Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aptekarev, Alexander I; Lysov, Vladimir G; Tulyakov, Dmitrii N
2011-02-28
Ensembles of random Hermitian matrices with a distribution measure defined by an anharmonic potential perturbed by an external source are considered. The limiting characteristics of the eigenvalue distribution of the matrices in these ensembles are related to the asymptotic behaviour of a certain system of multiple orthogonal polynomials. Strong asymptotic formulae are derived for this system. As a consequence, for matrices in this ensemble the limit mean eigenvalue density is found, and a variational principle is proposed to characterize this density. Bibliography: 35 titles.
Applications of multiple-constraint matrix updates to the optimal control of large structures
NASA Technical Reports Server (NTRS)
Smith, S. W.; Walcott, B. L.
1992-01-01
Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.
NASA Technical Reports Server (NTRS)
Geyser, L. C.
1978-01-01
A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.
Random matrices and condensation into multiple states
NASA Astrophysics Data System (ADS)
Sadeghi, Sina; Engel, Andreas
2018-03-01
In the present work, we employ methods from statistical mechanics of disordered systems to investigate static properties of condensation into multiple states in a general framework. We aim at showing how typical properties of random interaction matrices play a vital role in manifesting the statistics of condensate states. In particular, an analytical expression for the fraction of condensate states in the thermodynamic limit is provided that confirms the result of the mean number of coexisting species in a random tournament game. We also study the interplay between the condensation problem and zero-sum games with correlated random payoff matrices.
NASA Astrophysics Data System (ADS)
Seagraves, P. H.; Elmore, David F.
1994-09-01
Systems using optical elements such as linear polarizers, retarders, and mirrors can be represented by Mueller matrices. Some polarimeters include elements with time-varying polarization properties, multiple light beams, light detectors, and signal processing equipment. Standard Mueller matrix forms describing time-varying retarders, and beam splitters are presented, as well as non-Mueller matrices which describe detection and signal processing. These matrices provide a compact and intuitive mathematical description of polarimeter response which can aid in the refining of instrument designs.
Original Recipes for Matrix Multiplication
ERIC Educational Resources Information Center
Hallman-Thrasher, Allyson; Litchfield, Erin T.; Dael, Kevin E.
2016-01-01
Matrices occupy an awkward spot in a typical algebra 2 textbook: sandwiched between solving linear systems and solving quadratics. Even teachers who do not base their course timeline and pacing on the class textbook may find a disconnect between how matrices are taught (procedurally) and how other topics are taught (conceptually or with real-world…
Recursive inverse factorization.
Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N
2008-03-14
A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.
The bilinear complexity and practical algorithms for matrix multiplication
NASA Astrophysics Data System (ADS)
Smirnov, A. V.
2013-12-01
A method for deriving bilinear algorithms for matrix multiplication is proposed. New estimates for the bilinear complexity of a number of problems of the exact and approximate multiplication of rectangular matrices are obtained. In particular, the estimate for the boundary rank of multiplying 3 × 3 matrices is improved and a practical algorithm for the exact multiplication of square n × n matrices is proposed. The asymptotic arithmetic complexity of this algorithm is O( n 2.7743).
Computing partial traces and reduced density matrices
NASA Astrophysics Data System (ADS)
Maziero, Jonas
Taking partial traces (PTrs) for computing reduced density matrices, or related functions, is a ubiquitous procedure in the quantum mechanics of composite systems. In this paper, we present a thorough description of this function and analyze the number of elementary operations (ops) needed, under some possible alternative implementations, to compute it on a classical computer. As we note, it is worthwhile doing some analytical developments in order to avoid making null multiplications and sums, what can considerably reduce the ops. For instance, for a bipartite system ℋa⊗ℋb with dimensions da=dimℋa and db=dimℋb and for da,db≫1, while a direct use of PTr definition applied to ℋb requires 𝒪(da6db6) ops, its optimized implementation entails 𝒪(da2db) ops. In the sequence, we regard the computation of PTrs for general multipartite systems and describe Fortran code provided to implement it numerically. We also consider the calculation of reduced density matrices via Bloch’s parametrization with generalized Gell Mann’s matrices.
Direct system parameter identification of mechanical structures with application to modal analysis
NASA Technical Reports Server (NTRS)
Leuridan, J. M.; Brown, D. L.; Allemang, R. J.
1982-01-01
In this paper a method is described to estimate mechanical structure characteristics in terms of mass, stiffness and damping matrices using measured force input and response data. The estimated matrices can be used to calculate a consistent set of damped natural frequencies and damping values, mode shapes and modal scale factors for the structure. The proposed technique is attractive as an experimental modal analysis method since the estimation of the matrices does not require previous estimation of frequency responses and since the method can be used, without any additional complications, for multiple force input structure testing.
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.
Molecular t-matrices for Low-Energy Electron Diffraction (TMOL v1.1)
NASA Astrophysics Data System (ADS)
Blanco-Rey, Maria; de Andres, Pedro; Held, Georg; King, David A.
2004-08-01
We describe a FORTRAN-90 program that computes scattering t-matrices for a molecule. These can be used in a Low-Energy Electron Diffraction program to solve the molecular structural problem very efficiently. The intramolecular multiple scattering is computed within a Dyson-like approach, using free space Green propagators in a basis of spherical waves. The advantage of this approach is related to exploiting the chemical identity of the molecule, and to the simplicity to translate and rotate these t-matrices without performing a new multiple-scattering calculation for each configuration. FORTRAN-90 routines for rotating the resulting t-matrices using Wigner matrices are also provided. Program summaryTitle of program: TMOL Catalogue number: ADUF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Computers: Alpha ev6-21264 (700 MHz) and Pentium-IV. Operating systems: Digital UNIX V5.0 and Linux (Red Hat 8.0). Programming language: FORTRAN-90/95 (Compaq True64 compiler, and Intel Fortran Compiler 7.0 for Linux). High-speed storage required for the test run: minimum 64 Mbytes, it can grow to more depending on the system considered. Disk storage required: None. No. of bits in a word: 64 and 32. No. of lines in distributed program, including test data etc.: 5404 No. of bytes in distributed program, including test data etc.: 59 856 Distribution format: tar.gz Nature of problem: We describe the FORTRAN-90 program TMOL (v1.1) for the computation of non-diagonal scattering t-matrices for molecules or any other poly-atomic sub-unit of surface structures. These matrices can be used in an standard Low-Energy Electron Diffraction program, such as LEED90 or CLEED. Method of solution: A general non-diagonal t-matrix is assumed for the atoms or more general scatterers forming the molecule. The molecular t-matrix is solved adding the possible intramolecular multiple scattering events using Green's propagator formalism. The resulting t-matrix is referred to the mass centre of the molecule and can be easily translated with these propagators and rotated applying Wigner matrices. Typical running time: Calculating the t-matrix for a single energy takes a few seconds. Time depends on the maximum angular momentum quantum number, lmax, and the number of scatterers in the molecule, N. Running time scales as lmax6 and N3. References: [1] S. Andersson, J.B. Pendry, J. Phys. C: Solid St. Phys. 13 (1980) 3547. [2] A. Gonis, W.H. Butler, Multiple Scattering in Solids, Springer-Verlag, Berlin/New York, 2000.
Robustness analysis of uncertain dynamical neural networks with multiple time delays.
Senan, Sibel
2015-10-01
This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optical implementation of systolic array processing
NASA Technical Reports Server (NTRS)
Caulfield, H. J.; Rhodes, W. T.; Foster, M. J.; Horvitz, S.
1981-01-01
Algorithms for matrix vector multiplication are implemented using acousto-optic cells for multiplication and input data transfer and using charge coupled devices detector arrays for accumulation and output of the results. No two dimensional matrix mask is required; matrix changes are implemented electronically. A system for multiplying a 50 component nonnegative real vector by a 50 by 50 nonnegative real matrix is described. Modifications for bipolar real and complex valued processing are possible, as are extensions to matrix-matrix multiplication and multiplication of a vector by multiple matrices.
Solar system applications of Mie theory and of radiative transfer of polarized light
NASA Technical Reports Server (NTRS)
Whitehill, L. P.
1972-01-01
A theory of the multiple scattering of polarized light is discussed using the doubling method of van de Hulst. The concept of the Stokes parameters is derived and used to develop the form of the scattering phase matrix of a single particle. The diffuse reflection and transmission matrices of a single scattering plane parallel atmosphere are expressed as a function of the phase matrix, and the symmetry properties of these matrices are examined. Four matrices are required to describe scattering and transmission. The scattering matrix that results from the addition of two identical layers is derived. Using the doubling method, the scattering and transmission matrices of layers of arbitrary optical thickness can be derived. The doubling equations are then rewritten in terms of their Fourier components. Computation time is reduced since each Fourier component doubles independently. Computation time is also reduced through the use of symmetry properties.
VX fate on common matrices: evaporation versus degradation.
Columbus, Ishay; Waysbort, Daniel; Marcovitch, Itzhak; Yehezkel, Lea; Mizrahi, Dana M
2012-04-03
A study of the volatilization rate of the nerve agent VX (O-ethyl S-2-(N,N-diisopropylamino)ethyl methylphosphonothiolate) from various urban matrices in a specially designed climatic chamber (model system) is described. The performance of the model system combined with the analytical procedure produced profiles of vapor concentration obtained from samples of VX dispersed as small droplets on the surfaces of the matrices. The results indicated that the bitumen-containing surfaces such as asphalt blocks and bitumen sheets conserve VX and slow-release part of it over a long period of time. No complete mass balance could be obtained for these surfaces. Influence of environmental and experimental parameters as well as the efficacy of decontamination procedure were also measured. From smooth surface tiles a fast release of VX was measured and almost a complete mass balance was obtained, which characterizes the behavior of inert surfaces. Experiments carried out on concrete blocks showed fast decay of the concentration profile along with a very poor reconstruction of the initial quantity of VX, implying that this matrix degraded VX actively due to its multiple basic catalytic sites. To complement this study, solid-state NMR measurements were compared to add data concerning agent-fate within the matrices.
Hernández-Zavala, Araceli; Matoušek, Tomáš; Drobná, Zuzana; Paul, David S.; Walton, Felecia; Adair, Blakely M.; Jiří, Dědina; Thomas, David J.
2008-01-01
Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specific analysis of As species in biological matrices by hydride-generation atomic absorption spectrometry (HG-AAS), using cryotrapping (CT) for preconcentration and separation of arsines. To improve performance and detection limits of the method, HG and CT steps are automated and a conventional flame-in-tube atomizer replaced with a recently developed multiple microflame quartz tube atomizer (multiatomizer). In this system, arsines from AsIII-species are generated in a mixture of Tris-HCl (pH 6) and sodium borohydride. For generation of arsines from both AsIII- and AsV-species, samples are pretreated with L-cysteine. Under these conditions, dimethylthioarsinic acid, a newly described metabolite of iAs, does not interfere significantly with detection and quantification of methylated trivalent arsenicals. Analytical performance of the automated HG-CT-AAS was characterized by analyses of cultured cells and mouse tissues that contained mono- and dimethylated metabolites of iAs. The capacity to detect methylated AsIII- and AsV-species was verified, using an in vitro methylation system containing recombinant rat arsenic (+3 oxidation state) methyltransferase and cultured rat hepatocytes treated with iAs. Compared with the previous HG-CT-AAS design, detection limits for iAs and its metabolites have improved significantly with the current system, ranging from 8 to 20 pg. Recoveries of As were between 78 and 117%. The precision of the method was better than 5% for all biological matrices examined. Thus, the automated HG-CT-AAS system provides an effective and sensitive tool for analysis of all major human metabolites of iAs in complex biological matrices. PMID:18677417
Internal electrolyte supply system for reliable transport throughout fuel cell stacks
Wright, Maynard K.; Downs, Robert E.; King, Robert B.
1988-01-01
An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.
Multiple image encryption scheme based on pixel exchange operation and vector decomposition
NASA Astrophysics Data System (ADS)
Xiong, Y.; Quan, C.; Tay, C. J.
2018-02-01
We propose a new multiple image encryption scheme based on a pixel exchange operation and a basic vector decomposition in Fourier domain. In this algorithm, original images are imported via a pixel exchange operator, from which scrambled images and pixel position matrices are obtained. Scrambled images encrypted into phase information are imported using the proposed algorithm and phase keys are obtained from the difference between scrambled images and synthesized vectors in a charge-coupled device (CCD) plane. The final synthesized vector is used as an input in a random phase encoding (DRPE) scheme. In the proposed encryption scheme, pixel position matrices and phase keys serve as additional private keys to enhance the security of the cryptosystem which is based on a 4-f system. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed encryption scheme.
NASA Astrophysics Data System (ADS)
Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.
2016-06-01
A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, E.L.
1986-01-01
This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less
Yang, Yang; DeGruttola, Victor
2016-01-01
Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients. PMID:22740584
Yang, Yang; DeGruttola, Victor
2012-06-22
Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients.
Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials
Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane
2014-01-01
In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293
This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...
Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens
NASA Technical Reports Server (NTRS)
Liu, H. K.; Liang, Y.-Z.
1984-01-01
A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.
NASA Astrophysics Data System (ADS)
Imamura, Seigo; Ono, Kenji; Yokokawa, Mitsuo
2016-07-01
Ensemble computing, which is an instance of capacity computing, is an effective computing scenario for exascale parallel supercomputers. In ensemble computing, there are multiple linear systems associated with a common coefficient matrix. We improve the performance of iterative solvers for multiple vectors by solving them at the same time, that is, by solving for the product of the matrices. We implemented several iterative methods and compared their performance. The maximum performance on Sparc VIIIfx was 7.6 times higher than that of a naïve implementation. Finally, to deal with the different convergence processes of linear systems, we introduced a control method to eliminate the calculation of already converged vectors.
NASA Astrophysics Data System (ADS)
Stoykov, S.; Atanassov, E.; Margenov, S.
2016-10-01
Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.
NASA Astrophysics Data System (ADS)
Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar
2016-08-01
In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.
Okimoto, Gordon; Zeinalzadeh, Ashkan; Wenska, Tom; Loomis, Michael; Nation, James B; Fabre, Tiphaine; Tiirikainen, Maarit; Hernandez, Brenda; Chan, Owen; Wong, Linda; Kwee, Sandi
2016-01-01
Technological advances enable the cost-effective acquisition of Multi-Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional data types obtained from a common set of bio-samples. The joint analysis of the data matrices associated with the different data types of a MMDS should provide a more focused view of the biology underlying complex diseases such as cancer that would not be apparent from the analysis of a single data type alone. As multi-modal data rapidly accumulate in research laboratories and public databases such as The Cancer Genome Atlas (TCGA), the translation of such data into clinically actionable knowledge has been slowed by the lack of computational tools capable of analyzing MMDSs. Here, we describe the Joint Analysis of Many Matrices by ITeration (JAMMIT) algorithm that jointly analyzes the data matrices of a MMDS using sparse matrix approximations of rank-1. The JAMMIT algorithm jointly approximates an arbitrary number of data matrices by rank-1 outer-products composed of "sparse" left-singular vectors (eigen-arrays) that are unique to each matrix and a right-singular vector (eigen-signal) that is common to all the matrices. The non-zero coefficients of the eigen-arrays identify small subsets of variables for each data type (i.e., signatures) that in aggregate, or individually, best explain a dominant eigen-signal defined on the columns of the data matrices. The approximation is specified by a single "sparsity" parameter that is selected based on false discovery rate estimated by permutation testing. Multiple signals of interest in a given MDDS are sequentially detected and modeled by iterating JAMMIT on "residual" data matrices that result from a given sparse approximation. We show that JAMMIT outperforms other joint analysis algorithms in the detection of multiple signatures embedded in simulated MDDS. On real multimodal data for ovarian and liver cancer we show that JAMMIT identified multi-modal signatures that were clinically informative and enriched for cancer-related biology. Sparse matrix approximations of rank-1 provide a simple yet effective means of jointly reducing multiple, big data types to a small subset of variables that characterize important clinical and/or biological attributes of the bio-samples from which the data were acquired.
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Grant, John
2018-03-01
We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
NASA Astrophysics Data System (ADS)
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Visualization of newt aragonitic otoconial matrices using transmission electron microscopy
NASA Technical Reports Server (NTRS)
Steyger, P. S.; Wiederhold, M. L.
1995-01-01
Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. These protein matrices are thought to originate from the supporting or hair cells in the macula during development. Previous studies of mammalian calcitic, barrel-shaped otoconia revealed an organized protein matrix consisting of a thin peripheral layer, a well-defined organic core and a flocculent matrix inbetween. No studies have reported the microscopic organization of the aragonitic otoconial matrix, despite its protein characterization. Pote et al. (1993b) used densitometric methods and inferred that prismatic (aragonitic) otoconia have a peripheral protein distribution, compared to that described for the barrel-shaped, calcitic otoconia of birds, mammals, and the amphibian utricle. By using tannic acid as a negative stain, we observed three kinds of organic matrices in preparations of fixed, decalcified saccular otoconia from the adult newt: (1) fusiform shapes with a homogenous electron-dense matrix; (2) singular and multiple strands of matrix; and (3) more significantly, prismatic shapes outlined by a peripheral organic matrix. These prismatic shapes remain following removal of the gelatinous matrix, revealing an internal array of organic matter. We conclude that prismatic otoconia have a largely peripheral otoconial matrix, as inferred by densitometry.
CMV matrices in random matrix theory and integrable systems: a survey
NASA Astrophysics Data System (ADS)
Nenciu, Irina
2006-07-01
We present a survey of recent results concerning a remarkable class of unitary matrices, the CMV matrices. We are particularly interested in the role they play in the theory of random matrices and integrable systems. Throughout the paper we also emphasize the analogies and connections to Jacobi matrices.
Hassanzadeh, Iman; Tabatabaei, Mohammad
2017-03-28
In this paper, controllability and observability matrices for pseudo upper or lower triangular multi-order fractional systems are derived. It is demonstrated that these systems are controllable and observable if and only if their controllability and observability matrices are full rank. In other words, the rank of these matrices should be equal to the inner dimension of their corresponding state space realizations. To reduce the computational complexities, these matrices are converted to simplified matrices with smaller dimensions. Numerical examples are provided to show the usefulness of the mentioned matrices for controllability and observability analysis of this case of multi-order fractional systems. These examples clarify that the duality concept is not necessarily true for these special systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Navigation analysis for Viking 1979, option B
NASA Technical Reports Server (NTRS)
Mitchell, P. H.
1971-01-01
A parametric study performed for 48 trans-Mars reference missions in support of the Viking program is reported. The launch dates cover several months in the year 1979, and each launch date has multiple arrival dates in 1980. A plot of launch versus arrival dates with case numbers designated for reference purposes is included. The analysis consists of the computation of statistical covariance matrices based on certain assumptions about the ground-based tracking systems. The error model statistics are listed in tables. Tracking systems were assumed at three sites: Goldstone, California; Canberra, Australia; and Madrid, Spain. The tracking data consisted of range and Doppler measurements taken during the tracking intervals starting at E-30(d) and ending at E-10(d) for the control data and ending at E-18(h) for the knowledge data. The control and knowledge covariance matrices were delivered to the Planetary Mission Analysis Branch for inputs into a delta V dispersion analysis.
Ureasil-polyether hybrid film-forming materials.
Souza, L K; Bruno, C H; Lopes, L; Pulcinelli, S H; Santilli, C V; Chiavacci, L A
2013-01-01
The objectives of this work were to study the suitability and highlight the advantages of the use of cross-linked ureasil-polyether hybrid matrices as film-forming systems. The results revealed that ureasil-polyethers are excellent film-forming systems due to specific properties, such as their biocompatibility, their cosmetic attractiveness for being able to form thin and transparent films, their short drying time to form films and their excellent bioadhesion compared to the commercial products known as strong adhesives. Rheological measurements have demonstrated the ability of these hybrid matrices to form a film in only a few seconds and Water Vapor Transmitting Rate (WVTR) showed adequate semi-occlusive properties suggesting that these films could be used as skin and wound protectors. Both the high skin bioadhesion and non-cytotoxic character seems to be improved by the presence of multiple amine groups in the hybrid molecules. Copyright © 2012 Elsevier B.V. All rights reserved.
Georgescu, Ionuţ; Mandelshtam, Vladimir A
2012-10-14
The theory of self-consistent phonons (SCP) was originally developed to address the anharmonic effects in condensed matter systems. The method seeks a harmonic, temperature-dependent Hamiltonian that provides the "best fit" for the physical Hamiltonian, the "best fit" being defined as the one that optimizes the Helmholtz free energy at a fixed temperature. The present developments provide a scalable O(N) unified framework that accounts for anharmonic effects in a many-body system, when it is probed by either thermal (ℏ → 0) or quantum fluctuations (T → 0). In these important limits, the solution of the nonlinear SCP equations can be reached in a manner that requires only the multiplication of 3N × 3N matrices, with no need of diagonalization. For short range potentials, such as Lennard-Jones, the Hessian, and other related matrices are highly sparse, so that the scaling of the matrix multiplications can be reduced from O(N(3)) to ~O(N). We investigate the role of quantum effects by continuously varying the de-Boer quantum delocalization parameter Λ and report the N-Λ (T = 0), and also the classical N-T (Λ = 0) phase diagrams for sizes up to N ~ 10(4). Our results demonstrate that the harmonic approximation becomes inadequate already for such weakly quantum systems as neon clusters, or for classical systems much below the melting temperatures.
Computing the Density Matrix in Electronic Structure Theory on Graphics Processing Units.
Cawkwell, M J; Sanville, E J; Mniszewski, S M; Niklasson, Anders M N
2012-11-13
The self-consistent solution of a Schrödinger-like equation for the density matrix is a critical and computationally demanding step in quantum-based models of interatomic bonding. This step was tackled historically via the diagonalization of the Hamiltonian. We have investigated the performance and accuracy of the second-order spectral projection (SP2) algorithm for the computation of the density matrix via a recursive expansion of the Fermi operator in a series of generalized matrix-matrix multiplications. We demonstrate that owing to its simplicity, the SP2 algorithm [Niklasson, A. M. N. Phys. Rev. B2002, 66, 155115] is exceptionally well suited to implementation on graphics processing units (GPUs). The performance in double and single precision arithmetic of a hybrid GPU/central processing unit (CPU) and full GPU implementation of the SP2 algorithm exceed those of a CPU-only implementation of the SP2 algorithm and traditional matrix diagonalization when the dimensions of the matrices exceed about 2000 × 2000. Padding schemes for arrays allocated in the GPU memory that optimize the performance of the CUBLAS implementations of the level 3 BLAS DGEMM and SGEMM subroutines for generalized matrix-matrix multiplications are described in detail. The analysis of the relative performance of the hybrid CPU/GPU and full GPU implementations indicate that the transfer of arrays between the GPU and CPU constitutes only a small fraction of the total computation time. The errors measured in the self-consistent density matrices computed using the SP2 algorithm are generally smaller than those measured in matrices computed via diagonalization. Furthermore, the errors in the density matrices computed using the SP2 algorithm do not exhibit any dependence of system size, whereas the errors increase linearly with the number of orbitals when diagonalization is employed.
Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems
Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...
2012-01-01
Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less
Communication Optimal Parallel Multiplication of Sparse Random Matrices
2013-02-21
Definition 2.1), and (2) the algorithm is sparsity- independent, where the computation is statically partitioned to processors independent of the sparsity...struc- ture of the input matrices (see Definition 2.5). The second assumption applies to nearly all existing al- gorithms for general sparse matrix-matrix...where A and B are n× n ER(d) matrices: Definition 2.1 An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with parameters n and d/n. That
NASA Astrophysics Data System (ADS)
Li, Dafa
2018-06-01
We construct ℓ -spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the ℓ -spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the ℓ -spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the ℓ -spin-flipping matrices. The unitary congruence implies the invariance of singular values of the ℓ -spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the ℓ -spin-flipping matrices. Furthermore, we show that the invariance of singular values of the ℓ -spin-flipping matrices Ω 1^{(n)} implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.
Robust stability of linear systems: Some computational considerations
NASA Technical Reports Server (NTRS)
Laub, A. J.
1979-01-01
The cases of both additive and multiplicative perturbations were discussed and a number of relationships between the two cases were given. A number of computational aspects of the theory were also discussed, including a proposed new method for evaluating general transfer or frequency response matrices. The new method is numerically stable and efficient, requiring only operations to update for new values of the frequency parameter.
Fujihashi, Yuta; Wang, Lu; Zhao, Yang
2017-12-21
Recent advances in quantum optics allow for exploration of boson dynamics in dissipative many-body systems. However, the traditional descriptions of quantum dissipation using reduced density matrices are unable to capture explicit information of bath dynamics. In this work, efficient evaluation of boson dynamics is demonstrated by combining the multiple Davydov Ansatz with finite-temperature time-dependent variation, going beyond what state-of-the-art density matrix approaches are capable to offer for coupled electron-boson systems. To this end, applications are made to excitation energy transfer in photosynthetic systems, singlet fission in organic thin films, and circuit quantum electrodynamics in superconducting devices. Thanks to the multiple Davydov Ansatz, our analysis of boson dynamics leads to clear revelation of boson modes strongly coupled to electronic states, as well as in-depth description of polaron creation and destruction in the presence of thermal fluctuations.
NASA Technical Reports Server (NTRS)
Milner, E. J.; Krosel, S. M.
1977-01-01
Techniques are presented for determining the elements of the A, B, C, and D state variable matrices for systems simulated on an EAI Pacer 100 hybrid computer. An automated procedure systematically generates disturbance data necessary to linearize the simulation model and stores these data on a floppy disk. A separate digital program verifies this data, calculates the elements of the system matrices, and prints these matrices appropriately labeled. The partial derivatives forming the elements of the state variable matrices are approximated by finite difference calculations.
Ando, S; Sekine, S; Mita, M; Katsuo, S
1989-12-15
An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.
Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming
ERIC Educational Resources Information Center
Gurski, Katharine F.
2009-01-01
We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv
2018-02-01
New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.
Coan, Heather B.; Youker, Robert T.
2017-01-01
Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information. PMID:28674656
Reductions in finite-dimensional integrable systems and special points of classical r-matrices
NASA Astrophysics Data System (ADS)
Skrypnyk, T.
2016-12-01
For a given 𝔤 ⊗ 𝔤-valued non-skew-symmetric non-dynamical classical r-matrices r(u, v) with spectral parameters, we construct the general form of 𝔤-valued Lax matrices of finite-dimensional integrable systems satisfying linear r-matrix algebra. We show that the reduction in the corresponding finite-dimensional integrable systems is connected with "the special points" of the classical r-matrices in which they become degenerated. We also propose a systematic way of the construction of additional integrals of the Lax-integrable systems associated with the symmetries of the corresponding r-matrices. We consider examples of the Lax matrices and integrable systems that are obtained in the framework of the general scheme. Among them there are such physically important systems as generalized Gaudin systems in an external magnetic field, ultimate integrable generalization of Toda-type chains (including "modified" or "deformed" Toda chains), generalized integrable Jaynes-Cummings-Dicke models, integrable boson models generalizing Bose-Hubbard dimer models, etc.
Taylor, Sandra L; Ruhaak, L Renee; Kelly, Karen; Weiss, Robert H; Kim, Kyoungmi
2017-03-01
With expanded access to, and decreased costs of, mass spectrometry, investigators are collecting and analyzing multiple biological matrices from the same subject such as serum, plasma, tissue and urine to enhance biomarker discoveries, understanding of disease processes and identification of therapeutic targets. Commonly, each biological matrix is analyzed separately, but multivariate methods such as MANOVAs that combine information from multiple biological matrices are potentially more powerful. However, mass spectrometric data typically contain large amounts of missing values, and imputation is often used to create complete data sets for analysis. The effects of imputation on multiple biological matrix analyses have not been studied. We investigated the effects of seven imputation methods (half minimum substitution, mean substitution, k-nearest neighbors, local least squares regression, Bayesian principal components analysis, singular value decomposition and random forest), on the within-subject correlation of compounds between biological matrices and its consequences on MANOVA results. Through analysis of three real omics data sets and simulation studies, we found the amount of missing data and imputation method to substantially change the between-matrix correlation structure. The magnitude of the correlations was generally reduced in imputed data sets, and this effect increased with the amount of missing data. Significant results from MANOVA testing also were substantially affected. In particular, the number of false positives increased with the level of missing data for all imputation methods. No one imputation method was universally the best, but the simple substitution methods (Half Minimum and Mean) consistently performed poorly. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-01-17
This library is an implementation of the Sparse Approximate Matrix Multiplication (SpAMM) algorithm introduced. It provides a matrix data type, and an approximate matrix product, which exhibits linear scaling computational complexity for matrices with decay. The product error and the performance of the multiply can be tuned by choosing an appropriate tolerance. The library can be compiled for serial execution or parallel execution on shared memory systems with an OpenMP capable compiler
Validating Alternative Modes of Scoring for Coloured Progressive Matrices.
ERIC Educational Resources Information Center
Razel, Micha; Eylon, Bat-Sheva
Conventional scoring of the Coloured Progressive Matrices (CPM) was compared with three methods of multiple weight scoring. The methods include: (1) theoretical weighting in which the weights were based on a theory of cognitive processing; (2) judged weighting in which the weights were given by a group of nine adult expert judges; and (3)…
Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.
Chen, Ziting; Li, Zhijun; Chen, C L Philip
2017-06-01
An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.
Limited Rationality and Its Quantification Through the Interval Number Judgments With Permutations.
Liu, Fang; Pedrycz, Witold; Zhang, Wei-Guo
2017-12-01
The relative importance of alternatives expressed in terms of interval numbers in the fuzzy analytic hierarchy process aims to capture the uncertainty experienced by decision makers (DMs) when making a series of comparisons. Under the assumption of full rationality, the judgements of DMs in the typical analytic hierarchy process could be consistent. However, since the uncertainty in articulating the opinions of DMs is unavoidable, the interval number judgements are associated with the limited rationality. In this paper, we investigate the concept of limited rationality by introducing interval multiplicative reciprocal comparison matrices. By analyzing the consistency of interval multiplicative reciprocal comparison matrices, it is observed that the interval number judgements are inconsistent. By considering the permutations of alternatives, the concepts of approximation-consistency and acceptable approximation-consistency of interval multiplicative reciprocal comparison matrices are proposed. The exchange method is designed to generate all the permutations. A novel method of determining the interval weight vector is proposed under the consideration of randomness in comparing alternatives, and a vector of interval weights is determined. A new algorithm of solving decision making problems with interval multiplicative reciprocal preference relations is provided. Two numerical examples are carried out to illustrate the proposed approach and offer a comparison with the methods available in the literature.
The determination of the tribe of family members in Luhak Limopuluh Koto, West Sumatera Indonesia
NASA Astrophysics Data System (ADS)
Bahri, S.; Abbas, A.; Bakar, N. N.
2018-01-01
In this paper, some mathematical models that state the tribe of the family members in Nagari Luhak Limopuluh Koto West Sumatera, Indonesia were built. The models were constructed by using the marriage rule and the ethnic data of Minangkabau community which embrace the matrilineal system. The marriage rule prohibits the same inter-tribal marriage while the matrilineal system causes the mother, child, and sibling tribes to be equal. Therefore, the matrices formed by marriage rule, mother-son tribal relation, someone-his/her sibling tribal relation, and the transpose of the matrices, are used in matrix multiplication to obtain the tribal models. The models are consecutively A, AC’, (AC’)B, ((AC’)B)W’, ((AC’)B)C, ((AC’)B)W, ((AC’)W’ for Denai, Denai’s mother, the sister of Denai’s mother, the brother of Denai’s mother, the husband of Denai’s mother’s sister, the son of Denai’s mother’s sister, the wife of Denai’s mother’s brother, and the Denai’s father models.
NASA Astrophysics Data System (ADS)
Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak
2016-04-01
Gills are one of the most primitive gas, solute exchange organs available in fishes. They facilitate exchange of gases, solutes and ions with a surrounding water medium through their functional unit called secondary lamella. These lamellae through their extraordinary morphometric features and peculiar arrangement in gills, achieve remarkable mass transport properties. Therefore, in the current study, modeling and simulation of convection-diffusion transport through a two dimensional model of secondary lamella and theoretical analysis of morphometric features of fish gills were carried out. Such study suggested an evolutionary conservation of parametric ratios across fishes of different weights. Further, we have also fabricated a thin microvascularised PDMS matrices mimicking secondary lamella by use of micro-technologies like electrospinning. In addition, we have also demonstrated the fluid flow by capillary action through these thin microvascularised PDMS matrices. Eventually, we also illustrated the application of these thin microvascularied PDMS matrices in solute exchange process under capillary flow conditions. Thus, our study suggested that fish gills have optimized parameteric ratios, at multiple length scale, throughout an evolution to achieve an organ with enhanced mass transport capabilities. Thus, these defined parametric ratios could be exploited to design and develop efficient, scaled-up gas/solute exchange microdevices. We also proposed an inexpensive and scalable method of fabrication of thin microvascularised polymer matrices and demonstrated its solute exchange capabilities under capillary flow conditions. Thus, mimicking the microstructures of secondary lamella will enable fabrication of microvascularised thin polymer systems through micro manufacturing technologies for potential applications in filtration, self-healing/cooling materials and bioengineering.
Aguilar, I; Misztal, I; Legarra, A; Tsuruta, S
2011-12-01
Genomic evaluations can be calculated using a unified procedure that combines phenotypic, pedigree and genomic information. Implementation of such a procedure requires the inverse of the relationship matrix based on pedigree and genomic relationships. The objective of this study was to investigate efficient computing options to create relationship matrices based on genomic markers and pedigree information as well as their inverses. SNP maker information was simulated for a panel of 40 K SNPs, with the number of genotyped animals up to 30 000. Matrix multiplication in the computation of the genomic relationship was by a simple 'do' loop, by two optimized versions of the loop, and by a specific matrix multiplication subroutine. Inversion was by a generalized inverse algorithm and by a LAPACK subroutine. With the most efficient choices and parallel processing, creation of matrices for 30 000 animals would take a few hours. Matrices required to implement a unified approach can be computed efficiently. Optimizations can be either by modifications of existing code or by the use of efficient automatic optimizations provided by open source or third-party libraries. © 2011 Blackwell Verlag GmbH.
Focal points and principal solutions of linear Hamiltonian systems revisited
NASA Astrophysics Data System (ADS)
Šepitka, Peter; Šimon Hilscher, Roman
2018-05-01
In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.
A hypothetical learning trajectory for conceptualizing matrices as linear transformations
NASA Astrophysics Data System (ADS)
Andrews-Larson, Christine; Wawro, Megan; Zandieh, Michelle
2017-08-01
In this paper, we present a hypothetical learning trajectory (HLT) aimed at supporting students in developing flexible ways of reasoning about matrices as linear transformations in the context of introductory linear algebra. In our HLT, we highlight the integral role of the instructor in this development. Our HLT is based on the 'Italicizing N' task sequence, in which students work to generate, compose, and invert matrices that correspond to geometric transformations specified within the problem context. In particular, we describe the ways in which the students develop local transformation views of matrix multiplication (focused on individual mappings of input vectors to output vectors) and extend these local views to more global views in which matrices are conceptualized in terms of how they transform a space in a coordinated way.
Time series, correlation matrices and random matrix models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinayak; Seligman, Thomas H.
2014-01-08
In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series.more » By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.« less
Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V
2017-06-01
Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas. Immunohistochemical analysis for BerEP4, EMA, and β-catenin can be helpful in limited biopsy specimens. From a molecular biological prospective, BCC and matrical components appear to share some of the gene mutations but have differences in others, but this observation must be validated in a large series.
NASA Technical Reports Server (NTRS)
Wade, T. O.
1984-01-01
Reduction techniques for traffic matrices are explored in some detail. These matrices arise in satellite switched time-division multiple access (SS/TDMA) techniques whereby switching of uplink and downlink beams is required to facilitate interconnectivity of beam zones. A traffic matrix is given to represent that traffic to be transmitted from n uplink beams to n downlink beams within a TDMA frame typically of 1 ms duration. The frame is divided into segments of time and during each segment a portion of the traffic is represented by a switching mode. This time slot assignment is characterized by a mode matrix in which there is not more than a single non-zero entry on each line (row or column) of the matrix. Investigation is confined to decomposition of an n x n traffic matrix by mode matrices with a requirement that the decomposition be 100 percent efficient or, equivalently, that the line(s) in the original traffic matrix whose sum is maximal (called critical line(s)) remain maximal as mode matrices are subtracted throughout the decomposition process. A method of decomposition of an n x n traffic matrix by mode matrices results in a number of steps that is bounded by n(2) - 2n + 2. It is shown that this upper bound exists for an n x n matrix wherein all the lines are maximal (called a quasi doubly stochastic (QDS) matrix) or for an n x n matrix that is completely arbitrary. That is, the fact that no method can exist with a lower upper bound is shown for both QDS and arbitrary matrices, in an elementary and straightforward manner.
Exploring High-D Spaces with Multiform Matrices and Small Multiples
MacEachren, Alan; Dai, Xiping; Hardisty, Frank; Guo, Diansheng; Lengerich, Gene
2011-01-01
We introduce an approach to visual analysis of multivariate data that integrates several methods from information visualization, exploratory data analysis (EDA), and geovisualization. The approach leverages the component-based architecture implemented in GeoVISTA Studio to construct a flexible, multiview, tightly (but generically) coordinated, EDA toolkit. This toolkit builds upon traditional ideas behind both small multiples and scatterplot matrices in three fundamental ways. First, we develop a general, MultiForm, Bivariate Matrix and a complementary MultiForm, Bivariate Small Multiple plot in which different bivariate representation forms can be used in combination. We demonstrate the flexibility of this approach with matrices and small multiples that depict multivariate data through combinations of: scatterplots, bivariate maps, and space-filling displays. Second, we apply a measure of conditional entropy to (a) identify variables from a high-dimensional data set that are likely to display interesting relationships and (b) generate a default order of these variables in the matrix or small multiple display. Third, we add conditioning, a kind of dynamic query/filtering in which supplementary (undisplayed) variables are used to constrain the view onto variables that are displayed. Conditioning allows the effects of one or more well understood variables to be removed from the analysis, making relationships among remaining variables easier to explore. We illustrate the individual and combined functionality enabled by this approach through application to analysis of cancer diagnosis and mortality data and their associated covariates and risk factors. PMID:21947129
1979-07-01
nel for low-frequency filters with Lg92/Lgl = 4.4 for S/N1 = 1. 71. CASE 1, S/NF= 1, S/I1 1 M=5 M1=10 M1=20 C! a ip a a a a 00 2 3Ma a0 0 M M 3...Gantmacher, The Theory of Matrices, VoZ . 1, Chelsea Publishing Co., New York, NJ.Y., 1959. 163
Zhang, Limin; Ye, Yangfang; An, Yanpeng; Tian, Yuan; Wang, Yulan; Tang, Huiru
2011-02-04
Exposure to aflatoxins causes liver fibrosis and hepatocellular carcinoma posing a significant health risk for human populations and livestock. To understand the mammalian systems responses to aflatoxin-B1 (AFB1) exposure, we analyzed the AFB1-induced metabonomic changes in multiple biological matrices (plasma, urine, and liver) of rats using (1)H NMR spectroscopy together with clinical biochemistry and histopathologic assessments. We found that AFB1 exposure caused significant elevation of glucose, amino acids, and choline metabolites (choline, phosphocholine, and glycerophosphocholine) in plasma but reduction of plasma lipids. AFB1 also induced elevation of liver lipids, amino acids (tyrosine, histidine, phenylalanine, leucine, isoleucine, and valine), choline, and nucleic acid metabolites (inosine, adenosine, and uridine) together with reduction of hepatic glycogen and glucose. AFB1 further caused decreases in urinary TCA cycle intermediates (2-oxoglutarate and citrate) and elevation of gut microbiota cometabolites (phenylacetylglycine and hippurate). These indicated that AFB1 exposure caused hepatic steatosis accompanied with widespread metabolic changes including lipid and cell membrane metabolisms, protein biosynthesis, glycolysis, TCA cycle, and gut microbiota functions. This implied that AFB1 exposure probably caused oxidative-stress-mediated impairments of mitochondria functions. These findings provide an overview of biochemical consequences of AFB1 exposure and comprehensive insights into the metabolic aspects of AFB1-induced hepatotoxicity in rats.
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices
NASA Astrophysics Data System (ADS)
Passemier, Damien; McKay, Matthew R.; Chen, Yang
2015-07-01
Using the Coulomb Fluid method, this paper derives central limit theorems (CLTs) for linear spectral statistics of three "spiked" Hermitian random matrix ensembles. These include Johnstone's spiked model (i.e., central Wishart with spiked correlation), non-central Wishart with rank-one non-centrality, and a related class of non-central matrices. For a generic linear statistic, we derive simple and explicit CLT expressions as the matrix dimensions grow large. For all three ensembles under consideration, we find that the primary effect of the spike is to introduce an correction term to the asymptotic mean of the linear spectral statistic, which we characterize with simple formulas. The utility of our proposed framework is demonstrated through application to three different linear statistics problems: the classical likelihood ratio test for a population covariance, the capacity analysis of multi-antenna wireless communication systems with a line-of-sight transmission path, and a classical multiple sample significance testing problem.
Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks
NASA Technical Reports Server (NTRS)
Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza
2011-01-01
Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.
Visualizing Matrix Multiplication
ERIC Educational Resources Information Center
Daugulis, Peteris; Sondore, Anita
2018-01-01
Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…
Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S
2014-06-10
We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.
Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System
Hong, Won-Taek; Jung, Young-Seok; Kang, Seonghun; Lee, Jong-Sub
2016-01-01
The objective of this study is to estimate multiple-cycles of the soil-water characteristic curve (SWCC) using an innovative volumetric pressure plate extractor (VPPE), which is incorporated with a membrane and time domain reflectometry (TDR). The pressure cell includes the membrane to reduce the experimental time and the TDR probe to automatically estimate the volumetric water content. For the estimation of SWCC using the VPPE system, four specimens with different grain size and void ratio are prepared. The volumetric water contents of the specimens according to the matric suction are measured by the burette system and are estimated in the TDR system during five cycles of SWCC tests. The volumetric water contents estimated by the TDR system are almost identical to those determined by the burette system. The experimental time significantly decreases with the new VPPE. The hysteresis in the SWCC is largest in the first cycle and is nearly identical after 1.5 cycles. As the initial void ratio decreases, the air entry value increases. This study suggests that the new VPPE may effectively estimate multiple-cycles of the SWCC of unsaturated soils. PMID:28774139
Closed-loop multiple-scattering imaging with sparse seismic measurements
NASA Astrophysics Data System (ADS)
Berkhout, A. J. Guus
2018-03-01
In the theoretical situation of noise-free, complete data volumes (`perfect data'), seismic data matrices are fully filled and multiple-scattering operators have the minimum-phase property. Perfect data allow direct inversion methods to be successful in removing surface and internal multiple scattering. Moreover, under these perfect data conditions direct source wavefields realize complete illumination (no irrecoverable shadow zones) and, therefore, primary reflections (first-order response) can provide us with the complete seismic image. However, in practice seismic measurements always contain noise and we never have complete data volumes at our disposal. We actually deal with sparse data matrices that cannot be directly inverted. The message of this paper is that in practice multiple scattering (including source ghosting) must not be removed but must be utilized. It is explained that in the real world we badly need multiple scattering to fill the illumination gaps in the subsurface. It is also explained that the proposed multiple-scattering imaging algorithm gives us the opportunity to decompose both the image and the wavefields into order-based constituents, making the multiple scattering extension easy to apply. Last but not least, the algorithm allows us to use the minimum-phase property to validate and improve images in an objective way.
NASA Astrophysics Data System (ADS)
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Hendrickson; T.G. Kolda
1998-09-01
A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.
Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI
NASA Astrophysics Data System (ADS)
Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He
2013-09-01
In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.
Video based object representation and classification using multiple covariance matrices.
Zhang, Yurong; Liu, Quan
2017-01-01
Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.
Soft Somatosensitive Actuators via Embedded 3D Printing.
Truby, Ryan L; Wehner, Michael; Grosskopf, Abigail K; Vogt, Daniel M; Uzel, Sebastien G M; Wood, Robert J; Lewis, Jennifer A
2018-04-01
Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long-term stability and hysteresis-free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed-loop feedback control of soft robots, machines, and haptic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mathematical foundations of the GraphBLAS
Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...
2016-12-01
The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less
Binary encoding of multiplexed images in mixed noise.
Lalush, David S
2008-09-01
Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.
Intrinsic character of Stokes matrices
NASA Astrophysics Data System (ADS)
Gagnon, Jean-François; Rousseau, Christiane
2017-02-01
Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.
An order (n) algorithm for the dynamics simulation of robotic systems
NASA Technical Reports Server (NTRS)
Chun, H. M.; Turner, J. D.; Frisch, Harold P.
1989-01-01
The formulation of an Order (n) algorithm for DISCOS (Dynamics Interaction Simulation of Controls and Structures), which is an industry-standard software package for simulation and analysis of flexible multibody systems is presented. For systems involving many bodies, the new Order (n) version of DISCOS is much faster than the current version. Results of the experimental validation of the dynamics software are also presented. The experiment is carried out on a seven-joint robot arm at NASA's Goddard Space Flight Center. The algorithm used in the current version of DISCOS requires the inverse of a matrix whose dimension is equal to the number of constraints in the system. Generally, the number of constraints in a system is roughly proportional to the number of bodies in the system, and matrix inversion requires O(p exp 3) operations, where p is the dimension of the matrix. The current version of DISCOS is therefore considered an Order (n exp 3) algorithm. In contrast, the Order (n) algorithm requires inversion of matrices which are small, and the number of matrices to be inverted increases only linearly with the number of bodies. The newly-developed Order (n) DISCOS is currently capable of handling chain and tree topologies as well as multiple closed loops. Continuing development will extend the capability of the software to deal with typical robotics applications such as put-and-place, multi-arm hand-off and surface sliding.
USDA-ARS?s Scientific Manuscript database
Transformations to multiple trait mixed model equations (MME) which are intended to improve computational efficiency in best linear unbiased prediction (BLUP) and restricted maximum likelihood (REML) are described. It is shown that traits that are expected or estimated to have zero residual variance...
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
Delahaie, B; Charmantier, A; Chantepie, S; Garant, D; Porlier, M; Teplitsky, C
2017-08-01
The genetic variance-covariance matrix (G-matrix) summarizes the genetic architecture of multiple traits. It has a central role in the understanding of phenotypic divergence and the quantification of the evolutionary potential of populations. Laboratory experiments have shown that G-matrices can vary rapidly under divergent selective pressures. However, because of the demanding nature of G-matrix estimation and comparison in wild populations, the extent of its spatial variability remains largely unknown. In this study, we investigate spatial variation in G-matrices for morphological and life-history traits using long-term data sets from one continental and three island populations of blue tit (Cyanistes caeruleus) that have experienced contrasting population history and selective environment. We found no evidence for differences in G-matrices among populations. Interestingly, the phenotypic variance-covariance matrices (P) were divergent across populations, suggesting that using P as a substitute for G may be inadequate. These analyses also provide the first evidence in wild populations for additive genetic variation in the incubation period (that is, the period between last egg laid and hatching) in all four populations. Altogether, our results suggest that G-matrices may be stable across populations inhabiting contrasted environments, therefore challenging the results of previous simulation studies and laboratory experiments.
Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier
2011-10-01
Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
Modeling the Impact of Alternative Immunization Strategies: Using Matrices as Memory Lanes
Alonso, Wladimir J.; Rabaa, Maia A.; Giglio, Ricardo; Miller, Mark A.; Schuck-Paim, Cynthia
2015-01-01
Existing modeling approaches are divided between a focus on the constitutive (micro) elements of systems or on higher (macro) organization levels. Micro-level models enable consideration of individual histories and interactions, but can be unstable and subject to cumulative errors. Macro-level models focus on average population properties, but may hide relevant heterogeneity at the micro-scale. We present a framework that integrates both approaches through the use of temporally structured matrices that can take large numbers of variables into account. Matrices are composed of several bidimensional (time×age) grids, each representing a state (e.g. physiological, immunological, socio-demographic). Time and age are primary indices linking grids. These matrices preserve the entire history of all population strata and enable the use of historical events, parameters and states dynamically in the modeling process. This framework is applicable across fields, but particularly suitable to simulate the impact of alternative immunization policies. We demonstrate the framework by examining alternative strategies to accelerate measles elimination in 15 developing countries. The model recaptured long-endorsed policies in measles control, showing that where a single routine measles-containing vaccine is employed with low coverage, any improvement in coverage is more effective than a second dose. It also identified an opportunity to save thousands of lives in India at attractively low costs through the implementation of supplementary immunization campaigns. The flexibility of the approach presented enables estimating the effectiveness of different immunization policies in highly complex contexts involving multiple and historical influences from different hierarchical levels. PMID:26509976
Methods for Improving Information from ’Undesigned’ Human Factors Experiments.
Human factors engineering, Information processing, Regression analysis , Experimental design, Least squares method, Analysis of variance, Correlation techniques, Matrices(Mathematics), Multiple disciplines, Mathematical prediction
Ponnapalli, Sri Priya; Saunders, Michael A.; Van Loan, Charles F.; Alter, Orly
2011-01-01
The number of high-dimensional datasets recording multiple aspects of a single phenomenon is increasing in many areas of science, accompanied by a need for mathematical frameworks that can compare multiple large-scale matrices with different row dimensions. The only such framework to date, the generalized singular value decomposition (GSVD), is limited to two matrices. We mathematically define a higher-order GSVD (HO GSVD) for N≥2 matrices , each with full column rank. Each matrix is exactly factored as Di = UiΣiVT, where V, identical in all factorizations, is obtained from the eigensystem SV = VΛ of the arithmetic mean S of all pairwise quotients of the matrices , i≠j. We prove that this decomposition extends to higher orders almost all of the mathematical properties of the GSVD. The matrix S is nondefective with V and Λ real. Its eigenvalues satisfy λk≥1. Equality holds if and only if the corresponding eigenvector vk is a right basis vector of equal significance in all matrices Di and Dj, that is σi,k/σj,k = 1 for all i and j, and the corresponding left basis vector ui,k is orthogonal to all other vectors in Ui for all i. The eigenvalues λk = 1, therefore, define the “common HO GSVD subspace.” We illustrate the HO GSVD with a comparison of genome-scale cell-cycle mRNA expression from S. pombe, S. cerevisiae and human. Unlike existing algorithms, a mapping among the genes of these disparate organisms is not required. We find that the approximately common HO GSVD subspace represents the cell-cycle mRNA expression oscillations, which are similar among the datasets. Simultaneous reconstruction in the common subspace, therefore, removes the experimental artifacts, which are dissimilar, from the datasets. In the simultaneous sequence-independent classification of the genes of the three organisms in this common subspace, genes of highly conserved sequences but significantly different cell-cycle peak times are correctly classified. PMID:22216090
Static calibration of the RSRA active-isolator rotor balance system
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
1987-01-01
The Rotor Systems Research Aircraft (RSRA) active-isolator system is designed to reduce rotor vibrations transmitted to the airframe and to simultaneously measure all six forces and moments generated by the rotor. These loads are measured by using a combination of load cells, strain gages, and hydropneumatic active isolators with built-in pressure gages. The first static calibration of the complete active-isolator rotor balance system was performed in l983 to verify its load-measurement capabilities. Analysis of the data included the use of multiple linear regressions to determine calibration matrices for different data sets and a hysteresis-removal algorithm to estimate in-flight measurement errors. Results showed that the active-isolator system can fulfill most performance predictions. The results also suggested several possible improvements to the system.
Fate of Engineered Nanoparticles: Implications in the ...
The increased flux of the engineered nanoparticles (ENPs) in consumer and commercial products has become a viable threat, particularly if their release affects the environment. The aim of this paper is to review the recent literature results pertaining to the underlying mechanisms initiating the transformations of ENPs for both, the biotic and abiotic processes. The transformation of ENPs is necessarily interrelated to multiple environmental aspects and many concepts overlap. Physicochemical, macromolecular, and biological pathways contribute to assessing the impact of the altered activities of ENPs on the surrounding environmental matrices. Transformations involving both organic and inorganic ligands are vital in soil and water systems. Energy-efficient biocatalytic pathways can easily facilitate biotransformation involving enzymatic reactions and biomolecules. The relationship between physicochemical and biological parameters triggers transformation, greatly affecting the bioavailability and aging of ENPs to various extents. Therefore, the interaction of ENPs in environmental matrices is significant in understanding the risk of potential exposure and/or uptake by biota. Submitted to Elsevier journal, Coordination Chemistry Reviews
Controlled growth factor release from synthetic extracellular matrices
NASA Astrophysics Data System (ADS)
Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.
2000-12-01
Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.
An efficient parallel-processing method for transposing large matrices in place.
Portnoff, M R
1999-01-01
We have developed an efficient algorithm for transposing large matrices in place. The algorithm is efficient because data are accessed either sequentially in blocks or randomly within blocks small enough to fit in cache, and because the same indexing calculations are shared among identical procedures operating on independent subsets of the data. This inherent parallelism makes the method well suited for a multiprocessor computing environment. The algorithm is easy to implement because the same two procedures are applied to the data in various groupings to carry out the complete transpose operation. Using only a single processor, we have demonstrated nearly an order of magnitude increase in speed over the previously published algorithm by Gate and Twigg for transposing a large rectangular matrix in place. With multiple processors operating in parallel, the processing speed increases almost linearly with the number of processors. A simplified version of the algorithm for square matrices is presented as well as an extension for matrices large enough to require virtual memory.
Boundary transfer matrices and boundary quantum KZ equations
NASA Astrophysics Data System (ADS)
Vlaar, Bart
2015-07-01
A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.
Sparse matrix-vector multiplication on network-on-chip
NASA Astrophysics Data System (ADS)
Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.
2010-12-01
In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.
Hydrogel membranes of PVAl/ clay by gamma radiation
NASA Astrophysics Data System (ADS)
de Oliveira, M. J. A.; Parra, D. F.; Amato, V. S.; Lugão, A. B.
2013-03-01
In the last decades several studies concerning the new methods for drug delivery system have been investigated. A new field known as "smart therapy" involves devices and drug delivery systems to detect, identify and treat the site affected by the disease, not interfering with the biological system. Cutaneous Leishmaniasis is an endemic disease that is characterized by the development of single or multiple localized lesions on exposed areas of skin and one coetaneous treatment could be a potential solution. The aim of this study was to obtain polymeric hydrogel matrices of poly(vinylalcohol)(PVAl) and chitosan with inorganic nanoparticles, which can release a drug according to the need of the treatment of injury caused by leishmania on the skin. The hydrogels matrices were obtained with PVAl/ chitosan and PVAl/ chitosan 0.5; 1.0 and 1.5% laponite RD clay, crosslinked by ionizing gamma radiation with dose of 25 kGy. The techniques used for characterization were swelling, gel fraction, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). After synthesis, the samples were immersed in distilled water and weighed in periods of time until 60 h for the swelling determination. The obtained results have indicated that the swelling of the membranes increases with clay concentration, in consequence of ionic groups present in the clay.
Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties
NASA Astrophysics Data System (ADS)
Karp, Jonathan; Torres-Herrera, Jonathan; TáVora, Marco; Santos, Lea
We study the static and dynamical properties of isolated spin 1/2 systems as prototypes of many-body quantum systems and compare the results to those of full random matrices from a Gaussian orthogonal ensemble. Full random matrices do not represent realistic systems, because they imply that all particles interact at the same time, as opposed to realistic Hamiltonians, which are sparse and have only few-body interactions. Nevertheless, with full random matrices we can derive analytical results that can be used as references and bounds for the corresponding properties of realistic systems. In particular, we show that the results for the Shannon information entropy are very similar to those for the von Neumann entanglement entropy, with the former being computationally less expensive. We also discuss the behavior of the survival probability of the initial state at different time scales and show that it contains more information about the system than the entropies. Support from the NSF Grant No. DMR-1147430.
FREQ: A computational package for multivariable system loop-shaping procedures
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Armstrong, Ernest S.
1989-01-01
Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.
Learning in the Machine: Random Backpropagation and the Deep Learning Channel.
Baldi, Pierre; Sadowski, Peter; Lu, Zhiqin
2018-07-01
Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural networks, where the transpose of the forward matrices are replaced by fixed random matrices in the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of using random matrices to communicate error information, and because it completely removes the taxing requirement of maintaining symmetric weights in a physical neural system. To better understand random backpropagation, we first connect it to the notions of local learning and learning channels. Through this connection, we derive several alternatives to RBP, including skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP) and analyze their computational complexity. We then study their behavior through simulations using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these variants work robustly, almost as well as backpropagation, and that multiplication by the derivatives of the activation functions is important. As a follow-up, we study also the low-end of the number of bits required to communicate error information over the learning channel. We then provide partial intuitive explanations for some of the remarkable properties of RBP and its variations. Finally, we prove several mathematical results, including the convergence to fixed points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders with decorrelated data, the long-term existence of solutions for linear systems with a single hidden layer and convergence in special cases, and the convergence to fixed points of non-linear chains, when the derivative of the activation functions is included.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai; ...
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.
McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
NASA Astrophysics Data System (ADS)
McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.
2017-11-01
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
High-efficiency wavefunction updates for large scale Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed
Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.
Lin, Psang Dain
2014-05-10
In a previous paper [Appl. Opt.52, 4151 (2013)], we presented the first- and second-order derivatives of a ray for a flat boundary surface to design prisms. In this paper, that scheme is extended to determine the Jacobian and Hessian matrices of a skew ray as it is reflected/refracted at a spherical boundary surface. The validity of the proposed approach as an analysis and design tool is demonstrated using an axis-symmetrical system for illustration purpose. It is found that these two matrices can provide the search direction used by existing gradient-based schemes to minimize the merit function during the optimization stage of the optical system design process. It is also possible to make the optical system designs more automatic, if the image defects can be extracted from the Jacobian and Hessian matrices of a skew ray.
Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.
Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi
2012-06-01
Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.
Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition
Ong, Frank; Lustig, Michael
2016-01-01
We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
CUGatesDensity—Quantum circuit analyser extended to density matrices
NASA Astrophysics Data System (ADS)
Loke, T.; Wang, J. B.
2013-12-01
CUGatesDensity is an extension of the original quantum circuit analyser CUGates (Loke and Wang, 2011) [7] to provide explicit support for the use of density matrices. The new package enables simulation of quantum circuits involving statistical ensemble of mixed quantum states. Such analysis is of vital importance in dealing with quantum decoherence, measurements, noise and error correction, and fault tolerant computation. Several examples involving mixed state quantum computation are presented to illustrate the use of this package. Catalogue identifier: AEPY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5368 No. of bytes in distributed program, including test data, etc.: 143994 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer installed with a copy of Mathematica 6.0 or higher. Operating system: Any system with a copy of Mathematica 6.0 or higher installed. Classification: 4.15. Nature of problem: To simulate arbitrarily complex quantum circuits comprised of single/multiple qubit and qudit quantum gates with mixed state registers. Solution method: A density matrix representation for mixed states and a state vector representation for pure states are used. The construct is based on an irreducible form of matrix decomposition, which allows a highly efficient implementation of general controlled gates with multiple conditionals. Running time: The examples provided in the notebook CUGatesDensity.nb take approximately 30 s to run on a laptop PC.
Mercury (Hg) is a Persistent Bioaccumulative Toxin. Currently, low-level mercury (Hg) and low-level multiple-metals analyses require separate methods. Due to the high costs of performing both types of analyses, research planners often have to choose one or the other. For examp...
[ital N]-string vertices in string field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordes, J.; Abdurrahman, A.; Anton, F.
1994-03-15
We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the comma'' representation of string field theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of [ital N] strings, for any arbitrary [ital N], is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.
NASA Astrophysics Data System (ADS)
Yang, Yan; Shao, Yunfei; Tang, Xiaowo
Based on mass related literature on enterprise network, the key influence factors are reduced to Trust, Control, Relationship and Interaction. Meanwhile, the specific contradiction matrices, judgment matrices and strategy collections based on TRIZ are constructed which make the connotation of contradiction matrices in TRIZ extended. Finally they are applied to the construction of the collaborative model on enterprise network based on Multi Agent System (MAS).
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
ERIC Educational Resources Information Center
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
Estimating soil matric potential in Owens Valley, California
Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.
1988-01-01
Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)
An Alternative Method to Gauss-Jordan Elimination: Minimizing Fraction Arithmetic
ERIC Educational Resources Information Center
Smith, Luke; Powell, Joan
2011-01-01
When solving systems of equations by using matrices, many teachers present a Gauss-Jordan elimination approach to row reducing matrices that can involve painfully tedious operations with fractions (which I will call the traditional method). In this essay, I present an alternative method to row reduce matrices that does not introduce additional…
Introduction to Matrix Algebra, Student's Text, Unit 23.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...
2016-10-27
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing
2017-12-28
Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.
A Mobile Automated Tomographic Gamma Scanning System - 13231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, J.M.; LeBlanc, P.J.; Nakazawa, D.
2013-07-01
Canberra Industries have recently designed and built a new automated Tomographic Gamma Scanning (TGS) system for mobile deployment. The TGS technique combines high-resolution gamma spectroscopy with low spatial resolution 3-dimensional image reconstruction to provide increased accuracy over traditional approaches for the assay of non-uniform source distributions in low-to medium-density, non-heterogeneous matrices. Originally pioneered by R. Estep at Los Alamos National Laboratory (LANL), the TGS method has been further developed and commercialized by Canberra Industries in recent years. The present system advances the state of the art on several fronts: it is designed to be housed in a standard cargo transportmore » container for ease of transport, allowing waste characterization at multiple facilities under the purview of a single operator. Conveyor feed, drum rotator, and detector and collimator positioning mechanisms operated by programmable logic control (PLC) allow automated batch mode operation. The variable geometry settings can accommodate a wide range of waste packaging, including but not limited to standard 220 liter drums, 380 liter overpack drums, and smaller 20 liter cans. A 20 mCi Eu-152 transmission source provides attenuation corrections for drum matrices up to 1 g/cm{sup 3} in TGS mode; the system can be operated in Segmented Gamma Scanning (SGS) mode to measure higher density drums. To support TGS assays at higher densities, the source shield is sufficient to house an alternate Co-60 transmission source of higher activity, up to 250 mCi. An automated shutter and attenuator assembly is provided for operating the system with a dual intensity transmission source. The system's 1500 kg capacity rotator turntable can handle heavy containers such as concrete lined 380 liter overpack drums. Finally, data acquisition utilizes Canberra's Broad Energy Germanium (BEGE) detector and Lynx MCA, with 32 k channels, providing better than 0.1 keV/channel resolution to support both isotopic analysis with the MGA/MGAU software and a wide 3 MeV dynamic range. The calibration and verification of the system is discussed, and quantitative results are presented for a variety of drum types and matrices. (authors)« less
NASA Technical Reports Server (NTRS)
Hinton, David A.; Tatnall, Chris R.
1997-01-01
A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.
Estimating soil matric potential in Owens Valley, California
Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.
1989-01-01
Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures.
Using Strassen's algorithm to accelerate the solution of linear systems
NASA Technical Reports Server (NTRS)
Bailey, David H.; Lee, King; Simon, Horst D.
1990-01-01
Strassen's algorithm for fast matrix-matrix multiplication has been implemented for matrices of arbitrary shapes on the CRAY-2 and CRAY Y-MP supercomputers. Several techniques have been used to reduce the scratch space requirement for this algorithm while simultaneously preserving a high level of performance. When the resulting Strassen-based matrix multiply routine is combined with some routines from the new LAPACK library, LU decomposition can be performed with rates significantly higher than those achieved by conventional means. We succeeded in factoring a 2048 x 2048 matrix on the CRAY Y-MP at a rate equivalent to 325 MFLOPS.
Multiphoton Scattering Tomography with Coherent States.
Ramos, Tomás; García-Ripoll, Juan José
2017-10-13
In this work we develop an experimental procedure to interrogate the single- and multiphoton scattering matrices of an unknown quantum system interacting with propagating photons. Our proposal requires coherent state laser or microwave inputs and homodyne detection at the scatterer's output, and provides simultaneous information about multiple-elastic and inelastic-segments of the scattering matrix. The method is resilient to detector noise and its errors can be made arbitrarily small by combining experiments at various laser powers. Finally, we show that the tomography of scattering has to be performed using pulsed lasers to efficiently gather information about the nonlinear processes in the scatterer.
Strong subadditivity for log-determinant of covariance matrices and its applications
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Simon, R.
2016-08-01
We prove that the log-determinant of the covariance matrix obeys the strong subadditivity inequality for arbitrary tripartite states of multimode continuous variable quantum systems. This establishes general limitations on the distribution of information encoded in the second moments of canonically conjugate operators. The inequality is shown to be stronger than the conventional strong subadditivity inequality for von Neumann entropy in a class of pure tripartite Gaussian states. We finally show that such an inequality implies a strict monogamy-type constraint for joint Einstein-Podolsky-Rosen steerability of single modes by Gaussian measurements performed on multiple groups of modes.
Mahmood, Zohaib; McDaniel, Patrick; Guérin, Bastien; Keil, Boris; Vester, Markus; Adalsteinsson, Elfar; Wald, Lawrence L; Daniel, Luca
2016-07-01
In a coupled parallel transmit (pTx) array, the power delivered to a channel is partially distributed to other channels because of coupling. This power is dissipated in circulators resulting in a significant reduction in power efficiency. In this study, a technique for designing robust decoupling matrices interfaced between the RF amplifiers and the coils is proposed. The decoupling matrices ensure that most forward power is delivered to the load without loss of encoding capabilities of the pTx array. The decoupling condition requires that the impedance matrix seen by the power amplifiers is a diagonal matrix whose entries match the characteristic impedance of the power amplifiers. In this work, the impedance matrix of the coupled coils is diagonalized by a successive multiplication by its eigenvectors. A general design procedure and software are developed to generate automatically the hardware that implements diagonalization using passive components. The general design method is demonstrated by decoupling two example parallel transmit arrays. Our decoupling matrices achieve better than -20 db decoupling in both cases. A robust framework for designing decoupling matrices for pTx arrays is presented and validated. The proposed decoupling strategy theoretically scales to any arbitrary number of channels. Magn Reson Med 76:329-339, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hübener, H.; Pérez-Osorio, M. A.; Ordejón, P.; Giustino, F.
2012-09-01
We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.
Penile Reconstruction with Skin Grafts and Dermal Matrices: Indications and Management
Triana Junco, Paloma; Dore, Mariela; Nuñez Cerezo, Vanesa; Jimenez Gomez, Javier; Miguel Ferrero, Miriam; Díaz González, Mercedes; Lopez-Pereira, Pedro; Lopez-Gutierrez, Juan Carlos
2017-01-01
Introduction The penis eventually needs specific cutaneous coverage in the context of reconstructive procedures following trauma or congenital anomalies. Local flaps are the first choice but are not always available after multiple previous procedures. In these cases, skin graft and dermal matrices should be considered. Materials and Methods This study was a retrospective review of the past 4 years of four patients with severe loss of penile shaft skin who underwent skin reconstruction. Dermal matrices and skin grafts were utilized. Dermal matrices were placed for a median of 4.5 weeks (3.0–6.0 weeks). The skin graft was harvested from the inner thigh region for split-thickness skin graft (STSG) and the inguinal region for full-thickness skin graft (FTSG). Results The four patients presented with complete loss of skin in the penile shaft. One patient had a vesical exstrophy, one had a buried penis with only one corpus cavernosum, one had a wide congenital lymphedema of the genitalia, and one had a lack of skin following circumcision at home. They underwent reconstruction with three patients undergoing split-thickness skin graft; two dermal matrices; and one full-thickness graft, respectively, thereby achieving a good cosmetic and functional result. There were no complications, and all the patients successfully accepted the graft. Conclusion Dermal matrices and skin grafts may serve as effective tools in the management of severe penile skin defects unable to be covered with local flaps. PMID:28868232
Liu, Zhao; Zhu, Yunhong; Wu, Chenxue
2016-01-01
Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502
NASA Technical Reports Server (NTRS)
Ahmadian, M.; Inman, D. J.
1982-01-01
Systems described by the matrix differental equation are considered. An interactive design routine is presented for positive definite mass, damping, and stiffness matrices. Designing is accomplished by adjusting the mass, damping, and stiffness matrices to obtain a desired oscillation behavior. The algorithm also features interactively modifying the physical structure of the system, obtaining the matrix structure and a number of other system properties. In case of a general system, where the M, C, and K matrices lack any special properties, a routine for the eigenproblem solution of the system is developed. The latent roots are obtained by computing the characteristic polynomial of the system and solving for its roots. The above routines are prepared in FORTRAN IV and prove to be usable for the machines with low core memory.
Structural analysis and design of multivariable control systems: An algebraic approach
NASA Technical Reports Server (NTRS)
Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen
1988-01-01
The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.
CP-violating phase on magnetized toroidal orbifolds
NASA Astrophysics Data System (ADS)
Kobayashi, Tatsuo; Nishiwaki, Kenji; Tatsuta, Yoshiyuki
2017-04-01
We study the CP-violating phase of the quark sector on T 2 /Z N ( N = 2 , 3 , 4 , 6) with non-vanishing magnetic fluxes, where properties of possible origins of the CP violation are investigated minutely. In this system, a non-vanishing value is mandatory in the real part of the complex modulus parameter τ of the two-dimensional torus in order to explain the CP violation in the quark sector. On T 2 without orbifolding, underlying discrete flavor symmetries severely restrict the form of Yukawa couplings and it is very difficult to reproduce the observed pattern in the quark sector including the CP-violating phase δ CP. When multiple Higgs doublets emerge on T 2 /Z 2, the mass matrices of the zero-mode fermions can be written in the Gaussian textures by choosing appropriate configurations of vacuum expectation values of the Higgs fields. When such Gaussian textures of mass matrices are realized, we show that all of the quark profiles, which are mass hierarchies among the quarks, quark mixing angles, and δ CP can be simultaneously realized.
Measurement and validation of benchmark-quality thick-target tungsten X-ray spectra below 150 kVp.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-11-01
Pulse-height distributions of two constant potential X-ray tubes with fixed anode tungsten targets were measured and unfolded. The measurements employed quantitative alignment of the beam, the use of two different semiconductor detectors (high-purity germanium and cadmium-zinc-telluride), two different ion chamber systems with beam-specific calibration factors, and various filter and tube potential combinations. Monte Carlo response matrices were generated for each detector for unfolding the pulse-height distributions into spectra incident on the detectors. These response matrices were validated for the low error bars assigned to the data. A significant aspect of the validation of spectra, and a detailed characterization of the X-ray tubes, involved measuring filtered and unfiltered beams at multiple tube potentials (30-150 kVp). Full corrections to ion chamber readings were employed to convert normalized fluence spectra into absolute fluence spectra. The characterization of fixed anode pitting and its dominance over exit window plating and/or detector dead layer was determined. An Appendix of tabulated benchmark spectra with assigned error ranges was developed for future reference.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1982-01-01
Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.
Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems
NASA Astrophysics Data System (ADS)
Wang, Xue-Zhong; Huang, Ting-Zhu; Fu, Ying-Ding
2007-09-01
In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss-Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.
NASA Astrophysics Data System (ADS)
Rodriguez Lucatero, C.; Schaum, A.; Alarcon Ramos, L.; Bernal-Jaquez, R.
2014-07-01
In this study, the dynamics of decisions in complex networks subject to external fields are studied within a Markov process framework using nonlinear dynamical systems theory. A mathematical discrete-time model is derived using a set of basic assumptions regarding the convincement mechanisms associated with two competing opinions. The model is analyzed with respect to the multiplicity of critical points and the stability of extinction states. Sufficient conditions for extinction are derived in terms of the convincement probabilities and the maximum eigenvalues of the associated connectivity matrices. The influences of exogenous (e.g., mass media-based) effects on decision behavior are analyzed qualitatively. The current analysis predicts: (i) the presence of fixed-point multiplicity (with a maximum number of four different fixed points), multi-stability, and sensitivity with respect to the process parameters; and (ii) the bounded but significant impact of exogenous perturbations on the decision behavior. These predictions were verified using a set of numerical simulations based on a scale-free network topology.
Semiblind channel estimation for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
Chen, Yi-Sheng; Song, Jyu-Han
2012-12-01
This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.
Polarization characterization of an LCTV with a Mueller matrix imaging polarimeter
NASA Astrophysics Data System (ADS)
Pezzaniti, J. Larry; Chipman, Russell A.; Gregory, Don A.
1993-10-01
The polarization properties of a TVT-6000 LCTV have been investigated. Mueller matrices of multiple ray paths through the TVT-6000 were measured for a single (typical) pixel, and through several pixels, using an imaging polarimeter. The TVT-6000 was characterized as a function of applied voltage and angle of incidence. From the Mueller matrices, the spatially dependent retardance, diattenuation, and depolarization are calculated and displayed as topographic maps. In another set of measurements, the LCTV is illuminated with a plane wave, and the spatial distribution of polarization in the Far Field Diffraction Pattern is measured in Mueller matrix form.
Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations
NASA Astrophysics Data System (ADS)
Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas
2016-11-01
We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.
Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations.
Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas
2016-11-25
We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.
Model selection with multiple regression on distance matrices leads to incorrect inferences.
Franckowiak, Ryan P; Panasci, Michael; Jarvis, Karl J; Acuña-Rodriguez, Ian S; Landguth, Erin L; Fortin, Marie-Josée; Wagner, Helene H
2017-01-01
In landscape genetics, model selection procedures based on Information Theoretic and Bayesian principles have been used with multiple regression on distance matrices (MRM) to test the relationship between multiple vectors of pairwise genetic, geographic, and environmental distance. Using Monte Carlo simulations, we examined the ability of model selection criteria based on Akaike's information criterion (AIC), its small-sample correction (AICc), and the Bayesian information criterion (BIC) to reliably rank candidate models when applied with MRM while varying the sample size. The results showed a serious problem: all three criteria exhibit a systematic bias toward selecting unnecessarily complex models containing spurious random variables and erroneously suggest a high level of support for the incorrectly ranked best model. These problems effectively increased with increasing sample size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and different sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based on these findings, we strongly discourage the continued application of AIC, AICc, and BIC for model selection with MRM.
Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations
Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.
2013-01-01
Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359
NASA Astrophysics Data System (ADS)
Moir, T. J.
2018-03-01
The Wiener-Kolmogorov theory of filtering has been with us since the first half of the twentieth century. A later matrix-based approach which was more general was derived with the steady-state Kalman filter. This approach uses a novel method of representing causal and uncausal systems in the form of convolution matrices and leads to a Wiener solution which is much easier to calculate than either the Kalman or Wiener approaches. For coloured additive noise, it avoids the use of Diophantine equations. The key idea missing in previous work is the close link between polynomials and Toeplitz matrices which are lower triangular in form. There is already a reasonably sized literature in the mathematics field on such matrices and so the area is ripe for exploration. Although the method does not offer a different or better solution, it shows a completely new way of defining linear time-invariant (LTI) systems which is neither transfer-function nor state-space-based. This is achieved by exploiting the connection between polynomials and Toeplitz matrices. The application here is the Wiener filter but there could well be many more as this is a generic approach.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Moneghini, M; Perissutti, B; Kikic, I; Grassi, M; Cortesi, A; Princivalle, F
2006-01-01
Several controlled release systems of drugs have been elaborated using a supercritical fluid process. Indeed, recent techniques using a supercritical fluid as a solvent or as an antisolvent are considered to be useful alternatives to produce fine powders. In this preliminary study, the effect of Supercritical Anti Solvent process (SAS) on the release of theophylline from matrices manufactured with hydroxypropylmethylcellulose (HPMC) was investigated. Two grades of HPMC (HPMC E5 and K100) as carriers were considered in order to prepare a sustained delivery system for theophylline which was used as a model drug. The characterization of the drug before and after SAS treatment, and the coprecipitates with carriers, was performed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The dissolution rate of theophylline, theophylline-coprecipitates, and matricial tablets prepared with coprecipitates were determined. The physical characterizations revealed a substantial correspondence of the drug solid state before and after supercritical fluid treatment while drug-polymer interactions in the SAS-coprecipitates were attested. The dissolution studies of the matrices prepared compressing the coprecipitated systems showed that the matrices based on HPMC K100 were able to promote a sustained release of the drug. Further, this advantageous dissolution performance was found to be substantially independent of the pH of the medium. The comparison with the matrices prepared with untreated substances demonstrated that matrices obtained with SAS technique can provide a slower theophylline release rate. A new mathematical model describing the in vitro dissolution kinetics was proposed and successfully tested on these systems.
Emitter and absorber assembly for multiple self-dual operation and directional transparency
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.
2017-03-01
We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.
Design of Multi-Resonant Cavities Based on Metal-Coated Dielectric Nanocylinders
NASA Astrophysics Data System (ADS)
Dong, Junyuan; Yu, Guanxia; Fu, Jingjing; Luo, Min; Du, Wenwen
2018-06-01
In this paper, the light scattering properties for multiple silver-coated dielectric nanocylinders with the symmetrical distribution were investigated. Based on the transfer matrix method, we derive the general transmission and reflection coefficient matrices for multiple dielectric nanocylinders. When the incident light frequencies are less than the plasma frequencies, the surface plasmons (SPs) appear in the interface between the silver and dielectrics. Numerical simulations show that there are three peaks of absorption cross-section (ACS) in the relationship between the ACS and the frequencies of the incident light, when the distance between the silver-coated dielectric nanocylinders is chosen properly. These SPs resonance peaks are characterised as resonances intrinsic to the cylindrically periodic system corresponding to different inner cavity structures. These multi-resonant cavities may have potential applications in integrated devices, optical sensors and optical storage devices.
Static shape control for adaptive wings
NASA Astrophysics Data System (ADS)
Austin, Fred; Rossi, Michael J.; van Nostrand, William; Knowles, Gareth; Jameson, Antony
1994-09-01
A theoretical method was developed and experimentally validated, to control the static shape of flexible structures by employing internal translational actuators. A finite element model of the structure, without the actuators present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-load control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required. The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory. Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.
Optimal control theory (OWEM) applied to a helicopter in the hover and approach phase
NASA Technical Reports Server (NTRS)
Born, G. J.; Kai, T.
1975-01-01
A major difficulty in the practical application of linear-quadratic regulator theory is how to choose the weighting matrices in quadratic cost functions. The control system design with optimal weighting matrices was applied to a helicopter in the hover and approach phase. The weighting matrices were calculated to extremize the closed loop total system damping subject to constraints on the determinants. The extremization is really a minimization of the effects of disturbances, and interpreted as a compromise between the generalized system accuracy and the generalized system response speed. The trade-off between the accuracy and the response speed is adjusted by a single parameter, the ratio of determinants. By this approach an objective measure can be obtained for the design of a control system. The measure is to be determined by the system requirements.
NASA Astrophysics Data System (ADS)
Lee, Ken Voon
2013-04-01
The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.
Transition model for ricin-aptamer interactions with multiple pathways and energy barriers
NASA Astrophysics Data System (ADS)
Wang, Bin; Xu, Bingqian
2014-02-01
We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.
Zazzeroni, Raniero; Homan, Andrew; Thain, Emma
2009-08-01
The estimation of the dietary intake of gamma-aminobutyric acid (GABA) is dependent upon the knowledge of its concentration values in food matrices. To this end, an isotope dilution liquid chromatography-mass spectrometry method has been developed employing the hydrophilic interaction chromatography technique for analyte separation. This approach enabled accurate quantification of GABA in apple, potato, soybeans, and orange juice without the need of a pre- or post-column derivatization reaction. A selective and precise analytical measurement has been obtained with a triple quadrupole mass spectrometer operating in multiple reaction monitoring using the method of standard additions and GABA-d(6) as an internal standard. The concentrations of GABA found in the matrices tested are 7 microg/g of apple, 342 microg/g of potatoes, 211 microg/g of soybeans, and 344 microg/mL of orange juice.
Classification of Uxo by Principal Dipole Polarizability
NASA Astrophysics Data System (ADS)
Kappler, K. N.
2010-12-01
Data acquired by multiple-Transmitter, multiple-receiver time-domain electromagnetic devices show great potential for determining the geometric and compositional information relating to near surface conductive targets. Here is presented an analysis of data from one such system; the Berkeley Unexploded-ordnance Discriminator (BUD) system. BUD data are succinctly reduced by processing the multi-static data matrices to obtain magnetic dipole polarizability matrices for data from each time gate. When viewed over all time gates, the projections of the data onto the principal polar axes yield so-called polarizability curves. These curves are especially well suited to discriminating between subsurface conductivity anomalies which correspond to objects of rotational symmetry and irregularly shaped objects. The curves have previously been successfully employed as library elements in a pattern recognition scheme aimed at discriminating harmless scrap metal from dangerous intact unexploded ordnance. However, previous polarizability-curve matching methods have only been applied at field sites which are known a priori to be contaminated by a single type of ordnance, and furthermore, the particular ordnance present in the subsurface was known to be large. Thus signal amplitude was a key element in the discrimination process. The work presented here applies feature-based pattern classification techniques to BUD field data where more than 20 categories of object are present. Data soundings from a calibration grid at the Yuma, AZ proving ground are used in a cross validation study to calibrate the pattern recognition method. The resultant method is then applied to a Blind Test Grid. Results indicate that when lone UXO are present and SNR is reasonably high, Polarizability Curve Matching successfully discriminates UXO from scrap metal when a broad range of objects are present.
A numerical approach to controller design for the ACES facility
NASA Technical Reports Server (NTRS)
Frazier, W. Garth; Irwin, R. Dennis
1993-01-01
In recent years the employment of active control techniques for improving the performance of systems involving highly flexible structures has become a topic of considerable research interest. Most of these systems are quite complicated, using multiple actuators and sensors, and possessing high order models. The majority of analytical controller synthesis procedures capable of handling multivariable systems in a systematic way require considerable insight into the underlying mathematical theory to achieve a successful design. This insight is needed in selecting the proper weighting matrices or weighting functions to cast what is naturally a multiple constraint satisfaction problem into an unconstrained optimization problem. Although designers possessing considerable experience with these techniques have a feel for the proper choice of weights, others may spend a significant amount of time attempting to find an acceptable solution. Another disadvantage of such procedures is that the resulting controller has an order greater than or equal to that of the model used for the design. Of course, the order of these controllers can often be reduced, but again this requires a good understanding of the theory involved.
NASA Technical Reports Server (NTRS)
Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.
Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine
2015-03-15
Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.
Acceleration of boundary element method for linear elasticity
NASA Astrophysics Data System (ADS)
Zapletal, Jan; Merta, Michal; Čermák, Martin
2017-07-01
In this work we describe the accelerated assembly of system matrices for the boundary element method using the Intel Xeon Phi coprocessors. We present a model problem, provide a brief overview of its discretization and acceleration of the system matrices assembly using the coprocessors, and test the accelerated version using a numerical benchmark.
ATLAS, an integrated structural analysis and design system. Volume 4: Random access file catalog
NASA Technical Reports Server (NTRS)
Gray, F. P., Jr. (Editor)
1979-01-01
A complete catalog is presented for the random access files used by the ATLAS integrated structural analysis and design system. ATLAS consists of several technical computation modules which output data matrices to corresponding random access file. A description of the matrices written on these files is contained herein.
Efficient computer algebra algorithms for polynomial matrices in control design
NASA Technical Reports Server (NTRS)
Baras, J. S.; Macenany, D. C.; Munach, R.
1989-01-01
The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.
On the number of Bose-selected modes in driven-dissipative ideal Bose gases
NASA Astrophysics Data System (ADS)
Schnell, Alexander; Ketzmerick, Roland; Eckardt, André
2018-03-01
In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form of Bose condensation can occur. Namely, the single-particle states unambiguously separate into two groups: the group of Bose-selected states, whose occupations increase linearly with the total particle number, and the group of all other states whose occupations saturate [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. However, so far very little is known about how the number of Bose-selected states depends on the properties of the system and its coupling to the environment. The answer to this question is crucial since systems hosting a single, a few, or an extensive number of Bose-selected states will show rather different behavior. While in the former two scenarios each selected mode acquires a macroscopic occupation, corresponding to (fragmented) Bose condensation, the latter case rather bears resemblance to a high-temperature state of matter. In this paper, we systematically investigate the number of Bose-selected states, considering different classes of the rate matrices that characterize the driven-dissipative ideal Bose gases in the limit of weak system-bath coupling. These include rate matrices with continuum limit, rate matrices of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that couple to a few observables only.
On the number of Bose-selected modes in driven-dissipative ideal Bose gases.
Schnell, Alexander; Ketzmerick, Roland; Eckardt, André
2018-03-01
In an ideal Bose gas that is driven into a steady state far from thermal equilibrium, a generalized form of Bose condensation can occur. Namely, the single-particle states unambiguously separate into two groups: the group of Bose-selected states, whose occupations increase linearly with the total particle number, and the group of all other states whose occupations saturate [Phys. Rev. Lett. 111, 240405 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.240405]. However, so far very little is known about how the number of Bose-selected states depends on the properties of the system and its coupling to the environment. The answer to this question is crucial since systems hosting a single, a few, or an extensive number of Bose-selected states will show rather different behavior. While in the former two scenarios each selected mode acquires a macroscopic occupation, corresponding to (fragmented) Bose condensation, the latter case rather bears resemblance to a high-temperature state of matter. In this paper, we systematically investigate the number of Bose-selected states, considering different classes of the rate matrices that characterize the driven-dissipative ideal Bose gases in the limit of weak system-bath coupling. These include rate matrices with continuum limit, rate matrices of chaotic driven systems, random rate matrices, and rate matrices resulting from thermal baths that couple to a few observables only.
NASA Astrophysics Data System (ADS)
Leskinen, Stephaney D.; Schlemmer, Sarah M.; Kearns, Elizabeth A.; Lim, Daniel V.
2009-02-01
The development of rapid assays for detection of microbial pathogens in complex matrices is needed to protect public health due to continued outbreaks of disease from contaminated foods and water. An Escherichia coli O157:H7 detection assay was designed using a robotic, fluorometric assay system. The system integrates optics, fluidics, robotics and software for the detection of foodborne pathogens or toxins in as many as four samples simultaneously. It utilizes disposable fiber optic waveguides coated with biotinylated antibodies for capture of target analytes from complex sample matrices. Computer-controlled rotation of sample cups allows complete contact between the sample and the waveguide. Detection occurs via binding of a fluorophore-labeled antibody to the captured target, which leads to an increase in the fluorescence signal. Assays are completed within twenty-five minutes. Sample matrices included buffer, retentate (material recovered from the filter of the Automated Concentration System (ACS) following hollow fiber ultrafiltration), spinach wash and ground beef. The matrices were spiked with E. coli O157:H7 (103-105 cells/ml) and the limits of detection were determined. The effect of sample rotation on assay sensitivity was also examined. Rotation parameters for each sample matrix included 10 ml with rotation, 5 ml with rotation and 0.1 ml without rotation. Detection occurred at 104 cells/ml in buffer and spinach wash and at 105 cells/ml in retentate and ground beef. Detection was greater for rotated samples in each matrix except ground beef. Enhanced detection of E. coli from large, rotated volumes of complex matrices was confirmed.
Vibration analyses of an inclined flat plate subjected to moving loads
NASA Astrophysics Data System (ADS)
Wu, Jia-Jang
2007-01-01
The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.
Design of multi-body Lambert type orbits with specified departure and arrival positions
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Kawaguchi, Jun'ichiro; Matsuo, Hiroki
1991-10-01
A new procedure for designing a multi-body Lambert type orbit comprising a multiple swingby process is developed, aiming at relieving a numerical difficulty inherent to a highly nonlinear swingby mechanism. The proposed algorithm, Recursive Multi-Step Linearization, first divides a whole orbit into several trajectory segments. Then, with a maximum use of piecewised transition matrices, a segmentized orbit is repeatedly upgraded until an approximated orbit initially based on a patched conics method eventually converges. In application to the four body earth-moon system with sun's gravitation, one of the double lunar swingby orbits including 12 lunar swingbys is successfully designed without any velocity mismatch.
Maximum-likelihood estimation of parameterized wavefronts from multifocal data
Sakamoto, Julia A.; Barrett, Harrison H.
2012-01-01
A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282
Array Biosensor for Toxin Detection: Continued Advances
Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Ngundi, Miriam M.; Ligler, Frances S.
2008-01-01
The following review focuses on progress made in the last five years with the NRL Array Biosensor, a portable instrument for rapid and simultaneous detection of multiple targets. Since 2003, the Array Biosensor has been automated and miniaturized for operation at the point-of-use. The Array Biosensor has also been used to demonstrate (1) quantitative immunoassays against an expanded number of toxins and toxin indicators in food and clinical fluids, and (2) the efficacy of semi-selective molecules as alternative recognition moieties. Blind trials, with unknown samples in a variety of matrices, have demonstrated the versatility, sensitivity, and reliability of the automated system. PMID:27873991
Monitoring of intrathoracic volemia and cardiac output in critically ill children.
Cecchetti, C; Stoppa, F; Vanacore, N; Barbieri, M A; Raucci, U; Pasotti, E; Tomasello, C; Marano, M; Pirozzi, N
2003-12-01
Hemodynamic monitoring is an important step in the management of critically ill children despite the difficulty in measuring preload indices continuously. The aim of the study was to analyze cardiac output parameters and preload indices after acute changes in mean airway pressure and volemia. Twenty-three children treated at our unit were enrolled in a prospective non randomized cohort study. Respiration was supported by controlled mechanical ventilation with positive expiratory-end pressure (PEEP), peak inspiratory pressure <20 cm H(2)O and mean airway pressure <10 cm H(2)O, and hemodynamic monitoring using the PiCCO system. Hemodynamic parameters were measured at T0 (base line), T(1) (after an increase in PEEP of 5 cm H(2)O for 10 min), and T(2) (after fluid challenge). The statistical analysis (BMPD New System software package) comprised comparison of changes at T(0) vs T(1), T(1) vs T(2) and T(0) vs T(2), construction of 3 correlation matrices and multiple linear regression analysis. Sixty-nine hemodynamic parameters were measured in the 23 patients. A comparison between T(0) and T(1) showed no significant changes; differences between T(0) and T(2) were found for cardiac index (CI), (p=0.003); between T(0) and T(2) significant differences were found for CI (p=0.0015), intrathoracic blood volume index (ITBVI) (p=0.04) and stroke volume index (SVI) (p=0.06). The analysis of the correlation matrices yielded ITBVI with CI (p=0.0006), ITBVI with SVI (p=1 x 10(-5)), CI with SVI (p=0.002); a significant correlation between CI and extravascular lung water index (EVLWI) was found only at T(1). Multiple linear regression analysis showed that ITBVI and SVI were predictive for variance of CI at each time point. ITBVI measured by a volumetric monitoring system such as the PiCCO may be considered a sensitive preload indicator also in critically ill children.
Continuous-Time Bilinear System Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
2003-01-01
The objective of this paper is to describe a new method for identification of a continuous-time multi-input and multi-output bilinear system. The approach is to make judicious use of the linear-model properties of the bilinear system when subjected to a constant input. Two steps are required in the identification process. The first step is to use a set of pulse responses resulting from a constant input of one sample period to identify the state matrix, the output matrix, and the direct transmission matrix. The second step is to use another set of pulse responses with the same constant input over multiple sample periods to identify the input matrix and the coefficient matrices associated with the coupling terms between the state and the inputs. Numerical examples are given to illustrate the concept and the computational algorithm for the identification method.
NASA Astrophysics Data System (ADS)
Froggatt*, C. D.
2003-01-01
The quark-lepton mass problem and the ideas of mass protection are reviewed. The hierarchy problem and suggestions for its resolution, including Little Higgs models, are discussed. The Multiple Point Principle (MPP) is introduced and used within the Standard Model (SM) to predict the top quark and Higgs particle masses. Mass matrix ansätze are considered; in particular we discuss the lightest family mass generation model, in which all the quark mixing angles are successfully expressed in terms of simple expressions involving quark mass ratios. It is argued that an underlying chiral flavour symmetry is responsible for the hierarchical texture of the fermion mass matrices. The phenomenology of neutrino mass matrices is briefly discussed.
Fidelity under isospectral perturbations: a random matrix study
NASA Astrophysics Data System (ADS)
Leyvraz, F.; García, A.; Kohler, H.; Seligman, T. H.
2013-07-01
The set of Hamiltonians generated by all unitary transformations from a single Hamiltonian is the largest set of isospectral Hamiltonians we can form. Taking advantage of the fact that the unitary group can be generated from Hermitian matrices we can take the ones generated by the Gaussian unitary ensemble with a small parameter as small perturbations. Similarly, the transformations generated by Hermitian antisymmetric matrices from orthogonal matrices form isospectral transformations among symmetric matrices. Based on this concept we can obtain the fidelity decay of a system that decays under a random isospectral perturbation with well-defined properties regarding time-reversal invariance. If we choose the Hamiltonian itself also from a classical random matrix ensemble, then we obtain solutions in terms of form factors in the limit of large matrices.
NASA Astrophysics Data System (ADS)
Kuntman, Ertan; Canillas, Adolf; Arteaga, Oriol
2017-11-01
Experimental Mueller matrices contain certain amount of uncertainty in their elements and these uncertainties can create difficulties for decomposition methods based on analytic solutions. In an earlier paper [1], we proposed a decomposition method for depolarizing Mueller matrices by using certain symmetry conditions. However, because of the experimental error, that method creates over-determined systems with non-unique solutions. Here we propose to use least squares minimization approach in order to improve the accuracy of our results. In this method, we are taking into account the number of independent parameters of the corresponding symmetry and the rank constraints on the component matrices to decide on our fitting model. This approach is illustrated with experimental Mueller matrices that include material media with different Mueller symmetries.
Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1991-01-01
We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions
Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Durling, B. J.
1978-01-01
The use of the SUDAN computer program for analyzing structural systems for their natural modes and frequencies of vibration is described. SUDAN is intended for structures which can be represented as an equivalent system of beam, spring, and rigid-body substructures. User-written constraint equations are used to analytically join the mass and stiffness matrices of the substructures to form the mass and stiffness matrices of the complete structure from which all the frequencies and modes of the system are determined. The SUDAN program can treat the case in which both the mass and stiffness matrices of the coupled system may be singular simultaneously. A general description of the FORTRAN IV program is given, the computer hardware and software specifications are indicated, and the input required by the program is described.
NASA Technical Reports Server (NTRS)
Anderson, L. R.; Miller, R. D.
1979-01-01
The LOADS computer program L218 which calculates dynamic load coefficient matrices utilizing the force summation method is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: (1) translational and rotational accelerations, velocities, and displacements; (2) panel aerodynamic forces; (3) net panel forces; and (4) shears, bending moments, and torsions.
NASA Astrophysics Data System (ADS)
Safari, A.; Sharifi, M. A.; Amjadiparvar, B.
2010-05-01
The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low-Low Satellite-to-Satellite Tracking
NASA Astrophysics Data System (ADS)
Weng, Yi; He, Xuan; Yao, Wang; Pacheco, Michelle C.; Wang, Junyi; Pan, Zhongqi
2017-07-01
In this paper, we explored the performance of space-time block-coding (STBC) assisted multiple-input multiple-output (MIMO) scheme for modal dispersion and mode-dependent loss (MDL) mitigation in spatial-division multiplexed optical communication systems, whereas the weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive least squares (RLS) algorithm for convergence and channel estimation. The proposed STBC-RLS algorithm can achieve 43.6% enhancement on convergence rate over conventional least mean squares (LMS) for quadrature phase-shift keying (QPSK) signals with merely 16.2% increase in hardware complexity. The overall optical signal to noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16-quadrature amplitude modulation (QAM) and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE).
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.
1990-01-01
Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.
Protein fold recognition using geometric kernel data fusion.
Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves
2014-07-01
Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.
Spectral density of mixtures of random density matrices for qubits
NASA Astrophysics Data System (ADS)
Zhang, Lin; Wang, Jiamei; Chen, Zhihua
2018-06-01
We derive the spectral density of the equiprobable mixture of two random density matrices of a two-level quantum system. We also work out the spectral density of mixture under the so-called quantum addition rule. We use the spectral densities to calculate the average entropy of mixtures of random density matrices, and show that the average entropy of the arithmetic-mean-state of n qubit density matrices randomly chosen from the Hilbert-Schmidt ensemble is never decreasing with the number n. We also get the exact value of the average squared fidelity. Some conjectures and open problems related to von Neumann entropy are also proposed.
NASA Technical Reports Server (NTRS)
Polotzky, Anthony S.; Wieseman, Carol; Hoadley, Sherwood Tiffany; Mukhopadhyay, Vivek
1990-01-01
The development of a controller performance evaluation (CPE) methodology for multiinput/multioutput digital control systems is described. The equations used to obtain the open-loop plant, controller transfer matrices, and return-difference matrices are given. Results of applying the CPE methodology to evaluate MIMO digital flutter suppression systems being tested on an active flexible wing wind-tunnel model are presented to demonstrate the CPE capability.
FPGA-based coprocessor for matrix algorithms implementation
NASA Astrophysics Data System (ADS)
Amira, Abbes; Bensaali, Faycal
2003-03-01
Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.
Project Solo; Newsletter Number Twenty.
ERIC Educational Resources Information Center
Pittsburgh Univ., PA. Project Solo.
Three Project Solo modules are presented. They are designed to teach the concepts of elementary matrix operation, matrix multiplication, and finite-state automata. Together with the module on communication matrices from Newsletter #17 they form a well motivated but structured path to expertise in this area. (JY)
Lúcio, Patrícia Silva; Cogo-Moreira, Hugo; Puglisi, Marina; Polanczyk, Guilherme Vanoni; Little, Todd D
2017-11-01
The present study investigated the psychometric properties of the Raven's Colored Progressive Matrices (CPM) test in a sample of preschoolers from Brazil ( n = 582; age: mean = 57 months, SD = 7 months; 46% female). We investigated the plausibility of unidimensionality of the items (confirmatory factor analysis) and differential item functioning (DIF) for sex and age (multiple indicators multiple causes method). We tested four unidimensional models and the one with the best-fit index was a reduced form of the Raven's CPM. The DIF analysis was carried out with the reduced form of the test. A few items presented DIF (two for sex and one for age), confirming that the Raven's CPM items are mostly measurement invariant. There was no effect of sex on the general factor, but increasing age was associated with higher values of the g factor. Future research should indicate if the reduced form is suitable for evaluating the general ability of preschoolers.
Insights from Classifying Visual Concepts with Multiple Kernel Learning
Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki
2012-01-01
Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970
NASA Astrophysics Data System (ADS)
Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin
2011-01-01
Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and/or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S1) as well as the second excited singlet (S2) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S1 state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S2 state. Ab initio calculations using the density functional theory at B3LYP/6-31G** level corroborate well with the experimental observations.
Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin
2011-01-28
Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and∕or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S(1)) as well as the second excited singlet (S(2)) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S(1) state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S(2) state. Ab initio calculations using the density functional theory at B3LYP∕6-31G∗∗ level corroborate well with the experimental observations.
A Higher Order Iterative Method for Computing the Drazin Inverse
Soleymani, F.; Stanimirović, Predrag S.
2013-01-01
A method with high convergence rate for finding approximate inverses of nonsingular matrices is suggested and established analytically. An extension of the introduced computational scheme to general square matrices is defined. The extended method could be used for finding the Drazin inverse. The application of the scheme on large sparse test matrices alongside the use in preconditioning of linear system of equations will be presented to clarify the contribution of the paper. PMID:24222747
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros
Calcium phosphate (CaP) nanocrystals nucleate and grow in intrafibrillar and/or extrafibrillar spaces of collagen fibrils during the mineralization of bones and teeth. Little is known about the early stages of CaP nucleation and distribution in fibrillar matrices, despite their significant influence on the physical and chemical structures of tissue-level constructs. Using in situ small angle X-ray scattering (SAXS), we examined the nucleation and growth of CaP within collagen matrices and elucidated how a nucleation inhibitor, polyaspartic acid (pAsp), governs mineralization kinetics and pathways at multiple length scales. In situ SAXS analysis clearly revealed that nucleation sites, kinetically-controlled by the nucleationmore » inhibitor, determined the pathways of CaP morphological transformation. Mineralization with pAsp led to intrafibrillar CaP plates with a spatial distribution gradient through the depth of the matrix. Mineralization without pAsp led initially to spherical aggregates of CaP in the entire extrafibrillar spaces. With time, the spherical aggregates transformed into plates at the outermost surface of the collagen matrix, preventing intrafibrillar mineralization inside. The results illuminate mineral nucleation kinetics and real-time nanoparticle distributions within organic matrices in solutions containing body fluid components. Because the macroscale mechanical properties of collagen matrices depend on their mineral content, phase, and arrangement at the nanoscale, this study contributes to better design and fabrication of biomaterials for regenerative medicine.« less
SEQ-REVIEW: A tool for reviewing and checking spacecraft sequences
NASA Astrophysics Data System (ADS)
Maldague, Pierre F.; El-Boushi, Mekki; Starbird, Thomas J.; Zawacki, Steven J.
1994-11-01
A key component of JPL's strategy to make space missions faster, better and cheaper is the Advanced Multi-Mission Operations System (AMMOS), a ground software intensive system currently in use and in further development. AMMOS intends to eliminate the cost of re-engineering a ground system for each new JPL mission. This paper discusses SEQ-REVIEW, a component of AMMOS that was designed to facilitate and automate the task of reviewing and checking spacecraft sequences. SEQ-REVIEW is a smart browser for inspecting files created by other sequence generation tools in the AMMOS system. It can parse sequence-related files according to a computer-readable version of a 'Software Interface Specification' (SIS), which is a standard document for defining file formats. It lets users display one or several linked files and check simple constraints using a Basic-like 'Little Language'. SEQ-REVIEW represents the first application of the Quality Function Development (QFD) method to sequence software development at JPL. The paper will show how the requirements for SEQ-REVIEW were defined and converted into a design based on object-oriented principles. The process starts with interviews of potential users, a small but diverse group that spans multiple disciplines and 'cultures'. It continues with the development of QFD matrices that related product functions and characteristics to user-demanded qualities. These matrices are then turned into a formal Software Requirements Document (SRD). The process concludes with the design phase, in which the CRC (Class, Responsibility, Collaboration) approach was used to convert requirements into a blueprint for the final product.
SEQ-REVIEW: A tool for reviewing and checking spacecraft sequences
NASA Technical Reports Server (NTRS)
Maldague, Pierre F.; El-Boushi, Mekki; Starbird, Thomas J.; Zawacki, Steven J.
1994-01-01
A key component of JPL's strategy to make space missions faster, better and cheaper is the Advanced Multi-Mission Operations System (AMMOS), a ground software intensive system currently in use and in further development. AMMOS intends to eliminate the cost of re-engineering a ground system for each new JPL mission. This paper discusses SEQ-REVIEW, a component of AMMOS that was designed to facilitate and automate the task of reviewing and checking spacecraft sequences. SEQ-REVIEW is a smart browser for inspecting files created by other sequence generation tools in the AMMOS system. It can parse sequence-related files according to a computer-readable version of a 'Software Interface Specification' (SIS), which is a standard document for defining file formats. It lets users display one or several linked files and check simple constraints using a Basic-like 'Little Language'. SEQ-REVIEW represents the first application of the Quality Function Development (QFD) method to sequence software development at JPL. The paper will show how the requirements for SEQ-REVIEW were defined and converted into a design based on object-oriented principles. The process starts with interviews of potential users, a small but diverse group that spans multiple disciplines and 'cultures'. It continues with the development of QFD matrices that related product functions and characteristics to user-demanded qualities. These matrices are then turned into a formal Software Requirements Document (SRD). The process concludes with the design phase, in which the CRC (Class, Responsibility, Collaboration) approach was used to convert requirements into a blueprint for the final product.
Parameterization of Transport and Period Matrices with X-Y Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courant, E. D.
A parameterization of 4x4 matrices describing linear beam transport systems has been obtained by Edwards and Teng. Here we extend their formalism to include dispersive effects, and give perscriptions for incorporating it in the program SYNCH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaojun; Lei, Guangtsai; Pan, Guangwen
In this paper, the continuous operator is discretized into matrix forms by Galerkin`s procedure, using periodic Battle-Lemarie wavelets as basis/testing functions. The polynomial decomposition of wavelets is applied to the evaluation of matrix elements, which makes the computational effort of the matrix elements no more expensive than that of method of moments (MoM) with conventional piecewise basis/testing functions. A new algorithm is developed employing the fast wavelet transform (FWT). Owing to localization, cancellation, and orthogonal properties of wavelets, very sparse matrices have been obtained, which are then solved by the LSQR iterative method. This algorithm is also adaptive in thatmore » one can add at will finer wavelet bases in the regions where fields vary rapidly, without any damage to the system orthogonality of the wavelet basis functions. To demonstrate the effectiveness of the new algorithm, we applied it to the evaluation of frequency-dependent resistance and inductance matrices of multiple lossy transmission lines. Numerical results agree with previously published data and laboratory measurements. The valid frequency range of the boundary integral equation results has been extended two to three decades in comparison with the traditional MoM approach. The new algorithm has been integrated into the computer aided design tool, MagiCAD, which is used for the design and simulation of high-speed digital systems and multichip modules Pan et al. 29 refs., 7 figs., 6 tabs.« less
Hladik, Michelle; Orlando, James L.; Kuivila, Kathryn
2009-01-01
Loss of pyrethroid insecticides onto surfaces during sample collection can confound the interpretation of analytical and toxicity test results. Sample collection devices, container materials, and water matrix composition have a significant influence on the association of pyrethroids to container walls, which can be as high as 50 percent. Any sample collection method involving transfer through multiple containers or pieces of equipment increases the potential for pyrethroid loss. This loose 'surface-association' with container walls can be reversed through agitation. When sampling water matrices with pumps or autosamplers, no pyrethroids were lost as long as the water was moving continuously through the system. When collecting water matrices in containers, the material with the least amount of pyrethroid sorption is as follows: glass less than (<) plastic less than (<) Teflon. Additionally, pyrethroids were easier to re-suspend from the glass container walls. Since the amount of surface-association is proportional to the ratio of volume-to-contact-area of the sample, taking larger-volume field samples (greater than 3 liters) reduced pyrethroid losses to less than 10 percent. The amount of surface-association cannot be predicted easily because of the dependence on water matrix composition; samples with higher dissolved organic carbon or suspended-sediment concentrations were observed to have lower percent loss. Sediment samples were not affected by glass-container sorption (the only containers tested). Standardized sample-collection protocols are critical to yield accurate pyrethroid concentrations for assessment of potential effects, and have been summarized in an accompanying standard operating procedure.
Gorre, Elsa; Owens, Kevin G
2016-11-01
In this work an attenuated total reflection Fourier transform infrared (FT-IR) absorption based method is used to measure the solubility of two matrix-assisted laser desorption-ionization (MALDI) matrices in a few pure solvents and mixtures of acetonitrile and water using low microliter amounts of solution. Results from a method that averages the values obtained from multiple calibration curves created by manual peak picking are compared to those predicted using a partial least squares (PLS) chemometrics approach. The PLS method provided solubility values that were in good agreement with the manual method with significantly greater ease of analysis. As a test, the solubility of adipic acid in acetone was measured using the two methods of analysis, and the values are in good agreement with solubility values reported in literature. The solubilities of the MALDI matrices α-cyano-4-hydroxy cinnamic acid (CHCA) and sinapinic acid (SA) were measured in a series of mixtures made from acetonitrile (ACN) and water; surprisingly, the results show a highly nonlinear trend. While both CHCA and SA show solubility values of less than 10 mg/mL in the pure solvents, the solubility value for SA increases to 56.3 mg/mL in a 75:25 v/v ACN:water mixture. This can have a significant effect on the matrix-to-analyte ratios in the MALDI experiment when sample protocols call for preparation of a saturated solution of the matrix in the chosen solvent system. © The Author(s) 2016.
Dragone, Roberto; Grasso, Gerardo; Muccini, Michele; Toffanin, Stefano
2017-01-01
This mini-review covers the newly developed biosensoristic and chemosensoristic devices described in recent literature for detection of contaminants in both environmental and food real matrices. Current needs in environmental and food surveillance of contaminants require new simplified, sensitive systems, which are portable and allow for rapid and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical bio/chemosensoristic devices as promising tools with interesting analytical features that can be potentially exploited for innovative on-site and real-time applications for diagnostics and monitoring of environmental and food matrices (e.g., agricultural waters and milk). In near future, suitably developed and implemented bio/chemosensoristic devices will be a new and modern technological solution for the identification of new quality and safety marker indexes as well as for a more proper and complete characterization of abovementioned environmental and food matrices. Integrated bio/chemosensoristic devices can also allow an “holistic approach” that may prove to be more suitable for diagnostics of environmental and food real matrices, where the copresence of more bioactive substances is frequent. Therefore, this approach can be focused on the determination of net effect (mixture effect) of bioactive substances present in real matrices. PMID:28529937
Dragone, Roberto; Grasso, Gerardo; Muccini, Michele; Toffanin, Stefano
2017-01-01
This mini-review covers the newly developed biosensoristic and chemosensoristic devices described in recent literature for detection of contaminants in both environmental and food real matrices. Current needs in environmental and food surveillance of contaminants require new simplified, sensitive systems, which are portable and allow for rapid and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical bio/chemosensoristic devices as promising tools with interesting analytical features that can be potentially exploited for innovative on-site and real-time applications for diagnostics and monitoring of environmental and food matrices (e.g., agricultural waters and milk). In near future, suitably developed and implemented bio/chemosensoristic devices will be a new and modern technological solution for the identification of new quality and safety marker indexes as well as for a more proper and complete characterization of abovementioned environmental and food matrices. Integrated bio/chemosensoristic devices can also allow an "holistic approach" that may prove to be more suitable for diagnostics of environmental and food real matrices, where the copresence of more bioactive substances is frequent. Therefore, this approach can be focused on the determination of net effect (mixture effect) of bioactive substances present in real matrices.
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System.
Chinnadurai, Sunil; Selvaprabhu, Poongundran; Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-09-18
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach's algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System
Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-01-01
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach’s algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme. PMID:28927019
Quantum knots and the number of knot mosaics
NASA Astrophysics Data System (ADS)
Oh, Seungsang; Hong, Kyungpyo; Lee, Ho; Lee, Hwa Jeong
2015-03-01
Lomonaco and Kauffman developed a knot mosaic system to introduce a precise and workable definition of a quantum knot system. This definition is intended to represent an actual physical quantum system. A knot -mosaic is an matrix of mosaic tiles ( through depicted in the introduction) representing a knot or a link by adjoining properly that is called suitably connected. is the total number of all knot -mosaics. This value indicates the dimension of the Hilbert space of these quantum knot system. is already found for by the authors. In this paper, we construct an algorithm producing the precise value of for that uses recurrence relations of state matrices that turn out to be remarkably efficient to count knot mosaics. where matrices and are defined by for , with matrices and . Here denotes the sum of all entries of a matrix . For , means the identity matrix of size.
A Bayesian approach to multivariate measurement system assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Michael Scott
This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.
A Bayesian approach to multivariate measurement system assessment
Hamada, Michael Scott
2016-07-01
This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R&R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Furthermore, various measurement system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R&R study as well as simulated data.
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Distributions of mosquito larvae likely are a consequence of multiple factors, although two commonly studied factors (quality of the larval environment and the terrestrial matrix in which these habitats reside) have rarely and simultaneously been varied in the field to understand...
Transportation systems evaluation methodology development and applications, phase 3
NASA Technical Reports Server (NTRS)
Kuhlthau, A. R.; Jacobson, I. D.; Richards, L. C.
1981-01-01
Transportation systems or proposed changes in current systems are evaluated. Four principal evaluation criteria are incorporated in the process, operating performance characteristics as viewed by potential users, decisions based on the perceived impacts of the system, estimating what is required to reduce the system to practice; and predicting the ability of the concept to attract financial support. A series of matrix multiplications in which the various matrices represent evaluations in a logical sequence of the various discrete steps in a management decision process is used. One or more alternatives are compared with the current situation, and the result provides a numerical rating which determines the desirability of each alternative relative to the norm and to each other. The steps in the decision process are isolated so that contributions of each to the final result are readily analyzed. The ability to protect against bias on the part of the evaluators, and the fact that system parameters which are basically qualitative in nature can be easily included are advantageous.
Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.
Ogawa, Hiroyuki; Nasu, Senshi; Takeshige, Motomu; Funabashi, Hisakage; Saito, Mikako; Matsuoka, Hideaki
2012-12-01
Microbial colonies in food matrices could be counted accurately by a novel noise-free method based on time-lapse shadow image analysis. An agar plate containing many clusters of microbial colonies and/or meat fragments was trans-illuminated to project their 2-dimensional (2D) shadow images on a color CCD camera. The 2D shadow images of every cluster distributed within a 3-mm thick agar layer were captured in focus simultaneously by means of a multiple focusing system, and were then converted to 3-dimensional (3D) shadow images. By time-lapse analysis of the 3D shadow images, it was determined whether each cluster comprised single or multiple colonies or a meat fragment. The analytical precision was high enough to be able to distinguish a microbial colony from a meat fragment, to recognize an oval image as two colonies contacting each other, and to detect microbial colonies hidden under a food fragment. The detection of hidden colonies is its outstanding performance in comparison with other systems. The present system attained accuracy for counting fewer than 5 colonies and is therefore of practical importance. Copyright © 2012 Elsevier B.V. All rights reserved.
Methodological studies on the VVER-440 control assembly calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hordosy, G.; Kereszturi, A.; Maraczy, C.
1995-12-31
The control assembly regions of VVER-440 reactors are represented by 2-group albedo matrices in the global calculations of the KARATE code system. Some methodological aspects of calculating albedo matrices with the COLA transport code are presented. Illustrations are given how these matrices depend on the relevant parameters describing the boron steel and steel regions of the control assemblies. The calculation of the response matrix for a node consisting of two parts filled with different materials is discussed.
NASA Technical Reports Server (NTRS)
Buchholz, Peter; Ciardo, Gianfranco; Donatelli, Susanna; Kemper, Peter
1997-01-01
We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as the Kronecker product of sparse matrices, extending previous work in a unified notational framework. Then, we use our results to define new algorithms for the solution of large structured Markov models. In addition to a comprehensive overview of existing approaches, we give new results with respect to: (1) managing certain types of state-dependent behavior without incurring extra cost; (2) supporting both Jacobi-style and Gauss-Seidel-style methods by appropriate multiplication algorithms; (3) speeding up algorithms that consider probability vectors of size equal to the "actual" state space instead of the "potential" state space.
Controllability of multi-agent systems with periodically switching topologies and switching leaders
NASA Astrophysics Data System (ADS)
Tian, Lingling; Zhao, Bin; Wang, Long
2018-05-01
This paper considers controllability of multi-agent systems with periodically switching topologies and switching leaders. The concept of m-periodic controllability is proposed, and a criterion for m-periodic controllability is established. The effect of the duration of subsystems on controllability is analysed by utilising a property of analytic functions. In addition, the influence of switching periods on controllability is investigated, and an algorithm is proposed to search for the fewest periods to ensure controllability. A necessary condition for m-periodic controllability is obtained from the perspective of eigenvectors of the subsystems' Laplacian matrices. For a system with switching leaders, it is proved that switching-leader controllability is equivalent to multiple-leader controllability. Furthermore, both the switching order and the tenure of agents being leaders have no effect on the controllability. Some examples are provided to illustrate the theoretical results.
Three-dimensional polarization algebra.
R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto
2016-10-01
If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.
Gao, Yingbin; Kong, Xiangyu; Zhang, Huihui; Hou, Li'an
2017-05-01
Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Doha, E.; Bhrawy, A.
2006-06-01
It is well known that spectral methods (tau, Galerkin, collocation) have a condition number of ( is the number of retained modes of polynomial approximations). This paper presents some efficient spectral algorithms, which have a condition number of , based on the Jacobi?Galerkin methods of second-order elliptic equations in one and two space variables. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. The complexities of the algorithms are a small multiple of operations for a -dimensional domain with unknowns, while the convergence rates of the algorithms are exponentials with smooth solutions.
Properties of Zero-Free Transfer Function Matrices
NASA Astrophysics Data System (ADS)
D. O. Anderson, Brian; Deistler, Manfred
Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.
Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overy, Catherine; Blunt, N. S.; Shepherd, James J.
2014-12-28
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamicmore » itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.« less
Stability of model-based event-triggered control systems: a separation property
NASA Astrophysics Data System (ADS)
Hao, Fei; Yu, Hao
2017-04-01
To save resource of communication, this paper investigates the model-based event-triggered control systems. Two main problems are considered in this paper. One is, for given plant and model, to design event conditions to guarantee the stability of the systems. The other is to consider the effect of the model matrices on the stability. The results show that the closed-loop systems can be asymptotically stabilised with any model matrices in compact sets if the parameters in the event conditions are within the designed ranges. Then, a separation property of model-based event-triggered control is proposed. Namely, the design of the controller gain and the event condition can be separated from the selection of the model matrices. Based on this property, an adaption mechanism is introduced to the model-based event-triggered control systems, which can further improve the sampling performance. Finally, a numerical example is given to show the efficiency and feasibility of the developed results.
Novel sustained-release dosage forms of proteins using polyglycerol esters of fatty acids.
Yamagata, Y; Iga, K; Ogawa, Y
2000-02-03
In order to develop a novel delivery system for proteins based on polyglycerol esters of fatty acids (PGEFs), we studied a model system using interferon-alpha (IFN-alpha) as the test protein. A cylindrical matrix was prepared by a heat extrusion technique using a lyophilized powder of the protein and 11 different types of synthetic PGEFs, which varied in degree of glycerol polymerization (di- and tetra-), chain length of fatty acids (myristate, palmitate and stearate) and degree of fatty acid esterification (mono-, di- and tri-). In an in-vitro release study using an enzyme-linked immunosorbent assay (ELISA) as a detection method, the matrices prepared from a monoglyceride (used for comparison) and from diglycerol esters exhibited a biphasic release pattern with a large initial burst followed by slow release. In contrast, the matrices prepared from tetraglycerol esters showed a steady rate of release without a large initial burst. In an in vivo release study, initial bursts of IFN-alpha release were, also, dramatically reduced when the matrices were prepared from the tetraglycerol esters of palmitate and stearate, and the mean residence time (MRT) of IFN-alpha was prolonged, whereas the matrices prepared from monoglyceride and from diglycerol esters showed large initial bursts of IFN-alpha release. Since the release rates from the matrices prepared from the tetraglycerol esters of palmitate and stearate were governed by Jander's equation modified for a cylindrical matrix, the release from those matrices was concluded to be a diffusion-controlled process. The bioavailability of IFN-alpha after implantation of the matrix formulation prepared using all types of PGEFs, except for tetraglycerol triesters, was almost equivalent to that after injection of IFN-alpha solution; consequently, IFN-alpha in these matrices appears to remain stable during the release period.
Analyses of arsenic (As) species in body fluids and tissues of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. This information facilitates the risk assessment of disorders associated...
Simultaneous Inference Procedures for Means.
ERIC Educational Resources Information Center
Krishnaiah, P. R.
Some aspects of simultaneous tests for means are reviewed. Specifically, the comparison of univariate or multivariate normal populations based on the values of the means or mean vectors when the variances or covariance matrices are equal is discussed. Tukey's and Dunnett's tests for multiple comparisons of means, Scheffe's method of examining…
Most of the published studies focusing on the environmental and biological distribution of perfluorinated alkyl compounds (PFCs) have used triple quadrupole mass spectrometers for compound identification and quantitation. Multiple-reaction-monitoring (MRM) is a sensitive mass sp...
Proactive Interference and Item Similarity in Working Memory
ERIC Educational Resources Information Center
Bunting, Michael
2006-01-01
Proactive interference (PI) may influence the predictive utility of working memory span tasks. Participants in one experiment (N=70) completed Ravens Advanced Progressive Matrices (RAPM) and multiple versions of operation span and probed recall, modified for the type of memoranda (digits or words). Changing memoranda within- or across-trials…
Efficient, massively parallel eigenvalue computation
NASA Technical Reports Server (NTRS)
Huo, Yan; Schreiber, Robert
1993-01-01
In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.
Multiplicative Forests for Continuous-Time Processes
Weiss, Jeremy C.; Natarajan, Sriraam; Page, David
2013-01-01
Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability. PMID:25284967
Multiplicative Forests for Continuous-Time Processes.
Weiss, Jeremy C; Natarajan, Sriraam; Page, David
2012-01-01
Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability.
Fibonacci Identities, Matrices, and Graphs
ERIC Educational Resources Information Center
Huang, Danrun
2005-01-01
General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…
Random density matrices versus random evolution of open system
NASA Astrophysics Data System (ADS)
Pineda, Carlos; Seligman, Thomas H.
2015-10-01
We present and compare two families of ensembles of random density matrices. The first, static ensemble, is obtained foliating an unbiased ensemble of density matrices. As criterion we use fixed purity as the simplest example of a useful convex function. The second, dynamic ensemble, is inspired in random matrix models for decoherence where one evolves a separable pure state with a random Hamiltonian until a given value of purity in the central system is achieved. Several families of Hamiltonians, adequate for different physical situations, are studied. We focus on a two qubit central system, and obtain exact expressions for the static case. The ensemble displays a peak around Werner-like states, modulated by nodes on the degeneracies of the density matrices. For moderate and strong interactions good agreement between the static and the dynamic ensembles is found. Even in a model where one qubit does not interact with the environment excellent agreement is found, but only if there is maximal entanglement with the interacting one. The discussion is started recalling similar considerations for scattering theory. At the end, we comment on the reach of the results for other convex functions of the density matrix, and exemplify the situation with the von Neumann entropy.
ARMSTRONG, JENNA L.; DILLS, RUSSELL L.; YU, JIANBO; YOST, MICHAEL G.; FENSKE, RICHARD A.
2018-01-01
A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15–1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78–113% from XAD-2 active air sampling tubes and 71–108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74–94% after time periods ranging from 2–10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method. PMID:24328542
Armstrong, Jenna L; Dills, Russell L; Yu, Jianbo; Yost, Michael G; Fenske, Richard A
2014-01-01
A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15-1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78-113% from XAD-2 active air sampling tubes and 71-108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74-94% after time periods ranging from 2-10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method.
Uga, Minako; Dan, Ippeita; Dan, Haruka; Kyutoku, Yasushi; Taguchi, Y-h; Watanabe, Eiju
2015-01-01
Abstract. Recent advances in multichannel functional near-infrared spectroscopy (fNIRS) allow wide coverage of cortical areas while entailing the necessity to control family-wise errors (FWEs) due to increased multiplicity. Conventionally, the Bonferroni method has been used to control FWE. While Type I errors (false positives) can be strictly controlled, the application of a large number of channel settings may inflate the chance of Type II errors (false negatives). The Bonferroni-based methods are especially stringent in controlling Type I errors of the most activated channel with the smallest p value. To maintain a balance between Types I and II errors, effective multiplicity (Meff) derived from the eigenvalues of correlation matrices is a method that has been introduced in genetic studies. Thus, we explored its feasibility in multichannel fNIRS studies. Applying the Meff method to three kinds of experimental data with different activation profiles, we performed resampling simulations and found that Meff was controlled at 10 to 15 in a 44-channel setting. Consequently, the number of significantly activated channels remained almost constant regardless of the number of measured channels. We demonstrated that the Meff approach can be an effective alternative to Bonferroni-based methods for multichannel fNIRS studies. PMID:26157982
A multiparallel bioreactor for the cultivation of mammalian cells in a 3D-ceramic matrix.
Goralczyk, Vicky; Driemel, Gregor; Bischof, Andreas; Peter, Andrea; Berthold, Almuth; Kroh, Lothar; Blessing, Lucienne; Schubert, Helmut; King, Rudibert
2010-01-01
For adherently growing cells, cultivation is limited by the provided growth surface. Excellent surface-to-volume ratios are found in highly porous matrices, which have to face the challenge of nutrient supply inside the matrices' caverns. Therefore, perfusion strategies are recommended which often have to deal with the need of developing an encompassing bioreactor periphery. We present a modular bioreactor system based on a porous ceramic matrix that enables the supply of cells with oxygen and nutrients by perfusion. The present version of the reactor system focuses on simple testing of various inoculation and operation modes. Moreover, it can be used to efficiently test different foam structures. Protocols are given to set-up the system together with handling procedures for long-time cultivation of a CHO cell line. Experimental results confirm vital growth of cells inside the matrices' caverns.
A FORTRAN program for the analysis of linear continuous and sample-data systems
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1976-01-01
A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.
Linear precoding based on polynomial expansion: reducing complexity in massive MIMO.
Mueller, Axel; Kammoun, Abla; Björnson, Emil; Debbah, Mérouane
Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively "antenna-efficient" regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Elkurdi, Yousef; Fernández, David; Souleimanov, Evgueni; Giannacopoulos, Dennis; Gross, Warren J.
2008-04-01
The Finite Element Method (FEM) is a computationally intensive scientific and engineering analysis tool that has diverse applications ranging from structural engineering to electromagnetic simulation. The trends in floating-point performance are moving in favor of Field-Programmable Gate Arrays (FPGAs), hence increasing interest has grown in the scientific community to exploit this technology. We present an architecture and implementation of an FPGA-based sparse matrix-vector multiplier (SMVM) for use in the iterative solution of large, sparse systems of equations arising from FEM applications. FEM matrices display specific sparsity patterns that can be exploited to improve the efficiency of hardware designs. Our architecture exploits FEM matrix sparsity structure to achieve a balance between performance and hardware resource requirements by relying on external SDRAM for data storage while utilizing the FPGAs computational resources in a stream-through systolic approach. The architecture is based on a pipelined linear array of processing elements (PEs) coupled with a hardware-oriented matrix striping algorithm and a partitioning scheme which enables it to process arbitrarily big matrices without changing the number of PEs in the architecture. Therefore, this architecture is only limited by the amount of external RAM available to the FPGA. The implemented SMVM-pipeline prototype contains 8 PEs and is clocked at 110 MHz obtaining a peak performance of 1.76 GFLOPS. For 8 GB/s of memory bandwidth typical of recent FPGA systems, this architecture can achieve 1.5 GFLOPS sustained performance. Using multiple instances of the pipeline, linear scaling of the peak and sustained performance can be achieved. Our stream-through architecture provides the added advantage of enabling an iterative implementation of the SMVM computation required by iterative solution techniques such as the conjugate gradient method, avoiding initialization time due to data loading and setup inside the FPGA internal memory.
Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules
2016-01-01
Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants). PMID:26811936
Optimal Frequency-Domain System Realization with Weighting
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Maghami, Peiman G.
1999-01-01
Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation uses a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. Three different approaches are introduced to fine-tune the model using nonlinear programming methods to minimize the desired cost function. The first method uses an eigenvalue assignment technique to reassign a subset of system poles to improve the identified model. The second method deals with the model in the real Schur or modal form, reassigns a subset of system poles, and adjusts the columns (rows) of the input (output) influence matrix using a nonlinear optimizer. The third method also optimizes a subset of poles, but the input and output influence matrices are refined at every optimization step through least-squares procedures.
Condition number estimation of preconditioned matrices.
Kushida, Noriyuki
2015-01-01
The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.
Assessment of chronic sublethal effects of imidacloprid on honey bee colony health
USDA-ARS?s Scientific Manuscript database
Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 µg/kg over multiple brood cycles. Various endpoints ...
“SNP Snappy”: A Strategy for Fast Genome-Wide Association Studies Fitting a Full Mixed Model
Meyer, Karin; Tier, Bruce
2012-01-01
A strategy to reduce computational demands of genome-wide association studies fitting a mixed model is presented. Improvements are achieved by utilizing a large proportion of calculations that remain constant across the multiple analyses for individual markers involved, with estimates obtained without inverting large matrices. PMID:22021386
Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei
2012-12-01
Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.
Goodman, Laura B; McDonough, Patrick L; Anderson, Renee R; Franklin-Guild, Rebecca J; Ryan, James R; Perkins, Gillian A; Thachil, Anil J; Glaser, Amy L; Thompson, Belinda S
2017-11-01
Rapid screening for enteric bacterial pathogens in clinical environments is essential for biosecurity. Salmonella found in veterinary hospitals, particularly Salmonella enterica serovar Dublin, can pose unique challenges for culture and testing because of its poor growth. Multiple Salmonella serovars including Dublin are emerging threats to public health given increasing prevalence and antimicrobial resistance. We adapted an automated food testing method to veterinary samples and evaluated the performance of the method in a variety of matrices including environmental samples ( n = 81), tissues ( n = 52), feces ( n = 148), and feed ( n = 29). A commercial kit was chosen as the basis for this approach in view of extensive performance characterizations published by multiple independent organizations. A workflow was established for efficiently and accurately testing veterinary matrices and environmental samples by use of real-time PCR after selective enrichment in Rappaport-Vassiliadis soya (RVS) medium. Using this method, the detection limit for S. Dublin improved by 100-fold over subculture on selective agars (eosin-methylene blue, brilliant green, and xylose-lysine-deoxycholate). Overall, the procedure was effective in detecting Salmonella spp. and provided next-day results.
Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thamir, F.; McBride, C.M.
1985-12-31
Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inabilitymore » to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs.« less
Gonthier, Corentin; Thomassin, Noémylle
2015-10-01
Working memory capacity consistently correlates with fluid intelligence. It has been suggested that this relationship is partly attributable to strategy use: Participants with high working memory capacity would use more effective strategies, in turn leading to higher performance on fluid intelligence tasks. However, this idea has never been directly investigated. In 2 experiments, we tested this hypothesis by directly manipulating strategy use in a combined experimental-correlational approach (Experiment 1; N = 250) and by measuring strategy use with a self-report questionnaire (Experiment 2; N = 93). Inducing all participants to use an effective strategy in Raven's matrices decreased the correlation between working memory capacity and performance; the strategy use measure fully mediated the relationship between working memory capacity and performance on the matrices task. These findings indicate that individual differences in strategic behavior drive the predictive utility of working memory. We interpret the results within a theoretical framework integrating the multiple mediators of the relationship between working memory capacity and high-level cognition. (c) 2015 APA, all rights reserved).
Riemannian multi-manifold modeling and clustering in brain networks
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.
2017-08-01
This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.
Hierarchical matrices implemented into the boundary integral approaches for gravity field modelling
NASA Astrophysics Data System (ADS)
Čunderlík, Róbert; Vipiana, Francesca
2017-04-01
Boundary integral approaches applied for gravity field modelling have been recently developed to solve the geodetic boundary value problems numerically, or to process satellite observations, e.g. from the GOCE satellite mission. In order to obtain numerical solutions of "cm-level" accuracy, such approaches require very refined level of the disretization or resolution. This leads to enormous memory requirements that need to be reduced. An implementation of the Hierarchical Matrices (H-matrices) can significantly reduce a numerical complexity of these approaches. A main idea of the H-matrices is based on an approximation of the entire system matrix that is split into a family of submatrices. Large submatrices are stored in factorized representation, while small submatrices are stored in standard representation. This allows reducing memory requirements significantly while improving the efficiency. The poster presents our preliminary results of implementations of the H-matrices into the existing boundary integral approaches based on the boundary element method or the method of fundamental solution.
A comparison of SuperLU solvers on the intel MIC architecture
NASA Astrophysics Data System (ADS)
Tuncel, Mehmet; Duran, Ahmet; Celebi, M. Serdar; Akaydin, Bora; Topkaya, Figen O.
2016-10-01
In many science and engineering applications, problems may result in solving a sparse linear system AX=B. For example, SuperLU_MCDT, a linear solver, was used for the large penta-diagonal matrices for 2D problems and hepta-diagonal matrices for 3D problems, coming from the incompressible blood flow simulation (see [1]). It is important to test the status and potential improvements of state-of-the-art solvers on new technologies. In this work, sequential, multithreaded and distributed versions of SuperLU solvers (see [2]) are examined on the Intel Xeon Phi coprocessors using offload programming model at the EURORA cluster of CINECA in Italy. We consider a portfolio of test matrices containing patterned matrices from UFMM ([3]) and randomly located matrices. This architecture can benefit from high parallelism and large vectors. We find that the sequential SuperLU benefited up to 45 % performance improvement from the offload programming depending on the sparse matrix type and the size of transferred and processed data.
Alexandre, Bergé; Barbara, Giroud; Laure, Wiest; Bruno, Domenjoud; Adriana, Gonzalez-Ospina; Emmanuelle, Vulliet
2016-06-10
Discharges of surfactants from wastewater treatment plants are often considered as the principal vector of pollution into the environment. The analysis of complex matrices, such as urban wastewater, suspended solids and biological sludge requires careful preparation of the sample to obtain a sensitive, selective and reproducible analysis. A simple, fast, effective and multi-residue method based on the SPE (water) and QuEChERS (solid matrices) approaches using synthetic matrices for validation and quantification, has been developed for the determination of 16 surfactants in wastewater, suspended solids and biological sludge. This work resulted in an innovative method that was validated to detect and assess several classes of surfactants such as quaternary ammonium compounds, betaïns, alkylphenols and their ethoxylated or sulfated derivatives in urban wastewater and solid matrices. The optimised extraction method exhibited recoveries comprised between 83% and 120% for all the tested compounds in the dissolved matrix and between 50% and 109% for particulate matrix. The limits of quantification of all compounds were comprised between 0.1 and 1.0μg/L for dissolved matrix and between 2 and 1000ng/g (dry weight) in particulate matrix. Linearity was assessed for all compounds within the [LOQ-250LOQ] range. Confidence intervals were also computed in real matrices with less than 15% margin of error for all studied surfactants. This work has confirmed, first and foremost, that surfactants are indeed highly concentrated in urban wastewater. As expected, linear alkylbenzene sulfonates were present at significant concentrations (up to 1-2mg/L). In addition, although biological processing results in significant removal of the total pollution, the residual concentrations at output of WWTP remain significant (up to 100μg/L). Copyright © 2016 Elsevier B.V. All rights reserved.
Chemiluminescence in cryogenic matrices
NASA Astrophysics Data System (ADS)
Lotnik, S. V.; Kazakov, Valeri P.
1989-04-01
The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.
Dececchi, T Alex; Mabee, Paula M; Blackburn, David C
2016-01-01
Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications ('monographs') and those used in phylogenetic analyses ('matrices'). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life.
Joining of Components of Complex Structures for Improved Dynamic Response
2011-10-28
system- level mass and stiffness matrices and force vector (at each frequency in the range of interest). To address this issue a series of complex...displacements of all candidate joint locations by using the system- level mass and stiffness matrices and force vector (at each frequency in the range of...joints. In contrast, Li et al. [10] proposed a fastener layout/topology that achieves an almost uniform stress level in each joint, and adopted
Pasting and extrusion properties of mixed carbohydrates and whey protein isolate matrices
USDA-ARS?s Scientific Manuscript database
Mixed systems of whey protein isolate (WPI) or texturized WPI (tWPI) and different starches may form weak or strong gel pastes or rigid matrices depending on interactions. The paste viscoelasticity of starches from amioca, barley, corn starch, Hylon VII, plantain, and pea starch, mixed with whey pro...
Robaski, Aliden-Willian; Pamato, Saulo; Tomás-de Oliveira, Marcelo; Pereira, Jefferson-Ricardo
2017-07-01
The enamel condition and the quality of surface are points that need to be considered for achieving optimal efficiency in the treatment with orthodontic brackets. The aim of this study was to assess the immediate bond strength of metallic brackets cemented to dental. Forty human premolars were double-sectioned, placed in PVC matrices and randomly divided into 10 groups (n=8). They received artificial saliva contamination before or after the application of adhesive systems, except for the control groups. The metallic brackets were cemented using two orthodontic cements (Transbond™ Plus Color Change, 3M Unitek e Transbond™ XT Light, 3M Unitek). The specimens were subjected to mechanical shear bond strength testing and classified according to the fracture pattern. The results were analyzed using a two-way ANOVA and Tukey's test for multiple comparisons ( p <0.05). ANOVA analysis showed statistically significant differences between the groups ( p =0.01). The Tukey's multiple comparison test indicated statistically significant difference between G6 and G7 groups ( p <0.05). A high prevalence of adhesive failure in the groups receiving the hydrophobic adhesive system. The saliva contamination prior to the application of a hydrophobic simplified conventional adhesive system was responsible for decreasing the immediate bond strength values of brackets cemented on the dental enamel. Key words: Bonding, orthodontic brackets, shear bond strength, saliva, adhesive systems.
Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.
Goñi, S; Guerrero, A; Lorenzo, M P
2006-10-11
The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively).
Axial interface optical phonon modes in a double-nanoshell system.
Kanyinda-Malu, C; Clares, F J; de la Cruz, R M
2008-07-16
Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.
Zhang, Xian-Ming; Han, Qing-Long
2016-12-01
This paper is concerned with decentralized event-triggered dissipative control for systems with the entries of the system outputs having different physical properties. Depending on these different physical properties, the entries of the system outputs are grouped into multiple nodes. A number of sensors are used to sample the signals from different nodes. A decentralized event-triggering scheme is introduced to select those necessary sampled-data packets to be transmitted so that communication resources can be saved significantly while preserving the prescribed closed-loop performance. First, in order to organize the decentralized data packets transmitted from the sensor nodes, a data packet processor (DPP) is used to generate a new signal to be held by the zero-order-hold once the signal stored by the DPP is updated at some time instant. Second, under the mechanism of the DPP, the resulting closed-loop system is modeled as a linear system with an interval time-varying delay. A sufficient condition is derived such that the closed-loop system is asymptotically stable and strictly (Q 0 ,S 0 ,R 0 ) -dissipative, where Q 0 ,S 0 , and R 0 are real matrices of appropriate dimensions with Q 0 and R 0 symmetric. Third, suitable output-based controllers can be designed based on solutions to a set of a linear matrix inequality. Finally, two examples are given to demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Singh, Hukum
2016-12-01
A cryptosystem for securing image encryption is considered by using double random phase encoding in Fresnel wavelet transform (FWT) domain. Random phase masks (RPMs) and structured phase masks (SPMs) based on devil's vortex toroidal lens (DVTL) are used in spatial as well as in Fourier planes. The images to be encrypted are first Fresnel transformed and then single-level discrete wavelet transform (DWT) is apply to decompose LL,HL, LH and HH matrices. The resulting matrices from the DWT are multiplied by additional RPMs and the resultants are subjected to inverse DWT for the encrypted images. The scheme is more secure because of many parameters used in the construction of SPM. The original images are recovered by using the correct parameters of FWT and SPM. Phase mask SPM based on DVTL increases security that enlarges the key space for encryption and decryption. The proposed encryption scheme is a lens-less optical system and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The computed value of mean-squared-error between the retrieved and the input images shows the efficacy of scheme. The sensitivity to encryption parameters, robustness against occlusion, entropy and multiplicative Gaussian noise attacks have been analysed.
Implicit multiplane 3D camera calibration matrices for stereo image processing
NASA Astrophysics Data System (ADS)
McKee, James W.; Burgett, Sherrie J.
1997-12-01
By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time), synchronous, stereo images of the optical fiber during payout. A 3D equation for the fiber at an instant in time is calculated from the corresponding pair of stereo images as follows. In each image, about 20 points along the 2D projection of the fiber are located. Each of these 'fiber points' in one image is mapped to its projection line in 3D space. Each projection line is mapped into another line in the second image. The intersection of each mapped projection line and a curve fitted to the fiber points of the second image (fiber projection in second image) is calculated. Each intersection point is mapped back to the 3D space. A 3D fiber coordinate is formed from the intersection, in 3D space, of a mapped intersection point with its corresponding projection line. The 3D equation for the fiber is computed from this ordered list of 3D coordinates. This process requires a method of accurately mapping 2D (image space) to 3D (object space) and visa versa.3173
Response of human macrophages to wound matrices in vitro.
Witherel, Claire E; Graney, Pamela L; Freytes, Donald O; Weingarten, Michael S; Spiller, Kara L
2016-05-01
Chronic wounds remain a major burden to the global healthcare system. Myriad wound matrices are commercially available but their mechanisms of action are poorly understood. Recent studies have shown that macrophages are highly influenced by their microenvironment, but it is not known how different biomaterials affect this interaction. Here, it was hypothesized that human macrophages respond differently to changes in biomaterial properties in vitro with respect to phenotype, including pro-inflammatory M1, anti-inflammatory M2a, known for facilitating extracellular matrix deposition and proliferation, and M2c, which has recently been associated with tissue remodeling. Using multiple donors, it was found that collagen scaffolds cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) promoted the least inflammatory phenotype in primary human macrophages compared with scaffolds cross-linked with formaldehyde or glutaraldehyde. Importantly, gene expression analysis trends were largely conserved between donors, especially TNFa (M1), CCL22 (M2a), and MRC1 (M2a). Then the response of primary and THP1 monocyte-derived macrophages to four commercially available wound matrices were compared-Integra Dermal Regeneration Template (Integra), PriMatrix Dermal Repair Scaffold (PriMatrix), AlloMend Acellular Dermal Matrix (AlloMend), and Oasis Wound Matrix (Oasis). Gene expression trends were different between primary and THP1 monocyte-derived macrophages for all six genes analyzed in this study. Finally, the behavior of primary macrophages cultured onto the wound matrices over time was analyzed. Integra and Oasis caused down-regulation of M2a markers CCL22 and TIMP3. PriMatrix caused up-regulation of TNFa (M1) and CD163 (M2c) and down-regulation of CCL22 and TIMP3 (both M2a). AlloMend caused up-regulation in CD163 (M2c). Lastly, Oasis promoted the largest increase in the combinatorial M1/M2 score, defined as the sum of M1 genes divided by the sum of M2 genes. This preliminary study suggested that biomaterials influenced the wound microenvironment to affect macrophage phenotype. © 2016 by the Wound Healing Society.
Xiong, Yeping; Zhao, Yuan-Yuan; Goruk, Sue; Oilund, Kirsten; Field, Catherine J; Jacobs, René L; Curtis, Jonathan M
2012-12-12
A hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC LC-MS/MS) method was developed and validated to simultaneously quantify six aqueous choline-related compounds and eight major phospholipids classes in a single run. HILIC chromatography was coupled to positive ion electrospray mass spectrometry. A combination of multiple scan modes including precursor ion scan, neutral loss scan and multiple reaction monitoring was optimized for the determination of each compound or class in a single LC/MS run. This work developed a simplified extraction scheme in which both free choline and related compounds along with phospholipids were extracted into a homogenized phase using chloroform/methanol/water (1:2:0.8) and diluted into methanol for the analysis of target compounds in a variety of sample matrices. The analyte recoveries were evaluated by spiking tissues and food samples with two isotope-labeled internal standards, PC-d(3) and Cho-d(3). Recoveries of between 90% and 115% were obtained by spiking a range of sample matrices with authentic standards containing all 14 of the target analytes. The precision of the analysis ranged from 1.6% to 13%. Accuracy and precision was comparable to that obtained by quantification of selected phospholipid classes using (31)P NMR. A variety of sample matrices including egg yolks, human diets and animal tissues were analyzed using the validated method. The measurements of total choline in selected foods were found to be in good agreement with values obtained from the USDA choline database. Copyright © 2012 Elsevier B.V. All rights reserved.
A canonical form of the equation of motion of linear dynamical systems
NASA Astrophysics Data System (ADS)
Kawano, Daniel T.; Salsa, Rubens Goncalves; Ma, Fai; Morzfeld, Matthias
2018-03-01
The equation of motion of a discrete linear system has the form of a second-order ordinary differential equation with three real and square coefficient matrices. It is shown that, for almost all linear systems, such an equation can always be converted by an invertible transformation into a canonical form specified by two diagonal coefficient matrices associated with the generalized acceleration and displacement. This canonical form of the equation of motion is unique up to an equivalence class for non-defective systems. As an important by-product, a damped linear system that possesses three symmetric and positive definite coefficients can always be recast as an undamped and decoupled system.
Quantum morphogenesis: A variation on Thom's catastrophe theory
NASA Astrophysics Data System (ADS)
Aerts, Dirk; Czachor, Marek; Gabora, Liane; Kuna, Maciej; Posiewnik, Andrzej; Pykacz, Jarosław; Syty, Monika
2003-05-01
Noncommutative propositions are characteristic of both quantum and nonquantum (sociological, biological, and psychological) situations. In a Hilbert space model, states, understood as correlations between all the possible propositions, are represented by density matrices. If systems in question interact via feedback with environment, their dynamics is nonlinear. Nonlinear evolutions of density matrices lead to the phenomenon of morphogenesis that may occur in noncommutative systems. Several explicit exactly solvable models are presented, including “birth and death of an organism” and “development of complementary properties.”
Design of Orion Soil Impact Study using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2010-01-01
Two conventional One Factor At a Time (OFAT) test matrices under consideration for an Orion Landing System subscale soil impact study are reviewed. Certain weaknesses in the designs, systemic to OFAT experiment designs generally, are identified. An alternative test matrix is proposed that is based in the Modern Design of Experiments (MDOE), which achieves certain synergies by combining the original two test matrices into one. The attendant resource savings are quantified and the impact on uncertainty is discussed.
Condition Number Estimation of Preconditioned Matrices
Kushida, Noriyuki
2015-01-01
The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331
An integrated strategy combining DNA walking and NGS to detect GMOs.
Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H
2017-10-01
Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
A Role for M-Matrices in Modelling Population Growth
ERIC Educational Resources Information Center
James, Glyn; Rumchev, Ventsi
2006-01-01
Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…
Automatic finite element generators
NASA Technical Reports Server (NTRS)
Wang, P. S.
1984-01-01
The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.
A formulation of the foundations of genetics and evolution.
Bahr, Brian Edward
2016-05-01
This paper proposes a formulation of theories of the foundations of genetics and evolution that can be used to mathematically simulate phenotype expression, reproduction, mutation, and natural selection. It will be shown that Mendelian inheritance can be mathematically simulated with expressions involving matrices and that these expressions can also simulate phenomena that are modifications to Mendel's basic principles, like alleles that give rise to quantitative effects and traits that are the expression of multiple alleles and/or multiple genetic loci. Copyright © 2016 Elsevier Inc. All rights reserved.
The portable P300 dialing system based on tablet and Emotiv Epoc headset.
Tong Jijun; Zhang Peng; Xiao Ran; Ding Lei
2015-08-01
A Brain-computer interface (BCI) is a novel communication system that translates brain signals into a control signal. Now with the appearance of the commercial EEG headsets and mobile smart platforms (tablet, smartphone), it is possible to develop the mobile BCI system, which can greatly improve the life quality of patients suffering from motor disease, such as amyotrophic lateral scleroses (ALS), multiple sclerosis, cerebral palsy and head trauma. This study adopted a 14-channel Emotiv EPOC headset and Microsoft surface pro 3 to realize a dialing system, which was represented by 4×3 matrices of alphanumeric characters. The performance of the online portable dialing system based on P300 is satisfying. The average classification accuracy reaches 88.75±10.57% in lab and 73.75±16.94% in metro, while the information transfer rate (ITR) reaches 7.17±1.80 and 5.05±2.17 bits/min respectively. This means the commercial EEG headset and tablet has good prospect in developing real time BCI system in realistic environments.
Bruce G. Marcot; Michael J. Wisdom; Hiram W. Li; Gonzalo C. Castillo
1994-01-01
The traditional approach to wildlife management has focused on single speciesâhistorically game species and more recently threatened and endangered species. Several newer approaches to managing for multiple species and biological diversity include managing coarse filters, ecological indicator species, indicator guilds, and use of species-habitat matrices. These and...
Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.
Student Solution Manual for Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.
ERIC Educational Resources Information Center
Bloom, Allan M.; And Others
In response to the increasing importance of student performance in required classes, research was conducted to compare two prediction procedures, linear modeling using multiple regression and nonlinear modeling using AID3. Performance in the first college math course (College Mathematics, Calculus, or Business Calculus Matrices) was the dependent…
K.yle J. Haynes; Ottar N. Bjornstad; Andrew J. Allstadt; Andrew M. Liebhold
2012-01-01
Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics...
We evaluated the use of qPCR RNA-based methods in the detection of fecal bacteria in environmental waters. We showed that RNA methods can increase the detection of fecal bacteria in multiple water matrices. The data suggest that this is a viable alternative for the detection of a...
Abstract Analyses of arsenic (As) species in tissues and body fluids of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. We have previously described an oxidation state-specifi...
NASA Astrophysics Data System (ADS)
Boski, Marcin; Paszke, Wojciech
2017-01-01
This paper deals with designing of iterative learning control schemes for uncertain systems with static nonlinearities. More specifically, the nonlinear part is supposed to be sector bounded and system matrices are assumed to range in the polytope of matrices. For systems with such nonlinearities and uncertainties the repetitive process setting is exploited to develop a linear matrix inequality based conditions for computing the feedback and feedforward (learning) controllers. These controllers guarantee acceptable dynamics along the trials and ensure convergence of the trial-to-trial error dynamics, respectively. Numerical examples illustrate the theoretical results and confirm effectiveness of the designed control scheme.
Recursive Deadbeat Controller Design
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1997-01-01
This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara Gibson
We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties ofmore » the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.« less
Human body burdens of chemicals used in plastic manufacture
Koch, Holger M.; Calafat, Antonia M.
2009-01-01
In the last decades, the availability of sophisticated analytical chemistry techniques has facilitated measuring trace levels of multiple environmental chemicals in human biological matrices (i.e. biomonitoring) with a high degree of accuracy and precision. As biomonitoring data have become readily available, interest in their interpretation has increased. We present an overview on the use of biomonitoring in exposure and risk assessment using phthalates and bisphenol A as examples of chemicals used in the manufacture of plastic goods. We present and review the most relevant research on biomarkers of exposure for phthalates and bisphenol A, including novel and most comprehensive biomonitoring data from Germany and the United States. We discuss several factors relevant for interpreting and understanding biomonitoring data, including selection of both biomarkers of exposure and human matrices, and toxicokinetic information. PMID:19528056
Graph Theoretic Foundations of Multibody Dynamics Part I: Structural Properties
Jain, Abhinandan
2011-01-01
This is the first part of two papers that use concepts from graph theory to obtain a deeper understanding of the mathematical foundations of multibody dynamics. The key contribution is the development of a unifying framework that shows that key analytical results and computational algorithms in multibody dynamics are a direct consequence of structural properties and require minimal assumptions about the specific nature of the underlying multibody system. This first part focuses on identifying the abstract graph theoretic structural properties of spatial operator techniques in multibody dynamics. The second part paper exploits these structural properties to develop a broad spectrum of analytical results and computational algorithms. Towards this, we begin with the notion of graph adjacency matrices and generalize it to define block-weighted adjacency (BWA) matrices and their 1-resolvents. Previously developed spatial operators are shown to be special cases of such BWA matrices and their 1-resolvents. These properties are shown to hold broadly for serial and tree topology multibody systems. Specializations of the BWA and 1-resolvent matrices are referred to as spatial kernel operators (SKO) and spatial propagation operators (SPO). These operators and their special properties provide the foundation for the analytical and algorithmic techniques developed in the companion paper. We also use the graph theory concepts to study the topology induced sparsity structure of these operators and the system mass matrix. Similarity transformations of these operators are also studied. While the detailed development is done for the case of rigid-link multibody systems, the extension of these techniques to a broader class of systems (e.g. deformable links) are illustrated. PMID:22102790
NASA Astrophysics Data System (ADS)
Shokravi, H.; Bakhary, NH
2017-11-01
Subspace System Identification (SSI) is considered as one of the most reliable tools for identification of system parameters. Performance of a SSI scheme is considerably affected by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that is used to reduce the dimensionality of the state-space equation. Generally one of the weight matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of studies in the field of structural health monitoring are using SSI for damage identification. However, studies that evaluate the performance of the weight matrices particularly in association with accuracy, noise resistance, and time complexity properties are very limited. In this study, the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values and elapsed time are used in the assessment process. A numerical model of a mass-spring-dashpot and operational data is used in this research paper. It is observed that the principal components obtained using PC algorithms are more robust against noise uncertainty and give more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to using unit weight matrices. The obtained results demonstrated that the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal identification in PC.
TiO₂-Based Photocatalytic Geopolymers for Nitric Oxide Degradation.
Strini, Alberto; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Messina, Francesco; Schiavi, Luca; Corsaro, Davide; Cioffi, Raffaele
2016-06-24
This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO₂ by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.
Modelling and control of a rotor supported by magnetic bearings
NASA Technical Reports Server (NTRS)
Gurumoorthy, R.; Pradeep, A. K.
1994-01-01
In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.
Extending the length and time scales of Gram-Schmidt Lyapunov vector computations
NASA Astrophysics Data System (ADS)
Costa, Anthony B.; Green, Jason R.
2013-08-01
Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram-Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram-Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard-Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram-Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.
Blumthaler, Ingrid; Oberst, Ulrich
2012-03-01
Control design belongs to the most important and difficult tasks of control engineering and has therefore been treated by many prominent researchers and in many textbooks, the systems being generally described by their transfer matrices or by Rosenbrock equations and more recently also as behaviors. Our approach to controller design uses, in addition to the ideas of our predecessors on coprime factorizations of transfer matrices and on the parametrization of stabilizing compensators, a new mathematical technique which enables simpler design and also new theorems in spite of the many outstanding results of the literature: (1) We use an injective cogenerator signal module ℱ over the polynomial algebra [Formula: see text] (F an infinite field), a saturated multiplicatively closed set T of stable polynomials and its quotient ring [Formula: see text] of stable rational functions. This enables the simultaneous treatment of continuous and discrete systems and of all notions of stability, called T-stability. We investigate stabilizing control design by output feedback of input/output (IO) behaviors and study the full feedback IO behavior, especially its autonomous part and not only its transfer matrix. (2) The new technique is characterized by the permanent application of the injective cogenerator quotient signal module [Formula: see text] and of quotient behaviors [Formula: see text] of [Formula: see text]-behaviors B. (3) For the control tasks of tracking, disturbance rejection, model matching, and decoupling and not necessarily proper plants we derive necessary and sufficient conditions for the existence of proper stabilizing compensators with proper and stable closed loop behaviors, parametrize all such compensators as IO behaviors and not only their transfer matrices and give new algorithms for their construction. Moreover we solve the problem of pole placement or spectral assignability for the complete feedback behavior. The properness of the full feedback behavior ensures the absence of impulsive solutions in the continuous case, and that of the compensator enables its realization by Kalman state space equations or elementary building blocks. We note that every behavior admits an IO decomposition with proper transfer matrix, but that most of these decompositions do not have this property, and therefore we do not assume the properness of the plant. (4) The new technique can also be applied to more general control interconnections according to Willems, in particular to two-parameter feedback compensators and to the recent tracking framework of Fiaz/Takaba/Trentelman. In contrast to these authors, however, we pay special attention to the properness of all constructed transfer matrices which requires more subtle algorithms.
Lin, Wei; Jiang, Ruifen; Shen, Yong; Xiong, Yaxin; Hu, Sizi; Xu, Jianqiao; Ouyang, Gangfeng
2018-04-13
Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (R Adj. 2 =0.862) and predictable (Q 2 =0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Atomistic simulation of graphene-based polymer nanocomposites
NASA Astrophysics Data System (ADS)
Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis
2016-05-01
Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.
NASA Technical Reports Server (NTRS)
Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)
1999-01-01
The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).
Parallel matrix multiplication on the Connection Machine
NASA Technical Reports Server (NTRS)
Tichy, Walter F.
1988-01-01
Matrix multiplication is a computation and communication intensive problem. Six parallel algorithms for matrix multiplication on the Connection Machine are presented and compared with respect to their performance and processor usage. For n by n matrices, the algorithms have theoretical running times of O(n to the 2nd power log n), O(n log n), O(n), and O(log n), and require n, n to the 2nd power, n to the 2nd power, and n to the 3rd power processors, respectively. With careful attention to communication patterns, the theoretically predicted runtimes can indeed be achieved in practice. The parallel algorithms illustrate the tradeoffs between performance, communication cost, and processor usage.
Encoding the structure of many-body localization with matrix product operators
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.
2017-01-01
Anderson insulators are noninteracting disordered systems which have localized single-particle eigenstates. The interacting analog of Anderson insulators are the many-body localized (MBL) phases. The spectrum of the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the single-particle modes. We show that product states over matrix product operators of small bond dimension is the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-body eigenstates are encoded by matrix product states (i.e., density matrix renormalization group wave functions) consisting of only two sets of low bond dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible combinations of these sets of matrices.
Asymmetric correlation matrices: an analysis of financial data
NASA Astrophysics Data System (ADS)
Livan, G.; Rebecchi, L.
2012-06-01
We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.
NASA Technical Reports Server (NTRS)
Freund, Roland
1988-01-01
Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.
Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F
2015-10-01
To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.
Cole, Grace; McCaffrey, Joanne; Ali, Ahlam A.; McBride, John W.; McCrudden, Cian M.; Vincente-Perez, Eva M.; Donnelly, Ryan F.; McCarthy, Helen O.
2017-01-01
ABSTRACT DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application. PMID:27846370
New Operational Matrices for Solving Fractional Differential Equations on the Half-Line
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369
Low rank factorization of the Coulomb integrals for periodic coupled cluster theory.
Hummel, Felix; Tsatsoulis, Theodoros; Grüneis, Andreas
2017-03-28
We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N 4 ) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.
New operational matrices for solving fractional differential equations on the half-line.
Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A
2015-01-01
In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.
Abbey, Colette A; Bayless, Kayla J
2014-09-01
This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs integrate signals from multiple exogenous factors, including changes in matrix density, to accomplish successful sprouting responses. We show here for the first time that zyxin limited the formation and extension of fine peripheral processes used by ECs for matrix interrogation, providing a molecular explanation for altered EC responses to high and low density collagen matrices. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices.
Brusco, Michael; Steinley, Douglas
2011-10-01
Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance or non-attendance of individuals at events, the participation or lack of participation of groups in projects, and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling based on structural equivalence, where the goal is to identify partitions for the row and column objects such that the clusters of the row and column objects form blocks that are either complete (all 1s) or null (all 0s) to the greatest extent possible. Multiple restarts of an object relocation heuristic that seeks to minimize the number of inconsistencies (i.e., 1s in null blocks and 0s in complete blocks) with ideal block structure is the predominant approach for tackling this problem. As an alternative, we propose a fast and effective implementation of tabu search. Computational comparisons across a set of 48 large network matrices revealed that the new tabu-search heuristic always provided objective function values that were better than those of the relocation heuristic when the two methods were constrained to the same amount of computation time.
Regenbogen, Sam; Wilkins, Angela D; Lichtarge, Olivier
2016-01-01
Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses.
REGENBOGEN, SAM; WILKINS, ANGELA D.; LICHTARGE, OLIVIER
2015-01-01
Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to integrate knowledge from disparate studies to discover connections across domains. Here, we used a Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise information about their interactions. Our approach, applied to matrices derived from the Comparative Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions of STRING, an independent, external network of protein-protein interactions. Finally, this approach could integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using only data prior to that date. We conclude that collaborative filtering can integrate information across multiple types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing hypotheses. PMID:26776170
A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations
NASA Technical Reports Server (NTRS)
Ghosh, Amitabha
1997-01-01
This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunnel. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally some results of the current investigation are presented.
A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations
NASA Technical Reports Server (NTRS)
Ghosh, Amitabha
1997-01-01
This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunell. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally, some results of the current investigation are presented.
Development of risk matrices for evaluating climatic change responses of forested habitats
Louis R. Iverson; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary. Yohe
2012-01-01
We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate...
ERIC Educational Resources Information Center
Proger, Barton B.; And Others
Many researchers assume that unequal cell frequencies in analysis of variance (ANOVA) designs result from poor planning. However, there are several valid reasons why one might have to analyze an unequal-n data matrix. The present study reviewed four categories of methods for treating unequal-n matrices by ANOVA: (a) unaltered data (least-squares…
ERIC Educational Resources Information Center
Castro-Schilo, Laura; Widaman, Keith F.; Grimm, Kevin J.
2013-01-01
In 1959, Campbell and Fiske introduced the use of multitrait-multimethod (MTMM) matrices in psychology, and for the past 4 decades confirmatory factor analysis (CFA) has commonly been used to analyze MTMM data. However, researchers do not always fit CFA models when MTMM data are available; when CFA modeling is used, multiple models are available…
1992-08-01
p2 4 antigen (Ag) by flow "cytometry. All cells were recovered from Matrigel (Col- 20• laborative Biomedical Products) after treatment with a bac...of HIV-infected mono- tropic virus originally isolated and passaged in monocytes, at a multiplicity of infection of 0.05 infectious virus/target cell
Generalized Lee-Wick formulation from higher derivative field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Inyong; Kwon, O-Kab; Department of Physics, BK21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon 440-746
2010-07-15
We study a higher derivative (HD) field theory with an arbitrary order of derivative for a real scalar field. The degree of freedom for the HD field can be converted to multiple fields with canonical kinetic terms up to the overall sign. The Lagrangian describing the dynamics of the multiple fields is known as the Lee-Wick (LW) form. The first step to obtain the LW form for a given HD Lagrangian is to find an auxiliary field (AF) Lagrangian which is equivalent to the original HD Lagrangian up to the quantum level. Until now, the AF Lagrangian has been studiedmore » only for N=2 and 3 cases, where N is the number of poles of the two-point function of the HD scalar field. We construct the AF Lagrangian for arbitrary N. By the linear combinations of AF fields, we also obtain the corresponding LW form. We find the explicit mapping matrices among the HD fields, the AF fields, and the LW fields. As an exercise of our construction, we calculate the relations among parameters and mapping matrices for N=2, 3, and 4 cases.« less
NASA Astrophysics Data System (ADS)
Zhang, Luozhi; Zhou, Yuanyuan; Huo, Dongming; Li, Jinxi; Zhou, Xin
2018-09-01
A method is presented for multiple-image encryption by using the combination of orthogonal encoding and compressive sensing based on double random phase encoding. As an original thought in optical encryption, it is demonstrated theoretically and carried out by using the orthogonal-basis matrices to build a modified measurement array, being projected onto the images. In this method, all the images can be compressed in parallel into a stochastic signal and be diffused to be a stationary white noise. Meanwhile, each single-image can be separately reestablished by adopting a proper decryption key combination through the block-reconstruction rather than the entire-rebuilt, for its costs of data and decryption time are greatly decreased, which may be promising both in multi-user multiplexing and huge-image encryption/decryption. Besides, the security of this method is characterized by using the bit-length of key, and the parallelism is investigated as well. The simulations and discussions are also made on the effects of decryption as well as the correlation coefficient by using a series of sampling rates, occlusion attacks, keys with various error rates, etc.
System identification of analytical models of damped structures
NASA Technical Reports Server (NTRS)
Fuh, J.-S.; Chen, S.-Y.; Berman, A.
1984-01-01
A procedure is presented for identifying linear nonproportionally damped system. The system damping is assumed to be representable by a real symmetric matrix. Analytical mass, stiffness and damping matrices which constitute an approximate representation of the system are assumed to be available. Given also are an incomplete set of measured natural frequencies, damping ratios and complex mode shapes of the structure, normally obtained from test data. A method is developed to find the smallest changes in the analytical model so that the improved model can exactly predict the measured modal parameters. The present method uses the orthogonality relationship to improve mass and damping matrices and the dynamic equation to find the improved stiffness matrix.
Embedding strategies for effective use of information from multiple sequence alignments.
Henikoff, S.; Henikoff, J. G.
1997-01-01
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.
Li, Shuang; Liu, Bing; Zhang, Chen
2016-01-01
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.
Yang, Shaofu; Guo, Zhenyuan; Wang, Jun
2017-07-01
In this paper, new results on the global synchronization of multiple recurrent neural networks (NNs) with time delays via impulsive interactions are presented. Impulsive interaction means that a number of NNs communicate with each other at impulse instants only, while they are independent at the remaining time. The communication topology among NNs is not required to be always connected and can switch ON and OFF at different impulse instants. By using the concept of sequential connectivity and the properties of stochastic matrices, a set of sufficient conditions depending on time delays is derived to ascertain global synchronization of multiple continuous-time recurrent NNs. In addition, a counterpart on the global synchronization of multiple discrete-time NNs is also discussed. Finally, two examples are presented to illustrate the results.
Accurate Simulation and Detection of Coevolution Signals in Multiple Sequence Alignments
Ackerman, Sharon H.; Tillier, Elisabeth R.; Gatti, Domenico L.
2012-01-01
Background While the conserved positions of a multiple sequence alignment (MSA) are clearly of interest, non-conserved positions can also be important because, for example, destabilizing effects at one position can be compensated by stabilizing effects at another position. Different methods have been developed to recognize the evolutionary relationship between amino acid sites, and to disentangle functional/structural dependencies from historical/phylogenetic ones. Methodology/Principal Findings We have used two complementary approaches to test the efficacy of these methods. In the first approach, we have used a new program, MSAvolve, for the in silico evolution of MSAs, which records a detailed history of all covarying positions, and builds a global coevolution matrix as the accumulated sum of individual matrices for the positions forced to co-vary, the recombinant coevolution, and the stochastic coevolution. We have simulated over 1600 MSAs for 8 protein families, which reflect sequences of different sizes and proteins with widely different functions. The calculated coevolution matrices were compared with the coevolution matrices obtained for the same evolved MSAs with different coevolution detection methods. In a second approach we have evaluated the capacity of the different methods to predict close contacts in the representative X-ray structures of an additional 150 protein families using only experimental MSAs. Conclusions/Significance Methods based on the identification of global correlations between pairs were found to be generally superior to methods based only on local correlations in their capacity to identify coevolving residues using either simulated or experimental MSAs. However, the significant variability in the performance of different methods with different proteins suggests that the simulation of MSAs that replicate the statistical properties of the experimental MSA can be a valuable tool to identify the coevolution detection method that is most effective in each case. PMID:23091608
Kiryu, Hisanori; Kin, Taishin; Asai, Kiyoshi
2007-02-15
Recent transcriptomic studies have revealed the existence of a considerable number of non-protein-coding RNA transcripts in higher eukaryotic cells. To investigate the functional roles of these transcripts, it is of great interest to find conserved secondary structures from multiple alignments on a genomic scale. Since multiple alignments are often created using alignment programs that neglect the special conservation patterns of RNA secondary structures for computational efficiency, alignment failures can cause potential risks of overlooking conserved stem structures. We investigated the dependence of the accuracy of secondary structure prediction on the quality of alignments. We compared three algorithms that maximize the expected accuracy of secondary structures as well as other frequently used algorithms. We found that one of our algorithms, called McCaskill-MEA, was more robust against alignment failures than others. The McCaskill-MEA method first computes the base pairing probability matrices for all the sequences in the alignment and then obtains the base pairing probability matrix of the alignment by averaging over these matrices. The consensus secondary structure is predicted from this matrix such that the expected accuracy of the prediction is maximized. We show that the McCaskill-MEA method performs better than other methods, particularly when the alignment quality is low and when the alignment consists of many sequences. Our model has a parameter that controls the sensitivity and specificity of predictions. We discussed the uses of that parameter for multi-step screening procedures to search for conserved secondary structures and for assigning confidence values to the predicted base pairs. The C++ source code that implements the McCaskill-MEA algorithm and the test dataset used in this paper are available at http://www.ncrna.org/papers/McCaskillMEA/. Supplementary data are available at Bioinformatics online.
Verdam, Mathilde G. E.; Oort, Frans J.
2014-01-01
Highlights Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data. A method for the investigation of measurement bias with Kronecker product restricted models. Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions. The use of curves to facilitate substantive interpretation of apparent measurement bias. Assessment of change in common factor means, after accounting for apparent measurement bias. Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks. PMID:25295016
Verdam, Mathilde G E; Oort, Frans J
2014-01-01
Application of Kronecker product to construct parsimonious structural equation models for multivariate longitudinal data.A method for the investigation of measurement bias with Kronecker product restricted models.Application of these methods to health-related quality of life data from bone metastasis patients, collected at 13 consecutive measurement occasions.The use of curves to facilitate substantive interpretation of apparent measurement bias.Assessment of change in common factor means, after accounting for apparent measurement bias.Longitudinal measurement invariance is usually investigated with a longitudinal factor model (LFM). However, with multiple measurement occasions, the number of parameters to be estimated increases with a multiple of the number of measurement occasions. To guard against too low ratios of numbers of subjects and numbers of parameters, we can use Kronecker product restrictions to model the multivariate longitudinal structure of the data. These restrictions can be imposed on all parameter matrices, including measurement invariance restrictions on factor loadings and intercepts. The resulting models are parsimonious and have attractive interpretation, but require different methods for the investigation of measurement bias. Specifically, additional parameter matrices are introduced to accommodate possible violations of measurement invariance. These additional matrices consist of measurement bias parameters that are either fixed at zero or free to be estimated. In cases of measurement bias, it is also possible to model the bias over time, e.g., with linear or non-linear curves. Measurement bias detection with Kronecker product restricted models will be illustrated with multivariate longitudinal data from 682 bone metastasis patients whose health-related quality of life (HRQL) was measured at 13 consecutive weeks.
Ziyatdinov, Andrey; Vázquez-Santiago, Miquel; Brunel, Helena; Martinez-Perez, Angel; Aschard, Hugues; Soria, Jose Manuel
2018-02-27
Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by many genome-wide association study (GWAS) software. To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4. First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project. Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl .
Decentralized state estimation for a large-scale spatially interconnected system.
Liu, Huabo; Yu, Haisheng
2018-03-01
A decentralized state estimator is derived for the spatially interconnected systems composed of many subsystems with arbitrary connection relations. An optimization problem on the basis of linear matrix inequality (LMI) is constructed for the computations of improved subsystem parameter matrices. Several computationally effective approaches are derived which efficiently utilize the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, this decentralized state estimator is proved to converge to a stable system and obtain a bounded covariance matrix of estimation errors under certain conditions. Numerical simulations show that the obtained decentralized state estimator is attractive in the synthesis of a large-scale networked system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A linear quadratic regulator approach to the stabilization of uncertain linear systems
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.
1990-01-01
This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.
Spatial and temporal pulse propagation for dispersive paraxial optical systems.
Marcus, G
2016-04-04
The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec.261148-1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. In addition, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporally is presented.
A family of Nikishin systems with periodic recurrence coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delvaux, Steven; Lopez, Abey; Lopez, Guillermo L
2013-01-31
Suppose we have a Nikishin system of p measures with the kth generating measure of the Nikishin system supported on an interval {Delta}{sub k} subset of R with {Delta}{sub k} Intersection {Delta}{sub k+1} = Empty-Set for all k. It is well known that the corresponding staircase sequence of multiple orthogonal polynomials satisfies a (p+2)-term recurrence relation whose recurrence coefficients, under appropriate assumptions on the generating measures, have periodic limits of period p. (The limit values depend only on the positions of the intervals {Delta}{sub k}.) Taking these periodic limit values as the coefficients of a new (p+2)-term recurrence relation, wemore » construct a canonical sequence of monic polynomials {l_brace}P{sub n}{r_brace}{sub n=0}{sup {infinity}}, the so-called Chebyshev-Nikishin polynomials. We show that the polynomials P{sub n} themselves form a sequence of multiple orthogonal polynomials with respect to some Nikishin system of measures, with the kth generating measure being absolutely continuous on {Delta}{sub k}. In this way we generalize a result of the third author and Rocha [22] for the case p=2. The proof uses the connection with block Toeplitz matrices, and with a certain Riemann surface of genus zero. We also obtain strong asymptotics and an exact Widom-type formula for functions of the second kind of the Nikishin system for {l_brace}P{sub n}{r_brace}{sub n=0}{sup {infinity}}. Bibliography: 27 titles.« less
NASA Astrophysics Data System (ADS)
Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico
2018-04-01
Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.
Ivanciuc, O; Ivanciuc, T; Klein, D J; Seitz, W A; Balaban, A T
2001-02-01
Quantitative structure-retention relationships (QSRR) represent statistical models that quantify the connection between the molecular structure and the chromatographic retention indices of organic compounds, allowing the prediction of retention indices of novel, not yet synthesized compounds, solely from their structural descriptors. Using multiple linear regression, QSRR models for the gas chromatographic Kováts retention indices of 129 alkylbenzenes are generated using molecular graph descriptors. The correlational ability of structural descriptors computed from 10 molecular matrices is investigated, showing that the novel reciprocal matrices give numerical indices with improved correlational ability. A QSRR equation with 5 graph descriptors gives the best calibration and prediction results, demonstrating the usefulness of the molecular graph descriptors in modeling chromatographic retention parameters. The sequential orthogonalization of descriptors suggests simpler QSRR models by eliminating redundant structural information.
Viidanoja, Jyrki
2017-01-13
A new liquid chromatography-electrospray ionization-tandem Mass Spectrometry (LC-ESI-MS/MS) method was developed for the determination of more than 20 C 1 -C 6 alkyl and alkanolamines in aqueous matrices. The method employs Hydrophilic Interaction Liquid Chromatography Multiple Reaction Monitoring (HILIC-MRM) with a ZIC-pHILIC column and four stable isotope labeled amines as internal standards for signal normalization and quantification of the amines. The method was validated using a refinery process water sample that was obtained from a cooling cycle of crude oil distillation. The averaged within run precision, between run precision and accuracy were generally within 2-10%, 1-9% and 80-120%, respectively, depending on the analyte and concentration level. Selected aqueous process samples were analyzed with the method. Copyright © 2016 Elsevier B.V. All rights reserved.
TiO2-Based Photocatalytic Geopolymers for Nitric Oxide Degradation
Strini, Alberto; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Messina, Francesco; Schiavi, Luca; Corsaro, Davide; Cioffi, Raffaele
2016-01-01
This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features. PMID:28773634
Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems
Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao
2016-01-01
In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm. PMID:26985896
Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.
Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao
2016-03-12
In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1978-01-01
The paper describes the split-Cholesky strategy for banded matrices arising from the large systems of equations in certain fluid mechanics problems. The basic idea is that for a banded matrix the computation can be carried out in pieces, with only a small portion of the matrix residing in core. Mesh considerations are discussed by demonstrating the manner in which the assembly of finite element equations proceeds for linear trial functions on a triangular mesh. The FORTRAN code which implements the out-of-core decomposition strategy for banded symmetric positive definite matrices (mass matrices) of a coupled initial value problem is given.
Strotman, Lindsay N; Lin, Guangyun; Berry, Scott M; Johnson, Eric A; Beebe, David J
2012-09-07
Extraction and purification of DNA is a prerequisite to detection and analytical techniques. While DNA sample preparation methods have improved over the last few decades, current methods are still time consuming and labor intensive. Here we demonstrate a technology termed IFAST (Immiscible Filtration Assisted by Surface Tension), that relies on immiscible phase filtration to reduce the time and effort required to purify DNA. IFAST replaces the multiple wash and centrifugation steps required by traditional DNA sample preparation methods with a single step. To operate, DNA from lysed cells is bound to paramagnetic particles (PMPs) and drawn through an immiscible fluid phase barrier (i.e. oil) by an external handheld magnet. Purified DNA is then eluted from the PMPs. Here, detection of Clostridium botulinum type A (BoNT/A) in food matrices (milk, orange juice), a bioterrorism concern, was used as a model system to establish IFAST's utility in detection assays. Data validated that the DNA purified by IFAST was functional as a qPCR template to amplify the bont/A gene. The sensitivity limit of IFAST was comparable to the commercially available Invitrogen ChargeSwitch® method. Notably, pathogen detection via IFAST required only 8.5 μL of sample and was accomplished in five-fold less time. The simplicity, rapidity and portability of IFAST offer significant advantages when compared to existing DNA sample preparation methods.
Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores
2018-07-01
The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Making Brains run Faster: are they Becoming Smarter?
Pahor, Anja; Jaušovec, Norbert
2016-12-05
A brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals' IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven's matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven's matrices. The results are discussed in the light of gender differences in brain structure and activity.
NASA Astrophysics Data System (ADS)
Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier
2017-12-01
Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.
Photophysics of Ru(II)— and Os(II)—polypyridine complexes in poly(ethyleneoxide) matrices
NASA Astrophysics Data System (ADS)
Campagna, Sebastiano; Bartolotta, Antonino; Marco, Gaetano Di
1993-04-01
Photophysical properties of Ru(bpy) 32+, Ru(bpy) 2(biq) 2+, and Os(bpy) 32+ (bpy=2,2'-bipyridine; biq=2,2'-biquinoline) in poly(ethyleneoxide) matrices (PEO) constituted by (CH 2CH 2O) repeating units, with average molecular weight 400 (PEO-400, a highly viscous fluid) and 600000 dalton (PEO-600000, a semicrystalline solid) have been studied at room temperature and 77 K. Comparison with similar systems is made. The absorption spectra, luminescence spectra and lifetimes at room temperature of the three complexes in both matrices are in agreement with the typical features reported for the same complexes in fluid solutions, and indicate that fast excited state relaxation via solvent reorganization occurs in both PEO matrices at room temperature. Such behaviour is not usual for solid matrices and is attributed to the microheterogeneous nature of PEO-600000 and to the ability of the solid PEO amorphous region to stabilize polar species within the timescale of radiative relaxation. The results suggest that PEO-600000 is a promising medium for studying electron and energy transfer processes having mild driving forces in the solid state at room temperature.
Effect of dispersal networks on bacterial dispersal and biodegradation at varying water potentials
NASA Astrophysics Data System (ADS)
Worrich, Anja; Kästner, Matthias; Miltner, Anja; Wick, Lukas Y.
2015-04-01
In porous media the matric and the osmotic potential contribute to the availability of water to microbes and decisively influence important microbial ecosystem services such as biodegradation. Bacterial motility is considered as a key driver for biodegradation and fungal mycelia have been shown to serve as effective dispersal networks thereby increasing bacterial movement in water unsaturated environments. However, poor knowledge exists on the beneficial effects of mycelia at varying water potentials (Ψw). We therefore established experimental microcosms to investigate the effect of mycelia-like dispersal networks on the dispersal and growth of Pseudomonas putida KT2440-gfp at given osmotic and matric potentials and determined their benefit for the biodegradation of benzoate. Using either NaCl or polyethylene glycol 8000 the Ψw of agar was modified between ΔΨw 0 - -1.5 MPa (i.e. water potentials representing completely saturated or plant permanent wilting point conditions). We found that dispersal, growth and biodegradation rates dropped noticeably below ΔΨw -0.5 MPa in osmotically stressed systems. However, in matric stress treatments this decline occurred at ΔΨw -0.25 MPa due to a complete repression of bacterial movement at this Ψw. The presence of dispersal networks effectively defused the negative effects of lowered matric potentials by enhancing bacterial dispersal. No benefical network effect was observed in the osmotically stressed systems, likely due to NaCl toxicity rather than the water depriviation effects. We propose that dispersal networks act as an important buffer mechanism and hence may increase the microbial ecosystem's functional resistance to matric stress.
NASA Technical Reports Server (NTRS)
Collier, G.; Gibson, G.
1968-01-01
FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.
Libanori, R; Carnelli, D; Rothfuchs, N; Binelli, M R; Zanini, M; Nicoleau, L; Feichtenschlager, B; Albrecht, G; Studart, A R
2016-04-12
Load-bearing reinforcing elements in a continuous matrix allow for improved mechanical properties and can reduce the weight of structural composites. As the mechanical performance of composite systems are heavily affected by the interfacial properties, tailoring the interactions between matrices and reinforcing elements is a crucial problem. Recently, several studies using bio-inspired model systems suggested that interfacial mechanical interlocking is an efficient mechanism for energy dissipation in platelet-reinforced composites. While cheap and effective solutions are available at the macroscale, the modification of surface topography in micron-sized reinforcing elements still represents a challenging task. Here, we report a simple method to create nanoasperities with tailored sizes and densities on the surface of alumina platelets and investigate their micromechanical effect on the energy dissipation mechanisms of nacre-like materials. Composites reinforced with roughened platelets exhibit improved mechanical properties for both organic ductile epoxy and inorganic brittle cement matrices. Mechanical interlocking increases the modulus of toughness (area under the stress-strain curve) by 110% and 56% in epoxy and cement matrices, respectively, as compared to those reinforced with flat platelets. This interlocking mechanism can potentially lead to a significant reduction in the weight of mechanical components while retaining the structural performance required in the application field.
Ceballos, Melisa Rodas; García-Tenorio, Rafael; Estela, José Manuel; Cerdà, Víctor; Ferrer, Laura
2017-12-01
Leached fractions of U and Th from different environmental solid matrices were evaluated by an automatic system enabling the on-line lixiviation and extraction/pre-concentration of these two elements previous ICP-MS detection. UTEVA resin was used as selective extraction material. Ten leached fraction, using artificial rainwater (pH 5.4) as leaching agent, and a residual fraction were analyzed for each sample, allowing the study of behavior of U and Th in dynamic lixiviation conditions. Multivariate techniques have been employed for the efficient optimization of the independent variables that affect the lixiviation process. The system reached LODs of 0.1 and 0.7ngkg -1 of U and Th, respectively. The method was satisfactorily validated for three solid matrices, by the analysis of a soil reference material (IAEA-375), a certified sediment reference material (BCR- 320R) and a phosphogypsum reference material (MatControl CSN-CIEMAT 2008). Besides, environmental samples were analyzed, showing a similar behavior, i.e. the content of radionuclides decreases with the successive extractions. In all cases, the accumulative leached fraction of U and Th for different solid matrices studied (soil, sediment and phosphogypsum) were extremely low, up to 0.05% and 0.005% of U and Th, respectively. However, a great variability was observed in terms of mass concentration released, e.g. between 44 and 13,967ngUkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Application of permanents of square matrices for DNA identification in multiple-fatality cases
2013-01-01
Background DNA profiling is essential for individual identification. In forensic medicine, the likelihood ratio (LR) is commonly used to identify individuals. The LR is calculated by comparing two hypotheses for the sample DNA: that the sample DNA is identical or related to a reference DNA, and that it is randomly sampled from a population. For multiple-fatality cases, however, identification should be considered as an assignment problem, and a particular sample and reference pair should therefore be compared with other possibilities conditional on the entire dataset. Results We developed a new method to compute the probability via permanents of square matrices of nonnegative entries. As the exact permanent is known as a #P-complete problem, we applied the Huber–Law algorithm to approximate the permanents. We performed a computer simulation to evaluate the performance of our method via receiver operating characteristic curve analysis compared with LR under the assumption of a closed incident. Differences between the two methods were well demonstrated when references provided neither obligate alleles nor impossible alleles. The new method exhibited higher sensitivity (0.188 vs. 0.055) at a threshold value of 0.999, at which specificity was 1, and it exhibited higher area under a receiver operating characteristic curve (0.990 vs. 0.959, P = 9.6E-15). Conclusions Our method therefore offers a solution for a computationally intensive assignment problem and may be a viable alternative to LR-based identification for closed-incident multiple-fatality cases. PMID:23962363
Foltz, T M; Welsh, B M
1999-01-01
This paper uses the fact that the discrete Fourier transform diagonalizes a circulant matrix to provide an alternate derivation of the symmetric convolution-multiplication property for discrete trigonometric transforms. Derived in this manner, the symmetric convolution-multiplication property extends easily to multiple dimensions using the notion of block circulant matrices and generalizes to multidimensional asymmetric sequences. The symmetric convolution of multidimensional asymmetric sequences can then be accomplished by taking the product of the trigonometric transforms of the sequences and then applying an inverse trigonometric transform to the result. An example is given of how this theory can be used for applying a two-dimensional (2-D) finite impulse response (FIR) filter with nonlinear phase which models atmospheric turbulence.
Gonçalves, Daniela; Alves, Gilberto; Fortuna, Ana; Bonifácio, Maria João; Soares-da-Silva, Patrício; Falcão, Amílcar
2017-10-01
Opicapone is a novel catechol-O-methyltransferase (COMT) inhibitor that emerged to fulfil the need of a safer and more efficacious COMT inhibitor. The present study was carried out in order to assess and compare the pharmacokinetics and pharmacodynamics (COMT inhibition) of opicapone after single and multiple oral administrations (30 mg/kg) to Wistar rats. For this purpose, at predefined time points up to 72 h post-dosing, blood, liver and kidneys were collected and, then, the concentrations of opicapone and its active metabolite (BIA 9-1079) were determined in plasma and in liver and kidney tissues, as well as the erythrocyte, liver and kidney COMT activity. No systemic, renal or hepatic accumulation of opicapone was observed following repeated administration. Furthermore, the tissue-systemic exposure relationships to opicapone suggested a low drug exposure in the liver and kidneys. After single-dosing, COMT inhibition profiles were reasonably comparable in all the studied matrices; although similar results were found after multiple-dosing, a higher degree of inhibition was observed, indicating a continuous peripheral COMT inhibition when opicapone is administered once-daily. Despite having a short elimination half-life (≤2.94 h), opicapone showed a strong and long-lasting COMT inhibition in both studies, since more than 50% of the COMT activity was still inhibited at 24 h post-dosing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Levison, Bruce S.; Zhang, Renliang; Wang, Zeneng; Fu, Xiaoming; DiDonato, Joseph A.; Hazen, Stanley L.
2013-01-01
Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific-oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) as efficient, selective and sensitive methods for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature, and liquid-liquid phase sample extraction with lighter than water solvents facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable isotope dilution and multiple reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time. PMID:23499838
A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.
Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary
2017-12-01
Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.
Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Toeplitz systems
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Zha, Hongyuan
1992-01-01
Systems of linear equations with Toeplitz coefficient matrices arise in many important applications. The classical Levinson algorithm computes solutions of Toeplitz systems with only O(n(sub 2)) arithmetic operations, as compared to O(n(sub 3)) operations that are needed for solving general linear systems. However, the Levinson algorithm in its original form requires that all leading principal submatrices are nonsingular. An extension of the Levinson algorithm to general Toeplitz systems is presented. The algorithm uses look-ahead to skip over exactly singular, as well as ill-conditioned leading submatrices, and, at the same time, it still fully exploits the Toeplitz structure. In our derivation of this algorithm, we make use of the intimate connection of Toeplitz matrices with formally biorthogonal polynomials.
Regularization of the Perturbed Spatial Restricted Three-Body Problem by L-Transformations
NASA Astrophysics Data System (ADS)
Poleshchikov, S. M.
2018-03-01
Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge-Kutta-Fehlberg method. The results of numerical experiments are given for the Earth-Moon system parameters taking into account the perturbation of the Sun for different L-matrices.
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Application of Financial Risk-reward Theory to Link and Network Optimization
2011-10-01
OFDM systems the matrices V k and U k are Fourier matrices which diagonalize a circulant or block-circulant matrix Hk [18]. In multi-antenna systems...probability α=Pr(η r <=t) Figure 13: Mean link spectral efficiency as a function of target link spectral efficiency ηt and outage probability ζ in a MIMO ...in a MIMO channel. Distribution A: Approved for public release; distribution is unlimited. 41 (75) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 2 4 6 8
Espín, S; García-Fernández, A J; Herzke, D; Shore, R F; van Hattum, B; Martínez-López, E; Coeurdassier, M; Eulaers, I; Fritsch, C; Gómez-Ramírez, P; Jaspers, V L B; Krone, O; Duke, G; Helander, B; Mateo, R; Movalli, P; Sonne, C; van den Brink, N W
2016-05-01
Biomonitoring using birds of prey as sentinel species has been mooted as a way to evaluate the success of European Union directives that are designed to protect people and the environment across Europe from industrial contaminants and pesticides. No such pan-European evaluation currently exists. Coordination of such large scale monitoring would require harmonisation across multiple countries of the types of samples collected and analysed-matrices vary in the ease with which they can be collected and the information they provide. We report the first ever pan-European assessment of which raptor samples are collected across Europe and review their suitability for biomonitoring. Currently, some 182 monitoring programmes across 33 European countries collect a variety of raptor samples, and we discuss the relative merits of each for monitoring current priority and emerging compounds. Of the matrices collected, blood and liver are used most extensively for quantifying trends in recent and longer-term contaminant exposure, respectively. These matrices are potentially the most effective for pan-European biomonitoring but are not so widely and frequently collected as others. We found that failed eggs and feathers are the most widely collected samples. Because of this ubiquity, they may provide the best opportunities for widescale biomonitoring, although neither is suitable for all compounds. We advocate piloting pan-European monitoring of selected priority compounds using these matrices and developing read-across approaches to accommodate any effects that trophic pathway and species differences in accumulation may have on our ability to track environmental trends in contaminants.
Polylactic acid (PLA) controlled delivery carriers for biomedical applications.
Tyler, Betty; Gullotti, David; Mangraviti, Antonella; Utsuki, Tadanobu; Brem, Henry
2016-12-15
Polylactic acid (PLA) and its copolymers have a long history of safety in humans and an extensive range of applications. PLA is biocompatible, biodegradable by hydrolysis and enzymatic activity, has a large range of mechanical and physical properties that can be engineered appropriately to suit multiple applications, and has low immunogenicity. Formulations containing PLA have also been Food and Drug Administration (FDA)-approved for multiple applications making PLA suitable for expedited clinical translatability. These biomaterials can be fashioned into sutures, scaffolds, cell carriers, drug delivery systems, and a myriad of fabrications. PLA has been the focus of a multitude of preclinical and clinical testing. Three-dimensional printing has expanded the possibilities of biomedical engineering and has enabled the fabrication of a myriad of platforms for an extensive variety of applications. PLA has been widely used as temporary extracellular matrices in tissue engineering. At the other end of the spectrum, PLA's application as drug-loaded nanoparticle drug carriers, such as liposomes, polymeric nanoparticles, dendrimers, and micelles, can encapsulate otherwise toxic hydrophobic anti-tumor drugs and evade systemic toxicities. The clinical translation of these technologies from preclinical experimental settings is an ever-evolving field with incremental advancements. In this review, some of the biomedical applications of PLA and its copolymers are highlighted and briefly summarized. Copyright © 2016 Elsevier B.V. All rights reserved.
Systemic metabolite changes in wild-type C57BL/6 mice fed black raspberries
Pan, Pan; Skaer, Chad W.; Wang, Hsin-Tzu; Kreiser, Michael A.; Stirdivant, Steven M.; Oshima, Kiyoko; Huang, Yi-Wen; Young, Matthew R.; Wang, Li-Shu
2017-01-01
Introduction Freeze-dried black raspberries (BRBs) elicit chemopreventive effects against colorectal cancer in humans and in rodents. The study objective was to investigate potential BRB-caused metabolite changes using wild-type (WT) C57BL/6 mice. Methods and results WT mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver, and fecal specimens collected from both diet groups. BRBs significantly changed the levels of 41 colonic mucosa metabolites, 40 liver metabolites and 34 fecal metabolites compared to control diet-fed mice. BRBs reduced 34 lipid metabolites in colonic mucosa and increased levels of amino acids in liver. One metabolite, 3-[3-(sulfooxy) phenyl] propanoic acid, might be a useful biomarker of BRB consumption. In addition, BRB powder was found to contain 30-fold higher levels of linolenate compared to control diets. Consistently, multiple omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including stearidonate, docosapentaenoate (ω-3 DPA), eicosapentaenoate (EPA) and docosahexaenoate (DHA), were significantly elevated in livers of BRB-fed mice. Conclusion The data from the current study suggest that BRBs produce systemic metabolite changes in multiple tissue matrices, supporting our hypothesis that BRBs may serve as both a chemopreventive agent and a beneficial dietary supplement. PMID:28094560
Spatial and temporal pulse propagation for dispersive paraxial optical systems
Marcus, G.
2016-04-01
The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less
Spatial and temporal pulse propagation for dispersive paraxial optical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcus, G.
The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.
Large-deviation theory for diluted Wishart random matrices
NASA Astrophysics Data System (ADS)
Castillo, Isaac Pérez; Metz, Fernando L.
2018-03-01
Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.
One-electron reduced density matrices of strongly correlated harmonium atoms.
Cioslowski, Jerzy
2015-03-21
Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω(5/6) asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω(2/3) scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill's asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.
SU-E-T-465: Dose Calculation Method for Dynamic Tumor Tracking Using a Gimbal-Mounted Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, S; Inoue, T; Kurokawa, C
Purpose: Dynamic tumor tracking using the gimbal-mounted linac (Vero4DRT, Mitsubishi Heavy Industries, Ltd., Japan) has been available when respiratory motion is significant. The irradiation accuracy of the dynamic tumor tracking has been reported to be excellent. In addition to the irradiation accuracy, a fast and accurate dose calculation algorithm is needed to validate the dose distribution in the presence of respiratory motion because the multiple phases of it have to be considered. A modification of dose calculation algorithm is necessary for the gimbal-mounted linac due to the degrees of freedom of gimbal swing. The dose calculation algorithm for the gimbalmore » motion was implemented using the linear transformation between coordinate systems. Methods: The linear transformation matrices between the coordinate systems with and without gimbal swings were constructed using the combination of translation and rotation matrices. The coordinate system where the radiation source is at the origin and the beam axis along the z axis was adopted. The transformation can be divided into the translation from the radiation source to the gimbal rotation center, the two rotations around the center relating to the gimbal swings, and the translation from the gimbal center to the radiation source. After operating the transformation matrix to the phantom or patient image, the dose calculation can be performed as the no gimbal swing. The algorithm was implemented in the treatment planning system, PlanUNC (University of North Carolina, NC). The convolution/superposition algorithm was used. The dose calculations with and without gimbal swings were performed for the 3 × 3 cm{sup 2} field with the grid size of 5 mm. Results: The calculation time was about 3 minutes per beam. No significant additional time due to the gimbal swing was observed. Conclusions: The dose calculation algorithm for the finite gimbal swing was implemented. The calculation time was moderate.« less
Wu, Qixue; Snyder, Karen Chin; Liu, Chang; Huang, Yimei; Zhao, Bo; Chetty, Indrin J; Wen, Ning
2016-09-30
Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly.
Emerging spectra of singular correlation matrices under small power-map deformations
NASA Astrophysics Data System (ADS)
Vinayak; Schäfer, Rudi; Seligman, Thomas H.
2013-09-01
Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.
Evolutionary Games with Randomly Changing Payoff Matrices
NASA Astrophysics Data System (ADS)
Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun
2015-06-01
Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.
Emerging spectra of singular correlation matrices under small power-map deformations.
Vinayak; Schäfer, Rudi; Seligman, Thomas H
2013-09-01
Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.
Payload/orbiter contamination control requirement study, volume 2, exhibit A
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Hooper, V. W.; Rantanen, R. O.; Ress, E. B.
1974-01-01
The computer printout data generated during the Payload/Orbiter Contamination Control Requirement Study are presented. The computer listings of the input surface data matrices, the viewfactor data matrices, and the geometric relationship data matrices for the three orbiter/spacelab configurations analyzed in this study are given. These configurations have been broken up into the geometrical surfaces and nodes necessary to define the principal critical surfaces whether they are contaminant sources, experimental surfaces, or operational surfaces. A numbering scheme was established based upon nodal numbers that relates the various spacelab surfaces to a specific surface material or function. This numbering system was developed for the spacelab configurations such that future extension to a surface mapping capability could be developed as required.
PALS: A unique probe for the molecular organisation of biopolymer matrices
NASA Astrophysics Data System (ADS)
Roussenova, M.; Alam, M. A.
2013-06-01
This short review aims to illustrate the versatility of Positron Annihilation Lifetime Spectroscopy (PALS) when utilized for the characterization of biopolymers (e.g.: starch, fractionated maltooligomers, gelatin and cellulose derivatives) commonly used for the formulation of pharmaceutical encapsulants. By showing examples from a number of recent PALS studies, we illustrate that this technique can be used to probe the changes in thermodynamic state and molecular packing for a wide range of biopolymer matrices as a function of temperature, matrix composition and water content. This provides a basis for establishing composition-structure-property relationships for these materials, which would eventually enable the rational control of their macroscopic properties and the design of optimal encapsulating matrices and intelligent drug delivery systems.
Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering☆
Moioli, Eduardo K.; Clark, Paul A.; Xin, Xuejun; Lal, Shan; Mao, Jeremy J.
2010-01-01
Current treatments for diseases and trauma of dental, oral and craniofacial (DOC) structures rely on durable materials such as amalgam and synthetic materials, or autologous tissue grafts. A paradigm shift has taken place to utilize tissue engineering and drug delivery approaches towards the regeneration of these structures. Several prototypes of DOC structures have been regenerated such as temporomandibular joint (TMJ) condyle, cranial sutures, tooth structures and periodontium components. However, many challenges remain when taking in consideration the high demand for esthetics of DOC structures, the complex environment and yet minimal scar formation in the oral cavity, and the need for accommodating multiple tissue phenotypes. This review highlights recent advances in the regeneration of DOC structures, including the tooth, periodontium, TMJ, cranial sutures and implant dentistry, with specific emphasis on controlled release of signaling cues for stem cells, biomaterial matrices and scaffolds, and integrated tissue engineering approaches. PMID:17499385
Design of multiple-ply laminated composite tapered beams
NASA Technical Reports Server (NTRS)
Rodriguez, P.
1993-01-01
A study of a special case of symmetric laminated composite cantilever beams is presented. The approach models beams that are tapered both in depth and width and investigates the effect of the ply layup angle and the ply taper on bending and interlaminar shearing stresses. For the determination of stresses and deflections, the beam stiffness matrices are expressed as linear functions of the beam length. Using classical lamination theory (CLT) the stiffness matrices are determined and assembled at strategic locations along the length of the beam. They are then inverted and necessary stiffness parameters are obtained numerically and extracted for determination of design information at each location chosen. Several ply layup configurations are investigated, and design considerations are presented based on the findings. Finally, recommendations for the design of these beams are presented, and a means for anticipating the location of highest stresses is offered.
Design of multiple-ply laminated composite tapered beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, P.
1993-06-01
A study of a special case of symmetric laminated composite cantilever beams is presented. The approach models beams that are tapered both in depth and width and investigates the effect of the ply layup angle and the ply taper on bending and interlaminar shearing stresses. For the determination of stresses and deflections, the beam stiffness matrices are expressed as linear functions of the beam length. Using classical lamination theory (CLT) the stiffness matrices are determined and assembled at strategic locations along the length of the beam. They are then inverted and necessary stiffness parameters are obtained numerically and extracted formore » determination of design information at each location chosen. Several ply layup configurations are investigated, and design considerations are preSDsented based on the findings. Finally, recommendations for the design of these beams are presented, and a means for anticipating the location of highest stresses is offered.« less
Investigating the Use of the Intel Xeon Phi for Event Reconstruction
NASA Astrophysics Data System (ADS)
Sherman, Keegan; Gilfoyle, Gerard
2014-09-01
The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. Work supported by the University of Richmond and the US Department of Energy.
Genomic-based multiple-trait evaluation in Eucalyptus grandis using dominant DArT markers.
Cappa, Eduardo P; El-Kassaby, Yousry A; Muñoz, Facundo; Garcia, Martín N; Villalba, Pamela V; Klápště, Jaroslav; Marcucci Poltri, Susana N
2018-06-01
We investigated the impact of combining the pedigree- and genomic-based relationship matrices in a multiple-trait individual-tree mixed model (a.k.a., multiple-trait combined approach) on the estimates of heritability and on the genomic correlations between growth and stem straightness in an open-pollinated Eucalyptus grandis population. Additionally, the added advantage of incorporating genomic information on the theoretical accuracies of parents and offspring breeding values was evaluated. Our results suggested that the use of the combined approach for estimating heritabilities and additive genetic correlations in multiple-trait evaluations is advantageous and including genomic information increases the expected accuracy of breeding values. Furthermore, the multiple-trait combined approach was proven to be superior to the single-trait combined approach in predicting breeding values, in particular for low-heritability traits. Finally, our results advocate the use of the combined approach in forest tree progeny testing trials, specifically when a multiple-trait individual-tree mixed model is considered. Copyright © 2018 Elsevier B.V. All rights reserved.
Bardin, Ann; Primeau, Francois; Lindsay, Keith; ...
2016-07-21
Newton-Krylov solvers for ocean tracers have the potential to greatly decrease the computational costs of spinning up deep-ocean tracers, which can take several thousand model years to reach equilibrium with surface processes. One version of the algorithm uses offline tracer transport matrices to simulate an annual cycle of tracer concentrations and applies Newton’s method to find concentrations that are periodic in time. Here we present the impact of time-averaging the transport matrices on the equilibrium values of an ideal-age tracer. We compared annually-averaged, monthly-averaged, and 5-day-averaged transport matrices to an online simulation using the ocean component of the Community Earthmore » System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels. We found that increasing the time resolution of the offline transport model reduced a low age bias from 12% for the annually-averaged transport matrices, to 4% for the monthly-averaged transport matrices, and to less than 2% for the transport matrices constructed from 5-day averages. The largest differences were in areas with strong seasonal changes in the circulation, such as the Northern Indian Ocean. As a result, for many applications the relatively small bias obtained using the offline model makes the offline approach attractive because it uses significantly less computer resources and is simpler to set up and run.« less
Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M
2012-01-01
The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.
Bioprosthetic tissue matrices in complex abdominal wall reconstruction.
Broyles, Justin M; Abt, Nicholas B; Sacks, Justin M; Butler, Charles E
2013-12-01
Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author's analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies.
Bioprosthetic Tissue Matrices in Complex Abdominal Wall Reconstruction
Broyles, Justin M.; Abt, Nicholas B.; Sacks, Justin M.
2013-01-01
Background: Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. Methods: We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author’s analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. Results: The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Conclusions: Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies. PMID:25289285
Bourlier, Christophe; Kubické, Gildas; Déchamps, Nicolas
2008-04-01
A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)] have recently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in which two impedance matrices of each interface and two coupling matrices are involved), this method allows one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the inverses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral acceleration (FB-SA) approach of complexity O(N) (N is the number of unknowns on the interface) proposed by Chou and Johnson [Radio Sci.33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying a Gaussian process with Gaussian and exponential height autocorrelation functions.
Giordano, Silvia; Pifferi, Valentina; Morosi, Lavinia; Morelli, Melinda; Falciola, Luigi; Cappelletti, Giuseppe; Visentin, Sonja; Licandro, Simonetta A.; Frapolli, Roberta; Zucchetti, Massimo; Pastorelli, Roberta; Brunelli, Laura; D’Incalci, Maurizio; Davoli, Enrico
2017-01-01
The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice. PMID:28336905
Porting marine ecosystem model spin-up using transport matrices to GPUs
NASA Astrophysics Data System (ADS)
Siewertsen, E.; Piwonski, J.; Slawig, T.
2013-01-01
We have ported an implementation of the spin-up for marine ecosystem models based on transport matrices to graphics processing units (GPUs). The original implementation was designed for distributed-memory architectures and uses the Portable, Extensible Toolkit for Scientific Computation (PETSc) library that is based on the Message Passing Interface (MPI) standard. The spin-up computes a steady seasonal cycle of ecosystem tracers with climatological ocean circulation data as forcing. Since the transport is linear with respect to the tracers, the resulting operator is represented by matrices. Each iteration of the spin-up involves two matrix-vector multiplications and the evaluation of the used biogeochemical model. The original code was written in C and Fortran. On the GPU, we use the Compute Unified Device Architecture (CUDA) standard, a customized version of PETSc and a commercial CUDA Fortran compiler. We describe the extensions to PETSc and the modifications of the original C and Fortran codes that had to be done. Here we make use of freely available libraries for the GPU. We analyze the computational effort of the main parts of the spin-up for two exemplar ecosystem models and compare the overall computational time to those necessary on different CPUs. The results show that a consumer GPU can compete with a significant number of cluster CPUs without further code optimization.
A systematic and efficient method for modeling acoustic response of multilayered media
NASA Astrophysics Data System (ADS)
Feng, Shi-Jin; Chen, Zhang-Long; Chen, Hong-Xin
2017-12-01
A generalized transmission and reflection matrix (GTRM) method for determining the acoustic response of multilayered media is developed in this paper. The principle of the method is to decipher the wave vectors by constructing generalized T/R matrices and recursive formulas. The generalized T/R matrices are introduced to account for the contributions of multiple reflection and transmission in a global manner. Three types of interface T/R matrices are developed to accommodate the coupling between any type of physical medium. This method is not only stable for high-frequency and large thickness cases by excluding the growing terms but also explicitly exhibits the physical mechanism of wave propagation. Acoustic response in both frequency and time domains can be solved by the method. Moreover, the method has a simple framework, and it is easy to be implemented in numerical tools. The method is successfully validated by several typical acoustic problems, including poroelastic medium immersed in fluid, aluminum-glass-aluminum immersed in fluid, and poroelastic sediment sandwiched between water and bedrock. In fact, the present method can be extended to any physical problem of a multilayered structure. When the wave frequency is high or the layered media is greatly thick or the material combination is highly complex, the advantage of the GTRM method is more conspicuous.
Supercomputing on massively parallel bit-serial architectures
NASA Technical Reports Server (NTRS)
Iobst, Ken
1985-01-01
Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.
EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field
2016-10-01
Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration ,” Biomaterials (2004). A) B) REDD-2016-537...AWARD NUMBER: W81XWH-14-1-0542 TITLE: EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field PRINCIPAL...23 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field
Data Selection for Within-Class Covariance Estimation
2016-09-08
NIST evaluations to train the within- class and across-class covariance matrices required by these techniques, little attention has been paid to the...multiple utterances from a large population of speakers. Fortunately, participants in NIST evaluations have access to a repository of legacy data from...utterances chosen from previous NIST evaluations. Training data for the UBM and T-matrix was obtained from the NIST Switchboard 2 phases 2-5 and
Designing ECM-mimetic Materials Using Protein Engineering
Cai, Lei; Heilshorn, Sarah C.
2014-01-01
The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704
Controllability of impulse controlled systems of heat equations coupled by constant matrices
NASA Astrophysics Data System (ADS)
Qin, Shulin; Wang, Gengsheng
2017-11-01
This paper studies the approximate and null controllability for impulse controlled systems of heat equations coupled by a pair (A , B) of constant matrices. We present a necessary and sufficient condition for the approximate controllability, which is exactly Kalman's controllability rank condition of (A , B). We prove that when such a system is approximately controllable, the approximate controllability over an interval [ 0 , T ] can be realized by adding controls at arbitrary q (A , B) different control instants 0 <τ1 <τ2 < ⋯ <τ q (A , B) < T, provided that τ q (A , B) -τ1
Symmetrical group theory for mathematical complexity reduction of digital holograms
NASA Astrophysics Data System (ADS)
Perez-Ramirez, A.; Guerrero-Juk, J.; Sanchez-Lara, R.; Perez-Ramirez, M.; Rodriguez-Blanco, M. A.; May-Alarcon, M.
2017-10-01
This work presents the use of mathematical group theory through an algorithm to reduce the multiplicative computational complexity in the process of creating digital holograms. An object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image, where the image is modeled using group theory. This algorithm has multiplicative complexity equal to zero and an additive complexity ( k - 1) × N for the case of sparse matrices and binary images, where k is the number of pixels other than zero and N is the total points in the image.
Bräuer, Björn; Vaynzof, Yana; Zhao, Wei; Kahn, Antoine; Li, Wen; Zahn, Dietrich R T; Fernández, César de Julián; Sangregorio, Claudio; Salvan, Georgeta
2009-04-09
Ni nanoparticles with a size distribution from 2 to 6 nm, embedded in various organic matrices, were fabricated in ultrahigh vacuum. For this purpose metal free and Ni phthalocyanine, fullerene C(60), and pentacene were coevaporated with Ni. When coevaporated, Ni and H(2)Pc react, leading to the formation of NiPc and Ni nanoparticles. The molecular structure of the matrix was found to have negligible effect on the size of the nanoparticles but to influence the magnetic anisotropy of the nanoparticles: Ni nanoparticles formed in the buckyball matrix have a cubic symmetry, while nanoparticles formed in matrices consisting of planar molecules exhibit a uniaxial symmetry. After exposure to atmosphere, photoelectron spectroscopy investigations demonstrate the presence of metallic Ni nanoparticles accompanied by Ni oxide and the existence of a charge transfer from the organic matrix to the particles in all investigated systems. The oxidized Ni nanoparticles exhibit a larger magnetic anisotropy compared to the freshly prepared particles which show superparamagnetic properties above 17 K. Moreover, photoelectron spectroscopy was used to probe the oxidation process of the Ni nanoparticles in different organic matrices. It could thus be shown that a matrix consisting of spherical molecules like C(60) prevent the particles much better from oxidation compared to matrices of flat molecules.
Ryazantsev, Sergey V; Feldman, Vladimir I
2015-03-19
The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.
Voter comparator switch provides fail safe data communications system - A concept
NASA Technical Reports Server (NTRS)
Koczela, L. J.; Wilgus, D. S.
1971-01-01
System indicates status of computers and controls operational modes. Two matrices are used - one relating to permissible system states, the other relating to requested system states. Concept is useful to designers of digital data transmission systems and time shared computer systems.
Effects of lattice morphology upon reaction dynamics in matrix-isolated systems
NASA Astrophysics Data System (ADS)
Raff, Lionel M.
1992-11-01
The dynamics of the cis-d2-ethylene+F2 addition reaction and the subsequent reaction dynamics of the products isolated in vapor-deposited Ar matrices at 12 K are investigated using trajectory methods that incorporate nonstatistical sampling to enhance the reaction probabilities. The matrix-isolated cis-d2-ethylene+F2 system is generated using a combination of Monte Carlo, damped trajectory, and volume contraction methods. Transport effects of the bulk are simulated using the velocity reset procedure developed by Riley et al. [J. Chem. Phys. 88, 5934 (1988)]. The potential-energy hypersurface is the same as that employed in our previous investigations of the matrix-isolated, decomposition dynamics of 1,2-difluoroethane-d4 and the bimolecular cis-d2-ethylene+F2 system in face-centered-cubic (fcc) matrices [J. Chem. Phys. 93, 3160 (1990); 95, 8901 (1991)]. It is found that matrices generated by these methods are amorphous with numerous vacancies and other imperfections. On the average, there are approximately three vacancies about each lattice atom compared to the fcc crystal. The calculated lattice density is about 82% that for a bulk fcc Ar solid. Computed radial distribution functions resemble those expected for a liquid which exhibits some short-range order. The imperfections of the lattice remain even after substantial annealing at 50 K. The calculated energy relaxation rate to the lattice phonon modes in these amorphous matrices is about a factor of 4 less than that for a close-packed fcc lattice. The 1,2-difluoroethane product is formed primarily via an αβ-addition process, as is the case for fcc matrices. However, the prominence of this pathway is greatly reduced. The major process leading to a fluoroethylene elimination product in amorphous matrices involves an atomic addition mechanism. Such a reaction path accounts for 94% of the elimination reactions. The probability of internal rotation about the C■C double bond in the fluoroethylene product is increased fivefold over that for fcc lattices. The calculated stabilization/elimination product ratio, the cis/trans ratios of fluoroethylene products, and the HF/DF elimination ratio are all found to be in fair to good accord with the reported experimental data. It is concluded that accurate simulation of matrix-isolation experiments requires a matrix model that properly represents the lattice structure present in the experiments.
Configuration Analysis of the ERS Points in Large-Volume Metrology System
Jin, Zhangjun; Yu, Cijun; Li, Jiangxiong; Ke, Yinglin
2015-01-01
In aircraft assembly, multiple laser trackers are used simultaneously to measure large-scale aircraft components. To combine the independent measurements, the transformation matrices between the laser trackers’ coordinate systems and the assembly coordinate system are calculated, by measuring the enhanced referring system (ERS) points. This article aims to understand the influence of the configuration of the ERS points that affect the transformation matrix errors, and then optimize the deployment of the ERS points to reduce the transformation matrix errors. To optimize the deployment of the ERS points, an explicit model is derived to estimate the transformation matrix errors. The estimation model is verified by the experiment implemented in the factory floor. Based on the proposed model, a group of sensitivity coefficients are derived to evaluate the quality of the configuration of the ERS points, and then several typical configurations of the ERS points are analyzed in detail with the sensitivity coefficients. Finally general guidance is established to instruct the deployment of the ERS points in the aspects of the layout, the volume size and the number of the ERS points, as well as the position and orientation of the assembly coordinate system. PMID:26402685
An Analysis of the Max-Min Texture Measure.
1982-01-01
PANC 33 D2 Confusion Matrices for Scene A, IR 34 D3 Confusion Matrices for Scene B, PANC 35 D4 Confusion Matrices for Scene B, IR 36 D5 Confusion...Matrices for Scene C, PANC 37 D6 Confusion Matrices for Scene C, IR 38 D7 Confusion Matrices for Scene E, PANC 39 D8 Confusion Matrices for Scene E, IR 40...D9 Confusion Matrices for Scene H, PANC 41 DIO Confusion Matrices for Scene H, JR 42 3 .D 10CnuinMtie o cn ,IR4 AN ANALYSIS OF THE MAX-MIN TEXTURE
Mathematical investigation of one-way transform matrix options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, James Arlin
2006-01-01
One-way transforms have been used in weapon systems processors since the mid- to late-1970s in order to help recognize insertion of correct pre-arm information while maintaining abnormal-environment safety. Level-One, Level-Two, and Level-Three transforms have been designed. The Level-One and Level-Two transforms have been implemented in weapon systems, and both of these transforms are equivalent to matrix multiplication applied to the inserted information. The Level-Two transform, utilizing a 6 x 6 matrix, provided the basis for the ''System 2'' interface definition for Unique-Signal digital communication between aircraft and attached weapons. The investigation described in this report was carried out to findmore » out if there were other size matrices that would be equivalent to the 6 x 6 Level-Two matrix. One reason for the investigation was to find out whether or not other dimensions were possible, and if so, to derive implementation options. Another important reason was to more fully explore the potential for inadvertent inversion. The results were that additional implementation methods were discovered, but no inversion weaknesses were revealed.« less
Extending the length and time scales of Gram–Schmidt Lyapunov vector computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Anthony B., E-mail: acosta@northwestern.edu; Green, Jason R., E-mail: jason.green@umb.edu; Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125
Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 betweenmore » Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.« less
Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin
2017-01-01
We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.
Interphase and particle dispersion correlations in polymer nanocomposites
NASA Astrophysics Data System (ADS)
Senses, Erkan
Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories for polymers on attractive particle surfaces. The shown thermally-induced stiffening behavior is reversible and makes this interfacial mechanism highly attractive in developing new active, remotely controllable engineered materials from non-responsive components.
Graph Theory Roots of Spatial Operators for Kinematics and Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component bodies, the indexing schemes, etc. The relationship of the underlying structure is intimately connected with efficient, recursive computational algorithms. The results provide the foundational groundwork for a much broader look at the key problems in kinematics and dynamics. The properties of general graphs and trees of nodes and edge were examined, as well as the properties of adjacency matrices that are used to describe graph connectivity. The nilpotency property of such matrices for directed trees was reviewed, and the adjacency matrices were generalized to the notion of block weighted adjacency matrices that support block matrix elements. This leads us to the development of the notion of Spatial Kernel Operator SKO kernels. These kernels provide the basis for the development of SKO resolvent operators.
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Moayedi, A.; Abbaspour, R. Ali
2017-09-01
Automated fare collection (AFC) systems are regarded as valuable resources for public transport planners. In this paper, the AFC data are utilized to analysis and extract mobility patterns in a public transportation system. For this purpose, the smart card data are inserted into a proposed metaheuristic-based aggregation model and then converted to O-D matrix between stops, since the size of O-D matrices makes it difficult to reproduce the measured passenger flows precisely. The proposed strategy is applied to a case study from Haaglanden, Netherlands. In this research, moth-flame optimizer (MFO) is utilized and evaluated for the first time as a new metaheuristic algorithm (MA) in estimating transit origin-destination matrices. The MFO is a novel, efficient swarm-based MA inspired from the celestial navigation of moth insects in nature. To investigate the capabilities of the proposed MFO-based approach, it is compared to methods that utilize the K-means algorithm, gray wolf optimization algorithm (GWO) and genetic algorithm (GA). The sum of the intra-cluster distances and computational time of operations are considered as the evaluation criteria to assess the efficacy of the optimizers. The optimality of solutions of different algorithms is measured in detail. The traveler's behavior is analyzed to achieve to a smooth and optimized transport system. The results reveal that the proposed MFO-based aggregation strategy can outperform other evaluated approaches in terms of convergence tendency and optimality of the results. The results show that it can be utilized as an efficient approach to estimating the transit O-D matrices.
NASA Astrophysics Data System (ADS)
Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.
2015-08-01
We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.
Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization
NASA Astrophysics Data System (ADS)
Jentschura, Ulrich; Noble, Jonathan
2014-03-01
We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.
Reduced-order dynamic output feedback control of uncertain discrete-time Markov jump linear systems
NASA Astrophysics Data System (ADS)
Morais, Cecília F.; Braga, Márcio F.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.
2017-11-01
This paper deals with the problem of designing reduced-order robust dynamic output feedback controllers for discrete-time Markov jump linear systems (MJLS) with polytopic state space matrices and uncertain transition probabilities. Starting from a full order, mode-dependent and polynomially parameter-dependent dynamic output feedback controller, sufficient linear matrix inequality based conditions are provided for the existence of a robust reduced-order dynamic output feedback stabilising controller with complete, partial or none mode dependency assuring an upper bound to the ? or the ? norm of the closed-loop system. The main advantage of the proposed method when compared to the existing approaches is the fact that the dynamic controllers are exclusively expressed in terms of the decision variables of the problem. In other words, the matrices that define the controller realisation do not depend explicitly on the state space matrices associated with the modes of the MJLS. As a consequence, the method is specially suitable to handle order reduction or cluster availability constraints in the context of ? or ? dynamic output feedback control of discrete-time MJLS. Additionally, as illustrated by means of numerical examples, the proposed approach can provide less conservative results than other conditions in the literature.
Application of Semi-Definite Programming for Many-Fermion Systems
NASA Astrophysics Data System (ADS)
Zhao, Zhengji; Braams, Bastiaan; Fukuda, Mituhiro; Overton, Michael
2003-03-01
The ground state energy and other important observables of a many-fermion system with one- and two-body interactions only can all be obtained from the first order and second order Reduced Density Matrices (RDM's) of the system. Using these density matrices and a family of associated representability conditions one may obtain an approximation method for electronic structure theory that is in the mathematical form of Semi-Definite Programming (SDP): minimize a linear matrix functional over a space of positive semidefinite matrices subject to linear constraints. The representability conditions are some known necessary conditions, starting with the well-known P, Q, and G conditions [Claude Garrod and Jerome K. Percus, Reducation of the N-Particle Variational Problem, J. Math. Phys. 5 (1964) 1756-1776]. The RDM method with SDP has great potential advantages over the wave function method when the particle number N is large. The dimension of the full configuration space increases exponentially with N, but in RDM method with SDP the dimension of the objective matrix (which includes RDM's) increases only polynomially with N. We will report on the effect of adding the generalized three-index conditions proposed in [R. M. Erdahl, Representability, Int. J. Quantum Chem. 13 (1978) 697-718].
Supersymmetric quantum spin chains and classical integrable systems
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-05-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Symmetries in geometrical optics: theory
NASA Astrophysics Data System (ADS)
Szilagyi, M.; Mui, P. H.
1995-12-01
A study of light and charged-particle optical systems with inversion, reflection, rotation, translation, and/or glide symmetries is presented. The constraints imposed by the various symmetries on the first-order properties of a lens are investigated. In particular, the mathematical structures of the deflection vectors and the transfer matrices are described for various symmetrical systems. In the course of studying the translation and the glide symmetries, a simple technique for characterizing a general system of N identical components in series (or cascade) is also developed, based on the linear algebra theory of factoring matrices into Jordan canonical forms. Applications of these results are presented in a follow-up paper [J. Opt. Soc. Am. 12, XXXX (1995)]. Copyright (c) 1995 Optical Society of America
State-Space System Realization with Input- and Output-Data Correlation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1997-01-01
This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.
Kim, Jung-Suk; Im, Byung Gee; Jin, Gyuhyung; Jang, Jae-Hyung
2016-08-31
Guiding newly generated tissues in a gradient pattern, thereby precisely mimicking inherent tissue morphology and subsequently arranging the intimate networks between adjacent tissues, is essential to raise the technical levels of tissue engineering and facilitate its transition into the clinic. In this study, a straightforward electrospinning method (the tubing-electrospinning technique) was developed to create fibrous matrices readily with diverse gradient patterns and to induce patterned cellular responses. Gradient fibrous matrices can be produced simply by installing a series of polymer-containing lengths of tubing into an electrospinning circuit and sequentially processing polymers without a time lag. The loading of polymer samples with different characteristics, including concentration, wettability, and mechanical properties, into the tubing system enabled unique features in fibrous matrices, such as longitudinal gradients in fiber density, surface properties, and mechanical stiffness. The resulting fibrous gradients were shown to arrange cellular migration and residence in a gradient manner, thereby offering efficient cues to mediate patterned tissue formation. The one-step process using tubing-electrospinning apparatus can be used without significant modifications regardless of the type of fibrous gradient. Hence, the tubing-electrospinning system can serve as a platform that can be readily used by a wide-range of users to induce patterned tissue formation in a gradient manner, which will ultimately improve the functionality of tissue engineering scaffolds.
Microstrip Butler matrix design and realization for 7 T MRI.
Yazdanbakhsh, Pedram; Solbach, Klaus
2011-07-01
This article presents the design and realization of 8 × 8 and 16 × 16 Butler matrices for 7 T MRI systems. With the focus on low insertion loss and high amplitude/phase accuracy, the microstrip line integration technology (microwave-integrated circuit) was chosen for the realization. Laminate material of high permittivity (ε(r) = 11) and large thickness (h = 3.2 mm) is shown to allow the best trade-off of circuit board size versus insertion loss, saving circuit area by extensive folding of branch-line coupler topology and meandering phase shifter and connecting strip lines and reducing mutual coupling of neighboring strip lines by shield structures between strip lines. With this approach, 8 × 8 Butler matrices were produced in single boards of 310 mm × 530 mm, whereas the 16 × 16 Butler matrices combined two submatrices of 8 × 8 with two smaller boards. Insertion loss was found at 0.73 and 1.1 dB for an 8 × 8 matrix and 16 × 16 matrix, respectively. Measured amplitude and phase errors are shown to represent highly pure mode excitation with unwanted modes suppressed by 40 and 35 dB, respectively. Both types of matrices were implemented with a 7 T MRI system and 8- and 16-element coil arrays for RF mode shimming experiments and operated successfully with 8 kW of RF power. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Akram, Muhammad Farooq Bin
The management of technology portfolios is an important element of aerospace system design. New technologies are often applied to new product designs to ensure their competitiveness at the time they are introduced to market. The future performance of yet-to- be designed components is inherently uncertain, necessitating subject matter expert knowledge, statistical methods and financial forecasting. Estimates of the appropriate parameter settings often come from disciplinary experts, who may disagree with each other because of varying experience and background. Due to inherent uncertain nature of expert elicitation in technology valuation process, appropriate uncertainty quantification and propagation is very critical. The uncertainty in defining the impact of an input on performance parameters of a system makes it difficult to use traditional probability theory. Often the available information is not enough to assign the appropriate probability distributions to uncertain inputs. Another problem faced during technology elicitation pertains to technology interactions in a portfolio. When multiple technologies are applied simultaneously on a system, often their cumulative impact is non-linear. Current methods assume that technologies are either incompatible or linearly independent. It is observed that in case of lack of knowledge about the problem, epistemic uncertainty is the most suitable representation of the process. It reduces the number of assumptions during the elicitation process, when experts are forced to assign probability distributions to their opinions without sufficient knowledge. Epistemic uncertainty can be quantified by many techniques. In present research it is proposed that interval analysis and Dempster-Shafer theory of evidence are better suited for quantification of epistemic uncertainty in technology valuation process. Proposed technique seeks to offset some of the problems faced by using deterministic or traditional probabilistic approaches for uncertainty propagation. Non-linear behavior in technology interactions is captured through expert elicitation based technology synergy matrices (TSM). Proposed TSMs increase the fidelity of current technology forecasting methods by including higher order technology interactions. A test case for quantification of epistemic uncertainty on a large scale problem of combined cycle power generation system was selected. A detailed multidisciplinary modeling and simulation environment was adopted for this problem. Results have shown that evidence theory based technique provides more insight on the uncertainties arising from incomplete information or lack of knowledge as compared to deterministic or probability theory methods. Margin analysis was also carried out for both the techniques. A detailed description of TSMs and their usage in conjunction with technology impact matrices and technology compatibility matrices is discussed. Various combination methods are also proposed for higher order interactions, which can be applied according to the expert opinion or historical data. The introduction of technology synergy matrix enabled capturing the higher order technology interactions, and improvement in predicted system performance.
Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication
Azad, Ariful; Ballard, Grey; Buluc, Aydin; ...
2016-11-08
Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdös-Rényi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first implementation of the 3D SpGEMM formulation that exploits multiple (intranode and internode) levels of parallelism, achievingmore » significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research.« less
NASA Astrophysics Data System (ADS)
Eichinger, Benjamin
2016-07-01
We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic finite gap Jacobi matrices by periodic GMP matrices. Moreover, due to their structural similarity we can carry over numerous results from the direct and inverse spectral theory of periodic Jacobi matrices to the class of periodic GMP matrices. In particular, we prove an analogue of the remarkable ''magic formula'' for this new class.
Invariant Poisson-Nijenhuis structures on Lie groups and classification
NASA Astrophysics Data System (ADS)
Ravanpak, Zohreh; Rezaei-Aghdam, Adel; Haghighatdoost, Ghorbanali
We study right-invariant (respectively, left-invariant) Poisson-Nijenhuis structures (P-N) on a Lie group G and introduce their infinitesimal counterpart, the so-called r-n structures on the corresponding Lie algebra 𝔤. We show that r-n structures can be used to find compatible solutions of the classical Yang-Baxter equation (CYBE). Conversely, two compatible r-matrices from which one is invertible determine an r-n structure. We classify, up to a natural equivalence, all r-matrices and all r-n structures with invertible r on four-dimensional symplectic real Lie algebras. The result is applied to show that a number of dynamical systems which can be constructed by r-matrices on a phase space whose symmetry group is Lie group a G, can be specifically determined.
NASA Technical Reports Server (NTRS)
Miller, R. D.; Anderson, L. R.
1979-01-01
The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.
Teaching Fourier optics through ray matrices
NASA Astrophysics Data System (ADS)
Moreno, I.; Sánchez-López, M. M.; Ferreira, C.; Davis, J. A.; Mateos, F.
2005-03-01
In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics.
Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M
2014-10-01
PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.
Sumiyoshi, Chika; Harvey, Philip D; Takaki, Manabu; Okahisa, Yuko; Sato, Taku; Sora, Ichiro; Nuechterlein, Keith H; Subotnik, Kenneth L; Sumiyoshi, Tomiki
2015-09-01
Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1) to identify which outcome factors predict occupational functioning, quantified as work hours, and 2) to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB), the UCSD Performance-based Skills Assessment-Brief (UPSA-B), and the Social Functioning Scale Individuals' version modified for the MATRICS-PASS (Modified SFS for PASS), respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly) and a multiple logistic regression analyses (predicting dichotomized work status based on work hours). ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60-70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.
Chauhan, Ashvini; Ogram, Andrew
2005-02-18
Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sechin, Ivan, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru; ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218; Zotov, Andrei, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru
In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov,more » and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder’s elliptic R-matrix are also discussed.« less
Worrich, Anja; König, Sara; Miltner, Anja; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Kästner, Matthias; Wick, Lukas Y
2016-05-15
Fungal mycelia serve as effective dispersal networks for bacteria in water-unsaturated environments, thereby allowing bacteria to maintain important functions, such as biodegradation. However, poor knowledge exists on the effects of dispersal networks at various osmotic (Ψo) and matric (Ψm) potentials, which contribute to the water potential mainly in terrestrial soil environments. Here we studied the effects of artificial mycelium-like dispersal networks on bacterial dispersal dynamics and subsequent effects on growth and benzoate biodegradation at ΔΨo and ΔΨm values between 0 and -1.5 MPa. In a multiple-microcosm approach, we used a green fluorescent protein (GFP)-tagged derivative of the soil bacterium Pseudomonas putida KT2440 as a model organism and sodium benzoate as a representative of polar aromatic contaminants. We found that decreasing ΔΨo and ΔΨm values slowed bacterial dispersal in the system, leading to decelerated growth and benzoate degradation. In contrast, dispersal networks facilitated bacterial movement at ΔΨo and ΔΨm values between 0 and -0.5 MPa and thus improved the absolute biodegradation performance by up to 52 and 119% for ΔΨo and ΔΨm, respectively. This strong functional interrelationship was further emphasized by a high positive correlation between population dispersal, population growth, and degradation. We propose that dispersal networks may sustain the functionality of microbial ecosystems at low osmotic and matric potentials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Waller, Niels G
2016-01-01
For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.
NASA Technical Reports Server (NTRS)
Patel, R. V.; Toda, M.; Sridhar, B.
1977-01-01
The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.
Time-dependent generalized Gibbs ensembles in open quantum systems
NASA Astrophysics Data System (ADS)
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2018-04-01
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
Quantum dynamics of a two-atom-qubit system
NASA Astrophysics Data System (ADS)
Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha
2009-09-01
A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewontin, R C
1981-01-01
During the past year, research has been devoted to two related studies of two-locus systems under natural selection and one on selection in haplo-diploid organisms. The principal results are: (1) Numerical studies were made of 2 locus selection models with asymmetric fitnesses. These were created by perturbing the fitness matrices of symmetric models whose results are known analytically. A complete classification of solved models has been made and all perturbations of these have been undertaken. The result is that all models lead to three classes of equilibrium structure. All are characterized by multiple equilbria with small linkage disequilibria under loosemore » linkage and high complementarity equilibria under tight linkage. In some cases there is gene fixation at intermediate linkage. (2) It has been shown that selection may favor more recombination, contrary to the usual expectation, if multiple locus polymorphisms are maintained by a mechanism other than marginal overdominance. This may be the result of mutation-selection balance or frequency-dependent selection. (3) In a haplo-diploid system in which diploid males are lethal (as in bees and braconid wasps) the number of sex alleles that can be maintained depends both on breeding size and the number of colonies. Simulations show that the steady number is sensitive to the number of colonies but insensitive to the number of matings. Thirty-five to fifty colonies are sufficient to maintain very large numbers of sex alleles.« less
NASA Astrophysics Data System (ADS)
Nelson, Adam
Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system containing a new pre-processor code, NDPP, and a Monte Carlo neutron transport code, OpenMC. This method is then tested in a pin cell problem and a larger problem designed to accentuate the importance of scattering moment matrices. These tests show that accuracy was retained while the figure-of-merit for generating scattering moment matrices and fission energy spectra was significantly improved.
Time reversal acoustics for small targets using decomposition of the time reversal operator
NASA Astrophysics Data System (ADS)
Simko, Peter C.
The method of time reversal acoustics has been the focus of considerable interest over the last twenty years. Time reversal imaging methods have made consistent progress as effective methods for signal processing since the initial demonstration that physical time reversal methods can be used to form convergent wave fields on a localized target, even under conditions of severe multipathing. Computational time reversal methods rely on the properties of the so-called 'time reversal operator' in order to extract information about the target medium. Applications for which time reversal imaging have previously been explored include medical imaging, non-destructive evaluation, and mine detection. Emphasis in this paper will fall on two topics within the general field of computational time reversal imaging. First, we will examine previous work on developing a time reversal imaging algorithm based on the MUltiple SIgnal Classification (MUSIC) algorithm. MUSIC, though computationally very intensive, has demonstrated early promise in simulations using array-based methods applicable to true volumetric (three-dimensional) imaging. We will provide a simple algorithm through which the rank of the time reversal operator subspaces can be properly quantified so that the rank of the associated null subspace can be accurately estimated near the central pulse wavelength in broadband imaging. Second, we will focus on the scattering from small acoustically rigid two dimensional cylindrical targets of elliptical cross section. Analysis of the time reversal operator eigenmodes has been well-studied for symmetric response matrices associated with symmetric systems of scattering targets. We will expand these previous results to include more general scattering systems leading to asymmetric response matrices, for which the analytical complexity increases but the physical interpretation of the time reversal operator remains unchanged. For asymmetric responses, the qualitative properties of the time reversal operator eigenmodes remain consistent with those obtained from the more tightly constrained systems.
Large-scale 3-D EM modelling with a Block Low-Rank multifrontal direct solver
NASA Astrophysics Data System (ADS)
Shantsev, Daniil V.; Jaysaval, Piyoosh; de la Kethulle de Ryhove, Sébastien; Amestoy, Patrick R.; Buttari, Alfredo; L'Excellent, Jean-Yves; Mary, Theo
2017-06-01
We put forward the idea of using a Block Low-Rank (BLR) multifrontal direct solver to efficiently solve the linear systems of equations arising from a finite-difference discretization of the frequency-domain Maxwell equations for 3-D electromagnetic (EM) problems. The solver uses a low-rank representation for the off-diagonal blocks of the intermediate dense matrices arising in the multifrontal method to reduce the computational load. A numerical threshold, the so-called BLR threshold, controlling the accuracy of low-rank representations was optimized by balancing errors in the computed EM fields against savings in floating point operations (flops). Simulations were carried out over large-scale 3-D resistivity models representing typical scenarios for marine controlled-source EM surveys, and in particular the SEG SEAM model which contains an irregular salt body. The flop count, size of factor matrices and elapsed run time for matrix factorization are reduced dramatically by using BLR representations and can go down to, respectively, 10, 30 and 40 per cent of their full-rank values for our largest system with N = 20.6 million unknowns. The reductions are almost independent of the number of MPI tasks and threads at least up to 90 × 10 = 900 cores. The BLR savings increase for larger systems, which reduces the factorization flop complexity from O(N2) for the full-rank solver to O(Nm) with m = 1.4-1.6. The BLR savings are significantly larger for deep-water environments that exclude the highly resistive air layer from the computational domain. A study in a scenario where simulations are required at multiple source locations shows that the BLR solver can become competitive in comparison to iterative solvers as an engine for 3-D controlled-source electromagnetic Gauss-Newton inversion that requires forward modelling for a few thousand right-hand sides.
Kussmann, Jörg; Ochsenfeld, Christian
2007-11-28
A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2011-06-01
A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.
The preconditioned Gauss-Seidel method faster than the SOR method
NASA Astrophysics Data System (ADS)
Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori
2008-09-01
In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10
General Systems Theory and Instructional Systems Design.
ERIC Educational Resources Information Center
Salisbury, David F.
1990-01-01
Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)
Vibrating Systems with Singular Mass-Inertia Matrices
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1996-01-01
Vibrating systems with singular mass-inertia matrices arise in recent continuum models of Smart Structures (beams with PZT strips) in assessing the damping attainable with rate feedback. While they do not quite yield 'distributed' controls, we show that they can provide a fixed nonzero lower bound for the damping coefficient at all mode frequencies. The mathematical machinery for modelling the motion involves the theory of Semigroups of Operators. We consider a Timoshenko model for torsion only, a 'smart string,' where the damping coefficient turns out to be a constant at all frequencies. We also observe that the damping increases initially with the feedback gain but decreases to zero eventually as the gain increases without limit.
Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors
NASA Technical Reports Server (NTRS)
Toda, M.; Patel, R.; Sridhar, B.
1976-01-01
The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.
Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.
Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J
2016-06-03
Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.
Photonic beamforming network for multibeam satellite-on-board phased-array antennas
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Cuesta-Soto, F.; Villalba, P.; Martí, A.; Hakansson, A.; Perdigués, J.; Caille, G.
2017-11-01
The implementation of a beamforming unit based on integrated photonic technologies is addressed in this work. This integrated photonic solution for multibeam coverage will be compared with the digital and the RF solution. Photonic devices show unique characteristics that match the critical requirements of space oriented devices such as low mass/size, low power consumption and easily scalable to big systems. An experimental proof-of-concept of the photonic beamforming structure based on 4x4 and 8x8 Butler matrices is presented. The proof-of-concept is based in the heterodyne generation of multiple phase engineered RF signals for the conformation of 8-4 different beams in an antenna array. Results show the feasibility of this technology for the implementation of optical beamforming with phase distribution errors below σ=10o with big savings in the required mass and size of the beamforming unit.
On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Wei, X.
The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis.more » This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.« less
England, Matt W; Sato, Tomoya; Urata, Chihiro; Wang, Liming; Hozumi, Atsushi
2017-11-01
Transparent gel-based composite films with multiple functionalities, showing long-lasting anti-fogging properties, underwater superoleophobicity, and anti-bacterial activity were successfully prepared from polyvinylpyrrolidone (PVP) and aminopropyl-functionalized clay (AMP-clay). Due to the addition of glutaraldehyde (GA, cross-linker) into the PVP matrices, and AMP-functionalities to the substrate surfaces, both the adhesion properties in water and durability of the anti-fogging properties were significantly improved. In addition, this durability was also found to be markedly improved by increasing the film thickness via deposition of several PVP/AMP/GA layers, while still retaining excellent transparency. Copyright © 2017 Elsevier Inc. All rights reserved.
Space station data system analysis/architecture study. Task 4: System definition report. Appendix
NASA Technical Reports Server (NTRS)
1985-01-01
Appendices to the systems definition study for the space station Data System are compiled. Supplemental information on external interface specification, simulation and modeling, and function design characteristics is presented along with data flow diagrams, a data dictionary, and function allocation matrices.
Dececchi, T. Alex; Mabee, Paula M.; Blackburn, David C.
2016-01-01
Databases of organismal traits that aggregate information from one or multiple sources can be leveraged for large-scale analyses in biology. Yet the differences among these data streams and how well they capture trait diversity have never been explored. We present the first analysis of the differences between phenotypes captured in free text of descriptive publications (‘monographs’) and those used in phylogenetic analyses (‘matrices’). We focus our analysis on osteological phenotypes of the limbs of four extinct vertebrate taxa critical to our understanding of the fin-to-limb transition. We find that there is low overlap between the anatomical entities used in these two sources of phenotype data, indicating that phenotypes represented in matrices are not simply a subset of those found in monographic descriptions. Perhaps as expected, compared to characters found in matrices, phenotypes in monographs tend to emphasize descriptive and positional morphology, be somewhat more complex, and relate to fewer additional taxa. While based on a small set of focal taxa, these qualitative and quantitative data suggest that either source of phenotypes alone will result in incomplete knowledge of variation for a given taxon. As a broader community develops to use and expand databases characterizing organismal trait diversity, it is important to recognize the limitations of the data sources and develop strategies to more fully characterize variation both within species and across the tree of life. PMID:27191170
NMR Quantification of Carbohydrates in Complex Mixtures. A Challenge on Honey.
Schievano, Elisabetta; Tonoli, Marco; Rastrelli, Federico
2017-12-19
The knowledge of carbohydrate composition is greatly important to determine the properties of natural matrices such as foodstuff and food ingredients. However, because of the structural similarity and the multiple isomeric forms of carbohydrates in solution, their analysis is often a complex task. Here we propose an NMR analytical procedure based on highly selective chemical shift filters followed by TOCSY, which allows us to acquire specific background-free signals for each sugar. The method was tested on raw honey samples dissolved in water with no other pretreatment. In total, 22 sugars typically found in honey were quantified: 4 monosaccharides (glucose, fructose, mannose, rhamnose), 11 disaccharides (sucrose, trehalose, turanose, maltose, maltulose, palatinose, melibiose and melezitose, isomaltose, gentiobiose nigerose, and kojibiose), and 7 trisaccharides (raffinose, isomaltotriose, erlose, melezitose, maltotriose, panose, and 1-kestose). Satisfactory results in terms of limit of quantification (0.03-0.4 g/100g honey), precision (% RSD: 0.99-4.03), trueness (bias % 0.4-4.2), and recovery (97-104%) were obtained. An accurate control of the instrumental temperature and of the sample pH endows an optimal chemical shift reproducibility, making the procedure amenable to automation and suitable to routine analysis. While validated on honey, which is one of the most complex natural matrices in terms of saccharides composition, this innovative approach can be easily transferred to other natural matrices.
A new measure based on degree distribution that links information theory and network graph analysis
2012-01-01
Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594
Caizhen, Guo; Yan, Gao; Ronron, Chang; Lirong, Yang; Panpan, Chu; Xuemei, Hu; Yuanbiao, Qiao; Qingshan, Li
2015-04-10
An essential in vivo drug delivery system of a momordica anti-HIV protein, MAP30, was developed through encapsulating in chemically synthesized matrices of zirconium egg- and soy-phosphatidylcholines, abbreviated to Zr/EPC and Zr/SPC, respectively. Matrices were characterized by transmission electron microscopy and powder X-ray diffractometry studies. Zr/EPC granule at an approximate diameter of 69.43±7.78 nm was a less efficient encapsulator than the granule of Zr/SPC. Interlayer spacing of the matrices encapsulating MAP30 increased from 8.8 and 9.7 Å to 7.4 and 7.9 nm, respectively. In vivo kinetics on degradation and protein release was performed by analyzing the serum sampling of intravenously injected SPF chickens. The first order and biphasic variations were obtained for in vivo kinetics using equilibrium dialysis. Antimicrobial and anti-HIV assays yielded greatly decreased MIC50 and EC50 values of nanoformulated MAP30. An acute toxicity of MAP30 encapsulated in Zr/EPC occurred at a single intravenous dose above 14.24 mg/kg bw in NIH/KM/ICR mice. The folding of MAP30 from Zr/EPC sustained in vivo chickens for more than 8 days in high performance liquid chromatography assays. These matrices could protect MAP30 efficiently with strong structure retention, lowered toxicity and prolonged in vivo life. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Castro, María Eugenia; Díaz, Javier; Muñoz-Caro, Camelia; Niño, Alfonso
2011-09-01
We present a system of classes, SHMatrix, to deal in a unified way with the computation of eigenvalues and eigenvectors in real symmetric and Hermitian matrices. Thus, two descendant classes, one for the real symmetric and other for the Hermitian cases, override the abstract methods defined in a base class. The use of the inheritance relationship and polymorphism allows handling objects of any descendant class using a single reference of the base class. The system of classes is intended to be the core element of more sophisticated methods to deal with large eigenvalue problems, as those arising in the variational treatment of realistic quantum mechanical problems. The present system of classes allows computing a subset of all the possible eigenvalues and, optionally, the corresponding eigenvectors. Comparison with well established solutions for analogous eigenvalue problems, as those included in LAPACK, shows that the present solution is competitive against them. Program summaryProgram title: SHMatrix Catalogue identifier: AEHZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2616 No. of bytes in distributed program, including test data, etc.: 127 312 Distribution format: tar.gz Programming language: Standard ANSI C++. Computer: PCs and workstations. Operating system: Linux, Windows. Classification: 4.8. Nature of problem: The treatment of problems involving eigensystems is a central topic in the quantum mechanical field. Here, the use of the variational approach leads to the computation of eigenvalues and eigenvectors of real symmetric and Hermitian Hamiltonian matrices. Realistic models with several degrees of freedom leads to large (sometimes very large) matrices. Different techniques, such as divide and conquer, can be used to factorize the matrices in order to apply a parallel computing approach. However, it is still interesting to have a core procedure able to tackle the computation of eigenvalues and eigenvectors once the matrix has been factorized to pieces of enough small size. Several available software packages, such as LAPACK, tackled this problem under the traditional imperative programming paradigm. In order to ease the modelling of complex quantum mechanical models it could be interesting to apply an object-oriented approach to the treatment of the eigenproblem. This approach offers the advantage of a single, uniform treatment for the real symmetric and Hermitian cases. Solution method: To reach the above goals, we have developed a system of classes: SHMatrix. SHMatrix is composed by an abstract base class and two descendant classes, one for real symmetric matrices and the other for the Hermitian case. The object-oriented characteristics of inheritance and polymorphism allows handling both cases using a single reference of the base class. The basic computing strategy applied in SHMatrix allows computing subsets of eigenvalues and (optionally) eigenvectors. The tests performed show that SHMatrix is competitive, and more efficient for large matrices, than the equivalent routines of the LAPACK package. Running time: The examples included in the distribution take only a couple of seconds to run.
Continued-fraction representation of the Kraus map for non-Markovian reservoir damping
NASA Astrophysics Data System (ADS)
van Wonderen, A. J.; Suttorp, L. G.
2018-04-01
Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.
NASA Astrophysics Data System (ADS)
Ren, W. X.; Lin, Y. Q.; Fang, S. E.
2011-11-01
One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.
Products of random matrices from fixed trace and induced Ginibre ensembles
NASA Astrophysics Data System (ADS)
Akemann, Gernot; Cikovic, Milan
2018-05-01
We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M ‑ m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.
Spectral resolution of SU(3)-invariant solutions of the Yang-Baxter equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alishauskas, S.I.; Kulish, P.P.
1986-11-20
The spectral resolution of invariant R-matrices is computed on the basis of solution of the defining equation. Multiple representations in the Clebsch-Gordon series are considered by means of the classifying operator A: a linear combination of known operators of third and fourth degrees in the group generators. The matrix elements of A in a nonorthonormal basis are found. Explicit expressions are presented for the spectral resolutions for a number of representations.
Spectral resolution of SU(3)-invariant solutions of the Yang-Baxter equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alishavskas, S.I.; Kulish, P.P.
1986-11-01
The spectral resolution of invariant R-matrices is computed on the basis of solution of the defining equation. Multiple representations in the Clebsch-Gordon series are considered by means of the classifying operator A: a linear combination of known operators of third and fourth degrees in the group generators. The matrix elements of A in a nonorthonormal basis are found. Explicit expressions are presented for the spectral resolutions for a number of representations.
1993-12-01
3-20 3.4.4 Vectorization and Matricization ............... 3-28 3.5 MMSOFE Validation ...................... 3- 35 3.6 Summary...B-2 B.2 Measurement Noise Ramp during 25 < T < 35 .......... B-11 B.3 Measurement Noise Bias during 25 < T < 35 ............ B-20 B.4...B- 35 B.31.Ca~se #4 Theta-rate..................................... B-36 B.32.Case #4 Parameter.....................................B-37 B.33.Case
Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme
NASA Astrophysics Data System (ADS)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm
2018-03-01
The Green function plays an essential role in the Korringa-Kohn-Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn-Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). The pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. By using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.
Holmberg, Fredrik Eo; Seidelin, Jakob B; Yin, Xiaolei; Mead, Benjamin E; Tong, Zhixiang; Li, Yuan; Karp, Jeffrey M; Nielsen, Ole H
2017-05-01
Both the incidence and prevalence of inflammatory bowel disease (IBD) is increasing globally; in the industrialized world up to 0.5% of the population are affected and around 4.2 million individuals suffer from IBD in Europe and North America combined. Successful engraftment in experimental colitis models suggests that intestinal stem cell transplantation could constitute a novel treatment strategy to re-establish mucosal barrier function in patients with severe disease. Intestinal stem cells can be grown in vitro in organoid structures, though only a fraction of the cells contained are stem cells with regenerative capabilities. Hence, techniques to enrich stem cell populations are being pursued through the development of multiple two-dimensional and three-dimensional culture protocols, as well as co-culture techniques and multiple growth medium compositions. Moreover, research in support matrices allowing for efficient clinical application is in progress. In vitro culture is accomplished by modulating the signaling pathways fundamental for the stem cell niche with a suitable culture matrix to provide additional contact-dependent stimuli and structural support. The aim of this review was to discuss medium compositions and support matrices for optimal intestinal stem cell culture, as well as potential modifications to advance clinical use in IBD. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus
The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less
Glynn, Kelly M; Anderson, Penny; Fast, David J; Koedam, James; Rebhun, John F; Velliquette, Rodney A
2018-06-15
Glycation and advanced glycation endproducts (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine if GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses, and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) activation. Inflammatory targets, nuclear factor kappa light chain enhancer of activated B cells (NFκB) and tumor necrosis factor alpha (TNFα), were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation, and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming
2013-07-17
A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Fully-relativistic full-potential multiple scattering theory: A pathology-free scheme
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; ...
2017-10-28
The Green function plays an essential role in the Korringa–Kohn–Rostoker(KKR) multiple scattering method. In practice, it is constructed from the regular and irregular solutions of the local Kohn–Sham equation and robust methods exist for spherical potentials. However, when applied to a non-spherical potential, numerical errors from the irregular solutions give rise to pathological behaviors of the charge density at small radius. Here we present a full-potential implementation of the fully-relativistic KKR method to perform ab initio self-consistent calculation by directly solving the Dirac differential equations using the generalized variable phase (sine and cosine matrices) formalism Liu et al. (2016). Themore » pathology around the origin is completely eliminated by carrying out the energy integration of the single-site Green function along the real axis. Here, by using an efficient pole-searching technique to identify the zeros of the well-behaved Jost matrices, we demonstrated that this scheme is numerically stable and computationally efficient, with speed comparable to the conventional contour energy integration method, while free of the pathology problem of the charge density. As an application, this method is utilized to investigate the crystal structures of polonium and their bulk properties, which is challenging for a conventional real-energy scheme. The noble metals are also calculated, both as a test of our method and to study the relativistic effects.« less
BCH codes for large IC random-access memory systems
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.
1983-01-01
In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.
Robust infrared targets tracking with covariance matrix representation
NASA Astrophysics Data System (ADS)
Cheng, Jian
2009-07-01
Robust infrared target tracking is an important and challenging research topic in many military and security applications, such as infrared imaging guidance, infrared reconnaissance, scene surveillance, etc. To effectively tackle the nonlinear and non-Gaussian state estimation problems, particle filtering is introduced to construct the theory framework of infrared target tracking. Under this framework, the observation probabilistic model is one of main factors for infrared targets tracking performance. In order to improve the tracking performance, covariance matrices are introduced to represent infrared targets with the multi-features. The observation probabilistic model can be constructed by computing the distance between the reference target's and the target samples' covariance matrix. Because the covariance matrix provides a natural tool for integrating multiple features, and is scale and illumination independent, target representation with covariance matrices can hold strong discriminating ability and robustness. Two experimental results demonstrate the proposed method is effective and robust for different infrared target tracking, such as the sensor ego-motion scene, and the sea-clutter scene.
Latest Developments in the Matrics Process
Green, Michael Foster; Nuechterlein, Keith H
2010-01-01
The Measurement and Treatment Research to Improve Cognition in Schizophrenia Research process has led to several developments in the assessment of cognitive functioning for schizophrenia-treatment studies. The first development was the development of a consensus cognitive battery and a United States Food and Drug Administration-endorsed research design. Since the development of the cognitive battery, interest has been spurred in clinical trials in different countries and the development of co-primary functional outcomes measures for these. The MATRICS Consensus Cognitive Battery has been translated into 11 different languages and is being translated into even more. A study has been completed that compared the usefulness of multiple potential co-primary measures, suggesting that the University of California San Diego Performance-Based skills assessment, version II (UPSA-II) is the most suitable for studies conducted in English. These findings suggest that reliable performance-based measures that are easy to administer and highly correlated with cognitive functioning are now available for use in treatment studies. PMID:20622946
HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannan, Ramakrishnan; Sukumar, Sreenivas R.; Ballard, Grey M.
NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems formore » $$\\WW$$ and $$\\HH$$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $$\\WW$$ and $$\\HH$$ within the alternating iterations.« less
Towards rigorous analysis of the Levitov-Mirlin-Evers recursion
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Kupiainen, A.; Webb, C.
2016-12-01
This paper aims to develop a rigorous asymptotic analysis of an approximate renormalization group recursion for inverse participation ratios P q of critical powerlaw random band matrices. The recursion goes back to the work by Mirlin and Evers (2000 Phys. Rev. B 62 7920) and earlier works by Levitov (1990 Phys. Rev. Lett. 64 547, 1999 Ann. Phys. 8 697-706) and is aimed to describe the ensuing multifractality of the eigenvectors of such matrices. We point out both similarities and dissimilarities between the LME recursion and those appearing in the theory of multiplicative cascades and branching random walks and show that the methods developed in those fields can be adapted to the present case. In particular the LME recursion is shown to exhibit a phase transition, which we expect is a freezing transition, where the role of temperature is played by the exponent q. However, the LME recursion has features that make its rigorous analysis considerably harder and we point out several open problems for further study.
Gaskins, J T; Daniels, M J
2016-01-02
The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consists of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior which proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Material available online.
Cycle/Cocycle Oblique Projections on Oriented Graphs
NASA Astrophysics Data System (ADS)
Polettini, Matteo
2015-01-01
It is well known that the edge vector space of an oriented graph can be decomposed in terms of cycles and cocycles (alias cuts, or bonds), and that a basis for the cycle and the cocycle spaces can be generated by adding and removing edges to an arbitrarily chosen spanning tree. In this paper, we show that the edge vector space can also be decomposed in terms of cycles and the generating edges of cocycles (called cochords), or of cocycles and the generating edges of cycles (called chords). From this observation follows a construction in terms of oblique complementary projection operators. We employ this algebraic construction to prove several properties of unweighted Kirchhoff-Symanzik matrices, encoding the mutual superposition between cycles and cocycles. In particular, we prove that dual matrices of planar graphs have the same spectrum (up to multiplicities). We briefly comment on how this construction provides a refined formalization of Kirchhoff's mesh analysis of electrical circuits, which has lately been applied to generic thermodynamic networks.
Streby, Ashleigh; Mull, Bonnie J; Levy, Karen; Hill, Vincent R
2015-05-01
Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Foursuch assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices.
Streby, Ashleigh; Mull, Bonnie J.; Levy, Karen
2015-01-01
Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Four such assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices. PMID:25855343
A Partitioning Algorithm for Block-Diagonal Matrices With Overlap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina
2008-02-02
We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods
Smith, David S.; Gore, John C.; Yankeelov, Thomas E.; Welch, E. Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images. PMID:22481908
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods.
Smith, David S; Gore, John C; Yankeelov, Thomas E; Welch, E Brian
2012-01-01
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.
Finding exact constants in a Markov model of Zipfs law generation
NASA Astrophysics Data System (ADS)
Bochkarev, V. V.; Lerner, E. Yu.; Nikiforov, A. A.; Pismenskiy, A. A.
2017-12-01
According to the classical Zipfs law, the word frequency is a power function of the word rank with an exponent -1. The objective of this work is to find multiplicative constant in a Markov model of word generation. Previously, the case of independent letters was mathematically strictly investigated in [Bochkarev V V and Lerner E Yu 2017 International Journal of Mathematics and Mathematical Sciences Article ID 914374]. Unfortunately, the methods used in this paper cannot be generalized in case of Markov chains. The search of the correct formulation of the Markov generalization of this results was performed using experiments with different ergodic matrices of transition probability P. Combinatory technique allowed taking into account all the words with probability of more than e -300 in case of 2 by 2 matrices. It was experimentally proved that the required constant in the limit is equal to the value reciprocal to conditional entropy of matrix row P with weights presenting the elements of the vector π of the stationary distribution of the Markov chain.
Phinney, Karen W; Rimmer, Catherine A; Thomas, Jeanice Brown; Sander, Lane C; Sharpless, Katherine E; Wise, Stephen A
2011-01-01
Vitamins are essential to human health, and dietary supplements containing vitamins are widely used by individuals hoping to ensure they have adequate intake of these important nutrients. Measurement of vitamins in nutritional formulations is necessary to monitor regulatory compliance and in studies examining the nutrient intake of specific populations. Liquid chromatographic methods, primarily with UV absorbance detection, are well established for both fat- and water-soluble measurements, but they do have limitations for certain analytes and may suffer from a lack of specificity in complex matrices. Liquid chromatography-mass spectrometry (LC-MS) provides both sensitivity and specificity for the determination of vitamins in these matrices, and simultaneous analysis of multiple vitamins in a single analysis is often possible. In this work, LC-MS methods were developed for both fat- and water-soluble vitamins and applied to the measurement of these analytes in two NIST Standard Reference Materials. When possible, stable isotope labeled internal standards were employed for quantification.
Multivariable control theory applied to hierarchial attitude control for planetary spacecraft
NASA Technical Reports Server (NTRS)
Boland, J. S., III; Russell, D. W.
1972-01-01
Multivariable control theory is applied to the design of a hierarchial attitude control system for the CARD space vehicle. The system selected uses reaction control jets (RCJ) and control moment gyros (CMG). The RCJ system uses linear signal mixing and a no-fire region similar to that used on the Skylab program; the y-axis and z-axis systems which are coupled use a sum and difference feedback scheme. The CMG system uses the optimum steering law and the same feedback signals as the RCJ system. When both systems are active the design is such that the torques from each system are never in opposition. A state-space analysis was made of the CMG system to determine the general structure of the input matrices (steering law) and feedback matrices that will decouple the axes. It is shown that the optimum steering law and proportional-plus-rate feedback are special cases. A derivation of the disturbing torques on the space vehicle due to the motion of the on-board television camera is presented. A procedure for computing an upper bound on these torques (given the system parameters) is included.
Thumma, Sridhar; ElSohly, Mahmoud A.; Zhang, Shuang-Qing; Gul, Waseem; Repka, Michael A.
2008-01-01
The objective of the present research was to stabilize a heat-labile novel prodrug of Δ9-tetrahydrocannabinol (THC), THC-hemiglutarate (THC-HG), in polyethylene oxide (PEO) [PolyOx® WSR N-80 (PEO N-80), MW 200,000 Daltons] polymeric matrix systems produced by hot-melt fabrication for systemic delivery of THC through the oral transmucosal route. For this purpose, the effects of processing conditions (processing temperature and heating duration), plasticizer type and concentration and storage conditions on the stability of the prodrug were investigated. The selected plasticizers studied included vitamin E succinate (VES), acetyltributyl citrate (ATBC), triethyl citrate (TEC), triacetin and polyethylene glycol 8000 (PEG 8000). Furthermore, the influence of plasticizer concentration on drug release was also studied. The stability of THC-HG in PEO matrices was influenced by all of the aforementioned variables. Films processed at 110 °C for 7 min were found to be favorable for hot-melt processing with a post- processing drug content of 95%, while significant degradation of THC-HG (~42%) was observed in those processed at 200 °C for 15 min. The degradation of the prodrug during hot-melt fabrication and also upon storage was considerably reduced in the presence of the plasticizers investigated, VES being the most effective. Modulation of the microenvironmental pH to an acidic range via incorporation of citric acid in PEO-plasticizer matrices significantly improved the stability of the prodrug, with almost 90% of the theoretical drug remaining as opposed to only 15% remaining in PEO-only matrices when stored at 40 °C for up to 3 months. The release of drug from PEO matrices was influenced both by the plasticizer type and concentration. A faster release resulted from water-soluble plasticizers, PEG 8000 and triacetin, and with increasing concentration. However, a slower release was observed with an increase in concentration of water-insoluble plasticizers, VES and ATBC. PMID:18602993
A petrographic thin sectioning technique for evaluating composite materials
NASA Technical Reports Server (NTRS)
Parker, D. S.; Yee, A. F.
1989-01-01
Petrographic thin sectioning by a low-speed diamond saw has been used in conjunction with transmission polarized light microscopy for the characterization of the microstructure and deformation mechanisms of a variety of polymer systems. It has proven possible by these means to study three types of thermoplastic matrices for composite applications: PEEK, BPA-based polycarbonate (PC), and a rubber-modified PC. The reinforcing fibers for these matrices were in all cases AS4 carbon fibers, unidirectionally arrayed. Superior analyzability of matrix morphology and subsurface fracture processes is achieved by thin sectioning.
NASA Astrophysics Data System (ADS)
Tyubaeva, P. M.; Olkhov, A. A.; Karpova, S. G.; Iordansky, A. L.; Popov, A. A.
2017-12-01
Different transdermal systems based on solid polymer matrices or gels containing functional substances with antiseptic (antibacterial) properties have application to the therapy of many infectious diseases and cancer. Today the most promising type of matrices with antiseptic characteristics are the nano- and microfiber nonwoven materials. Fibers on the biopolymer (poly(3-hydroxybutyrate)) basis were obtained using the electrospinning method. In the present work, the effects of iron (III) complex with tetraphenylporphyrin and its influence on bactericidal and antibacterial properties of the ultrathin PHB fibers were investigated.
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
The infrared spectrum of matrix isolated hydrogen and deuterium
NASA Technical Reports Server (NTRS)
Warren, J. A.; Smith, G. R.; Guillory, W. A.
1980-01-01
The induced infrared spectra of H2 and D2, trapped in matrices of Ar, Kr, N2, CO, have been investigated. It is found that in Ar and Kr, the pure rotation spectrum is always readily observable. Portions of the fundamental region, however, are induced by impurities, while the entire spectrum is impurity induced in N2 matrices. These results are discussed in light of a recent Raman study of this system, and in comparison with several single crystal studies. Effective rotational and vibrational constants for matrix isolated H2 are also given.
Althoff, Marc André; Bertsch, Andreas; Metzulat, Manfred; Klapötke, Thomas M; Karaghiosoff, Konstantin L
2017-11-01
The successful application of headspace (HS) and direct immersion (DI) solid phase microextraction (SPME) for the unambiguous identification and characterization of a series of toxic thiophosphate esters, such as Amiton (I), from aqueous phases and complex matrices (e.g. grass and foliage) has been demonstrated. A Thermo Scientific gas chromatograph (GC) - tandem mass spectrometer (MS/MS) system with a TriPlus RSH® autosampler and a SPME tool was used to investigate the effect of different parameters that influence the extraction efficiency: e.g. pH of the sample matrix and extraction temperature. The developed methods were employed for the detection of several Amiton derivatives (Schedule II of the CWC) that are structurally closely related to each other; some of which are new and have not been reported in literature previously. In addition, a novel DI SPME method from complex matrices for the analysis of organophosphates related to the CWC was developed. The studies clearly show that DI SPME for complex matrices is superior to HS extraction and can potentially be applied to other related compounds controlled under the CWC. Copyright © 2017. Published by Elsevier B.V.
Fan, Guangyi; Jiao, Yu; Zhang, He; Huang, Ronglian; Zheng, Zhe; Bian, Chao; Deng, Yuewen; Wang, Qingheng; Wang, Zhongduo; Liang, Xinming; Liang, Haiying; Shi, Chengcheng; Zhao, Xiaoxia; Sun, Fengming; Hao, Ruijuan; Bai, Jie; Liu, Jialiang; Chen, Wenbin; Liang, Jinlian; Liu, Weiqing; Xu, Zhe; Shi, Qiong; Xu, Xun
2017-01-01
Abstract Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie its production of shells and pearls are not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins, chondroitin sulfotransferases, and regulatory elements. Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre suggests that elements of chitin- and collagen-based matrices have deep roots and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems. PMID:28873964
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
Autonomous identification of matrices in the APNea system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.
1995-12-31
The APNea System is a passive and active neutron assay device which features imaging to correct for nonuniform distributions of source material. Since the imaging procedure requires a detailed knowledge of both the detection efficiency and the thermal neutron flux for (sub)volumes of the drum of interest, it is necessary to identify which mocked-up matrix, to be used for detailed characterization studies, best matches the matrix of interest. A methodology referred to as the external matrix probe (EMP) has been established which links external measures of a drum matrix to those of mocked-up matrices. These measures by themselves are sufficientmore » to identify the appropriate mock matrix, from which the necessary characterization data are obtained. This independent matrix identification leads to an autonomous determination of the required system response parameters for the assay analysis.« less
Autonomous identification of matrices in the APNea System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.
1995-12-31
The APNea System is a passive and active neutron assay device which features imaging to correct for nonuniform distributions of source material. Since the imaging procedure requires a detailed knowledge of both the detection efficiency and the thermal neutron flux for (sub)volumes of the drum of interest, it is necessary to identify which mocked-up matrix, to be used for detailed characterization studies, best matches the matrix of interest. A methodology referred to as the external matrix probe (EMP) has been established which links external measures of a drum matrix to those of mocked-up matrices. These measures by themselves are sufficientmore » to identify the appropriate mock matrix, from which the necessary characterization data are obtained. This independent matrix identification leads to an autonomous determination of the required system response parameters for the assay analysis.« less
New Galerkin operational matrices for solving Lane-Emden type equations
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.
2016-04-01
Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.
NASA Technical Reports Server (NTRS)
1979-01-01
Structural analysis and certification of the collector system is presented. System verification against the interim performance criteria is presented and indicated by matrices. The verification discussion, analysis, and test results are also given.
NASA Astrophysics Data System (ADS)
Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan
2018-02-01
The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.
Rhodes, Eric R.; Villegas, Leah Fohl; Shaw, Nancy J.; Miller, Carrie; Villegas, Eric N.
2012-01-01
Cryptosporidium and Giardia species are two of the most prevalent protozoa that cause waterborne diarrheal disease outbreaks worldwide. To better characterize the prevalence of these pathogens, EPA Method 1623 was developed and used to monitor levels of these organisms in US drinking water supplies 12. The method has three main parts; the first is the sample concentration in which at least 10 L of raw surface water is filtered. The organisms and trapped debris are then eluted from the filter and centrifuged to further concentrate the sample. The second part of the method uses an immunomagnetic separation procedure where the concentrated water sample is applied to immunomagnetic beads that specifically bind to the Cryptosporidium oocysts and Giardia cysts allowing for specific removal of the parasites from the concentrated debris. These (oo)cysts are then detached from the magnetic beads by an acid dissociation procedure. The final part of the method is the immunofluorescence staining and enumeration where (oo)cysts are applied to a slide, stained, and enumerated by microscopy. Method 1623 has four listed sample concentration systems to capture Cryptosporidium oocysts and Giardia cysts in water: Envirochek filters (Pall Corporation, Ann Arbor, MI), Envirochek HV filters (Pall Corporation), Filta-Max filters (IDEXX, Westbrook, MA), or Continuous Flow Centrifugation (Haemonetics, Braintree, MA). However, Cryptosporidium and Giardia (oo)cyst recoveries have varied greatly depending on the source water matrix and filters used1,14. A new tangential flow hollow-fiber ultrafiltration (HFUF) system has recently been shown to be more efficient and more robust at recovering Cryptosporidium oocystsand Giardia cysts from various water matrices; moreover, it is less expensive than other capsule filter options and can concentrate multiple pathogens simultaneously1-3,5-8,10,11. In addition, previous studies by Hill and colleagues demonstrated that the HFUF significantly improved Cryptosporidium oocysts recoveries when directly compared with the Envirochek HV filters4. Additional modifications to the current methods have also been reported to improve method performance. Replacing the acid dissociation procedure with heat dissociation was shown to be more effective at separating Cryptosporidium from the magnetic beads in some matrices9,13 . This protocol describes a modified Method 1623 that uses the new HFUF filtration system with the heat dissociation step. The use of HFUF with this modified Method is a less expensive alternative to current EPA Method 1623 filtration options and provides more flexibility by allowing the concentration of multiple organisms. PMID:22805201
Shimada, K; Takeshige, N; Moriyama, H; Miyauchi, Y; Shimada, S; Fujimaki, E
1997-12-01
In this study, we clarified the distribution of elastic and oxytalan fibers in a human sternoclavicular joint (SCJ) using a color image system and in extracellular matrices using immunoperoxidase staining. Fine elastic fibers (EFs) were scattered in the fibrous layer of the sternoclavicular disk. This articular disk was composed of a collagenous bundle on the sternum side of the articular disk in the SCJ and cellular components including connective tissue on the clavicular side of the articular disk. The thickness of the disk gradually increased from the inferior to superior portion. Collagen fibers type I, III and V and other extracellular matrices (ECMs) were detected in the hypertrophic zone in the clavicular and sternum side of the SCJ and in the connective tissue of the articulatio condylar. On the cervical surface of the articular disk, cellular activity was higher than on the sternum surface.
Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang
2015-01-01
Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin–orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels–Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796
A transfer matrix approach to vibration localization in mistuned blade assemblies
NASA Technical Reports Server (NTRS)
Ottarson, Gisli; Pierre, Chritophe
1993-01-01
A study of mode localization in mistuned bladed disks is performed using transfer matrices. The transfer matrix approach yields the free response of a general, mono-coupled, perfectly cyclic assembly in closed form. A mistuned structure is represented by random transfer matrices, and the expansion of these matrices in terms of the small mistuning parameter leads to the definition of a measure of sensitivity to mistuning. An approximation of the localization factor, the spatially averaged rate of exponential attenuation per blade-disk sector, is obtained through perturbation techniques in the limits of high and low sensitivity. The methodology is applied to a common model of a bladed disk and the results verified by Monte Carlo simulations. The easily calculated sensitivity measure may prove to be a valuable design tool due to its system-independent quantification of mistuning effects such as mode localization.
Webb, D Harry; Marrero, Cynthia; Ellis, Helen; Merriwether, Lea; Dove, Alistair D M
2013-09-01
A reagent-free spectrophotometric assay was developed to measure the concentration of metronidazole (a 5-nitroimidazole) in both freshwater and seawater matrices. This assay is simple, repeatable, sensitive, and precise and is ideal for use when a rapid, selective test to determine metronidazole concentration in aqueous matrices is necessary. The assay was practically tested on a South American fishes display during treatment with metronidazole for an outbreak of the flagellated parasite Spironucleus in a mixed cichlid (family Cichlidae) and tetra (family Characidae) community. The assay clearly illustrated the course of treatment for the system during a real clinical application. The assay is not without limitations, as interferences can occur from other drugs in the matrix with similar absorbance spectra. Nonetheless, this type of assay illustrates the potential for use of native absorbance assays in aqueous matrices for this and other therapeutic compounds.
NDMA formation kinetics from three pharmaceuticals in four water matrices.
Shen, Ruqiao; Andrews, Susan A
2011-11-01
N, N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) that has been widely detected in many drinking water systems and commonly associated with the chloramine disinfection process. Some amine-based pharmaceuticals have been demonstrated to form NDMA during chloramination, but studies regarding the reaction kinetics are largely lacking. This study investigates the NDMA formation kinetics from ranitidine, chlorphenamine, and doxylamine under practical chloramine disinfection conditions. The formation profile was monitored in both lab-grade water and real water matrices, and a statistical model is proposed to describe and predict the NDMA formation from selected pharmaceuticals in various water matrices. The results indicate the significant impact of water matrix components and reaction time on the NDMA formation from selected pharmaceuticals, and provide fresh insights on the estimation of ultimate NDMA formation potential from pharmaceutical precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Quantifying radionuclide signatures from a γ-γ coincidence system.
Britton, Richard; Jackson, Mark J; Davies, Ashley V
2015-11-01
A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ-γ system utilises fully digital electronics and list-mode acquisition to time-stamp each event, allowing coincidence matrices to be easily produced alongside typical 'singles' spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ-γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
On Kronecker-Capelli type theorems for infinite systems
NASA Astrophysics Data System (ADS)
Fedorov, Foma M.; Potapova, Sargylana V.
2017-11-01
On the basis of the new concept of the decrement of an infinite matrices and determinants, we studied the inconsistency of a general infinite systems of linear algebraic equations. We proved the theorem on inconsistency of a infinite system when the decrement of its matrix is nonzero.
Real time evolution at finite temperatures with operator space matrix product states
NASA Astrophysics Data System (ADS)
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
NASA Astrophysics Data System (ADS)
Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2018-07-01
In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.
Incoronato, A L; Buonocore, G G; Conte, A; Lavorgna, M; Nobile, M A Del
2010-12-01
Silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles were obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and to be reduced by thermal treatment. The Ag-MMT nanoparticles were embedded in agar, zein, and poly(ε-caprolactone) polymer matrices. These nanocomposites were tested in vitro with a three-strain cocktail of Pseudomonas spp. to assess antimicrobial effectiveness. The results indicate that Ag-MMT nanoparticles embedded into agar may have antimicrobial activity against selected spoilage microorganisms. No antimicrobial effects were recorded with active zein and poly(ε-caprolactone). The water content of the polymeric matrix was the key parameter associated with antimicrobial effectiveness of this active system intended for food packaging applications.
Design of dissipative low-authority controllers using an eigensystem assignment technique
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Gupta, S.; Joshi, S. M.
1992-01-01
A novel method for the design of dissipative, low-authority controllers has been developed. The method uses a sequential approach along with eigensystem assignment to compute rate and position gain matrices that assign a number of closed-loop poles of the system to desired locations. Because the feedback gain matrices are symmetric and nonnegative definite, the closed-loop stability is always guaranteed regardless of the model order or parameter inaccuracies. The resulting (nominal) closed-loop system can have specified damping ratios for m modes, which makes the plant amenable to high-authority controller design, using methods such as LQG/LTR or H-infinity. A numerical example is worked out for a flexible structure in order to demonstrate the proposed technique.
Fault detection for discrete-time LPV systems using interval observers
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-10-01
This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.
Economical Implementation of a Filter Engine in an FPGA
NASA Technical Reports Server (NTRS)
Kowalski, James E.
2009-01-01
A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.
Miscellaneous methods for measuring matric or water potential
Scanlon, Bridget R.; Andraski, Brian J.; Bilskie, Jim; Dane, Jacob H.; Topp, G. Clarke
2002-01-01
A variety of techniques to measure matric potential or water potential in the laboratory and in the field are described in this section. The techniques described herein require equilibration of some medium whose matric or water potential can be determined from previous calibration or can be measured directly. Under equilibrium conditions the matric or water potential of the medium is equal to that of the soil. The techniques can be divided into: (i) those that measure matric potential and (ii) those that measure water potential (sum of matric and osmotic potentials). Matric potential is determined when the sensor matrix is in direct contact with the soil, so salts are free to diffuse in or out of the sensor matrix, and the equilibrium measurement therefore reflects matric forces acting on the water. Water potential is determined when the sensor is separated from the soil by a vapor gap, so salts are not free to move in or out of the sensor, and the equilibrium measurement reflects the sum of the matric and osmotic forces acting on the water.Seven different techniques are described in this section. Those that measure matric potential include (i) heat dissipation sensors, (ii) electrical resistance sensors, (iii) frequency domain and time domain sensors, and (iv) electro-optical switches. A method that can be used to measure matric potential or water potential is the (v) filter paper method. Techniques that measure water potential include (vi) the Dew Point Potentiameter (Decagon Devices, Inc., Pullman, WA1) (water activity meter) and (vii) vapor equilibration.The first four techniques are electronically based methods for measuring matric potential. Heat dissipation sensors and electrical resistance sensors infer matric potential from previously determined calibration relations between sensor heat dissipation or electrical resistance and matric potential. Frequency-domain and timedomain matric potential sensors measure water content, which is related to matric potential of the sensor through calibration. Electro-optical switches measure changes in light transmission through thin, nylon filters as they absorb or desorb water in response to changes in matric potential. Heat dissipation sensors and electrical resistance sensors are used primarily in the field to provide information on matric potential. Frequency domain matric potential sensors are new and have not been widely used. Time domain matric potential sensors and electro-optical switches are new and have not been commercialized. For the fifth technique, filter paper is used as the standard matrix. The filter paper technique measures matric potential when the filter paper is in direct contact with soil or water potential when separated from soil by a vapor gap. The Dew Point Potentiameter calculates water potential from the measured dew point and sample temperature. The vapor equilibration technique involves equilibration of soil samples with salt solutions of known osmotic potential. The filter paper, Dew Point Potentiameter, and vapor equilibration techniques are generally used in the laboratory to measure water potential of disturbed field samples or to measure water potential for water retention functions.
Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti
2013-01-01
Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.