Sample records for multiple solvent crystal

  1. Multiple solvent crystal structures of ribonuclease A: An assessment of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechene, Michelle; Wink, Glenna; Smith, Mychal

    2010-11-12

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) andmore » with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.« less

  2. Direct observation of two-step crystallization in nanoparticle superlattice formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the additionmore » of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.« less

  3. Preparation and characterization of superfine ammonium perchlorate (AP) crystals through ceramic membrane anti-solvent crystallization

    NASA Astrophysics Data System (ADS)

    Ma, Zhenye; Li, Cheng; Wu, Rujun; Chen, Rizhi; Gu, Zhenggui

    2009-10-01

    In this paper, a novel ceramic membrane anti-solvent crystallization (CMASC) method was proposed for the safe and rapid preparation ammonium perchlorate (AP) crystals, in which the acetone and ethyl acetate were chosen as solvent and anti-solvent, respectively. Comparing with the conventional liquid anti-solvent crystallization (LASC), CMASC which successfully introduces ceramic membrane with regular pore structure to the LASC as feeding medium, is favorable to control the rate of feeding rate and, therefore, to obtain size and morphology controllable AP. Several kinds of micro-sized AP particles with different morphology were obtained including polyhedral-like, quadrate-like to rod-like. The effect of processing parameters on the crystal size and shape of AP crystals such as volume ratio of anti-solvent to solvent, feeding pressure and crystallization temperature were investigated. It is found that higher volume ratio of anti-solvent to solvent, higher feeding pressure and higher temperature result in smaller particle size. Scaning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the resulting AP crystals. The nucleation and growth kinetic of the resulting AP crystals were also discussed.

  4. The solvent component of macromolecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less

  5. Growth, crystalline perfection, spectral and optical characterization of a novel optical material: l-tryptophan p-nitrophenol trisolvate single crystal.

    PubMed

    Sivakumar, N; Srividya, J; Mohana, J; Anbalagan, G

    2015-03-15

    l-tryptophan p-nitrophenol trisolvate (LTPN), an organic nonlinear optical material was synthesized using ethanol-water mixed solvent and the crystals were grown by a slow solvent evaporation method. The crystal structure and morphology were studied by single crystal X-ray diffraction analysis. The crystalline perfection of the LTPN crystal was analyzed by high-resolution X-ray diffraction study. The molecular structure of the crystal was confirmed by observing the various characteristic functional groups of the material using vibrational spectroscopy. The cut-off wavelength, optical transmission, refractive index and band gap energy were determined using UV-visible data. The variation of refractive index with wavelength shows the normal behavior. The second harmonic generation of the crystal was confirmed and the efficiency was measured using Kurtz Perry powder method. Single and multiple shot methods were employed to measure surface laser damage of the crystal. The photoluminescence spectral study revealed that the emission may be associated with the radiative recombination of trapped electrons and holes. Microhardness measurements revealed that LTPN belongs to a soft material category. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, T.; Ohmori, M.; Ramananarivo, M. F.

    2015-12-01

    The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  7. Crystal morphology optimization of thiamine hydrochloride in solvent system: Experimental and molecular dynamics simulation studies

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Han, Dandan; Du, Shichao; Wu, Songgu; Gong, Junbo

    2018-01-01

    Thiamine hydrochloride (THCL) was produced in methanol accompanied with agglomeration in industry, the plate like morphology of THCL in methanol was not deserve to have a good quality. Selecting a suitable solvent should be considered because solvent could be one of the essential factors to impact morphology. Methanol and methanol/ethyl acetate solvent (0.2 vol fraction of methanol) was selected as the solvent system in reactive crystallization of THCL. The experiment results show the THCL crystal morphology in methanol/ethyl acetate solvent system was granular and more regular than that in methanol. In order to explicate the different crystal morphology in different solvents, molecular dynamics (MD) simulation was introduced to simulate crystal morphology in different solvents. The attachment energy (AE) model was employed to investigate the morphology of THCL under vacuum conditions, methanol and methanol/ethyl acetate solvent conditions, respectively. The simulation crystal morphology was in a good agreement with that of experimented. The particle of THCL in methanol/ethyl acetate solvent has less tendency to agglomeration, and then it is favorable to the downstream process, such as filtration, storage and transportation.

  8. Face-Dependent Solvent Adsorption: A Comparative Study on the Interfaces of HMX Crystal with Three Solvents.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Ma, Yiding; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2017-07-27

    To understand the crystal-solvent interfacial interactions on the molecular scale, the interfaces between three solvents, that is, acetone, γ-butyrolactone, and cyclohexanone, and three growth faces of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) crystal have been investigated with the aid of theoretical chemistry. The results show that the structural features of crystal faces play a critical role in the energetic, structural, and dynamic properties at the interfaces. For each solvent, the same change trend of some properties among the three faces of HMX crystal is observed, including adsorption affinity, local mass density, and solvent diffusion. For example, the rate of solvent diffusion at the three faces ranks as (011) > (110) > (020) regardless of solvent species. This can be attributed to the similar adsorption sites for solvent incorporation at the same face, which are concentrated at the cavities formed by surficial HMX molecules.

  9. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  10. Fabrication and characterization of poly(L-lactic acid) gels induced by fibrous complex crystallization with solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Yasuhiro; Fukatsu, Akinobu; Wang, Yangyang

    2014-01-01

    Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLLA gels were produced in solvents that induced complex crystals ( -crystals) with PLLA. Fibrous structure of PLLA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLLA in the DMF gel changed from -crystal to a-crystal, the major crystal form in common untreated PLLA films, but the morphology and high elastic modulus of the gel remainedmore » until the a-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLLA gels to be prepared in other useful solvents that do not induce -crystals without losing the morphology and mechanical properties.« less

  11. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    NASA Astrophysics Data System (ADS)

    He, Linghao; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Fu, Jianwei

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO2) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid "shish-kebab" (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  12. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  13. Discovery of black dye crystal structure polymorphs: Implications for dye conformational variation in dye-sensitized solar cells

    DOE PAGES

    Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun

    2015-11-24

    Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less

  14. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  15. A New Method to Grow SiC: Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali

    2012-01-01

    The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.

  16. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs

    NASA Astrophysics Data System (ADS)

    Parambil, Jose V.; Poornachary, Sendhil K.; Tan, Reginald B. H.; Heng, Jerry Y. Y.

    2017-07-01

    Studies on the use of template surfaces to induce heterogeneous crystal nucleation have gained momentum in recent years-with potential applications in selective crystallisation of polymorphs and in the generation of seed crystals in a continuous crystallisation process. In developing a template-assisted solution crystallisation process, the kinetics of homogeneous versus heterogeneous crystal nucleation could be influenced by solute-solvent, solute-template, and solvent-template interactions. In this study, we report the effect of solvents of varying polarity on the nucleation of carbamazepine (CBZ) crystal polymorphs, a model active pharmaceutical ingredient. The experimental results demonstrate that functionalised template surfaces are effective in promoting crystallisation of either the metastable (form II) or stable (form III) polymorphs of CBZ only in moderately (methanol, ethanol, isopropanol) and low polar (toluene) solvents. A solvent with high polarity (acetonitrile) is thought to mask the template effect on heterogeneous nucleation due to strong solute-solvent and solvent-template interactions. The current study highlights that a quality-by-design (QbD) approach-considering the synergistic effects of solute concentration, solvent type, solution temperature, and template surface chemistry on crystal nucleation-is critical to the development of a template-induced crystallisation process.

  17. Role of Solvents in Improvement of Dissolution Rate of Drugs: Crystal Habit and Crystal Agglomeration

    PubMed Central

    Maghsoodi, Maryam

    2015-01-01

    Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214

  18. Measuring Solvent Content of Macromolecular Crystals Using Fluorescence Recovery after Photobleaching

    NASA Astrophysics Data System (ADS)

    Siewny, Matthew; Kmetko, Jan

    2010-10-01

    We work out a novel protocol for measuring the solvent content (the fraction of crystal volume occupied by solvent) in biological crystals by the technique of fluorescence recovery after photobleaching (FRAP). Crystals of proteins with widely varying known solvent content (lysozyme, thaumatin, catalase, and ferritin) were grown in their native solution doped with sodium fluorescein dye and hydroxylamine (to prevent dye from binding to amine groups of the proteins.) The crystals were irradiated by a broadband, high intensity light through knife slits, leaving a rectangular area of bleached dye within the crystals. Measuring the flow of dye out of the bleached area allowed us to construct a curve relating the diffusion coefficient of dye to the channel size within the crystals, by solving the diffusion equation analytically. This curve may be used to measure the solvent content of any biological crystal in its native solution and help determine the number of proteins in the crystallographic asymmetric unit cell in x-ray structure solving procedures.

  19. Effect of solvents on the bulk growth of 4-aminobenzophenone single crystals: A potential material for blue and green lasers

    NASA Astrophysics Data System (ADS)

    Natarajan, V.; Usharani, S.; Arivanandhan, M.; Anandan, P.; Hayakawa, Y.

    2015-06-01

    Although 4-aminobenzophenone (4-ABP) is the best derivative of benzophenone with 260 times higher second harmonic generation (SHG) efficiency than potassium dihydrogen phosphate (KDP), growth of high quality bulk crystal still remains a difficult task. In the present work, the effect of solvents on solubility and growth aspects of 4-ABP was investigated to grow inclusion free 4-ABP crystals. The growth processes were discussed based on solute-solvent interaction in two different growth media of ethyl acetate and ethanol. The growth rate and thereby solvent inclusions are relatively higher in ethyl acetate grown crystal than the crystal grown from ethanol. The structural, thermal and optical properties of 4-ABP crystals were studied. The enthalpy of 4-ABP melting process was estimated from differential thermal analysis. The optical transmission study shows that 4-ABP crystals grown from ethanol has high transparency compared to ethyl acetate grown sample due to solvent inclusion in the later crystal.

  20. A mixed solvent system for preparation of spherically agglomerated crystals of ascorbic acid.

    PubMed

    Ren, Fuzheng; Zhou, Yaru; Liu, Yan; Fu, Jinping; Jing, Qiufang; Ren, Guobin

    2017-09-01

    The objective of this research was to develop a novel solvent system to prepare spherically agglomerated crystals (SAC) of ascorbic acid with improved flowability for direct compression. A spherical agglomeration method was developed by selecting the mixed solvents (n-butyl and ethyl acetate) as a poor solvent and the process was further optimized by using triangular phase diagram and particle vision measurement. Physiochemical properties of SAC were characterized and compared with original drug crystals. It showed that amount of poor solvent, ratio of solvent mixture, and drug concentration are critical for preparation of SAC with desirable properties. The solid state of SAC was same as original crystals according to DSC, XRD, and FT-IR results. There was no significant difference in solubility and dissolution rate of drug between SAC and original crystals. The flowability and packability of SAC as well as the tensile strength and elastic recovery of tablets made from SAC were all significantly improved when compared with original crystals and tablets from crystals. It is concluded that the present method was suitable to prepare SAC of ascorbic acid for direct compression.

  1. Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study.

    PubMed

    Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Ma, Yiding; Kang, Ying; Ge, Zhongxue

    2017-06-01

    Molecular dynamics simulations have been performed to understand the adsorption behavior of acetone (AC) solvent at the three surfaces of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctan (HMX) crystal, i.e. (011), (110), and (020) faces. The simulation results show that the structural features and electrostatic potentials of crystal faces are determined by the HMX molecular packing, inducing distinct mass density distribution, dipole orientation, and diffusion of solvent molecules in the interfacial regions. The solvent adsorption is mainly governed by the van der Waals forces, and the crystal-solvent interaction energies among three systems are ranked as (020)≈(110)>(011). The adsorption sites for solvent incorporation at the crystal surface were found and visualized with the aid of occupancy analysis. A uniform arrangement of adsorption sites is observed at the rough (020) surface as a result of ordered adsorption motif. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX.

    PubMed

    Duan, Xiaohui; Wei, Chunxue; Liu, Yonggang; Pei, Chonghua

    2010-02-15

    The solvent has a large effect on the crystal morphology of the organic explosive compound octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, C(4)H(8)N(8)O(8)). The attachment energy calculations predict a growth morphology in vacuum dominated by (020), (011), (102 ), (111 ) and (100) crystal forms. Molecular dynamics simulations are performed for these crystal faces of HMX in contact with acetone solvent. A corrected attachment energy model, accounting for the surface chemistry and the associated topography (step structure) of the habit crystal plane, is applied to predict the morphological importance of a crystal surface in solvent. From the solvent-effected attachment energy calculations it follows that the (100) face becomes morphologically more important compared with that in vacuum, while the (020) and (102 ) are not visible at all. This agrees well with the observed experimental HMX morphology grown from the acetone solution.

  3. Structural analysis of benzothienobenzothiophene-based soluble organic semiconducting crystals grown by liquid crystal solvent

    NASA Astrophysics Data System (ADS)

    Shibata, Yosei; Matsuzaki, Tomoya; Ishinabe, Takahiro; Fujikake, Hideo

    2018-06-01

    In this study, we analyzed organic semiconducting single crystals composed of benzothienobenzothiophene derivatives (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, C8-BTBT) grown by nematic-phase liquid crystal (LC) solvent. As a result, we clarified that the crystal b-axis direction of the C8-BTBT single crystals was consistent with the LC alignment direction. By optical evaluation and simulation based on density functional theory, we found that the C8-BTBT single crystals in LC solvent exhibited a novel molecular conformation having alkyl chains oriented toward the b-axis.

  4. Solubility behavior of lamivudine crystal forms in recrystallization solvents.

    PubMed

    Jozwiakowski, M J; Nguyen, N A; Sisco, J M; Spancake, C W

    1996-02-01

    Lamivudine can be obtained as acicular crystals (form I, 0.2 hydrate) from water or methanol and as bipyramidal crystals (form II, nonsolvated) from many nonaqueous solvents. Form II is thermodynamically favored in the solid state (higher melting point and greater density than form I) at ambient relative humidities. Solubility measurements on both forms versus solvent and temperature was used to determine whether entropy or enthalpy was the driving force for solubility. Solution calorimetry data indicated that form I is favored (less soluble) in all solvents studied on the basis of enthalpy alone. In higher alcohols and other organic solvents, form I has a larger entropy of solution than form II, which compensates for the enthalpic factors and results in physical stability for form II in these systems. The metastable crystal form solubility at 25 degrees C was estimated to be 1.2-2.3 times as high as the equilibrium solubility of the stable form, depending on the temperature, solvent, and crystal form. Binary solvent studies showed that > 18-20% water must be present in ethanol to convert the excess solid to form I at equilibrium.

  5. Control of solvent evaporation in hen egg white lysozyme crystallization

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Suddath, F. L.

    1992-01-01

    An investigation of the role of solvent evaporation in tetragonal lysozyme crystallization was preformed with a device that employs N2(g) to control the evaporation of solvent from a micro-volume crystallization hanging drop. The number of crystals was found to vary with the rate at which the final supersaturation level was achieved. It was found that the more rapid the approach to supersaturation the larger the number of crystals. Accordingly, the crystals reached a smaller terminal size. Elongation of the (110) face parallel to the four-fold axis was observed with the slower evaporation rates.

  6. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    PubMed

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  7. Ultratight crystal packing of a 10 kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trillo-Muyo, Sergio; Jasilionis, Andrius; Domagalski, Marcin J.

    2013-03-01

    The crystal structure of the C-terminal domain of a putative U32 peptidase from G. thermoleovorans is reported; it is one of the most tightly packed protein structures reported to date. While small organic molecules generally crystallize forming tightly packed lattices with little solvent content, proteins form air-sensitive high-solvent-content crystals. Here, the crystallization and full structure analysis of a novel recombinant 10 kDa protein corresponding to the C-terminal domain of a putative U32 peptidase are reported. The orthorhombic crystal contained only 24.5% solvent and is therefore among the most tightly packed protein lattices ever reported.

  8. Antisolvent membrane crystallization of pharmaceutical compounds.

    PubMed

    Di Profio, Gianluca; Stabile, Carmen; Caridi, Antonella; Curcio, Efrem; Drioli, Enrico

    2009-12-01

    This article describes a modification of the conventional membrane crystallization technique in which a membrane is used to dose the solvent/antisolvent composition to generate supersaturation and induce crystallization in a drug solution. Two operative configurations are proposed: (a) solvent/antisolvent demixing crystallization, where the solvent is removed in at higher flow rate than the antisolvent so that phase inversion promotes supersaturation and (b) antisolvent addition, in which the antisolvent is dosed into the crystallizing drug solution. In both cases, solvent/antisolvent migration occurs in vapor phase and it is controlled by the porous membrane structure, acting on the operative process parameters. This mechanism is different than that observed when forcing the liquid phases through the pores and the more finely controllable supersaturated environment would generate crystals with the desired characteristics. Two organic molecules of relevant industrial implication, like paracetamol and glycine, were used to test the new systems. Experiments demonstrated that, by using antisolvent membrane crystallization in both configurations, accurate control of solution composition at the crystallization point has been achieved with effects on crystals morphology. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  9. Modification of the crystal habit of celecoxib for improved processability.

    PubMed

    Banga, Sheere; Chawla, Garima; Varandani, Deepak; Mehta, B R; Bansal, Arvind K

    2007-01-01

    Crystallization is often used in the pharmaceutical industry for purification and isolation of drugs, and also as a means of generating polymorphs or isomorphs. The aim of this study was to investigate the role of extrinsic crystallization parameters on the crystallized product, with special emphasis on improving the mechanical properties of acicular celecoxib. Celecoxib isomorphs were prepared using different techniques (solvent crystallization and vapour diffusion) and crystallization conditions (solvents, stirring, degree of supersaturation, crystallization temperature and seeding). Powder X-ray diffractometry, spectroscopic and thermal methods were used to investigate physical characteristics of crystals. Growth kinetics and aggregation dynamics of crystallization in polar and non-polar solvents were simulated using a dynamic light scattering method. The quick appearance of broad peaks over the range of 10-8000 nm in chloroform during crystallization simulation studies indicated faster aggregation in non-polar solvents. Aspect ratio, flow, compressibility and surface area of recrystallized products were also determined. Surface topography was determined by atomic force microscopy and the lath-shaped crystals (aspect ratio of 2-4) exhibited a roughness index of 1.79 in comparison with 2.92 for needles. Overall, the lath-shaped isomorphs exhibited improved flow and better compressibility.

  10. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  11. Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes . I. Solvent effects and growth morphology

    NASA Astrophysics Data System (ADS)

    Wang, W. S.; Aggarwal, M. D.; Choi, J.; Gebre, T.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.

    1999-03-01

    Single crystals of a new promising nonlinear optical material for the tunable UV harmonic generation, L-pyroglutamic acid 60×20×20 mm 3 in size were obtained from aqueous solution by using the temperature-lowering method. Solubility of L-pyroglutamic acid in different solvents was measured. The single crystals showed different morphological characteristics and growth rate in different solvents with different crystallographic orientations. Methanol or ethanol solutions yielded needle-like crystals. In mixed solution such as methanol/H 2O or ethanol/ H 2O plate-like crystals with a thickness in the direction [0 1 0] were observed. The water as a good solvent, however, produced long prism-like crystals. The two polymorphs of L-pyroglutamic acid (α and β phases) were found for the first time. The growth shapes of α-phase is mainly a prism and β phases is a rhombic plate.The growth rate of α and β phases is mainly a function of the supersaturation of the L-pyroglutamic acid in solution.

  12. Crystal structure and habit of dirithromycin acetone solvate: A combined experimental and simulative study

    NASA Astrophysics Data System (ADS)

    Yi, Qinhua; Chen, Jianfeng; Le, Yuan; Wang, Jiexin; Xue, Chunyu; Zhao, Hong

    2013-06-01

    Dirithromycin (DIR) was crystallized from acetone solvent in the form of an acetone solvate. Its crystal structure belongs to monoclinic, space group P21, with the unit cell parameters a=14.688(3) Å, b=11.6120(12) Å, c=14.9129(12) Å, β=94.794(10)°, and Z=2. Results of X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) indicated that the solvent molecules could enter the crystal lattice and thus the solvate is formed. The molecular dynamics (MD) simulation method was applied to study the solvent effect. It revealed that the relative growth rates of the main crystal habit faces changed a lot, which made the most morphologically important habit face shift from (001) face to (100) face due to polar groups or atoms exposure and hence a large solvent interaction. The prism habit predicted by a modified attachment energy (AE) model agreed well with the observed experimental morphology grown from the acetone solution. This prediction method may help for a solvent selection to improve the morphology in the drug crystallization process.

  13. Growth of mercuric iodide single crystals from dimethylsulfoxide

    DOEpatents

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  14. Study of polymorphic control in an ethanol-water binary solvent

    NASA Astrophysics Data System (ADS)

    Kitano, Hiroshi; Tanaka, Takayuki; Hirasawa, Izumi

    2017-07-01

    Three polymorphs of L-Citrulline crystals, anhydrate (Form α, γ and δ) and pseudo polymorph (dihydrate), were confirmed. In this study, polymorphic control of L-Citrulline was attempted by changing the ethanol concentration in ethanol-water binary solvents. First, each polymorph of L-Citrulline crystals was added to the prepared ethanol-water binary solvents and samples which were obtained chronologically were measured by XRD. Also, the crystal sizes and shapes in transformation were observed by microscope. Then, polymorphs of the crystals after transformation were determined by XRD pattern. As a result, the transformation from dihydrate to anhydrate was observed by adding dihydrate crystals to the ethanol-water binary solvent. Similarly, the transformation from anhydrate to another anhydrate was observed. Especially in the case of adding dihydrate, the existences of all polymorphs were confirmed by adjusting ethanol-water binary solvent. According to the results, it was revealed that polymorphic transformation was affected by the trace amount of water contained in ethanol-water binary solvent. Moreover, transformation from dihydrate to anhydrate was constructed with three phases, dissolution of dihydrate, nucleation and growth of anhydrate. Therefore, the solution-mediated polymorphic transformation was supposed to be a key mechanism for this transformation.

  15. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  16. X-ray diffraction measurement of cosolvent accessible volume in rhombohedral insulin crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares, Alexei S.; Caspar, Donald L. D.

    We report x-ray crystallographic measurement of the number of solvent electrons in the unit cell of a protein crystal equilibrated with aqueous solutions of different densities provides information about preferential hydration in the crystalline state. Room temperature and cryo-cooled rhombohedral insulin crystals were equilibrated with 1.2 M trehalose to study the effect of lowered water activity. The native and trehalose soaked crystals were isomorphous and had similar structures. Including all the low resolution data, the amplitudes of the structure factors were put on an absolute scale (in units of electrons per asymmetric unit) by constraining the integrated number of electronsmore » inside the envelope of the calculated protein density map to equal the number deduced from the atomic model. This procedure defines the value of F(0 0 0), the amplitude at the origin of the Fourier transform, which is equal to the total number of electrons in the asymmetric unit (i.e. protein plus solvent). Comparison of the F(0 0 0) values for three isomorphous pairs of room temperature insulin crystals, three with trehalose and three without trehalose, indicates that 75 ± 12 electrons per asymmetric unit were added to the crystal solvent when soaked in 1.2 M trehalose. If all the water in the crystal were available as solvent for the trehalose, 304 electrons would have been added. Thus, the co-solvent accessible volume is one quarter of the total water in the crystal. Finally, determination of the total number of electrons in a protein crystal is an essential first step for mapping the average density distribution of the disordered solvent.« less

  17. X-ray diffraction measurement of cosolvent accessible volume in rhombohedral insulin crystals

    DOE PAGES

    Soares, Alexei S.; Caspar, Donald L. D.

    2017-08-31

    We report x-ray crystallographic measurement of the number of solvent electrons in the unit cell of a protein crystal equilibrated with aqueous solutions of different densities provides information about preferential hydration in the crystalline state. Room temperature and cryo-cooled rhombohedral insulin crystals were equilibrated with 1.2 M trehalose to study the effect of lowered water activity. The native and trehalose soaked crystals were isomorphous and had similar structures. Including all the low resolution data, the amplitudes of the structure factors were put on an absolute scale (in units of electrons per asymmetric unit) by constraining the integrated number of electronsmore » inside the envelope of the calculated protein density map to equal the number deduced from the atomic model. This procedure defines the value of F(0 0 0), the amplitude at the origin of the Fourier transform, which is equal to the total number of electrons in the asymmetric unit (i.e. protein plus solvent). Comparison of the F(0 0 0) values for three isomorphous pairs of room temperature insulin crystals, three with trehalose and three without trehalose, indicates that 75 ± 12 electrons per asymmetric unit were added to the crystal solvent when soaked in 1.2 M trehalose. If all the water in the crystal were available as solvent for the trehalose, 304 electrons would have been added. Thus, the co-solvent accessible volume is one quarter of the total water in the crystal. Finally, determination of the total number of electrons in a protein crystal is an essential first step for mapping the average density distribution of the disordered solvent.« less

  18. Active-site protein dynamics and solvent accessibility in native Achromobacter cycloclastes copper nitrite reductase.

    PubMed

    Sen, Kakali; Horrell, Sam; Kekilli, Demet; Yong, Chin W; Keal, Thomas W; Atakisi, Hakan; Moreau, David W; Thorne, Robert E; Hough, Michael A; Strange, Richard W

    2017-07-01

    Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (Asp CAT and His CAT ) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the Asp CAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site 'capping residue' (Ile CAT ), a determinant of ligand binding, are influenced both by temperature and by the protonation state of Asp CAT . A previously unobserved conformation of Ile CAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.

  19. Experimental evidence for the participation of deep eutectic solvents in silver chloride crystal formation at low temperature

    NASA Astrophysics Data System (ADS)

    Bhatt, Jitkumar; Mondal, Dibyendu; Prasad, Kamalesh

    2016-05-01

    Deep eutectic solvents (DESs) obtained by the complexation of choline chloride (ChoCl) as hydrogen bond acceptor and hydrogen bond donors such as ethylene glycol (ChoCl-EG 1:2) and glycerol (ChoCl-Gly 1:2) were used as media for the formation of AgCl crystals. Although formation of AgCl crystals was observed in both the solvents but the rate of formation of crystals was faster in ChoCl-EG 1:2 at low temperature (4-5 °C). In the crystals, cholinium cations were found to be present with chloride ions bridged with Ag ions resulting generation of 1D network of AgCl2 anions.

  20. Unique Crystallization of Fullerenes: Fullerene Flowers

    PubMed Central

    Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul

    2016-01-01

    Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)–mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization. PMID:27561446

  1. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition.

    PubMed

    Israr, Farrukh; Kim, Duk Kyung; Kim, Yeongmin; Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee

    2016-03-01

    Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Persistent Self-Association of Solute Molecules in Solution.

    PubMed

    Tang, Weiwei; Mo, Huaping; Zhang, Mingtao; Parkin, Sean; Gong, Junbo; Wang, Jingkang; Li, Tonglei

    2017-11-02

    The structural evolvement of a solute determines the crystallization outcome. The self-association mechanism leading to nucleation, however, remains poorly understood. Our current study explored the solution chemistry of a model compound, tolfenamic acid (TFA), in three different solvents mainly by solution NMR. It was found that hydrogen-bonded pairs of solute-solute or solute-solvent stack with each through forming a much weaker π-π interaction as the concentration increases. Depending on the solvent, configurations of the solution species may be retained in the resultant crystal structure or undergo rearrangement. Yet, the π-π stacking is always retained in the crystal regardless of the solvent used for the crystallization. The finding suggests that nucleation not only involves the primary intermolecular interaction (hydrogen bonding) but also engages the secondary forces in the self-assembly process.

  3. Template-Directed Crystallization of High Energy Materials

    DTIC Science & Technology

    2014-04-01

    objectives of this grant were to (a) examine the solution crystallization of RDX , HMX and CL-20 from a variety of solvents, withdetailed analysis of...crystal nucleation templates and (c) to assess the growth of RDX , HMX and CL-20 on these templates. High explosives, crystallization, RDX , CL-20...crystallization of RDX , HMX and CL-20 from a variety of solvents, with detailed analysis of their phase, size, and morphological properties; (b) to

  4. Stoichiometric sensing to opt between gelation and crystallization.

    PubMed

    Vidyasagar, Adiyala; Sureshan, Kana M

    2015-10-05

    A new class of organogelators having a cyclohexane-1a,3a-diol motif capable of congealing non-polar liquids was developed. These gelators underwent crystallization at low concentration and gelation above the critical gelation concentration (CGC) in the same solvent. The crystals and gel fibers were analyzed by single crystal XRD and PXRD respectively, which revealed their different modes of assembly. The XRD studies and thermogravimetric analysis (TGA) confirmed that the crystals contain a water of crystallization whereas the gel fibers do not. A systematic study revealed that when the concentration of the gelator exceeds that of adventitious water in the solvent, it congeals the solvent and when the concentration of the gelator is less than water, it undergoes crystallization. This unprecedented stoichiometric sensing behavior in deciding the mode of self-assembly offers a handle to opt between mutually competing gelation and crystallization. We have confirmed that the system can be biased to congeal or crystallize by varying the amount of water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The different conformations and crystal structures of dihydroergocristine

    NASA Astrophysics Data System (ADS)

    Mönch, B.; Kraus, W.; Köppen, R.; Emmerling, F.

    2016-02-01

    The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs.

  6. Effect of binder liquid type on spherical crystallization.

    PubMed

    Maghsoodi, Maryam; Hajipour, Ali

    2014-11-01

    Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.

  7. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  8. Solubility- and temperature-driven thin film structures of polymeric thiophene derivatives for high performance OFET applications

    NASA Astrophysics Data System (ADS)

    LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang

    2007-09-01

    It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.

  9. Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.

    PubMed

    Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E

    2008-12-02

    We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.

  10. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation--classification and comparison with crystallization tendency from undercooled melts.

    PubMed

    Van Eerdenbrugh, Bernard; Baird, Jared A; Taylor, Lynne S

    2010-09-01

    In this study, the crystallization behavior of a variety of compounds was studied following rapid solvent evaporation using spin coating. Initial screening to determine model compound suitability was performed using a structurally diverse set of 51 compounds in three different solvent systems [dichloromethane (DCM), a 1:1 (w/w) dichloromethane/ethanol mixture (MIX), and ethanol (EtOH)]. Of this starting set of 153 drug-solvent combinations, 93 (40 compounds) were selected for further evaluation based on solubility, chemical solution stability, and processability criteria. These systems were spin coated and their crystallization was monitored using polarized light microscopy (7 days, dry conditions). The crystallization behavior of the samples could be classified as rapid (Class I: 39 cases), intermediate (Class II: 23 cases), or slow (Class III: 31 cases). The solvent system employed influenced the classification outcome for only four of the compounds. The various compounds showed very diverse crystallization behavior. Upon comparison of classification results with those of a previous study, where cooling from the melt was used as a preparation technique, a good similarity was found whereby 68% of the cases were identically classified. Multivariate analysis was performed using a set of relevant physicochemical compound characteristics. It was found that a number of these parameters tended to differ between the different classes. These could be further interpreted in terms of the nature of the crystallization process. Additional multivariate analysis on the separate classes of compounds indicated some potential in predicting the crystallization tendency of a given compound.

  11. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  12. Effects of alcohol solvents on anatase TiO2 nanocrystals prepared by microwave-assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Chun; Tai, Yu-Chuen

    2013-06-01

    The effects of solvents on the anatase crystallite size prepared by sol-gel microwave-assisted solvothermal method were investigated in this study. Eight different alcohol solvents classified into two groups, i.e. primary and secondary/ternary alcohols, were used as reaction media and the effects of solvent properties, such as dielectric constant, boiling point, and internal pressure during the solvothermal process, on the crystallite size and shape were analyzed. According to the experimental results, selecting the solvent type allowed not only the alteration of the crystallite size but also the crystallite shape without the need of any additives. The boiling point of solvent was determined as the major factor influencing the crystallite size. Among the solvents with similar boiling points, the solvent with a higher carbon number produced the smaller crystallite size because of steric hindrance effect. In addition, the carboxyl groups dissociated from the alcohol solvent can play a role as a structural capping agent to retard the anatase crystal growth along the [001] direction and led to a rectangular crystallite shape with preferred development in {001} facets. On the other hand, the alcoholysis reaction was found easily occurred between the primary alcohol and isopropoxide that effectively limited the hydrolysis and condensation processes but also suppressed the structural capping effect. Therefore, the anatase crystals prepared in the primary alcohols became exceptionally small and showed spherical shape. Finally, the anatase crystals prepared using isopropanol demonstrated the highest photocatalytic activity due to its evident preferred crystallization in the {001} facets.

  13. The effect of relative solubility on crystal purity

    NASA Astrophysics Data System (ADS)

    Givand, Jeffrey Christopher

    This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given level can now be determined based on existing solubility and purity measurements and solubilities of the product and impurity in the new solvent mixture.

  14. Supercritical crystallization: The RESs-process and the GAS-process

    NASA Astrophysics Data System (ADS)

    Berends, Edwin M.

    1994-09-01

    This Doctoral Ph.D. thesis describes the development of two novel crystallization processes utilizing supercritical fluids either as a solvent, the RESS-process, or as an anti-solvent, the GAS-process. In th RESS-process precipitation of the solute is performed by expansion of the solution over a nozzle to produce ultra-fine, monodisperse particles without any solvent inclusions. In the GAS-process a high pressure gas is dissolved into the liquid phase solvent, where it causes a volumetric expansion of this liquid solvent and lowers the equilibrium solubility. Particle size, particle size distribution and other particle characteristics such as their shape, internal structure and the residual amount of solvent in the particles are expected to be influenced by the liquid phase expansion profile.

  15. Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoya; Shibata, Yosei; Takeda, Risa; Ishinabe, Takahiro; Fujikake, Hideo

    2017-01-01

    For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

  16. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Effect of solvent on crystallization behavior of xylitol

    NASA Astrophysics Data System (ADS)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  18. Solution Growth of a Novel Nonlinear Optical Material: L-Histidine Tetrafluoroborate

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Choi, J.; Wang, W. S.; Bhat, K.; Lal, R. B.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    Single crystals of L-Histidine tetrafluoroborate (L-HFB), a semiorganic nonlinear optical (NLO) material have been successfully grown by the temperature lowering and evaporation methods in our laboratory. Solubility curves of L-HFB have been determined in different solvents, such as water, ethanol and acetone. The solubility of L-HFB is very low in acetone, and ethanol, therefore, it is not feasible to grow L-HFB single crystals using these solvents. Good quality single crystals of a novel nonlinear optical material L-HFB have been grown from aqueous solution. Effects of seed orientation on morphologies of L-HFB crystals were studied. The advantages and disadvantage of both the evaporation and the temperature lowering techniques are compared. The single crystals in size 20 x 20 x 10 cubic mm were grown with deionized water as solvent in two weeks with an approximate growth rate of 1.4mm/day. The transmission range for these crystals has been found to be from 250 nm to 1500 nm.

  19. Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat

    2017-06-01

    The optical absorption and steady-state fluorescence spectra of 4-heptyloxybenzoic acid (4hoba), 4-octyloxybenzoic acid (4ooba) and 4-nonyloxybenzoic acid (4noba) liquid crystals have been measured in a series of different polarity organic solvents. The ground state (μg) and excited state (μe) dipole moments of the monomeric and dimeric 4-alkyloxybenzoic acid liquid crystals have been obtained by means of different solvatochromic shift methods. HOMO-LUMO gaps (HLG) and dipole moments have been tuned by applying external electric (EF) field on monomer, dimer and Au substituted monomer and dimer liquid crystal structures. By applying external electric field, Au substituted monomer liquid crystals display semiconductor character, while Au substituted dimer liquid crystals gain metallic character under E = 0.04 V/Å. Eventuated specific and non-specific interactions between solvent and solute in solvent medium have been expounded by using LSER (Linear Solvation Energy Relationships).

  20. Exploration of crystal simulation potential by fluconazole isomorphism and its application in improvement of pharmaceutical properties

    NASA Astrophysics Data System (ADS)

    Thakur, Amitha; Kumar, Dinesh; Thipparaboina, Rajesh; Shastri, Nalini R.

    2014-11-01

    Control of crystal morphology during crystallization is a paramount challenge in pharmaceutical processing. Hence, there is need to introduce computational methods for morphology prediction to manage production cost of drugs and improve related pharmaceutical and biopharmaceutical properties. Layer docking approach with molecular dynamics opens a new avenue for crystal habit prediction in presence of solvent. In the present study, attempts were made to correlate predicted and experimental crystal habits of fluconazole considering solvent interactions using layer docking approach. Simulated results from layer docking approach with methanol as solvent gave two dominant facets (0 1 1) and (1 0 1) with a surface area 22.43% and 19.82% respectively, which were in agreement with the experimental results. Experimentally grown modified crystal habit of fluconazole in methanol showed enhanced dissolution rate (p<0.05) when compared to plain drug. This was attributed to the increased surface area on the specified facets caused by interactions with the solvent. Furthermore, Differential Scanning Calorimetry, Fourier Transform Infrared (FTIR) Spectroscopy and powder X-ray Diffraction of recrystallized samples confirmed only a habit change and absence of any polymorphs, hydrates or solvates. Flow and compressibility of fluconazole recrystallized in methanol was significantly improved when compared to plain drug. This study demonstrates a methodical approach using computational tools for prediction and modification of crystal habit, to enhance dissolution of poorly soluble drugs, for future pharmaceutical applications.

  1. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2017-10-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient ( k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient ( k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  2. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  3. Crystal engineering: co-crystals of cinnamic acid derivatives with a pyridyl derivative co-crystallizer.

    PubMed

    Lorenzo, Daniel A; Forrest, Sebastian J K; Sparkes, Hazel A

    2016-02-01

    A number of hydrogen-bonded co-crystals, consisting of a cinnamic acid derivative and a pyridyl co-crystallizer, have been synthesized and their properties investigated by X-ray diffraction. Samples were prepared by recrystallization or solvent drop grinding of trans-cinnamic acid (1), 4-methylcinnamic acid (2), 4-methoxy cinnamic acid (3) or 3,4-methoxy cinnamic acid (4), with 4,4-dipyridyl (A), iso-nicotinamide (B) or nicotinamide (C). The X-ray single-crystal structures of seven novel co-crystals, obtained through recrystallization, are examined and the hydrogen-bonding interactions discussed. Consistent hydrogen-bonding motifs were observed for samples prepared when using 4,4-dipyridyl (A) or iso-nicotinamide (B) as the co-crystallizing agent. Powder X-ray diffraction analysis of the samples prepared by solvent drop grinding suggests the formation of ten co-crystals.

  4. Explosive performance of HMX/NTO co-crystal

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Jiao, Q. J.; Gong, Y. G.; Wang, Y. Y.; Liang, T.; Sun, J.

    2018-01-01

    A new co-crystal explosive of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and 3-nitro-1, 2, 4-triazol-5-one (NTO) in a molar ratio of 1:1 has been prepared by solvent/anti-solvent method. The SEM photographs show that HMX/NTO co-crystals are distinctly different from HMX and NTO crystals. The co-crystals are prisms with well formed crystal surfaces. Thermal analysis results indicate the melting point of the co-crystal is 29.3 °Chigher than that of NTO. Moreover, the co-crystal exhibits a modified mechanical sensitivity. The characteristic height (H50) of impact sensitivity increases 14.8cm, and the explosion percentage (P) of friction sensitivity decreases by 40% compared with HMX. The HMX/NTO co-crystals possess good thermal property and low sensitivity, which mean huge advantages in blasting engineering.

  5. Ultrafast Self-Crystallization of High-External-Quantum-Efficient Fluoride Phosphors for Warm White Light-Emitting Diodes.

    PubMed

    Zhou, Wenli; Fang, Mu-Huai; Lian, Shixun; Liu, Ru-Shi

    2018-05-30

    In this study, we used HF (as good solvent) to dissolve K 2 GeF 6 and K 2 MnF 6 and added ethanol (as poor solvent) to cause ultrafast self-crystallization of K 2 GeF 6 :Mn 4+ crystals, which had an unprecedentedly high external quantum efficiency that reached 73%. By using the red phosphor, we achieved a high-quality warm white light-emitting diode with color-rendering index of R a = 94, R9 = 95, luminous efficacy of 150 lm W -1 , and correlated color temperature at 3652 K. Furthermore, the good-poor solvent strategy can be used to fast synthesize other fluorides.

  6. Crystal doping aided by rapid expansion of supercritical solutions.

    PubMed

    Vemavarapu, Chandra; Mollan, Matthew J; Needham, Thomas E

    2002-01-01

    The purpose of this study was to test the utility of rapid expansion of supercritical solution (RESS) based cocrystallizations in inducing polymorph conversion and crystal disruption of chlorpropamide (CPD). CPD crystals were recrystallized by the RESS process utilizing supercritical carbon dioxide as the solvent. The supercritical region investigated for solute extraction ranged from 45 to 100 degrees C and 2000 to 8000 psi. While pure solute recrystallization formed stage I of these studies, stage II involved recrystallization of CPD in the presence of urea (model impurity). The composition, morphology, and crystallinity of the particles thus produced were characterized utilizing techniques such as microscopy, thermal analysis, x-ray powder diffractometry, and high-performance liquid chromatography. Also, comparative evaluation between RESS and evaporative crystallization from liquid solvents was performed. RESS recrystallizations of commercially available CPD (form A) resulted in polymorph conversion to metastable forms C and V, depending on the temperature and pressure of the recrystallizing solvent. Cocrystallization studies revealed the formation of eutectic mixtures and solid solutions of CPD + urea. Formation of the solid solutions resulted in the crystal disruption of CPD and subsequent amorphous conversion at urea levels higher than 40% wt/wt. Consistent with these results were the reductions in melting point (up to 9 degrees C) and in the DeltaH(f) values of CPD (up to 50%). Scanning electron microscopy revealed a particle size reduction of up to an order of magnitude upon RESS processing. Unlike RESS, recrystallizations from liquid organic solvents lacked the ability to affect polymorphic conversions. Also, the incorporation of urea into the lattice of CPD was found to be inadequate. In providing the ability to control both the particle and crystal morphologies of active pharmaceutical ingredients, RESS proved potentially advantageous to crystal engineering. Rapid crystallization kinetics were found vital in making RESS-based doping superior to conventional solvent-based cocrystallizations.

  7. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    PubMed Central

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  8. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.

  9. Solvent screening for a hard-to-dissolve molecular crystal.

    PubMed

    Maiti, A; Pagoria, P F; Gash, A E; Han, T Y; Orme, C A; Gee, R H; Fried, L E

    2008-09-01

    Materials with a high-degree of inter- and intra-molecular hydrogen bonding generally have limited solubility in conventional organic solvents. This presents a problem for the dissolution, manipulation and purification of these materials. Using a state-of-the-art density-functional-theory based quantum chemical solvation model we systematically evaluated solvents for a known hydrogen-bonded molecular crystal. This, coupled with direct solubility measurements, uncovered a class of ionic liquids involving fluoride anions that possess more than two orders of magnitude higher solvation power as compared with the best conventional solvents. The crystal structure of one such ionic liquid, determined by X-ray diffraction spectroscopy, indicates that F- ions are stabilized through H-bonded chains with water. The presence of coordinating water in such ionic liquids seems to facilitate the dissolution process by keeping the chemical activity of the F- ions in check.

  10. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature.

    PubMed

    Bustamante, Eugenia L; Fernández, José L; Zamaro, Juan M

    2014-06-15

    The effect of the solvent on the synthesis process and on the nanocrystal characteristics of the zeolitic imidazolate framework-8 (ZIF-8) was investigated. A synthesis protocol at room temperature employing a series of aliphatic alcohols, water, dimethylformamide and acetone was employed. The results show that the solvent modifies the evolution of the reaction, altering the crystallization rates and nanocrystal sizes. Its hydrogen bond donation ability is the main factor that governs this effect. More precisely, the solvent modulates the formation of ZIF-8 nanocrystals with sizes in the range between 15 and 42 nm. When synthesized in alcohol and acetone, these nanocrystals form globular aggregates with sizes between 130 and 420 nm. In contrast, under the same synthesis conditions, when using water or dimethylformamide the ZIF phase is not developed. In alcohols other than methanol, the crystals develop pill-shaped morphologies with poorly defined facets. Moreover, a markedly fast growing kinetics is verified in these alcohols, leading to an ultra-fast crystallization of ZIF-8 in about 60s. These findings provide new information about the role of the solvent in the synthesis process of nanoZIF-8, which can be useful for controlling the crystallization rates and nanocrystal sizes of this material. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Highly crystalline films of PCPDTBT with branched side chains by solvent vapor crystallization: influence on opto-electronic properties.

    PubMed

    Fischer, Florian S U; Trefz, Daniel; Back, Justus; Kayunkid, Navaphun; Tornow, Benjamin; Albrecht, Steve; Yager, Kevin G; Singh, Gurpreet; Karim, Alamgir; Neher, Dieter; Brinkmann, Martin; Ludwigs, Sabine

    2015-02-18

    PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exploratory Development on a New Process to Produce Improved RDX crystals: Supercritical Fluid Anti-Solvent Recrystallization

    DTIC Science & Technology

    1988-05-02

    G. and J. Chiovini. Decaffeination Process . U.S. Patent 4,251.559; 17 February 1981. 43. Friedrich, J.P.. G.R. List, and A.J. Leakin. Petroleum...0 CONTRACT REPORT BRL-CR-606 EXPLORATORY DEVELOPMENT ON A NEW PROCESS TO PRODUCE IMPROVED RDX CRYSTALS: SUPERCRITICAL FLUID ANTI-SOLVENT...CCESSION NO. 11. TITLE (icnude Sun• y Uasuihcanon) I . • EXPLORATORY DEVELOPMENT ON A NEW PROCESS TO PRODUCE IMPROVED RDX CRYSTALS: SUPERCRITICAL

  13. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  14. Micro- and nano-porous surface patterns prepared by surface-confined directional melt crystallization of solvent

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Soo; Kim, Hyun Jin; An, Suyeong; Chi, Sangwon; Kim, Junseok; Lee, Jonghwi

    2017-07-01

    Recently, numerous attempts have been made to engineer micro- and nano-porous surface patterns or to develop convenient preparation methods for the practical applications of self-cleaning surfaces, water-repellent surfaces, novel textures, etc. Herein, we introduce a simple, cheap, and repeatable crystallization-based method to produce porous surface structures, on any surface of already fabricated polymeric materials. Contact of the solvent phase with cooled polymer surfaces enabled the limited dissolution of the surfaces and the subsequent extremely fast melt crystallization of the solvent. After removing the crystals, various micro- and nano-porous patterns were obtained, whose pore sizes ranged over three orders of magnitude. Pore depth was linearly dependent on the dissolution time. Crystal growth was mainly directed normal to the surfaces, but it was also controlled in-plane, resulting in cylindrical or lamellar structures. Superhydrophobic surfaces were successfully prepared on both polystyrene and polycarbonate. This process offers a novel surface engineering tool for a variety of polymer surfaces, whose topology can be conveniently controlled over a wide range by crystal engineering.

  15. Novel polyimide compositions based on 4,4': Isophthaloyldiphthalic anaydride (IDPA)

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); Saintclair, Terry L. (Inventor)

    1989-01-01

    A series of twelve high temperature, high performance polyimide compositions based on 4,4'-isophthaloyl diphthalic anhydride (IDPA) was prepared and characterized. Tough, film-forming, organic solvent-insoluble polyimides were obtained. Three materials were semicrystalline. Several gave excellent long-term thermooxidative stability by isothermal thermogravimetric analysis (ITGA) at 300 C and 350 C in air when compared to Kapton H film (duPont). One extensively studied material displayed different levels of semicrystallinity over a wide range of final cure time/temperatures. The polyimide from IDPA and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene exhibited multiple crystallization and melting behavior, implying the existence of two kinetic and two thermodynamic crystallization and melting transitions by differential scanning calorimetry (DSC).

  16. Physical-Chemical Properties of the Chiral Fungicide Fenamidone and Strategies for Enantioselective Crystallization.

    PubMed

    Kort, Anne-Kathleen; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2016-06-01

    Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. 3D investigation on polystyrene colloidal crystals by floatage self-assembly with mixed solvent via synchrotron radiation x-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao

    2017-06-01

    The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.

  18. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    NASA Astrophysics Data System (ADS)

    Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  19. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surfacemore » topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.« less

  20. Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Büchner, B.; Wurmehl, S.; Hess, C.

    2014-09-01

    Single crystals of LaCuO2 have been grown for the first time using the travelling-solvent floating zone method. The crystal was grown in an Ar-atmosphere by reduction of La2Cu2O5, which was used as the feed rod composition for the growth. The grown crystal has been characterized with regard to phase purity and single crystallinity using powder X-ray diffraction, energy dispersive X-ray analysis, Laue diffraction and scanning electron microscopy.

  1. High-mobility, aligned crystalline domains of TIPS-pentacene with metastable polymorphs through lateral confinement of crystal growth.

    PubMed

    Giri, Gaurav; Park, Steve; Vosgueritchian, Michael; Shulaker, Max Marcel; Bao, Zhenan

    2014-01-22

    Patterns composed of solvent wetting and dewetting regions promote lateral confinement of solution-sheared and lattice-strained TIPS-pentacene crystals. This lateral confinement causes aligned crystal growth, and the smallest patterns of 0.5 μm wide solvent wetting regions promotes formation of highly strained, aligned, and single-crystalline TIPS-pentacene regions with mobility as high as 2.7 cm(2) V(-1) s(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  3. Ammonothermal Growth of Chalcogenide Single Crystal Materials

    DTIC Science & Technology

    1997-11-05

    chalcogenide with an acidic mineraiizer 15 in presence of liquid ammonia solvent at high pressures and at temperatures in the range of about 300 to 550°C...demonstrates growth of binary CaS single crystals in a medium consisting of CaS powder and NH4I acid mineraiizer in ammonia solvent in a fused quartz

  4. The 2D Selfassembly of Benzimidazole and its Co-crystallization

    NASA Astrophysics Data System (ADS)

    Costa, Paulo; Teeter, Jacob; Kunkel, Donna; Sinitskii, Alexander; Enders, Axel

    Benzimidazoles (BI) are organic molecules that form ferroelectric crystals. Key to their ferroelectric behavior are the switchable N . . . HN type bonds and how they couple to the electron system of the molecules. We attempted to crystallize BI on various metal surfaces and studied them using STM. We observed that on Au and Ag, BI joins into zipper chains characteristic of its bulk structure that can pack into a continuous 2D layer. Because the dipole of BI lies in the direction of its switchable hydrogen bond, these zippers should in principle have reversible polarizations that point along the direction they run. BI's crystallization is reminiscent to how croconic acid (CA) crystallizes in 2D using O . . . HO bonding, suggesting that these molecules may be able to co-crystallize through OH . . . N bonds. This would present the opportunity to modify BI's properties, such as the energy needed to switch a hydrogen from a donor to acceptor site. When co-deposited, CA and BI successfully combine into a co-crystal formed by building blocks consisting of 2 CA and 2 BI molecules. These findings demonstrate the usefulness of using STM as a preliminary check to verify if two molecules are compatible with each other without having to attempt crystallization with multiple solvents and mixing methods.

  5. Preparation and guest-uptake protocol for a porous complex useful for 'crystal-free' crystallography.

    PubMed

    Inokuma, Yasuhide; Yoshioka, Shota; Ariyoshi, Junko; Arai, Tatsuhiko; Fujita, Makoto

    2014-02-01

    We recently reported a new method for single-crystal X-ray diffraction (SCD) analysis that does not require the crystallization of the target compound. In this 'crystal-free' crystallography, a tiny crystal of a porous complex is soaked in the solution of the target guest. The guest molecules are absorbed and oriented in the crystal pores and can be analyzed by X-ray diffraction. We describe here a detailed synthetic protocol for the preparation of uniform single crystals of the porous host complex and for the subsequent guest uptake. The protocol describes our most versatile porous complex, which is prepared from commercially available ZnI2 and 2,4,6-tri(4-pyridyl)-1,3,5-triazine. The host complex has large pores with a cross-section of 8 × 5 Å(2). Single crystals of the complex are grown from layered solutions of the two components. The pores of the as-synthesized complex are filled with nitrobenzene, which is replaced with the inert solvent cyclohexane. This solvent exchange is essential for the rapid and effective inclusion of target compounds. The most crucial and delicate step is the selection of high-quality single crystals from the mixture of crystals of various shapes and sizes. We suggest using the facial indices of the single crystals as a criterion for crystal selection. Single-crystal samples for X-ray analysis can be prepared by immersing the selected crystals in a cyclohexane/dichloromethane solution of target compound. After a very slow evaporation of the solvent, typically over 2 d, the final crystal can be picked and directly subjected to SCD analysis. The protocol can be completed within ∼16 d.

  6. Diagnostic of protein crystallization by dynamic light scattering; an application to an aminoacyl-tRNA synthetase

    NASA Astrophysics Data System (ADS)

    Mikol, Vincent; Vincendon, Pascale; Eriani, Gilbert; Hirsch, Ernest; Giegé, Richard

    1991-03-01

    The apparent hydrodynamic radius of a truncated form of baker's yeast aspartyl-tRNA synthetase has been measured in various precipitating agent solutions as a function of the protein concentration by dynamic light scattering. In solvents containing ammonium sulfate or 2-methyl-2,4-pentanediol as the precipitating agent the protein remains essentially monodisperse, whereas in the presence of polyethylene glycol interactions and aggregations between protein molecules are detected before reaching supersaturation. These data are indications of possible crystallizations of the protein by the two former precipitants and no crystallization by the latter one. Crystallization experiments indeed have shown that the truncated synthetase crystallizes in the presence of ammonium sulfate and that no crystals grow in solvents containing polyethylene glycol.

  7. Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D3

    PubMed Central

    2017-01-01

    A continuous tandem in-line evaporation–crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.

  8. Crystallization of probucol from solution and the glassy state.

    PubMed

    Kawakami, Kohsaku; Ohba, Chie

    2017-01-30

    Crystallization of probucol (PBL) from both solution and glassy solid state was investigated. In the crystallization study from solution, six solvents and three methods, i.e., evaporation, addition of a poor solvent, and cooling on ice, were used to obtain various crystal forms. In addition to common two crystal forms (forms I and II), two further forms (forms III and cyclohexane-solvate) were found in this study, and their thermodynamic relationships were determined. Forms I and II are likely to be enantiotropically related with thermodynamic transition temperature below 5°C. Isothermal crystallization studies revealed that PBL glass initially crystallized into form III between 25 and 50°C, and then transformed to form I. The isothermal crystallization appears to be a powerful option to find uncommon crystal forms. The crystallization of PBL was identified to be pressure controlled, thus the physical stability of PBL glass is higher than that of typical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Gentle, fast and effective crystal soaking by acoustic dispensing

    PubMed Central

    Ng, Jia Tsing; Talon, Romain; Nekrosiute, Karolina; Krojer, Tobias; Douangamath, Alice; Brandao-Neto, Jose; Pearce, Nicholas M.; von Delft, Frank

    2017-01-01

    The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts. PMID:28291760

  10. Antisolvent crystallization of a cardiotonic drug in ionic liquids: Effect of mixing on the crystal properties

    NASA Astrophysics Data System (ADS)

    de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria

    2017-08-01

    LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.

  11. Determination of residual solvents and investigation of their effect on ampicillin trihydrate crystal structure.

    PubMed

    Nojavan, Saeed; Ghassempour, Alireza; Bashour, Yosef; Darbandi, Masoud Khalilian; Ahmadi, Seyyed Hamid

    2005-01-04

    In the present work, the relationship between residual solvents concentration and ampicillin trihydrate crystals stability has been investigated. The amounts of residual solvents determined by GC, X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FT-IR) were used for characterization of solid state. The obtained results have shown good relationship between concentration of methylene chloride (as a critical residue solvent) and degree of ampicillin trihydrate crystallinity. As with the increasing methylene chloride concentration in the sample the degree of crystallinity decreased after stability test. From this relationship, critical concentration of methylene chloride into the ampicillin trihydrate is obtained and the results can be used for improving the large-scale production of ampicillin trihydrate.

  12. Crystal Nucleation of Tolbutamide in Solution: Relationship to Solvent, Solute Conformation, and Solution Structure.

    PubMed

    Zeglinski, Jacek; Kuhs, Manuel; Khamar, Dikshitkumar; Hegarty, Avril C; Devi, Renuka K; Rasmuson, Åke C

    2018-04-03

    The influence of the solvent in nucleation of tolbutamide, a medium-sized, flexible and polymorphic organic molecule, has been explored by measuring nucleation induction times, estimating solvent-solute interaction enthalpies using molecular modelling and calorimetric data, probing interactions and clustering with spectroscopy, and modelling solvent-dependence of molecular conformation in solution. The nucleation driving force required to reach the same induction time is strongly solvent-dependent, increasing in the order: acetonitrile

  13. Can crystal engineering be as beneficial as micronisation and overcome its pitfalls?: A case study with cilostazol.

    PubMed

    Sai Gouthami, Kodukula; Kumar, Dinesh; Thipparaboina, Rajesh; Chavan, Rahul B; Shastri, Nalini R

    2015-08-01

    Improvement in dissolution of the drugs having poor solubility is a challenge in pharmaceutical industry. Micronization is one technique, employed for dissolution enhancement of cilostazol, a BCS class II drug. However, the obtained micronized drug possesses poor flowability. The aim of this study was to improve the dissolution rate and flow properties of cilostazol by crystal engineering, using habit modification method and compare with micronized cilostazol bulk drug. Simulation studies were performed to predict the effect of solvents on cilostazol crystal habit. Cilostazol crystals with different habits were prepared by solvent:anti-solvent crystallization technique. SEM, FTIR, DSC, TGA and PXRD were used for solid state characterization. The results revealed that cilostazol re-crystallized from methanol-hexane system were hexagonal and ethanol-hexane system gave rods. Cilostazol engineered habits showed increased dissolution rate than unprocessed drug but similar dissolution rate when compared to micronized cilostazol. Micronized cilostazol showed a dissolution efficiency of 75.58% where as cilostazol recrystallized from methanol-hexane and ethanol-hexane systems resulted in a dissolution efficiency of 72.63% and 68.63%, respectively. In addition, crystal engineering resulted in improved flow properties of re-crystallized habits when compared to micronized form of the drug. In conclusion, crystal engineering by habit modification show potential for dissolution enhancement with an added advantage of improved flow properties over micronization technique, for poorly soluble drugs like cilostazol. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Crystal growth, structure and morphology of hydrocortisone methanol solvate

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Wang, Jiangkang; Zhang, Ying; Wu, Hong; Chen, Wei; Guo, Zhichao

    2004-04-01

    Hydrocortisone (HC), an important grucocorticoid, was crystallized from methanol solvent in the form of its methanol solvate. Its crystal structure belongs to orthorhombic, space group P2 12 12 1, with the unit cell parameters a=7.712(3) Å, b=14.392(5) Å, c=18.408(6) Å, Z=4. The methanol takes part in intermolecular hydrogen bonding, so if we change the solvent, the crystal habit of HC maybe different. The long parallelepiped morphology was also predicted by Cerius 2TM simulation program. The influence of intermolecular interaction was taken into account in the attachment energy model. The morphology calculation performed on the potential energy minimized model using a generic DREIDING 2.21 force field and developed minimization protocol with derived partial charges fits the experimental crystal shape well.

  15. Solubility prediction of naphthalene in carbon dioxide from crystal microstructure

    NASA Astrophysics Data System (ADS)

    Sang, Jiarong; Jin, Junsu; Mi, Jianguo

    2018-03-01

    Crystals dissolved in solvents are ubiquitous in both natural and artificial systems. Due to the complicated structures and asymmetric interactions between the crystal and solvent, it is difficult to interpret the dissolution mechanism and predict solubility using traditional theories and models. Here we use the classical density functional theory (DFT) to describe the crystal dissolution behavior. As an example, naphthalene dissolved in carbon dioxide (CO2) is considered within the DFT framework. The unit cell dimensions and microstructure of crystalline naphthalene are determined by minimizing the free-energy of the crystal. According to the microstructure, the solubilities of naphthalene in CO2 are predicted based on the equality of naphthalene's chemical potential in crystal and solution phases, and the interfacial structures and free-energies between different crystal planes and solution are determined to investigate the dissolution mechanism at the molecular level. The theoretical predictions are in general agreement with the available experimental data, implying that the present model is quantitatively reliable in describing crystal dissolution.

  16. Synthesis, growth and characterization of a nonlinear optical crystal: Bis l-proline hydrogen nitrate.

    PubMed

    Selvaraju, K; Kirubavathi, K

    2013-11-01

    The single crystals of bis l-proline hydrogen nitrate (BLPHN) belonging to non-centrosymmetric space group were successfully grown by the slow evaporation solution growth technique. The BLPHN crystals of size 10×7×3mm(3) were obtained in 35days. Initially, the solubility tests were carried out for two solvents such as deionized water and mixed of deionized water-acetone. Among the two solvents, the solubility of BLPHN was found to be the highest in deionized water, so crystallization of BLPHN was done from its aqueous solution. As grown, crystals were characterized by single crystal X-ray diffraction studies and optical transmission spectral studies. Infrared spectroscopy, thermo gravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of the grown BLPHN crystals. Nonlinear optical (NLO) behavior of BLPHN crystal was studied by Kurtz and Perry powder method. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization.

    PubMed

    Ambrus, Rita; Radacsi, Norbert; Szunyogh, Tímea; van der Heijden, Antoine E D M; Ter Horst, Joop H; Szabó-Révész, Piroska

    2013-03-25

    Interest in submicron-sized drug particles has emerged from both laboratory and industrial perspectives in the last decade. Production of crystals in the nano size scale offers a novel way to particles for drug formulation solving formulation problems of drugs with low solubility in class II of the Biopharmaceutical Classification System. In this work niflumic acid nanoparticles with a size range of 200-800nm were produced by the novel crystallization method, electrospray crystallization. Their properties were compared to those from evaporative and anti-solvent crystallizations, using the same organic solvent, acetone. There is a remarkable difference in the product crystal size depending on the applied methods. The size and morphology were analyzed by scanning electron microscopy and laser diffraction. The structure of the samples was investigated using differential scanning calorimetry, Fourier-transformed infrared spectroscopy and X-ray powder diffraction. The particles produced using electrospray crystallization process were probably changing from amorphous to crystalline state after the procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  19. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE PAGES

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.; ...

    2017-03-07

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  20. Solvent-Free Synthesis of Zeolites: Mechanism and Utility.

    PubMed

    Wu, Qinming; Meng, Xiangju; Gao, Xionghou; Xiao, Feng-Shou

    2018-05-08

    Zeolites have been extensively studied for years in different areas of chemical industry, such as shape selective catalysis, ion-exchange, and gas adsorption and separation. Generally, zeolites are prepared from solvothermal synthesis in the presence of a large amounts of solvents such as water and alcohols in sealed autoclaves under autogenous pressure. Water has been regarded as essential to synthesize zeolites for fast mass transfer of reactants, but it occupies a large space in autoclaves, which greatly reduces the yield of zeolite products. Furthermore, polluted wastes and relatively high pressure due to the presence of water solvent in the synthesis also leads to environmental and safety issues. Recently, inspired by great benefits of solvent-free synthesis, including the environmental concerns, energy consumption, safety, and economic cost, researchers continually challenge the rationale of the solvent and reconsider the age-old question "Do we actually need solvents at all in zeolite synthesis?" In this Account, we briefly summarize our efforts to rationally synthesize zeolites via a solvent-free route. Our research demonstrates that a series of silica, aluminosilicate, and aluminophosphate-based zeolites can be successfully prepared by mixing, grinding, and heating starting solid materials under solvent-free conditions. Combining an organotemplate-free synthesis with a solvent-free approach maximizes the advantages resulting in a more sustainable synthetic route, which avoids using toxic and costly organic templates and the formation of harmful gases by calcination of organic templates at high temperature. Furthermore, new insights into the solvent-free crystallization process of zeolites have been provided by modern techniques such as NMR and UV-Raman spectroscopy, which should be helpful in designing new zeolite structures and developing novel routes for synthesis of zeolites. The role of water and the vital intermediates during the crystallization of zeolites have been proposed and verified. In addition to a significant reduction in liquid wastes and a remarkable increase in zeolite yields, the solvent-free synthesis of zeolites exhibits more unprecedented benefits, including (i) the formation of hierarchical micro-, meso-, and macrostructures, which benefit the mass transfer in the reactions, (ii) rapid synthesis at higher temperatures, which greatly improve the space-time yields of zeolites, and (iii) construction of a novel catalytic system for encapsulation of metal nanoparticles and metal oxide particles within zeolite crystals synergistically combining the advantages of catalytic metal nanoparticles and metal oxide particles (high activity) and zeolites (shape selectivity). We believe that the concept of "solvent-free synthesis of zeolites" would open a door for deep understanding of zeolite crystallization and the design of efficient zeolitic catalysts.

  1. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    PubMed

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  2. Cellulose Crystal Dissolution in Imidazolium-Based Ionic Liquids: A Theoretical Study.

    PubMed

    Uto, Takuya; Yamamoto, Kazuya; Kadokawa, Jun-Ichi

    2018-01-11

    The highly crystalline nature of cellulose results in poor processability and solubility, necessitating the search for solvents that can efficiently dissolve this material. Thus, ionic liquids (ILs) have recently been shown to be well suited for this purpose, although the corresponding dissolution mechanism has not been studied in detail. Herein, we adopt a molecular dynamics (MD) approach to study the dissolution of model cellulose crystal structures in imidazolium-based ILs and gain deep mechanistic insights, demonstrating that dissolution involves IL penetration-induced cleavage of hydrogen bonds between cellulose molecular chains. Moreover, we reveal that in ILs with high cellulose dissolving power (powerful solvents, such as 1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride), the above molecular chains are peeled from the crystal phase and subsequently dispersed in the solvent, whereas no significant structural changes are observed in poor-dissolving-power solvents. Finally, we utilize MD trajectory analysis to show that the solubility of microcrystalline cellulose is well correlated with the number of intermolecular hydrogen bonds in cellulose crystals. The obtained results allow us to conclude that both anions and cations of high-dissolving-power ILs contribute to the stepwise breakage of hydrogen bonds between cellulose chains, whereas this breakage does not occur to a sufficient extent in poorly solubilizing ILs.

  3. Ultrasonically controlled particle size distribution of explosives: a safe method.

    PubMed

    Patil, Mohan Narayan; Gore, G M; Pandit, Aniruddha B

    2008-03-01

    Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process.

  4. Solvent selection for explaining the morphology of nitroguanidine crystal by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Song, Liang; Chen, Lizhen; Cao, Duanlin; Wang, Jianlong

    2018-02-01

    In this article, a method was performed to predict the morphology of needle-shaped crystals by analyzing the growth mechanisms for the various crystal faces. As an example, the crystal morphology of a nitroguanidine (NQ) was investigated via molecular dynamics simulations. The modified attachment energy (MEA) model was constructed by introducing surface chemistry terms and the relevant morphology of the habit crystal faces. The results indicate that the growth morphology of NQ in vacuum is dominated by {2 2 0}, {0 4 0}, {1 1 1}, {1 3 1} and {3 1 1} faces. The {2 2 0} and {0 4 0} faces are parallel to the elongation direction of the crystal, while the other faces are at the needle tips direction. The atoms or atomic groups exposed in crystal surface were used to analyze the relationship between structure and morphology. Compared to the surrounding faces, the needle tip faces have a large number of polar atoms or atomic groups. The needle tip faces have a high electronegativity on N, O atoms via molecular electrostatic potential (ESP) analysis. Furthermore, the protic solvent was used to reduce the attachment energy of the tip surfaces for achieving the purpose of inhibiting the growth of needle tips. Gamma-butyrolactone as the selected solvent inhibited effectively the growth of the needle tip faces. The predicted result is serviceable for the formation design.

  5. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  6. Reduction of glycine particle size by impinging jet crystallization.

    PubMed

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Solid-state characterization of mefenamic acid.

    PubMed

    Panchagnula, Ramesh; Sundaramurthy, Prakash; Pillai, Omathanu; Agrawal, Shrutidevi; Raj, Yasvanth Ashok

    2004-04-01

    The purpose of this study was to characterize mefenamic acid (MA) from commercial samples and samples crystallized from different solvents. Various techniques used for characterization included microscopy (hot stage microscopy, scanning electron microscopy), intrinsic dissolution rate, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and powder X-ray diffractometry (pXRD). The commercial samples varied in their crystal habit, thermal behavior, and intrinsic dissolution rate. It was found that the commercial samples were polymorphic Form I, which converted to Form II on heating in a DSC pan. Similarly, compression in an intrinsic dissolution rate (IDR) press resulted in the conversion of Form I to Form II. On the other hand, the samples recrystallized from different solvents under varying conditions yielded different crystal habits. Stirring and degree of supersaturation significantly influenced the crystal habit in all the solvents used in the study. Samples crystallized from ethanol and tetrahydrofuran yielded Form I, which behaved similarly to the commercial samples (M1 and M3). Recrystallization from ethyl acetate at a fast cooling rate yielded Form I, which on melting crystallized to Form II. The form I crystallized from ethyl acetate by fast cooling converted partially to form II on storing at ambient conditions. Forms I and II of MA were enantiotropically related. The results demonstrate the variable material characteristics of the commercial samples of MA and the influence of the crystallizing conditions on the formation of the polymorphs. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  8. Anti-solvent crystallization of L-threonine in Taylor crystallizers and MSMPR crystallizer: Effect of fluid dynamic motions on crystal size, shape, and recovery

    NASA Astrophysics Data System (ADS)

    Lee, Sooyun; Lee, Choul-Ho; Kim, Woo-Sik

    2017-07-01

    The influence of the fluid dynamic motions of a periodic Taylor vortex and random turbulent eddy on the anti-solvent crystallization of L-threonine was investigated. The Taylor vortex flow and random turbulent eddy flow were generated by the inner cylinder rotation in a Couette-Taylor (CT) crystallizer and the impeller agitation in a mixed-suspension mixed product removal (MSMPR) crystallizer, respectively. Furthermore, the circumferentially sinusoidal fluctuation of a Taylor vortex was induced in an elliptical Couette-Taylor (ECT) crystallizer . The periodic Taylor vortex flows in the CT and ECT crystallizers resulted in a smaller crystal size and higher crystal recovery ratio of L-threonine than the random turbulent flow in the MSMPR crystallizer due to induction of a higher supersaturation, resulting in a higher nucleation in the CT and ECT crystallizers than in the MSMPR crystallizer. Thus, the crystal size was reduced and the crystal recovery ratio enhanced when increasing the rotation/agitation speed and feed flow rate in the CT, ECT, and MSMPR crystallizers. When increasing the temperature, the crystal size and crystal recovery ratio were both increased due an enhanced mass transfer for crystal growth. The crystal morphology changes according to the fluid dynamic motion with various crystallization conditions were well correlated in terms of the supersaturation.

  9. Crystallization of perovskite film using ambient moisture and water as co-solvent for efficient planar perovskite solar cell (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dubey, Ashish; Reza, Khan M.; Gaml, Eman; Adhikari, Nirmal; Qiao, Qiquan

    2016-09-01

    Smooth, compact and defect free morphology of perovskite is highly desired for enhanced device performance. Several routes such as thermal annealing, use of solvent mixtures, growth under controlled humidity has been adopted to obtain crystalline, smooth and defect free perovskite film. Herein we showed direct use of water (H2O) as co-solvent in precursor solution and have optimized the water content required to obtain smooth and dense film. Varying concentration of water was used in precursor solution of CH3NH3I and PbI2 mixed in γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO). Perovskite films were crystallized using toluene assisted solvent engineering method using GBL:DMSO:H2O as solvent mixture. The amount of water was varied from 1% to 25%, which resulted in change in film morphology and perovskite crystallinity. It was concluded that an appropriate amount of water is required to assist the crystallization process to obtain smooth pin-hole free morphology. The change in morphology led to improved fill factor in the device, with highest efficiency 14%, which was significantly higher than devices made from perovskite film without adding water. We also showed that addition of up to 25% by volume of water does not significantly change the device performance.

  10. Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming.

    PubMed

    Jeong, Joonwoo; Gross, Adam; Wei, Wei-Shao; Tu, Fuquan; Lee, Daeyeon; Collings, Peter J; Yodh, A G

    2015-09-14

    This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter.

  11. In situ Raman and synchrotron X-ray diffraction study on crystallization of Choline chloride/Urea deep eutectic solvent under high pressure

    NASA Astrophysics Data System (ADS)

    Yuan, Chaosheng; Chu, Kunkun; Li, Haining; Su, Lei; Yang, Kun; Wang, Yongqiang; Li, Xiaodong

    2016-09-01

    Pressure-induced crystallization of Choline chloride/Urea (ChCl/Urea) deep eutectic solvent (DES) has been investigated by in-situ Raman spectroscopy and synchrotron X-ray diffraction. The results indicated that high pressure crystals appeared at around 2.6 GPa, and the crystalline structure was different from that formed at ambient pressure. Upon increasing the pressure, the Nsbnd H stretching modes of Urea underwent dramatic change after liquid-solid transition. It appears that high pressures may enhance the hydrogen bonds formed between ChCl and Urea. P versus T phase diagram of ChCl/Urea DES was constructed, and the crystallization mechanism of ChCl/Urea DES was discussed in view of hydrogen bonds.

  12. Buried and accessible surface area control intrinsic protein flexibility.

    PubMed

    Marsh, Joseph A

    2013-09-09

    Proteins experience a wide variety of conformational dynamics that can be crucial for facilitating their diverse functions. How is the intrinsic flexibility required for these motions encoded in their three-dimensional structures? Here, the overall flexibility of a protein is demonstrated to be tightly coupled to the total amount of surface area buried within its fold. A simple proxy for this, the relative solvent-accessible surface area (Arel), therefore shows excellent agreement with independent measures of global protein flexibility derived from various experimental and computational methods. Application of Arel on a large scale demonstrates its utility by revealing unique sequence and structural properties associated with intrinsic flexibility. In particular, flexibility as measured by Arel shows little correspondence with intrinsic disorder, but instead tends to be associated with multiple domains and increased α-helical structure. Furthermore, the apparent flexibility of monomeric proteins is found to be useful for identifying quaternary-structure errors in published crystal structures. There is also a strong tendency for the crystal structures of more flexible proteins to be solved to lower resolutions. Finally, local solvent accessibility is shown to be a primary determinant of local residue flexibility. Overall, this work provides both fundamental mechanistic insight into the origin of protein flexibility and a simple, practical method for predicting flexibility from protein structures. © 2013 Elsevier Ltd. All rights reserved.

  13. Differently ordered TiO2 nanoarrays regulated by solvent polarity, and their photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Hu, Wenyuan; Dong, Faqin; Zhang, Jing; Liu, Mingxue; He, Huichao; Wu, Yadong; Yang, Dingming; Deng, Hongquan

    2018-06-01

    Special TiO2 arrays with exposed facets were prepared in different solvents by low- temperature solvothermal synthesis. The morphology, phase and photocatalytic performance influenced by the various solvent polarities were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra and electrochemical testing. The results show that differences of solvent polarity are the main force driving differences in array growth; therefore, anatase TiO2 arrays with different crystal facets can be synthesized by tuning solvent polarity. TiO2 arrays prepared in cyclohexane are the best at oxidizing methyl orange through photocatalysis, followed by arrays prepared in toluene and ethanol. Arrays prepared in toluene are the best at reducing Cr(VI) photocatalytically, followed by those prepared in cyclohexane and ethanol. These differences in photocatalytic power are due to the ratio among the different crystal facets that are exposed, which affects the migration behavior of the photogenerated electrons and holes. In addition, the probable growth mechanisms of self-assembled ordered TiO2 arrays in different solvents are described.

  14. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  15. Study of the solid state of carbamazepine after processing with gas anti-solvent technique.

    PubMed

    Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Alessi, P; Cortesi, A; Princivalle, F; Solinas, D

    2003-09-01

    The purpose of this study was to investigate the influence of supercritical CO2 processing on the physico-chemical properties of carbamazepine, a poorly soluble drug. The gas anti-solvent (GAS) technique was used to precipitate the drug from three different solvents (acetone, ethylacetate and dichloromethane) to study how they would affect the final product. The samples were analysed before and after treatment by scanning electron microscopy analysis and laser granulometry for possible changes in the habitus of the crystals. In addition, the solid state of the samples was studied by means of X-ray powder diffraction, differential scanning calorimetry, diffuse reflectance Fourier-transform infrared spectroscopy and hot stage microscopy. Finally, the in vitro dissolution tests were carried out. The solid state analysis of both samples untreated and treated with CO2, showed that the applied method caused a transition from the starting form III to the form I as well as determined a dramatic change of crystal morphology, resulting in needle-shaped crystals, regardless of the chosen solvent. In order to identify which process was responsible for the above results, carbamazepine was further precipitated from the same three solvents by traditional evaporation method (RV-samples). On the basis of this cross-testing, the solvents were found to be responsible for the reorganisation into a different polymorphic form, and the potential of the GAS process to produce micronic needle shaped particles, with an enhanced dissolution rate compared to the RV-carbamazepine, was ascertained.

  16. A study of the solvent effect on the morphology of RDX crystal by molecular modeling method.

    PubMed

    Chen, Gang; Xia, Mingzhu; Lei, Wu; Wang, Fengyun; Gong, Xuedong

    2013-12-01

    Molecular dynamics simulations have been performed to investigate the effect of acetone solvent on the crystal morphology of RDX. The results show that the growth morphology of RDX crystal in vacuum is dominated by the (111), (020), (200), (002), and (210) faces using the BFDH laws, and (111) face is morphologically the most important. The analysis of surface structures of RDX crystal indicates that (020) face is non-polar, while (210), (111), (002), and (200) faces are polar among which (210) face has the strongest polarity. The interaction between acetone solvent and each RDX crystal face is different, and the order of binding energy on these surfaces is (210) > (111) > (002) > (200) > (020). The analysis of interactions among RDX and acetone molecules reveal that the system nonbond interactions are primary strong van der Waals and electrostatic interactions containing π-hole interactions, the weak hydrogen bond interactions are also existent. The effect of acetone on the growth of RDX crystal can be evaluated by comparing the binding energies of RDX crystalline faces. It can be predicted that compared to that in vacuum, in the process of RDX crystallization from acetone, the morphological importance of (210) face is increased more and (111) face is not the most important among RDX polar surfaces, while the non-polar (020) face probably disappears. The experimentally obtained RDX morphology grown from acetone is in agreement with the theoretical prediction.

  17. Synthesis, growth, structural, spectroscopic and optical studies of a semiorganic NLO crystal: zinc guanidinium phosphate.

    PubMed

    Suvitha, A; Murugakoothan, P

    2012-02-01

    The semi-organic nonlinear optical (NLO) crystal, zinc guanidinium phosphate (ZGuP) has been grown through synthesis between zinc sulphate, guanidine carbonate and orthophosphoric acid from its aqueous solution by slow solvent evaporation technique. Solubility of the synthesized material has been determined for various temperatures using water as solvent. The grown crystal has been characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopy technique. (1)H and (13)C FT-NMR have been recorded to elucidate the molecular structure. The optical absorption study confirms the suitability of the crystal for device applications. The second harmonic generation (SHG) efficiency of ZGuP is found to be 1.825 times that of potassium dihydrogen phosphate (KDP). Thermal behavior of the grown crystals has been studied by thermogravimetric and differential thermal analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Studies on synthesis of diamond at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Kailath, Ansu J.

    Diamond is an essential material of modern industry and probably the most versatile abrasive available today. It also has many other industrial applications attributable to its unique mechanical, optical, thermal and electrical properties. Its usage has grown to the extent that there is hardly a production process in modern industry in which industrial diamond does not play a part. Bulk diamond production today is a major industry. Diamonds can be produced in its thermodynamically stable regions either by direct static conversion, or shock-wave conversion. The pressures and temperatures required for direct static conversion are very high. In the catalyst-solvent method, the material used establishes a reaction path with lower activation energy than for direct transformation. This helps in a quicker transformation under more benign conditions. Hence, catalyst-solvent synthesis is readily accomplished and is now a viable and successful industrial process. Diamonds produced by shock wave are very small (approximately 60mu). Therefore this diamond is limited to applications such as polishing compounds only. The quality, quantity, size and morphology of the crystals synthesized by catalyst-solvent process depend on different conditions employed for synthesis. These details, because of commercial reasons are not disclosed in published literature. Hence, systematic studies have been planned to investigate the effect of various growth parameters on the synthesized crystals. During the growth of synthetic diamond crystals, some catalyst-solvent is retained into the crystals in some form and behaves like an impurity. Several physico-mechanical properties of the crystals are found to depend on the total quantity and distribution of these inclusions. Thus, detailed investigation of the crystallization medium and inclusions in synthesized diamonds was also undertaken in the present work. The work incorporated in this thesis has been divided into seven chapters. The first chapter is a general introduction incorporating the information regarding diamond together with a brief history of diamond synthesis. It also includes the details of the high pressure synthesis of diamond, the uses of diamond grits, the advantages of the synthetic diamond grit over natural grit and an outline to elucidate the reasons which prompted to undertake the present work. The details of the technique used in the present studies for synthesis of diamond grits by high-pressure high-temperature process are included in chapter II. The hydraulic press used for synthesis, the details of the reactant materials, stacking of the high pressure cell and the details of synthesis run have been described together with the separation procedure to isolate diamond grits from the frozen slug. Different analytical and characterization techniques used in the present studies for the analysis and characterization of the reactant materials, synthesized diamonds and the crystallization medium have been illustrated in chapter III. The effect of different synthesizing parameters on synthesized diamond crystals were studied. This study includes: (a) dependence of yield of diamond on temperature and pressure, (b) dependence of crystal size on cook length, (c) effect of variation of the relative amounts of carbonaceous material and catalyst on synthesis, (d) morphological variation and (e) effect of pressure pulse on synthesized crystals. Various observations made during this study and the results obtained have been compiled in chapter IV. The synthesized diamond crystals were characterized by X-ray Powder Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) and Optical Microscopy. The results obtained have been compiled in chapter V. In addition to these, the results obtained from the Infrared Spectra and the Electron Paramagnetic Spectra have also been included. Studies of crystallization medium and inclusions in the synthesized diamonds were carried out. This include: (a) X-ray diffraction study of the phase composition of crystallization medium and inclusions in synthesized diamonds, (b) metallographic examination of the initial catalyst-solvent and the frozen slug after synthesis, (c) temperature dependence of the magnetic susceptibility of the initial catalyst-solvent and the frozen catalyst-solvent after synthesis, (d) scanning electron microscopic examination of the inclusion on the mechanically polished cross-sections of the synthesized crystals, (e) EDAX analysis of these observed inclusions and the frozen catalyst-solvent matrix after growth, (f) temperature dependence of the magnetic susceptibility of the synthesized crystals and (g) the Mossbauer spectroscopic analysis of the synthesized crystals. Different observations and the results obtained from these studies have been compiled and presented in chapter VI. Chapter VII illustrates the various conclusions drawn from the present studies.

  19. Nematic Liquid-Crystal Colloids

    PubMed Central

    Muševič, Igor

    2017-01-01

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  20. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  1. Influence of crystal habit on the compression and densification mechanism of ibuprofen

    NASA Astrophysics Data System (ADS)

    Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante

    2002-08-01

    Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.

  2. On dewetting of thin films due to crystallization (crystallization dewetting).

    PubMed

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  3. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    PubMed

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  4. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme

    PubMed Central

    Ahalawat, Navjeet; Pandit, Subhendu; Kay, Lewis E.

    2018-01-01

    Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing system is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds benzene (~106 M-1s-1). Although the protein has long served as a model system for protein thermodynamics and crystal structures of both free and benzene-bound T4L L99A are available, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity remain elusive. The current work, using extensive molecular dynamics simulation, achieves this by capturing the complete process of spontaneous recognition of benzene by T4L L99A at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simulation trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simulated and high-resolution X-ray derived bound structures are in excellent agreement. A robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies and quantifies multiple ligand binding pathways with low activation barriers. Interestingly, none of these identified binding pathways required large conformational changes for ligand access to the buried cavity. Rather, these involve transient but crucial opening of a channel to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/helix9) leading to rapid binding. Free energy simulations further elucidate that these channel-opening events would have been unfavorable in wild type T4L. Taken together and via integrating with results from experiments, these simulations provide unprecedented mechanistic insights into the complete ligand recognition process in a buried cavity. By illustrating the power of subtle helix movements in opening up multiple pathways for ligand access, this work offers an alternate view of ligand recognition in a solvent-inaccessible cavity, contrary to the common perception of a single dominant pathway for ligand binding. PMID:29775455

  5. Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals

    NASA Astrophysics Data System (ADS)

    Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi

    2017-07-01

    Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.

  6. An excellent fluorescent dye with a twistable aromatic chain and its axially chiral crystals.

    PubMed

    Ma, Yan; Hao, Rui; Shao, Guangsheng; Wang, Yuan

    2009-04-30

    A new organic fluorescent dye, 2,4-dichloro-6-[p-(N,N-diethylamino)biphenylyl]-1,3,5-triazine (DBQ), with an electron withdrawing-donating pair bridged by a twistable aromatic chain has been synthesized. DBQ exhibits high fluorescence quantum yields (0.96 in hexane and 0.71 in THF), high extinction coefficients, and an excitation window extending up to approximately 480 nm. Due to the strong intramolecular charge transfer character, DBQ shows obviously solvent-dependent Stokes shifts with a value as high as 6360 cm(-1) in THF and controllable fluorescence emission in the visible region from "blue" to "orange". The axially chiral structures of DBQ crystals were clearly revealed by the X-ray analyses and CD spectroscopy measurements. Two enantiomers of DBQ were obtained by spontaneous resolution upon crystallization without any chiral auxiliary. The low rotation barriers around the interannular bonds in DBQ molecules resulted in an efficient and selective multiplication of each of the chiral structures when DBQ crystallized in THF at room temperature in the presence of an enantiopure crystal seed, leaving racemized DBQ molecules in the solution. The special crystalline properties of DBQ provided a new approach to the design and synthesis of organic chiral crystals. The photophysical properties of DBQ make it promising in the preparation of new fluorescent probes with high sensitivity.

  7. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.

    PubMed

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert

    2017-01-01

    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in the pharmaceutical/biopharmaceutical industry with special emphasis on novel membrane techniques for pharmaceutical applications. The method of coating a drug particle with a polymer using the SHFCC method is stable and ready for scale-up for operation over an extended period. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Surface mediated assembly of small, metastable gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities. Electronic supplementary information (ESI) available: Further details on stored plating solution preparation, film characterization, solution processing, MOF crystal FIB reconstruction and stability are available. See DOI: 10.1039/c3nr01708g

  9. An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine.

    PubMed

    Florence, Alastair J; Johnston, Andrea; Price, Sarah L; Nowell, Harriott; Kennedy, Alan R; Shankland, Norman

    2006-09-01

    An automated parallel crystallisation search for physical forms of carbamazepine, covering 66 solvents and five crystallisation protocols, identified three anhydrous polymorphs (forms I-III), one hydrate and eight organic solvates, including the single-crystal structures of three previously unreported solvates (N,N-dimethylformamide (1:1); hemi-furfural; hemi-1,4-dioxane). Correlation of physical form outcome with the crystallisation conditions demonstrated that the solvent adopts a relatively nonspecific role in determining which polymorph is obtained, and that the previously reported effect of a polymer template facilitating the formation of form IV could not be reproduced by solvent crystallisation alone. In the accompanying computational search, approximately half of the energetically feasible predicted crystal structures exhibit the C=O...H--N R2(2)(8)dimer motif that is observed in the known polymorphs, with the most stable correctly corresponding to form III. Most of the other energetically feasible structures, including the global minimum, have a C=O...H--N C(4) chain hydrogen bond motif. No such chain structures were observed in this or any other previously published work, suggesting that kinetic, rather than thermodynamic, factors determine which of the energetically feasible crystal structures are observed experimentally, with the kinetics apparently favouring nucleation of crystal structures based on the CBZ-CBZ R2(2)(8) motif. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  10. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  11. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  12. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    PubMed

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  13. A three step supercritical process to improve the dissolution rate of eflucimibe.

    PubMed

    Rodier, Elisabeth; Lochard, Hubert; Sauceau, Martial; Letourneau, Jean-Jacques; Freiss, Bernard; Fages, Jacques

    2005-10-01

    The aim of this study is to improve the dissolution properties of a poorly-soluble active substance, Eflucimibe by associating it with gamma-cyclodextrin. To achieve this objective, a new three-step process based on supercritical fluid technology has been proposed. First, Eflucimibe and cyclodextrin are co-crystallized using an anti-solvent process, dimethylsulfoxide being the solvent and supercritical carbon dioxide being the anti-solvent. Second, the co-crystallized powder is held in a static mode under supercritical conditions for several hours. This is the maturing step. Third, in a final stripping step, supercritical CO(2) is flowed through the matured powder to extract the residual solvent. The coupling of the first two steps brings about a significant synergistic effect to improve the dissolution rate of the drug. The nature of the entity obtained at the end of each step is discussed and some suggestions are made as to what happens in these operations. It is shown the co-crystallization ensures a good dispersion of both compounds and is rather insensitive to the operating parameters tested. The maturing step allows some dissolution-recrystallization to occur thus intensifying the intimate contact between the two compounds. Addition of water is necessary to make maturing effective as this is governed by the transfer properties of the medium. The stripping step allows extraction of the residual solvent but also removes some of the Eflucimibe which is the main drawback of this final stage.

  14. Organic single-crystal arrays from solution-phase growth using micropattern with nucleation control region.

    PubMed

    Goto, Osamu; Tomiya, Shigetaka; Murakami, Yosuke; Shinozaki, Akira; Toda, Akira; Kasahara, Jiro; Hobara, Daisuke

    2012-02-21

    A method for forming organic single-crystal arrays from solution is demonstrated using an organic semiconductor, 3,9-bis(4-ethylphenyl)-peri-xanthenoxanthene (C(2) Ph-PXX). Supersaturation of C(2) Ph-PXX/tetralin solution is spatially changed by making a large difference in solvent evaporation to generate nuclei at the designated location. The method is simple to implement since it employs only a micropattern and control of the solvent vapor pressure during growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography.

    PubMed

    Chatake, Toshiyuki; Fujiwara, Satoru

    2016-01-01

    A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.

  16. Self-adjusted flux for the traveling solvent floating zone growth of YBaCuFeO5 crystal

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Chung; Shu, Guo-Jiun; Chen, Wei-Tin; Du, Chao-Hung; Chou, Fang-Cheng

    2015-03-01

    A modified traveling solvent floating zone (TSFZ) technique was used to successfully grow a large size and high quality single crystal of multiferroic material YBaCuFeO5. This modified TSFZ growth uses a stoichiometric feed rod and pure copper oxide as the initial flux without prior knowledge of the complex phase diagram involving four elements, and the optimal flux for the growth of incongruently melt crystal is self-adjusted after a prolonged stable pulling. The wetting of the feed rod edge that often perturbs the molten zone stability was avoided by adding 2 wt% B2O3. The optimal flux concentration for the YBaCuFeO5 growth can be extracted to be near YBaCuFeO5:CuO=13:87 in molar ratio. The crystal quality was confirmed by the satisfactory refinement of crystal structure of space group P4mm and the two consecutive anisotropic antiferromagnetic phase transitions near 455 K and 170 K.

  17. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    PubMed

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  19. Automatic twin vessel recrystallizer. Effective purification of acetaminophen by successive automatic recrystallization and absolute determination of purity by DSC.

    PubMed

    Nara, Osamu

    2011-01-24

    I describe an interchangeable twin vessel (J, N) automatic glass recrystallizer that eliminates the time-consuming recovery and recycling of crystals for repeated recrystallization. The sample goes in the dissolution vessel J containing a magnetic stir-bar K; J is clamped to the upper joint H of recrystallizer body D. Empty crystallization vessel N is clamped to the lower joint M. Pure solvent is delivered to the dissolution vessel and the crystallization vessel via the head of the condenser A. Crystallization vessel is heated (P). The dissolution reservoir is stirred and heated by the solvent vapor (F). Continuous outflow of filtrate E out of J keeps N at a stable boiling temperature. This results in efficient dissolution, evaporation and separation of pure crystals Q. Pure solvent in the dissolution reservoir is recovered by suction. Empty dissolution and crystallization vessels are detached. Stirrer magnet is transferred to the crystallization vessel and the role of the vessels are then reversed. Evacuating mother liquor out of the upper twin vessel, the apparatus unit is ready for the next automatic recrystallization by refilling twin vessels with pure solvent. We show successive automatic recrystallization of acetaminophen from diethyl ether obtaining acetaminophen of higher melting temperatures than USP and JP reference standards by 8× automatic recrystallization, 96% yield at each stage. Also, I demonstrate a novel approach to the determination of absolute purity by combining the successive automatic recrystallization with differential scanning calorimetry (DSC) measurement requiring no reference standards. This involves the measurement of the criterial melting temperature T(0) corresponding to the 100% pure material and quantitative ΔT in DSC based on the van't Hoff law of melting point depression. The purity of six commercial acetaminophen samples and reference standards and an eight times recrystallized product evaluated were 98.8 mol%, 97.9 mol%, 99.1 mol%, 98.3 mol%, 98.4 mol%, 98.5 mol% and 99.3 mol% respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Si-Ge-metal ternary phase diagram calculations

    NASA Technical Reports Server (NTRS)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  1. Single crystal growth of spin-ladder compound La8Cu7O19 by the travelling-solvent floating zone method

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Singh, S.; Partzsch, S.; Zwiebler, M.; Geck, J.; Wurmehl, S.; Büchner, B.; Hess, C.

    2016-08-01

    Large single crystals of La8Cu7O19 have been grown using the travelling-solvent floating zone method. A rather high oxygen pressure of 9 bar in the growth chamber and a slow growth speed of 0.5 mm/h were among the most important parameters in stabilizing the growth of this incongruently melting compound. Interestingly, a novel growth scenario has been witnessed. The crystal structure of the grown La8Cu7O19 crystal has been analyzed using single crystal diffractometry to extract important structural parameters of this compound. We find that La8Cu7O19 crystallizes in a monoclinic structure with space group C 2 / c and has the lattice parameters a ≈ 13.83 Å, b ≈ 3.75 Å, c ≈ 34.59 Å, and β ≈ 99.33 °, in good agreement with the data obtained on polycrystalline samples in the literature. The magnetization shows a highly anisotropic behavior, and an anomaly at T ≈103 K.

  2. Modeling solid-state transformations occurring in dissolution testing.

    PubMed

    Laaksonen, Timo; Aaltonen, Jaakko

    2013-04-15

    Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Unique Chiral Interpenetrating d-f Heterometallic MOFs as Luminescent Sensors.

    PubMed

    Wu, Zhi-Lei; Dong, Jie; Ni, Wei-Yan; Zhang, Bo-Wen; Cui, Jian-Zhong; Zhao, Bin

    2015-06-01

    One novel three-dimensional (3D) 3d-4f metal-organic framework (MOF), [TbZn(L)(CO3)2(H2O)]n (1) [HL = 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine], has been successfully synthesized and structurally characterized. Structural analysis shows that compound 1 features a unique chiral interpenetrating 3D framework for the first time. The resulting crystals of 1 are composed of enantiomers 1a (P41) and 1b (P43), as was clearly confirmed by the crystal structure and the corresponding circular dichroism (CD) analyses of eight randomly selected crystals. The investigations on CD spectra based on every single crystal clearly assigned the Cotton effect signals. The powder X-ray diffraction measurement of 1 after being immersed in common solvents reveals that 1 possess excellent solvent stability. Furthermore, luminescent studies imply that 1 displays highly selective luminescent sensing of aldehydes, such as formol, acetaldehyde, and propanal.

  4. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGES

    Bi, Sheng; He, Zhengran; Chen, Jihua; ...

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10 -2 cm 2/V s, whichmore » is the highest mobility from SMDPPEH ever reported.« less

  5. Reconstructing Solvent Density of Myoglobin Unit Cell from Proximal Radial Distribution Functions of Amino Acids

    NASA Astrophysics Data System (ADS)

    Galbraith, Madeline; Lynch, Gc; Pettitt, Bm

    Understanding the solvent density around a protein crystal structure is an important step for refining accurate crystal structures for use in dynamics simulations or in free energy calculations. The free energy of solvation has typically been approximated using an implicit continuum solvent model or an all atom MD simulation, with a trade-off between accuracy and computation time. For proteins, using precomputed proximal radial distribution functions (pRDFs) of the solvent to reconstruct solvent density on a grid is much faster than all atom MD simulations and more accurate than using implicit solvent models. MD simulations were run for the 20 common amino acids and pRDFs were calculated for several atom type data sets with and without hydrogens, using atom types representative of amino acid side chain atoms. Preliminary results from reconstructions suggest using a data set with 15 heavy atoms and 3 hydrogen yields results with the lowest error without a tradeoff on time. The results of using precomputed pRDFs to reconstruct the solvent density of water for the myoglobin (pdb ID 2mgk) unit cell quantifies the accuracy of the method in comparison with the crystallographic data. Funding Acknowledgement: This research was funded by the CPRIT Summer Undergraduate Program in Computational Cancer Biology, training Grant award RP 140113 from the Cancer Prevention & Research Institute of Texas (CPRIT).

  6. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    PubMed Central

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S.

    2012-01-01

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s. PMID:23235441

  7. Effect of casting solvent on crystallinity of ondansetron in transdermal films.

    PubMed

    Pattnaik, Satyanarayan; Swain, Kalpana; Mallick, Subrata; Lin, Zhiqun

    2011-03-15

    The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc. were utilized to characterize the crystalline state of ondansetron in the film. Recrystallisation was observed in all the transdermal films fabricated using the casting solvents other than chloroform. Long thin slab-looking, long wire-like or spherulite-looking crystals with beautiful impinged boundaries were observed in SEM. Moreover, XRD revealed no crystalline peaks of ondansetron hydrochloride in the transdermal films prepared using chloroform as casting solvent. The significantly decreased intensity and sharpness of the DSC endothermic peaks corresponding to the melting point of ondansetron in the formulation (specifically in CHL) indicated partial dissolution of ondansetron crystals in the polymeric films. The employed analytical tools suggested chloroform as a preferred casting solvent with minimum or practically absence of recrystallization indicating a relatively amorphous state of ondansetron in transdermal films. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. 1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio

    NASA Astrophysics Data System (ADS)

    Notash, Behrouz

    2018-03-01

    Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.

  9. Improved performance of mesostructured perovskite solar cells via an anti-solvent method

    NASA Astrophysics Data System (ADS)

    Hao, Jiabin; Hao, Huiying; Cheng, Feiyu; Li, Jianfeng; Zhang, Haiyu; Dong, Jingjing; Xing, Jie; Liu, Hao; Wu, Jian

    2018-06-01

    One-step solution process is a facile and widely used procedure to prepare organic-inorganic perovskite materials. However, the poor surface morphology of the films attributed to the uncontrollable nucleation and crystal growth in the process is unfavorable to solar cells. In this study, an anti-solvent treatment during the one-step solution process, in which ethyl acetate (EA) was dropped on the sample during spinning the precursor solution containing CH3NH3Cl, was adopted to fabricate perovskite materials and solar cells. It was found that the morphology of the perovskite film was significantly improved due to the rapid nucleation and slow crystal growth process. The modified process enabled us to fabricate the mesoporous solar cell with power conversion efficiency of 14%, showing an improvement of 40% over the efficiency of 9.7% of the device prepared by conventional one-step method. The controlling effect of annealing time on the morphology, crystal structure and transport properties of perovskite layer as well as the performance of device fabricated by the anti-solvent method were investigated and the possible mechanism was discussed.

  10. Modification of crystal habit of ibuprofen using the phase partition technique: effect of aerosil and tween 80 in binding solvent.

    PubMed

    Umprayn, K; Luengtummuen, A; Kitiyadisai, C; Pornpiputsakul, T

    2001-11-01

    A ternary diagram, representing the solubility of binding solvent (chloroform) in a mixture of ethanol and water, was constructed. For this study, the solvent mixture that gave the best ibuprofen pellets (IPs) was composed of chloroform.ethanol:water at a ratio of 1.5%:8%:90.5%. The suitable agitator speed, temperature, and mixing time were found to be 1,500 rpm, 25 degrees C +/- 2 degrees C, and 20 min, respectively. In addition, suitable stirring time when the phase partition process of IPs began was 15 min. IPs obtained from these conditions were small and round, approximately 1 mm; surface determination by scanning electron microscopy (SEM) indicated that the IPs were composed of drug microcrystals rearranged on the surface. For the dissolution, IPs showed lower drug release when compared with pure ibuprofen crystal (IC) (f2 analysis). An attempt to modify the dissolution property of IP by incorporating various concentrations of Aerosil and Tween 80 in the binding solvent was made. Microscopic appearance showed that both Aerosil and Tween 80 gave less spherical pellets when compared with the use of binding solvent alone. For both the Aerosil and Tween 80 employed, the results indicated a change in rearrangement of drug microcrystals and a change in crystal habit. However, Tween 80 gave more change of the crystallographic direction of drug microcrystals than Aerosil. In term of dissolution, the results showed that employing Tween 80 at 1.2% gave the highest drug release compared to the use of Aerosil and IC alone (f2 analysis). These pellets had a good flow property, as indicated by Carr's compressibility, flow rate, and angle of repose, and they can be compressed into a tablet, encapsulated by suitable polymer, or pulverized to obtain micronized crystals. In the case of compression into tablets, the dissolution profiles of these tablets compared with those of commercial product meet the USP 24 requirement (Q > or = 80% at 60 min).

  11. Separation and concentration of lower alcohols from dilute aqueous solutions

    DOEpatents

    Moore, Raymond H.; Eakin, David E.; Baker, Eddie G.; Hallen, Richard T.

    1991-01-01

    A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

  12. Crystal growth, physical properties and computational insights of semi-organic non-linear optical crystal diphenylguanidinium perchlorate grown by conventional solvent evaporation method

    NASA Astrophysics Data System (ADS)

    Kajamuhideen, M. S.; Sethuraman, K.; Ramamurthi, K.; Ramasamy, P.

    2018-02-01

    A splendid nonlinear optical single crystals diphenylguanidinium perchlorate (DPGP) was lucratively grown by low cost solvent evaporation method with the dimensions of 8 × 4 × 2 mm3. Structural and morphological studies of grown crystal were confirmed using X-ray diffraction studies. The presence of diverse functional groups was identified using FTIR and RAMAN studies. The molecular structure of a grown crystal was inveterate by NMR studies. The optical transmittance of DPGP crystal was analyzed using UV-vis-NIR studies. Photoluminescence spectrum shows sharp, well defined emission peak at 388 nm. Thermal studies assign that adduct is stable with the melting point of 164 °C. Microhardness studies declare that DPGP crystal belongs to the soft material class and their yield strength and elastic stiffness constant values were evaluated. Photoconductivity studies revealed the negative photoconductive nature of DPGP crystal. Second harmonic generation (SHG) efficiency of the DPGP crystal was 1.4 times that of potassium dihydrogen phosphate. Etching studies were carried out for different etching time. The dielectric studies were performed at different frequency. Laser damage threshold properties of DPGP crystal were examined using Nd:YAG laser system. The HOMO-LUMO energy gap evident the charge transfer interaction of the molecule. The calculated first order hyperpolarizability value is 5 times greater than that of urea. Thus, the grown DPGP single crystals are well suited for NLO device fabrications.

  13. Crystallization and Microphase Separation in Chiral Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ho, Rong-Ming

    2012-02-01

    Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA=x Tg,PS, respectively. Anisotropic arrangement of the PLLA crystallites grown within the microdomains was identified. The formation of this exclusive crystalline growth is attributed to the spatial confinement effect for crystallization. While Tc,PLLA=x Tg,PS, the preferential growth may modulate the curvature of microdomains by shifting the molecular chains to access the fast path for crystalline growth due to the increase in chain mobility. As a result, a spring-like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation of helices and to result in crystalline cylinders.

  14. Hematin crystallization from aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Ketchum, Megan A.; Olafson, Katy N.; Petrova, Elena V.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2013-09-01

    Hematin crystallization is the main mechanism of detoxification of heme that is released in malaria-infected erythrocytes as a byproduct of the hemoglobin catabolism by the parasite. A controversy exists over whether hematin crystals grow from the aqueous medium of the parasite's digestive vacuole or in the lipid bodies present in the vacuole. To this end, we compare the basic thermodynamic and structural features of hematin crystallization in an aqueous buffer at pH 4.8, as in the digestive vacuole, and in water-saturated octanol that mimics the environment of the lipid nanospheres. We show that in aqueous solutions, hematin aggregation into mesoscopic disordered clusters is insignificant. We determine the solubility of the β-hematin crystals in the pH range 4.8-7.6. We image by atomic force microscopy crystals grown at pH 4.8 and show that their macroscopic and mesoscopic morphology features are incompatible with those reported for biological hemozoin. In contrast, crystals grown in the presence of octanol are very similar to those extracted from parasites. We determine the hematin solubility in water-saturated octanol at three temperatures. These solubilities are four orders of magnitude higher than that at pH 4.8, providing for faster crystallization from organic than from aqueous solvents. These observations further suggest that the lipid bodies play a role in mediating biological hemozoin crystal growth to ensure faster heme detoxification.

  15. Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals

    PubMed Central

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong

    2016-01-01

    Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463

  16. MULTIPLE SOLVENT EXPOSURE IN HUMANS: CROSS-SPECIES EXTRAPOLATIONS

    EPA Science Inventory

    Multiple Solvent Exposures in Humans:
    Cross-Species Extrapolations
    (Future Research Plan)

    Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2

    A few solvents can be safely studied in acute experiments in human subjects. Data exist in rats f...

  17. [Fine stereo structure for natural organic molecules, a preliminary study. II. Melting point influenced by structure factors].

    PubMed

    Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y

    1995-06-01

    Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.

  18. How large B-factors can be in protein crystal structures.

    PubMed

    Carugo, Oliviero

    2018-02-23

    Protein crystal structures are potentially over-interpreted since they are routinely refined without any restraint on the upper limit of atomic B-factors. Consequently, some of their atoms, undetected in the electron density maps, are allowed to reach extremely large B-factors, even above 100 square Angstroms, and their final positions are purely speculative and not based on any experimental evidence. A strategy to define B-factors upper limits is described here, based on the analysis of protein crystal structures deposited in the Protein Data Bank prior 2008, when the tendency to allow B-factor to arbitrary inflate was limited. This B-factor upper limit (B_max) is determined by extrapolating the relationship between crystal structure average B-factor and percentage of crystal volume occupied by solvent (pcVol) to pcVol =100%, when, ab absurdo, the crystal contains only liquid solvent, the structure of which is, by definition, undetectable in electron density maps. It is thus possible to highlight structures with average B-factors larger than B_max, which should be considered with caution by the users of the information deposited in the Protein Data Bank, in order to avoid scientifically deleterious over-interpretations.

  19. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.

    PubMed

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-14

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.

  20. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    PubMed

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  1. IMAGINE: first neutron protein structure and new capabilities for neutron macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, Parthapratim; Myles, Dean A A; Robertson, Lee

    2013-01-01

    We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3more » and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.« less

  2. Fabrication and Analysis of Photonic Crystals

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  3. Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Y.-F.; Kim, H.; Kovenklioglu, S.

    2007-09-15

    BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles. BaSO{sub 4} nanoparticles in the size range of 15-100 nm were reactively precipitated within the confinement of an aqueous droplet which was coalesced from two separate aqueous droplets containing BaCl{sub 2} and (NH{sub 4}){sub 2}SO{sub 4} using a three T-junction micromixer configuration constructed with commercially available simple tubing and fitting supplies. Also, DPA nanoparticles of about 200 nm were crystallized by combining DPA+ethanol and watermore » droplets using the same micromixer configuration. - Graphical abstract: BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles.« less

  4. Tunable Crystallization and Nucleation of Planar CH3NH3PbI3 through Solvent-Modified Interdiffusion.

    PubMed

    Yao, Zhibo; Jones, Timothy W; Grigore, Mihaela; Duffy, Noel W; Anderson, Kenrick F; Dunbar, Ricky B; Feron, Krishna; Hao, Feng; Lin, Hong; Wilson, Gregory J

    2018-05-02

    A smooth and compact light absorption perovskite layer is a highly desirable prerequisite for efficient planar perovskite solar cells. However, the rapid reaction between CH 3 NH 3 I methylammonium iodide (MAI) and PbI 2 often leads to an inconsistent CH 3 NH 3 PbI 3 crystal nucleation and growth rate along the film depth during the two-step sequential deposition process. Herein, a facile solvent additive strategy is reported to retard the crystallization kinetics of perovskite formation and accelerate the MAI diffusion across the PbI 2 layer. It was found that the ultrasmooth perovskite thin film with narrow crystallite size variation can be achieved by introducing favorable solvent additives into the MAI solution. The effects of dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, chlorobenzene, and diethyl ether additives on the morphological properties and cross-sectional crystallite size distribution were investigated using atomic force microscopy, X-ray diffraction, and scanning electron microscopy. Furthermore, the light absorption and band structure of the as-prepared CH 3 NH 3 PbI 3 films were investigated and correlated with the photovoltaic performance of the equivalent solar cell devices. Details of perovskite nucleation and crystal growth processes are presented, which opens new avenues for the fabrication of more efficient planar solar cell devices with these ultrasmooth perovskite layers.

  5. Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane

    PubMed Central

    Gao, Xiu-Gong; Maldonado, Ernesto; Pérez-Montfort, Ruy; Garza-Ramos, Georgina; de Gómez-Puyou, Marietta Tuena; Gómez-Puyou, Armando; Rodríguez-Romero, Adela

    1999-01-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2-Å resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 Å from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design. PMID:10468562

  6. Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane.

    PubMed

    Gao, X G; Maldonado, E; Pérez-Montfort, R; Garza-Ramos, G; de Gómez-Puyou, M T; Gómez-Puyou, A; Rodríguez-Romero, A

    1999-08-31

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2-A resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 A from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  7. Biochemical and Structural Characterization of Lysophosphatidic Acid Binding by a Humanized Monoclonal Antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Fleming; J Wojciak; M Campbell

    Lysophosphatidic acid (LPA) is a common product of glycerophospholipid metabolism and an important mediator of signal transduction. Aberrantly high LPA concentrations accompany multiple disease states. One potential approach for treatment of these diseases, therefore, is the therapeutic application of antibodies that recognize and bind LPA as their antigen. We have determined the X-ray crystal structure of an anti-LPA antibody (LT3015) Fab fragment in its antigen-free form to 2.15 {angstrom} resolution and in complex with two LPA isotypes (14:0 and 18:2) to resolutions of 1.98 and 2.51 {angstrom}, respectively. The variable CDR (complementarity-determining region) loops at the antigen binding site adoptmore » nearly identical conformations in the free and antigen-bound crystal structures. The crystallographic models reveal that the LT3015 antibody employs both heavy- and light-chain CDR loops to create a network of eight hydrogen bonds with the glycerophosphate head group of its LPA antigen. The head group is almost completely excluded from contact with solvent, while the hydrocarbon tail is partially solvent-exposed. In general, mutation of amino acid residues at the antigen binding site disrupts LPA binding. However, the introduction of particular mutations chosen strategically on the basis of the structures can positively influence LPA binding affinity. Finally, these structures elucidate the exquisite specificity demonstrated by an anti-lipid antibody for binding a structurally simple and seemingly unconstrained target molecule.« less

  8. Characterization of 4H <000-1> Silicon Carbide Films Grown by Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew, A; Sayir, Ali; Neudeck, Philip, G; Raghothamachar, Balaji; Dudley, Michael

    2012-01-01

    Commercially available bulk silicon carbide (SiC) has a high number (>2000/sq cm) of screw dislocations (SD) that have been linked to degradation of high-field power device electrical performance properties. Researchers at the NASA Glenn Research Center have proposed a method to mass-produce significantly higher quality bulk SiC. In order for this bulk growth method to become reality, growth of long single crystal SiC fibers must first be achieved. Therefore, a new growth method, Solvent-Laser Heated Floating Zone (Solvent-LHFZ), has been implemented. While some of the initial Solvent-LHFZ results have recently been reported, this paper focuses on further characterization of grown crystals and their growth fronts. To this end, secondary ion mass spectroscopy (SIMS) depth profiles, cross section analysis by focused ion beam (FIB) milling and mechanical polishing, and orientation and structural characterization by x-ray transmission Laue diffraction patterns and x-ray topography were used. Results paint a picture of a chaotic growth front, with Fe incorporation dependant on C concentration.

  9. Confinement effects on lyotropic nematic liquid crystal phases of graphene oxide dispersions

    NASA Astrophysics Data System (ADS)

    Al-Zangana, Shakhawan; Iliut, Maria; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2017-12-01

    Graphene oxide (GO) forms well ordered liquid crystal (LC) phases in polar solvents. Here, we map the lyotropic phase diagram of GO as a function of the lateral dimensions of the GO flakes, their concentration, geometrical confinement configuration and solvent polarity. GO flakes were prepared in water and transferred into other polar solvents. Polarising optical microscopy (POM) was used to determine the phase evolution through the isotropic-biphasic-nematic transitions of the GO LC. We report that the confinement volume and geometry relative to the particle size is critical for the observation of the lyotropic phase, specifically, this determines the low-end concentration limit for the detection of the GO LC. Additionally, a solvent with higher polarisability stabilises the LC phases at lower concentrations and smaller flake sizes. GO LCs have been proposed for a range of applications from display technologies to conductive fibres, and the behaviour of LC phase formation under confinement imposes a limit on miniaturisation of the dimensions of such GO LC systems which could significantly impact on their potential applications.

  10. An ambient stable core-substituted perylene bisimide dianion: isolation and single crystal structure analysis† †Electronic supplementary information (ESI) available: Synthesis, spectroelectrochemistry, UV-vis, electrochemistry, X-ray diffraction, NMR and mass spectra. CCDC 1032959. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03671a Click here for additional data file. Click here for additional data file.

    PubMed Central

    Seifert, Sabine; Schmidt, David

    2015-01-01

    Here we report the first example of an isolable, ambient stable perylene bisimide (PBI) dianion which was synthesized by catalytic reduction of a highly electron deficient PBI derivative. The remarkable stability of this unprecedented dianion in air for months facilitated its complete characterization by different methods, including single crystal X-ray analysis. Furthermore, solvent dependent cyclic and square wave voltammetry studies revealed that the formation of PBI dianions is preferred in more polar solvents, whereas the generation of PBI radical anions should be favoured in less polar solvents. PMID:28717450

  11. Computational and theoretical studies of globular proteins

    NASA Astrophysics Data System (ADS)

    Pagan, Daniel L.

    Protein crystallization is often achieved in experiment through a trial and error approach. To date, there exists a dearth of theoretical understanding of the initial conditions necessary to promote crystallization. While a better understanding of crystallization will help to create good crystals suitable for structure analysis, it will also allow us to prevent the onset of certain diseases. The core of this thesis is to model and, ultimately, understand the phase behavior of protein particles in solution. Toward this goal, we calculate the fluid-fluid coexistence curve in the vicinity of the metastable critical point of the modified Lennard-Jones potential, where it has been shown that nucleation is increased by many orders of magnitude. We use finite-size scaling techniques and grand canonical Monte Carlo simulation methods. This has allowed us to pinpoint the critical point and subcritical region with high accuracy in spite of the critical fluctuations that hinder sampling using other Monte Carlo techniques. We also attempt to model the phase behavior of the gamma-crystallins, mutations of which have been linked to genetic cataracts. The complete phase behavior of the square well potential at the ranges of attraction lambda = 1.15 and lambda = 1.25 is calculated and compared with that of the gammaII-crystallin. The role of solvent is also important in the crystallization process and affects the phase behavior of proteins in solution. We study a model that accounts for the contribution of the solvent free-energy to the free-energy of globular proteins. This model allows us to model phase behavior that includes solvent.

  12. Solvent-assisted self-assembly of fullerene into single-crystal ultrathin microribbons as highly sensitive UV-visible photodetectors.

    PubMed

    Wei, Lang; Yao, Jiannian; Fu, Hongbing

    2013-09-24

    The size, shape, and crystallinity of organic nanostructures play an important role in their physical properties and are mainly determined by the self-assembling kinetics of molecular components often involving the solvent conditions. Here, we reported a kinetically controlled self-assembly of C60 assisted by the solvent carbon bisulfide (CS2) into single-crystal ultrathin microribbons of 2C60·3CS2, upon mixing the poor solvent isopropyl alcohol with a C60/CS2 stock solution. Surface energy calculations reveal that these microribbons represent a kinetically favored high-energy state as compared with the thermodynamically stable shape of prismatic rods. High-resolution transmission electron microscopy observations clarify that association of CS2 at the nucleation stage helps to guide and rigidify the formation of π-π stacking 1D chains of C60 through the surrounding CS2 cage-like structures, which further act as glue, boosting lateral assembly of as-formed 1D chains into untrathin 2D microribbon single crystals. Precise control over the thickness, width, and length of 2C60·3CS2 microribbons was achieved by manipulation of the growth kinetics through adjusting the solvent conditions. Upon heating to 120 °C, sublimation of CS2 components results in fcc C60 microribbons. We found that both microribbons of solvated monoclinic 2C60·3CS2 and pure fcc C60 exhibit highly sensitive photoconductivity properties with a spectral response range covering UV to visible. The highest on/off ratio of two-terminal photodetectors based on single ribbons reaches around 250, while the responsitivity is about 75.3 A W(-1) in the UV region and 90.4 A W(-1) in the visible region.

  13. Influence of solvent parameters on structure of polyhydroxybutyrate films

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Iordanskii, A. L.

    2012-07-01

    The polarity of dissolvent increases the perfection of a crystal structure and decrease the amount of amorphous phase of polyhydroxybutyrate (PHB). It is shown, that the amount of a defective crystal phase in films PHB is directly proportional to magnitude of cohesive energy of dissolvent.

  14. Crystallization of proteins by dynamic control of supersaturation. Ph.D. Thesis Semiannual Status Report, 21 Mar. - 20 Sep. 1990

    NASA Technical Reports Server (NTRS)

    Wilson, Lori June

    1990-01-01

    The growth of protein crystals is known to be the limiting factor in the determination of the three-dimensional structures of most proteins. It is expected that the kinetics of supersaturation, which is directly related to solvent evaporation, will affect protein crystal growth and nucleation and accordingly determine the quality, number, size, and morphology of the crystals. With a technique that controls the evaporation of solvent from a protein solution with N2(g) it is possible to determine the effect of different evaporation profiles on hen egg white lysozyme crystals. Hen egg white lysozyme was chosen as the model protein because it crystallizes easily and has solubility data available for most salt, pH, and temperature ranges. Commercially available lysozyme was further purified by a number of methods. Crystals grown with the purified lysozyme and with the unpurified lysozyme in citrate buffer were different shapes but were found to be of the same symmetry space group by precession photos. Differences were seen in the lysozyme crystals grown using different evaporation rates. At three of the four initial conditions for lysozyme crystal growth, longer evaporation times yielded better crystals. The evaporation times required to see a change in the appearance of the crystals was much longer than expected. The number of rates studied so far represent only a small fraction of the ones now available with the gas evaporation device. The technique also provides for control of both solution pH and temperature which are related to the solubilities of proteins.

  15. Growth and characterization of organic NLO material: Clobetasol propionate

    NASA Astrophysics Data System (ADS)

    Purusothaman, R.; Rajesh, P.; Ramasamy, P.

    2015-06-01

    Single crystals of clobetasol propionate (CP) have been grown by slow evaporation solution technique using mixed solvent of methanol-acetone. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their lattice parameter and space group. The powder X-ray diffraction pattern of the grown CP has been indexed. Thermal analysis was performed to study the thermal stability of the grown crystals. Photoluminescence spectrum shows broad emission peak observed at 421 nm. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found in the crystal.

  16. Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDS).

    PubMed

    Edwards, A D; Shekunov, B Y; Kordikowski, A; Forbes, R T; York, P

    2001-08-01

    Pure anhydrous polymorphs of carbamazepine were prepared by solution-enhanced dispersion with supercritical fluids (SEDS). Crystallization of the polymorphs was studied. Mechanisms are proposed that consider the thermodynamics of carbamazepine, supersaturation in the SEDS process, and the binary phase equilibria of organic solvents and the carbon dioxide antisolvent. alpha-Carbamazepine was crystallized at high supersaturations and low temperatures, beta-carbamazepine crystallized from a methanol-carbon dioxide phase split, and gamma-carbamazepine crystallized via nucleation at high temperatures and low supersaturation. Copyright 2001 Wiley-Liss, Inc.

  17. Kinetics of Polymer-Fullerene Phase Separation during Solvent Annealing Studied by Table-Top X-ray Scattering.

    PubMed

    Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Nadazdy, Peter; Nadazdy, Vojtech; Majkova, Eva

    2017-03-08

    Solvent annealing is an efficient way of phase separation in polymer-fullerene blends to optimize bulk heterojunction morphology of active layer in polymer solar cells. To track the process in real time across all relevant stages of solvent evaporation, laboratory-based in situ small- and wide-angle X-ray scattering measurements were applied simultaneously to a model P3HT:PCBM blend dissolved in dichlorobenzene. The PCBM molecule agglomeration starts at ∼7 wt % concentration of solid content of the blend in solvent. Although PCBM agglomeration is slowed-down at ∼10 wt % of solid content, the rate constant of phase separation is not changed, suggesting agglomeration and reordering of P3HT molecular chains. Having the longest duration, this stage most affects BHJ morphology. Phase separation is accelerated rapidly at concentration of ∼25 wt %, having the same rate constant as the growth of P3HT crystals. P3HT crystallization is driving force for phase separation at final stages before a complete solvent evaporation, having no visible temporal overlap with PCBM agglomeration. For the first time, such a study was done in laboratory demonstrating potential of the latest generation table-top high-brilliance X-ray source as a viable alternative before more sophisticated X-ray scattering experiments at synchrotron facilities are performed.

  18. Using tethered triblock copolymers to mediate the interaction between substrates

    NASA Astrophysics Data System (ADS)

    Chern, Shyh-Shi; Zhulina, Ekaterina B.; Pickett, Galen T.; Balazs, Anna C.

    1998-04-01

    Using scaling analysis and a self-consistent field (SCF) theory, we compress two copolymer-coated surfaces and isolate conditions that yield multiple, distinct minima in the interaction profile. We focus on planar surfaces that are coated with ABC triblock copolymers. Tethered to the surface by the last monomer in the C block, the copolymers are grafted at relatively low densities. The surrounding solution is a poor solvent for both the A and C blocks, and is a good solvent for the B blocks. Through scaling theory, we pinpoint the parameters that yield two minima in the interaction profile. The SCF calculations reveal the changes in the morphology of the polymers as the layers are compressed. Through both studies, we determine how the morphological changes give rise to the observed surface interactions. The results provide guidelines for creating polymer-coated colloidal systems that can form two stable crystal structures. Such systems could be used for bistable, optical switches. The findings also yield a prescription for creating systems that exhibit additional minima in the free energy of interaction.

  19. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  20. Practical macromolecular cryocrystallography

    PubMed Central

    Pflugrath, J. W.

    2015-01-01

    Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to help prevent the stresses that damage crystals when flash-cooling are described. A method of using isopentane to assess whether cryogenic temperatures have been preserved when dismounting screened crystals is also presented. PMID:26057787

  1. Low-resolution structure of Drosophila translin

    PubMed Central

    Kumar, Vinay; Gupta, Gagan D.

    2012-01-01

    Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579

  2. A 1:1 pharmaceutical cocrystal of myricetin in combination with uncommon piracetam conformer: X-ray single crystal analysis and mechanochemical synthesis

    NASA Astrophysics Data System (ADS)

    Sowa, Michał; Ślepokura, Katarzyna; Matczak-Jon, Ewa

    2014-01-01

    Combination of two Active Pharmaceutical Ingredients, myricetin and piracetam, yields a 1:1 cocrystal characterized by X-ray single-crystal and powder diffraction, Raman spectroscopy, 1H NMR, thermal analysis (DSC and TG-DTA) methods. Constituents of the cocrystalline phase were also investigated in terms of Hirshfeld surfaces. Compounds in their neutral forms cocrystallize in the Pna21 space group of orthorhombic system. Notably, piracetam adopts an uncommon conformation, not encountered in its cocrystals previously described. In the crystal lattice, a three-dimensional hydrogen-bonded network is observed, including formation of a 2D molecular scaffolding motif. A scale-up procedure is readily available with use of solvent-drop grinding method, in which application of a variety of common solvents leads to formation of the cocrystal, as confirmed by XRPD and Raman spectroscopy.

  3. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  4. Fabrication of 3D photonic crystals from chitosan that are responsive to organic solvents.

    PubMed

    Huang, Guanbo; Yin, Yibing; Pan, Zeng; Chen, Mingxi; Zhang, Lei; Liu, Yu; Zhang, Yongli; Gao, Jianping

    2014-12-08

    Inspired by photonic nanostructures in nature, such as the hair-like chaetae on the body of sea mice, inverse opal photonic crystals films were fabricated with chitosan, a kind of biomacromolecule found in nature. First, monodispersed polystyrene (PS) colloidal crystal templates with different particle sizes were prepared. The inverse opal films (IOFs) were fabricated through in situ cross-linking of the PS templates. The IOFs contain periodically ordered interconnecting pores that endow the films with photonic stop bands and structural colors, which are visible to the naked eye. The IOFs exhibit rapid reversible changes in their structural colors and reflectance peaks in response to alcohols and phenols. Possible mechanisms for the shifts in the IOF's reflectance peaks are proposed. The changes in the IOFs in response to alcohols and phenols provide a potential way to visually detect these organic solvents.

  5. Solid-state characterization of nevirapine.

    PubMed

    Sarkar, Mahua; Perumal, O P; Panchagnula, R

    2008-09-01

    The purpose of this investigation is to characterize nevirapine from commercial samples and samples crystallized from different solvents under various conditions. The solid-state behavior of nevirapine samples was investigated using a variety of complementary techniques such as microscopy (optical, polarized, hot stage microscopy), differential scanning calorimeter, thermogravimetric analysis, Fourier transform infrared spectroscopy and powder X-ray diffractometry. The commercial samples of nevirapine had the same polymorphic crystalline form with an anhedral crystal habit. Intrinsic dissolution of nevirapine was similar for both the commercial batches. Powder dissolution showed pH dependency, with maximum dissolution in acidic pH and there was no significant effect of particle size. The samples recrystallized from different solvent systems with varying polarity yielded different crystal habits. Stirring and degrees of supersaturation influenced the size and shape of the crystals. The recrystallized samples did not produce any new polymorphic form, but weak solvates with varying crystal habit were produced. Recrystallized samples showed differences in the x-ray diffractograms. However, all the samples had the same internal crystal lattice as revealed from their similar melting points and heat of fusion. The intrinsic dissolution rate of recrystallized samples was lower than the commercial sample. It was found that the compression pressure resulted in desolvation and partial conversion of the crystal form. After compression, the recrystallized samples showed similar x-ray diffractograms to the commercial sample. Amorphous form showed slightly higher aqueous solubility than the commercial crystalline form.

  6. Effect of solvent on the synthesis of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Virender; Singh, Karamjit; Singh, Kulwinder

    Tin oxide (SnO{sub 2}) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO{sub 2} nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO{sub 2} nanoparticles. The XRD analysis showed well crystallized tetragonal SnO{sub 2} nanoparticles. The crystallite size of SnO{sub 2} nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.

  7. Recrystallization of puerarin using the supercritical fluid antisolvent process

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, D. J.; Zhou, W.; Chen, S. B.; Chen, S. L.

    2012-02-01

    The purpose of this study was to investigate the influence of supercritical fluid (SCF) processing on the polymorphism of puerarin (Pur), a poorly soluble drug. The gas anti-solvent (GAS) technique was used to crystalize the drug in different conditions. The samples were analyzed by scanning electron microscopy and laser granulometry for changes in the habitus and particle size. The solid state was studied by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and melting point determination. Finally, the dissolution and solubility tests were carried out. It was attested that compared with the commercial Pur in Crystal form I, at the optimum and most of conditions, Pur changed into crystal form II with more orderly and pure appearances. At the concentration of 60 mg/ml and at the solvent of methanol, two other new crystal forms (named form III and form IV) were produced. It was demonstrated that the particles mean diameter, size distribution and morphology can be strongly controlled through the manipulation of the process parameters and more importantly, Pur in the new crystal forms, which were not reported before with better physico-chemical properties could be produced by recrystalization by GAS.

  8. First-principles study of solvent-solute mixed dumbbells in body-centered-cubic tungsten crystals

    NASA Astrophysics Data System (ADS)

    Suzudo, Tomoaki; Tsuru, Tomohito; Hasegawa, Akira

    2018-07-01

    Tungsten (W) is considered as a promising candidate for plasma-facing materials for future nuclear fusion devices, and selecting optimal alloying constituents is a critical issue to improve radiation resistance of the W alloys as well as to improve their mechanical properties. We conducted in the current study a series of first-principles calculations for investigating solvent-solute mixed dumbbells in W crystals. The results suggested that titanium (Ti), vanadium (V), and chromium (Cr) are favorable as solutes for W alloys from irradiation-effect perspectives because these elements are expected to promote vacancy-interstitial recombination without causing radiation-induced precipitation that reduces ductility of irradiated materials.

  9. 1. Innovative Relaxor-Based PiezoCrystals: Phase Diagrams, Crystal Growth, Domain Structures and Electric Properties. 2. Piezo- and Ferroelectric Materials Based on Morphotropic Phase Boundary Synthesis, Characterization and Structure - Property Relations

    DTIC Science & Technology

    2006-03-31

    crystals by the flux method and modified Bridgman technique, the growth results were hardly reproducible, and the quality of the crystals was still a serious... growth . 2.2.1.2.2) Solution Bridgman Growth A modified Bridgman method using excess of PbO as solvent was developed for the growth of PZNT91/9 crystals ...of growth , the grown crystal can be rotated via the A120 3 rod which was driven by a motor at a speed of 0 to 30 rmp. Figure 15(b) gives the

  10. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    PubMed

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution crystallization and is amenable to continuous manufacturing and easy scale up.

  11. The fifth solvatomorph of gallic acid with a supramolecular channel structure: Structural complexity and phase transitions

    NASA Astrophysics Data System (ADS)

    Thomas, Sajesh P.; Kaur, Ramanpreet; Kaur, Jassjot; Sankolli, Ravish; Nayak, Susanta K.; Guru Row, Tayur N.

    2013-01-01

    A new solvatomorph of gallic acid was generated using chiral additive technique and characterized by single crystal and powder X-ray diffraction, C-13 NMR, IR spectroscopic techniques and thermal analysis. The supramolecular channels formed by hexameric motifs of gallic acid and solvent molecules contain highly disordered solvent molecules with fractional occupancies.

  12. High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering.

    PubMed

    Li, Wenzhe; Fan, Jiandong; Li, Jiangwei; Niu, Guangda; Mai, Yaohua; Wang, Liduo

    2016-11-09

    Currently, the potential mechanism of the solvent-assisted crystallization for mixed cations perovskite thin film (FA x MA 1-x PbI 3 ) prepared via two-step solution-process still remains obscure. Here, we clarified the molecular-competing-reacted process of NH 2 CH═NH 2 I (FAI) and CH 3 NH 3 I (MAI) with PbI 2 (DMSO) x complex in dimethyl sulfoxide (DMSO) and diethyl ether (DE) catalytic solvent system in the sequential two-step solution-process. The microscopic dynamics was characterized via the characterizations of in situ photoluminescence spectra. In addition, we found that the thermal stability of the perovskite films suffered from the residual solvent with high boiling point, for example, DMSO. The further DE treatment could promote the volatility process of DMSO and accelerate the crystallization process of perovskite films. The highest PCE over 19% with slight hysteresis effect was eventually obtained with a reproducible FA 0.88 MA 0.12 PbI 3 solar cell, which displayed a constant power output within 100 s upon light soaking and stable PCE output within 30 d in the thermal stability test.

  13. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    PubMed

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.

  14. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw; Chia, Chih-Ta

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{submore » 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.« less

  15. Humidity control as a strategy for lattice optimization applied to crystals of HLA-A*1101 complexed with variant peptides from dengue virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chotiyarnwong, Pojchong; Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University; Stewart-Jones, Guillaume B.

    Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101more » was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system.« less

  16. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  17. Method for growth of crystals by pressure reduction of supercritical or subcritical solution

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1985-01-01

    Crystals of high morphological quality are grown by dissolution of a substance to be grown into the crystal in a suitable solvent under high pressure, and by subsequent slow, time-controlled reduction of the pressure of the resulting solution. During the reduction of the pressure interchange of heat between the solution and the environment is minimized by performing the pressure reduction either under isothermal or adiabatic conditions.

  18. Aqueous sulfate separation by crystallization of sulfate–water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.

    An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO 4(H 2O) 5 2-] n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.

  19. Aqueous sulfate separation by crystallization of sulfate–water clusters

    DOE PAGES

    Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.

    2015-08-07

    An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO 4(H 2O) 5 2-] n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.

  20. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  1. Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wubbolts, F. E.; Bruinsma, O. S. L.; van Rosmalen, G. M.

    1999-03-01

    Carbon dioxide is a very poor solvent for many organic compounds, which makes it a good anti-solvent. When a solution is sprayed into carbon dioxide vapour the anti-solvent reduces the solubility within several tens of milliseconds and the solute precipitates. Two distinct regions can be identified, below and above the mixture critical pressure. Below this critical pressure the yield remains relatively low and the process is not well controlled. Above the critical pressure small crystals are obtained of about 2 μm with a yield of 90%.

  2. On melt solutions for the growth of CaTiO3 crystals

    NASA Astrophysics Data System (ADS)

    Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen

    2018-03-01

    When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.

  3. Crystal structures and properties of two new pseudopolymorphic modifications of the glucocorticoide triamcinolone diacetate

    NASA Astrophysics Data System (ADS)

    Suitchmezian, Viktor; Jeß, Inke; Näther, Christian

    2006-11-01

    Two new solvates of triamcinolone diacetate were found in addition, to those reported previously. The acetonitrile solvate (form E) crystallizes monoclinic in space group P2 1, whereas the methylene chloride solvate (form F) crystallizes orthorhombic in space group P2 12 12 1. In all forms the triamcinolone diacetate molecules are linked by intermolecular hydrogen bonding. From this arrangement channels are formed in which the solvent molecules are embedded. Both forms were investigated by differential thermoanalysis and thermogravimetry. On heating, for each form a mass loss is observed, which is accompanied with endothermic events in the DTA curve. Mass spectroscopic investigations clearly shows that in this step the solvent molecules are emitted. In these measurements one cannot differ between desolvation and melting. If the residues formed after the first TG steps are investigated by X-ray powder diffraction, only amorphous samples are obtained. If the solvents are removed at room temperature under normal pressure or in vacuum the commercial available form of triamcinolone diacetate is obtained which is also used in therapy. If the acetonitrile solvate is tempered at 80 °C for several days significant changes in the powder pattern are observed, which may indicate the formation of a new polymorphic form.

  4. Solvent induced modifications to fiber nanostructure and morphology for 12HSA molecular gels

    NASA Astrophysics Data System (ADS)

    Gao, Jie

    Molecular organogels are thermo reversible quasi-solid materials, which are formed by low molecular weight organogelators (LMOGs) undergoing supramolecular aggregation via non-covalent interactions, forming a three-dimensional fibrillar network. Numerous applications of molecular organogels are been investigated as edible oils, drug release matrices and personal care products. The chemistry of the organic phase (i.e., solvent) influences every level of structure in organogels. Different solvents induce LMOG to assemble into "crystal like" fibers, which have more than one crystal form, lamellar arrangement and domain size. Differences in these solid states are known to affect the macroscopic properties of the gel, including critical gelator concentration (CGC), melting point, melting enthalpy and opacity.12-hydroxystearic acid (12HSA) was examined in several classes of organic solvents with different function groups. These gels, sols or precipitates were analyzed using a series of techniques including: powder x-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier-transform infrared spectroscopy (FT-IR), pulsed nuclear magnetic resonance spectroscopy (pNMR) and microscopy. Specifically, certain solvents caused 12HSA to self-assemble into a triclinic parallel polymorphic form with subcell spacing of ~4.6, 3.9, and 3.8 A and an interdigitated unit cell with a lamellar arrangement (38~44 A). This polymorphic form corresponded to a less effective sphereultic supramolecular crystalline network, which immobilizes solvents at CGC greater than 1.5 wt %. The other group of solvents induce a hexagonal subcell spacing (i.e., unit sub cell spacing ~4.1 A) and are arranged in a multi lamellar fashion with a unit cell greater than the bimolecular length of 12HSA (~54 A).This polymorphic form corresponds to fibrillar aggregates with a CGC less than 1 wt %.

  5. Crystal growth, differential gas adsorption, high thermal stability, and reversible coordination of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halake, Shobha; Ok, Kang Min, E-mail: kmok@cau.ac.kr

    2015-11-15

    Single crystals of two barium-organic framework materials, Ba(SBA)(DMF){sub 4} (CAUMOF-15) and Ba{sub 2}(BTEC)(H{sub 2}O) (CAUMOF-16), have been grown through solvothermal reactions (H{sub 2}SBA=4,4′-sulfonyldibenzoic acid and H{sub 4}BTEC=1,2,4,5-benzenetetracarboxylic acid). The crystal structures of the reported frameworks have been determined by single-crystal X-ray diffraction. The materials have been fully characterized by powder X-ray diffraction (PXRD), elemental analyses, Infrared (IR) spectroscopy, and thermogravimetric analyses (TGA). CAUMOF-15 reveals a three-dimensional open-framework that comprises of an inorganic motif with one-dimensional chains and the SBA linkers. CAUMOF-16 shows another three-dimensional backbone consisting of layers of edge-shared BaO{sub 9} and BaO{sub 10} polyhedra, and BTEC pillars. Bothmore » of the 3D frameworks exhibit relatively high thermal stabilities. The PXRD and IR spectral data confirm that CAUMOF-15 and CAUMOF-16 reveal reversible coordinations of the respective solvent molecules, DMF and H{sub 2}O. Gas adsorption properties towards nitrogen, hydrogen, and carbon dioxide have been also investigated. - Graphical abstract: Crystals of two new barium-organic frameworks, Ba(SBA)(DMF){sub 4} and Ba{sub 2}(BTEC)(H{sub 2}O), exhibiting a differential gas adsorption, a high thermal stability, and a reversible coordination of solvent molecules have been grown. - Highlights: • Crystals of two new 3D Ba-MOFs are grown. • The two Ba-MOFs reveal very high thermal stabilities up to ca. 400 °C. • Ba(SBA)(DMF){sub 4} exhibits differential gas adsorption properties. • The two Ba-MOFs show reversible coordination of the solvent molecules.« less

  6. Influence of the morphology of the copper(II) phthalocyanine thin film on the performance of organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Liu, Xueqiang; Wang, Hailong; Hou, Wenlong; Zhao, Lele; Zhang, Haiquan

    2017-01-01

    Organic thin-film transistors (OTFTs) with high crystallization copper phthalocyanine (CuPc) active layers were fabricated. The performance of CuPc OTFTs was studied without and with treatment by Solvent Vapor Annealing on CuPc film. The values of the threshold voltage without and with solvent-vapor annealing are -17 V and -10.5 V respectively. The field-effect mobility values in saturation region of CuPc thin-film transistors without and with Solvent Vapor Annealing are 0.00027 cm2/V s and 0.0025 cm2/V s respectively. Meanwhile, the high crystallization of the CuPc film with a larger grain size and less grain boundaries can be observed by investigating the morphology of the CuPc active layer through scanning electron microscopy and X-ray diffraction. The experimental results showed the decreased of the resistance of the conducting channel, that led to a performance improvement of the OTFTs.

  7. A review on methods of regeneration of spent pickling solutions from steel processing.

    PubMed

    Regel-Rosocka, Magdalena

    2010-05-15

    The review presents various techniques of regeneration of spent pickling solutions, including the methods with acid recovery, such as diffusion dialysis, electrodialysis, membrane electrolysis and membrane distillation, evaporation, precipitation and spray roasting as well as those with acid and metal recovery: ion exchange, retardation, crystallization solvent and membrane extraction. Advantages and disadvantages of the techniques are presented, discussed and confronted with the best available techniques requirements. Most of the methods presented meet the BAT requirements. The best available techniques are electrodialysis, diffusion dialysis and crystallization; however, in practice spray roasting and retardation/ion-exchange are applied most frequently for spent pickling solution regeneration. As "waiting for their chance" solvent extraction, non-dispersive solvent extraction and membrane distillation should be indicated because they are well investigated and developed. Environmental and economic benefits of the methods presented in the review depend on the cost of chemicals and wastewater treatment, legislative regulations and cost of modernization of existing technologies or implementation of new ones. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations

    PubMed Central

    Yildirim, Ilyas; Park, Hajeung; Disney, Matthew D.; Schatz, George C.

    2013-01-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded r(CAG) repeats can cause Huntington’s and other disease through translation of toxic proteins. Herein, crystal structure of r[5ʹUUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that show both anti-anti and syn-anti orientations for 1×1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using Amber force field in explicit solvent were run for over 500 ns on model systems r(5ʹGCGCAGCGC)2 (MS1) and r(5ʹCCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti↔anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, over 800 ns explicit solvent MD simulation was run on r[5ʹGGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1×1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and develop small molecules that target RNA dynamic ensembles. PMID:23441937

  9. The effect of deuteration and doping on the phase transition temperature of grown glycine phosphite single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumal, R., E-mail: perumal-cgc@yahoo.co.uk; Chandru, A. Lakshmi; Babu, S. Moorthy

    The Glycinium Phosphite (GPI) compound is a representative of hydrogen-bonded ferroelectric crystals. The ordering of protons could be expected below the room temperature (225 K). Crystals grown from the milipore water as well as deuterated solvents respectively. The corresponding hydrogen bond distance was stretched out due to the effect of isotopic substitution that increase the phase transition temperature. Further to improve the phase transition temperature, GPI crystal was doped with organic complexing agent and various metals and the obtained results are presented.

  10. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alex K.; Tayi, Alok S.; Sue, Andrew C. H.; Narayanan, Ashwin

    2016-09-20

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  11. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  12. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  13. Biofoam II

    DOEpatents

    Morrison, R.L.

    1994-11-01

    Biofoam is a rigid, microcellular organic foam made from organic materials derived from natural products and biological organisms. Starting materials include agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the mixture is gelled. The water in the gel pores is replaced at least once with another solvent to reduce the pore size of the final biofoam. The solvent in the gel pores may be replaced several times. After the final replacement of solvent, the gel is frozen and freeze-dried to form a biofoam. Translucent biofoams are formed by selecting a final solvent that forms very small crystals. A variety of crystalline, fibrous, amorphous, or metallic additives may be incorporated into the foam structure to produce lightweight composite materials with enhanced strength and insulating properties. 1 fig.

  14. Biofoam II

    DOEpatents

    Morrison, Robert L.

    1994-01-01

    Biofoam is a rigid, microcellular organic foam made from organic materials derived from natural products and biological organisms. Starting materials include agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the mixture is gelled. The water in the gel pores is replaced at least once with another solvent to reduce the pore size of the final biofoam. The solvent in the gel pores may be replaced several times. After the final replacement of solvent, the gel is frozen and freeze-dried to form a biofoam. Translucent biofoams are formed by selecting a final solvent that forms very small crystals. A variety of crystalline, fibrous, amorphous, or metallic additives may be incorporated into the foam structure to produce lightweight composite materials with enhanced strength and insulating properties.

  15. Crystallization and initial X-ray diffraction studies of scaffolding protein (gp7) of bacteriophage ϕ29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badasso, Mohammed O., E-mail: badas001@umn.edu; Anderson, Dwight L.; Department of Oral Science, University of Minnesota, Minneapolis, MN 55455

    2005-04-01

    ϕ29 bacteriophage scaffolding protein (gp7) has been overproduced in E. coli, purified, crystallized and characterized by X-ray diffraction. Two distinct crystal forms were obtained and a diffraction data set was collected to 1.8 Å resolution. The Bacillus subtilis bacteriophage ϕ29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 77.13, c = 37.12 Å.more » Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 Å. Complete data sets have been collected to 1.78 and 1.80 Å for forms I and II, respectively, at 100 K using Cu Kα X-rays from a rotating-anode generator. Calculation of a V{sub M} value of 2.46 Å{sup 3} Da{sup −1} for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a V{sub M} of 4.80 Å{sup 3} Da{sup −1} with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.« less

  16. Effects of Solvent Composition on Liquid Range, Glass Transition, and Conductivity of Electrolytes of a (Li, Cs)PF 6 Salt in EC-PC-EMC Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Michael S.; Li, Qiuyan; Li, Xing

    Electrolytes of 1 M LiPF 6 (lithium hexafluorophosphate) and 0.05 M CsPF 6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data inmore » their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.« less

  17. Cocrystal Screening of Ibuprofen with Oxalic Acid and Citric Acid via Grinding Method

    NASA Astrophysics Data System (ADS)

    Othman, M. F.; Anuar, N.; Rahman, S. Ad; Taifuddin, N. A. Ahmad

    2018-05-01

    Ibuprofen is a Class II Biological Safety Class (BSC) drugs used for relief of arthritis, as an analgesic and possesses the effect of antiplatelet. The major problem involves in ibuprofen is it has a low solubility and high permeability thus causes an unsatisfactory therapeutic effect to humans. Thus, in this work, alteration of ibuprofen’s physicochemical properties is conducted by means of cocrystallization technique. Co-crystallizations of ibuprofen were prepared with selected coformers using dry grinding and liquid assisted grinding (LAG) techniques in different molar ratios while ethanol and propanol were used as a solvent. The new crystalline forms were identified and characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). Analysis for Ibuprofen-Citric acid (IBP-CA) system, co-crystal was successfully formed in 1:2, 1:3, 2:1 and 3:1 molar ratios for neat grinding method although the co-crystal produced is unstable. Meanwhile, for Ibuprofen-Oxalic acid (IBP-OA) system, the co-crystal formation was identified only in 1:1, 1:2 and 1:3 molar ratios for the neat grinding method. LAG method shows that co-crystal formation was unsuccessful in both solvents for IBP-CA, while IBP-OA co-crystal was formed in the molar ratio 1:1, 2:1 and 3:1 in ethanol, and 2:1 and 3:1 in propanol.

  18. Effect of surfactants or a water soluble polymer on the crystal transition of clarithromycin during a wet granulation process.

    PubMed

    Nozawa, Kenji; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2015-11-10

    To generate products containing a stable form of clarithromycin (CAM) (form II) regardless of the initial crystal form of CAM or type of granulation solvent, the effects of five surfactants, or a water-soluble polymer (macrogol 400) were determined on the crystal transition of CAM. The metastable form (form I) was kneaded with water, after adding surfactants, or a water-soluble polymer. Form II was also kneaded with ethanol, after adding the same additives. The resulting samples were analyzed by powder X-ray diffraction. Form I was completely converted to form II by a wet granulation using water with additives bearing polyoxyethylene chains such as polysorbate 80 (PS80), polyoxyl 40 stearate or macrogol 400. The granulation of the form II using ethanol with these additives did not result in a crystal transition to form I. Furthermore, CAM tablets were manufactured using granules with PS80, and these crystal forms and dissolution behaviors were investigated. As a result, the wet granulation of CAM with PS80 gave CAM tablets containing only form II and PS80 did not have any adverse effects on tablet characteristics. Therefore, these data suggests that the crystal form of CAM can be controlled to be form II using a wet granulation process with additives bearing polyoxyethylene chains regardless of the initial crystal form of CAM or type of granulation solvent. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Color tuning of photonic gel films by UV irradiation

    NASA Astrophysics Data System (ADS)

    Shin, Sung Eui; Kim, Su Young; Shin, Dong Myung

    2010-02-01

    Block copolymers have drawn increasing attention for fabricating functional nanomaterials due to their properties of self-assembly. In particular, photonic crystals hold promise for multiple optical applications. We prepared 1D photonic crystals with polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg /mol-b-57 kg/mol. The lamellar stacks, which are alternating layers of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5wt% of iodomethane solubilized in n-hexane. We demonstrate about the influence of UV light on those photonic gel films. To study of different properties of films, UV-visible absorption spectra were measured as a different UV irradiation time at swollen films with distilled water. The UV-visible maximum absorption spectra shifted by UV irradiation time. Dependent on the time of UV irradiations, we can change the photonic band gap.

  20. A theoretical insight for solvent effect on myoglobin assay of W(CO)4L2 type novel complexes with DFT/TDDFT

    NASA Astrophysics Data System (ADS)

    Üstün, Elvan; Demi˙r, Serpil; Coşkun, Feyzullah; Kaloğlu, Murat; Şahi˙n, Onur; Büyükgüngör, Orhan; Özdemi˙r, İsmail

    2016-11-01

    Novel tetracarbonyl complexes of type W(CO)4L2 (L: 4-chlorobenzylimidazoline; 4-methylbenzylimidazoline; 3,5-dimethylbenzylimidazoline; 2,4,6-trimethylbenzylimidazoline; 2,3,5,6- tetramethylbenzylimidazoline) were synthesized. Then newly synthesized novel compounds were characterized by IR, 1H NMR, 13C NMR and LC-MS. The characterizations of two of the complexes have also been confirmed with single crystal X-Ray diffraction and DFT optimization results of these complexes have been compared with single crystal results. We have investigated the solvent effect on the structure and metal-to-ligand charge transfer (MLCT) transitions with DFT/TDDFT calculations with ORCA package program with BP86 functional.

  1. Particle size-controllable microwave-assisted solvothermal synthesis of the high-voltage cathode material LiCoPO4 using water/ethylene glycol solvent blends

    NASA Astrophysics Data System (ADS)

    Ludwig, Jennifer; Haering, Dominik; Doeff, Marca M.; Nilges, Tom

    2017-03-01

    Particle size-tuned platelets of the high-voltage cathode material LiCoPO4 for Li-ion batteries have been synthesized by a simple one-step microwave-assisted solvothermal process using an array of water/ethylene glycol (EG) solvent mixtures. Particle size control was achieved by altering the concentration of the EG co-solvent in the mixture between 0 and 100 vol%, with amounts of 0-80 vol% EG producing single phase, olivine-type LiCoPO4. The particle sizes of the olivine materials were significantly reduced from about 1.2 μm × 1.2 μm × 500 nm (0 vol% EG) to 200 nm × 100 nm × 50 nm (80 vol% EG) with increasing EG content, while specific surface areas increased from 2 to 13 m2 g-1. The particle size reduction could mainly be attributed to the modified viscosities of the solvent blends. Owing to the soft template effect of EG, the crystals exhibited the smallest dimensions along the [010] direction of the Li diffusion pathways in the olivine crystal structure, resulting in enhanced lithium diffusion properties. The relationship between the synthesis, crystal properties and electrochemical performance was further elucidated, indicating that the electrochemical performances of the as-prepared materials mainly depend on the solvent composition and the respective particle size range. LiCoPO4 products obtained from reaction media with low and high EG contents exhibited good electrochemical performances (initial discharge capacities of 87-124 mAh g-1 at 0.1 C), whereas materials made from medium EG concentrations (40-60 vol% EG) showed the highest capacities and gravimetric energy densities (up to 137 mAh g-1 and 658 Wh kg-1 at 0.1 C), excellent rate capabilities, and cycle life.

  2. Optimization of the Critical Parameters of the Spherical Agglomeration Crystallization Method by the Application of the Quality by Design Approach.

    PubMed

    Gyulai, Orsolya; Kovács, Anita; Sovány, Tamás; Csóka, Ildikó; Aigner, Zoltán

    2018-04-20

    This research work presents the use of the Quality by Design (QbD) concept for optimization of the spherical agglomeration crystallization method in the case of the active agent, ambroxol hydrochloride (AMB HCl). AMB HCl spherical crystals were formulated by the spherical agglomeration method, which was applied as an antisolvent technique. Spherical crystals have good flowing properties, which makes the direct compression tableting method applicable. This means that the amount of additives used can be reduced and smaller tablets can be formed. For the risk assessment, LeanQbD Software was used. According to its results, four independent variables (mixing type and time, dT (temperature difference between solvent and antisolvent), and composition (solvent/antisolvent volume ratio)) and three dependent variables (mean particle size, aspect ratio, and roundness) were selected. Based on these, a 2⁻3 mixed-level factorial design was constructed, crystallization was accomplished, and the results were evaluated using Statistica for Windows 13 program. Product assay was performed and it was revealed that improvements in the mean particle size (from ~13 to ~200 µm), roundness (from ~2.4 to ~1.5), aspect ratio (from ~1.7 to ~1.4), and flow properties were observed while polymorphic transitions were avoided.

  3. Cocrystal habit engineering to improve drug dissolution and alter derived powder properties.

    PubMed

    Serrano, Dolores R; O'Connell, Peter; Paluch, Krzysztof J; Walsh, David; Healy, Anne Marie

    2016-05-01

    Cocrystallization of sulfadimidine (SDM) with suitable coformers, such as 4-aminosalicylic acid (4-ASA), combined with changes in the crystal habit can favourably alter its physicochemical properties. The aim of this work was to engineer SDM : 4-ASA cocrystals with different habits to investigate the effect on dissolution, and the derived powder properties of flow and compaction. Cocrystals were prepared in a 1 : 1 molar ratio by solvent evaporation using ethanol (habit I) or acetone (habit II), solvent evaporation followed by grinding (habit III) and spray drying (habit IV). Powder X-ray diffraction showed Bragg peak position was the same in all the solid products. The peak intensity varied, indicating different preferred crystal orientation confirmed by SEM micrographs: large prismatic crystals (habit I), large plate-like crystals (habit II), small cube-like crystals (habit III) and microspheres (habit IV). The habit III exhibited the fasted dissolution rate; however, it underwent a polymorphic transition during dissolution. Habits I and IV exhibited the highest Carr's compressibility index, indicating poor flowability. However, habits II and III demonstrated improved flow. Spray drying resulted in cocrystals with improved compaction properties. Even for cocrystals with poor pharmaceutical characteristics, a habit can be engineered to alter the dissolution, flowability and compaction behaviour. © 2015 Royal Pharmaceutical Society.

  4. Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul

    2015-01-01

    ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506 PMID:27546983

  5. High-level expression and deuteration of sperm whale myoglobin: A study of its solvent structure by X-ray and neutron diffraction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, F.; Ramakrishnan, V.; Schoenborn, B.P.

    1994-12-31

    Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modifiedmore » to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.« less

  6. Crystal growth of triphenylphosphine oxide 4-nitrophenol (TP4N) for nonlinear optical (NLO) applications

    NASA Astrophysics Data System (ADS)

    Pandian, Muthu Senthil; Karuppasamy, P.; Kamalesh, T.; Ramasamy, P.; Verma, Sunil

    2018-04-01

    The optically good quality organic single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) were successfully grown by slow evaporation solution technique (SEST) using methanol as solvent. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the TP4N crystal were obtained by UV-Vis NIR spectrum analysis. The photoluminescence studies were carried out to find out the luminesce properties of TP4N single crystal. The photoconductivity studies reveal that the TP4N crystal has negative photoconductive nature. The third order nonlinear susceptibility (χ(3)) of TP4N crystal was evaluated using the Z-scan technique at 640 nm.

  7. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  8. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    NASA Astrophysics Data System (ADS)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  9. Synthesis, crystal structure, NLO and Hirshfeld surface analysis of 1,2,3-triazolyl chalcone single crystal

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped brown coloured single crystal of the title compound was grown by slow evaporation technique using methanol as solvent. The grown crystal was characterized using FT-IR, Single crystal XRD, UV-visible and NLO studies. Crystal structure was confirmed by FT-IR study and the functional groups were identified. XRD study reveals that the crystal belongs to orthorhombic crystal system with pnaa space group and the corresponding cell parameters were calculated. UV-visible spectrum shows that the crystal is transparent in the entire visible region and absorption takes place in the UV-range. NLO efficiency of the crystal obtained 0.66 times that of urea was determined by SHG test. The intermolecular interaction and percentage contribution of each individual atom in the crystal lattice was quantized using Hirshfeld surface and 2D finger print analysis.

  10. Crystallization and X-ray diffraction analysis of an 'all-locked' nucleic acid duplex derived from a tRNA(Ser) microhelix.

    PubMed

    Behling, Katja; Eichert, André; Fürste, Jens P; Betzel, Christian; Erdmann, Volker A; Förster, Charlotte

    2009-08-01

    Modified nucleic acids are of great interest with respect to their nuclease resistance and enhanced thermostability. In therapeutical and diagnostic applications, such molecules can substitute for labile natural nucleic acids that are targeted against particular diseases or applied in gene therapy. The so-called 'locked nucleic acids' contain modified sugar moieties such as 2'-O,4'-C-methylene-bridged beta-D-ribofuranose and are known to be very stable nucleic acid derivatives. The structure of locked nucleic acids in single or multiple LNA-substituted natural nucleic acids and in LNA-DNA or LNA-RNA heteroduplexes has been well investigated, but the X-ray structure of an ;all-locked' nucleic acid double helix has not been described to date. Here, the crystallization and X-ray diffraction data analysis of an 'all-locked' nucleic acid helix, which was designed as an LNA originating from a tRNA(Ser) microhelix RNA structure, is presented. The crystals belonged to space group C2, with unit-cell parameters a = 77.91, b = 40.74, c = 30.06 A, beta = 91.02 degrees . A high-resolution and a low-resolution data set were recorded, with the high-resolution data showing diffraction to 1.9 A resolution. The crystals contained two double helices per asymmetric unit, with a Matthews coefficient of 2.48 A(3) Da(-1) and a solvent content of 66.49% for the merged data.

  11. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    PubMed

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  12. Crystal structure of 5,15-bis-(4-methyl-phen-yl)-10,20-bis-(4-nitro-phen-yl)porphyrin nitro-benzene disolvate.

    PubMed

    Baptayev, Bakhytzhan; Adilov, Salimgerey

    2018-01-01

    The whole mol-ecule of the title porphyrin, C 46 H 32 N 6 O 4 ·2C 6 H 5 NO 2 , which crystallized as a nitro-benzene disolvate, is generated by inversion symmetry. The porphyrin macrocycle is almost planar, the maximum deviation from the mean plane of the non-hydrogen atoms is 0.097 (2) Å. The aryl rings at the meso positions are inclined to this mean plane by 74.84 (6)° for the nitro-phenyl rings and 73.37 (7)° for the tolyl rings. In the crystal, the porphyrin mol-ecules are linked by C-H⋯O hydrogen bonds, forming chains along [100]. The solvent mol-ecules are also linked by C-H⋯O hydrogen bonds, forming chains along [100]. Inter-digitation of the p -tolyl groups along the c axis creates rectangular channels in which the solvent mol-ecules are located.

  13. Effect of gel formation on the dissolution behavior of clarithromycin tablets.

    PubMed

    Inukai, Koki; Takiyama, Kei; Noguchi, Shuji; Iwao, Yasunori; Itai, Shigeru

    2017-04-15

    Clarithromycin (CAM) is a macrolide antibiotic that is widely used at clinical sites. We found that release of CAM is suppressed when tablets of CAM were exposed to an external solvent containing carboxylate buffers such as citrate. The suppressed release of CAM can be attributed to the formation of gels on the tablet surfaces, which inhibits penetration of the solvent into the tablet and thus disintegration of the tablets. Delayed disintegration of the tablets was also observed for commercial tablets. This suggests that taking CAM and carboxylates at the same time might be avoided. The crystal structure of CAM citrate reveals that molecular chains of CAM are cross-linked by hydrogen bond between citrate groups in the crystal. The crystal structure indicates that cross-linked CAM chains of the three-dimensional mesh structure might also be formed in high concentration CAM solutions in the presence of carboxylates, resulting in gel formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of crystal homogeneity of other modern CZT growth techniques. However, information about crystals grown with this method has not been undertaken in a comprehensive way thus far. In this work, Cd0.9Zn0.1Te is grown using the solvent-growth method using zone-refined precursor materials loaded into carbon-coated quartz ampoules. Ampoules were sealed and crystal growth was performed using crystal growth furnaces built in-house at USC. Ingots 1-2" in diameter produced using the solvent-growth method were wafered, processed, and polished for characterization. Semiconductor characterization is performed on the CZT crystals to determine band gap, elemental stoichiometry, and electrical resistivity. Surface modification studies were undertaken to determine if surface leakage current can be reduced using sulfur passivation. XPS studies were used to confirm the effects of passivation on the surface states, and electrical characterization was performed to measure the effects of passivation on the CZT crystals. Deep-level and surface defect studies were conducted on the CZT samples to determine the type and intensity of defects present in the crystals which may affect detector performance. Finally, nuclear detectors were fabricated and characterized using analog and digital radiation detection systems to measure their performance and energy resolution.

  15. Melt and metallic solution crystal growth of CuInSe 2

    NASA Astrophysics Data System (ADS)

    Baldus, A.; Benz, K. W.

    1993-05-01

    In this paper the fabrication of CuInSe 2 chalcopyrite single crystals by the vertical Bridgman technique using non-stoichiometric In 2Se 3-rich congruent composition and a novel ampoule design is describe. Furthermore the growth of CuInSe 2 crystals by the travelling heater method (THM) using an In solvent was investigated. The elemental composition of as-grown CuInSe 2 semiconducting compounds and their electrical properties are discussed and correlated with predictions made by an intrinsic chemistry model.

  16. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement

    DOE PAGES

    Xiao, Zhengguo; Dong, Qingfeng; Bi, Cheng; ...

    2014-08-26

    Solvent-annealing is found to be an effective method to increase the grain size and carrier diffusion lengths of trihalide perovskite materials. Thus, the carrier diffusion length of MAPbI 3 is increased to over 1 μm. The efficiency remains above 14.5% when the MAPbI 3 thickness changes from 250 nm to 1 μm, with the highest efficiency reaching 15.6%.

  17. Liquid Crystals of Dendron-like Pt Complexes Processable into Nanofilms

    DTIC Science & Technology

    2013-05-01

    vermicular dendrimers of the phenyleneethynylene type, which resulted be very soluble in non-polar solvents such as CHCl3, THF, toluene. Their chemical... dendrimers of the phenyleneethynylene type, which resulted be very soluble in non-polar solvents such as CHCl3, THF, toluene. Their chemical...2012 and 2013, to synthesize the same above dendron like oligomers but without the platinum atom in order to give, for example, the dendrimers

  18. Effect of cocrystallization techniques on compressional properties of caffeine/oxalic acid 2:1 cocrystal.

    PubMed

    Aher, Suyog; Dhumal, Ravindra; Mahadik, Kakasaheb; Ketolainen, Jarkko; Paradkar, Anant

    2013-02-01

    Caffeine/oxalic acid 2:1 cocrystal exhibited superior stability to humidity over caffeine, but compressional behavior is not studied yet. To compare compressional properties of caffeine/oxalic acid 2:1 cocrystal obtained by different cocrystallization techniques. Cocrystal was obtained by solvent precipitation and ultrasound assisted solution cocrystallization (USSC) and characterized by X-ray powder diffraction and scanning electron microscopy. Compaction study was carried out at different compaction forces. Compact crushing strength, thickness and elastic recovery were determined. Compaction was in order, caffeine > solvent precipitation cocrystal > USSC cocrystal. Caffeine exhibited sticking and lamination, where solvent precipitation compacts showed advantage. Caffeine and solvent precipitation compacts showed sudden drop in compactability, higher elastic recovery with severe lamination at 20,000 N. This was due to overcompaction. Crystal habit of two cocrystal products was same, but USSC cocrystals were difficult to compact. Uniform needle shaped USSC cocrystals must be difficult to orient in different direction and fracture during compression. Elastic recovery of USSC cocrystals was also more compared to other powders indicating less fracture and poor bonding between particles resulting in poor compaction. Cocrystal formation did not improve compressional property of caffeine. Cocrystals exposed to different crystallization environments in two techniques may have resulted in generation of different surface properties presenting different compressional properties.

  19. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping

    2015-01-01

    Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  20. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor.

    PubMed

    Chen, Cheng; Zhu, Yihua; Bao, Hua; Shen, Jianhua; Jiang, Hongliang; Peng, Liming; Yang, Xiaoling; Li, Chunzhong; Chen, Guorong

    2011-05-21

    An ethanol-assisted method is utilized to generate a robust gelated crystalline colloidal array (GCCA) photonic crystal sensor. The functionalized sensor efficiently diffracts the visible light and responds to various stimuli involving solvent, pH, cation, and compressive strain; the related color change can be easily distinguished by the naked eye. © The Royal Society of Chemistry 2011

  1. Knowledge-based grouping of modeled HLA peptide complexes.

    PubMed

    Kangueane, P; Sakharkar, M K; Lim, K S; Hao, H; Lin, K; Chee, R E; Kolatkar, P R

    2000-05-01

    Human leukocyte antigens are the most polymorphic of human genes and multiple sequence alignment shows that such polymorphisms are clustered in the functional peptide binding domains. Because of such polymorphism among the peptide binding residues, the prediction of peptides that bind to specific HLA molecules is very difficult. In recent years two different types of computer based prediction methods have been developed and both the methods have their own advantages and disadvantages. The nonavailability of allele specific binding data restricts the use of knowledge-based prediction methods for a wide range of HLA alleles. Alternatively, the modeling scheme appears to be a promising predictive tool for the selection of peptides that bind to specific HLA molecules. The scoring of the modeled HLA-peptide complexes is a major concern. The use of knowledge based rules (van der Waals clashes and solvent exposed hydrophobic residues) to distinguish binders from nonbinders is applied in the present study. The rules based on (1) number of observed atomic clashes between the modeled peptide and the HLA structure, and (2) number of solvent exposed hydrophobic residues on the modeled peptide effectively discriminate experimentally known binders from poor/nonbinders. Solved crystal complexes show no vdW Clash (vdWC) in 95% cases and no solvent exposed hydrophobic peptide residues (SEHPR) were seen in 86% cases. In our attempt to compare experimental binding data with the predicted scores by this scoring scheme, 77% of the peptides are correctly grouped as good binders with a sensitivity of 71%.

  2. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    NASA Astrophysics Data System (ADS)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  3. Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent

    NASA Astrophysics Data System (ADS)

    Gärtner, R. S.; Witkamp, G. J.

    2002-04-01

    Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.

  4. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    PubMed

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  5. Synthesis, crystal structure and properties of a new 3D supramolecular unsymmetrical tetradentate Schiff bases copper (II) framework with stable tunnels

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Al-Razagg, Raiid; Esmadi, Fatima T.

    2016-12-01

    Flexible unsymmetrical Schiff base ligand (L) which is derived from the half unit Y = C6H5COCH2C(Ndbnd CH2C6H4NH2)CH3 (obtained from the reaction of benzoylacetone and 2-aminobenzylamine) and 2- quinolinecarboxaldehyde have been successfully co-assembled with Cu(ClO4)2 to give out the [Cu(L)]ClO4 complex. The complex crystallizes in two different space groups; P21/n and P-1. The crystal structure of the P-1 phase indicates the presence of tunnels; the volume of these tunnels is 157 Å3 which is big enough to accommodate solvent molecules. The X-ray data indicates that these tunnels are most probably filled by highly disordered solvent molecules or solvent molecules with partial occupancy. The tunneled structure is stabilized via π-π stacking interactions to give a supramolecular MOF with 1D rhomboidal tunnels array. The copper(II) atom assumes a distorted-square pyrimidal coordination geometry where the perchlorate is located on the apex of the pyramide. In addition, this work presents and discusses the spectroscopic (IR, UV/vis), electro-chemical (cyclic voltammetry) behavior of the Cu(II) complexes. The Cu(II) oxidation state is stabilized by the novel tetradentate ligands, showing Cu(I/II) couple around 0.1 vs. Cp2Fe/Cp2Fe+.

  6. Synthesis, structural, thermal and Hirshfeld surface analysis of novel [1,2,4]triazolo[3,4-b][1,3,4] thiadiazine carrying 1,4-benzothiazine-3-one moiety

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.

  7. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.

    PubMed

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy

    2010-05-20

    Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

  8. Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance.

    PubMed

    Latif, Sumera; Abbas, Nasir; Hussain, Amjad; Arshad, Muhammad Sohail; Bukhari, Nadeem Irfan; Afzal, Hafsa; Riffat, Sualeha; Ahmad, Zeeshan

    2018-07-01

    Paracetamol, a frequently used antipyretic and analgesic drug, has poor compression moldability owing to its low plasticity. In this study, new co-crystals of paracetamol (PCM) with caffeine (as a co-former) were prepared and delineated. Co-crystals exhibited improved compaction and mechanical behavior. A screening study was performed by utilizing a number of methods namely dry grinding, liquid assisted grinding (LAG), solvent evaporation (SE), and anti-solvent addition using various weight ratios of starting materials. LAG and SE were found successful in the screening study. Powders at 1:1 and 2:1 weight ratio of PCM/CAF by LAG and SE, respectively, resulted in the formation of co-crystals. Samples were characterized by PXRD, DSC, and ATR-FTIR techniques. Compressional properties of PCM and developed co-crystals were analyzed by in-die heckle model. Mean yield pressure (Py), an inverse measure of plasticity, obtained from the heckle plots decreased significantly (p < .05) for co-crystals than pure drug. Intrinsic dissolution profile of co-crystals showed up to 2.84-fold faster dissolution than PCM and physical mixtures in phosphate buffer pH 6.8 at 37 °C. In addition, co-crystals formulated into tablets by direct compression method showed better mechanical properties like hardness and tensile strength. In vitro dissolution studies on tablets also showed enhanced dissolution profiles (∼90-97%) in comparison to the tablets of PCM prepared by direct compression (∼55%) and wet granulation (∼85%) methods. In a single dose sheep model study, co-crystals showed up to twofold increase in AUC and C max . A significant (p < .05) decrease in clearance as compared to pure drug was also recorded. In conclusion, new co-crystals of PCM were successfully prepared with improved tabletability in vitro and in vivo profile. Enhancement in AUC and C max of PCM by co-crystallization might suggest the dose reduction and avoidance of side effects.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution.more » Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.« less

  10. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    PubMed

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  11. A chiral self-assembled monolayer derived from a resolving agent and its performance as a crystallization template for an organic compound from organic solvents.

    PubMed

    Bejarano-Villafuerte, Ángela; van der Meijden, Maarten W; Lingenfelder, Magalí; Wurst, Klaus; Kellogg, Richard M; Amabilino, David B

    2012-12-07

    A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single-crystal X-ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self-assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two-dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl(3) or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry.

    PubMed

    Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong

    2015-10-06

    Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.

  13. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2016-12-01

    In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.

  14. Structural, thermal and optical properties of a semiorganic nonlinear optical single crystal: glycine zinc sulphate.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2007-10-01

    Glycine zinc sulphate salt was synthesized and the solubility and metastable zonewidth were estimated from the aqueous solution. Single crystals of glycine zinc sulphate were grown by solvent evaporation method from aqueous solution. Grown crystals were characterized by X-ray diffraction and FT-IR spectral analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties of the crystal were investigated by thermogravimetric analysis. Microhardness study was carried out on (01-1) face of the grown crystal. Its powder second harmonic generation efficiency was measured using Nd:YAG laser and the value was observed to be 0.7 times that of potassium dihydrogen orthophosphate.

  15. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G

    2017-12-06

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.

  16. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    PubMed

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-08

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  17. Quantum Monte Carlo studies of solvated systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Kathleen; Letchworth Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2011-03-01

    Solvation qualitatively alters the energetics of diverse processes from protein folding to reactions on catalytic surfaces. An explicit description of the solvent in quantum-mechanical calculations requires both a large number of electrons and exploration of a large number of configurations in the phase space of the solvent. These problems can be circumvented by including the effects of solvent through a rigorous classical density-functional description of the liquid environment, thereby yielding free energies and thermodynamic averages directly, while eliminating the need for explicit consideration of the solvent electrons. We have implemented and tested this approach within the CASINO Quantum Monte Carlo code. Our method is suitable for calculations in any basis within CASINO, including b-spline and plane wave trial wavefunctions, and is equally applicable to molecules, surfaces, and crystals. For our preliminary test calculations, we use a simplified description of the solvent in terms of an isodensity continuum dielectric solvation approach, though the method is fully compatible with more reliable descriptions of the solvent we shall employ in the future.

  18. PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR

    DOEpatents

    Delaplaine, J.W.

    1957-11-01

    A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.

  19. The Concept of Solid Solvent as Processing Aid.

    DTIC Science & Technology

    1984-09-20

    3 presents the DSC results of acetanilide . Acetanilide shows a sharp melting peak at 116C, very close to the melting point (Tm) reported by Fisher...should become compatible with a polymer and act as a solvent in the liquid state above its melting point , significantly reducing the viscosity of the...polymer, but should become incompatible and crystallize out of the polymer as discrete domains below its melting point without adversely affecting

  20. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  1. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G. B.

    1980-12-16

    A process for solvent extraction of oil from oil bearing diatomite ore and an apparatus for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent, solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom, and solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure.

  2. Reduction of Thrombosis and Bacterial Infection via Controlled Nitric Oxide (NO) Release from S-Nitroso-N-acetylpenicillamine (SNAP) Impregnated CarboSil Intravascular Catheters

    PubMed Central

    2017-01-01

    Nitric oxide (NO) has many important physiological functions, including its ability to inhibit platelet activation and serve as potent antimicrobial agent. The multiple roles of NO in vivo have led to great interest in the development of biomaterials that can deliver NO for specific biomedical applications. Herein, we report a simple solvent impregnation technique to incorporate a nontoxic NO donor, S-nitroso-N-acetylpenicillamine (SNAP), into a more biocompatible biomedical grade polymer, CarboSil 20 80A. The resulting polymer-crystal composite material yields a very stable, long-term NO release biomaterial. The SNAP impregnation process is carefully characterized and optimized, and it is shown that SNAP crystal formation occurs in the bulk of the polymer after solvent evaporation. LC-MS results demonstrate that more than 70% of NO release from this new composite material originates from the SNAP embedded CarboSil phase, and not from the SNAP species leaching out into the soaking solution. Catheters prepared with CarboSil and then impregnated with 15 wt % SNAP provide a controlled NO release over a 14 d period at physiologically relevant fluxes and are shown to significantly reduce long-term (14 day) bacterial biofilm formation against Staphylococcus epidermidis and Pseudonomas aeruginosa in a CDC bioreactor model. After 7 h of catheter implantation in the jugular veins of rabbit, the SNAP CarboSil catheters exhibit a 96% reduction in thrombus area (0.03 ± 0.01 cm2/catheter) compared to the controls (0.84 ± 0.19 cm2/catheter) (n = 3). These results suggest that SNAP impregnated CarboSil can become an attractive new biomaterial for use in preparing intravascular catheters and other implanted medical devices. PMID:28317023

  3. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions

    PubMed Central

    Manikandan, Karuppasamy; Bhardwaj, Amit; Gupta, Naveen; Lokanath, Neratur K.; Ghosh, Amit; Reddy, Vanga Siva; Ramakumar, Suryanarayanarao

    2006-01-01

    Crystal structures are known for several glycosyl hydrolase family 10 (GH10) xylanases. However, none of them is from an alkalophilic organism that can grow in alkaline conditions. We have determined the crystal structures at 2.2 Å of a GH10 extracellular endoxylanase (BSX) from an alkalophilic Bacillus sp. NG-27, for the native and the complex enzyme with xylosaccharides. The industrially important enzyme is optimally active and stable at 343 K and at a pH of 8.4. Comparison of the structure of BSX with those of other thermostable GH10 xylanases optimally active at acidic or close to neutral pH showed that the solvent-exposed acidic amino acids, Asp and Glu, are markedly enhanced in BSX, while solvent-exposed Asn was noticeably depleted. The BSX crystal structure when compared with putative three-dimensional homology models of other extracellular alkalophilic GH10 xylanases from alkalophilic organisms suggests that a protein surface rich in acidic residues may be an important feature common to these alkali thermostable enzymes. A comparison of the surface features of BSX and of halophilic proteins allowed us to predict the activity of BSX at high salt concentrations, which we verified through experiments. This offered us important lessons in the polyextremophilicity of proteins, where understanding the structural features of a protein stable in one set of extreme conditions provided clues about the activity of the protein in other extreme conditions. The work brings to the fore the role of the nature and composition of solvent-exposed residues in the adaptation of enzymes to polyextreme conditions, as in BSX. PMID:16823036

  4. High-temperature crystallization of nanocrystals into three-dimensional superlattices.

    PubMed

    Wu, Liheng; Willis, Joshua J; McKay, Ian Salmon; Diroll, Benjamin T; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J

    2017-08-10

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  5. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  6. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  7. Liquid Crystalline Behavior and Related Properties of Colloidal Systems of Inorganic Oxide Nanosheets

    PubMed Central

    Nakato, Teruyuki; Miyamoto, Nobuyoshi

    2009-01-01

    Inorganic layered crystals exemplified by clay minerals can be exfoliated in solvents to form colloidal dispersions of extremely thin inorganic layers that are called nanosheets. The obtained “nanosheet colloids” form lyotropic liquid crystals because of the highly anisotropic shape of the nanosheets. This system is a rare example of liquid crystals consisting of inorganic crystalline mesogens. Nanosheet colloids of photocatalytically active semiconducting oxides can exhibit unusual photoresponses that are not observed for organic liquid crystals. This review summarizes experimental work on the phase behavior of the nanosheet colloids as well as photochemical reactions observed in the clay and semiconducting nanosheets system.

  8. A composite hydrogels-based photonic crystal multi-sensor

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  9. Expression, purification, crystallization and preliminary X-ray studies of Lactobacillus jensenii enolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Paul T.; Raghunathan, Kannan; Spurbeck, Rachel R.

    2010-09-02

    Recombinant Lactobacillus jensenii enolase fused to a C-terminal noncleavable His tag was expressed in Escherichia coli, purified and crystallized by sitting-drop vapor diffusion. A complete data set was collected to 3.25 {angstrom} resolution. The crystals belonged to space group I4, with unit-cell parameters a = b = 145.31, c = 99.79 {angstrom}. There were two protein subunits in the asymmetric unit, which gave a Matthews coefficient V{sub M} of 2.8 {angstrom}{sup 3} Da{sup -1}, corresponding to 55.2% solvent content.

  10. Growth and characterization of KDP crystals doped with L-aspartic acid.

    PubMed

    Krishnamurthy, R; Rajasekaran, R; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Methods for producing single crystal mixed halide perovskites

    DOEpatents

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  12. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Mazzini, Virginia; Liu, Guangming; Craig, Vincent S. J.

    2018-06-01

    We present an experimental investigation of specific-ion effects in non-aqueous solvents, with the aim of elucidating the role of the solvent in perturbing the fundamental ion-specific trend. The focus is on the anions: CH3COO->F->Cl->Br->I->ClO4 ->SCN- in the solvents water, methanol, formamide, dimethyl sulfoxide (DMSO), and propylene carbonate (PC). Two types of experiments are presented. The first experiment employs the technique of size exclusion chromatography to evaluate the elution times of electrolytes in the different solvents. We observe that the fundamental (Hofmeister) series is observed in water and methanol, whilst the series is reversed in DMSO and PC. No clear series is observed for formamide. The second experiment uses the quartz crystal microbalance technique to follow the ion-induced swelling and collapse of a polyelectrolyte brush. Here the fundamental series is observed in the protic solvents water, methanol, and formamide, and the series is once again reversed in DMSO and PC. These behaviours are not attributed to the protic/aprotic nature of the solvents, but rather to the polarisability of the solvents and are due to the competition between the interaction of ions with the solvent and the surface. A rule of thumb is proposed for ion specificity in non-aqueous solvents. In weakly polarisable solvents, the trends in specific-ion effects will follow those in water, whereas in strongly polarisable solvents the reverse trend will be observed. Solvents of intermediate polarisability will give weak specific-ion effects.

  13. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents.

    PubMed

    Mazzini, Virginia; Liu, Guangming; Craig, Vincent S J

    2018-06-14

    We present an experimental investigation of specific-ion effects in non-aqueous solvents, with the aim of elucidating the role of the solvent in perturbing the fundamental ion-specific trend. The focus is on the anions: CH 3 COO - >F - >Cl - >Br - >I - >ClO 4 - >SCN - in the solvents water, methanol, formamide, dimethyl sulfoxide (DMSO), and propylene carbonate (PC). Two types of experiments are presented. The first experiment employs the technique of size exclusion chromatography to evaluate the elution times of electrolytes in the different solvents. We observe that the fundamental (Hofmeister) series is observed in water and methanol, whilst the series is reversed in DMSO and PC. No clear series is observed for formamide. The second experiment uses the quartz crystal microbalance technique to follow the ion-induced swelling and collapse of a polyelectrolyte brush. Here the fundamental series is observed in the protic solvents water, methanol, and formamide, and the series is once again reversed in DMSO and PC. These behaviours are not attributed to the protic/aprotic nature of the solvents, but rather to the polarisability of the solvents and are due to the competition between the interaction of ions with the solvent and the surface. A rule of thumb is proposed for ion specificity in non-aqueous solvents. In weakly polarisable solvents, the trends in specific-ion effects will follow those in water, whereas in strongly polarisable solvents the reverse trend will be observed. Solvents of intermediate polarisability will give weak specific-ion effects.

  14. Semiautomated solid-phase extraction manifold with a solvent-level sensor.

    PubMed

    Orlando, R M; Rath, S; Rohwedder, J J R

    2013-11-15

    A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Two-dimensional patterning of colloidal crystals by means of lateral autocloning in edge-patterned cells

    NASA Astrophysics Data System (ADS)

    Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2009-06-01

    We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.

  16. Mechanism for rapid growth of organic–inorganic halide perovskite crystals

    PubMed Central

    Nayak, Pabitra K.; Moore, David T.; Wenger, Bernard; Nayak, Simantini; Haghighirad, Amir A.; Fineberg, Adam; Noel, Nakita K.; Reid, Obadiah G.; Rumbles, Garry; Kukura, Philipp; Vincent, Kylie A.; Snaith, Henry J.

    2016-01-01

    Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization. PMID:27830749

  17. Effect of Solvent Choice on the Self-Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair.

    PubMed

    Mayans, Enric; Ballano, Gema; Sendros, Javier; Font-Bardia, Merçè; Campos, J Lourdes; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2017-07-19

    A diphenylalanine (FF) amphiphile blocked at the C terminus with a benzyl ester (OBzl) and stabilized at the N terminus with a trifluoroacetate (TFA) anion was synthetized and characterized. Aggregation of peptide molecules was studied by considering a peptide solution in an organic solvent and adding pure water, a KCl solution, or another organic solvent as co-solvent. The choice of the organic solvent and co-solvent and the solvent/co-solvent ratio allowed the mixture to be tuned by modulating the polarity, the ionic strength, and the peptide concentration. Differences in the properties of the media used to dissolve the peptides resulted in the formation of different self-assembled microstructures (e.g. fibers, branched-like structures, plates, and spherulites). Furthermore, crystals of TFA⋅FF-OBzl were obtained from the aqueous peptide solutions for X-ray diffraction analysis. The results revealed a hydrophilic core constituted by carboxylate (from TFA), ester, and amide groups, and the core was found to be surrounded by a hydrophobic crown with ten aromatic rings. This segregated organization explains the assemblies observed in the different solvent mixtures as a function of the environmental polarity, ionic strength, and peptide concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Deducing 2D crystal structure at the liquid/solid interface with atomic resolution: a combined STM and SFG study.

    PubMed

    McClelland, Arthur A; Ahn, Seokhoon; Matzger, Adam J; Chen, Zhan

    2009-11-17

    Sum frequency generation vibrational spectroscopy (SFG) has been applied to study two-dimensional (2D) crystals formed by an isophthalic acid diester on the surface of highly oriented pyrolytic graphite, providing complementary measurements to scanning tunneling microscopy (STM) and computational modeling. SFG results indicate that both aromatic and C=O groups in the 2D crystal tilt from the surface. This study demonstrates that a combination of SFG and STM techniques can be used to gain a more complete picture of 2D crystal structure, and it is necessary to consider solvent-2D crystal interactions and dynamics in the computer models to achieve an accurate representation of interfacial structure.

  19. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  20. Crystallization and preliminary X-ray analysis of PH1566, a putative ribosomal RNA-processing factor from the hyperthermophilic archaeon Pyrococcus horikoshii OT3

    PubMed Central

    Jia, Min Ze; Ohtsuka, Jun; Lee, Woo Cheol; Nagata, Koji; Tanokura, Masaru

    2006-01-01

    A putative ribosomal RNA-processing factor consisting of two KH domains from Pyrococcus horikoshii OT3 (PH1566; 25 kDa) was crystallized by the sitting-drop vapour-diffusion method using PEG 3000 as the precipitant. The crystals diffracted X-rays to beyond 2.0 Å resolution using a synchrotron-radiation source. The space group of the crystals was determined as primitive orthorhombic P212121, with unit-cell parameters a = 45.9, b = 47.4, c = 95.7 Å. The crystals contain one molecule in the asymmetric unit (V M = 2.5 Å3 Da−1) and have a solvent content of 50%. PMID:16511260

  1. Structural variations in terbium(III) complexes with 1,3-adamantanedicarboxylate and diverse co-ligands

    NASA Astrophysics Data System (ADS)

    Thuéry, Pierre

    2015-07-01

    Terbium nitrate was reacted with 1,3-adamantanedicarboxylic acid (LH2) under solvo-hydrothermal conditions with either N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) as organic solvents. Hydrolysation of the latter co-solvents resulted in the formation of formate or acetate ions, which are present as co-ligands in the 1D coordination polymer [Tb(L)(HCOO)(H2O)2] (1) and the 2D assembly [Tb(L)(CH3COO)(H2O)] (2). The increase in dimensionality in the latter arises from the higher connectivity provided by acetate versus formate, the L2- ligand being bis-chelating in both cases. The complex [Tb2(L)3(H2O)5][Tb2(L)3(H2O)4]·3H2O (3), another 1D species, crystallizes alongside crystals of 2. Further addition of cucurbit[6]uril (CB6), with DMF as co-solvent, gave the two complexes [Tb2(L)2(CB6)(H2O)6](NO3)2·6H2O (4) and [H2NMe2]2[Tb(L)(HCOO)2]2·CB6·3H2O (5). Complex 4 crystallizes as a 3D framework in which Tb(L)+ chains are connected by tetradentate CB6 molecules, while 5 unites a carboxylate-bridged anionic 2D planar assembly and layers of CB6 molecules with counter-cations held at both portals.

  2. [Supercomputer investigation of the protein-ligand system low-energy minima].

    PubMed

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  3. Alkaline earth metal complexes of a phosphine-borane-stabilized carbanion: synthesis, structures, and stabilities.

    PubMed

    Izod, Keith; Wills, Corinne; Clegg, William; Harrington, Ross W

    2007-05-14

    The reaction between either MgI2 or CaI2 and 2 equiv of [(Me3Si)2{Me2(H3B)P}C]K (2) in toluene gives the corresponding organo-alkaline earth metal compounds [(Me3Si)2{Me2(H3B)P}C]2M in moderate to good yields [M = Mg (3), Ca (4)]. Compound 3 crystallizes solvent-free, whereas X-ray quality crystals of 4 could not be obtained in the absence of coordinating solvents; crystallization of 4 from cold methylcyclohexane/THF gives the solvate [(Me3Si)2{Me2(H3B)P}C]2Ca(THF)4 (4a). The corresponding heavier alkaline earth metal complexes [(Me3Si)2{Me2(H3B)P}C]2M(THF)5 [M = Sr (7), Ba (8)] are obtained from the reaction between MI2 and 2 equiv of 2 in THF, followed by recrystallization from cold methylcyclohexane/THF. Compound 3 degrades over a period of several weeks at room-temperature both in the solid state and in toluene solution to give the free phosphine-borane (Me3Si)2{Me2(H3B)P}CH (5) as the sole phosphorus-containing product. In addition, compounds 3, 4, and 4a react rapidly with THF in toluene solution, yielding 5 as the sole phosphorus-containing product; in contrast, compounds 7 and 8 are stable toward this solvent.

  4. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G.B.

    1979-09-11

    A process is described for solvent extraction of oil-bearing diatomite ore. An apparatus is provided for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent. The solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom. The solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure. 17 claims.

  5. Brooker's merocyanine: Comparison of single crystal structures

    NASA Astrophysics Data System (ADS)

    Hayes, Kathleen L.; Lasher, Emily M.; Choczynski, Jack M.; Crisci, Ralph R.; Wong, Calvin Y.; Dragonette, Joseph; Deschner, Joshua; Cardenas, Allan Jay P.

    2018-06-01

    Brooker's merocyanine and its derivatives are well-studied molecules due to their very interesting optical properties. Merocyanine dyes exhibit different colors in solution depending on the solvent's polarity, pH, aggregation and intermolecular interactions. The synthesis of 1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine (MOED) dye yielded a particularly interesting solid state structure where in one crystal lattice, MOED and its protonated form are bound by hydrogen bonding interactions.

  6. Preparation and magnetic properties of nickel nanowires by reduction in ethylene glycol medium under the influence of magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Wanshuo; Cheng, Junsheng; Li, Lankai; Chen, Shunzhong; Chang, Kun

    2017-01-01

    Nickel nanowires have successfully been fabricated through a simple liquid reduction in ethylene glycol medium with a 0.3T magnetic field applied. The effect of uniform magnetic field and solvent on the morphology and the crystal structure of magnetic nickel were studied. Scanning electron microscope images and transmission electron scope images s how that the effect of the external magnetic field on the morphology of nickel nanowires. X-ray diffraction shows the crystal structure of as-prepared products. And a energy disperse spectroscopy and a vibrating sample magnetometer are used to analyze the composition and static magnetic properties. The results show that the straight wires with an average diameter of about 100 nm and a length of several microns were obtained and mainly composed by fcc structure in the solvent of ethylene glycol. Magnetic measurements show that the saturation magnetization of the as-obtained products in a 0.3 T external magnetic field is 36 emu/g, less than that of bulk nickel crystal, and the coercivity of them is 186 emu/g, larger than that of bulk crystal with the mole ratio of sodium borohydride to nickel sulfate is 1:1000. This kind of nanowires array has potential applications with the special one-dimensional structures.

  7. Crystallization and preliminary X-ray diffraction studies of vitamin D3 hydroxylase, a novel cytochrome P450 isolated from Pseudonocardia autotrophica

    PubMed Central

    Yasutake, Yoshiaki; Fujii, Yoshikazu; Cheon, Woo-Kwang; Arisawa, Akira; Tamura, Tomohiro

    2009-01-01

    Vitamin D3 hydroxylase (Vdh) is a novel cytochrome P450 monooxygenase isolated from the actinomycete Pseudonocardia autotrophica and consisting of 403 amino-acid residues. Vdh catalyzes the activation of vitamin D3 via sequential hydroxylation reactions: these reactions involve the conversion of vitamin D3 (cholecalciferol or VD3) to 25-hydroxyvitamin D3 [25(OH)VD3] and the subsequent conversion of 25(OH)VD3 to 1α,25-dihydroxyvitamin D3 [calciferol or 1α,25(OH)2VD3]. Overexpression of recombinant Vdh was carried out using a Rhodococcus erythropolis expression system and the protein was subsequently purified and crystallized. Two different crystal forms were obtained by the hanging-drop vapour-diffusion method at 293 K using polyethylene glycol as a precipitant. The form I crystal belonged to the trigonal space group P31, with unit-cell parameters a = b = 61.7, c = 98.8 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 47.6%. The form II crystal was grown in the presence of 25(OH)VD3 and belonged to the orthorhombic system P212121, with unit-cell parameters a = 63.4, b = 65.6 c = 102.2 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 46.7%. Native data sets were collected to resolutions of 1.75 and 3.05 Å for form I and form II crystals, respectively, using synchrotron radiation. The structure solution was obtained by the molecular-replacement method and model refinement is in progress for the form I crystal. PMID:19342783

  8. Synthesis, growth, structural, optical and thermal properties of an organic single crystal: 4-nitroaniline 4-aminobenzoic acid.

    PubMed

    Silambarasan, A; Rajesh, P; Ramasamy, P

    2014-01-24

    The organic single crystals of 4-nitroaniline 4-aminobenzoic acid (4NAABA) were grown from ethanol solvent. The lattice parameters of the grown crystal have been confirmed from single crystal XRD analysis. The powder XRD pattern shows the various planes of grown crystal. The FTIR and (1)H NMR spectral analysis confirm the presence of various functional groups and the placement of proton in 4NAABA compound respectively. The UV absorption was carried out which shows the cutoff wavelength around 459 nm. The optical band gap of the crystal has been evaluated from the transmission spectra and absorption coefficient by extrapolation technique. In addition, a fluorescence spectral analysis is carried out for 4NAABA crystals. The thermal properties of crystals were evaluated from thermogravimetrical analysis. It shows that the grown crystal is stable up to 160°C and the crystal has sharp melting point at 151°C. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Surface mediated assembly of small, metastable gold nanoclusters.

    PubMed

    Pettibone, John M; Osborn, William A; Rykaczewski, Konrad; Talin, A Alec; Bonevich, John E; Hudgens, Jeffrey W; Allendorf, Mark D

    2013-07-21

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.

  10. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays

    PubMed Central

    2017-01-01

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L–1), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L–1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals. PMID:29234241

  11. Straight-Chain Alkyl Isocyanides Open the Distal Histidine Gate in Crystal Structures of Myoglobin†

    PubMed Central

    Smith, Rober D.; Blouin, George C.; Johnson, Kenneth A.; Phillips, George N.; Olson, John S.

    2014-01-01

    Crystal structures of methyl, ethyl, propyl and butyl isocyanide bound to sperm whale myoglobin (Mb) reveal two major conformations. In the in conformer, His(E7) is in a “closed” position, forcing the ligand alkyl chain to point inward. In the out conformer, His(E7) is in an “open” position, allowing the ligand side chain to point outward. A progressive increase in the population of the out conformer is observed with increasing ligand length in P21 crystals of native Mb at pH 7.0. This switch from in to out with increasing ligand size also occurs in solution as measured by the decrease in the relative intensity of the low (~2075 cm 1) versus high frequency (~2125 cm 1) isocyano bands. In contrast, all four isocyanides in P6 crystals of wild type recombinant Mb occupy the in conformation. However, mutating either His64 to Ala, creating a “hole” to solvent, or Phe46 to Val, freeing rotation of His64, causes bound butyl isocyanide to point completely outward in P6 crystals. Thus, the unfavorable hindrance caused with crowding a large alkyl side chain into the distal pocket appears to be roughly equal to that for pushing open the His(E7) gate and is easily affected by crystal packing. This structural conclusion supports the “side path” kinetic mechanism for O2 release, in which the dissociated ligand first moves toward the protein interior and then encounters steric resistance, which is roughly equal to that for escaping to solvent through the His(E7) channel. PMID:20481504

  12. X-ray crystallographic studies on C-phycocyanins from cyanobacteria from different habitats: marine and freshwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, L.; Suresh, C. G., E-mail: cgsuresh@ncl.res.in; Patel, Anamika

    2005-09-01

    The protein C-phycocyanin, involved in photosynthesis, has been purified from three cyanobacterial species: Spirulina, Phormidium and Lyngbya. These three proteins have been crystallized and characterized using X-ray crystallography. C-phycocyanins from three cyanobacterial cultures of freshwater and marine habitat, Spirulina, Phormidium and Lyngbya spp., were purified to homogeneity and crystallized using the hanging-drop vapour-diffusion method. Blue-coloured crystals in different crystal forms, monoclinic and hexagonal, were obtained for the three species. The crystals took 1–12 weeks to grow to full size using polyethylene glycols of different molecular weights as precipitants. The amino-acid sequences of these proteins show high similarity to other knownmore » C-phycocyanins from related organisms; however, the C-phycocyanins reported here showed different biochemical and biophysical properties, i.e. molecular weight, stability etc. The X-ray diffraction data were collected at resolutions of 3.0 Å for the monoclinic and 3.2 and 3.6 Å for the hexagonal forms. The unit-cell parameters corresponding to the monoclinic space group P2{sub 1} are a = 107.33, b = 115.64, c = 183.26 Å, β = 90.03° for Spirulina sp. C-phycocyanin and are similar for crystals of Phormidium and Lyngbya spp. C-phycocyanins. Crystals belonging to the hexagonal space group P6{sub 3}, with unit-cell parameters a = b = 154.97, c = 40.35 Å and a = b = 151.96, c = 39.06 Å, were also obtained for the C-phycocyanins from Spirulina and Lyngbya spp., respectively. The estimated solvent content is around 50% for the monoclinic crystals of all three species assuming the presence of two hexamers per asymmetric unit. The solvent content is 66.5 and 64.1% for the hexagonal crystals of C-phycocyanin from Spirulina and Lyngbya spp. assuming the presence of one αβ monomer per asymmetric unit.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore » times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  14. Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: Practical guidelines for the crystalline sponge method

    DOE PAGES

    Ramadhar, Timothy R.; Zheng, Shao -Liang; Chen, Yu -Sheng; ...

    2015-01-01

    A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collectionmore » times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  15. Towards ultra-fast solvent evaporation, the development of a computer controlled solvent vapor annealing chamber

    NASA Astrophysics Data System (ADS)

    Nelson, Gunnar; Wong, J.; Drapes, C.; Grant, M.; Baruth, A.

    Despite the promise of cheap and fast nanoscale ordering of block polymer thin films via solvent vapor annealing, a standardized, scalable production scheme remains elusive. Solvent vapor annealing exposes a nano-thin film to the vapors of one or more solvents with the goal of forming a swollen and mobile state to direct the self-assembly process by tuning surface energies and mediating unfavorable chain interactions. We have shown that optimized annealing conditions, where kinetic and thermal properties for crystal growth are extremely fast (<1s), exist at solvent concentrations just below the order-disorder transition of the film. However, when investigating the propagation of a given morphology into the bulk of a film during drying, the role of solvent evaporation comes under great scrutiny. During this process, the film undergoes a competition between two fronts; phase separation and kinetic trapping. Recent results in both theory and experiment point toward this critical element in controlling the resultant morphologies; however, no current method includes a controllable solvent evaporation rate at ultra-fast time scales. We report on a computer-controlled, pneumatically actuated chamber that provides control over solvent evaporation down to 15 ms. Furthermore, in situ spectral reflectance monitors solvent concentration with 10 ms temporal resolution and reveals several possible evaporation trajectories, ranging from linear to exponential to logarithmic. Funded by Dr. Randolph Ferlic Summer Research Scholarship and NASA Nebraska Space Grant.

  16. Solvent-induced chirality control in the enantioseparation of 1-phenylethylamine via diastereomeric salt formation.

    PubMed

    Kodama, Koichi; Kimura, Yuria; Shitara, Hiroaki; Yasutake, Mikio; Sakurai, Rumiko; Hirose, Takuji

    2011-04-01

    Solvent-induced chirality control in the enantioseparation of 1-phenylethylamine 1 by N-(p-toluenesulfonyl)-(S)-phenylalanine 2 via diastereomeric salt formation was studied. (S)-1·(S)-2 was preferentially crystallized as a less-soluble salt from aqueous alcohol, while (R)-1·(S)-2 salt was mainly obtained by addition of solvents with a six-membered ring such as dioxane, cyclohexane, tetrahydropyran, and cyclohexene to 2-propanol. Further investigations were carried out from the viewpoints of molecular structures, optical rotation measurement, and X-ray crystallographic analyses. Crystallographic analyses have revealed that incorporation of the six-membered ring solvent molecule in (R)-1·(S)-2 without hydrogen bonds changed the molecular conformation of (S)-2 to stabilize the salt, which changed the selectivity of 1 in the enantioseparation. Copyright © 2010 Wiley-Liss, Inc.

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  18. Gold nanoparticle capture within protein crystal scaffolds.

    PubMed

    Kowalski, Ann E; Huber, Thaddaus R; Ni, Thomas W; Hartje, Luke F; Appel, Karina L; Yost, Jarad W; Ackerson, Christopher J; Snow, Christopher D

    2016-07-07

    DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)∼17 (nitrilotriacetic acid)∼1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography.

  19. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of MCAT from Synechocystis sp. PCC 6803.

    PubMed

    Liu, Yinghui; Zhang, Yanming; Cao, Xupeng; Xue, Song

    2013-11-01

    Malonyl-coenzymeA:acyl-carrier protein transacylase (MCAT), which catalyzes the transfer of the malonyl group from malonyl-CoA to acyl-carrier protein (ACP), is an essential enzyme in type II fatty-acid synthesis. The enzyme MCAT from Synechocystis sp. PCC 6803 (spMCAT), the first MCAT counterpart from a cyanobacterium, was cloned, purified and crystallized in order to determine its three-dimensional crystal structure. A higher-quality crystal with better diffraction was obtained by crystallization optimization. The crystal diffracted to 1.8 Å resolution and belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 43.22, b = 149.21, c = 40.59 Å. Matthews coefficient calculations indicated that the crystal contained one spMCAT molecule in the asymmetric unit with a Matthews coefficient of 2.18 Å(3) Da(-1) and a solvent content of 43.65%.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.

    L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less

  1. Synthesis and characteristics of polyarylene ether sulfones

    NASA Technical Reports Server (NTRS)

    Viswanathan, R.; Johnson, B. C.; Ward, T. C.; Mcgrath, J. E.

    1981-01-01

    A method utilizing potassium carbonate/dimethyl acetamide, as base and solvent respectively, was used for the synthesis of several homopolymers and copolymers derived from various bisphenols. It is demonstrated that this method deviates from simple second order kinetics; this deviation being due to the heterogeneous nature of the reaction. Also, it is shown that a liquid induced crystallization process can improve the solvent resistance of these polymers. Finally, a Monte Carlo simulation of the triad distribution of monomers in nonequilibrium copolycondensation is discussed.

  2. The Role of Solvent Reorganization Dynamics in Electron-Transfer Processes. Theory-Experiment Comparisons for Electrochemical and Homogeneous Electron Exchange Involving Metallocene Redox Couples

    DTIC Science & Technology

    1985-08-01

    Kodak) by crystallization from acetone; it was recrystallized twice from ethanol and dried in a vacuum oven. Tetraethylamonium perchlorate (TEAP) (G...the electrooxidation of in(Cp’) 2 , which yielded significantly smaller reverse (cathodic) currents in the most strongly coordinating solvents (DMX...DM50) at slower scan rates (< 0.5 V sec-1). Nevertheless, satisfactory a.c. polarograms were obtained for each of these system=. 5 4 Temperature

  3. Crystallization of Ulex europaeus lectin I.

    PubMed

    Vandonselaar, M; Delbaere, L T

    1994-10-21

    The lectin I from Ulex europaeus (UEAI) has a strong affinity for the H-type 2 human blood group determinant. Single crystals of UEAI have been grown in the monoclinic crystal system. Initial crystals were obtained after 11 months from a solution of 10 mg/ml protein, 40% 2,4-methylpentanediol and 0.1 N acetate buffer at pH 5.2. The technique of washing and reseeding was used to generate large suitable crystals. The space group is C2 with a = 78.84 A, b = 69.85 A, c = 120.62 A, beta = 108.74 degrees and Z = 4; there is one molecular dimer per asymmetric unit and the solvent content is estimated to be 58%. The crystals diffract to at least 2.8 A d spacings and are stable in the X-ray beam for more than three days.

  4. Time-Dependent Solid State Polymorphism of a Series of Donor-Acceptor Dyads

    PubMed Central

    Peebles, Cameron; Alvey, Paul M.; Lynch, Vincent; Iverson, Brent L.

    2014-01-01

    In order to exploit the use of favorable electrostatic interactions between aromatic units in directing the assembly of donor-acceptor (D-A) dyads, the present work examines the ability of conjugated aromatic D-A dyads with symmetric side chains to exhibit solid-state polymorphism as a function of time during the solid formation process. Four such dyads were synthesized and their packing in the solid-state from either slower (10-20 days) or faster (1-2 days) evaporation from solvent was investigated using single crystal X-ray analysis and powder X-ray diffraction. Two of the dyads exhibited tail-to-tail (A-A) packing upon slower evaporation from solvent and head-to-tail (D-A) packing upon faster evaporation from solvent. A combination of single crystal analysis and XRD patterns were used to create models wherein a packing model for the other two dyads is proposed. Our findings suggest that while side chain interactions in asymmetric aromatic dyads can play an important role in enforcing segregated D-A dyad assembly, slowly evaporating symmetrically substituted aromatic dyads allows for favorable electrostatic interactions between the aromatic moieties to facilitate the organization of the dyads in the solid-state. PMID:24678269

  5. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    PubMed

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  6. Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR

    PubMed Central

    Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.

    2005-01-01

    In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891

  7. Purification and thermal analysis of perfluoro-n-alkanoic acids.

    PubMed

    Tsuji, Minami; Inoue, Tohru; Shibata, Osamu

    2008-01-15

    Purification of perfluoro-n-alkanoic acids (C(n)F(2n+1)COOH, n=7, 9, 11, 13, 15 and 17) was made by repeated recrystallizations from n-hexane/acetone mixed solvent, and their purity was found to be more than 99.5% by GC-MS, NMR, and elemental analysis. The thermal behaviors such as melting point and enthalpy change of fusion were investigated using differential scanning calorimetry (DSC). The melting point monotonously increased with increasing carbon number (n) of the acids, while the enthalpy change showed irregularity at n=14. The crystal structure of these acids was found to be dependent upon solvent used for recrystallization; that is, the acids recrystallized from the above solvent becomes more stable energetically, indicating their higher enthalpy change of fusion than that of the solidified acids from fused ones. The solid state was also found to vary depending upon the thermal history, indicating that a few crystal structures of the solid state are quite similar energetically. The melting points (T(m)) of perfluoro-n-alkanoic acids are higher than those of corresponding n-alkanoic acids, and the difference in T(m) increases with increasing carbon number in the acids.

  8. Characterization of nicergoline polymorphs crystallized in several organic solvents.

    PubMed

    Malaj, Ledjan; Censi, Roberta; Capsoni, Doretta; Pellegrino, Luca; Bini, Marcella; Ferrari, Stefania; Gobetto, Roberto; Massarotti, Vincenzo; Di Martino, Piera

    2011-07-01

    Nicergoline (NIC), a poorly water-soluble semisynthetic ergot derivative, was crystallized from several organic solvents, obtaining two different polymorphic forms, the triclinic form I and the orthorhombic form II. NIC samples were then characterized by several techniques such as (13)C cross-polarization magic angle spinning solid-state spectroscopy, room-temperature and high-temperature X-ray powder diffraction, differential scanning calorimetry, and by analysis of weight loss, solvent content, powder density, morphology, and particle size. Solubility and intrinsic dissolution rates determined for the two polymorphic forms in water and hydrochloride solutions (HCl 0.1 N) were always higher for form II than for form I, which is actually the form used for the industrial preparation of NIC medicinal products. Preformulation studies might encourage industry for the evaluation of polymorph II, as it is more suitable for pharmaceutical applications. Results in drug delivery, as well as those obtained by the above-mentioned techniques, and the application of Burger-Ramberger's rules make it possible to conclude that there is a thermodynamic relation of monotropy between the two polymorphs. This last assumption may help formulators in predicting the relative stability of the two forms. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  9. [Preparation of ibuprofen/EC-PVP sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang

    2012-06-01

    Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  10. Morphology of growth of Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Wolf, Th.; Berger, H.; Benoit, W.

    1996-12-01

    A good correlation of twins on the basal surface of flux-grown Bi2Sr2CaCu2Ox (BSCCO) single crystals with surface. growth steps is observed, the b-axis being perpendicular to the steps and, thus, parallel to the growth direction. It is found that mono-twin BSCCO single crystals produced by the travelling solvent floating zone method also grow preferentially along b, i.e. nearly perpendicularly to the boule axis, contrary to the common belief. This new understanding of the morphology of growth explains the nature of major defects in these crystals, which considerably change their measured superconducting properties, in a different way.

  11. Key Developments in Ionic Liquid Crystals.

    PubMed

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  12. Expression, purification and crystallization of a human protein SH3BGRL at atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Lei; Zhu, De-Yu; Yang, Na

    2005-04-01

    The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The protein SH3BGRL, containing both SH3-binding and Homer EVH1-binding motifs, has been crystallized using the hanging-drop vapour-diffusion method. The crystals diffract to 0.88 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 28.8886, b = 34.9676, c = 98.0016 Å. Preliminary analysis indicates that the asymmetric unit contains one molecule and has a solvent content of about 34%.

  13. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  14. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    DOE PAGES

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; ...

    2017-07-31

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single-and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) ofmore » micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. In conclusion, the rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.« less

  15. The effect of processing on the surface physical stability of amorphous solid dispersions.

    PubMed

    Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng

    2014-11-01

    The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Preparation of solid lipid nanoparticles from W/O/W emulsions: preliminary studies on insulin encapsulation.

    PubMed

    Gallarate, Marina; Trotta, Michele; Battaglia, Luigi; Chirio, Daniela

    2009-08-01

    A method to produce solid lipid nanoparticles (SLN) from W/O/W multiple emulsions was developed applying the solvent-in-water emulsion-diffusion technique. Insulin was chosen as hydrophilic peptide drug to be dissolved in the acidic inner aqueous phase of multiple emulsions and to be consequently carried in SLN. Several partially water-miscible solvents with low toxicity were screened in order to optimize emulsions and SLN composition, after assessing that insulin did not undergo any chemical modification in the presence of the different solvents and under the production process conditions. SLN of spherical shape and with mean diameters in the 600-1200 nm range were obtained by simple water dilution of the W/O/W emulsion. Best results, in terms of SLN mean diameter and encapsulation efficiencies, were obtained using glyceryl monostearate as lipid matrix, butyl lactate as a solvent, and soy lecithin and Pluronic F68 as surfactants. Encapsulation efficiencies up to 40% of the loaded amount were obtained, owing to the actual multiplicity of the system; the use of multiple emulsion-derived SLN can be considered a useful strategy to encapsulate a hydrophilic drug in a lipid matrix.

  17. Organic crystal-binding peptides: morphology control and one-pot formation of protein-displaying organic crystals

    NASA Astrophysics Data System (ADS)

    Niide, Teppei; Ozawa, Kyohei; Nakazawa, Hikaru; Oliveira, Daniel; Kasai, Hitoshi; Onodera, Mari; Asano, Ryutaro; Kumagai, Izumi; Umetsu, Mitsuo

    2015-11-01

    Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals.Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals. Electronic supplementary information (ESI) available: Schematic representation of PeryBPb1-fused DsRed-Monomer, fluorescence spectra of perylene crystals and DsRed-Monomer, and emission spectra of DsRed-Monomer at various excitation wavelengths. See DOI: 10.1039/c5nr06471f

  18. Self-organization of glucose oxidase-polymer surfactant nanoconstructs in solvent-free soft solids and liquids.

    PubMed

    Sharma, Kamendra P; Zhang, Yixiong; Thomas, Michael R; Brogan, Alex P S; Perriman, Adam W; Mann, Stephen

    2014-10-02

    An anisotropic glucose oxidase-polymer surfactant nanoconjugate is synthesized and shown to exhibit complex temperature-dependent phase behavior in the solvent-free state. At close to room temperature, the nanoconjugate crystallizes as a mesolamellar soft solid with an expanded interlayer spacing of ca. 12 nm and interchain correlation lengths consistent with alkyl tail-tail and PEO-PEO ordering. The soft solid displays a birefringent spherulitic texture and melts at 40 °C to produce a solvent-free liquid protein without loss of enzyme secondary structure. The nanoconjugate melt exhibits a birefringent dendritic texture below the conformation transition temperature (Tc) of glucose oxidase (58 °C) and retains interchain PEO-PEO ordering. Our results indicate that the shape anisotropy of the protein-polymer surfactant globular building block plays a key role in directing mesolamellar formation in the solvent-free solid and suggests that the microstructure observed in the solvent-free liquid protein below Tc is associated with restrictions in the intramolecular motions of the protein core of the nanoconjugate.

  19. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  20. Infrared Database for Process Support Materials

    NASA Technical Reports Server (NTRS)

    Bennett, K. E.; Boothe, R. E.; Burns, H. D.

    2003-01-01

    Process support materials' compatibility with cleaning processes is critical to ensure final hardware cleanliness and that performance requirements are met. Previous discovery of potential contaminants in process materials shows the need for incoming materials testing and establishment of a process materials database. The Contamination Control Team of the Materials, Processes, and Manufacturing (MP&M) Department at Marshall Space Flight Center (MSFC) has initiated the development of such an infrared (IR) database, called the MSFC Process Materials IR database, of the common process support materials used at MSFC. These process support materials include solvents, wiper cloths, gloves, bagging materials, etc. Testing includes evaluation of the potential of gloves, wiper cloths, and other items to transfer contamination to handled articles in the absence of solvent exposure, and the potential for solvent exposure to induce material degradation. This Technical Memorandum (TM) summarizes the initial testing completed through December 2002. It is anticipated that additional testing will be conducted with updates provided in future TMs.Materials were analyzed using two different IR techniques: (1) Dry transference and (2) liquid extraction testing. The first of these techniques utilized the Nicolet Magna 750 IR spectrometer outfitted with a horizontal attenuated total reflectance (HATR) crystal accessory. The region from 650 to 4,000 wave numbers was analyzed, and 50 scans were performed per IR spectrum. A dry transference test was conducted by applying each sample with hand pressure to the HATR crystal to first obtain a spectrum of the parent material. The material was then removed from the HATR crystal and analyzed to determine the presence of any residues. If volatile, liquid samples were examined both prior to and following evaporation.The second technique was to perform an extraction test with each sample in five different solvents.Once the scans were complete for both the dry transference and the extraction tests, the residue from each scan was interpreted.

  1. Crystallization and X-ray analysis of 2-deoxy-scyllo-inosose synthase, the key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics

    PubMed Central

    Nango, Eriko; Kumasaka, Takashi; Sato, Takao; Tanaka, Nobuo; Kakinuma, Katsumi; Eguchi, Tadashi

    2005-01-01

    A recombinant 2-deoxy-scyllo-inosose synthase from Bacillus circulans has been crystallized at 277 K using PEG 4000 as precipitant. The diffraction pattern of the crystal extends to 2.30 Å resolution at 100 K using synchrotron radiation at the Photon Factory. The crystals are monoclinic and belong to space group P21, with unit-cell parameters a = 80.5, b = 70.4, c = 83.0 Å, β = 117.8°. The presence of two molecules per asymmetric unit gives a crystal volume per protein weight (V M) of 2.89 Å3 Da−1 and a solvent constant of 57.4% by volume. PMID:16511136

  2. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    PubMed

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  3. Vibrational spectroscopic studies of an organic non-linear optical crystal 8-hydroxyquinolinium picrate

    NASA Astrophysics Data System (ADS)

    Krishna Kumar, V.; Nagalakshmi, R.

    2007-04-01

    8-Hydroxyquinolinium picrate (8-HQP) was synthesized by the addition of equimolar quantities of 8-hydroxyquinoline (8-HQ) and picric acid (PA). Single crystals were grown from N, N dimethyl formamide (DMF) by restricted evaporation method at room temperature. The solubility of 8-HQP was determined in different solvents at various temperatures. The structural characterization of the grown crystals was carried out by X-ray diffraction. Vibrational modes were classified on the basis of group theoretical analysis and the spectral bands were compared with those of parent compounds in order to propose a tentative assignment by recording FT-IR, FT-Raman and polarized Raman spectra in different crystal orientations. The crystal possess lower cut-off at 230 nm and good transparency as confirmed by optical transmittance studies.

  4. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering.

    PubMed

    Loschen, Christoph; Klamt, Andreas

    2015-06-01

    The fact that novel drug candidates are becoming increasingly insoluble is a major problem of current drug development. Computational tools may address this issue by screening for suitable solvents or by identifying potential novel cocrystal formers that increase bioavailability. In contrast to other more specialized methods, the fluid phase thermodynamics approach COSMO-RS (conductor-like screening model for real solvents) allows for a comprehensive treatment of drug solubility, solvate and cocrystal formation and many other thermodynamics properties in liquids. This article gives an overview of recent COSMO-RS developments that are of interest for drug development and contains several new application examples for solubility prediction and solvate/cocrystal screening. For all property predictions COSMO-RS has been used. The basic concept of COSMO-RS consists of using the screening charge density as computed from first principles calculations in combination with fast statistical thermodynamics to compute the chemical potential of a compound in solution. The fast and accurate assessment of drug solubility and the identification of suitable solvents, solvate or cocrystal formers is nowadays possible and may be used to complement modern drug development. Efficiency is increased by avoiding costly quantum-chemical computations using a database of previously computed molecular fragments. COSMO-RS theory can be applied to a range of physico-chemical properties, which are of interest in rational crystal engineering. Most notably, in combination with experimental reference data, accurate quantitative solubility predictions in any solvent or solvent mixture are possible. Additionally, COSMO-RS can be extended to the prediction of cocrystal formation, which results in considerable predictive accuracy concerning coformer screening. In a recent variant costly quantum chemical calculations are avoided resulting in a significant speed-up and ease-of-use. © 2015 Royal Pharmaceutical Society.

  5. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing.

    PubMed

    Deller, Robert C; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2014-01-01

    The cryopreservation of cells, tissue and organs is fundamental to modern biotechnology, transplantation medicine and chemical biology. The current state-of-the-art method of cryopreservation is the addition of large amounts of organic solvents such as glycerol or dimethyl sulfoxide, to promote vitrification and prevent ice formation. Here we employ a synthetic, biomimetic, polymer, which is capable of slowing the growth of ice crystals in a manner similar to antifreeze (glyco)proteins to enhance the cryopreservation of sheep and human red blood cells. We find that only 0.1 wt% of the polymer is required to attain significant cell recovery post freezing, compared with over 20 wt% required for solvent-based strategies. These results demonstrate that synthetic antifreeze (glyco)protein mimics could have a crucial role in modern regenerative medicine to improve the storage and distribution of biological material for transplantation.

  6. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  7. Double layer effects on metal nucleation in deep eutectic solvents.

    PubMed

    Abbott, Andrew P; Barron, John C; Frisch, Gero; Gurman, Stephen; Ryder, Karl S; Fernando Silva, A

    2011-06-07

    The electrodeposition of zinc has been studied in two deep eutectic solvents. Unlike the metals studied to date in these liquids, zinc electrodeposition is not mass transport limited and the morphology of the deposit differs in the two liquids. This study shows that changing the concentration of solute affects the physical properties of the liquid to different extents although this is found to not effect the morphology of the metal deposited. EXAFS was used to show that the speciation of zinc was the same in both liquids. Double layer capacitance studies showed differences between the two liquids and these are proposed to be due to the adsorption of a species on the electrode which is thought to be chloride. The differences in zinc morphology is attributed to blocking of certain crystal faces leading to deposition of small platelet shaped crystals in the glycol based liquid.

  8. Crystal growth, structural, thermal and mechanical behavior of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals.

    PubMed

    Mahadevan, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Bhagavannarayana, G; Hayakawa, Y

    2014-12-10

    Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Theoretical investigation of the effects of the molar ratio and solvent on the formation of the pyrazole-nitroamine cocrystal explosive 3,4-dinitropyrazole (DNP)/2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20).

    PubMed

    Zhu, Shuang-Fei; Zhang, Shu-Hai; Gou, Rui-Jun; Han, Gang; Wu, Chun-Lei; Ren, Fu-de

    2017-11-24

    The effects of the molar ratio, temperature, and solvent on the formation of the cocrystal explosive DNP/CL-20 were investigated using molecular dynamics (MD) simulation. The cocrystal structure was predicted through Monte Carlo (MC) simulation and using first-principles methods. The results showed that the DNP/CL-20 cocrystal might be more stable in the molar ratio 1:1 near to 318 K, and the most probable cocrystal crystallizes in the triclinic crystal system with the space group P[Formula: see text]. Cocrystallization was more likely to occur in methanol and ethanol at 308 K as a result of solvent effects. The optimized structure and the reduced density gradient (RDG) of the DNP/CL-20 complex confirmed that the main driving forces for cocrystallization were a series of hydrogen bonds and van der Waals forces. Analyses of the trigger bonds, the charges on the nitro groups, the electrostatic surface potential (ESP), and the free space per molecule in the cocrystal lattice were carried out to further explore their influences on the sensitivity of CL-20. The results indicated that the DNP/CL-20 complex tended to be more stable and insensitive than pure CL-20. Moreover, an investigation of the detonation performance of the DNP/CL-20 cocrystal indicated that it possesses high power. Graphical abstract DNP/CL-20 cocrystal models with different molar ratios were investigated at different temperatures using molecular dynamics (MD) simulation methods. Binding energies and mechanical properties were probed to determine the stability and performance of each cocrystal model. Solvated DNP/CL-20 models were established by adding solvent molecules to the cocrystal surface. The binding energies of the models in various solvents were calculated in order to identify the most suitable solvent and temperature for preparing the cocrystal explosive DNP/CL-20.

  10. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer.

    PubMed

    Maghsoodi, Maryam; Nokhodchi, Ali

    2016-12-01

    Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  11. Optical Anisotropy of Photonic Crystals of Cubic Symmetry Induced by Multiple Diffraction of Light

    NASA Astrophysics Data System (ADS)

    Ukleev, T. A.; Shevchenko, N. N.; Iurasova, D. I.; Sel'kin, A. V.

    2018-05-01

    The optical spectra of Bragg reflection from opal-like photonic crystals under conditions of the resonant enhancement of the multiple diffraction of light have been studied experimentally and theoretically using the photonic crystal structures prepared of monodisperse polystyrene globules. It is shown that the reflection signal registered in mutually orthogonal configurations of the polarizer and analyzer is related to the intrinsic optical anisotropy of the crystals and is a specific manifestation of the multiple Bragg diffraction in three-dimensional photonic crystals.

  12. Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4-nitrophenol: Synthesis, X-ray, FT-IR, UV-Vis, NMR and quantum chemical characterizations

    NASA Astrophysics Data System (ADS)

    Özek Yıldırım, Arzu; Yıldırım, M. Hakkı; Albayrak Kaştaş, Çiǧdem

    2017-01-01

    (E)-2-((3,4-dimethylphenylimino)methyl)-4-nitrophenol, which is a new Schiff base compound, was synthesized and characterized by experimental and computational methods. Molecular geometry, harmonic oscillator model of aromaticity (HOMA) indices, intra- and inter-molecular interactions in the crystal structure were determined by using single crystal X-ray diffraction technique. The optimized structures, which are obtained by Gaussian and Slater type orbitals, were compared to experimental structures to determine how much correlation is found between the experimental and the calculated properties. Intramolecular and hyperconjugative interactions of bonds have been found by Natural Bond Orbital analysis. The experimental infrared spectrum of the compound has been analyzed in detail by the calculated infrared spectra and Potential Energy Distribution analysis. To find out about the correlation between the solvent polarity and the enol-keto equilibrium, experimental UV-Visible spectra of the compound were obtained in benzene, CHCl3, EtOH and DMSO solvents. In these solvents, the UV-Vis spectra and relaxed potential energy surface scan (PES) calculations have been performed to get more insight into the equilibrium dynamics. Solvent effects in UV-Vis and PES calculations have been taken into account by using Polarizable Continuum Modelling method. 1H and 13C NMR spectra of the compound (in DMSO) were analyzed. The computational study of nonlinear optical properties shows that the compound can be used for the development of nonlinear optical materials.

  13. Mechanism for rapid growth of organic–inorganic halide perovskite crystals

    DOE PAGES

    Nayak, Pabitra K.; Moore, David T.; Wenger, Bernard; ...

    2016-11-10

    Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. Here, wemore » use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Lastly, our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.« less

  14. Formulation and Solid State Characterization of Nicotinamide-based Co-crystals of Fenofibrate

    PubMed Central

    Shewale, Sheetal; Shete, A. S.; Doijad, R. C.; Kadam, S. S.; Patil, V. A.; Yadav, A. V.

    2015-01-01

    The present investigation deals with formulation of nicotinamide-based co-crystals of fenofibrate by different methods and solid-state characterization of the prepared co-crystals. Fenofibrate and nicotinamide as a coformer in 1:1 molar ratio were used to formulate molecular complexes by kneading, solution crystallization, antisolvent addition and solvent drop grinding methods. The prepared molecular complexes were characterized by powder X-ray diffractometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and in vitro dissolution study. Considerable improvement in the dissolution rate of fenofibrate from optimized co-crystal formulation was due to an increased solubility that is attributed to the super saturation from the fine co-crystals is faster because of large specific surface area of small particles and prevention of phase transformation to pure fenofibrate. In vitro dissolution study showed that the formation of co-crystals improves the dissolution rate of fenofibrate. Nicotinamide forms the co-crystals with fenofibrate, theoretically and practically. PMID:26180279

  15. Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics.

    PubMed

    Kimura, S Roy; Hu, Hai Peng; Ruvinsky, Anatoly M; Sherman, Woody; Favia, Angelo D

    2017-06-26

    In recent years, molecular dynamics simulations of proteins in explicit mixed solvents have been applied to various problems in protein biophysics and drug discovery, including protein folding, protein surface characterization, fragment screening, allostery, and druggability assessment. In this study, we perform a systematic study on how mixtures of organic solvent probes in water can reveal cryptic ligand binding pockets that are not evident in crystal structures of apo proteins. We examine a diverse set of eight PDB proteins that show pocket opening induced by ligand binding and investigate whether solvent MD simulations on the apo structures can induce the binding site observed in the holo structures. The cosolvent simulations were found to induce conformational changes on the protein surface, which were characterized and compared with the holo structures. Analyses of the biological systems, choice of probes and concentrations, druggability of the resulting induced pockets, and application to drug discovery are discussed here.

  16. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%

    NASA Astrophysics Data System (ADS)

    Wu, Tongyue; Wu, Jihuai; Tu, Yongguang; He, Xin; Lan, Zhang; Huang, Miaoliang; Lin, Jianming

    2017-10-01

    The perovskite layer is the most crucial factor for the high performance perovskite solar cells. Based on solvent engineering, we develop a ternary-mixed-solvent method for the growth of high-quality [Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3] cation-anion-mixed perovskite films by introducing N-methyl-2-pyrrolidone (NMP) into the precursor mixed solution. By controlling rapid nucleation and retarding crystal growth via intermediate phase PbI2-NMP (Lewis acid-base adduct), a dense, large grain, pinhole-free and long charge carrier lifetime perovskite film is obtained. By optimizing the precursor solvent composition, the perovskite solar cell achieves an impressive power conversion efficiency of 19.61% under one-sun illumination. The research presented here provides a facile, low-cost and highly efficient way for the preparation of perovskite solar cells.

  17. Characterization of a Bio-Based, Biodegradable Class of Copolymers, Poly[(R)-3-Hydroxybutyrate-Co-(R)-3- Hydroxyhexanoate], and Application Development

    NASA Astrophysics Data System (ADS)

    Sobieski, Brian

    As modern society begins to focus on sustainability and renewable resources there is a growing need for the polymer industry to develop more environmentally friendly materials and practices. Part of this movement can be seen in the use of recycled materials in new products and in the development of bio-based, biodegradable polymers. Bio-based, biodegradable polymers are produced from renewable carbon sources, such as vegetable oils, typically polymerized using fermentation reactions via bacteria, and are able to be consumed by bacteria in landfills to completely convert the polymers to water and CO2. One class of such polymers are poly(hydroxyalkanoate)'s (PHAs), which are chiral, aliphatic polyesters. Within this class of polyesters are poly(hydroxybutyrate) (PHB) and the copolymer poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), which have received extensive study due to their material properties as thermoplastics. Although the properties of PHB have been widely explored, much still remains to be understood about these promising biodegradable polymers. Specifically, PHB and its copolymers exhibit physical gelation in most solvents, yet the origin and mechanism of gelation and the properties of the resulting gel state are unknown. This research effort was primarily focused on investigating the physical gel state of PHBHx. Five goals were laid out and completed: determining the origin of gelation, the mechanism of gelation, the structure of the gel state, the properties of the gel state, and the effects of gelation on electrospun fibers of PHBHx. These goals were achieved through material characterization of the gel state utilizing infrared spectroscopy/two-dimensional correlation spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and many other analysis methods. Crystallization of the polymer in solution was found to cause gelation in PHBHx solutions, where the polymer crystals act as tie points forming an interconnected network. The process of crystallization in solution was determined to follow the same method as crystallization in the bulk, neat polymer as it is cooled from a molten state. Morphological studies revealed that the polymer forms sub-micron fibrils and ribbons in xxviii the gel system forming an interconnected polymer network. The utility of this morphology combined with the bio-compatibility of PHBHx were demonstrated through growth of stem cells on the gel samples. Surprisingly, the stem cells did not differentiate and thrived on the freeze-dried PHBHx gels. These results indicate that the gel state of PHBHx could be used as a tissue engineering scaffold whose material properties can be tuned to the desired application without the concern of the stem cells differentiating into an unwanted cell type. Combined with the ease of generation of the PHBHx gels, these results show promising potential for industrial production of excellent three-dimensional culturing scaffolds. It was also found that the gels do not show signs of aging after gelation is complete and that the polymer exists in the amorphous and primary alpha crystal phases when gelled. Electrospun fibers of the polymer in solution with a solvent that promotes gelation displayed a new morphology. Rather than the typical cylindrical fiber morphology, these fibers formed coiled fiber mats. It is proposed that the formation of crystals before the fibers are formed causes the fibers to collapse thus forming the coils. Additional research was conducted on the neat polymer itself to further explore its material properties. PHB and PHBHx tend to have multiple melting transitions when heated to the amorphous phase. This multiple melting behavior was caused by the same, primary crystal form recrystallizing and having a bimodal size distribution, rather than arising from two different crystal phases. Thermal degradation of the copolymers was also studied and the reaction pathway suggested, beginning with the formation of a six-member ring precursor leading to chain scission of the polymer. It was also found that the formation of this precursor may cause the higher 3HHx content copolymers to be slightly more stable at high temperatures due to steric hindrance. Strain-induced crystallization of the beta crystal of PHBHx was performed in the 13 mol % 3HHx PHBHx by stretching films of the copolymer. All the research conducted during this project were performed to generate additional applications and further the utility of this class of bio-based, biodegradable polyesters.

  18. Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins.

    PubMed

    Liu, Kai; Ma, Chao; Göstl, Robert; Zhang, Lei; Herrmann, Andreas

    2017-05-16

    Biomacromolecules, such as nucleic acids, proteins, and virus particles, are persistent molecular entities with dimensions that exceed the range of their intermolecular forces hence undergoing degradation by thermally induced bond-scission upon heating. Consequently, for this type of molecule, the absence of a liquid phase can be regarded as a general phenomenon. However, certain advantageous properties usually associated with the liquid state of matter, such as processability, flowability, or molecular mobility, are highly sought-after features for biomacromolecules in a solvent-free environment. Here, we provide an overview over the design principles and synthetic pathways to obtain solvent-free liquids of biomacromolecular architectures approaching the topic from our own perspective of research. We will highlight the milestones in synthesis, including a recently developed general surfactant complexation method applicable to a large variety of biomacromolecules as well as other synthetic principles granting access to electrostatically complexed proteins and DNA. These synthetic pathways retain the function and structure of the biomacromolecules even under extreme, nonphysiological conditions at high temperatures in water-free melts challenging the existing paradigm on the role of hydration in structural biology. Under these conditions, the resulting complexes reveal their true potential for previously unthinkable applications. Moreover, these protocols open a pathway toward the assembly of anisotropic architectures, enabling the formation of solvent-free biomacromolecular thermotropic liquid crystals. These ordered biomaterials exhibit vastly different mechanical properties when compared to the individual building blocks. Beyond the preparative aspects, we will shine light on the unique potential applications and technologies resulting from solvent-free biomacromolecular fluids: From charge transport in dehydrated liquids to DNA electrochromism to biocatalysis in the absence of a protein hydration shell. Moreover, solvent-free biological liquids containing viruses can be used as novel storage and process media serving as a formulation technology for the delivery of highly concentrated bioactive compounds. We are confident that this new class of hybrid biomaterials will fuel further studies and applications of biomacromolecules beyond water and other solvents and in a much broader context than just the traditional physiological conditions.

  19. Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone.

    PubMed

    Sonwai, Sopark; Rungprasertphol, Poonyawee; Nantipipat, Nantinee; Tungvongcharoan, Satinee; Laiyangkoon, Nantikan

    2017-09-01

    This work was aimed to study the solvent fraction of coconut oil (CNO). The fatty acid and triacylglycerol compositions, solid fat content (SFC) and the crystallization properties of CNO and its solid and liquid fractions obtained from fractionation at different conditions were investigated using various techniques. CNO was dissolved in acetone (1:1 w/v) and left to crystallize isothermally at 10°C for 0.5, 1 and 2 h and at 12°C for 2, 3 and 6 h. The solid fractions contained significantly lower contents of saturated fatty acids of ≤ 10 carbon atoms but considerably higher contents of saturated fatty acids with > 12 carbon atoms with respect to those of CNO and the liquid fractions. They also contained higher contents of high-melting triacylglycerol species with carbon number ≥ 38. Because of this, the DSC crystallization onset temperatures and the crystallization peak temperatures of the solid fractions were higher than CNO and the liquid fractions. The SFC values of the solid fractions were significantly higher than CNO at all measuring temperatures before reaching 0% just below the body temperature with the fraction obtained at 12°C for 2 h exhibiting the highest SFC. On the contrary, the SFC values of the liquid fractions were lower than CNO. The crystallization duration exhibited strong influence on the solid fractions. There was no effect on the crystal polymorphic structure possibly because CNO has β'-2 as a stable polymorph. The enhanced SFC of the solid fractions would allow them to find use in food applications where a specific melting temperature is desired such as sophisticated confectionery fats, and the decreased SFC of the liquid fractions would provide them with a higher cold stability which would be useful during extended storage time.

  20. Crystallization and X-ray analysis of 2-deoxy-scyllo-inosose synthase, the key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nango, Eriko; Kumasaka, Takashi, E-mail: tkumasak@bio.titech.ac.jp; Sato, Takao

    2005-07-01

    The crystallization of 2-deoxy-scyllo-inosose synthase, the key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics, is reported. A recombinant 2-deoxy-scyllo-inosose synthase from Bacillus circulans has been crystallized at 277 K using PEG 4000 as precipitant. The diffraction pattern of the crystal extends to 2.30 Å resolution at 100 K using synchrotron radiation at the Photon Factory. The crystals are monoclinic and belong to space group P2{sub 1}, with unit-cell parameters a = 80.5, b = 70.4, c = 83.0 Å, β = 117.8°. The presence of two molecules per asymmetric unit gives a crystal volume per protein weight (V{sub M})more » of 2.89 Å{sup 3} Da{sup −1} and a solvent constant of 57.4% by volume.« less

  1. High-Mobility, Ultrathin Organic Semiconducting Films Realized by Surface-Mediated Crystallization.

    PubMed

    Vladimirov, I; Kellermeier, M; Geßner, T; Molla, Zarah; Grigorian, S; Pietsch, U; Schaffroth, L S; Kühn, M; May, F; Weitz, R T

    2018-01-10

    The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm 2 /(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.

  2. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    PubMed

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  3. Influence of crystal habit on trimethoprim suspension formulation.

    PubMed

    Tiwary, A K; Panpalia, G M

    1999-02-01

    The role of crystal habit in influencing the physical stability and pharmacokinetics of trimethoprim suspensions was examined. Different habits for trimethoprim (TMP) were obtained by recrystallizing the commercial sample (PD) utilizing solvent-change precipitation method. Four distinct habits (microscopic observation) belonging to the same polymorphic state (DSC studies) were selected for studies. Preformulation and formulation studies were carried out on suspension dosage forms containing these crystals. The freshly prepared suspensions were also evaluated for their pharmacokinetic behaviour on healthy human volunteers using a cross over study. Variation of crystallization conditions produces different habits of TMP. Among the different crystal habits exhibiting same polymorphic state, the most anisometric crystal showed best physical stability in terms of sedimentation volume and redispersibility. However, habit did not significantly affect the extent of TMP excreted in urine. Modification of surface morphology without significantly altering the polymorphic state can be utilized for improving physical stability of TMP suspensions. However, the pharmacokinetic profile remains unaltered.

  4. Raman crystallography of RNA.

    PubMed

    Gong, Bo; Chen, Jui-Hui; Yajima, Rieko; Chen, Yuanyuan; Chase, Elaine; Chadalavada, Durga M; Golden, Barbara L; Carey, Paul R; Bevilacqua, Philip C

    2009-10-01

    Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.

  5. Phase-Equilibria and Nanostructure Formation in Charged Rigid-Rod Polymers and Carbon Nanotubes

    DTIC Science & Technology

    2002-11-10

    or liquid crystalline) and the crystalline polymer state. The form-I crystal solvate, identi- fied as a cocrystal of the protonated polymer and the...dissolution temperature, below 100 °C.12,13 The form-II crystal solvate, considered a polymer-solvent cocrystal in which the polymer is deprotonated,11,12...solvate that is a cocrystal of protonated PBZT and PPA anions. As previously mentioned, the fact that these two extreme cases result in similar

  6. Growth of propyl-p-hydroxybenzoate single crystals and its characterizations

    NASA Astrophysics Data System (ADS)

    Karunagaran, N.; Ramasamy, P.

    2012-06-01

    Single crystals of Propyl-p-hydroxybenzoate (PHB) crystals have been grown by slow evaporation solution technique (SEST) using methanol as a solvent. The PHB single crystal of dimension up to 27×16×8 mm3 has been grown in a period of 18 days at room temperature. The optical transparency of the grown PHB crystal has been measured on (212) plane by UV-Vis-NIR spectrophotometer. The crystal has 60% of transparency in the entire visible region. The thermo gravimetric analysis (TG) and differential thermal analysis (DTA) studies reveal that the crystal is thermally stable up to 99°C. The mechanical strength of the grown PHB crystal is measured using Vickers microhardness tester. The chemical etching studies were carried out on (212) plane using methanol etchant. The laser damage threshold of PHB crystal is 1.3 GW/cm2. The dielectric properties have been investigated. The birefringence value is found to be 0.10148 at the wavelength of 504 nm. The refractive index of grown PHB single crystal is 1.6753.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotin, B. M., E-mail: bolotin70@yandex.ru; Mikhlina, Ya. A.; Arkhipova, S. A.

    The crystal and molecular structures of two crystal forms (pale yellow form 1 and yellow form 2) of N-[2-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)phenyl]naphthalene-2-sulfonamide (Orlyum White 520T), which is an organic luminophore with an anomalously high Stokes shift, were determined. Crystal 2 is a solvate with para-xylene. Crystal 1 is a solvent-free form. The molecular geometry in crystal 1 differs from that in 2 only in the orientation of the SO{sub 2}Ar substituent. The bond-length distribution in the planar moiety of the molecule in crystal 1 is virtually identical to that in 2, but the bonds in the NH-SO{sub 2}Ar-bearing benzene ring in crystal 1more » are systematically longer than the corresponding bonds in crystal 2. This fact can be attributed to the crystal-packing effects. In 2 the molecules form stacked dimers with {pi}-stacking interactions between two planar conjugated tricyclic systems. The charge transfer in this system accounts for the intensification of the color of these crystals and the observed difference in the optical properties of 1 and 2.« less

  8. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth

    PubMed Central

    Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.

    2017-01-01

    We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697

  9. Process for controlling morphology and improving thermal-mechanical performance of high performance interpenetrating and semi-interpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1997-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  10. Process for controlling morphology and improving thermal mechanical performance of high performance interpenetrating and semiinterpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1998-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  11. Crystal structure of an unknown tetra­hydro­furan solvate of tetra­kis­(μ 3-cyanato-κ3 N:N:N)tetra­kis­[(triphenyl­phosphane-κP)­silver(I)

    PubMed Central

    Frenzel, Peter; Schaarschmidt, Dieter; Jakob, Alexander; Lang, Heinrich

    2015-01-01

    In the title compound, [{[(C6H5)3P]Ag}4{NCO}4], a distorted Ag4N4-heterocubane core is set up by four AgI ions being coordinated by the N atoms of the cyanato anions in a μ 3-bridging mode. In addition, a tri­phenyl­phosphine ligand is datively bonded to each of the AgI ions. Intra­molecular Ag⋯Ag distances as short as 3.133 (9) Å suggest the presence of argentophilic (d 10⋯d 10) inter­actions. Five moderate-to-weak C—H⋯O hydrogen-bonding inter­actions are observed in the crystal structure, spanning a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as being part of disordered tetra­hydro­furan solvent mol­ecules. The given chemical formula and other crystal data do not take into account these solvent mol­ecules. PMID:26594421

  12. Selecting the spin crossover profile with controlled crystallization of mononuclear Fe(iii) polymorphs.

    PubMed

    Vicente, Ana I; Ferreira, Liliana P; Carvalho, Maria de Deus; Rodrigues, Vítor H N; Dîrtu, Marinela M; Garcia, Yann; Calhorda, Maria José; Martinho, Paulo N

    2018-05-08

    Two polymorphic species of the [Fe(5-Br-salEen)2]ClO4 compound were obtained, each of them being selectively recovered after evaporation of the solvent at a controlled rate. While polymorph 1a is formed during slow evaporation, fast evaporation favors polymorph 1b. The importance of the evaporation rate was recognized after detailed studies of the reaction temperature, solvent evaporation rate and crystallization temperature effects. The complex in the new polymorphic form 1a showed an abrupt spin crossover at 172 K with a small 1 K hysteresis window and over a narrow 10 K range. 57Fe Mössbauer spectroscopy and differential scanning calorimetry, complemented by X-ray studies for both the high-spin and low-spin forms, were used to further characterize the new polymorphic phase 1a. Both polymorphs are based on the same Fe(iii) complex cation hydrogen bonded to the perchlorate anion. These units are loosely bound in the crystals via weak interactions. In the new polymorph 1a, the hydrogen bonds are stronger, while the weak hydrogen and halogen bonds, as well as π-π stacking, create a cooperative network, not present in 1b, responsible for the spin transition profile.

  13. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P.; Kovalevsky, Andrey Y.

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-raymore » crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.« less

  14. Boost the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues

    DOE PAGES

    Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; ...

    2015-10-29

    Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm 2 V –1 s –1 with a highest value of 13.3more » cm 2 V –1 s –1; these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm 2 V –1 s –1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm 2 V –1 s –1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.« less

  15. Thermally-prepared polymorphic forms of cilostazol.

    PubMed

    Stowell, Grayson W; Behme, Robert J; Denton, Stacy M; Pfeiffer, Inigo; Sancilio, Frederick D; Whittall, Linda B; Whittle, Robert R

    2002-12-01

    Prior to this study, cilostazol, an antithrombotic drug, was thought to exist as a single crystalline phase with a melting point of approximately 159 degrees C (Form A). On cooling, melts often form a glass that, when heated, may crystallize as additional crystalline polymorphic forms. Cilostazol, when reheated, subsequently forms polymorphs that melt at approximately 136 degrees C (Form B) and 146 degrees C (Form C). Free-energy temperature diagrams estimated from calorimetry data reveal that each pair of the cilostazol polymorphs (A-B, B-C, and A-C) is monotropic. Essentially pure samples of suitable crystalline shape and size permitted single crystal structural analysis of Forms A and C. Theoretical solubility ratios calculated using calorimetry data indicate that at 37 degrees C, Form B should be more than four times more soluble and Form C should be more than two times more soluble than Form A. Forms B and C could not be crystallized from solvents. Metastable forms from super cooled melts analyzed by intrinsic dissolution and Fourier transform-Raman experiments demonstrated that Forms B and C undergo a rapid, solvent-mediated recrystallization to Form A, making dissolution rate measurements difficult. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2481-2488, 2002

  16. Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures

    DOE PAGES

    Pagan, Darren C.; Miller, Matthew P.

    2016-09-01

    A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less

  17. Synthesis and Characterization of a New Co-Crystal Explosive with High Energy and Good Sensitivity

    NASA Astrophysics Data System (ADS)

    Gao, Han; Jiang, Wei; Liu, Jie; Hao, Gazi; Xiao, Lei; Ke, Xiang; Chen, Teng

    2017-10-01

    A new energetic co-crystal consisting of one of the most powerful explosive molecules 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the military explosive cyclotrimethylenetrinitramine (RDX) was prepared with a simple solvent evaporation method. Scanning electron microscopy (SEM) revealed the morphology of the bar-shaped product, which differed greatly from the morphology of the individual components. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction spectrum (XRD), and differential scanning calorimetry (DSC) proved the formation of the co-crystal at the molecular level. The result of mechanical sensitivity test indicated the sensitivity was effectively reduced compared to raw CL-20. Finally, a possible crystallization mechanism was discussed.

  18. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal

    NASA Astrophysics Data System (ADS)

    Guo, Changyan; Zhang, Haobin; Wang, Xiaochuan; Xu, Jinjiang; Liu, Yu; Liu, Xiaofeng; Huang, Hui; Sun, Jie

    2013-09-01

    Co-crystallization is an effective way to improve performance of the high explosive 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20). A new CL-20/caprolactam (CPL) cocrystal has been prepared by a rapid solvent evaporation method, and the crystal structure investigations show that the cocrystal is formed by strong intermolecular hydrogen bond interaction. The cocrystal can only be prepared with low moisture content of the air, because water in the air has a profound effect on the cocrystal formation, and it can lead to crystal form conversion of CL-20, but not the formation of cocrystal. The CL20/CPL explosive possess very low sensitivity, and may be used as additive in explosives formulation to desensitize other high explosives.

  19. Numerical simulation and growth of Li2Zn2(MoO4)3 single crystals by the top seeded solution growth technique

    NASA Astrophysics Data System (ADS)

    Sukharev, V.; Sukhanova, E.; Mozhevitina, E.; Sadovsky, A.; Avetissov, I.

    2017-06-01

    Li2O - ZnO - MoO3 pseudo ternary system was used for the growth of Li2Zn2(MoO4)3 crystals by the top seeded solution growth technique in which MoO3 was used as a solvent. Properties of the melts (density, viscosity) have been experimentally measured at different temperatures and compositions of Li2O - ZnO - MoO3 pseudo ternary system. Heat mass transfer in the crystal growth setup was numerically simulated. Using the simulation results a real growth setup was made, Li2Zn2(MoO4)3 crystals were grown and their properties were studied.

  20. Docking glycosaminoglycans to proteins: analysis of solvent inclusion

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey A.; Teyra, Joan; Pisabarro, M. Teresa

    2011-05-01

    Glycosaminoglycans (GAGs) are anionic polysaccharides, which participate in key processes in the extracellular matrix by interactions with protein targets. Due to their charged nature, accurate consideration of electrostatic and water-mediated interactions is indispensable for understanding GAGs binding properties. However, solvent is often overlooked in molecular recognition studies. Here we analyze the abundance of solvent in GAG-protein interfaces and investigate the challenges of adding explicit solvent in GAG-protein docking experiments. We observe PDB GAG-protein interfaces being significantly more hydrated than protein-protein interfaces. Furthermore, by applying molecular dynamics approaches we estimate that about half of GAG-protein interactions are water-mediated. With a dataset of eleven GAG-protein complexes we analyze how solvent inclusion affects Autodock 3, eHiTs, MOE and FlexX docking. We develop an approach to de novo place explicit solvent into the binding site prior to docking, which uses the GRID program to predict positions of waters and to locate possible areas of solvent displacement upon ligand binding. To investigate how solvent placement affects docking performance, we compare these results with those obtained by taking into account information about the solvent position in the crystal structure. In general, we observe that inclusion of solvent improves the results obtained with these methods. Our data show that Autodock 3 performs best, though it experiences difficulties to quantitatively reproduce experimental data on specificity of heparin/heparan sulfate disaccharides binding to IL-8. Our work highlights the current challenges of introducing solvent in protein-GAGs recognition studies, which is crucial for exploiting the full potential of these molecules for rational engineering.

  1. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  2. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals: influence of impurities on crystal perfection.

    PubMed

    Hu, Z W; Thomas, B R; Chernov, A A

    2001-06-01

    Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.

  3. Crystallization and preliminary X-ray diffraction analysis of the lectin from Dioclea rostrata Benth seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delatorre, Plínio; Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE 63195-000; Nascimento, Kyria Santiago

    2006-02-01

    D. rostrata lectin was crystallized by hanging-drop vapor diffusion. The crystal belongs to the orthorhombic space group I222 and diffracted to 1.87 Å resolution. Lectins from the Diocleinae subtribe (Leguminosae) are highly similar proteins that promote various biological activities with distinctly differing potencies. The structural basis for this experimental data is not yet fully understood. Dioclea rostrata lectin was purified and crystallized by hanging-drop vapour diffusion at 293 K. The crystal belongs to the orthorhombic space group I222, with unit-cell parameters a = 61.51, b = 88.22, c = 87.76 Å. Assuming the presence of one monomer per asymmetric unit,more » the solvent content was estimated to be about 47.9%. A complete data set was collected at 1.87 Å resolution.« less

  4. Crystallization and preliminary X-ray analysis of copper amine oxidase from Escherichia coli K-12.

    PubMed

    Roh, J H; Suzuki, H; Kumagai, H; Yamashita, M; Azakami, H; Murooka, Y; Mikami, B

    1994-05-13

    Copper-containing monoamine oxidase (MAO) from Escherichia coli was overproduced in the periplasmic space by expression of the cloned gene. The purified MAO has been crystallized by means of the hanging drop technique using sodium citrate as a precipitant. The crystals belong to the orthorhombic system, space group P2(1)2(1)2(1), with unit cell dimensions of a = 136.1 A, b = 168.4 A and c = 81.6 A. The asymmetric unit contains one molecule of MAO, with a crystal volume per protein mass (Vm) of 2.88 A3/Da and a solvent content of 58% by volume. The crystals diffract X-rays to a resolution limit of at least 2.7 A and are resistant to X-ray radiation damage. They appear to be suitable for X-ray structure analysis.

  5. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting.

    PubMed

    Perez, Louis A; Chou, Kang Wei; Love, John A; van der Poll, Thomas S; Smilgies, Detlef-M; Nguyen, Thuc-Quyen; Kramer, Edward J; Amassian, Aram; Bazan, Guillermo C

    2013-11-26

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Brain damage in a large cohort of solvent abusers.

    PubMed

    Al-Hajri, Zahra; Del Bigio, Marc R

    2010-04-01

    The neuropathology of solvent inhalation consists of patchy myelin loss with white matter macrophages that contain granular inclusions. It has been described only in a small number of cases. We sought to characterize the abnormalities in greater detail. In a retrospective study from 1995 to 2009, we encountered 88 autopsy cases with documented history of solvent abuse by inhalation and 1 with industrial exposure. Among these are 6 fetuses and infants with maternal exposure, 23 children (12-17 years), and 60 adults (18-66 years). Available brain samples from 75 cases were stained with solochrome cyanein (to demonstrate myelin) and periodic acid-Schiff (PAS) (to highlight the inclusions). Forty brains of ethanol and/or illicit drug exposed individuals and ten cases of multiple sclerosis were examined as controls. We found that 16 cases (age 23-49, median 37 years) had well-established leukoencephalopathy with multifocal myelin loss and abundant macrophages that stain with PAS and which contain birefringent inclusions. Six cases (age 15-55, median 27 years) had early leukoencephalopathy with scattered macrophages but no obvious myelin changes. Clusters of PAS-staining but non-birefringent macrophages were seen in 2/10 cases of (active) multiple sclerosis and in none of the ethanol/drug exposed brains. Ultrastructurally, inclusions from solvent cases differed from multiple sclerosis cases. Although exposure to solvents is impossible to quantify, there appears to be a duration-dependent effect. Brain damage related to solvent abuse can begin within only a few years of the onset. In the context of substance abuse, the changes are relatively specific for solvent inhalation and do not appear to result from demyelination alone. Interaction with ethanol cannot be excluded as a compounding risk factor.

  7. Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection.

    PubMed

    Sato, Ayaka; Ikeda, Yuya; Yamaguchi, Koichi; Vohra, Varun

    2018-03-16

    Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS) matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.

  8. Growth, spectroscopic and physicochemical properties of bis mercury ferric chloride tetra thiocyanate: A nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Ramesh, V.; Shihabuddeen Syed, A.; Jagannathan, K.; Rajarajan, K.

    2013-05-01

    Single crystal of bis mercury ferric chloride tetra thiocyanate [Hg2FeCl3(SCN)4; (MFCTC)] was grown from ethanol-water (3:1) mixed solvent using slow evaporation solvent technique (SEST) for the first time. The cell parameters of the grown crystal were confirmed by single crystal XRD. The coordination of transition metal ions with the SCN ligand is well-identified using FT-IR spectral analysis. The chemical composition of MFCTC was confirmed using CHNS elemental test. The ESR spectral profile of MFCTC was recorded from 298 K to 110 K, which strongly suggests the incorporation of Fe3+ ion and its environment with respect to SCN ligand. The HPLC chromatogram of MFCTC highlights the purity of the compound. The UV-Vis-NIR studies revealed the ultra violet cut-off wavelength of MFCTC in ethanol as 338 nm. The dielectric constant and dielectric loss of the sample were studied as a function of frequency and temperature. The TGA-DTA and DSC thermal analysis show that the sample is thermally stable up to 234.31 °C, which is comparatively far better than the thermal stability of Hg3CdCl2(SCN)6; (171.3 °C) and other metal-organic coordination complex crystals such as CdHg(SCN)4 (198.5 °C), Hg(N2H4CS)4Mn(SCN)4 (199.06 °C) and Hg(N2H4CS)4Zn(SCN)4 (185 °C). The SHG conversion efficiency of MFCTC is found to be higher than KDP.

  9. (NZ)CH...O contacts assist crystallization of a ParB-like nuclease.

    PubMed

    Shaw, Neil; Cheng, Chongyun; Tempel, Wolfram; Chang, Jessie; Ng, Joseph; Wang, Xin-Yu; Perrett, Sarah; Rose, John; Rao, Zihe; Wang, Bi-Cheng; Liu, Zhi-Jie

    2007-07-07

    The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2-3.7 A) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 A resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.

  10. Synthesis, crystal growth, structural, thermal and optical properties of naphthalene picrate an organic NLO material.

    PubMed

    Chandramohan, A; Bharathikannan, R; Kandavelu, V; Chandrasekaran, J; Kandhaswamy, M A

    2008-12-01

    Crystalline substance of naphthalene picrate (NP) was synthesized and single crystals were grown using slow evaporation solution growth technique. The solubility of the naphthalene picrate complex was estimated using different solvents such as chloroform and benzene. The material was characterized by elemental analysis, powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and fourier transform-infrared (FT-IR) techniques. The electronic absorption was studied through UV-vis spectrophotometer. Thermal behavior and stability of the crystal were studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The second harmonic generation (SHG) of the material was confirmed using Nd:YAG laser.

  11. Purification, Crystallization, and Preliminary Crystallographic Analysis of Deoxyuridine Triphosphate Nucleotidohydrolase from Arabidopsis Thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj,M.; Moriyama, H.

    2007-01-01

    The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Angstroms resolution using Cu K{alpha} radiation. The crystal belongs to the orthorhombic space group P212121, with unit-cell parameters a = 69.90, b = 70.86 Angstroms, c = 75.55 Angstroms . Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a VM of 1.8 Angstroms 3 Da-1.

  12. Solvothermal crystallization of nanocrystals of metal oxides

    NASA Astrophysics Data System (ADS)

    Furukawa, S.; Amino, H.; Iwamoto, S.; Inoue, M.

    2008-07-01

    Solvothermal crystallization of the hydroxide gels obtained by hydrolysis of alkoxides (Zr, Ta, Nb, ln, Sn, Ti and Al) was examined. Nanocrystals having high surface areas (SBET > 170 m2 g-1) were obtained except for the product derived from indium isopropoxide. The effect of water in organic solvent upon the crystallinity of the product was investigated. The increase in the activity of water by using high concentration of alkoxide or intentional addition of water to the solvothermal medium led to crystal growth of the products. In contrast, decrease in activity of water by adding ethylene glycol before solvothermal treatment caused a decrease in crystallinity of the product.

  13. Effect of ethanol on crystallization of the polymorphs of L-histidine

    NASA Astrophysics Data System (ADS)

    Wantha, Lek; Punmalee, Neeranuch; Sawaddiphol, Vanida; Flood, Adrian E.

    2018-05-01

    It is known that the antisolvents used for crystallization can affect the crystallization outcome and may promote the crystallization of a specific polymorph. In this study L-histidine (L-his) is used as a model substance, and ethanol was selected to be an antisolvent. The formation of the polymorphs of L-his in antisolvent crystallization as a function of supersaturation, ethanol volume fraction, and temperature was studied. The induction time for the antisolvent crystallization was also measured. The results showed that the induction time decreases with higher supersaturation and ethanol volume fraction, indicating that the nucleation rate of L-his from antisolvent crystallization (where water was used as the solvent and ethanol as the antisolvent) increases with higher supersaturation, as expected, and ethanol fraction. At all temperatures studied, the pure metastable polymorph B of L-his was obtained initially at higher ethanol volume fraction and supersaturation, while a mixture of the polymorphs A and B was obtained at lower ethanol volume fraction and supersaturation.

  14. Crystallization and preliminary X-ray crystallographic analysis of carboxyl-terminal region 4 of SigR from Streptomyces coelicolor A3(2)

    PubMed Central

    Kim, Keon Young; Kim, Sunmin; Park, Jeong Kuk; Song, HyoJin; Park, SangYoun

    2014-01-01

    Full-length SigR from Streptomyces coelicolor A3(2) was overexpressed in Escherichia coli, purified and submitted to crystallization trials using either polyethylene glycol 3350 or 4000 as a precipitant. X-ray diffraction data were collected to 2.60 Å resolution under cryoconditions using synchrotron X-rays. The crystal packs in space group P43212, with unit-cell parameters a = b = 42.14, c = 102.02 Å. According to the Matthews coefficient, the crystal asymmetric unit cannot contain the full-length protein. Molecular replacement with the known structures of region 2 and region 4 as independent search models indicates that the crystal contains only the −35 element-binding carboxyl-terminal region 4 of full-length SigR. Mass-spectrometric analysis of the harvested crystal confirms this, suggesting a crystal volume per protein weight (V M) of 2.24 Å3 Da−1 and 45.1% solvent content. PMID:24915084

  15. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals.

    PubMed

    Serrano, Dolores R; Persoons, Tim; D'Arcy, Deirdre M; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2016-06-30

    The aim of this work was to evaluate the influence of crystal habit on the dissolution and in vitro antibacterial and anitiprotozoal activity of sulfadimidine:4-aminosalicylic acid cocrystals. Cocrystals were produced via milling or solvent mediated processes. In vitro dissolution was carried out in the flow-through apparatus, with shadowgraph imaging and mechanistic mathematical models used to observe and simulate particle dissolution. In vitro activity was tested using agar diffusion assays. Cocrystallisation via milling produced small polyhedral crystals with antimicrobial activity significantly higher than sulfadimidine alone, consistent with a fast dissolution rate which was matched only by cocrystals which were milled following solvent evaporation. Cocrystallisation by solvent evaporation (ethanol, acetone) or spray drying produced flattened, plate-like or quasi-spherical cocrystals, respectively, with more hydrophobic surfaces and greater tendency to form aggregates in aqueous media, limiting both the dissolution rate and in vitro activity. Deviation from predicted dissolution profiles was attributable to aggregation behaviour, supported by observations from shadowgraph imaging. Aggregation behaviour during dissolution of cocrystals with different habits affected the dissolution rate, consistent with in vitro activity. Combining mechanistic models with shadowgraph imaging is a valuable approach for dissolution process analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Photochemistry on soft-glass hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Cubillas, Ana M.; Jiang, Xin; Euser, Tijmen G.; Taccardi, Nicola; Etzold, Bastian J. M.; Wasserscheid, Peter; Russell, Philip St. J.

    2014-05-01

    Hollow-core photonic crystal fibre (HC-PCF) offers strong light confinement and long interaction lengths in an optofluidic channel. These unique advantages have motivated its recent use as a highly efficient and versatile microreactor for liquid-phase photochemistry and catalysis. In this work, we use a soft-glass HC-PCF to carry out photochemical experiments in a high-index solvent such as toluene. The high-intensity and strong confinement in the fibre is demonstrated to enhance the performance of a proof-of-principle photolysis reaction.

  17. Growth of alkyl-monosubstituted thiophene/phenylene co-oligomer crystals and their device application

    NASA Astrophysics Data System (ADS)

    Sugahara, Kazuchika; Nakagawa, Takao; Hirase, Ryuji; Katagiri, Toshifumi; Inada, Yuhi; Yamao, Takeshi; Hotta, Shu

    2018-04-01

    We synthesized a novel small-molecule organic semiconductor, which is soluble in organic solvents at room temperature under normal pressure. We demonstrated that its high-quality crystalline films can be directly grown on substrates using various solution techniques such as solution casting, slow evaporation, and edge casting. We applied crystals to FETs with a bottom- or top-contact configuration, revealing that the carrier mobility ranged from ˜10-4 to ˜10-2 cm2 V-1 s-1.

  18. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    PubMed

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  19. Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds.

    PubMed

    Zeng, Qingying; Mukherjee, Arijit; Müller, Peter; Rogers, Robin D; Myerson, Allan S

    2018-02-14

    While molecular solvents are commonly used in the screening of polymorphs, the choices are often restricted. Ionic liquids (ILs) - also referred as designer solvents - have immense possibility in this regard because of their wide flexibility of tunability. More importantly, the interactions among the IL components are completely unique compared to those present in the molecular solvents. In this context, we have chosen tetrolic acid (TA) and isonicotinamide (INA), which showed solution-structure link in molecular solvents in the past, as probes to investigate the role of imidazolium based ionic liquids in the polymorphism of these two systems and whether the different solute-solvent interactions in ILs affect the polymorphic outcome. It is observed that the selected imidazolium-based ILs, with varying anion basicity have influenced the crystallization outcome by the interaction between ILs and model compounds. Later, we have utilized the concept of double salt ionic liquids (DSIL) for INA, a penta-morphic system, to investigate the variation in the polymorphic outcome. This approach helped to obtain the forms that were otherwise inaccessible in ILs.

  20. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles.

    PubMed

    Harada, Yoshiko; Yamamoto, Tatsuhiro; Sakai, Masaru; Saiki, Toshiharu; Kawano, Kumi; Maitani, Yoshie; Yokoyama, Masayuki

    2011-02-14

    We incorporated an anticancer agent, camptothecin (CPT), into polymeric micelle carriers by using two different solvents (TFE and chloroform) in the solvent-evaporation drug incorporation process. We observed significant differences in the drug-incorporation behaviors, in the morphologies of the incorporated drug and the polymeric micelles, and in the pharmacokinetic behaviors between the two solvents' cases. In particular, the CPT-incorporated polymeric micelles prepared with TFE as the incorporation solvent exhibited more stable circulation in blood than those prepared with chloroform. This contrast indicates a novel technological perspective regarding the drug incorporation into polymeric micelle carriers. Morphological analyses of the inner core have revealed the presence of the directed alignment of the CPT molecules and CPT crystals in the micelle inner core. This is the first report of the morphologies of the drug incorporated into the polymeric micelle inner cores. We believe these analyses are very important for further pharmaceutical developments of polymeric micelle drug-carrier systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    PubMed Central

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  2. Supramolecular assemblies of tetrafluoroterephthalic acid and N-heterocycles via various strong hydrogen bonds and weak Csbnd H⋯F interactions: Synthons cooperation, robust motifs and structural diversity

    NASA Astrophysics Data System (ADS)

    Hu, Yanjing; Hu, Hanbin; Li, Yingying; Chen, Ruixin; Yang, Yu; Wang, Lei

    2016-10-01

    A series of organic solid states including three salts, two co-crystals, and three hydrates based on tetrafluoroterephthalic acid (H2tfBDC) and N-bearing ligands (2,4-(1H,3H)-pyrimidine dione (PID), 2,4-dihydroxy-6-methyl pyrimidine (DHMPI), 2-amino-4,6-dimethyl pyrimidine (ADMPI), 2-amino-4,6-dimenthoxy pyrimidine (ADMOPI), 5,6-dimenthyl benzimidazole (DMBI), 2-aminobenzimidazole (ABI), 3,5-dimethyl pyrazole (DMP), and 3-cyanopyridine (3-CNpy)), namely, [(PID)2·(H2tfBDC)] (1), [(DHMPI)2·(H2tfBDC)] (2), [(H-ADMPI+)2·(tfBDC2-)·2(H2O)] (3), [(H-ADMOPI+)2·(tfBDC2-)·(H2O)] (4), [(H-DMBI+)2·(tfBDC2-)·2(H2O)] (5), [(H-ABI+)2·(tfBDC2-)] (6), [(H-DMP+)·(HtfBDC-)] (7), and [(H-3-CNpy+)·(HtfBDC-)] (8), were synthesized by solvent evaporation method. Crystal structures analyses show that the F atom of the H2tfBDC participates in multiple Csbnd H⋯F hydrogen bond formations, producing different supramolecular synthons. The weak hydrogen bonding Csbnd H⋯F and Nsbnd H⋯F play an important part in constructing the diversity structures 2-8, except in crystal 1. In complexes 1-3, they present the same synthon R22(8) with different N-heterocyclic compounds, which may show the strategy in constructing the supramolecular. Meanwhile, the complex 3 exhibits a 2D layer, and the independent molecules of water exist in the adjacent layers. In complexes 4 and 5, the water molecules connect the neighboring layers to form 3D network by strong Osbnd H⋯O hydrogen bonding. These crystals 1-8 were fully characterized by single-crystal X-ray crystallography, elemental analysis, infrared spectroscopy (IR), and thermogravimetric analysis (TGA).

  3. Drug recrystallization using supercritical anti-solvent (SAS) process with impinging jets: Effect of process parameters

    NASA Astrophysics Data System (ADS)

    Careno, Stéphanie; Boutin, Olivier; Badens, Elisabeth

    2012-03-01

    The aim of this study is to improve mixing in supercritical anti-solvent process (SAS) with impinging jets in order to form finer particles of sulfathiazole, a poorly water-soluble drug. The influence of several process parameters upon the powder characteristics is studied. Parameters are jets' velocity (0.25 m s-1 to 25.92 m s-1), molar ratio solvent/CO2 (2.5% to 20%), temperature (313 K to 343 K), pressure (10 MPa to 20 MPa) and sulfathiazole concentration in the organic solution (0.5% to 1.8%). Two solvents are used: acetone and methanol. Smaller particles with a more homogeneous morphology are obtained from acetone solutions. For the smallest jets' velocity, corresponding to a non-atomized jet, the stable polymorphic form is obtained, pure or in mixture. At this velocity, pressure is the most influential parameter controlling the polymorphic nature of the powder formed. The pure stable polymorph is formed at 20 MPa. Concerning the particle size, the most influential parameters are temperature and sulfathiazole concentration. The use of impinging jets with different process parameters allows the crystallization of four polymorphs among the five known, and particle sizes are varied. This work demonstrates the studied device ability of the polymorph and the size control. A comparison with the classical SAS process shows that particle size, size distribution and morphology of particles crystallized with impinging jets are different from the ones obtained with classical SAS introduction device in similar operating conditions. Mean particle sizes are significantly smaller and size distributions are narrower with impinging jets device.

  4. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.

    PubMed

    Warkentin, Matthew; Thorne, Robert E

    2010-10-01

    The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.

  5. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2more » are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.« less

  6. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, Terry D.

    1997-01-01

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  7. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  8. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    PubMed

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  9. Protein hydration in solution: Experimental observation by x-ray and neutron scattering

    PubMed Central

    Svergun, D. I.; Richard, S.; Koch, M. H. J.; Sayers, Z.; Kuprin, S.; Zaccai, G.

    1998-01-01

    The structure of the protein–solvent interface is the subject of controversy in theoretical studies and requires direct experimental characterization. Three proteins with known atomic resolution crystal structure (lysozyme, Escherichia coli thioredoxin reductase, and protein R1 of E. coli ribonucleotide reductase) were investigated in parallel by x-ray and neutron scattering in H2O and D2O solutions. The analysis of the protein–solvent interface is based on the significantly different contrasts for the protein and for the hydration shell. The results point to the existence of a first hydration shell with an average density ≈10% larger than that of the bulk solvent in the conditions studied. Comparisons with the results of other studies suggest that this may be a general property of aqueous interfaces. PMID:9482874

  10. Self-healing Microencapsulation of Biomacromolecules without Organic Solvents**

    PubMed Central

    Reinhold, Samuel E.; Desai, Kashappa-Goud H.; Zhang, Li; Olsen, Karl F.

    2012-01-01

    Microencapsulation of biomacromolecules in PLGA is routinely performed with organic solvent through multiple complex steps deleterious to the biomacromolecule. The new self-healing based PLGA microencapsulation obviates micronization- and organic solvent-induced protein damage, provides very high encapsulation efficiency, exhibit stabilization and slow release of labile tetanus protein antigen, and provides long-term testosterone suppression in rats following a single injection of encapsulated leuprolide. PMID:23011773

  11. Crystallization and preliminary X-ray analysis of 2,3-diketo-5-methylthiopentyl-1-phosphate enolase from Bacillus subtilis

    PubMed Central

    Tamura, Haruka; Ashida, Hiroki; Koga, Shogo; Saito, Yohtaro; Yadani, Tomonori; Kai, Yasushi; Inoue, Tsuyoshi; Yokota, Akiho; Matsumura, Hiroyoshi

    2009-01-01

    2,3-Diketo-5-methylthiopentyl-1-phosphate enolase (DK-MTP-1P enolase) from Bacillus subtilis was crystallized using the hanging-drop vapour-diffusion method. Crystals grew using PEG 3350 as the precipitant at 293 K. The crystals diffracted to 2.3 Å resolution at 100 K using synchrotron radiation and were found to belong to the monoclinic space group P21, with unit-cell parameters a = 79.3, b = 91.5, c = 107.0 Å, β = 90.8°. The asymmetric unit contained four molecules of DK-MTP-1P enolase, with a V M value of 2.2 Å3 Da−1 and a solvent content of 43%. PMID:19194007

  12. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less

  13. Increasing dissolution of trospium chloride by co-crystallization with urea

    NASA Astrophysics Data System (ADS)

    Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil

    2014-08-01

    The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.

  14. Growth and physicochemical properties of second-order nonlinear optical 2-amino-5-chloropyridinium trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renugadevi, R.; Kesavasamy, R.

    2015-09-01

    The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.

  15. Electron irradiation induced effects on the physico-chemical properties of L-Arginine Maleate Dihydrate (LAMD) single crystals

    NASA Astrophysics Data System (ADS)

    Thomas, Prince; Dhole, S. D.; Joseph, Ginson P.

    2018-07-01

    Single crystals of L-Arginine Maleate Dihydrate (LAMD) have been synthesized by slow solvent evaporation technique and irradiated with 6 MeV electrons at fluences of 0.5 ×1015e /cm2 , 1.0 ×1015e /cm2 and 1.5 ×1015e /cm2 . The Powder X-ray Diffraction (PXRD) studies showed that the intensity of the diffraction peaks of the Electron Beam (EB) irradiated crystals decreases with irradiation fluence. The electron irradiation induced effects on the optical parameters such as cut-off wavelength, band gap, Urbach energy and refractive index have been studied and the results are tabulated. The electronic parameters such as valence electron plasma energy, ℏωp , Penn gap, Ep , Fermi energy, EF and Electronic polarizability, α for pure and irradiated LAMD crystals are calculated. The electrical and thermal properties of the pure and irradiated LAMD crystals are also investigated.

  16. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  17. Concomitant and conformational polymorphism in 4‧-(isoquinolyl-2,2‧:6‧,2″-terpyridine and 4‧-(4-quinolyl)-2,2‧:6‧,2″-terpyridine

    NASA Astrophysics Data System (ADS)

    Njogu, Eric M.; Nyamori, Vincent O.; Omondi, Bernard

    2018-02-01

    The occurrence of concomitant polymorphism in 4‧-(isoquinolyl)-2,2‧:6‧,2″-terpyridine, 1a and 1b (2-quinterpy) and conformational polymorphism in 4‧-(4-quinolyl)-2,2‧:6‧,2″-terpyridine (4-quinterpy) has been identified to due to crystallization process and solvent, respectively. Crystallization of 2-quinterpy in acetone yielded the concomitant polymorphs 1a and 1b which crystallize in the monoclinic P21/c and the orthorhombic Pna21 space groups, respectively. The polymorph 2a was grown from bulk 4-quinterpy in dimethyl sulfoxide, crystallizes in the monoclinic P21/c space group, while 2b grown from acetonitrile or even acetone crystallizes in the monoclinic system but in P21/n space group.

  18. Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.

    PubMed

    Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik

    2015-09-01

    Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.

  19. Crystallization and preliminary X-ray analysis of CTP:phosphoethanolamine cytidylyltransferase (ECT) from Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsuka, Jun; Nagata, Koji; Lee, Woo Cheol

    2006-10-01

    CTP:phosphoethanolamine cytidylyltransferase from S. cerevisiae has been expressed, purified and crystallized. CTP:phosphoethanolamine cytidylyltransferase (ECT) is the enzyme that catalyzes the conversion of phosphoethanolamine to CDP-ethanolamine in the phosphatidylethanolamine-biosynthetic pathway (Kennedy pathway). ECT from Saccharomyces cerevisiae was crystallized by the sitting-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.88 Å resolution. The space group was assigned as primitive tetragonal, P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 66.3, c = 150.8 Å. The crystals contain one ECT molecule in the asymmetric unit (V{sub M} = 2.2more » Å{sup 3} Da{sup −1}), with a solvent content of 43%.« less

  20. Crystallization and X-ray analysis of the salmon-egg lectin SEL24K.

    PubMed

    Murata, Kenji; Fisher, Andrew J; Hedrick, Jerry L

    2007-05-01

    The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 A resolution. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 A, alpha = 90, beta = 92.82, gamma = 90 degrees. The crystal is likely to contain eight molecules in the asymmetric unit (V(M) = 2.3 A3 Da(-1)), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.

  1. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.

    PubMed

    Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa

    2015-11-30

    Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    NASA Technical Reports Server (NTRS)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  3. Preparative isolation and purification of capsaicin and dihydrocapsaicin from Capsici Fructus using supercritical fluid extraction combined with high speed countercurrent chromatography.

    PubMed

    Yan, Rongwei; Zhao, Leilei; Tao, Junfei; Zou, Yong; Xu, Xinjun

    2018-05-01

    Supercritical fluid extraction with CO 2 (SFE-CO 2 ) was utilized for extraction of capsaicin (CA) and dihydrocapsaicin (DHCA) from Capsici Fructus, and then a two-step enrichment method for separating capsaicinoids from SFE-CO 2 extracts was developed. The process involved extraction with aqueous methanol and crystallization by alkali extraction and acid precipitation. Finally, a consecutive high-speed countercurrent chromatography (HSCCC) separation method was successfully applied in the purification of CA and DHCA from capsaicinoid crystal. The extraction pressure, extraction temperature and volume of co-solvent were optimized at 33 MPa, 41 °C and 75 mL, respectively, using response surface methodology; the extraction rates of CA and DHCA were about 93.18% and 93.49%, respectively. 407.43 mg capsaicinoid crystal was isolated from the SFE-CO 2 extracts obtained from 100 g capsicum powder by the two-step enrichment method. About 506 mg and 184 mg CA and DHCA with purities up to 98.31% and 96.68%, respectively, were obtained from 1 g capsaicinoid crystal in one HSCCC of three consecutive sample loadings without exchanging any solvent system. This method comprising SFE-CO 2 , a two-step enrichment and HSCCC was efficient, powerful and practical for the large-scale preparation of CA and DHCA from Capsici Fructus with high purity and high yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Study on four polymorphs of bifendate based on X-ray crystallography.

    PubMed

    Nie, Jinju; Yang, Dezhi; Hu, Kun; Lu, Yang

    2016-05-01

    Bifendate, a synthetic anti-hepatitis drug, exhibits polycrystalline mode phenomena with 2 polymorphs reported (forms A and B). Single crystals of the known crystalline form B and 3 new crystallosolvates involving bifendate solvated with tetrahydrofuran (C), dioxane (D), and pyridine (E) in a stoichiometric ratio of 1:1 were obtained and characterized by X-ray crystallography, thermal analysis, and Fourier transform infrared (FT-IR) spectroscopy. The differences in molecular conformation, intermolecular interaction and crystal packing arrangement for the four polymorphs were determined and the basis for the polymorphisms was investigated. The rotation of single bonds resulted in different orientations for the biphenyl, methyl ester and methoxyl groups. All guest solvent molecules interacted with the host molecule via an interesting intercalative mode along the [1 0 0] direction in the channel formed by the host molecules through weak aromatic stacking interactions or non-classical hydrogen bonds, of which the volume and planarity played an important role in the intercalation of the host with the guest. The incorporation of solvent-augmented rotation of the C-C bond of the biphenyl group had a striking effect on the host molecular conformation and contributed to the formation of bifendate polymorphs. Moreover, the simulated powder X-ray diffraction (PXRD) patterns for each form were calculated on the basis of the single-crystal data and proved to be unique. The single-crystal structures of the four crystalline forms are reported in this paper.

  5. Method for controlling protein crystallization

    NASA Technical Reports Server (NTRS)

    Noever, David A. (Inventor)

    1993-01-01

    A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.

  6. Effects of solvents on the synthesis of CuInSe2 nanoparticles for thin film solar cells.

    PubMed

    Lee, Jaehyeong; Lee, Soo-Ho; Hahn, Jae-Sub; Sun, Ho-Jung; Park, Gyungse; Shim, Joongpyo

    2014-12-01

    Chalcopyrite CuInSe2 (CIS) nanoparticles were synthesized in oleic acid, 1-octadecene, oleyl amine and tetraethylene glycol at temperature above 200 degrees C. Depending on the solvent used and reaction temperature, the obtained nanoparticles had different shapes, sizes, chemical compositions, and crystal and thermal properties. CIS powders synthesized in oleic acid, 1-octadecene and oleyl amine above 200 degrees C exhibited chalcopyrite structure. On the other hand, powders prepared in tetraethylene glycol contained a mixture of CIS and CuSe compounds. The CIS powder obtained in oleyl amine had a high thermal stability over 500 degrees C. CIS thin films prepared from nanoparticles were heat-treated in order to observe changes in their property. After 10 min heat-treatment at 500 degrees C, their crystal structure and chemical composition were slightly changed, and their band gap energies were ca. 1.01 eV except in the case of powders prepared in tetraethylene glycol.

  7. An atomistic simulation scheme for modeling crystal formation from solution.

    PubMed

    Kawska, Agnieszka; Brickmann, Jürgen; Kniep, Rüdiger; Hochrein, Oliver; Zahn, Dirk

    2006-01-14

    We present an atomistic simulation scheme for investigating crystal growth from solution. Molecular-dynamics simulation studies of such processes typically suffer from considerable limitations concerning both system size and simulation times. In our method this time-length scale problem is circumvented by an iterative scheme which combines a Monte Carlo-type approach for the identification of ion adsorption sites and, after each growth step, structural optimization of the ion cluster and the solvent by means of molecular-dynamics simulation runs. An important approximation of our method is based on assuming full structural relaxation of the aggregates between each of the growth steps. This concept only holds for compounds of low solubility. To illustrate our method we studied CaF2 aggregate growth from aqueous solution, which may be taken as prototypes for compounds of very low solubility. The limitations of our simulation scheme are illustrated by the example of NaCl aggregation from aqueous solution, which corresponds to a solute/solvent combination of very high salt solubility.

  8. The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations.

    PubMed

    Bellucci, Luca; Corni, Stefano; Di Felice, Rosa; Paci, Emanuele

    2013-01-01

    Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.

  9. Supercritical CO2/Co-solvents Extraction of Porogen and Surfactant to Obtain

    NASA Astrophysics Data System (ADS)

    Lubguban, Jorge

    2005-03-01

    A method of pore generation by supercritical CO2 (SCCO2)/co-solvents extraction for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials is investigated. A nanohybrid film was prepared from poly (propylene glycol) (PPG) and poly(methylsilsesquioxane) (PMSSQ) whereby the PPG porogen are entrapped within the crosslinked PMSSQ matrix. Another set of thin films was produced by liquid crystal templating whereby non-ionic (polyoxyethylene 10 stearyl ether) (Brij76) and ionic (cetyltrimethylammonium bromide) (CTAB) surfactant were used as sacrificial templates in a tetraethoxy silane (TEOS) and methyltrimethoxy silane (MTMS) based matrix. These two types of films were treated with SCCO2/co-solvents to remove porogen and surfactant templates. As a comparison, porous structures generated by thermal decomposition were also evaluated. It is found that SCCO2/co-solvents treatment produced closely comparable results with thermal decomposition. The results were evident from Fourier Transform Infrared (FT- IR) spectroscopy and optical constants data obtained from variable angle spectroscopic ellipsometry (VASE).

  10. Emission switching of 4,6-diphenylpyrimidones: solvent and solid state effects.

    PubMed

    Adjaye-Mensah, Edward; Gonzalez, Walter G; Bussé, David R; Captain, Burjor; Miksovska, Jaroslava; Wilson, James N

    2012-08-30

    The photophysics of 1-ethyl-4,6-bis(4-methoxyphenyl)-2(1H)-pyrimidone (1) and 1-ethyl-4,6-bis(4-(dimethylamino)phenyl)-2(1H)-pyrimidone (2) were investigated to determine the mechanisms of emission switching in response to protonation. UV-vis and steady state emission spectroscopy of the protonated and unprotonated forms across a range of solvents reveal the polarity dependence of the vertical excitation energies. Emission lifetimes and quantum yields show the solvent dependency of the excited states. Emission enhancements were observed in polyethylene glycol solutions and in the solid state (both thin film and single crystal), demonstrating the role of intramolecular rotation in thermal relaxation of the excited states. TD-DFT calculations provide insights into the excited state geometries and the role of intramolecular charge transfer. The collected data show that emission of diphenylpyrimidones can be modulated by four factors, including the identity of the electron-donating auxochrome, protonation state, solvent polarity, and viscosity.

  11. Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method.

    PubMed

    Akhgari, Abbas; Sadeghi, Hasti; Dabbagh, Mohammad Ali

    2014-08-01

    The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Corn starch was dissolved in hydrochloric acid at 80°C and then ethanol as a non-solvent was added with lowering temperature until the formation of a precipitate of modified starch. Flow parameters, particle size and thermal behavior of the treated powders were compared with the native starch. Finally, the 1:1 mixture of naproxen and each excipient was tabletted, and hardness and friability of different tablets were evaluated. Larger and well shaped agglomerates were formed which showed different thermal behavior. Treated starch exhibited suitable flow properties and tablets made by the treated powder had relatively high hardness. It was found that recrystallization of corn starch by quasi emulsion solvent diffusion method could improve its flowability and compressibility characteristics.

  12. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.

    2012-06-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.

  13. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    NASA Astrophysics Data System (ADS)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  14. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    NASA Astrophysics Data System (ADS)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  15. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Min-Je; Lee, Won-Ho; Biotechnology and Genetic Engineering, Korea University, Seoul 136-701

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. Themore » asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.« less

  16. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  17. Membrane crystallization of lysozyme: kinetic aspects

    NASA Astrophysics Data System (ADS)

    Profio, Gianluca Di; Curcio, Efrem; Cassetta, Alberto; Lamba, Doriano; Drioli, Enrico

    2003-10-01

    The relevant kinetic aspects related to an innovative method of biological macromolecules crystallization based on microporous hydrophobic membranes, used both as active surfaces to promote heterogeneous nucleation and as a mass-transfer apparatus to concentrate macromolecular solutions by solvent removal in vapour phase, have been evaluated. Polypropylene membranes, supplied in the form of hollow fibres, have been aligned in a versatile system, designed for an on-line spectrophotometric monitoring of hen egg white lysozyme crystallizing solutions (experimental conditions: 0.1 M NaAc/HAc Buffer pH 4.6, 0.5-5.8% wt/vol NaCl, 20°C). The turbidity measurements have been exploited in order to follow: (i) the induction time of crystallization, (ii) the early stage nucleation kinetics based on the Rayleigh scattering theory, and (iii) the crystal growth rate (coupled with data evaluated from image-analysis carried out by optical microscopy) under a model hypothesis of exponential growth of clusters. The crystals have been qualitatively assessed by an X-ray crystallographic analysis carried out at the synchrotron light laboratory ELETTRA.

  18. Structural and spectroscopic investigation of glycinium oxalurate

    NASA Astrophysics Data System (ADS)

    Kavitha, T.; Pasupathi, G.; Marchewka, M. K.; Anbalagan, G.; Kanagathara, N.

    2017-09-01

    Glycinium oxalurate (GO) single crystals has been synthesized and grown by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction study confirms that GO crystal crystallizes in the monoclinic system with centrosymmetric space group P121/c1. The grown crystals are built up from single protonated glycinium residues and single dissociated oxalurate anions. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the glycine and oxaluric acid residues forms a three-dimensional network. Hydrogen bonded network present in the crystal gives notable vibrational effect. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on HF and density functional theory B3LYP methods with 6-311++G(d,p) basis set. Frontier molecular orbital energies and other related electronic properties are calculated. The natural bonding orbital (NBO) charges have been calculated and interpreted. The molecular electrostatic potential map has been constructed and discussed in detail.

  19. Electrostatic energy of transfer and macrobond analyses of intermolecular interactions and hydration effects in protein crystals in a low ionic environment

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoko; Hirano, Yuji; Yamamura, Shigefumi; Endo, Shigeru; Ootaki, Masanori; Matsumoto, Naoki; Takahashi, Takuya

    2017-06-01

    We developed an electrostatic energy of transfer (EET) analysis applicable to periodic boundary condition, including a nonrectangular unit cell. It was applied to monoclinic ribonuclease A crystallized with ethanol as a precipitant. Macrobond analysis was also carried out. Owing to the low ionic strength of the solvent region, atomic EET values were non-negligible even at long-distance points. Most of the molecular EET values-defined as the individual contribution of each surrounding molecule-were positive. The inclusion of the molecular EET values of hydration water molecules reduced the repulsive force, and the evaluation of hydration effects in protein crystals was found to be imperative.

  20. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  1. Slurry Coating System Statement of Work and Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S. M.

    2017-02-06

    The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for amore » new system. This document presents the specifications and requirements for the system.« less

  2. [Influence of different sol-gel system on the luminescence of nanocrystalline ZnO powder].

    PubMed

    Guo, Shu-xia; Zhang, Xing-tang; Zhang, Zhong-suo; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang

    2005-08-01

    ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of powder samples was examined by XRD and TEM. The results indicate that the two ZnO samples have the same crystal and energy band structure. Their photoluminescence (PL) spectra in ultraviolet region are analogous, but their photoluminescence (PL) spectra in visible region are different. The reason is that the two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.

  3. [Influence of different sol-gel systems on the luminescence of nanocrystalline ZnO powders].

    PubMed

    Guo, Shu-xia; Zhang, Zhong-suo; Zhang, Xing-tang; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang

    2005-11-01

    ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of the powdersamples was examined by XRD and TEM. The results indicate that two ZnO samples have the same crystal and energy band structure. Their photolurminescence (PL) spectra in the ultraviolet region are analogous, but their photoluminescence (PL) spectra in the visible region are different. The reason is that two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.

  4. Syntheses, crystal structures, and water adsorption behaviors of jungle-gym-type porous coordination polymers containing nitro moieties

    NASA Astrophysics Data System (ADS)

    Uemura, Kazuhiro; Onishi, Fumiaki; Yamasaki, Yukari; Kita, Hidetoshi

    2009-10-01

    NO 2 containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO 2) and 2,5-dinitroterephthalate (bdc-(NO 2) 2), afford porous coordination polymers, {[Zn 2(bdc-NO 2) 2(dabco)]· solvents} n ( 2⊃ solvents) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]· solvents} n ( 3⊃ solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn 2 units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2⊃ solvents and 3⊃ solvents, a rectangle pore surrounded by eight Zn 2 corners contains two and four NO 2 moieties, respectively. Thermal gravimetry (TG) and X-ray powder diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me 2CO. Adsorption measurements reveal that dried 2 and 3 adsorb H 2O molecules to be {[Zn 2(bdc-NO 2) 2(dabco)]·4H 2O} n ( 2⊃4H 2O) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]·6H 2O} n ( 3⊃6H 2O), showing the pore hydrophilicity enhancement caused by NO 2 group introduction.

  5. Facile synthesis of gold nanomaterials with unusual crystal structures.

    PubMed

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  6. Expression, crystallization and preliminary crystallographic data analysis of PigF, an O-­methyltransferase from the prodigiosin-synthetic pathway in Serratia

    PubMed Central

    Liu, Shaowei; Ran, Tingting; Shen, Xiang; Xu, Langlai; Wang, Weiwu; Xu, Dongqing

    2012-01-01

    Prodigiosin, which is a member of the prodiginines, is a red linear tripyrrole compound. A gene cluster for the biosynthesis of prodigiosin has been identified in Serratia and most genes in the cluster have been functionally assigned. A bifurcated biosynthetic pathway for prodigiosin has previously been determined. The last step in the biosynthetic pathway of 4-methoxy-2,2′-bipyrrole-5-­carbaldehyde (MBC) is catalyzed by PigF, which transfers a methyl group to 4-­hydroxy-2,2′-bipyrrole-5-carbaldehyde (HBC) to form the terminal product MBC, but its catalytic mechanism is not known. To elucidate its mechanism, recombinant PigF was purified and crystallized. The crystals belonged to space group P21, with unit-cell parameters a = 69.4, b = 52.4, c = 279.2 Å, β = 96.8°. The native crystals may contain six molecules in the asymmetric unit, with a V M of 2.17 Å3 Da−1 and a solvent content of 43.43%. A full data set was collected at 2.6 Å resolution using synchrotron radiation on beamline BL17U of Shanghai Synchrotron Radiation Facility (SSRF), People’s Republic of China. Molecular replacement was unsuccessful. To solve the structure of PigF by experimental phasing, selenomethionine-derivativized protein crystals were prepared from a condition with 0.01 M spermidine as an additive. One crystal diffracted to 1.9 Å resolution and a full data set was collected on beamline BL17U at SSRF. The crystal belonged to space group P21, with unit-cell parameters a = 69.0, b = 52.9, c = 93.4 Å, β = 97.3°. Heavy-atom substructure determination and phasing by SAD clearly showed that the crystal contains two molecules in the asymmetric unit, with a V M of 2.19 Å3 Da−1 and a solvent content of 43.82%. PMID:22869117

  7. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.

  8. Solution Growth and Characterization of Single Crystals on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.

  9. Growth and Characteristics of Bulk Single Crystals Grown from Solution on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Lal, R. B.; Penn, Benjamin G.; Frazier, Donald O.

    2011-01-01

    The growth of crystals has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high technology devices and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this chapter an attempt is made to give some fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, authors had proposed a new cooled sting technique to grow crystals in space. Authors? experiences of conducting two space shuttle experiments relating to solution crystal growth are also detailed in this work. The complexity of these solution growth experiments to grow crystals in space are discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that also shares basic principles of solution growth technique is given along with some flight hardware information for its growth in microgravity.

  10. Synthesis and characterization of zinc borophosphates with ANA-zeotype framework by the microwave method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yu, E-mail: songyu@dlpu.edu.cn; Ding, Ling; An, Qingda

    2013-06-15

    Zinc borophosphate (NH{sub 4}){sub 16}[Zn{sub 16}B{sub 8}P{sub 24}O{sub 96}] (denoted as ZnBP-ANA) with ANA-zeotype structure has been synthesized by employing microwave-assisted solvothermal synthesis in the reaction system ZnCl{sub 2}∙6H{sub 2}O-(NH{sub 4}){sub 2}HPO{sub 4}–H{sub 3}BO{sub 3} using ethylene glycol as a co-solvent. The influences of various experimental parameters, such as reaction temperature, solvent ratio, zinc precursors and reactive power, have been systematically investigated. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), and so on. Small and homogeneous ZnBP-ANA single crystal with regular cube morphology are crystallized by using microwave solvothermal synthesis method withinmore » a shorter time, and its grain size decreases with power. - Graphical abstract: Tailor-made ANA zeolites with varied size can be prepared by simply changing the reaction power. - Highlights: • Zinc borophosphate zeolites with ANA-zeotype structures were prepared by microwave technique. • The size of crystals could be controlled by tuning power. • Synthesis period can be significantly reduced by raising reaction temperature.« less

  11. Three cocrystals and a cocrystal salt of pyrimidin-2-amine and glutaric acid.

    PubMed

    Odiase, Isaac; Nicholson, Catherine E; Ahmad, Ruksanna; Cooper, Jerry; Yufit, Dmitry S; Cooper, Sharon J

    2015-04-01

    Four new cocrystals of pyrimidin-2-amine and propane-1,3-dicarboxylic (glutaric) acid were crystallized from three different solvents (acetonitrile, methanol and a 50:50 wt% mixture of methanol and chloroform) and their crystal structures determined. Two of the cocrystals, namely pyrimidin-2-amine-glutaric acid (1/1), C4H5N3·C6H8O4, (I) and (II), are polymorphs. The glutaric acid molecule in (I) has a linear conformation, whereas it is twisted in (II). The pyrimidin-2-amine-glutaric acid (2/1) cocrystal, 2C4H5N3·C6H8O4, (III), contains glutaric acid in its linear form. Cocrystal-salt bis(2-aminopyrimidinium) glutarate-glutaric acid (1/2), 2C4H6N3(+)·C6H6O4(2-)·2C6H8O4, (IV), was crystallized from the same solvent as cocrystal (II), supporting the idea of a cocrystal-salt continuum when both the neutral and ionic forms are present in appreciable concentrations in solution. The diversity of the packing motifs in (I)-(IV) is mainly caused by the conformational flexibility of glutaric acid, while the hydrogen-bond patterns show certain similarities in all four structures.

  12. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadhar, Timothy R.; Zheng, Shao-Liang; Chen, Yu-Sheng

    This report describes complete practical guidelines and insights for the crystalline sponge method, which have been derived through the first use of synchrotron radiation on these systems, and includes a procedure for faster synthesis of the sponges. These guidelines will be applicable to crystal sponge data collected at synchrotrons or in-house facilities, and will allow researchers to obtain reliable high-quality data and construct chemically and physically sensible models for guest structural determination. A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported.more » The procedure for the synthesis of the zinc-based metal–organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.« less

  14. Supramolecular assembly of borate with quaternary ammonium: Crystal structure and tunable luminescent properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Jie; Wang, Yong-gang; Wang, Ying-xia, E-mail: wangyx@pku.edu.cn

    2013-04-15

    A new borate [C{sub 6}H{sub 16}N][B{sub 5}O{sub 6}(OH){sub 4}] (1) is synthesized hydrothermally by the reaction of isopropyltrimethylammonium hydroxide with boric acid. It crystallizes in the triclinic space group P-1 with the parameters a=9.1578(10) Å, b=9.372(9) Å, c=9.9812(10) Å, α=66.508(2)°, β=74.751(2)°, γ=81.893(2)°. The [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions are interlinked via hydrogen bonding forming a 3D supramolecular network containing large cavities, where reside the (CH{sub 3}){sub 3}(i-C{sub 3}H{sub 7}) N{sup +} cations. This borate shows tunable luminescent properties with temperature, heating-treatment, exciting-light, and solvents. The fluorescent intensity of 1 enhances 6-fold with decreasing the temperature from 25 K tomore » 78 K. By treatment under different temperatures, the luminescence of 1 shifted from blue to white and the sample treated at 230 °C emits bright white light to naked eyes. The hybrid borate can disperse in different solvents, and shows a red-shifted and intense emission in polar solvents. - Graphical abstract: The new quaternary ammonium borate [C{sub 6}H{sub 17}N][B{sub 5}O{sub 6}(OH){sub 4}] contains a 3D supramolecular network formed by hydrogen bond linked [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions and shows tunable luminescent properties with temperature, excitation light, and solvents. Highlights: ► A novel quaternary ammonium borate was synthesized. ► It possesses a supramolecular network fomed by H-bonded [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions. ► This borate shows tunable luminescent properties with temperature, heating treatment, excitation light, and solvents.« less

  15. Undergraduates improve upon published crystal structure in class assignment.

    PubMed

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the protein sequence. With minimal direction from the instructor on how the students should complete the assignment, the students fared remarkably well in this task, with over half the class able to reconstruct the original sequence with over 77% sequence identity, and with structures whose median ranked in the 91(st) percentile of all structures of comparable resolution in terms of structure quality. Fourteen percent of the students' structures produced Molprobity steric clash validation scores even better than that of the original structure, suggesting that multiple students achieved an improvement in the overall structure quality compared to the published structure. Students were able to delineate limiting case chemical environments, such as charged interactions or complete solvent exposure, but were less able to distinguish finer details of hydrogen bonding or hydrophobicity. Our results prompt several questions: why were students able to perform so well in their structural validation scores? How were some students able to outperform the 88% sequence identity mark that would constitute a perfect score, given the level of degenerate density or surface residues with poor density? And how can the methodology used by the best students inform the practices of professional X-ray crystallographers? Copyright © 2014 Wiley Periodicals, Inc.

  16. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Chu, Jhih-Wei

    2013-04-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  17. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar

    2013-03-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  18. Thermodynamics of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Chu, Jhih-Wei

    2012-10-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  19. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar

    2012-11-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  20. Crystallization of toxic glycol solvates of rifampin from glycerin and propylene glycol contaminated with ethylene glycol or diethylene glycol.

    PubMed

    de Villiers, Melgardt M; Caira, Mino R; Li, Jinjing; Strydom, Schalk J; Bourne, Susan A; Liebenberg, Wilna

    2011-06-06

    This study was initiated when it was suspected that syringe blockage experienced upon administration of a compounded rifampin suspension was caused by the recrystallization of toxic glycol solvates of the drug. Single crystal X-ray structure analysis, powder X-ray diffraction, thermal analysis and gas chromatography were used to identify the ethylene glycol in the solvate crystals recovered from the suspension. Controlled crystallization and solubility studies were used to determine the ease with which toxic glycol solvates crystallized from glycerin and propylene glycol contaminated with either ethylene or diethylene glycol. The single crystal structures of two distinct ethylene glycol solvates of rifampin were solved while thermal analysis, GC analysis and solubility studies confirmed that diethylene glycol solvates of the drug also crystallized. Controlled crystallization studies showed that crystallization of the rifampin solvates from glycerin and propylene glycol depended on the level of contamination and changes in the solubility of the drug in the contaminated solvents. Although the exact source of the ethylene glycol found in the compounded rifampin suspension is not known, the results of this study show how important it is to ensure that the drug and excipients comply with pharmacopeial or FDA standards.

  1. Synthesis, characterization and anti-microbial activity of pure, Cu2+ and Cd2+ doped organic NLO l-arginine trifluoroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Prasanyaa, T.; Haris, M.; Jayaramakrishnan, V.; Amgalan, M.; Mathivanan, V.

    2013-10-01

    Optically transparent Cu2+ and Cd2+ doped l-arginine trifluoroacetate (LATF) single crystals were grown from its aqueous solution using the slow solvent evaporation technique. The grown crystals were characterized by powder x-ray diffraction to confirm the monoclinic crystal structure. The percentage of transmittance measured using the ultraviolet-visible-near infrared spectrophotometer was found to be more than 80% for doped crystals. The functional group analysis of the grown crystals has been made by Fourier transform infrared spectroscopy. Thermogravimetric/differential thermal analysis was performed for the grown crystals. An atomic absorption study was carried out to determine the presence of Cu2+ and Cd2+. The hardness of the grown crystals was assessed and the results show a significant variation in the hardness value between the pure and doped LATF crystals. The second harmonic generation measurements show that Cu2+ doped LATF is 2.8 times greater and Cd2+ doped is 2.6 times greater than KDP. The anti-bacterial and anti-fungal activities of the title compound were performed using the disc diffusion method against standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillus niger and Aspergillus flavus.

  2. Purification of organic nonlinear optical materials for bulk crystal growth from melt

    NASA Astrophysics Data System (ADS)

    Gebre, Tesfaye; Bhat, Kamala N.; Batra, Ashok K.; Lal, Ravindra B.; Aggarwal, Mohan D.; Penn, Benjamin G.; Frazier, Donald O.

    2002-10-01

    The techniques developed for purification of nonlinear optical organic materials, such as benzil, 2-methyl-4-nitroaniline (MNA), Dicyanovinyl anisole (DIVA) and its derivatives, nitrophenyl prolinol (NPP) and other Schiff's base compounds, include Kugelrohy method, physical vapor transport, zone refining and recrystallization from the solvent are described. Purity of the materials is tested using differential thermal analysis, gas chromatograph/Mass detector, Fourier Transform Infrared spectroscopy and melting point measurements. The purified materials were later used in the growth of single crystal by Bridgman-Stockbarger and Czochralski techniques.

  3. Crystal structure of [Eu(CyMe4-BTBP)2κ2O,O'-(NO3)](NO3)2·n-C8H17OH and its structure in 1-octanol solution.

    PubMed

    Lundberg, Daniel; Persson, Ingmar; Ekberg, Christian

    2013-03-21

    The structure of the [Eu(CyMe(4)-BTBP)(2)(NO(3))(n)]((3-n)+) complex in 1-octanol solution and solid state has been determined by EXAFS and X-ray crystallography. The crystal structure shows that 1-octanol binds only to the europium(III)-coordinated BTBP molecules through weak van der Waals forces, making it the first indication of the role of the extraction solvent.

  4. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Price, T.D.; Jeung, N.M.

    1958-06-17

    An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

  5. Anagostic interactions in chiral separation. Polymorphism in a [Co(II)(L)] complex: Crystallographic and theoretical studies

    NASA Astrophysics Data System (ADS)

    Awwadi, Firas F.; Hodali, Hamdallah A.

    2018-02-01

    Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.

  6. Investigations on synthesis, growth and physicochemical properties of semi-organic NLO crystal bis(thiourea) ammonium nitrate for nonlinear frequency conversion

    NASA Astrophysics Data System (ADS)

    Anbarasi, A.; Ravi Kumar, S. M.; Sundar, G. J. Shanmuga; Mosses, M. Allen; Raj, M. Packiya; Prabhakaran, M.; Ravisankar, R.; Gunaseelan, R.

    2017-10-01

    Bis(thiourea) ammonium nitrate (BTAN), a new nonlinear optical crystal was grown successfully by slow evaporation technique using water as solvent at room temperature. The grown crystals were optically good quality with dimensions upto 10 × 6 × 3 mm3. Single crystal X-Ray diffraction analysis reveals that the crystal lattice is orthorhombic. From Powder X-ray diffraction analysis the diffraction planes have been indexed. The presence of the various functional groups of BTAN was identified through FTIR spectroscopic analysis. UV cut-off wavelength was observed from optical absorbance spectrum and it was found to be 240 nm. Second harmonic efficiency was determined using Kurtz powder method in comparison with KDP to confirm the nonlinearity of the material. Thermal analysis confirmed that grown crystal is thermally stable upto 184 °C. Microhardness studies show that hardness number (Hv) increases with load. Conductivity measurements such as dielectric, ac and photoconductivity were studied. Growth mechanism and surface features of the as grown single crystal was analysed by chemical etching analysis.

  7. Growth and characterization of pure and Ca2+ doped MnHg(SCN)4 single crystals

    NASA Astrophysics Data System (ADS)

    Latha, C.; Mahadevan, C. K.; Guo, Li; Liu, Jinghe

    2018-05-01

    Manganese-mercury thiocyanate, MnHg(SCN)4, crystal is considered to be an important organometallic nonlinear optical (NLO) material exhibiting higher thermal stability and second harmonic generation (SHG) efficiency. In order to understand the effect of Ca2+ as an impurity on the physicochemical properties, we have grown pure and Ca2+ doped (with a concentration of 1 mol%) MnHg(SCN)4 single crystals by the free evaporation of solvent method and characterized structurally, chemically, optically and electrically by adopting the available standard methods. Results obtained indicate that Ca2+ doping increases significantly the optical transmittance, SHG efficiency, and DC electrical conductivity and decreases the dielectric loss factor (improves the crystal quality), and AC electrical conductivity without distorting the crystal structure. Also, the low dielectric constant (εr) values observed for both the pure and doped crystals considered at near ambient temperatures indicate the possibility of using these crystals not only as potential NLO materials (useful in the photonics industry) but also as promising low εr value dielectric materials (useful in the microelectronics industry).

  8. Theoretical and experimental morphologies of 4-aminobenzophenone (ABP) crystals

    NASA Astrophysics Data System (ADS)

    Wang, Qingwu; Sheen, D. B.; Shepherd, E. E. A.; Sherwood, J. N.; Simpson, G. S.; Hammond, R. B.

    1997-11-01

    The lattice energy (Elatt), slice energies (Eslice) and attachment energies (Eatt) of the different habit faces of ABP crystals have been calculated using the computer program HABIT. On the basis of the attachment energies of different crystal faces, the morphology was defined as {1 0 0}, {0 0 1}, {1 1 0}, {11bar0} and {1 01bar}. To confirm this theoretical prediction, we have grown ABP films and ABP crystals from the vapour phase. In both cases, the morphologically most important face was defined as {1 0 0} face using X-ray diffraction techniques. The remaining faces of the vapour-grown crystals were defined using a projection method, while the crystallites in the films were morphologically analysed by means of atomic force microscopy (AFM). The experimental morphologies are basically in agreement with the computation. Deviations from the equilibrium morphology can be ascribed to departure from equilibrium conditions during growth. For completeness, the results are compared with those for crystals grown from solutions for which deviations in morphology from the theoretical predictions can be ascribed to interaction between the crystal faces and solvent molecules.

  9. Growth and characterization of a new nonlinear optical organic crystal: 2,4,6-Trimethylacetanilide

    NASA Astrophysics Data System (ADS)

    Upadhyaya, V.; Prabhu, Sharada G.

    2015-09-01

    A new nonlinear optical organic material, 2,4,6-trimethylacetanilide (246TMAA), also known as N-[2,4,6- trimethylphenyl]acetamide, has been synthesized and grown as a single crystal by the slow evaporation technique by organic solvents. The grown crystals have been characterized by morphology study. The crystals are prismatic. Surface examination shows granular dendritic pattern in optical micrograph. The Scanning Electron Micrograph shows the layered growth of the crystal. The Differential Scanning Calorimeter plot shows no phase change until melting point (219°C). The density of the crystals is 1.1g/cc and the crystals are soft. The crystals are transparent in the visible region and in the ultra-violet region till 280 nm. 246TMAA crystallizes with 2 molecules in a monoclinic unit cell in the noncentrosymmetric point group m, space group Pn. Refractive indices of this optically biaxial crystal along the three crystallophysical axes have been measured at 633 nm. The optical second harmonic generation efficiency of the crystal at 1064 nm is about half that of the urea crystal, measured by powder method using Nd:YAG laser. The results show that the 246TMAA crystal can efficiently be used for up-conversion of infrared radiation into visible green light. The powder X-ray diffraction spectrum of the crystal has been obtained.

  10. Synthesis, growth and characterization of L-Phenylalaninium methanesulfonate nonlinear optical single crystal

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, K.; Ravichandran, A. T.; Anitha, K.; Manivel, A.

    2018-03-01

    The titled compound, L-Phenylalaninium methanesulfonate (LPA-MS) was synthesized and grown into single crystals by slow solvent evaporation solution growth technique in aqueous solution containing equimolar concentrations of L-phenylalanine and methanesulfonic acid at room temperature. The grown crystals were subjected to single crystal X-ray diffraction studies. It crystallizes in the monoclinic crystal structure with P21 space group and the unit cell parameters are a = 5.312 (10) Å, b = 8.883 (2) Å and c = 25.830 (7) Å. The functional groups of the LPA-MS crystal were confirmed with FT-IR and FT-Raman analysis. The carbon-hydrogen skeleton was confirmed with 1H NMR and 13C NMR analysis. TG-DTG and DSC studies were carried out to determine the thermal stability of the crystals. The optical transparency ranges were studied through UV-vis-spectroscopy and the crystal was found to be transparent in the visible region. The second Harmonic generation (SHG) efficiency of the grown LPA-MS crystal was measured by the Kurtz-Perry powder technique. The dipolar nature of the L-phenylalaninium methanesulfonate and the presence of the intermolecular hydrogen bonding between the molecules are the vital factors responsible for the existence of SHG activity in the crystal.

  11. On the dynamics of water molecules at the protein solute interfaces.

    PubMed

    Bernini, A; Spiga, O; Ciutti, A; Chiellini, S; Menciassi, N; Venditti, V; Niccolai, N

    2004-10-01

    Proteins, with the large variety of chemical groups they present at their molecular surface, are a class of molecules which can be very informative on most of the possible solute-solvent interactions. Hen egg white lysozyme has been used as a probe to investigate the complex solvent dynamics occurring at the protein surface, by analysing the results obtained from Nuclear Magnetic Resonance, X-ray diffractometry and Molecular Dynamics simulations. A consistent overall picture for the dynamics of water molecules close to the protein is obtained, suggesting that a rapid exchange occurs, in a picosecond timescale, among all the possible hydration surface sites both in solution and the solid state, excluding the possibility that solvent molecules can form liquid-crystal-like supramolecular adducts, which have been proposed as a molecular basis of 'memory of water'.

  12. Spectroscopic and DFT-based computational studies on the molecular electronic structural characteristics and the third-order nonlinear property of an organic NLO crystal: (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide

    NASA Astrophysics Data System (ADS)

    Sasikala, V.; Sajan, D.; Joseph, Lynnette; Balaji, J.; Prabu, S.; Srinivasan, P.

    2017-04-01

    Single crystals of (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (CBMBSH) have been grown by slow evaporation crystal growth method. The structure stabilizing intramolecular donor-acceptor interactions and the presence of the Nsbnd H⋯O, Csbnd H⋯O and Csbnd H⋯C(π) hydrogen bonds in the crystal were confirmed by vibrational spectroscopic and DFT methods. The linear optical absorption characteristics of the solvent phase of CBMBSH were investigated using UV-Vis-NIR spectroscopic and TD-DFT approaches. The 2PA assisted RSA nonlinear absorption and the optical limiting properties of CBMBSH were studied using the open-aperture Z-scan method. The topological characteristics of the electron density have been determined using the quantum theory of atoms in molecules method.

  13. Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400°C

    NASA Astrophysics Data System (ADS)

    Sonin, V. M.; Zhimulev, E. I.; Pomazanskiy, B. S.; Zemnuhov, A. L.; Chepurov, A. A.; Afanasiev, V. P.; Chepurov, A. I.

    2018-01-01

    An experimental study of the dissolution of natural and synthetic diamonds in a sulfur-bearing iron melt (Fe0.7S0.3) with high P-T parameters (4 GPa, 1400°C) was performed. The results demonstrated that under these conditions, octahedral crystals with flat faces and rounded tetrahexahedral diamond crystals are transformed into rounded octahedroids, which have morphological characteristics similar to those of natural diamonds from kimberlite. It was suggested that, taking into account the complex history of individual natural diamond crystals, including the dissolution stages, sulfur-bearing metal melts up to sulfide melts were not only diamond-forming media during the early evolution of the Earth, but also natural solvents of diamond in the mantle environment before the formation of kimberlitic melts.

  14. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-07-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P212121, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  15. Crystallization and preliminary X-ray analysis of a novel halotolerant feruloyl esterase identified from a soil metagenomic library

    PubMed Central

    Chen, Shang-ke; Wang, Kui; Liu, Yuhuan; Hu, Xiaopeng

    2012-01-01

    Feruloyl esterase cleaves the ester linkage formed between ferulic acid and polysaccharides in plant cell walls and thus has wide potential industrial applications. A novel feruloyl esterase (EstF27) identified from a soil metagenomic library was crystallized and a complete data set was collected from a single cooled crystal using an in-house X-ray source. The crystal diffracted to 2.9 Å resolution and belonged to space group P212121, with unit-cell parameters a = 94.35, b = 106.19, c = 188.51 Å, α = β = γ = 90.00°. A Matthews coefficient of 2.55 Å3 Da−1, with a corresponding solvent content of 51.84%, suggested the presence of ten protein subunits in the asymmetric unit. PMID:22750860

  16. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, D.; Ladipo, F.T.; Braddock-Wilking, J.

    Low temperature crystal structures of (DABCO)H{sup +}Co(CO){sub 4}{sup -} (1) and (DABCO)H{sup +}Co(CO){sub 3}PPh{sub 3}{sup -} (2) (DABCO = 1,4-diazabicyclooctane) indicate that both salts exhibit N-H...Co hydrogen bonding. IR and NMR data indicate that these hydrogen bonded species persist in nonpolar solvents such as toluene, but exist as solvent separated ions in more polar solvents. Replacement of the axial CO ligand by PPh{sub 3} leads to a shortening of the N...Co separation in the solid state from 3.437(3) to 3.294(6) A. This change is accompanied by an increase in the angle between the equatorial carbonyl ligands. Thus, the crystallographic resultsmore » suggest a strengthening of the N-H...Co hydrogen bond upon increasing the basicity of the metal center, the first observation of this type in the solid state. This assertion is supported by variable-temperature {sup 1}H and {sup 13}C NMR data in toluene-d{sub 8} solution which, discussed in the light of ab initio calculations, indicate that the barrier to a fluxional process involving cleavage of the N-H...Co hydrogen bond is greater in 2 than in 1. The crystal structures of 1 and 2 have been determined by X-ray diffraction at 135(5) and 123(5) K, respectively. 19 refs., 2 figs., 5 tabs.« less

  18. One trinucleus dimethine cyanine dye: Experimental and theoretical studies on molecular structure as well as absorption and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, D. D.; Wang, L. Y.; Su, J. J.; Zhang, X. F.; Lei, Y. B.; Zhai, G. H.; Wen, Z. Y.

    2013-05-01

    A kind of trinucleus dimethine cyanine dye: 1-methyl-2,6-bis[2-(furan-2-yl)vinyl]pyridinium iodide (1) was synthesized and characterized by 1H NMR, 13C NMR, IR, MS, UV-Vis spectroscopy and elemental analysis. The crystals of dye 1, obtained from slow evaporation of solvent acetone, crystallized in the triclinic space group P - 1 with a = 9.6501(16) Å, b = 10.2308(17) Å, c = 10.7341(17) Å, V = 887.2(3) Å3, and Z = 2 (at 298(2) K), and it was stabilized by the hydrogen bonds and intermolecular face-to-face π⋯π aromatic stacking interactions. Crystallographic, IR, 1H NMR and UV-Vis data of dye 1 were compared with the results of density functional theory (DFT) method, and the calculated molecular geometries, vibrational bands, 1H NMR chemical shifts and UV-Vis maximum absorption were consistent with the experimental results. The fluorescence spectra were predicted in four different solvents with CIS/PCM methods. Compared with experimental values, the absolute deviations of emission maxima were -17.4 nm in chloroform, 6.3 nm in DMSO, 4.9 nm in methanol, and 6.8 nm in water, respectively. And the experimental fluorescence spectra were nicely reproduced by the simulated fluorescence spectra for each solvent.

  19. Relaxor properties of barium titanate crystals grown by Remeika method

    NASA Astrophysics Data System (ADS)

    Roth, Michel; Tiagunov, Jenia; Dul'kin, Evgeniy; Mojaev, Evgeny

    2017-06-01

    Barium titanate (BaTiO3, BT) crystals have been grown by the Remeika method using both the regular KF and mixed KF-NaF (0.6-0.4) solvents. Typical acute angle "butterfly wing" BT crystals have been obtained, and they were characterized using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy), conventional dielectric and acoustic emission methods. A typical wing has a triangular plate shape which is up to 0.5 mm thick with a 10-15 mm2 area. The plate has a (001) habit and an atomically smooth outer surface. Both K+ and F- solvent ions are incorporated as dopants into the crystal lattice during growth substituting for Ba2+ and O2- ions respectively. The dopants' distribution is found to be inhomogeneous, their content being almost an order of magnitude higher (up to 2 mol%) at out surface of the plate relatively to the bulk. A few μm thick surface layer is formed where a multidomain ferroelectric net is confined between two≤1 μm thick dopant-rich surfaces. The layer as a whole possess relaxor ferroelectric properties, which is apparent from the appearance of additional broad maxima, Tm, in the temperature dependence of the dielectric permittivity around the ferroelectric phase transition. Intense acoustic emission responses detected at temperatures corresponding to the Tm values allow to observe the Tm shift to lower temperatures at higher frequencies, or dispersion, typical for relaxor ferroelectrics. The outer surface of the BT wing can thus serve as a relaxor thin film for various electronic application, such as capacitors, or as a substrate for BT-based multiferroic structure. Crystals grown from KF-NaF fluxes contain sodium atoms as an additional impurity, but the crystal yield is much smaller, and while the ferroelectric transition peak is diffuse it does not show any sign of dispersion typical for relaxor behavior.

  20. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN) 4

    DOE PAGES

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; ...

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN) 4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P2 1/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å 3, Z = 4, D c = 1.46 g cm -1. Ni(bpene)[Ni(CN) 4] assumes a pillared layer structure with layers defined by Ni[Ni(CN) 4] n nets and bpene ligands acting as pillars. With the present crystallization technique which involvesmore » the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN) 4](1/2)bpene∙DMSO 2H 2O, or Ni 2N 7C 24H 25SO 3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO 2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO 2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO 2 per unit cell was obtained.« less

  1. Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials.

    PubMed

    Gao, Min-Rui; Yuan, Jiayin; Antonietti, Markus

    2017-04-24

    Ionic liquids (ILs) are new, innovative ionic solvents with rich physicochemical properties and intriguing pre-organized solvent structures; these materials offer great potential to impact across versatile areas of scientific research, for example, synthetic inorganic chemistry. Recent use of ILs as precursors, templates, and solvents has led to inorganic materials with tailored sizes, dimensionalities, morphologies, and functionalities that are difficult to obtain, or even not accessible, by using conventional solvents. Poly(ionic liquid)s (PILs) polymerized from IL monomers also raise the prospect of modifying nucleation, growth, and crystallization of inorganic objects, shedding light on the synthesis of a wide range of new materials. Here we survey recent key progress in using ILs and PILs in the field of synthetic inorganic chemistry. As well as highlighting the unique features of ILs and PILs that enable advanced synthesis, the effects of adding other solvents to the final products, along with the emerging applications of the created inorganic materials will be discussed. We finally provide an outlook on several development opportunities that could lead to new advancements of this exciting research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of Structural Defects in Wide Band-Gap Compound Materials for Semiconductor and Opto-Electronic Applications

    NASA Astrophysics Data System (ADS)

    Goue, Ouloide Yannick

    Single crystals of binary and ternary compounds are touted to replace silicon for specialized applications in the semiconductor industry. However, the relative high density of structural defects in those crystals has hampered the performance of devices built on them. In order to enhance the performance of those devices, structurally perfect single crystals must be grown. The aim of this thesis is to investigate the interplay between crystal growth process and crystal quality as well as structural defect types and transport property. To this end, the thesis is divided into two parts. The first part provides a general review of the theory of crystal growth (chapter I), an introduction to the materials being investigated (chapter II and III) and the characterization techniques being used (chapter IV). • In chapter I, a brief description of the theory of crystal growth is provided with an eye towards the driving force behind crystal nucleation and growth along with the kinetic factors affecting crystal growth. The case of crystal growth of silicon carbide (SiC) by physical vapor transport (PVT) and chemical vapor deposition (CVD) is discussed. The Bridgman, travelling heater method (THM) and physical transport growth of cadmium zinc telluride (CZT) is also treated. In chapters II and III, we introduce the compound materials being investigated in this study. While a description of their crystal structure and properties is provided, the issues associated with their growth are discussed. In chapter IV, a description of the characterization techniques used in these studies is presented. These techniques are synchrotron X-ray topography (SXRT), transmission electron microscopy, transmission infrared microscopy (TIM), micro-Raman spectroscopy (muRS) and light microscopy. Extensive treatment of SXRT technique is also provided. In the second part, the experimental results obtained in the course of these studies are presented and discussed. These results are divided into three subsections. • The development of a new technique for the production of large and high quality silicon carbide single crystal boule is proposed. This technique herein referred to as Large Tapered Crystal (LTC) growth consists of two steps: growth of long SiC rod crystal by solvent-laser heated floating zone (Solvent-LHFZ) and lateral expansion of a seed by hot wall chemical vapor deposition (HWCVD). Solvent-LHFZ was successful as SiC rod crystals, replicating the polytype structure of the starting seed, were achieved at a growth rate varying from 4 to 100mum/hr. However, SXRT revealed the presence of an inhomogeneous strain in the grown crystal rod. This was further confirmed by SEM images, which showed the platelet-like morphology of the growth front with pockets in which iron (Fe)-rich material from the Fe solvent is trapped. It was furthermore observed that at high Fe to Si ratio (˜1.9), no growth was achieved. HWCVD enlargement was also successful as SiC boules, replicating the polytype structure of the starting seed, were achieved at growth rate of about 180mum/hr. The boules had a faceted hexagonal morphology with a strain-free surface marked by steps. Combination of SXRT, TEM and muRS revealed the presence of stacking disorder in the seed (3C, 4H and 15R-SiC) that replicated in the homoepitaxial layer. The formation of the observed stacking disorder is attributed to the low energy difference between stacking configurations on the growth surface as proposed by Takahashi and Ohtani. • The influence of structural defect type and distribution on minority carrier lifetime in 4H-SiC epilayers was investigated. Structural defect type and distribution map was obtained using SXRT, whereas minority carrier lifetime map was obtained using muPCD. Decrease in carrier lifetime observed from muPCD map was associated with specific structural defects such as low angle grain boundaries (LAGBs), stacking faults (SFs), interfacial dislocations (IDs), half loop arrays (HLAs) as well as basal plane dislocations (BPDs) pinned at TSDs. While the effect of morphological defects was mitigated, combination of defects such as microcracks, overlapping triangular defects and BPD half loops were observed to reduce carrier lifetime. Furthermore, regions of high dislocation density were associated with low carrier lifetime. • Finally, the effect of cadmium (Cd) overpressure on the quality of cadmium zinc telluride crystal ingots was investigated for two set of samples (set 1 and 2). Overall, high resistivity single crystals were achieved. Evaluation of the crystal quality by SXRT revealed that under certain Cd overpressures and growth conditions, the quality of the grown boule improved. Similarly, transmission infrared (IR) microscopy showed a correlation between the size/density and distribution of Te inclusions/precipitates and Cd overpressure. The size of Te inclusions was observed to decrease as a function of Cd overpressure as predicted from partial pressure data for stoichiometric melt. The best improvement in crystalline quality were observed for samples from set 1at a Cd reservoir of 785 °C and for set 2 samples for a Cd reservoir at 825 °C. This difference in Cd reservoir temperature for stoichiometric growth between set 1 and set 2 was attributed to other factors such as rate of cooling of Cd reservoir, rate of cooling of the crystal along with control of the melt interface. The summary of these results and the implication of this growth approach for producing high quality CZT single crystals are discussed.

  3. Characterization of photonic colloidal crystals in real and reciprocal space

    NASA Astrophysics Data System (ADS)

    Thijssen, J. H. J.

    2007-05-01

    In this thesis, we present experimental work on the characterization of photonic colloidal crystals in real and reciprocal space. Photonic crystals are structures in which the refractive index varies periodically in space on the length scale of the wavelength of light. Self-assembly of colloidal particles is a promising route towards three-dimensional (3-D) photonic crystals. However, fabrication of photonic band-gap materials remains challenging, so calculations that predict their optical properties are indispensable. Our photonic band-structure calculations on binary Laves phases have led to a proposed route towards photonic colloidal crystals with a band gap in the visible region. Furthermore, contrary to results in literature, we found that there is no photonic band gap for inverse BCT crystals. Finally, optical spectra of colloidal crystals were analyzed using band-structure calculations. Self-assembled photonic crystals are fabricated in multiple steps. Each of these steps can significantly affect the 3-D structure of the resulting crystal. X-rays are an excellent probe of the internal structure of photonic crystals, even if the refractive-index contrast is large. In Chapter 3, we demonstrate that an angular resolution of 0.002 mrad is achievable at a third-generation synchrotron using compound refractive optics. As a result, the position and the width of Bragg reflections in 2D diffraction patterns can be resolved, even for lattice spacings larger than a micrometer (corresponding to approximately 0.1 mrad). X-ray diffraction patterns and electron-microscopy images are used in Chapter 4 to determine the orientation of hexagonal layers in convective-assembly colloidal crystals. Quantitative analysis revealed that, in our samples, the layers were not exactly hexagonal and the stacking sequence was that of face-centered cubic (FCC) crystals, though stacking faults may have been present. In Chapter 5, binary colloidal crystals of organic spheres (polystyrene, PMMA) and/or inorganic spheres (silica) are introduced as promising templates for strongly photonic crystals. To prevent melting of the template, we used atomic layer deposition (ALD) to infiltrate polystyrene and PMMA templates with alumina, after which chemical vapor deposition (CVD) was used to further enhance the refractive-index contrast. Binary colloidal crystals of silica spheres can be infiltrated by CVD directly, but they often have a layer of colloidal fluid on top. Preliminary etching experiments demonstrated that it may be possible to etch silica templates with plasmas or with adhesive tape. As described in Chapter 6, sedimentation of colloidal silica spheres in an external, high-frequency electric field lead to mm-scale BCT crystals with up to 25 layers. In addition, electric fields were used as an external control to switch between BCT and close-packed (CP) crystal structures within seconds. We also developed two procedures to invert BCT crystals without loss of structure - colloidal particles were immobilized by diffusion-polymerization or photo-induced polymerization of the surrounding solvent. Some BCT crystals were even infiltrated with silicon using CVD. We demonstrate in Chapter 7 that X-ray diffraction can be used to determine the 3-D structure of such photonic colloidal crystals at the various stages of their fabrication. Excellent agreement was found with confocal and electron-microscopy images.

  4. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  5. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations.

    PubMed

    Ahlstrom, Logan S; Vorontsov, Ivan I; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations.

  6. Classification of the crystallization behavior of amorphous active pharmaceutical ingredients in aqueous environments.

    PubMed

    Van Eerdenbrugh, Bernard; Raina, Shweta; Hsieh, Yi-Ling; Augustijns, Patrick; Taylor, Lynne S

    2014-04-01

    To classify the crystallization behavior of amorphous active pharmaceutical ingredients (API) exposed to aqueous environments. A set of approximately 50 chemically and physically diverse active pharmaceutical ingredients (APIs) was selected for this study. Two experimental setups were employed to characterize the crystallization behavior of the amorphous API in an aqueous environment. For the first approach, precipitation, as evidenced by the development of turbidity, was induced using the solvent shift method, by mixing concentrated API solutions in DMSO with an aqueous buffer in a capillary. Subsequently, crystallization was monitored in situ over time using synchrotron radiation (simultaneous SAXS/WAXS beamline 12-ID-B at the Advanced Photon Source, Argonne National Laboratories, Argonne, IL). In the second approach, amorphous films were prepared by melt quenching; after adding buffer, crystallization was monitored with time using polarized light microscopy. In general, the crystallization behavior of a given compound was similar irrespective of the experimental method employed. However, the crystallization behavior among different compounds varied significantly, ranging from immediate and complete crystallization to no observable crystallization over biorelevant time scales. Comparison of the observed behavior with previous studies of crystallization tendency in non-aqueous environments revealed that the crystallization tendency of individual APIs was somewhat similar regardless of the crystallization environment. API properties, rather than the method by which amorphous materials are generated, tend to dictate crystallization behavior in aqueous media.

  7. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    PubMed

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  8. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    NASA Astrophysics Data System (ADS)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander

    Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s -1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away frommore » the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less

  10. An evaluation of adhesive sample holders for advanced crystallographic experiments

    PubMed Central

    Mazzorana, Marco; Sanchez-Weatherby, Juan; Sandy, James; Lobley, Carina M. C.; Sorensen, Thomas

    2014-01-01

    The hydration state of macromolecular crystals often affects their overall order and, ultimately, the quality of the X-ray diffraction pattern that they produce. Post-crystallization techniques that alter the solvent content of a crystal may induce rearrangement within the three-dimensional array making up the crystal, possibly resulting in more ordered packing. The hydration state of a crystal can be manipulated by exposing it to a stream of air at controlled relative humidity in which the crystal can equilibrate. This approach provides a way of exploring crystal hydration space to assess the diffraction capabilities of existing crystals. A key requirement of these experiments is to expose the crystal directly to the dehydrating environment by having the minimum amount of residual mother liquor around it. This is usually achieved by placing the crystal on a flat porous support (Kapton mesh) and removing excess liquid by wicking. Here, an alternative approach is considered whereby crystals are harvested using adhesives that capture naked crystals directly from their crystallization drop, reducing the process to a one-step procedure. The impact of using adhesives to ease the harvesting of different types of crystals is presented together with their contribution to background scattering and their usefulness in dehydration experiments. It is concluded that adhesive supports represent a valuable tool for mounting macromolecular crystals to be used in humidity-controlled experiments and to improve signal-to-noise ratios in diffraction experiments, and how they can protect crystals from modifications in the sample environment is discussed. PMID:25195752

  11. Growth, optical, luminescence, thermal and mechanical behavior of an organic single crystal: 3-Acetyl-2-methyl-4-phenylquinolin-1-ium chloride.

    PubMed

    Nirosha, M; Kalainathan, S; Sarveswari, S; Vijayakumar, V

    2014-04-05

    A single crystal of 3-acetyl-2-methyl-4-phenylquinolin-1-ium chloride has grown by slow evaporation solution growth technique using ethanol as solvent. The structural, thermal, optical and mechanical property has studied for the grown crystal. Single crystal XRD revealed that the crystal belongs to monoclinic system with space group P21/c. The presences of Functional groups in the crystallized material have confirmed using the FTIR vibrational spectrum. The optical absorbance spectrum recorded from 190 to 1100nm shows the cut-off wavelength occurs at 371nm. The material shows its transparency in the entire region of the visible spectrum. The photoluminescence spectrum shows the ultraviolet and blue emission in the crystal. Thermogravimetric and differential thermal analysis reveal the thermal stability of the grown crystal. Etching study shows the grown mechanism and surface features of the crystal. Vickers microhardness studies have carried out on the (01-1) plane to understand the mechanical properties of the grown crystal. The hardness of the title compound increases on increasing the load. The Meyer's index number (n), and the stiffness constants for different loads has calculated and reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Crystallization and preliminary X-ray crystallographic analysis of YfcM: an important factor for EF-P hydroxylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kan; RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198; Suzuki, Takehiro

    2014-08-27

    E. coli YfcM was expressed, purified and crystallized. Crystals of YfcM were obtained by the in situ proteolysis crystallization method. Using these crystals, an X-ray diffraction data set was collected at 1.45 Å resolution. Elongation factor P (EF-P) plays an essential role in the translation of polyproline-containing proteins in bacteria. It becomes functional by the post-translational modification of its highly conserved lysine residue. It is first β-lysylated by PoxA and then hydroxylated by YfcM. In this work, the YfcM protein from Escherichia coli was overexpressed, purified and crystallized. The crystal of YfcM was obtained by the in situ proteolysis crystallizationmore » method and diffracted X-rays to 1.45 Å resolution. It belonged to space group C2, with unit-cell parameters a = 124.4, b = 37.0, c = 37.6 Å, β = 101.2°. The calculated Matthews coefficient (V{sub M}) of the crystal was 1.91 Å{sup 3} Da{sup −1}, indicating that one YfcM molecule is present in the asymmetric unit with a solvent content of 35.7%.« less

  13. Hematin−Hematin Self-Association States Involved in the Formation and Reactivity of the Malaria Parasite Pigment, Hemozoin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klonis, Nectarios; Dilanian, Ruben; Hanssen, Eric

    The malaria parasite pigment, hemozoin, is a crystal of ferriprotoporphyrin IX (FP-Fe(III)), a product of hemoglobin digestion. Hemozoin formation is essential for FP-Fe(III) detoxification in the parasite; it is the main target of quinoline antimalarials and can modulate immune and inflammation responses. To gain further insight into the likely mechanisms of crystal formation and hemozoin reactivity, we have reanalyzed the crystal structure data for {beta}-hematin and solved the crystal structure of Plasmodium falciparum hemozoin. The analysis reveals that the structures are very similar and highlights two previously unexplored modes of FP-Fe(III) self-association involving {pi}-{pi} interactions that may initiate crystal formationmore » and help to stabilize the extended structure. Hemozoin can be considered to be a crystal composed of {pi}-{pi} dimers stabilized by iron-carboxylate linkages. As a result, it is predicted that two surfaces of the crystal would consist of {pi}-{pi} dimers with Fe(III) partly exposed to solvent and capable of undergoing redox reactions. Accordingly, we demonstrate that the crystal possesses both general peroxidase activity and the ability to cause lipid oxidation.« less

  14. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    PubMed

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  15. Thermodynamic description of cellulose chain collapse using coarse grain modeling

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Chu, Jhih-Wei

    2012-11-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  16. The application of crystal soaking technique to study the effect of zinc and cresol on insulinotropin crystals grown from a saline solution.

    PubMed

    Kim, Y; Haren, A M

    1995-11-01

    The purpose of this study is to investigate the effect of zinc and cresol on the structure of insulinotropin crystals. Insulinotropin crystals grown from a saline solution were treated with zinc and/or m-cresol using a crystal soaking technique. The effects of these additives on the crystal structure were investigated with powder X-ray diffraction, photomicrography, and differential scanning calorimetry. The molecular interaction between insulinotropin and m-trifluorocresol in solution was also studied by 19F NMR: The data suggest that the original crystals grown from a saline solution have relatively weak lattice forces. After the addition of m-cresol to the suspension of the insulinotropin crystals, the crystals were immediately rendered amorphous. The m-cresol molecules which diffused into the crystals through solvent channels may have disturbed the lattice interactions that maintain the integrity of the crystal. In contrast, the zinc added to the suspension stabilized the crystal lattice so that the subsequent addition of m-cresol did not alter the integrity of the crystals. A marked increase in melting point (206 degrees versus 184 degrees) and heat of fusion (24.6 J/g versus 1.4 J/g) of the crystals was observed after the treatment with zinc. The solubility of the zinc treated crystals in a pH 7.1 phosphate buffered saline was 1/20 of that of the original crystals. When the insulinotropin crystals were treated with the additives using a crystal soaking method, the crystals underwent structural changes. Zinc stabilized the crystal lattice, and reduced the solubility of the peptide.

  17. Crystallization and preliminary X-ray analysis of eukaryotic initiation factor 4E from Pisum sativum

    PubMed Central

    Ashby, Jamie A.; Stevenson, Clare E. M.; Maule, Andrew J.; Lawson, David M.

    2009-01-01

    Crystals of an N-terminally truncated 20 kDa fragment of Pisum sativum eIF4E (ΔN-eIF4E) were grown by vapour diffusion. X-ray data were recorded to a resolution of 2.2 Å from a single crystal in-house. Indexing was consistent with primitive monoclinic symmetry and solvent-content estimations suggested that between four and nine copies of the eIF4E fragment were possible per crystallographic asymmetric unit. eIF4E is an essential component of the eukaryotic translation machinery and recent studies have shown that point mutations of plant eIF4Es can confer resistance to potyvirus infection. PMID:19652353

  18. Overexpression, crystallization and preliminary X-­ray crystallographic analysis of the RNA polymerase domain of primase from Streptococcus mutans strain UA159

    PubMed Central

    Im, Dong-Won; Kim, Tae-O; Jung, Ha Yun; Oh, Ji Eun; Lee, Se Jin; Heo, Yong-Seok

    2012-01-01

    Primase is the enzyme that synthesizes RNA primers on single-stranded DNA during normal DNA replication. In this study, the catalytic core domain of primase from Streptococcus mutans UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 1.60 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P41 or P43, with unit-cell parameters a = b = 52.63, c = 110.31 Å. The asymmetric unit is likely to contain one molecule, with a corresponding V M of 1.77 Å3 Da−1 and a solvent content of 30.7%. PMID:22232183

  19. Expression, purification, crystallization and preliminary X-ray studies of Vibrio cholerae pseudopilin EpsH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunathan, Kannan; Vago, Frank S.; Ball, Terry

    2010-01-12

    EpsH is a minor pseudopilin protein of the Vibrio cholerae type II secretion system. A truncated form of EpsH with a C-terminal noncleavable His tag was constructed and expressed in Escherichia coli, purified and crystallized by sitting-drop vapor diffusion. A complete data set was collected to 1.71 {angstrom} resolution. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.39, b = 71.11, c = 84.64 {angstrom}. There were two protein molecules in the asymmetric unit, which gave a Matthews coefficient V{sub M} of 2.1 {angstrom}{sup 3} Da{sup -1}, corresponding to 41.5% solvent content.

  20. Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions.

    PubMed

    Reichardt, J; Hess, M; Macke, A

    2000-04-20

    Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.

  1. Electrical Characteristics and Preparation of Nanostructured Pb(Zr0.5Ti0.5)O3 Films by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Hotta, Yoichi; Kawai, Tomoji

    2007-07-01

    Nanostructured thin films of Pb(Zr0.5Ti0.5)O3 on Pt (1000 Å)/Ti (100 Å)/SiO2 (2000 Å)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Lead nitrate, zirconium nitrate and titanium isopropoxide are used as starting material with ethylene glycol as solvent. The crystal structure of the as-sprayed films are transformed from the amorphous, pyrochlore and multiple phases of pyrochlore and perovskite to the single phase of perovskite as the annealing temperature is increased up to 500 °C. For the formation of single phase perovskite, excess lead of 10 mol % is required to compensate the loss of lead during the processing of the primitive films. The physical characteristics of the resultant films show the dielectric constant (\\varepsilonr) of 400, remanent polarization (2Pr) of 30.0 μC/cm2 and coercive field (2Ec) of 70.0 kV/cm, respectively.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borszeky, K.; Mallat, T.; Aeschiman, R.

    The chemo- and enantioselective hydrogenation of pyruvic acid oxime have been studied on Pd/alumina, the latter in the presence of the 1,2-amino alcohol type alkaloids ephedrine, cinchonidine, and cinchonine. High yields of racemic alanine (90-98%) were obtained in the absence of alkaloids in polar solvents at 0-45{degrees}C and 10 bar. Enantioselection increased with higher temperature and alkalid: oxime molar ratio. A 1:1 ephedrine: oxime molar ratio afforded the best enantiomeric excess (26%). The presence of alkaloid resulted in a decrease of reaction rate by a factor of up to 140, compared to the racemic hydrogenation. Based on X-ray crystal structuremore » analysis of the alkaloid-pyruvic acid oxime adduct, a mechanism is proposed for the steric course of the reaction. Extended interactions by multiple H bonds between the adsorbed alkaloid-oxime salt units on the Pd surface is assumed to be at the origin of the moderate enantioselectivity and the very low enantioselective hydrogenation rate. 28 refs., 5 figs., 3 tabs.« less

  3. DNA-mediated nanoparticle crystallization into Wulff polyhedra

    NASA Astrophysics Data System (ADS)

    Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.; Schmucker, Abrin L.; Pals, Bridget C.; de La Cruz, Monica Olvera; Mirkin, Chad A.

    2014-01-01

    Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.

  4. Multiple Solvent Extraction System with Flow Injection Technology.

    DTIC Science & Technology

    1981-09-30

    encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction

  5. Proteins in Ionic Liquids: Current Status of Experiments and Simulations.

    PubMed

    Schröder, Christian

    2017-04-01

    In the last two decades, while searching for interesting applications of ionic liquids as potent solvents, their solvation properties and their general impact on biomolecules, and in particular on proteins, gained interest. It turned out that ionic liquids are excellent solvents for protein refolding and crystallization. Biomolecules showed increased solubilities and stabilities, both operational and thermal, in ionic liquids, which also seem to prevent self-aggregation during solubilization. Biomolecules can be immobilized, e.g. in highly viscous ionic liquids, for particular biochemical processes and can be designed to some extent by the proper choice of the ionic liquid cations and anions, which can be characterized by the Hofmeister series.

  6. Synthesis, structural, optical, thermal and dielectric studies on new organic nonlinear optical crystal by solution growth technique.

    PubMed

    Prakash, M; Geetha, D; Lydia Caroline, M

    2013-04-15

    Single crystals of L-phenylalanine-benzoic acid (LPBA) were successfully grown from aqueous solution by solvent evaporation technique. Purity of the crystals was increased by the method of recrystallization. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. The chemical structure of compound was established by FT-NMR technique. The presence of functional groups was estimated qualitatively by Fourier transform infrared analysis (FT-IR). Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 254 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 6.91 eV. Thermal behavior has been studied with TGA/DTA analyses. The existence of second harmonic generation (SHG) efficiency was found to be 0.56 times the value of KDP. The dielectric behavior of the sample was also studied for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Overexpression, purification and crystallization of a choline-binding protein CbpI from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, Neil G., E-mail: neison@chem.gla.ac.uk; Riboldi-Tunicliffe, Alan; Mitchell, Timothy J.

    2006-07-01

    The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γmore » = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.« less

  8. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films.

    PubMed

    Giri, Gaurav; Li, Ruipeng; Smilgies, Detlef-M; Li, Er Qiang; Diao, Ying; Lenn, Kristina M; Chiu, Melanie; Lin, Debora W; Allen, Ranulfo; Reinspach, Julia; Mannsfeld, Stefan C B; Thoroddsen, Sigurdur T; Clancy, Paulette; Bao, Zhenan; Amassian, Aram

    2014-04-16

    A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.

  9. Bis (3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol) organic cocrystal: Synthesis and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R.

    2016-10-01

    A 3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol (mhba-tnp) cocrystal was grown by the slow evaporation solution growth technique using ethanol as a solvent. As-grown crystals were characterized by single crystal X-ray diffraction (XRD) study and crystallized with a centrosymmetric space group. Optical properties of the grown crystal have been studied by Ultraviolet-Visible (UV-Vis) absorption spectra in the range from 200 to 800nm and the band gap energy of the crystal was obtained as 2.8eV. Fourier transform infrared (FTIR) and micro Raman spectral analyses have been carried out to confirm the functional groups present in the title compound. Differential scanning calorimetry (DSC) and polarized light thermomicroscopy (PLTM) analyses were carried out to find the melting point. In addition, the optimized geometric parameters and the molecular orbitals were calculated using density functional theory (DFT) with the help of the Gaussian 03W software.

  10. Crystallization and preliminary X-ray diffraction analysis of Leishmania major dihydroorotate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordeiro, Artur T.; Feliciano, Patricia R.; Nonato, M. Cristina, E-mail: cristy@fcfrp.usp.br

    2006-10-01

    Dihydroorotate dehydrogenase from L. major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitant agent. A complete data set from a native crystal has been collected to 2.0 Å resolution using an in-house rotating-anode generator. Dihydroorotate dehydrogenases (DHODHs) are flavin-containing enzymes that catalyze the oxidation of l-dihydroorotate to orotate, the fourth step in the de novo pyrimidine nucleotide synthesis pathway. In this study, DHODH from Leishmania major has been crystallized by the vapour-diffusion technique using lithium sulfate as the precipitating agent. The crystals belong to space group P6{sub 1}, with unit-cell parameters a = 143.7, cmore » = 69.8 Å. X-ray diffraction data were collected to 2.0 Å resolution using an in-house rotating-anode generator. Analysis of the solvent content and the self-rotation function indicate the presence of two molecules in the asymmetric unit. The structure has been solved by the molecular-replacement technique.« less

  11. Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea regia) peroxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Leandra; Nascimento, Alessandro S.; Zamorano, Laura S.

    2007-09-01

    The purification, crystallization, X-ray diffraction data acquisition and molecular-replacement results of royal palm tree (R. regia) peroxidase are described. Royal palm tree peroxidase (RPTP), which was isolated from Roystonea regia leaves, has an unusually high stability that makes it a promising candidate for diverse applications in industry and analytical chemistry [Caramyshev et al. (2005 ▶), Biomacromolecules, 6, 1360–1366]. Here, the purification and crystallization of this plant peroxidase and its X-ray diffraction data collection are described. RPTP crystals were obtained by the hanging-drop vapour-diffusion method and diffraction data were collected to a resolution of 2.8 Å. The crystals belong to themore » trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 116.83, c = 92.24 Å, and contain one protein molecule per asymmetric unit. The V{sub M} value and solvent content are 4.07 Å{sup 3} Da{sup −1} and 69.8%, respectively.« less

  12. Purification, crystallization and preliminary X-ray crystallographic analysis of rice Bowman–Birk inhibitor from Oryza sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yi-Hung; Li, Hsin-Tai; Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan

    2006-06-01

    Rice Bowman–Birk inhibitor was expressed and crystallized. Bowman–Birk inhibitors (BBIs) are cysteine-rich proteins with inhibitory activity against proteases that are widely distributed in monocot and dicot species. The expression of rice BBI from Oryza sativa is up-regulated and induced by pathogens or insects during germination of rice seeds. The rice BBI (RBTI) of molecular weight 15 kDa has been crystallized using the hanging-drop vapour-diffusion method. According to the diffraction of rice BBI crystals at a resolution of 2.07 Å, the unit cell belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.37, b = 96.69, cmore » = 100.36 Å. Preliminary analysis indicates four BBI molecules in an asymmetric unit, with a solvent content of 58.29%.« less

  13. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Zhang, Gao; Luan, Jieyu; Chen, Zhiqun; Su, Pengfei; Shu, Yuanjie

    2016-04-01

    A new cocrystal explosive of 2,4,6,8,10,12-hexanitrohexaazaiso-wurtzitane(CL-20) and 2,5-dinitrotoluene(DNT) in a molar ratio of 1:2 has been prepared by slow solvent evaporation method. Crystal structure of the cocrystal characterized by single crystal X-ray diffraction (SXRD) reveals that the cocrystal is formed by intermolecular hydrogen bond interactions and belongs to the triclinic system with P-1 group. Moreover, the obivious differences of powder X-ray diffraction (PXRD) patterns, infrared spectroscopy and Raman spectroscopy confirm that the intermolecular interactions have great influence for the crystal structure and formation of cocrystal. The cocrystal exhibits a lower impact height of 44 cm, suggesting a substantial reduction of sensitivity in comparison with CL-20. And thermal test results showed cocrystal obtains a lower melting point than DNT, which means huge advantages in blasting engineering.

  14. Self-assembly modes of glycyrrhetinic acid esters in view of the crystal packing of related triterpene molecules.

    PubMed

    Langer, Dominik; Wicher, Barbara; Szczołko, Wojciech; Gdaniec, Maria; Tykarska, Ewa

    2016-08-01

    The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.

  15. High yield synthesis of Ni-BTC metal-organic framework with ultrasonic irradiation: Role of polar aprotic DMF solvent.

    PubMed

    Israr, Farrukh; Chun, Daye; Kim, Yeongmin; Kim, Duk Kyung

    2016-07-01

    Nickel based porous solid was synthesized with 20 kHz ultrasonic irradiation. The reaction of Ni(II) nitrate hexahydrate with 1,3,5-benzene tricarboxylic acid in N,N-Dimethylformamide (DMF) as the sole solvent under ultrasonic radiation produced porous Ni-BTC MOF. Choice of correct solvent for the ultrasonic treatment was proven important. The effect of varying ultrasonic powers (40%, 60% and 80% of 750 W) along with different temperature conditions (50 °C, 60 °C, 70 °C and 80 °C) influenced the respective yield. A very high yield of 88% Ni-BTC MOF was obtained from 80% ultrasonic power at 60 °C. BET surface areas of the MOF crystals measured by N2 gas adsorption isotherms were in the range of 960-1000 m(2)/g. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Solvent Dependent Disorder in M 2(BzOip) 2(H 2O)·Solvate (M = Co or Zn)

    DOE PAGES

    McCormick, Laura; Morris, Samuel A.; Teat, Simon J.; ...

    2017-12-24

    Coordination polymers derived from 5-benzyloxy isophthalic acid (H 2BzOip) are rare, with only three reported that do not contain additional bridging ligands, of which two M 2(BzOip) 2(H 2O) (M = Co and Zn) are isomorphous. It was hoped that by varying the solvent system in a reaction between H 2BzOip and M(OAc) 2 (M = Co and Zn), from water to a water/alcohol mixture, coordination polymers of different topology could be formed. Instead, two polymorphs of the existing M 2(BzOip) 2(H 2O) (M = Co and Zn) were isolated from aqueous methanol and aqueous ethanol, in which a smallmore » number of guest solvent molecules are present in the crystals. These guest water molecules disrupt the hexaphenyl embrace motif, leading to varying degrees of disorder of the benzyl groups.« less

  17. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    PubMed

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  18. Highly sensitive BTX detection using surface functionalized QCM sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of themore » resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.« less

  19. Highly sensitive BTX detection using surface functionalized QCM sensor

    NASA Astrophysics Data System (ADS)

    Bozkurt, Asuman Aşıkoǧlu; Özdemir, Okan; Altındal, Ahmet

    2016-03-01

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  20. Solvent Dependent Disorder in M 2(BzOip) 2(H 2O)·Solvate (M = Co or Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Laura; Morris, Samuel A.; Teat, Simon J.

    Coordination polymers derived from 5-benzyloxy isophthalic acid (H 2BzOip) are rare, with only three reported that do not contain additional bridging ligands, of which two M 2(BzOip) 2(H 2O) (M = Co and Zn) are isomorphous. It was hoped that by varying the solvent system in a reaction between H 2BzOip and M(OAc) 2 (M = Co and Zn), from water to a water/alcohol mixture, coordination polymers of different topology could be formed. Instead, two polymorphs of the existing M 2(BzOip) 2(H 2O) (M = Co and Zn) were isolated from aqueous methanol and aqueous ethanol, in which a smallmore » number of guest solvent molecules are present in the crystals. These guest water molecules disrupt the hexaphenyl embrace motif, leading to varying degrees of disorder of the benzyl groups.« less

Top