phylogenetically Informative Ves SINE Insertions in Genus Myotis.
Platt, Roy N; Zhang, Yuhua; Witherspoon, David J; Xing, Jinchuan; Suh, Alexander; Keith, Megan S; Jorde, Lynn B; Stevens, Richard D; Ray, David A
2015-05-25
Identification of retrotransposon insertions in nonmodel taxa can be technically challenging and costly. This has inhibited progress in understanding retrotransposon insertion dynamics outside of a few well-studied species. To address this problem, we have extended a retrotransposon-based capture and sequence method (ME-Scan [mobile element scanning]) to identify insertions belonging to the Ves family of short interspersed elements (SINEs) across seven species of the bat genus Myotis. We identified between 120,000 and 143,000 SINE insertions in six taxa lacking a draft genome by comparing to the M. lucifugus reference genome. On average, each Ves insertion was sequenced to 129.6 × coverage. When mapped back to the M. lucifugus reference genome, all insertions were confidently assigned within a 10-bp window. Polymorphic Ves insertions were identified in each taxon based on their mapped locations. Using cross-species comparisons and the identified insertion positions, a presence-absence matrix was created for approximately 796,000 insertions. Dollo parsimony analysis of more than 85,000 phylogenetically informative insertions recovered strongly supported, monophyletic clades that correspond with the biogeography of each taxa. This phylogeny is similar to previously published mitochondrial phylogenies, with the exception of the placement of M. vivesi. These results support the utility of our variation on ME-Scan to identify polymorphic retrotransposon insertions in taxa without a reference genome and for large-scale retrotransposon-based phylogenetics.
Nonlinear quantum-mechanical system associated with Sine-Gordon equation in (1 + 2) dimensions
Zarmi, Yair
2014-10-15
Despite the fact that it is not integrable, the (1 + 2)-dimensional Sine-Gordon equation has N-soliton solutions, whose velocities are lower than the speed of light (c = 1), for all N ≥ 1. Based on these solutions, a quantum-mechanical system is constructed over a Fock space of particles. The coordinate of each particle is an angle around the unit circle. U, a nonlinear functional of the particle number-operators, which obeys the Sine-Gordon equation in (1 + 2) dimensions, is constructed. Its eigenvalues on N-particle states in the Fock space are the slower-than-light, N-soliton solutions of the equation. A projection operator (a nonlinear functional of U), which vanishes on the single-particle subspace, is a mass-density generator. Its eigenvalues on multi-particle states play the role of the mass density of structures that emulate free, spatially extended, relativistic particles. The simplicity of the quantum-mechanical system allows for the incorporation of perturbations with particle interactions, which have the capacity to “annihilate” and “create” solitons – an effect that does not have an analog in perturbed classical nonlinear evolution equations.
NASA Astrophysics Data System (ADS)
Eakin, Caroline M.; Long, Maureen D.
2013-09-01
Flat or shallow subduction is a relatively widespread global occurrence, but the dynamics remain poorly understood. In particular, the interaction between flat slabs and the surrounding mantle flow has yet to be studied in detail. Here we present measurements of seismic anisotropy to investigate mantle flow beneath the Peruvian flat-slab segment, the largest present-day region of flat subduction. We conduct a detailed shear wave splitting analysis at a long-running seismic station (NNA) located near Lima, Peru. We present measurements of apparent splitting parameters (fast direction φ and delay time δt) for SKS, ScS, and local S phases from 80 events. We observe well-defined frequency dependence and backazimuthal variability, indicating the likely presence of complex anisotropy. Forward modeling the observations with two or three layers of anisotropy reveals a likely layer with a trench-normal fast direction underlying a layer with a more trench-oblique (to trench-subparallel) fast direction. In order to further constrain the anisotropic geometry, we analyzed the source-side splitting from events originating within the slab measured at distant stations. Beneath the flat-slab segment, we found trench-normal fast splitting directions in the subslab mantle, while within the dipping portion of the slab further to the east, likely trench-subparallel anisotropy within the slab itself. This subslab pattern contradicts observations from elsewhere in South America for "normal" (i.e., more steeply dipping) slab conditions. It is similar, however, to inferences from other shallowly dipping subduction zones around the world. While there is an apparent link between slab dip and the surrounding mantle flow, at least beneath Peru, the precise nature of the relationship remains to be clarified.
NASA Astrophysics Data System (ADS)
Eakin, C. M.; Long, M. D.
2013-05-01
Flat or shallow subduction is a relatively widespread global occurrence but the dynamics remain poorly understood. In particular, the interaction between flat-slabs and the surrounding mantle flow has yet to be studied in detail. In this study measurements of seismic anisotropy are utilized to investigate mantle flow beneath the Peruvian flat-slab segment, the largest present-day region of flat-subduction. A detailed shear wave splitting analysis is conducted at a long-running seismic station (NNA) located near Lima, Peru. Measurements of apparent splitting parameters (fast direction φ and delay time δt) for SKS, ScS and local S phases from 86 events were obtained. Well defined frequency dependence and back-azimuthal variability is observed, indicating the likely presence of complex anisotropy. Forward modeling the observations with two or three layers of anisotropy reveals a likely layer with a trench-parallel fast axis overlying a layer(s) with a more trench-normal fast geometry. In order to further constrain the anisotropic geometry, source-side splitting from events originating within the slab measured at distant stations have been analyzed. Beneath the flat-slab segment, trench-normal fast splitting directions in the sub-slab mantle were found and likely trench-parallel anisotropy within the slab itself. This sub-slab pattern contradicts observations from elsewhere in South America for 'normal' (i.e. more steeply dipping) slab conditions. It is similar, however, to inferences from other shallowly dipping subduction zones around the world. While there is an apparent link between slab dip and the surrounding mantle flow, at least beneath Peru, the precise nature of the relationship requires further investigation.
Prieto, J L; Pouilly, N; Jenczewski, E; Deragon, J M; Chèvre, A M
2005-08-01
The screening of wild populations for evidence of gene flow from a crop to a wild related species requires the unambiguous detection of crop genes within the genome of the wild species, taking into account the intraspecific variability of each species. If the crop and wild relatives share a common ancestor, as is the case for the Brassica crops and their wild relatives (subtribe Brassiceae), the species-specific markers needed to make this unambiguous detection are difficult to identify. In the model oilseed rape (Brassica napus, AACC, 2n = 38)-wild radish (Raphanus raphanistrum, RrRr, 2n = 18) system, we utilized the presence or absence of a short-interspersed element (SINE) at a given locus to develop oilseed rape-specific markers, as SINE insertions are irreversible. By means of sequence-specific amplified polymorphism (SINE-SSAP) reactions, we identified and cloned 67 bands specific to the oilseed rape genome and absent from that of wild radish. Forty-seven PCR-specific markers were developed from three combinations of primers anchored either in (1) the 5'- and 3'-genomic sequences flanking the SINE, (2) the 5'-flanking and SINE internal sequences or (3) the SINE internal and flanking 3'-sequences. Seventeen markers were monomorphic whatever the oilseed rape varieties tested, whereas 30 revealed polymorphism and behaved either as dominant (17) or co-dominant (13) markers. Polymorphic markers were mapped on 19 genomic regions assigned to ten linkage groups. The markers developed will be efficient tools to trace the occurrence and frequency of introgressions of oilseed rape genomic region within wild radish populations. PMID:15942756
Wave-mixing solitons in ferroelectric crystals
NASA Astrophysics Data System (ADS)
Bugaychuk, S.; Kovacs, L.; Mandula, G.; Polgar, K.; Rupp, R. A.
Although the sine-Gordon equation was originally obtained for the description of four-wave mixing in transmission geometry, it describes self-diffraction of the wave from shifted gratings as well. The sine-Gordon equation governs soliton propagation. The photoinduced amplitude of the refractive-index grating exhibits also a soliton shape in the crystal volume. The origin of this effect is the change of the contrast of light due to energy transfer between coupled waves during their propagation, which occurs in bulk crystals with strong photorefractive gain. The theoretical description shows the possibility to control the soliton properties by changing the input intensity ratio and/or input phase difference of the wave. The effect can lead to diffraction efficiency management, auto-oscillations and bistability of the output waves due to wave-mixing in ferroelectrics. Results on the first experimental observation of non-uniform distribution of the grating amplitude profile and its changes versus input intensity ratio are presented.
Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Wenzl, Franz P; Hartmann, Paul; Hohenester, Ulrich; Sommer, Christian
2014-06-30
In this study the applicability of an interface procedure for combined ray-tracing and finite difference time domain (FDTD) simulations of optical systems which contain two diffractive gratings is discussed. The simulation of suchlike systems requires multiple FDTD↔RT steps. In order to minimize the error due to the loss of the phase information in an FDTD→RT step, we derive an equation for a maximal coherence correlation function (MCCF) which describes the maximum degree of impact of phase effects between these two different diffraction gratings and which depends on: the spatial distance between the gratings, the degree of spatial coherence of the light source and the diffraction angle of the first grating for the wavelength of light used. This MCCF builds an envelope of the oscillations caused by the distance dependent coupling effects between the two diffractive optical elements. Furthermore, by comparing the far field projections of pure FDTD simulations with the results of an RT→FDTD→RT→FDTD→RT interface procedure simulation we show that this function strongly correlates with the error caused by the interface procedure.
NASA Astrophysics Data System (ADS)
Conde, Daniel; Baptista, Maria Ana; Sousa Oliveira, Carlos; Ferreira, Rui M. L.
2015-04-01
Global energy production is still significantly dependant on the coal supply chain, justifying huge investments on building infrastructures, capable of stocking very large quantities of this natural resource. Most of these infrastructures are located at deep-sea ports and are therefore exposed to extreme coastal hazards, such as tsunami impacts. The 2011 Tohoku tsunami is reported to have inflicted severe damage to Japan's coal-fired power stations and related infrastructure. Sines, located in the Portuguese coast, hosts a major commercial port featuring an exposed coal stockpile area extending over more than 24 ha and a container terminal currently under expansion up to 100ha. It is protected against storm surges but tsunamis have not been considered in the design criteria. The dominant wind-generated wave direction is N to NW, while the main tsunamigenic faults are located S to SW of the port. This configuration potentially exposes sensitive facilities, such as the new terminal container and the coal stockpile area. According to a recent revision of the national tsunami catalogue (Baptista, 2009), Portugal has been affected by numerous major tsunamis over the last two millennia, with the most notorious event being the Great Lisbon Earthquake and Tsunami occurred on the 1st November 1755. The aim of this work is to simulate the open ocean propagation and overland impact of a tsunami on the Sines port, similar to the historical event of 1755, based on the different tsunamigenic faults and magnitudes proposed in the current literature. Open ocean propagation was modelled with standard simulation tools like TUNAMI and GeoClaw. Near-shore and overland propagation was carried out using a recent 2DH mathematical model for solid-fluid flows, STAV-2D from CERIS-IST (Ferreira et al., 2009; Canelas, 2013). STAV-2D is particularly suited for tsunami propagation over complex and morphodynamic geometries, featuring a discretization scheme based on a finite-volume method using
Making Waves: Seismic Waves Activities and Demonstrations
NASA Astrophysics Data System (ADS)
Braile, S. J.; Braile, L. W.
2011-12-01
The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.
Designing a Sine-Coil for Measurement of Plasma Displacements in IR-T1 Tokamak
Khorshid, Pejman; Razavi, M.; Molaii, M.; Ghoranneviss, M.; TalebiTaher, A.; Arvin, R.; Mohammadi, S.; NikMohammadi, A.
2008-04-07
A method for the measurement of the plasma position in the IR-T1 tokamak in toroidal coordinates is developed. A sine-coil, which is a Rogowski coil with a variable wiring density is designed and fabricated for this purpose. An analytic solution of the Biot-Savart law, which is used to calculate magnetic fields created by toroidal plasma current, is presented. Results of calculations are compared with the experimental data obtained in no-plasma shots with a toroidal current-carrying coil positioned inside the vessel to simulate the plasma movements. The results are shown a good linear behavior of plasma position measurements. The error is less than 2.5% and it is compared with other methods of measurements of the plasma position. This method will be used in the feedback position control system and tests of feedback controller parameters are ongoing.
Middle Atmosphere Cooperation/Summer in Northern Europe (MAC/SINE) and MAC/Epsilon
NASA Technical Reports Server (NTRS)
Thrane, E. V.
1989-01-01
Two major international campaigns dedicated to the study of middle atmosphere dynamics in high latitudes were successfully completed in 1987. MAC/SINE (Middle Atmosphere Cooperation/Summer in Northern Europe) was carried out during the period 7 June to 19 July, whereas MAC/Epsilon took place in the period 12 October to 15 November. In both campaigns a large number of ground based and rocket techniques were used in a concerted effort to map the dynamical structure of the middle atmosphere over Northern Europe. Although the analysis of the observations has only just started, it is clear that a large and unique data set was obtained, which is believed will provide new insight into the dynamical processes in this interesting region of the atmosphere. A brief overview of the campaigns, their scientific aims, organization and structure is presented.
Structure of the Broken Phase of the Sine-Gordon Model Using Functional Renormalization
NASA Astrophysics Data System (ADS)
Pangon, V.
We study in this paper the sine-Gordon model using functional renormalization group at local potential approximation using different renormalization group (RG) schemes. In d = 2, using Wegner-Houghton RG we demonstrate that the location of the phase boundary is entirely driven by the relative position to the Coleman fixed point even for strongly coupled bare theories. We show the existence of a set of IR fixed points in the broken phase that are reached independently of the bare coupling. The bad convergence of the Fourier series in the broken phase is discussed and we demonstrate that these fixed points can be found only using a global resolution of the effective potential. We then introduce the methodology for the use of average action method where the regulator breaks periodicity and show that it provides the same conclusions for various regulators. The behavior of the model is then discussed in d≠2 and the absence of the previous fixed points is interpreted.
NASA Astrophysics Data System (ADS)
Osipov, Vladimir; Doskolovich, Leonid L.; Bezus, Evgeni A.; Drew, Tom; Zhou, Kaiming; Sawalha, Kameel; Swadener, Greg; Wolffsohn, James S. W.
2015-02-01
The fabrication of submicron-height sine-like relief of a trifocal diffractive zone plate using a nanoimprinting technique is studied. The zone plate is intended for use in combined trifocal diffractive-refractive lenses and provides the possibility to form trifocal intraocular lenses with predetermined light intensity distribution between foci. The optical properties of the designed zone plate having the optical powers 3 D, 0, -3 D in the three main diffraction orders are theoretically and experimentally investigated. The results of the theoretical investigations are in good agreement with experimental measurements. The effects of the pupil size (lens diameter) as well as the wavelength-dependent behavior of the zone plate are also discussed.
Quantum quench dynamics of the sine-Gordon model in some solvable limits
NASA Astrophysics Data System (ADS)
Iucci, A.; Cazalilla, M. A.
2010-05-01
With regard to the thermalization problem in isolated quantum systems, we investigate the dynamics following a quantum quench of the sine-Gordon model (sGM) in the Luther-Emery and the semiclassical limits. We consider the quench from the gapped to the gapless phase, as well as the reverse one. By obtaining analytic expressions for the one- and two-point correlation functions of the order parameter operator at zero-temperature, the manifestations of integrability in the absence of thermalization in the sGM are studied. It is shown that correlations in the long-time regime after the quench are well described by a generalized Gibbs ensemble. We also consider the case where the system is initially in contact with a reservoir at finite temperature. The possible relevance of our results to current and future experiments with ultracold atomic systems is also considered.
Multisymplectic approach to integrable defects in the sine-Gordon model
NASA Astrophysics Data System (ADS)
Caudrelier, Vincent
2015-05-01
Ideas from the theory of multisymplectic systems, introduced recently in integrable systems by the author and Kundu to discuss Liouville integrability in classical field theories with a defect, are applied to the sine-Gordon model. The key ingredient is the introduction of a second Poisson bracket in the theory that allows for a Hamiltonian description of the model that is completely equivalent to the standard one, in the absence of a defect. In the presence of a defect described by frozen Bäcklund transformations, our approach based on the new bracket unifies the various tools used so far to attack the problem. It also gets rid of the known issues related to the evaluation of the Poisson brackets of the defect matrix which involve fields at coinciding space point (the location of the defect). The original Lagrangian approach also finds a nice reinterpretation in terms of the canonical transformation representing the defect conditions.
Quantum quenches in the sine-Gordon model: A semiclassical approach
NASA Astrophysics Data System (ADS)
Kormos, M.; Zaránd, G.
2016-06-01
We compute the time evolution of correlation functions after quantum quenches in the sine-Gordon model within the semiclassical approximation, which is expected to yield accurate results for small and slow quenches producing slow quasiparticles with low density. We demonstrate this by reproducing results of a recent form-factor calculation of the relaxation of expectation values [B. Bertini, D. Schuricht, and F. H. L. Essler, J. Stat. Mech. (2014) P10035, 10.1088/1742-5468/2014/10/P10035]. Extending these results, we find that—in the universal limit of vanishingly small quasiparticle velocities—the expectation values of most vertex operators do not decay to zero. We give analytic expressions for the relaxation of dynamic correlation functions and show that they have diffusive behavior for large timelike separation.
Lattice twist operators and vertex operators in sine-Gordon theory in one dimension
NASA Astrophysics Data System (ADS)
Nakamura, Masaaki; Voit, Johannes
2002-04-01
In one dimension, the exponential position operators introduced in a theory of polarization are identified with the twist operators appearing in the Lieb-Schultz-Mattis argument, and their finite-size expectation values z(q)L measure the overlap between the q-fold degenerate ground state and an excited state. Insulators are characterized by z∞≠0, and different states are distinguished by the sign of zL. We identify zL with ground-state expectation values of vertex operators in the sine-Gordon model. This allows an accurate detection of quantum phase transitions in the universality classes of the Gaussian and the SU(2)1 Wess-Zumino-Novikov-Witten models. We apply this theory to the half-filled extended Hubbard model and obtain agreement with the level-crossing method.
Quantum quenches in the sine-Gordon model: A semiclassical approach.
Kormos, M; Zaránd, G
2016-06-01
We compute the time evolution of correlation functions after quantum quenches in the sine-Gordon model within the semiclassical approximation, which is expected to yield accurate results for small and slow quenches producing slow quasiparticles with low density. We demonstrate this by reproducing results of a recent form-factor calculation of the relaxation of expectation values [B. Bertini, D. Schuricht, and F. H. L. Essler, J. Stat. Mech. (2014) P100351742-546810.1088/1742-5468/2014/10/P10035]. Extending these results, we find that-in the universal limit of vanishingly small quasiparticle velocities-the expectation values of most vertex operators do not decay to zero. We give analytic expressions for the relaxation of dynamic correlation functions and show that they have diffusive behavior for large timelike separation. PMID:27415202
A parameter estimation algorithm for spatial sine testing - Theory and evaluation
NASA Technical Reports Server (NTRS)
Rost, R. W.; Deblauwe, F.
1992-01-01
This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.
NASA Astrophysics Data System (ADS)
Misumi, Tatsuhiro; Nitta, Muneto; Sakai, Norisuke
2015-09-01
We compute multi-instanton amplitudes in the sine-Gordon quantum mechanics (periodic cosine potential) by integrating out quasi-moduli parameters corresponding to separations of instantons and anti-instantons. We propose an extension of Bogomolnyi-Zinn-Justin prescription for multi-instanton configurations and an appropriate subtraction scheme. We obtain the multi-instanton contributions to the energy eigenvalue of the lowest band at the zeroth order of the coupling constant. For the configurations with only instantons (anti-instantons), we obtain unambiguous results. For those with both instantons and anti-instantons, we obtain results with imaginary parts, which depend on the path of analytic continuation. We show that the imaginary parts of the multi-instanton amplitudes precisely cancel the imaginary parts of the Borel resummation of the perturbation series, and verify that our results completely agree with those based on the uniform-WKB calculations, thus confirming the resurgence structure: divergent perturbation series combined with the nonperturbative multi-instanton contributions conspire to give unambiguous results. We also study the neutral bion contributions in the {C}{P}^{N-1} model on {{R}}^1× {S}^1 with a small circumference, taking account of the relative phase moduli between the fractional instanton and anti-instanton. We find that the sign of the interaction potential depends on the relative phase moduli, and that both the real and imaginary parts resulting from quasi-moduli integral of the neutral bion get quantitative corrections compared to the sine-Gordon quantum mechanics.
Gravitropism in Arabidopsis thaliana: violation of the sine- and resultant-law
NASA Astrophysics Data System (ADS)
Galland, Paul
We investigated the gravitropic bending of hypocotyls and roots of seedlings of Arabidopsis tha-liana in response to long-term centrifugal accelerations in a range of 5 x 10-3 to 4 x g. The so-cal-led resultant law of gravitropism, a corollary of the so called sine law, claims that during centri-fugation a gravitropic organ aligns itself parallel to the resultant stimulus vector. We show here that neither of the two empirical “laws” is apt to describe the complex gravitropic behaviour of seedlings of Arabidopsis. Hypocotyls obey reasonably well the resultant law while roots display a complex behaviour that is clearly at variance with it. Horizontally centrifuged seedlings sense minute accelerations acting parallel to the longitudinal axis. If the centrifugal vector points to-ward the cotyledons, then the bending of hypocotyls and roots is greatly enhanced. If the centri-fugal vector points, however, toward the root tip, then only the bending of roots is enhanced by accelerations as low as 5 x 10-3 x g (positive tonic effect). The absolute gravitropic thresholds were determined for hypocotyls and roots in a clinostat-centrifuge and found to be near 1.5 x 10-2 x g. A behavioural mutant, ehb1-2 (Knauer et al. 2011), displays a lower gravitropic threshold for roots, not however, for hypocotyls. The complex gravitropic behaviour of seedlings of Arabi-dopsis is at odds with the classical sine- as well as the resultant law and can indicates the eminent role that is played by the acceleration vector operating longitudinally to the seedling axis.
Gualtieri, Alberto; Andreola, Federica; Sciamanna, Ilaria; Sinibaldi-Vallebona, Paola; Serafino, Annalucia; Spadafora, Corrado
2013-11-01
In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons and endogenous retroviruses represent large families of repeated elements encoding reverse transcriptase (RT) proteins. Short Interspersed Nuclear Element B1 (SINE B1) retrotrasposons do not encode RT, but use LINE-1-derived RT for their retrotransposition. We previously showed that many cancer types have an abundant endogenous RT activity. Inhibition of that activity, by either RNA interference-dependent silencing of active LINE-1 elements or by RT inhibitory drugs, reduced proliferation and promoted differentiation in cancer cells, indicating that LINE-1-encoded RT is required for tumor progression. Using MMTV-PyVT transgenic mice as a well-defined model of breast cancer progression, we now report that both LINE-1 and SINE B1 retrotransposons are up-regulated at a very early stage of tumorigenesis; LINE-1-encoded RT product and enzymatic activity were detected in tumor tissues as early as stage 1, preceding the widespread appearance of histological alterations and specific cancer markers, and further increased in later progression stages, while neither was present in non-pathological breast tissues. Importantly, both LINE-1 and SINE B1 retrotransposon families undergo copy number amplification during tumor progression. These findings therefore indicate that RT activity is distinctive of breast cancer cells and that, furthermore, LINE-1 and SINE B1 undergo copy number amplification during cancer progression.
NASA Astrophysics Data System (ADS)
Pandir, Yusuf; Duzgun, Hasan Huseyin
2016-06-01
In this study, we investigate some new analytical solutions to the fractional Sine-Gordon equation by using the new version of generalized F-expansion method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, new analytical solutions were obtained in terms Jacobi elliptic functions.
ERIC Educational Resources Information Center
Fay, Temple H.; O'Neal, Elizabeth A.
1985-01-01
The authors draw together a variety of facts concerning a nonlinear differential equation and compare the exact solution with approximate solutions. Then they provide an expository introduction to the elliptic sine function suitable for presentation in undergraduate courses on differential equations. (MNS)
Asymptotic behavior of dispersive waves in a spiral structure at large times
NASA Astrophysics Data System (ADS)
Kiselev, V. V.
2016-04-01
In the framework of the sine-Gordon integrable model for spiral magnetic structures, we investigate the behavior at large times of a weakly nonlinear dispersive wave field generated by a spatially local initial excitation of the structure. The method used is based on a direct asymptotic analysis of the corresponding matrix of the Riemann problem on the torus.
Nikaido, Masato; Hamilton, Healy; Makino, Hitomi; Sasaki, Takeshi; Takahashi, Kazuhiko; Goto, Mutsuo; Kanda, Naohisa; Pastene, Luis A; Okada, Norihiro
2006-05-01
Baleen whales (suborder Mysticeti) comprise 11 extant species that are classified into four families. Although several phylogenetic hypotheses about these taxa have been proposed, their phylogenetic relationships remain confused. We addressed this problem using short interspersed repetitive element (SINE) insertion data, which now are regarded as almost ideal shared, derived characters at the molecular level. We reconstructed the phylogenetic relationships of baleen whales by characterizing 36 informative SINE loci. One of the intriguing conclusions is that balaenopterids and eschrichtiids radiated very rapidly during a very short evolutionary period. During this period, speciation occurred in balaenopterids and eschrichtiids while newly inserted SINE loci remains polymorphic. Later on, these SINEs were sorted incompletely into each lineage. Thus, there are now inconsistencies among species regarding the presence or absence of a given SINE. This is in sharp contrast to the phylogeny of toothed whales, for which no SINE inconsistencies have been found. Furthermore, we found monophyletic groupings between humpback and fin whales as well as between (sei+Bryde's) whales and blue whales, both of which have not previously been recognized. The comprehensive SINE insertion data, together with the mitochondrial DNA phylogeny that was recently completed (Sasaki, T., M. Nikaido, H. Healy et al. 2005. Mitochondrial phylogenetics and evolution of mysticete whales. Syst. Biol. 56:77-90; Rychel, A. L., T. W. Reeder, and A. Berta. 2004. Phylogeny of mysticete whales based on mitochondrial and nuclear data. Mol. Phylogenet. Evol. 32:892-901), provide a nearly complete picture of the evolutionary history of baleen whales.
Solitons and nonlinear wave equations
Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.
1982-01-01
A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.
Simultaneous photoacoustic detection of multiple compounds based on orthogonal functions stimulation
NASA Astrophysics Data System (ADS)
Starecki, T.
2008-01-01
The paper presents a concept of photoacoustic measurements based on use of two different light wavelengths which intensities are modulated with sine waves of the same frequency but with phase difference of 90 degrees. Resultant photoacoustic signal is of the same frequency, but its amplitude and phase depends on the absorption at both wavelengths. Taking into consideration that sine and cosine are orthogonal functions, and having measured amplitude of the photoacoustic signal and its phase referred to the phase of the stimulating light modulation, it is possible to retrieve both components corresponding to sine and cosine modulation. As a result, the method can be applied to simultaneous detection of two compounds. An important advantage of the method is that it can be comfortably used with high Q-factor cells.
Binocular contrast discrimination needs monocular multiplicative noise
Ding, Jian; Levi, Dennis M.
2016-01-01
The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370
Binocular contrast discrimination needs monocular multiplicative noise.
Ding, Jian; Levi, Dennis M
2016-01-01
The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms.
Binocular contrast discrimination needs monocular multiplicative noise.
Ding, Jian; Levi, Dennis M
2016-01-01
The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370
NASA Astrophysics Data System (ADS)
Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.
2015-09-01
Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.
Fully integrated InGaAs/InP single-photon detector module with gigahertz sine wave gating
Liang Xiaolei; Ma Jian; Jin Ge; Chen Zengbing; Zhang Jun; Pan Jianwei; Liu Jianhong; Wang Quan; Du Debing
2012-08-15
InGaAs/InP single-photon avalanche diodes (SPADs) working in the regime of GHz clock rates are crucial components for the high-speed quantum key distribution (QKD). We have developed for the first time a compact, stable, and user-friendly tabletop InGaAs/InP single-photon detector system operating at a 1.25 GHz gate rate that fully integrates functions for controlling and optimizing SPAD performance. We characterize the key parameters of the detector system and test the long-term stability of the system for continuous operation of 75 h. The detector system can substantially enhance QKD performance and our present work paves the way for practical high-speed QKD applications.
Gerecitano, John
2014-10-04
Regulation of protein trafficking between the nucleus and cytoplasm represents a novel control point for antineoplastic intervention. Several proteins involved with cellular growth and survival depend on precise and timely positioning within the cell to fulfill their functions, and the nuclear membrane defines one of the most important compartmental barriers. Chromosome Region Maintenance 1, or exportin-1 (CRM1/XPO1), is involved with the export of more than 200 nuclear proteins, and has intriguingly been shown to have an increased expression in several tumor cell types. Selinexor (KPT-330) is a first-in-class selective inhibitor of nuclear export (SINE) to be developed for clinical use. Preclinical data has demonstrated antineoplastic activity of SINE compounds in many human solid and hematologic malignancies. The clinical development of Selinexor provides an excellent model for translational research.
Infinite-dimensional Estabrook-Wahlquist prolongations for the sine-Gordon equation
NASA Astrophysics Data System (ADS)
Finley, J. D., III; McIver, John K.
1995-10-01
We are looking for the universal covering algebra for all symmetries of a given partial differential equation (PDE), using the sine-Gordon equation as a typical example for a nonevolution equation. For nonevolution equations, Estabrook-Wahlquist prolongation structures for nonlocal symmetries depend on the choice of a specific subideal of the contact module to define the PDE. For each inequivalent such choice we determine the most general solution of the prolongation equations, as subalgebras of the (infinite-dimensional) algebra of all vector fields over the space of nonlocal variables associated with the PDE, in the style of Vinogradov covering spaces. We show explicitly how previously known prolongation structures, known to lie within the Kac-Moody algebra, A(1)1, are special cases of these general solutions, although we are unable to identify the most general solutions with previously studied algebras. We show the existence of gauge transformations between prolongation structures, viewed as determining connections over the solution space, and use these to relate (otherwise) distinct algebras. Faithful realizations of the universal algebra allow integral representations of the prolongation structure, opening up interesting connections with algebras of Toeplitz operators over Banach spaces, an area that has only begun to be explored.
Friedline, Terri; Masa, Rainier D; Chowa, Gina A N
2015-01-01
The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement.
Sine-Gordon model and the small k+ region of light-cone perturbation theory
NASA Astrophysics Data System (ADS)
Griffin, Paul A.
1992-10-01
The nonperturbative ultraviolet divergence of the sine-Gordon model is used to study the k+=0 region of light-cone perturbation theory. The light-cone vacuum is shown to be unstable at the nonperturbative β2=8π critical point by a light-cone version of Coleman's variational method. Vacuum bubbles, which are k+=0 diagrams in light-cone field theory and are individually finite and nonvanishing for all β, conspire to generate ultraviolet divergences of the light-cone energy density. The k+=0 region of momentum also contributes to connected Green's functions; the connected two-point function will not diverge, as it should, at the critical point unless diagrams which contribute only at k+=0 are properly included. This analysis shows in a simple way how the k+=0 region cannot be ignored even for connected diagrams. This phenomenon is expected to occur in higher-dimensional gauge theories starting at two-loop order in light-cone perturbation theory.
Human interaural time difference thresholds for sine tones: The high-frequency limit
Brughera, Andrew; Dunai, Larisa; Hartmann, William M.
2013-01-01
The smallest detectable interaural time difference (ITD) for sine tones was measured for four human listeners to determine the dependence on tone frequency. At low frequencies, 250–700 Hz, threshold ITDs were approximately inversely proportional to tone frequency. At mid-frequencies, 700–1000 Hz, threshold ITDs were smallest. At high frequencies, above 1000 Hz, thresholds increased faster than exponentially with increasing frequency becoming unmeasurably high just above 1400 Hz. A model for ITD detection began with a biophysically based computational model for a medial superior olive (MSO) neuron that produced robust ITD responses up to 1000 Hz, and demonstrated a dramatic reduction in ITD-dependence from 1000 to 1500 Hz. Rate-ITD functions from the MSO model became inputs to binaural display models—both place based and rate-difference based. A place-based, centroid model with a rigid internal threshold reproduced almost all features of the human data. A signal-detection version of this model reproduced the high-frequency divergence but badly underestimated low-frequency thresholds. A rate-difference model incorporating fast contralateral inhibition reproduced the major features of the human threshold data except for the divergence. A combined, hybrid model could reproduce all the threshold data. PMID:23654390
Koller, Andrew; Olshanii, Maxim
2011-12-15
We present a case demonstrating the connection between supersymmetric quantum mechanics (SUSYQM), reflectionless scattering, and soliton solutions of integrable partial differential equations. We show that the members of a class of reflectionless Hamiltonians, namely, Akulin's Hamiltonians, are connected via supersymmetric chains to a potential-free Hamiltonian, explaining their reflectionless nature. While the reflectionless property in question has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. Our results indicate that the multisoliton solutions of the sine-Gordon and nonlinear Schroedinger equations can be systematically generated via the supersymmetric chains connecting Akulin's Hamiltonians. Our findings also explain a well-known but little-understood effect in laser physics: when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form V(t)=(n({h_bar}/2{pi})/{tau})/cosh(t/{tau}), with n being an integer and {tau} being the pulse duration, it remains in the ground state after the pulse has been applied, for any choice of the laser detuning.
Friedline, Terri; Masa, Rainier D; Chowa, Gina A N
2015-01-01
The natural log and categorical transformations commonly applied to wealth for meeting the statistical assumptions of research may not always be appropriate for adjusting for skewness given wealth's unique properties. Finding and applying appropriate transformations is becoming increasingly important as researchers consider wealth as a predictor of well-being. We present an alternative transformation-the inverse hyperbolic sine (IHS)-for simultaneously dealing with skewness and accounting for wealth's unique properties. Using the relationship between household wealth and youth's math achievement as an example, we apply the IHS transformation to wealth data from US and Ghanaian households. We also explore non-linearity and accumulation thresholds by combining IHS transformed wealth with splines. IHS transformed wealth relates to youth's math achievement similarly when compared to categorical and natural log transformations, indicating that it is a viable alternative to other transformations commonly used in research. Non-linear relationships and accumulation thresholds emerge that predict youth's math achievement when splines are incorporated. In US households, accumulating debt relates to decreases in math achievement whereas accumulating assets relates to increases in math achievement. In Ghanaian households, accumulating assets between the 25th and 50th percentiles relates to increases in youth's math achievement. PMID:25432618
What the [bleep]? Enhanced absolute pitch memory for a 1000Hz sine tone.
Van Hedger, Stephen C; Heald, Shannon L M; Nusbaum, Howard C
2016-09-01
Many individuals are able to perceive when the tuning of familiar stimuli, such as popular music recordings, has been altered. This suggests a kind of ubiquitous pitch memory, though it is unclear how this ability differs across individuals with and without absolute pitch (AP) and whether it plays any role in AP. In the present study, we take advantage of a salient single frequency - the 1000Hz sine tone used to censor taboo words in broadcast media - to assess the nature of this kind of pitch memory across individuals with and without AP. We show that non-AP participants are accurate at selecting the correct version of the censor tone among incorrect versions shifted by either one or two semitones, though their accuracy was still below that of an AP population (Experiment 1). This suggests a benefit for AP listeners that could be due to the use of explicit note categories or greater amounts of musical training. However, AP possessors still outperformed all non-AP participants when incorrect versions of the censor tone were shifted within a note category, even when controlling for musical experience (Experiment 2). Experiment 3 demonstrated that AP listeners did not appear to possess a category label for the censor tone that could have helped them differentiate the censor tones used in Experiment 2. Overall, these results suggest that AP possessors may have better pitch memory, even when divorced from pitch labeling (note categories). As such, these results have implications for how AP may develop and be maintained. PMID:27289485
Development of a novel sort of exponent-sine-shaped flexure hinges
NASA Astrophysics Data System (ADS)
Wang, Rongqi; Zhou, Xiaoqin; Zhu, Zhiwei
2013-09-01
Various types of flexure hinges have been developed to construct flexural mechanisms, however, all these hinges may have limited moving accuracies, blocking performance improvements of the flexural mechanisms. In this paper, a novel sort of exponent-sine-shaped flexure hinges (ESSFHs) with asymmetric structures is proposed to achieve much higher motion accuracy. To characterize elastic deformation behavior of the ESSFHs, a novel finite beam based matrix modeling (FBMM) method is employed to calculate the compliance matrix and the defined non-dimensional precision factors without executing laborious integration operations. Furthermore, finite element analysis is conducted and compared with the FBMM method, the maximum deviation of the obtained compliances and the precision factors by the two methods is less than 8%, well demonstrating the efficiency of the analytical method. Comparisons of the accuracies of the ESSFHs and certain state-of-the-art flexure hinges verify that the proposed ESSFHs can not only significantly improve the motion accuracy but also decrease the inherent parasitic motions of conventional flexure hinges. Based on the established analytical models, influences of the dimensional parameters on the compliances and the motion accuracy of the ESSFHs are well revealed. Finally, performances of the ESSFH and the efficiency of the analytical model are well investigated by means of experimental tests.
Swept sine testing of rotor-bearing system for damping estimation
NASA Astrophysics Data System (ADS)
Chandra, N. Harish; Sekhar, A. S.
2014-01-01
Many types of rotating components commonly operate above the first or second critical speed and they are subjected to run-ups and shutdowns frequently. The present study focuses on developing FRF of rotor bearing systems for damping estimation from swept-sine excitation. The principle of active vibration control states that with increase in angular acceleration, the amplitude of vibration due to unbalance will reduce and the FRF envelope will shift towards the right (or higher frequency). The frequency response function (FRF) estimated by tracking filters or Co-Quad analyzers was proved to induce an error into the FRF estimate. Using Fast Fourier Transform (FFT) algorithm and stationary wavelet transform (SWT) decomposition FRF distortion can be reduced. To obtain a theoretical clarity, the shifting of FRF envelope phenomenon is incorporated into conventional FRF expressions and validation is performed with the FRF estimated using the Fourier Transform approach. The half-power bandwidth method is employed to extract damping ratios from the FRF estimates. While deriving half-power points for both types of responses (acceleration and displacement), damping ratio (ζ) is estimated with different approximations like classical definition (neglecting damping ratio of order higher than 2), third order (neglecting damping ratios with order higher than 4) and exact (no assumptions on damping ratio). The use of stationary wavelet transform to denoise the noise corrupted FRF data is explained. Finally, experiments are performed on a test rotor excited with different sweep rates to estimate the damping ratio.
NASA Astrophysics Data System (ADS)
Conde, Daniel; Baptista, Maria Ana; Sousa Oliveira, Carlos; Ferreira, Rui M. L.
2015-04-01
Global energy production is still significantly dependant on the coal supply chain, justifying huge investments on building infrastructures, capable of stocking very large quantities of this natural resource. Most of these infrastructures are located at deep-sea ports and are therefore exposed to extreme coastal hazards, such as tsunami impacts. The 2011 Tohoku tsunami is reported to have inflicted severe damage to Japan's coal-fired power stations and related infrastructure. Sines, located in the Portuguese coast, hosts a major commercial port featuring an exposed coal stockpile area extending over more than 24 ha and a container terminal currently under expansion up to 100ha. It is protected against storm surges but tsunamis have not been considered in the design criteria. The dominant wind-generated wave direction is N to NW, while the main tsunamigenic faults are located S to SW of the port. This configuration potentially exposes sensitive facilities, such as the new terminal container and the coal stockpile area. According to a recent revision of the national tsunami catalogue (Baptista, 2009), Portugal has been affected by numerous major tsunamis over the last two millennia, with the most notorious event being the Great Lisbon Earthquake and Tsunami occurred on the 1st November 1755. The aim of this work is to simulate the open ocean propagation and overland impact of a tsunami on the Sines port, similar to the historical event of 1755, based on the different tsunamigenic faults and magnitudes proposed in the current literature. Open ocean propagation was modelled with standard simulation tools like TUNAMI and GeoClaw. Near-shore and overland propagation was carried out using a recent 2DH mathematical model for solid-fluid flows, STAV-2D from CERIS-IST (Ferreira et al., 2009; Canelas, 2013). STAV-2D is particularly suited for tsunami propagation over complex and morphodynamic geometries, featuring a discretization scheme based on a finite-volume method using
Román, Angel Carlos; González-Rico, Francisco J; Moltó, Eduardo; Hernando, Henar; Neto, Ana; Vicente-Garcia, Cristina; Ballestar, Esteban; Gómez-Skarmeta, José L; Vavrova-Anderson, Jana; White, Robert J; Montoliu, Lluís; Fernández-Salguero, Pedro M
2011-03-01
Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent intrinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE. Transcription of B1-X35S is required for insulation. While basal insulator activity is maintained by RNA polymerase (Pol) III transcription, AHR-induced insulation involves release of Pol III and engagement of Pol II transcription on the same strand. B1-X35S insulation is also associated with enrichment of heterochromatin marks H3K9me3 and H3K27me3 downstream of B1-X35S, an effect that varies with cell type. B1-X35S binds parylated CTCF and, consistent with a chromatin barrier activity, its positioning between two adjacent genes correlates with their differential expression in mouse tissues. Hence, B1 SINE retrotransposons represent genome-wide insulators activated by transcription factors that respond to developmental, oncogenic, or toxicological stimuli. PMID:21324874
NASA Astrophysics Data System (ADS)
Lee, Yongjin; Shin, Moon Sam; Kim, Hwayong
2008-12-01
In this study, a new crossover sine model (CSM) n was developed from a trigonometric model [M. E. Fisher, S. Zinn, and P. J. Upton, Phys. Rev. B 59, 14533 (1999)]. The trigonometric model is a parametric formulation model that is used to represent the thermodynamic variables near a critical point. Although there are other crossover models based on this trigonometric model, such as the CSM and the analytical sine model, which is an analytic formulation of the CSM, the new sine model (NSM) employs a different approach from these two models in terms of the connections between the parametric variables of the trigonometric model and thermodynamic variables. In order to test the performance of the NSM, the crossover lattice equation of state [M. S. Shin, Y. Lee, and H. Kim, J. Chem. Thermodyn. 40, 174 (2008)] was applied using the NSM for correlations of various pure fluids and fluid mixtures. The results showed that over a wide range of states, the crossover lattice fluid (xLF)/NSM yields the saturated properties of pure fluids and the phase behavior of binary mixtures more accurately than the original lattice equation of state. Moreover, a comparison with the crossover lattice equation of state using the CSM (xLF/CSM) showed that the new model presents good correlation results that are comparable to the xLF/CSM.
Lee, Yongjin; Shin, Moon Sam; Kim, Hwayong
2008-12-21
In this study, a new crossover sine model (CSM) n was developed from a trigonometric model [M. E. Fisher, S. Zinn, and P. J. Upton, Phys. Rev. B 59, 14533 (1999)]. The trigonometric model is a parametric formulation model that is used to represent the thermodynamic variables near a critical point. Although there are other crossover models based on this trigonometric model, such as the CSM and the analytical sine model, which is an analytic formulation of the CSM, the new sine model (NSM) employs a different approach from these two models in terms of the connections between the parametric variables of the trigonometric model and thermodynamic variables. In order to test the performance of the NSM, the crossover lattice equation of state [M. S. Shin, Y. Lee, and H. Kim, J. Chem. Thermodyn. 40, 174 (2008)] was applied using the NSM for correlations of various pure fluids and fluid mixtures. The results showed that over a wide range of states, the crossover lattice fluid (xLF)/NSM yields the saturated properties of pure fluids and the phase behavior of binary mixtures more accurately than the original lattice equation of state. Moreover, a comparison with the crossover lattice equation of state using the CSM (xLF/CSM) showed that the new model presents good correlation results that are comparable to the xLF/CSM.
NASA Astrophysics Data System (ADS)
Ng, Chiu-king
2010-01-01
When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed simple harmonic2. They also know elements of the string at the highest and the lowest positions—the crests and the troughs—are momentarily at rest, while those at the centerline (zero displacement) have the greatest speed, as shown in Fig. 1. Irrespective of this, they are less familiar with the energy associated with the wave. They may fail to answer a question such as, "In a traveling string wave, which elements have respectively the greatest kinetic energy (KE) and the greatest potential energy (PE)?" The answer to the former is not difficult; elements at zero position have the fastest speed and hence their KE, being proportional to the square of speed, is the greatest. To the PE, what immediately comes to their mind may be the simple harmonic motion (SHM), in which the PE is the greatest and the KE is zero at the two turning points. It may thus lead them to think elements at crests or troughs have the greatest PE. Unfortunately, this association is wrong. Thinking that the crests or troughs have the greatest PE is a misconception.3
Rotational waves in geodynamics
NASA Astrophysics Data System (ADS)
Gerus, Artyom; Vikulin, Alexander
2015-04-01
The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)
Infant and early childhood mortality in the Sine-Saloum region of Senegal.
Goldberg, H I; M'Bodji, F G
1988-10-01
Infant and early childhood mortality in Senegal's Sine-Saloum region was investigated through use o f data from a 1982-83 family health survey. The survey involved interviews with 1894 married women 15-44 years of age living in extended family residential units in rural areas. Given evidence of substantial underreporting of early deaths, at least among children born before 1980, an adjustment factor was applied to the survey data. Infant mortality was estimated to be about 113/1000 live births and mortality before age 5 years was 263/1000. Strong mortality differentials, particularly after infancy, were noted according to the 2 socioeconomic variables included in the analysis: type of house and father's occupation. The probability of dying at ages 1-4 years was 50% higher among children living in traditional homes than among those in modern homes as well as among children whose fathers' were engaged in primary sector occupations (farming, livestock, fishing). Infant mortality showed no sex differential, while mortality at ages 1-4 years was 18% higher among females. Diarrheal and respiratory diseases were the 2 leading causes of death, killing at least 15% of all children by 5 years of age. Tetanus was an important cause of death during infancy, while measles and malaria were significant causes only after the 1st birthday. For all causes of death, the effect of socioeconomic status is higher in early childhood than in infancy, presumably because of the protective effect of breastfeeding. 82% of children who died had fever during their terminal illness, 51% had diarrhea, 39% had a cough, and 14% a rash. At least some mortality in this area might be prevented through treatment of these symptoms. However, calculating the degree to which particular interventions such as oral rehydration for diarrhea would reduce mortality is a complex task, requiring knowledge of replacement mortality, effectiveness of interventions, and the numbers of mothers who would utilize them
Nikaido, Masato; Piskurek, Oliver; Okada, Norihiro
2007-04-01
Morphological data have indicated that toothed whales form a monophyletic group. However, research published in the last several years has made the issue of the monophyly or paraphyly of toothed whales a subject of debate. Our group previously characterized three independent loci in which SINE insertions were shared among dolphins and sperm whales, thus supporting the traditional, morphologically based hypothesis of toothed whale monophyly. Although in recent years a few additional molecular works proposed this topology, there is still skepticism over this monophyly from the view point of molecular systematics. When the phylogeny of rapidly radiated taxa is examined using the SINE method, it is important to consider the ascertainment bias that arises when choosing a particular taxon for SINE loci screening. To overcome this methodological problem specific to the SINE method, we examined all possible topologies among sperm whales, dolphins and baleen whales by extensively screening SINE loci from species of all three lineages. We characterized nine independent SINE loci from the genomes of sperm whales and dolphins, all of which cluster sperm whales and dolphins but exclude baleen whales. Furthermore, we characterized ten independent loci from baleen whales, all of which were amplified in a common ancestor of these whales. From these observations, we conclude that toothed whales form a monophyletic group and that no ancestral SINE polymorphisms hinder their phylogenetic assignment despite the short divergence times of the major lineages of extant whales during evolution. These results suggest that a small population of common ancestors of all toothed whales ultimately diverged into the lineages of sperm whales and dolphins.
Integrability: mathematical methods for studying solitary waves theory
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2014-03-01
real features in a variety of vital areas in science, technology and engineering. In recognition of the importance of solitary waves theory and the underlying concept of integrable equations, a variety of powerful methods have been developed to carry out the required analysis. Examples of such methods which have been advanced are the inverse scattering method, the Hirota bilinear method, the simplified Hirota method, the Bäcklund transformation method, the Darboux transformation, the Pfaffian technique, the Painlevé analysis, the generalized symmetry method, the subsidiary ordinary differential equation method, the coupled amplitude-phase formulation, the sine-cosine method, the sech-tanh method, the mapping and deformation approach and many new other methods. The inverse scattering method, viewed as a nonlinear analogue of the Fourier transform method, is a powerful approach that demonstrates the existence of soliton solutions through intensive computations. At the center of the theory of integrable equations lies the bilinear forms and Hirota's direct method, which can be used to obtain soliton solutions by using exponentials. The Bäcklund transformation method is a useful invariant transformation that transforms one solution into another of a differential equation. The Darboux transformation method is a well known tool in the theory of integrable systems. It is believed that there is a connection between the Bäcklund transformation and the Darboux transformation, but it is as yet not known. Archetypes of integrable equations are the Korteweg-de Vries (KdV) equation, the modified KdV equation, the sine-Gordon equation, the Schrödinger equation, the Vakhnenko equation, the KdV6 equation, the Burgers equation, the fifth-order Lax equation and many others. These equations yield soliton solutions, multiple soliton solutions, breather solutions, quasi-periodic solutions, kink solutions, homo-clinic solutions and other solutions as well. The couplings of linear and
MLP based models to predict PM10, O3 concentrations, in Sines industrial area
NASA Astrophysics Data System (ADS)
Durao, R.; Pereira, M. J.
2012-04-01
Sines is an important Portuguese industrial area located southwest cost of Portugal with important nearby protected natural areas. The main economical activities are related with this industrial area, the deep-water port, petrochemical and thermo-electric industry. Nevertheless, tourism is also an important economic activity especially in summer time with potential to grow. The aim of this study is to develop prediction models of pollutant concentration categories (e.g. low concentration and high concentration) in order to provide early warnings to the competent authorities who are responsible for the air quality management. The knowledge in advanced of pollutant high concentrations occurrence will allow the implementation of mitigation actions and the release of precautionary alerts to population. The regional air quality monitoring network consists in three monitoring stations where a set of pollutants' concentrations are registered on a continuous basis. From this set stands out the tropospheric ozone (O3) and particulate matter (PM10) due to the high concentrations occurring in the region and their adverse effects on human health. Moreover, the major industrial plants of the region monitor SO2, NO2 and particles emitted flows at the principal chimneys (point sources), also on a continuous basis,. Therefore Artificial neuronal networks (ANN) were the applied methodology to predict next day pollutant concentrations; due to the ANNs structure they have the ability to capture the non-linear relationships between predictor variables. Hence the first step of this study was to apply multivariate exploratory techniques to select the best predictor variables. The classification trees methodology (CART) was revealed to be the most appropriate in this case.. Results shown that pollutants atmospheric concentrations are mainly dependent on industrial emissions and a complex combination of meteorological factors and the time of the year. In the second step, the Multi
Sinusoidal Wave Estimation Using Photogrammetry and Short Video Sequences.
Rupnik, Ewelina; Jansa, Josef; Pfeifer, Norbert
2015-01-01
The objective of the work is to model the shape of the sinusoidal shape of regular water waves generated in a laboratory flume. The waves are traveling in time and render a smooth surface, with no white caps or foam. Two methods are proposed, treating the water as a diffuse and specular surface, respectively. In either case, the water is presumed to take the shape of a traveling sine wave, reducing the task of the 3D reconstruction to resolve the wave parameters. The first conceived method performs the modeling part purely in 3D space. Having triangulated the points in a separate phase via bundle adjustment, a sine wave is fitted into the data in a least squares manner. The second method presents a more complete approach for the entire calculation workflow beginning in the image space. The water is perceived as a specular surface, and the traveling specularities are the only observations visible to the cameras, observations that are notably single image. The depth ambiguity is removed given additional constraints encoded within the law of reflection and the modeled parametric surface. The observation and constraint equations compose a single system of equations that is solved with the method of least squares adjustment. The devised approaches are validated against the data coming from a capacitive level sensor and on physical targets floating on the surface. The outcomes agree to a high degree. PMID:26690171
Sinusoidal Wave Estimation Using Photogrammetry and Short Video Sequences
Rupnik, Ewelina; Jansa, Josef; Pfeifer, Norbert
2015-01-01
The objective of the work is to model the shape of the sinusoidal shape of regular water waves generated in a laboratory flume. The waves are traveling in time and render a smooth surface, with no white caps or foam. Two methods are proposed, treating the water as a diffuse and specular surface, respectively. In either case, the water is presumed to take the shape of a traveling sine wave, reducing the task of the 3D reconstruction to resolve the wave parameters. The first conceived method performs the modeling part purely in 3D space. Having triangulated the points in a separate phase via bundle adjustment, a sine wave is fitted into the data in a least squares manner. The second method presents a more complete approach for the entire calculation workflow beginning in the image space. The water is perceived as a specular surface, and the traveling specularities are the only observations visible to the cameras, observations that are notably single image. The depth ambiguity is removed given additional constraints encoded within the law of reflection and the modeled parametric surface. The observation and constraint equations compose a single system of equations that is solved with the method of least squares adjustment. The devised approaches are validated against the data coming from a capacitive level sensor and on physical targets floating on the surface. The outcomes agree to a high degree. PMID:26690171
Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T.; Jongbloets, Bart C.; Down, Thomas A.; Riccio, Antonella
2013-01-01
In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. PMID:23966877
Taniguchi, Daisuke; Nakahara Ph D, Toshiki; Nakajima, Sho; Nakazato, Tomoko; Mikasa, Michitaka; Furukawa Ph D, Yoshiaki
2015-01-01
A 62-year-old woman developed meningitis as well as acute paralysis of glossopharyngeal, vagus, and accessory nerves on the right side and also had dysfunction of the left hypoglossal nerve. Although there was no evidence of a typical cutaneous or mucosal herpetic lesion, PCR detection of varicella zoster virus (VZV)-DNA in cerebrospinal fluid confirmed the clinical diagnosis of polyneuritis cranialis due to VZV infection and zoster sine herpete. After starting intravenous acyclovir and methylprednisolone, her hypoglossal nerve palsy disappeared within a day and all other symptoms and signs dramatically improved. A rapid improvement observed in our patient suggests that the right cranial polyneuropathy could be caused by inflammation associated with epineurial edema (where the ninth, tenth, and eleventh cranial nerves pass through the right jugular foramen), whereas the exact mechanism of the twelfth cranial nerve involvement on the contralateral side is unknown. Our clinical findings indicate that acute lower cranial polyneuropathy in patients with zoster sine herpete should be treated immediately with combined administration of acyclovir and an anti-inflammatory corticosteroid. PMID:26511031
Nakamura, H; Suzuki, M
2007-10-01
An ideal toxicity assay should utilize multiple indexes obtained from transient changes of metabolic activities. Here, we demonstrate the possibility for a novel toxicity bioassay using the damped glycolytic oscillation phenomenon occurring in starved yeast cells. In a previous study, the phenomenon was characterized in detail. Under optimum conditions to induce the phenomenon, the wave shapes of the damped glycolytic oscillations were changed by the instantaneous addition of both glucose and chemicals and by changing the chemical concentration. We estimated the changes in the oscillation wave shapes as six indexes, i.e., the number of wave cycles, maximum amplitude, oscillation frequency, attenuation coefficient, initial peak height, and non-steady-state time. These index changes were obtained from several kinds of chemicals. The chemicals, especially those for acids (0.01-100 mM HCl and 0.01-50 mM citric acid), bases (0.001-50 mM KOH), heavy metal ions (1-1,000 mg L(-1); Cu(2+), Pb(2+), Cd(2+), Hg(2+)), respiratory inhibitors (3-500 mg L(-1) NaN(3)), dissolved oxygen removers (10-300 mg L(-1) NaSO(3)), surfactants (10-200 mg L(-1) benzalkonium chloride), and aldehyde (10-1,000 mg L(-1) acetaldehyde), showed characteristic patterns depending on each chemical and its concentration. These significant results demonstrate the possibilities of new methods for both toxicity qualification and quantification.
Phobos low density: are macroporosity and/or water ice 'condiciones sine quibus non'?
NASA Astrophysics Data System (ADS)
Pajola, Maurizio; Lazzarin, Monica; Dalle Ore, Cristina; Cruikshank, Dale; Roush, Ted; Pendleton, Yvonne; Bertini, Ivano; Magrin, Sara; La Forgia, Fiorangela; Barbieri, Cesare
2014-05-01
heterogeneous mass distribution. Our work originates from this simple question: are macroporosity and/or water ice really necessary to justify Phobos low density? Are these 'condiciones sine quibus non'? Is it not possible to identify a mineralogical rock content which agrees both with the surface spectra and the low bulk density of Phobos without introducing bulk macroporosity and/or water ice content? The mineralogical model used to explain the surface reflectance of Phobos presented in Pajola et al., 2013, brings new insights about the interior composition of Phobos reconciling both Phobos surface spectra and its low bulk density.
Reproducing an Early-20th-Century Wave Machine
NASA Astrophysics Data System (ADS)
Daffron, John A.; Greenslade, Thomas B.
2016-09-01
Physics students often have problems understanding waves. Over the years numerous mechanical devices have been devised to show the propagation of both transverse and longitudinal waves (Ref. 1). In this article an updated version of an early-20th-century transverse wave machine is discussed. The original, Fig. 1, is at Creighton University in Omaha, NE. The new version, by the authors, is shown in Fig. 2. It was designed in such a way that it can be built relatively easily. Sliders that rest on a rotating helical rail move up and down in approximate simple harmonic motion. When the helix is at rest, the tops of the sliders form a good approximation to a sine wave. In the original, the sliders are double-ended knitting needles, and the handle was taken from an earlier piece of apparatus.
Analytic approach to the wave packet formalism in oscillation phenomena
Bernardini, A.E.; Leo, S. de
2004-09-01
We introduce an approximation scheme to perform an analytic study of the oscillation phenomena in a pedagogical and comprehensive way. By using Gaussian wave packets, we show that the oscillation is bounded by a time-dependent vanishing function which characterizes the slippage between the mass-eigenstate wave packets. We also demonstrate that the wave packet spreading represents a secondary effect which plays a significant role only in the nonrelativistic limit. In our analysis, we note the presence of a new time-dependent phase and calculate how this additional term modifies the oscillating character of the flavor conversion formula. Finally, by considering box and sine wave packets we study how the choice of different functions to describe the particle localization changes the oscillation probability.
NASA Astrophysics Data System (ADS)
Choe, G. H.; Yun, G. S.; Nam, Y.; Lee, W.; Park, H. K.; Bierwage, A.; Domier, C. W.; Luhmann, N. C., Jr.; Jeong, J. H.; Bae, Y. S.; the KSTAR Team
2015-01-01
Multiple (two or more) flux tubes are commonly observed inside and/or near the q = 1 flux surface in KSTAR tokamak plasmas with localized electron cyclotron resonance heating and current drive (ECH/CD). Detailed 2D and quasi-3D images of the flux tubes obtained by an advanced imaging diagnostic system showed that the flux tubes are m/n = 1/1 field-aligned structures co-rotating around the magnetic axis. The flux tubes typically merge together and become like the internal kink mode of the usual sawtooth, which then collapses like a usual sawtooth crash. A systematic scan of ECH/CD beam position showed a strong correlation with the number of flux tubes. In the presence of multiple flux tubes close to the q = 1 surface, the radially outward heat transport was enhanced, which explains naturally temporal changes of electron temperature. We emphasize that the multiple flux tubes are a universal feature distinct from the internal kink instability and play a critical role in the control of sawteeth using ECH/CD.
Huang, Yongping; Wang, Fanhou; Gao, Zenghui; Zhang, Bin
2015-01-26
Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian (PCESHG) vortex beams through non-Kolmogorov atmospheric turbulence, including the spectral degree of polarization and evolution behavior of coherent vortices and average intensity are investigated in detail by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of non-Kolmogorov turbulence. It is shown that the motion, creation and annihilation of the coherent vortices of PCESHG vortex beams in non-Kolmogorov turbulence may appear with the increasing propagation distance, and the distance for the conservation of the topological charge depends on the turbulence parameters and beam parameters. In additions, the evolution behavior of coherent vortices, average intensity and spectral degree of polarization vary significantly for different values of the generalized exponent parameter and the generalized refractive-index structure parameter of non-Kolmogorov turbulence, and the beam parameters as well as the propagation distance. PMID:25835869
Huang, Yongping; Wang, Fanhou; Gao, Zenghui; Zhang, Bin
2015-01-26
Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian (PCESHG) vortex beams through non-Kolmogorov atmospheric turbulence, including the spectral degree of polarization and evolution behavior of coherent vortices and average intensity are investigated in detail by using the extended Huygens-Fresnel principle and the spatial power spectrum of the refractive index of non-Kolmogorov turbulence. It is shown that the motion, creation and annihilation of the coherent vortices of PCESHG vortex beams in non-Kolmogorov turbulence may appear with the increasing propagation distance, and the distance for the conservation of the topological charge depends on the turbulence parameters and beam parameters. In additions, the evolution behavior of coherent vortices, average intensity and spectral degree of polarization vary significantly for different values of the generalized exponent parameter and the generalized refractive-index structure parameter of non-Kolmogorov turbulence, and the beam parameters as well as the propagation distance.
Tanaka, Minoru; Hirayama, Yusuke; Fujita, Naoto; Fujino, Hidemi
2014-09-01
The aim of this study was to compare the effects of electrical stimulation by using rectangular and sine waveforms in the prevention of deep muscle atrophy in rat calf muscles. Rats were randomly divided into the following groups: control, hindlimb unloading (HU), and HU plus electrical stimulation (ES). The animals in the ES group were electrically stimulated using rectangular waveform (RS) on the left calves and sine waveform (SS) on the right calves, twice a day, for 2 weeks during unloading. HU for 2 weeks resulted in a loss of the muscle mass, a decrease in the cross-sectional area of the muscle fibers, and overexpression of ubiquitinated proteins in the gastrocnemius and soleus muscles. In contrast, electrical stimulation with RS attenuated the HU-induced reduction in the cross-sectional area of muscle fibers and the increase of ubiquitinated proteins in the gastrocnemius muscle. However, electrical stimulation with RS failed to prevent muscle atrophy in the deep portion of the gastrocnemius and the soleus muscles. Nevertheless, electrical stimulation with SS attenuated the HU-induced muscle atrophy and the up-regulation of ubiquitinated proteins in both gastrocnemius and soleus muscles. This indicates that SS was more effective in the prevention of deep muscle atrophy than RS. Since the skin muscle layers act like the plates of a capacitor, separated by the subcutaneous adipose layer, the SS can pass through this capacitor more easily than the RS. Hence, SS can prevent the progressive loss of muscle fibers in the deep portion of the calf muscles.
Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li
2016-01-01
In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663
NASA Astrophysics Data System (ADS)
Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li
2016-04-01
In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed.
Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li
2016-01-01
In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663
The Virtual Wave Observatory (VWO)
NASA Astrophysics Data System (ADS)
Fung, S. F.; VWO Team
2008-12-01
Heliophysics wave data are currently not easily searchable by computers, making identifying pertinent wave data features for analyses and cross comparisons difficult and laborious. Since wave data analysis requires specialized knowledge about waves, which spans the spectrum of microphysics to macrophysics, researchers having varied expertise cannot easily use wave data. To resolve these difficulties and to allow wave data to contribute more fully to Heliophysics research, we are developing a Virtual Wave Observatory (VWO) whose goal is to enable all Heliophysics wave data to become searchable, understandable and usable by the Heliosphysics community. The VWO objective is to enable search of multiple and distributed wave data (from both active and passive measurements). This presentation provides and overview of the VWO, a new VxO component within the emerging distributed Heliophysics data and model environment.
NASA Astrophysics Data System (ADS)
Takeuchi, Hideo; Asai, Souta; Tsuruta, Syuichi; Nakayama, Masaaki
2012-06-01
We demonstrate that, in (11n)-oriented GaAs/In0.1Al0.9As strained multiple quantum wells, the terahertz electromagnetic wave from the coherent GaAs-like longitudinal optical (LO) phonon is enhanced by a piezoelectric field originating from a tensile strain in the GaAs layer. The presence of the tensile strain is confirmed using Raman scattering spectroscopy. The Fourier power spectrum of the terahertz waveform shows that the intensity of the terahertz band of the coherent GaAs-like LO phonon increases as the index n approaches 1. The amplitude of the GaAs-like LO phonon is proportional to the piezoelectric field in the strained GaAs layer.
Qiao, L J; Liang, S; Han, L S; Xu, J J; Zhu, H L; Wang, W
2015-05-01
We report continuous-wave (CW) operation up to 20 °C of 1.5-μm wavelength npn-InGaAsP/InP multiple quantum well (MQW) transistor laser (TL) with a deep-ridge structure. With CW laser emission, the common emitter current gain of the device can be over 3.5, which is significantly larger than those of the previously reported long wavelength TLs. It is found that at low base current, the laser operation occurs on the first excited state of the MQWs. At high base current, however, the device shows stimulated emissions on the ground state transition. The trend is contrary to what has been observed in the GaAs based TLs and is explained by the change of carrier flow at different base currents. PMID:25969233
Nakanishi, Akiko; Sasaki, Takeshi; Yan, Kuo; Tarabykin, Victor; Vigier, Lisa; Sumiyama, Kenta; Hirakawa, Mika; Nishihara, Hidenori; Pierani, Alessandra; Okada, Norihiro
2011-01-01
Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered “junk DNA”. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1−/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian
ERIC Educational Resources Information Center
DeClark, Tom
2000-01-01
Presents an activity on waves that addresses the state standards and benchmarks of Michigan. Demonstrates waves and studies wave's medium, motion, and frequency. The activity is designed to address different learning styles. (YDS)
Spike morphology in blast-wave-driven instability experiments
Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.
2010-05-15
The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 {mu}m thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 {mu}m and a wavelength of 71 {mu}m. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.
Boyd, J.P.
1995-05-01
By performing multiple precision pseudospectral calculations using two different basis sets, we compute the radiation coefficient {alpha}({epsilon}) for very small {epsilon} to resolve discrepancies between earlier numerical work of the author`s and a small-{epsilon} perturbation theory of Grimshaw and Joshi. Multiple precision is needed because {alpha} is asymptotically proportional to exp({minus}{pi}/2{epsilon}), and is therefore below the single precision roundoff threshold when {epsilon}{lt}1/25. Because {alpha} decreases exponentially with 1/{epsilon}, we use a numerical method whose error decreases exponentially fast with the number of grid points {ital N}: a pseudospectral method or finite differences of as high as twenty-fourth order. Richardson iteration, preconditioning by high order finite differences, parity symmetry, Aitken and Richardson extrapolation, and the fast Fourier transform are all crucial in reducing our longest runs to about 24 h on a Unix workstation. Although preconditioning by second order differences is the norm, we find that high order preconditioning---as large as 14th order---is more efficient for our one-dimensional problem. We find that the discrepancies are mostly due to differences in convention for (i) definition of the parameter {epsilon} and (ii) choice of the far field phase. When these are accounted for, we obtain very good agreement with Grimshaw and Joshi`s first order term. However, their second order term, which is predicted to be {pi}{sup 2}/2{approx}4.94, is about {ital O}(0.0 to {minus}0.2) in our computations. The reason for this difference is still a mystery.
Zinta, Gaurav; AbdElgawad, Hamada; Domagalska, Malgorzata A; Vergauwen, Lucia; Knapen, Dries; Nijs, Ivan; Janssens, Ivan A; Beemster, Gerrit T S; Asard, Han
2014-12-01
Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.
Surface wave dispersion from small vertical scatterers
NASA Astrophysics Data System (ADS)
van Wijk, K.; Levshin, A. L.
2004-10-01
Heterogeneity in the subsurface creates conflicting types of dispersion of seismic waves. A laboratory and numerical experiment show that multiple scattering of elastic waves from isolated heterogeneities near the surface not only attenuates, but also delays coherent events. Because scattering off these impedance contrasts is frequency dependent, multiple scattering is a source of dispersion. If ignored, multiple scattering dispersion could be erroneously attributed to a model with horizontal homogeneous layers of different wave speeds.
Grzegorczyk, Tomasz M.; Kong, Jin Au
2007-03-15
A closed-form expression of the force on an infinite lossless dielectric cylinder illuminated by a TM incidence (electric field parallel to the cylinder's axis) is derived. The formula, expressed as a simple sum, is straightforward to compute and is shown to be faster converging than the direct application of the Maxwell stress tensor and the expansion of the fields in the cylindrical coordinate system. A generalization of the formula to multiple incidences is provided and is illustrated by studying the force due to a Gaussian beam on cylinders of various parameters. We show in this way that the effects of the gradient of the intensity profile on the transverse and longitudinal confinements are decoupled, due to the permittivity contrast and to the size of the particle. Since the formula we derive is exact and is therefore not limited to the Rayleigh or ray optics regime, we expect it to be important for the modeling of optical forces on elongated particles of arbitrary sizes.
Zhang, Chi; Fang, Xin; Qiu, Haopu; Li, Ning
2015-01-01
Real-time PCR amplification of mitochondria gene could not be used for DNA quantification, and that of single copy DNA did not allow an ideal sensitivity. Moreover, cross-reactions among similar species were commonly observed in the published methods amplifying repetitive sequence, which hindered their further application. The purpose of this study was to establish a short interspersed nuclear element (SINE)-based real-time PCR approach having high specificity for species detection that could be used in DNA quantification. After massive screening of candidate Sus scrofa SINEs, one optimal combination of primers and probe was selected, which had no cross-reaction with other common meat species. LOD of the method was 44 fg DNA/reaction. Further, quantification tests showed this approach was practical in DNA estimation without tissue variance. Thus, this study provided a new tool for qualitative detection of porcine component, which could be promising in the QC of meat products.
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas; Myrzakulov, Ratbay
2010-08-15
In this paper we investigate wormhole and spherically symmetric solutions in four-dimensional gravity plus a matter source consisting of a ghost scalar field with a sine-Gordon potential. For the wormhole solutions we also include the possibility of electric and/or magnetic charges. For both types of solutions we perform a linear stability analysis and show that the wormhole solutions are stable and that when one turns on the electric and/or magnetic field the solution remains stable. The linear stability analysis of the spherically symmetric solutions indicates that they can be stable or unstable depending on one of the parameters of the system. This result for the spherically symmetric solution is nontrivial since a previous investigation of four-dimensional gravity plus a ghost scalar field with a {lambda}{phi}{sup 4} interaction found only unstable spherically symmetric solutions. Both the wormhole and spherically symmetric solutions presented here asymptotically go to anti-de Sitter space-time.
Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions
NASA Astrophysics Data System (ADS)
Guarcello, Claudio; Valenti, Davide; Carollo, Angelo; Spagnolo, Bernardo
2016-05-01
We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of $\\alpha$-stable L\\'evy distributions is considered as noise source, with varying stability index $\\alpha$ and asymmetry parameter $\\beta$. In junctions longer than a critical length, the mean switching time (MST) from superconductive to the resistive state assumes a values independent of the device length. Here, we demonstrate that such a value is directly related to the mean density of solitons which move into or from the washboard potential minimum corresponding to the initial superconductive state. Moreover, we observe: (i) a connection between the total mean soliton density and the mean potential difference across the junction; (ii) an inverse behavior of the mean voltage in comparison with the MST, with varying the junction length; (iii) evidences of non-monotonic behaviors, such as stochastic resonant activation and noise enhanced stability, of MST versus the driving frequency and noise intensity for different values of $\\alpha$ and $\\beta$; (iv) finally, these non-monotonic behaviors are found to be related to the mean density of solitons formed along the junction.
Cowley, Michael; de Burca, Anna; McCole, Ruth B; Chahal, Mandeep; Saadat, Ghazal; Oakey, Rebecca J; Schulz, Reiner
2011-04-20
Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.
NASA Astrophysics Data System (ADS)
Schlick, Conor P.; Christov, Ivan C.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.
2013-05-01
We present an accurate and efficient computational method for solving the advection-diffusion equation in time-periodic chaotic flows. The method uses operator splitting, which allows the advection and diffusion steps to be treated independently. Taking advantage of flow periodicity, the advection step is solved using a mapping method, and diffusion is "added" discretely after each iteration of the advection map. This approach results in the construction of a composite mapping matrix over an entire period of the chaotic advection-diffusion process and provides a natural framework for the analysis of mixing. To test the approach, we consider two-dimensional time-periodic sine flow. By comparing the numerical solutions obtained by our method to reference solutions, we find qualitative agreement for large time steps (structure of concentration profile) and quantitative agreement for small time steps (low error). Further, we study the interplay between mixing through chaotic advection and mixing through diffusion leading to an analytical model for the evolution of the intensity of segregation with time. Additionally, we demonstrate that our operator splitting mapping approach can be readily extended to three dimensions.
Yasue, H; Wada, Y
1996-04-01
The distribution of PRE-1 sequence (a swine SINE) among the animal species related to Sus scrofa, i.e. Phacochoerus aethiopicus and Tayassu tajacu, was examined by dot-blot analysis using PRE-1 sequences as a probe. This revealed that Phacochoerus aethiopicus and Tayassu tajacu contained PRE-1 sequences, amounts of which in their genomes are almost the same as that in the swine genome, indicating that these species separated after PRE-1 sequences proliferated to diversify in the genome. In order to estimate the time when the PRE-1 started to diversify in the swine genome, PRE-1 sequences were extracted from GenBank DNA database by homology analysis using the PRE-1 consensus sequence as a probe. The 22 PRE-1 sequences obtained were aligned and their phylogenetic relation was calculated by the neighbour-joining method. The result of the calculation combined with the mutation rate of the pseudogenes (r = 4.6 x 10(-9)) indicated that the PRE-1 sequence diversified at least 43.2 million years ago. Taken together, the period of time since the separation of the three species, Sus scrofa, Phacochoerus aethiopicus and Tayassu tajacu, is currently estimated to be less than 43.2 million years. PMID:8856898
Hara, Toru; Hirai, Yuriko; Baicharoen, Sudarath; Hayakawa, Takashi; Hirai, Hirohisa; Koga, Akihiko
2012-01-01
The superfamily Hominoidea (hominoids) comprises two families: Hominidae (hominids) and Hylobatidae (gibbons, also called small apes). The SVA transposon is a composite retrotransposon that occurs widely in hominoids and is considered to have been generated by stepwise fusions of three genetic elements: SINE-R, a variable number of tandem repeat (VNTR) sequence, and Alu. We identified a novel transposon whose basic structure is the same as that of SVA, with one prominent difference being the presence of part of prostaglandin reductase 2 (PTGR2) in place of SINE-R. We designate this composite transposon as PVA and propose two possible mechanisms regarding its generation. One is the derivation of PVA from SVA: the SINE-R region of SVA was replaced with a PTGR2 fragment by template switching. The other is the formation of PVA independently of SVA: a PTGR2 fragment was fused to an evolutionary intermediate comprising the VNTR and Alu regions. The nucleotide sequence of the junction between the VNTR and PTGR2 regions supports the second hypothesis. We identified PVA in the white-cheeked gibbon Nomascus leucogenys by analysis of genome sequence databases, and subsequent experimental analysis revealed its presence in all four gibbon genera. The white-cheeked gibbon harbors at least 93 PVA copies in its haploid genome. Another SVA-like composite transposon carrying parts of the LINE1 and Alu transposons in place of SINE-R, designated as LAVA, has recently been reported. The significance of the discovery of PVA is that its substituted fragment originates not from a transposon but from a single-copy gene. PVA should provide additional insights into the transposition mechanism of this type of composite transposon; the transposition activity is conferred even if the substituted fragment is not related to a transposon.
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Developing serpent-type wave generators to create solitary wave simulations with BEM
NASA Astrophysics Data System (ADS)
Weng, Wen-Kai; Shih, Ruey-Syan; Chou, Chung-Ren
2013-10-01
Developing serpent-type wave generators to generate solitary waves in a 3D-basin was investigated in this study. Based on the Lagrangian description with time-marching procedures and finite differences of the time derivative, a 3D multiple directional wave basin with multidirectional piston wave generators was developed to simulate ocean waves by using BEM with quadrilateral elements, and to simulate wave-caused problems with fully nonlinear water surface conditions. The simulations of perpendicular solitary waves were conducted in the first instance to verify this scheme. Furthermore, the comparison of the waveform variations confirms that the estimation of 3D solitary waves is a feasible scheme.
Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E; Gorgas, Daniela; Shelton, G Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso
2015-11-23
We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs.
NASA Astrophysics Data System (ADS)
Di Carlo, A.; Carbonell Garcia, A.
2012-07-01
The frequency response solution (SOL 111) of MSC Nastran versions prior to 2012 only allows the output of element stress components and element forces and does not allow the calculation of composite failure indices or Von-Mises stress for metallic parts. The analysis of a sandwich panel comprises several strength verifications, such as the check of facesheet and core failure as well as the check of facesheet and core local stability (shear crimping, wrinkling). In static analysis (SOL 101), MSC Nastran provides failure index output which can be used to generate fringe plots of Margins of Safety (MoS) in any post- processing tool. The other verifications (core strength and local stability) must be performed using different tools. For the dynamic analysis of sandwich panels, an analysis technique based on element forces and on failure envelope at laminate level has been developed and implemented in a Fortran program (SineMOS) which allows evaluating facesheet and core failure as well as local stability, taking into account modulus and phase information of the element forces. SineMOS is able to produce files containing information used to generate plots of minimum Margin of Safety in Patran for each failure mode. This paper shows the various steps of the analysis process, starting from the building of the failure envelope for the CFRP facesheet laminate. Finally some validation example is shown, comparing SineMOS results with results based on the application of static displacements to the nodes of the model.
NASA Astrophysics Data System (ADS)
Dong, Guang-Ming; Zhang, Nong; Du, Hai-Ping
2011-06-01
In this paper, as a continuation of part I of [N. Zhang, G.M. Dong, and H.P. Du, Investigation into untripped rollover of light vehicles in the modified fishhook and the sine manoeuvres, part I: vehicle modelling, roll and yaw instability, Veh. Syst. Dyn. 46 (2008), pp. 271-293], detailed parametric studies are conducted and compared between the fishhook and sine manoeuvres using the presented nine-degree-of-freedom vehicle model, in order to understand the rollover resistance capability of a light passenger vehicle with various parameters. First, effects of driving conditions are studied in the two manoeuvres. Secondly, effects of suspension characteristics are studied, in which the influence of suspension spring stiffness and shock absorber damping, anti-roll bar is discussed. Thirdly, effects of vehicle inertia properties, such as moment of inertia of vehicle sprung mass, sprung mass weight and location of centre of gravity, are investigated. Finally, effects of tyre characteristics are also investigated by altering the scaling factor λ Fz0. An in-depth understanding has been gained on the significant effects of key system parameters on the kinetic performance of vehicles under the fishhook and the sine manoeuvres. Parametric studies show that the combination of step input (fishhook) and frequency input gives a clear indication of the vehicle dynamic stability during cornering.
Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E; Gorgas, Daniela; Shelton, G Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso
2016-02-01
We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs. PMID:26596647
Wiedmer, Michaela; Oevermann, Anna; Borer-Germann, Stephanie E.; Gorgas, Daniela; Shelton, G. Diane; Drögemüller, Michaela; Jagannathan, Vidhya; Henke, Diana; Leeb, Tosso
2015-01-01
We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs. PMID:26596647
Pozueta-Romero, J; Houlné, G; Schantz, R
1998-07-01
In bell pepper, a gene encoding a major plastid-lipid associated protein is expressed as both partially and totally spliced transcripts (respectively PAP2 and PAP1). Although PAP is present as a single-copy gene in the bell pepper genome, Southern blots using PAP2 as a probe revealed multiple homologous copies. Analyses of the intronic sequence of PAP2 showed the existence of a 206bp short interspersed repetitive element (SINE) belonging to the Ts family of retrotransposons (Yoshioka et al., 1993). Comparison with PAP sequences in other Solanaceae species suggested that the structure of the gene is highly conserved: the two introns are inserted at the same position. However, the Ts insertion found in bell pepper is absent in tobacco and tomato. Studies using RT-PCR showed that in these latter species only totally spliced transcripts of PAP are present. On the other hand, RNA analyses of tobacco plants transformed with the bell pepper PAP revealed the presence of both totally and incompletely spliced transcripts. Altogether our results support the hypothesis that the Ts insertion into the first intron of PAP results in a splicing defect of the corresponding pre-mRNA. Based on the presence of peculiar, previously unidentified Ts elements, a possible horizontal transmission of Ts elements from animals to plants is discussed.
NASA Astrophysics Data System (ADS)
Chung, Cheng-Che; Glawdel, Tomasz; Ren, Carolyn L.; Chang, Hsien-Chang
2015-03-01
This work presents a simple method to fabricate controllable microscale wave structures on the top of regular interdigitated electrode (IDE) arrays using electrically-assisted lithography techniques. Smooth wave structures are extremely difficult, if not impossible, to fabricate using traditional multilayer photolithography technology. The fabricated wave structures were carefully measured using an optical profiler and the measured wave profiles were used in the numerical simulation of electrical field and for evaluating the parameters influencing the fabricated wave structure. It is demonstrated that the combined smooth wave structure and IDE array offer unique capability for particle manipulation including particle concentration, aggregation and separation. Particle motion manipulated via the combined wave structure and IDE array is governed by ac electroosmosis (ACEO), dielectrophoresis (DEP) or a combination of both depending on the applied frequency. At lower frequencies (~30 kHz), ACEO dominates and particles are driven to move along the valleys of the wave structures; while at higher frequencies (~200 kHz), DEP force dominates which concentrates particles at the peaks of the wave structures. In addition, varying the ac waveform from sine-wave to square-wave allows for dynamic control of particle motion. Size-dependent particle separation over the wave structure is also demonstrated for a mixture of 0.5 µm and 2 µm particles that are separated into two populations by the joint effects of drag and DEP forces when being pumped to flow via ACEO.
Multiple spiral patterns in a cardiac tissue
NASA Astrophysics Data System (ADS)
Bai, Zhanguo; Li, Xia
2009-11-01
Ventricular fibrillation (VF) is the major cause of sudden cardiac death, the leading cause of death in the industrialized world. However, the mechanisms for its onset are still not well understood. Recent experiments indicate that VF is induced by transitions of cardiac electric propagationg waves from a single spiral wave to multiple waves. To further understand the underlying mechanism of VF, we investigated the interaction between two waves in a two-dimensional excitable media. Three types of multiple spirals including multi-arm spirals have been found depending on the rotation direction and the distance among spiral waves.
Multi-reflective acoustic wave device
Andle, Jeffrey C.
2006-02-21
An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.
Atmospheric Science Data Center
2013-04-19
article title: Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...
Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter
NASA Technical Reports Server (NTRS)
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.
First upper limits from LIGO on gravitational wave bursts
B. Abbott et al.
2004-03-09
We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h{sub rss}; typical sensitivities lie in the range h{sub rss} {approx} 10{sup -19} - 10{sup -17} strain/{radical}Hz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.
Integrability: mathematical methods for studying solitary waves theory
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2014-03-01
real features in a variety of vital areas in science, technology and engineering. In recognition of the importance of solitary waves theory and the underlying concept of integrable equations, a variety of powerful methods have been developed to carry out the required analysis. Examples of such methods which have been advanced are the inverse scattering method, the Hirota bilinear method, the simplified Hirota method, the Bäcklund transformation method, the Darboux transformation, the Pfaffian technique, the Painlevé analysis, the generalized symmetry method, the subsidiary ordinary differential equation method, the coupled amplitude-phase formulation, the sine-cosine method, the sech-tanh method, the mapping and deformation approach and many new other methods. The inverse scattering method, viewed as a nonlinear analogue of the Fourier transform method, is a powerful approach that demonstrates the existence of soliton solutions through intensive computations. At the center of the theory of integrable equations lies the bilinear forms and Hirota's direct method, which can be used to obtain soliton solutions by using exponentials. The Bäcklund transformation method is a useful invariant transformation that transforms one solution into another of a differential equation. The Darboux transformation method is a well known tool in the theory of integrable systems. It is believed that there is a connection between the Bäcklund transformation and the Darboux transformation, but it is as yet not known. Archetypes of integrable equations are the Korteweg-de Vries (KdV) equation, the modified KdV equation, the sine-Gordon equation, the Schrödinger equation, the Vakhnenko equation, the KdV6 equation, the Burgers equation, the fifth-order Lax equation and many others. These equations yield soliton solutions, multiple soliton solutions, breather solutions, quasi-periodic solutions, kink solutions, homo-clinic solutions and other solutions as well. The couplings of linear and
Spike-like solitary waves in incompressible boundary layers driven by a travelling wave
NASA Astrophysics Data System (ADS)
Feng, Peihua; Zhang, Jiazhong; Wang, Wei
2016-06-01
Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.
Kern, E.; Kern, G.
2000-03-06
This report summarizes the progress made by Ascension Technology in Phase 1 of the cost reduction and manufacturing improvements of the SunSine{reg_sign} AC Module. This work, conducted under NREL subcontract, is a two-phase effort consisting of investigations into improving inverter packaging, soft switching, circuit optimization, design for manufacturing, manufacturing processes, and pilot production manufacturing. The objective of this subcontract is to significantly reduce the cost of the SunSine{reg_sign} inverter, enhance its performance, and streamline and expand the manufacturing process. During Phase 1, the soft-switching topology was designed, then refined to meet stringent cost and performance goals. This design resulted in improved performance, smaller overall footprint, and reduced costs. The aluminum inverter housing was redesigned, and the decision was made to conformal coat the circuit boards, which was verified through the HAST (Highly Accelerated Stress Testing) method. Potential international markets were identified, and the inverter is designed to be easily modified to meet the requirements of other countries. Significant cost reduction and performance improvements have been achieved in Phase I, and accomplishments during Phase I include: (1) SunSine{reg_sign} AC Module costs have been reduced enough to be able to reduce the suggested list price; (2) successful implementation of soft-switching; (3) power circuit-board size reduced 53{percent}; (4) power circuit-board component count reduced 34{percent}; (5) total inverter parts count reduced 49{percent}; (6) anticipated inverter manufacturing cost reduced 57{percent} on a $/Wp rating; (7) transformer efficiency improved 1.4{percent}; and (8) inverter efficiency improved 4.7{percent} to 91.0{percent} at 275 Wac.
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the
Razavi, M.; Mollai, M.; Khorshid, P.; Nedzelskiy, I.; Ghoranneviss, M.
2010-05-15
The modified Rogowski sine-coil (MRSC) has been designed and implemented for the plasma column horizontal displacement measurements on small IR-T1 tokamak. MRSC operation has been examined on test assembly and tokamak. Obtained results show high sensitivity to the plasma column horizontal displacement and negligible sensitivity to the vertical displacement; linearity in wide, {+-}0.1 m, range of the displacements; and excellent, 1.5%, agreement with the results of numerical solution of Biot-Savart and magnetic flux equations.
A two-scale approximation for wave-wave interactions in an operational wave model
NASA Astrophysics Data System (ADS)
Perrie, Will; Toulany, Bechara; Resio, Donald T.; Roland, Aron; Auclair, Jean-Pierre
2013-10-01
The two-scale approximation (hereafter, TSA) to the full Boltzman integral representation of quadruplet wave-wave interactions has recently been presented as a new method to estimate nonlinear transfer rates in wind waves, and has been tested for idealized spectral data, as well as for observed field measurements. TSA has been shown to perform well for wave spectra from field measurements, even for cases with directional energy shearing, compared to the Discrete Interaction Approximation (DIA), which is used in almost all operational wave forecast models. In this study, TSA is implemented in a modern operational wave model, WAVEWATCHIII®, hereafter WW3. Tests include idealized wave spectra based on field measurements, as well as additional tests for fetch-limited wave growth, and waves generated by hurricane Juan. Generally, TSA is shown to work well when its basic assumptions are met, when its first order, broad-scale term represents most of the spectrum, and its second order term is a perturbation-scale residual representing the rest of the spectrum. These conditions are easily met for test cases involving idealized JONSWAP-type spectra and in time-stepping cases when winds are spatially and temporally constant. To some extent, they also appear to be met in more demanding conditions, when storms move through their life cycles, with winds that change speed and direction, and with complex wave spectra, involving swell-windsea interactions, multiple peaks and directional shears.
Conversion of borehole Stoneley waves to channel waves in coal
Johnson, P.A.; Albright, J.N.
1987-01-01
Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.
... is called multiple pregnancy . If more than one egg is released during the menstrual cycle and each ... fraternal twins (or more). When a single fertilized egg splits, it results in multiple identical embryos. This ...
Plasma cell dyscrasia; Plasma cell myeloma; Malignant plasmacytoma; Plasmacytoma of bone; Myeloma - multiple ... Multiple myeloma most commonly causes: Low red blood cell count ( anemia ), which can lead to fatigue and ...
Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the ... attacks healthy cells in your body by mistake. Multiple sclerosis affects women more than men. It often begins ...
Standing spin waves and solitons in a quasi-one-dimensional spiral structure
Kiselev, V. V. Raskovalov, A. A.
2013-02-15
On the basis of the sine-Gordon model, we calculated the absorption spectrum for the external pump power in a quasi-one-dimensional spiral structure of easy-plane magnets without the inversion center in the presence of a static magnetic field perpendicular to the magnetic spiral axis. It is shown that these data can be used for determining the material constants of the magnet and diagnostics of spin waves and solitons in its spiral structure. The possibility of using magnetooptical methods to observe local translations of the spiral structure during formation and motion of solitons in it is discussed.
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
ERIC Educational Resources Information Center
Simanihuruk, Mudin
2011-01-01
Multiplication facts are difficult to teach. Therefore many researchers have put a great deal of effort into finding multiplication strategies. Sherin and Fuson (2005) provided a good survey paper on the multiplication strategies research area. Kolpas (2002), Rendtorff (1908), Dabell (2001), Musser (1966) and Markarian (2009) proposed the finger…
... Awards Enhancing Diversity Find People About NINDS NINDS Multiple Sclerosis Information Page Condensed from Multiple Sclerosis: Hope Through ... en Español Additional resources from MedlinePlus What is Multiple Sclerosis? An unpredictable disease of the central nervous system, ...
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
NASA Technical Reports Server (NTRS)
2007-01-01
With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.
NASA Technical Reports Server (NTRS)
Thompson, B. J.
1999-01-01
"Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.
Geist, William H.
2015-12-01
This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: ^{240}Pu_{eff} mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.
Analytic wave model of Stark deceleration dynamics
Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav
2006-06-15
Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.
NASA Astrophysics Data System (ADS)
Ismail, S.; Lin, B.; Nehrir, A. R.; Browell, E. V.; Harrison, F. W.; Dobler, J. T.; Kooi, S. A.; Obland, M. D.; Meadows, B. L.; Campbell, J. F.; CHEN, S.; Collins, J. E.; Refaat, T.; Yang, M. M.; Choi, Y.; Dijoseph, M. S.
2013-12-01
precision of CO2 column measurements. Modeling the measurement performance of LAS systems is being conducted at NASA Langley to project the performance of the airborne LAS system to the future ASCENDS system. The performance model has been validated using MFLL measurements during ground tests and aircraft flights. Laboratory experiments have been conducted to evaluate the signal-to-noise ratio (SNR) associated with digital lock-in detection in IM-CW LAS systems. These measurements and analyses are applicable to multiple simultaneous IM-CW signals with different swept frequencies and for evaluating advanced techniques for SNR improvement in future space-based CO2 LAS systems. Advanced modulation techniques are also being investigated for space applications, which include orthogonal linear and non-linear swept frequencies, time-shifted pseudo noise (PN) codes, sine wave modulated PN, and sine wave pulsed PN, to improve the accuracy of CO2 column retrievals. This presentation will give a comprehensive discussion of these recent developments and their association with the ASCENDS mission.
NASA Astrophysics Data System (ADS)
Riseborough, Peter S.; Reiter, George F.
1983-02-01
(CH3)4NMnCl3 (TMMC) is a one-dimensional easy-plane antiferromagnet which, when subjected to a transverse applied magnetic field, is a realization of a sine-Gordon field theory. Inelastic neutron scattering experiments and NMR relaxation measurements have shown that the magnetic excitation spectrum has a ω~0 central peak, which has been associated with the soliton excitations. In this paper we examine the spin-wave contributions to the excitation spectrum. We find multispin-wave excitations that contribute to the central peak. However, we find that these multispin-wave excitations are not in agreement with the experimental data, which require an additional soliton contribution to describe them. The multispin-wave excitations also give rise to inelastic excitation spectra. For most values of the applied field, the anharmonic interactions in TMMC modify the inelastic excitations so as to resemble the sine-Gordon excitations, such as breathers, etc. This resemblance ceases for special values of the applied field which produces a resonance between the inelastic two-spin-wave excitations and the zone-boundary spin wave. This purely anharmonic effect, which has been observed experimentally, is well described by our results.
NASA Astrophysics Data System (ADS)
Thobel, J. L.; Baudry, L.; Dessenne, F.; Charef, M.; Fauquembergue, R.
1993-01-01
A theoretical investigation of the impurity scattering limited mobility in quantum wells is presented. Emphasis is put on the influence of wave-function modeling, since the literature about this topic is contradictory. For an infinite square well, Dirac and sine wave functions yield the same evolutions of the mobility with temperature, carrier density, and well width. These results contradict those published by Lee [J. Appl. Phys. 54, 6995 (1983)], which are shown to be wrong. Self-consistent wave functions have also been used to compute the mobility in finite barrier height quantum wells. A strong influence of the presence of electrons inside the doped barrier has been demonstrated. It is suggested that, although simple models are useful for qualitative discussions, accurate evaluation of mobility requires a reasonably realistic description of wave functions.
Lattice Boltzmann model for generalized nonlinear wave equations
NASA Astrophysics Data System (ADS)
Lai, Huilin; Ma, Changfeng
2011-10-01
In this paper, a lattice Boltzmann model is developed to solve a class of the nonlinear wave equations. Through selecting equilibrium distribution function and an amending function properly, the governing evolution equation can be recovered correctly according to our proposed scheme, in which the Chapman-Enskog expansion is employed. We validate the algorithm on some problems where analytic solutions are available, including the second-order telegraph equation, the nonlinear Klein-Gordon equation, and the damped, driven sine-Gordon equation. It is found that the numerical results agree well with the analytic solutions, which indicates that the present algorithm is very effective and can be used to solve more general nonlinear problems.
Observation of wave packet distortion during a negative-group-velocity transmission.
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-29
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the "front" of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region.
Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
NASA Astrophysics Data System (ADS)
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the ``front'' of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region.
ERIC Educational Resources Information Center
Harries, Tony; Barmby, Patrick
2008-01-01
In this study, the authors wish to explore the use of visual representations in facilitating the understanding of multiplication. In doing so, they examine the different aspects of multiplication that they can access through different representations. In addition, they draw on a study that they have been carrying out looking at pupils' actual use…
Cheng, Chuyuan; Li, Shufa; Lai, Tianshu E-mail: jhzhao@red.semi.ac.cn; Meng, Kangkang; Zhao, Jianhua E-mail: jhzhao@red.semi.ac.cn
2013-12-02
Spin-wave dynamics in 30 nm thick Co{sub 2}Fe{sub 1−x}Mn{sub x}Al full-Heusler films is investigated using time-resolved magneto-optical polar Kerr spectroscopy under an external field perpendicular to films. Damon-Eshbach (DE) and the first-order perpendicular standing spin-wave (PSSW) modes are observed simultaneously in four samples with x = 0, 0.3, 0.7, and 1. The frequency of DE and PSSW modes does not apparently depend on composition x, but damping of DE mode significantly on x and reaches the minimum as x = 0.7. The efficient coherent excitation of DE spin wave exhibits the promising application of Co{sub 2}Fe{sub 0.3}Mn{sub 0.7}Al films in magnonic devices.
Observation of equipartition of seismic waves.
Hennino, R; Trégourès, N; Shapiro, N M; Margerin, L; Campillo, M; van Tiggelen, B A; Weaver, R L
2001-04-01
Equipartition is a first principle in wave transport, based on the tendency of multiple scattering to homogenize phase space. We report observations of this principle for seismic waves created by earthquakes in Mexico. We find qualitative agreement with an equipartition model that accounts for mode conversions at the Earth's surface.
NASA Astrophysics Data System (ADS)
Finn, L. S.
Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.
NASA Astrophysics Data System (ADS)
Lierke, E. G.
2000-07-01
A 21 kHz standing-wave amplifier at the focus of a 36 cm diameter parabolic mirror (ka=70) is used for highly directive radiation of low frequency sine waves, voice signals and even music (of poor quality). The low frequency waves are amplitude-modulated onto the ultrasonic carrier wave and radiated into a solid angle of ±1° (-3 dB). Low frequency sound waves with frequencies between 50 Hz and 3 kHz are radiated over a distance of more than 20 m. The achievable audio sound pressure levels decrease with approximately 20 dB per distance doubling and reached about 30 dB at 20 m distance. The discussion of the measurements is based on Blackstock's weak shock theory [5] and on the nonsaturated radiation pressure at saturated sound pressure levels.
The many faces of shear Alfven waves
Gekelman, W.; Vincena, S.; Van Compernolle, B.; Morales, G. J.; Maggs, J. E.; Pribyl, P.; Carter, T. A.
2011-05-15
One of the fundamental waves in magnetized plasmas is the shear Alfven wave. This wave is responsible for rearranging current systems and, in fact all low frequency currents in magnetized plasmas are shear waves. It has become apparent that Alfven waves are important in a wide variety of physical environments. Shear waves of various forms have been a topic of experimental research for more than fifteen years in the large plasma device (LAPD) at UCLA. The waves were first studied in both the kinetic and inertial regimes when excited by fluctuating currents with transverse dimension on the order of the collisionless skin depth. Theory and experiment on wave propagation in these regimes is presented, and the morphology of the wave is illustrated to be dependent on the generation mechanism. Three-dimensional currents associated with the waves have been mapped. The ion motion, which closes the current across the magnetic field, has been studied using laser induced fluorescence. The wave propagation in inhomogeneous magnetic fields and density gradients is presented as well as effects of collisions and reflections from boundaries. Reflections may result in Alfvenic field line resonances and in the right conditions maser action. The waves occur spontaneously on temperature and density gradients as hybrids with drift waves. These have been seen to affect cross-field heat and plasma transport. Although the waves are easily launched with antennas, they may also be generated by secondary processes, such as Cherenkov radiation. This is the case when intense shear Alfven waves in a background magnetoplasma are produced by an exploding laser-produced plasma. Time varying magnetic flux ropes can be considered to be low frequency shear waves. Studies of the interaction of multiple ropes and the link between magnetic field line reconnection and rope dynamics are revealed. This manuscript gives us an overview of the major results from these experiments and provides a modern
Copeland, A R
1989-09-01
A study of multiple homicides or multiple deaths involving a solitary incident of violence by another individual was performed on the case files of the Office of the Medical Examiner of Metropolitan Dade County in Miami, Florida, during 1983-1987. A total of 107 multiple homicides were studied: 88 double, 17 triple, one quadruple, and one quintuple. The 236 victims were analyzed regarding age, race, sex, cause of death, toxicologic data, perpetrator, locale of the incident, and reason for the incident. This article compares this type of slaying with other types of homicide including those perpetrated by serial killers. Suggestions for future research in this field are offered.
Herrera-Valdez, Marco Arieli; Cruz-Aponte, Maytee; Castillo-Chavez, Carlos
2011-01-01
Influenza outbreaks have been of relatively limited historical interest in Mexico. The 2009 influenza pandemic not only changed Mexico's health priorities but also brought to the forefront some of the strengths and weaknesses of Mexico's epidemiological surveillance and public health system. A year later, Mexico's data show an epidemic pattern characterized by three "waves''. The reasons this three-wave patterns are theoretically investigated via models that incorporate Mexico's general trends of land transportation, public health measures, and the regular opening and closing of schools during 2009. The role of vaccination is also studied taking into account delays in access and limitations in the total and daily numbers of vaccines available. The research in this article supports the view that the three epidemic "waves" are the result of the synergistic interactions of three factors: regional movement patterns of Mexicans, the impact and effectiveness of dramatic social distancing measures imposed during the first outbreak, and the summer release of school children followed by their subsequent return to classes in the fall. The three "waves" cannot be explained by the transportation patterns alone but only through the combination of transport patterns and changes in contact rates due to the use of explicit or scheduled social distancing measures. The research identifies possible vaccination schemes that account for the school calendar and whose effectiveness are enhanced by social distancing measures. The limited impact of the late arrival of the vaccine is also analyzed.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E
2016-03-01
We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.
2016-01-01
We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068
Supratentorial pressures. Part II: Intracerebral pulse waves.
Miller, J D; Peeler, D F; Pattisapu, J; Parent, A D
1987-09-01
Intracerebral pulse waves were recorded in cat and monkey while intracranial pressure (ICP) manipulations were performed. The intracerebral pulse waves appeared comparable to cerebrospinal fluid (CSF) pulsations. The wave forms were divided into multiple smaller waves, designated P1 to P4. The P1 component was primarily of arterial origin and was accentuated by increasing ICP unrelated to increased venous pressure, most commonly from a mass lesion. Bilateral carotid occlusion resulted in decreased amplitude of P1. Venous hypertension from jugular venous or sagittal sinus occlusion, on the other hand, accentuated waves P2 and P3 more than P1. This is consistent with a Starling resistor model of the cerebral venous system in which mass lesions may compress low-pressure veins and accentuate the arterial pressure-dependent P1 wave, whereas venous hypertension causes increased prominence of the later P2 and P3 waves. PMID:2891069
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád; Romańczukiewicz, Tomasz
2013-12-01
It is shown that in a large class of systems, plane waves act as tractor beams: i.e., an incident plane wave can exert a pulling force on the scatterer. The underlying physical mechanism for the pulling force is due to the sufficiently strong scattering of the incoming wave into another mode carrying more momentum, in which case excess momentum is created behind the scatterer. This tractor beam or negative radiation pressure (NRP) effect, is found to be generic in systems with multiple scattering channels. In a birefringent medium, electromagnetic plane waves incident on a thin plate exert NRP of the same order of magnitude as optical radiation pressure, while in artificial dielectrics (metamaterials), the magnitude of NRP can even be macroscopic. In two dimensions, we study various scattering situations on vortices, and NRP is shown to occur by the scattering of heavy baryons into light leptons off cosmic strings, and by neutron scattering off vortices in the XY model.
NASA Astrophysics Data System (ADS)
Kayen, R.; Carkin, B.; Minasian, D.
2006-12-01
Strong motion recording (SMR) networks often have little or no shear wave velocity measurements at stations where characterization of site amplification and site period effects is needed. Using the active Spectral Analysis of Surface Waves (SASW) method, and passive H/V microtremor method we have investigated nearly two hundred SMR sites in California, Alaska, Japan, Australia, China and Taiwan. We are conducting these studies, in part, to develop a new hybridized method of site characterization that utilizes a parallel array of harmonic-wave sources for active-source SASW, and a single long period seismometer for passive-source microtremor measurement. Surface wave methods excel in their ability to non-invasively and rapidly characterize the variation of ground stiffness properties with depth below the surface. These methods are lightweight, inexpensive to deploy, and time-efficient. They have been shown to produce accurate and deep soil stiffness profiles. By placing and wiring shakers in a large parallel circuit, either side-by-side on the ground or in a trailer-mounted array, a strong in-phase harmonic wave can be produced. The effect of arraying many sources in parallel is to increase the amplitude of waves received at far-away spaced seismometers at low frequencies so as to extend the longest wavelengths of the captured dispersion curve. The USGS system for profiling uses this concept by arraying between two and eight electro-mechanical harmonic-wave shakers. With large parallel arrays of vibrators, a dynamic force in excess of 1000 lb can be produced to vibrate the ground and produce surface waves. We adjust the harmonic wave through a swept-sine procedure to profile surface wave dispersion down to a frequency of 1 Hz and out to surface wave-wavelengths of 200-1000 meters, depending on the site stiffness. The parallel-array SASW procedure is augmented using H/V microtremor data collected with the active source turned off. Passive array microtremor data
NASA Astrophysics Data System (ADS)
Savel'ev, Sergey; Yampol'skii, V. A.; Rakhmanov, A. L.; Nori, Franco
2010-02-01
The recent growing interest in terahertz (THz) and sub-THz science and technology is due to its many important applications in physics, astronomy, chemistry, biology and medicine, including THz imaging, spectroscopy, tomography, medical diagnosis, health monitoring, environmental control, as well as chemical and biological identification. We review the problem of linear and nonlinear THz and sub-THz Josephson plasma waves in layered superconductors and their excitations produced by moving Josephson vortices. We start by discussing the coupled sine-Gordon equations for the gauge-invariant phase difference of the order parameter in the junctions, taking into account the effect of breaking the charge neutrality, and deriving the spectrum of Josephson plasma waves. We also review surface and waveguide Josephson plasma waves. The spectrum of these waves is presented, and their excitation is discussed. We review the propagation of weakly nonlinear Josephson plasma waves below the plasma frequency, ωJ, which is very unusual for plasma-like excitations. In close analogy to nonlinear optics, these waves exhibit numerous remarkable features, including a self-focusing effect and the pumping of weaker waves by a stronger one. In addition, an unusual stop-light phenomenon, when ∂ω/∂k ≈ 0, caused by both nonlinearity and dissipation, can be observed in the Josephson plasma waves. At frequencies above ωJ, the current-phase nonlinearity can be used for transforming continuous sub-THz radiation into short, strongly amplified, pulses. We also present quantum effects in layered superconductors, specifically, the problem of quantum tunneling of fluxons through stacks of Josephson junctions. Moreover, the nonlocal sine-Gordon equation for Josephson vortices is reviewed. We discuss the Cherenkov and transition radiations of the Josephson plasma waves produced by moving Josephson vortices, either in a single Josephson junction or in layered superconductors. Furthermore, the
Guided wave damage detection with PZT-FBG sensing
NASA Astrophysics Data System (ADS)
Sun, Xiaoyi; Tian, Zhenhua; Lin, Bin; Yu, Lingyu
2016-04-01
This paper presents guided waves based damage detection by using a hybrid PZT actuator and optic fiber Bragg grating (FBG) sensors. In the hybrid sensing, a piezoelectric wafer (PZT) is used to generate incident guided waves based on the piezoelectric principle. Meanwhile, multiple fiber Bragg grating sensors (FBG) are adopted as receivers to measure the high-frequency small-strain guided waves base on the full width half maximum (FWHM) principle. If the inspected structure has damage such as hole, crack and notch, the incident guided waves will be reflected or scattered by the damage. Through multiple FBG sensors at different locations, the damage induced waves can be acquired and further processed for damage detection. In this research, two configurations are explored, the rosette and line arrangements of multiple sensors. The sensing and wave source localization on aluminum plate are demonstrated. The results show that wave source can be successfully detected by using both the FBG rosette and the FBG array.
Stochastic synchronization of neural activity waves.
Kilpatrick, Zachary P
2015-04-01
We demonstrate that waves in distinct layers of a neuronal network can become phase locked by common spatiotemporal noise. This phenomenon is studied for stationary bumps, traveling waves, and breathers. A weak noise expansion is used to derive an effective equation for the position of the wave in each layer, yielding a stochastic differential equation with multiplicative noise. Stability of the synchronous state is characterized by a Lyapunov exponent, which we can compute analytically from the reduced system. Our results extend previous work on limit-cycle oscillators, showing common noise can synchronize waves in a broad class of models.
Ignatovich, V. K.
2009-01-15
It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.
Relativistic spherical plasma waves
NASA Astrophysics Data System (ADS)
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
NASA Astrophysics Data System (ADS)
Newell, Alan C.; Rumpf, Benno
2011-01-01
In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1985-01-01
Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.
Simulation of the nonlinear evolution of electron plasma waves
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Cairns, I. H.
1991-01-01
Electrostatic waves driven by an electron beam in an ambient magnetized plasma were studied using a quasi-1D PIC simulation of electron plasma waves (i.e., Langmuir waves). The results disclose the presence of a process for moving wave energy from frequencies and wavenumbers predicted by linear theory to the Langmuir-like frequencies during saturation of the instability. A decay process for producing backward propagating Langmuir-like waves, along with low-frequency waves, is observed. The simulation results, however, indicate that the backscattering process is not the conventional Langmuir wave decay. Electrostatic waves near multiples of the electron plasma frequency are generated by wave-wave coupling during the nonlinear stage of the simulations, confirming the suggestion of Klimas (1983).
ERIC Educational Resources Information Center
Plummer, Nancy; Michael, Nancy, Ed.
This module on multiple sclerosis is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…
Diffraction of acoustic-gravity waves in the presence of a turning point.
Godin, Oleg A
2016-07-01
Acoustic-gravity waves (AGWs) in an inhomogeneous atmosphere often have caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Unlike acoustic waves and gravity waves in incompressible fluids, AGW fields in the vicinity of a caustic have never been systematically studied. Here, asymptotic expansions of acoustic gravity waves are derived in the presence of a turning point in a horizontally stratified, moving fluid such as the atmosphere. Sound speed and the background flow (wind) velocity are assumed to vary gradually with height, and slowness of these variations determines the large parameter of the problem. It is found that uniform asymptotic expansions of the wave field in the presence of a turning point can be expressed in terms of the Airy function and its derivative. The geometrical, or Berry, phase, which arises in the consistent Wentzel-Kramers-Brillouin approximation for AGWs, plays an important role in the caustic asymptotics. In the dominant term of the uniform asymptotic solution, the terms with the Airy function and its derivative are weighted by the cosine and sine of the Berry phase, respectively. The physical meaning and corollaries of the asymptotic solutions are discussed. PMID:27475153
Diffraction of acoustic-gravity waves in the presence of a turning point.
Godin, Oleg A
2016-07-01
Acoustic-gravity waves (AGWs) in an inhomogeneous atmosphere often have caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Unlike acoustic waves and gravity waves in incompressible fluids, AGW fields in the vicinity of a caustic have never been systematically studied. Here, asymptotic expansions of acoustic gravity waves are derived in the presence of a turning point in a horizontally stratified, moving fluid such as the atmosphere. Sound speed and the background flow (wind) velocity are assumed to vary gradually with height, and slowness of these variations determines the large parameter of the problem. It is found that uniform asymptotic expansions of the wave field in the presence of a turning point can be expressed in terms of the Airy function and its derivative. The geometrical, or Berry, phase, which arises in the consistent Wentzel-Kramers-Brillouin approximation for AGWs, plays an important role in the caustic asymptotics. In the dominant term of the uniform asymptotic solution, the terms with the Airy function and its derivative are weighted by the cosine and sine of the Berry phase, respectively. The physical meaning and corollaries of the asymptotic solutions are discussed.
2006-01-01
Introduction Multiple myeloma is the most common primary cancer of the bones in adults, representing about 1% of all cancers diagnosed in the US in 2004, and 14% of all haematological malignancies. In the UK, multiple myeloma accounts for 1% of all new cases of cancer diagnosed each year. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of treatment in people with asymptomatic early stage multiple myeloma (stage I)? What are the effects of first-line treatments in people with advanced stage multiple myeloma (stages II and III)? What are the effect of salvage treatments, or supportive therapy, in people with advanced stage multiple myeloma (stages II and III)? We searched: Medline, Embase, The Cochrane Library and other important databases up to November 2004 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 71 systematic reviews, RCTs, or observational studies that met our inclusion criteria. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: allogenic transplant (non-myeloablative), autologous stem cell transplant (early or late transplantation, double or single, purging of), bisphosphonates, bone marrow stem cells, bortezomib, chemotherapy (combination, conventional dose, intermediate dose plus stem cell rescue, high-dose plus stem cell rescue), combination chemotherapy plus corticosteroids, deferred treatment (in stage I disease), early chemotherapy plus corticosteroids (in stage I disease), epoetin alpha, first-line treatments, infection prophylaxis, interferon, maintenance therapy (in advanced multiple myeloma), melphalan (normal dose
Bragg Reflection of Ocean Waves from Sandbars
NASA Astrophysics Data System (ADS)
Elgar, S.; Raubenheimer, B.; Herbers, T. H.
2002-12-01
Resonant Bragg reflection of surface waves from a field of roughly shore-parallel sandbars was observed in Cape Cod Bay near Truro, MA during low energy wave conditions and during a storm. Although the Bragg resonance mechanism for wave reflection has been demonstrated convincingly in the laboratory, the corresponding impact of natural sandbars on ocean waves is not known. Multiple shore-parallel sandbars frequently are found in bays and gulfs, but observations of associated wave reflection have not been reported. Here, we present the first observations of resonant Bragg reflection of ocean surface waves by a natural field of sandbars. The waves were reflected both from the bars and from the steep beach shoreward of the bars, causing complicated interference patterns of seaward and shoreward propagating waves. The observed cross-shore variations in the onshore- and offshore-directed energy fluxes are consistent with theory (Yu and Mei JFM 2000) for resonant Bragg reflection, including a 20% decay of the incident wave energy flux that is an order of magnitude greater than expected for wave-orbital velocity induced bottom friction. When offshore wave heights were small (less than 0.25 m) there was no wave breaking across the sandbars, and the near-bottom velocities associated with the Bragg reflecting waves likely were too small to cause significant sediment transport. However, sediment mobilized during storms may be transported by velocity convergences and divergences associated with nodes and antinodes of the reflecting Bragg waves, possibly resulting in growth of the sandbars. Funding was provided by the Mellon Foundation, ONR, and NSF.
Michel, D; Chatelain, G; Mauduit, C; Benahmed, M; Brun, G
1997-01-01
Contrary to the membrane-anchored leukemia inhibitory factor receptor (LIFR), the mouse soluble LIFR is an inhibitor of LIF action, possibly through a ligand titration effect. Two mRNA species encoding the soluble LIFR have been identified. Since the 3'-untranslated end of the shorter form was shown to contain a B2 element, we have examined the possibility that this SINE may be responsible for LIFR mRNA truncation. Transient expression assays, using B2-derived or intron-derived sequences independently or in conjunction, show that the B2 element has fortuitously unmasked a cryptic pre-mRNA 3'processing activity of silent intron sequences. The corresponding locus of the rat genome has been isolated and was shown to be devoid of any retroposon, which may explain why no soluble LIFR has yet been identified in any other species and further indicates that the B2 insertion event in the mouse LIFR gene has occurred recently during evolution. And yet, a tight tissue-specific regulation of alternative synthesis of soluble and membrane-bound LIFR mRNA has already emerged in mice. These results provide striking evidence for the rapid influence of retroposition on genome expression. PMID:9241235
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli
2015-12-01
A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Takeda, N.; Okabe, Y.; Kuwahara, J.; Kojima, S.
2005-05-01
The authors are constructing a damage detection system using ultrasonic waves. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by a fiber Bragg grating (FBG) sensor attached on the laminate using a newly developed high-speed optical wavelength interrogation system. At first, the optimal gauge length of the FBG to detect ultrasonic waves was investigated through theoretical simulations and experiments. Then, the directional sensitivity of the FBG to ultrasonic waves was evaluated experimentally. On the basis of the above results, the 1mm FBG sensors were applied to the detection of Lamb waves propagated in carbon fiber reinforced plastic (CFRP) cross-ply laminates. The piezo-actuator was put on the laminate about 50mm away from the FBG sensor glued on the laminate, and three-cycle sine waves of 300kHz were excited repeatedly. The waveforms obtained by the FBG showed that S0 and A0 modes could be detected appropriately. Then, artificial delamination was made in the laminate by removing of a Teflon sheet embedded in the 0/90 interface after the manufacturing. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element method. Furthermore, since the amplitude and the velocity of the new mode increased with an increase in the delamination length, this system has a potential to evaluate the interlaminar delamination length quantitatively.
MHD simple waves and the divergence wave
Webb, G. M.; Pogorelov, N. V.; Zank, G. P.
2010-03-25
In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.
Head waves, diving waves, and interface waves at the seafloor
NASA Astrophysics Data System (ADS)
Stephen, Ralph A.
2005-09-01
Brekhovskikh (1960) summarizes the system of waves that arises from reflection and refraction of spherical waves at the interface between homogeneous solid half-spaces. By eliminating the shear wave potential in one half-space, the system for fluid-solid half-spaces like the seafloor is obtained. There are two cases: one where the shear speed in the bottom is less than the compressional speed in the fluid (soft sediments), and the other where the shear speed in the bottom is greater than the compressional speed in the fluid (hard volcanic basement). This model is the basis for defining interface phenomena such as evanescent waves, head waves, pseudo-Rayleigh waves, and Stoneley/Scholte waves. If a positive gradient is introduced into the compressional and shear sound speeds in the bottom, one obtains diving waves and interference head waves (Cerveny and Ravindra, 1971). There are two types of interface waves: pseudo-Rayleigh waves that are evanescent in the bottom but propagate in the water, and Stoneley/Scholte waves that are evanescent in both media. In multi-interface models there are of course normal modes. In actual seafloors, low speed layers, sound and shear speed gradients, and interface and volume lateral heterogeneities affect the characteristics of propagation and scattering. [Work supported by ONR.
Tracy, Eugene R
2009-09-21
wave -- supported by a majority-ion species such as deuterium -- crosses the resonance layer associated with a minority species, such as hydrogen. By using wave packets instead of harmonic solutions, it becomes easy to see the evolution in k-space of the minority-ion disturbance, and the time delay for emission of the reflected fast-wave packet. Iterated conversion in a cavity. When mode conversion occurs in a cavity where rays are trapped, multiple conversions will occur and the resulting absorption profile will typically have a complicated spatial dependence due to overlapping interference patterns. The goal of this work is to develop fast and efficient ray-based methods for computing the cavity response to external driving, and to compute the spatial absorption profile. We have introduced a new approach that allows us to visualize in great detail the underlying iterated ray geometry, and should lead to simpler methods for identifying parameter values where global changes occur in the qualitative response (e.g. global bifurcations).
2013-01-01
Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system. Common manifestations include paresthesias, diplopia, loss of vision, numbness or weakness of the limbs, bowel or bladder dysfunction, spasticity, ataxia, fatigue, and mental changes. Four main patterns of MS are recognized: relapsing remitting, primary progressive, secondary progressive, and progressive relapsing. The cause of MS is unknown, although it appears to be an autoimmune disease. Much of what is known about MS has been learned from an animal model of the disease, experimental allergic encephalomyelitis. PMID:24381825
Schiess, Nicoline; Calabresi, Peter A
2016-08-01
It is estimated that there are 300,000 people with multiple sclerosis (MS) in the United States and 2.3 million worldwide. Each MS attack can affect function in cognitive, emotional, motoric, sensory, or visual domains. Patients are often struck in the prime of their lives as they attempt to move forward with career, and family. Since the previous 2010 Seminars in Neurology Pearls and Pitfalls issue, the world of MS has drastically changed and advanced. Here the authors address the ever-changing MS world in both treatment options and diagnostics, covering easily missed differential diagnoses, newly available immunomodulatory therapy, and the challenges of safely treating patients. PMID:27643903
Rajkumar, S. Vincent
2008-01-01
Multiple myeloma is a clonal plasma cell malignancy that accounts for slightly more than 10% of all hematologic cancers. In this paper, we present a historically focused review of the disease, from the description of the first case in 1844 to the present. The evolution of drug therapy and stem-cell transplantation for the treatment of myeloma, as well as the development of new agents, is discussed. We also provide an update on current concepts of diagnosis and therapy, with an emphasis on how treatments have emerged from a historical perspective after certain important discoveries and the results of experimental studies. PMID:18332230
ERIC Educational Resources Information Center
Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.
2007-01-01
Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…
Propagation of gravity waves across the tropopause
NASA Astrophysics Data System (ADS)
Bense, Vera; Spichtinger, Peter
2015-04-01
The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause
Abe, Masahiro; Miki, Hirokazu; Nakamura, Shingen
2016-03-01
Owing to the positive clinical benefits obtained with new agents, complete remission (CR) can be used as a surrogate for overall survival, and should be achieved. Although multiple myeloma is a heterogeneous disease in terms of myeloma cell- and patient-related risk factors, patients should receive the most effective combination therapy based on proteasome inhibitors and/or immunomodulatory drugs (IMiDs) as backbone medication irrespective of the risks encountered in the setting of induction therapy ("one-size-fits-all" therapy), followed by consolidation/maintenance therapy to achieve CR with the ultimate goal of extended survival. Myeloma-defining biomarkers have been established to identify high-risk smoldering myeloma requiring treatment. The development of salvage treatments yielding better outcomes for relapsed/refractory myeloma is urgently needed. Upcoming novel molecular targeting agents with different modes of action and immunotherapeutic agents will be integrated into myeloma treatment regimens with a great therapeutic impact, and further evolution of the treatment paradigm for multiple myeloma is eagerly anticipated. PMID:27076236
Peralta, J.; López-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.
2014-07-01
This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.
Statistical Analysis of Bursty Langmuir Waves and Coincident VLF Waves in the Cusp
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; Labelle, J. W.; Rowland, D. E.; Pfaff, R. F.; Kletzing, C.
2012-12-01
Satellite and rocket experiments in the cusp ionosphere have measured Langmuir wave bursts of duration 10's to 100's of ms. The waves show a complex frequency structure with multiple peaks separated by <1 to >50 kHz. This structure has been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation producing a beat pattern between waves with ~10 kHz frequency differences. The multiple normal-mode waves could be generated either through wave-wave interactions involving VLF waves, or could be excited independently through linear instability. The Twin Rockets to Investigate Cusp Electrodynamics (TRICE) high-flyer was launched 10 Dec 2007 at 0900 from the Andoya Rocket Range, Norway, reaching an apogee of 1145 km. The payload included an ensemble of electric-field wave instruments. Dartmouth College supplied an HF receiver with double probes parallel to B_0, separated by 0.3 m, and the NASA GSFC supplied a VLF receiver with double probes perpendicular to B_0, separated by 3 m. The TRICE high-flyer encountered regions of strong Langmuir wave activity throughout the flight, including ~1,000 discrete Langmuir wave bursts [LaBelle et al., 2010]. Close analysis of a 10-second interval showed no correlation between bursty Langmuir waves and VLF emissions; however, analysis of the full flight shows some periods of correlation. We examine a longer interval of TRICE-HIGH data to address the questions: What fraction of the approximately 1000 Langmuir bursts are accompanied by VLF wave power? For those that are, what fraction have coincident VLF waves with peak frequencies corresponding to normal-mode frequency differences in the Langmuir wave spectrum? This study will help distinguish between the theories of Langmuir modulation. A high degree of correlation favors the three-wave hypothesis, whereas a low degree of correlation favors the independent linear excitation of the Langmuir modes. Reference LaBelle, J., I. H