Sample records for multiple temporal levels

  1. Temporal Stability of Multiple Response Systems to 7.5% Carbon Dioxide Challenge

    PubMed Central

    Roberson-Nay, Roxann; Gorlin, Eugenia I.; Beadel, Jessica R.; Cash, Therese; Vrana, Scott; Teachman, Bethany A.

    2017-01-01

    Self-reported anxiety, and potentially physiological response, to maintained inhalation of carbon dioxide (CO2) enriched air shows promise as a putative marker of panic reactivity and vulnerability. Temporal stability of response systems during low-dose, steady-state CO2 breathing challenge is lacking. Outcomes on multiple levels were measured two times, one week apart, in 93 individuals. Stability was highest during the CO2 breathing phase compared to pre-CO2 and recovery phases, with anxiety ratings, respiratory rate, skin conductance level, and heart rate demonstrating good to excellent temporal stability (ICCs ≥ 0.71). Cognitive symptoms tied to panic were somewhat less stable (ICC = 0.58) than physical symptoms (ICC = 0.74) during CO2 breathing. Escape/avoidance behaviors and DSM-5 panic attacks were not stable. Large effect sizes between task phases also were observed. Overall, results suggest good-excellent levels of temporal stability for multiple outcomes during respiratory stimulation via 7.5% CO2. PMID:28163046

  2. Quantifying drivers of wild pig movement across multiple spatial and temporal scales.

    PubMed

    Kay, Shannon L; Fischer, Justin W; Monaghan, Andrew J; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S; Hartley, Steve B; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; VerCauteren, Kurt C; Pepin, Kim M

    2017-01-01

    The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management. We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season. We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales. The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.

  3. Moments in Time

    PubMed Central

    Wittmann, Marc

    2011-01-01

    It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or “psychological present.” Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behavior and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence. PMID:22022310

  4. Spatio-temporal hierarchical modeling of rates and variability of Holocene sea-level changes in the western North Atlantic and the Caribbean

    NASA Astrophysics Data System (ADS)

    Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.

    2016-12-01

    Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).

  5. Complexities in Subsetting Level 2 Data

    NASA Technical Reports Server (NTRS)

    Huwe, Paul; Wei, Jennifer; Meyer, David; Silberstein, David S.; Alfred, Jerome; Savtchenko, Andrey K.; Johnson, James E.; Albayrak, Arif; Hearty, Thomas

    2017-01-01

    Satellite Level 2 data presents unique challenges for tools and services. From nonlinear spatial geometry to inhomogeneous file data structure to inconsistent temporal variables to complex data variable dimensionality to multiple file formats, there are many difficulties in creating general tools for Level 2 data support. At NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we are implementing a general Level 2 Subsetting service for Level 2 data to a user-specified spatio-temporal region of interest (ROI). In this presentation, we will unravel some of the challenges faced in creating this service and the strategies we used to surmount them.

  6. Multiple concurrent temporal recalibrations driven by audiovisual stimuli with apparent physical differences.

    PubMed

    Yuan, Xiangyong; Bi, Cuihua; Huang, Xiting

    2015-05-01

    Out-of-synchrony experiences can easily recalibrate one's subjective simultaneity point in the direction of the experienced asynchrony. Although temporal adjustment of multiple audiovisual stimuli has been recently demonstrated to be spatially specific, perceptual grouping processes that organize separate audiovisual stimuli into distinctive "objects" may play a more important role in forming the basis for subsequent multiple temporal recalibrations. We investigated whether apparent physical differences between audiovisual pairs that make them distinct from each other can independently drive multiple concurrent temporal recalibrations regardless of spatial overlap. Experiment 1 verified that reducing the physical difference between two audiovisual pairs diminishes the multiple temporal recalibrations by exposing observers to two utterances with opposing temporal relationships spoken by one single speaker rather than two distinct speakers at the same location. Experiment 2 found that increasing the physical difference between two stimuli pairs can promote multiple temporal recalibrations by complicating their non-temporal dimensions (e.g., disks composed of two rather than one attribute and tones generated by multiplying two frequencies); however, these recalibration aftereffects were subtle. Experiment 3 further revealed that making the two audiovisual pairs differ in temporal structures (one transient and one gradual) was sufficient to drive concurrent temporal recalibration. These results confirm that the more audiovisual pairs physically differ, especially in temporal profile, the more likely multiple temporal perception adjustments will be content-constrained regardless of spatial overlap. These results indicate that multiple temporal recalibrations are based secondarily on the outcome of perceptual grouping processes.

  7. Temporal Synchronization Analysis for Improving Regression Modeling of Fecal Indicator Bacteria Levels

    EPA Science Inventory

    Multiple linear regression models are often used to predict levels of fecal indicator bacteria (FIB) in recreational swimming waters based on independent variables (IVs) such as meteorologic, hydrodynamic, and water-quality measures. The IVs used for these analyses are traditiona...

  8. Multi-scale habitat selection modeling: A review and outlook

    Treesearch

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  9. Modulation frequency discrimination with single and multiple channels in cochlear implant users

    PubMed Central

    Galvin, John J.; Oba, Sandy; Başkent, Deniz; Fu, Qian-Jie

    2015-01-01

    Temporal envelope cues convey important speech information for cochlear implant (CI) users. Many studies have explored CI users’ single-channel temporal envelope processing. However, in clinical CI speech processors, temporal envelope information is processed by multiple channels. Previous studies have shown that amplitude modulation frequency discrimination (AMFD) thresholds are better when temporal envelopes are delivered to multiple rather than single channels. In clinical fitting, current levels on single channels must often be reduced to accommodate multi-channel loudness summation. As such, it is unclear whether the multi-channel advantage in AMFD observed in previous studies was due to coherent envelope information distributed across the cochlea or to greater loudness associated with multi-channel stimulation. In this study, single- and multi-channel AMFD thresholds were measured in CI users. Multi-channel component electrodes were either widely or narrowly spaced to vary the degree of overlap between neural populations. The reference amplitude modulation (AM) frequency was 100 Hz, and coherent modulation was applied to all channels. In Experiment 1, single- and multi-channel AMFD thresholds were measured at similar loudness. In this case, current levels on component channels were higher for single- than for multi-channel AM stimuli, and the modulation depth was approximately 100% of the perceptual dynamic range (i.e., between threshold and maximum acceptable loudness). Results showed no significant difference in AMFD thresholds between similarly loud single- and multi-channel modulated stimuli. In Experiment 2, single- and multi-channel AMFD thresholds were compared at substantially different loudness. In this case, current levels on component channels were the same for single-and multi-channel stimuli (“summation-adjusted” current levels) and the same range of modulation (in dB) was applied to the component channels for both single- and multi-channel testing. With the summation-adjusted current levels, loudness was lower with single than with multiple channels and the AM depth resulted in substantial stimulation below single-channel audibility, thereby reducing the perceptual range of AM. Results showed that AMFD thresholds were significantly better with multiple channels than with any of the single component channels. There was no significant effect of the distribution of electrodes on multi-channel AMFD thresholds. The results suggest that increased loudness due to multi-channel summation may contribute to the multi-channel advantage in AMFD, and that that overall loudness may matter more than the distribution of envelope information in the cochlea. PMID:25746914

  10. Influence of Temporal Context on Value in the Multiple-Chains and Successive-Encounters Procedures

    ERIC Educational Resources Information Center

    O'Daly, Matthew; Angulo, Samuel; Gipson, Cassandra; Fantino, Edmund

    2006-01-01

    This set of studies explored the influence of temporal context across multiple-chain and multiple-successive-encounters procedures. Following training with different temporal contexts, the value of stimuli sharing similar reinforcement schedules was assessed by presenting these stimuli in concurrent probes. The results for the multiple-chain…

  11. Complementary Roles for Amygdala and Periaqueductal Gray in Temporal-Difference Fear Learning

    ERIC Educational Resources Information Center

    Cole, Sindy; McNally, Gavan P.

    2009-01-01

    Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the…

  12. Falcon: A Temporal Visual Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A.

    2016-09-05

    Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.

  13. Multivariate space-time modelling of multiple air pollutants and their health effects accounting for exposure uncertainty.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, E Marian

    2018-03-30

    The long-term health effects of air pollution are often estimated using a spatio-temporal ecological areal unit study, but this design leads to the following statistical challenges: (1) how to estimate spatially representative pollution concentrations for each areal unit; (2) how to allow for the uncertainty in these estimated concentrations when estimating their health effects; and (3) how to simultaneously estimate the joint effects of multiple correlated pollutants. This article proposes a novel 2-stage Bayesian hierarchical model for addressing these 3 challenges, with inference based on Markov chain Monte Carlo simulation. The first stage is a multivariate spatio-temporal fusion model for predicting areal level average concentrations of multiple pollutants from both monitored and modelled pollution data. The second stage is a spatio-temporal model for estimating the health impact of multiple correlated pollutants simultaneously, which accounts for the uncertainty in the estimated pollution concentrations. The novel methodology is motivated by a new study of the impact of both particulate matter and nitrogen dioxide concentrations on respiratory hospital admissions in Scotland between 2007 and 2011, and the results suggest that both pollutants exhibit substantial and independent health effects. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  14. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    PubMed

    Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.

  15. A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations

    PubMed Central

    Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui

    2015-01-01

    Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales. PMID:25621604

  16. A multi-stage method for connecting participatory sensing and noise simulations.

    PubMed

    Hu, Mingyuan; Che, Weitao; Zhang, Qiuju; Luo, Qingli; Lin, Hui

    2015-01-22

    Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment), and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1) spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2) multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3) dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic input sources for noise simulations on multiple spatio-temporal scales.

  17. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder: Current Status and Working Hypotheses

    ERIC Educational Resources Information Center

    Vaidya, Chandan J.; Stollstorff, Melanie

    2008-01-01

    Cognitive neuroscience studies of Attention Deficit Hyperactivity Disorder (ADHD) suggest multiple loci of pathology with respect to both cognitive domains and neural circuitry. Cognitive deficits extend beyond executive functioning to include spatial, temporal, and lower-level "nonexecutive" functions. Atypical functional anatomy extends beyond…

  18. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.

    PubMed

    Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John

    2011-01-01

    In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Imaging systems level consolidation of novel associate memories: A longitudinal neuroimaging study

    PubMed Central

    Smith, Jason F; Alexander, Gene E; Chen, Kewei; Husain, Fatima T; Kim, Jieun; Pajor, Nathan; Horwitz, Barry

    2010-01-01

    Previously, a standard theory of systems level memory consolidation was developed to describe how memory recall becomes independent of the medial temporal memory system. More recently, an extended consolidation theory was proposed that predicts seven changes in regional neural activity and inter-regional functional connectivity. Using longitudinal event related functional magnetic resonance imaging of an associate memory task, we simultaneously tested all predictions and additionally tested for consolidation related changes in recall of associate memories at a sub-trial temporal resolution, analyzing cue, delay and target periods of each trial separately. Results consistent with the theoretical predictions were observed though two inconsistent results were also obtained. In particular, while recall-related delay period activity decreased with consolidation as predicted, visual cue activity increased for consolidated memories. Though the extended theory of memory consolidation is largely supported by our study, these results suggest the extended theory needs further refinement and the medial temporal memory system has multiple, temporally distinct roles in associate memory recall. Neuroimaging analysis at a sub-trial temporal resolution, as used here, may further clarify the role of the hippocampal complex in memory consolidation. PMID:19948227

  20. Nonlinear computations shaping temporal processing of precortical vision.

    PubMed

    Butts, Daniel A; Cui, Yuwei; Casti, Alexander R R

    2016-09-01

    Computations performed by the visual pathway are constructed by neural circuits distributed over multiple stages of processing, and thus it is challenging to determine how different stages contribute on the basis of recordings from single areas. In the current article, we address this problem in the lateral geniculate nucleus (LGN), using experiments combined with nonlinear modeling capable of isolating various circuit contributions. We recorded cat LGN neurons presented with temporally modulated spots of various sizes, which drove temporally precise LGN responses. We utilized simultaneously recorded S-potentials, corresponding to the primary retinal ganglion cell (RGC) input to each LGN cell, to distinguish the computations underlying temporal precision in the retina from those in the LGN. Nonlinear models with excitatory and delayed suppressive terms were sufficient to explain temporal precision in the LGN, and we found that models of the S-potentials were nearly identical, although with a lower threshold. To determine whether additional influences shaped the response at the level of the LGN, we extended this model to use the S-potential input in combination with stimulus-driven terms to predict the LGN response. We found that the S-potential input "explained away" the major excitatory and delayed suppressive terms responsible for temporal patterning of LGN spike trains but revealed additional contributions, largely PULL suppression, to the LGN response. Using this novel combination of recordings and modeling, we were thus able to dissect multiple circuit contributions to LGN temporal responses across retina and LGN, and set the foundation for targeted study of each stage. Copyright © 2016 the American Physiological Society.

  1. Principles of Temporal Processing Across the Cortical Hierarchy.

    PubMed

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Characterizing Air Pollution in Two Low-Income Neighborhoods in Accra, Ghana

    EPA Science Inventory

    Sub-Saharan Africa has the highest rate of urban population growth in the world, with a large number of urban residents living in low-income “slum” neighborhoods. We conducted a study for an initial assessment of the levels and spatial and/or temporal patterns of multiple polluta...

  3. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay

    PubMed Central

    Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.

    2016-01-01

    Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597

  4. Facilitating insights with a user adaptable dashboard, illustrated by airport connectivity data

    NASA Astrophysics Data System (ADS)

    Dobraja, Ieva; Kraak, Menno-Jan; Engelhardt, Yuri

    2018-05-01

    Since the movement data exist, there have been approaches to collect and analyze them to get insights. This kind of data is often heterogeneous, multiscale and multi-temporal. Those interested in spatio-temporal patterns of movement data do not gain insights from textual descriptions. Therefore, visualization is required. As spatio-temporal movement data can be complex because size and characteristics, it is even challenging to create an overview of it. Plotting all the data on the screen will not be the solution as it likely will result into cluttered images where no data exploration is possible. To ensure that users will receive the information they are interested in, it is important to provide a graphical data representation environment where exploration to gain insights are possible not only in the overall level but at sub-levels as well. A dashboard would be a solution the representation of heterogeneous spatio- temporal data. It provides an overview and helps to unravel the complexity of data by splitting data in multiple data representation views. The adaptability of dashboard will help to reveal the information which cannot be seen in the overview.

  5. Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2016-10-02

    Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less

  6. Decoding visual object categories from temporal correlations of ECoG signals.

    PubMed

    Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu

    2014-04-15

    How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Normalisation theory: Does it accurately describe temporal changes in adolescent drunkenness and smoking?

    PubMed

    Sznitman, Sharon R; Zlotnick, Cheryl; Harel-Fisch, Yossi

    2016-07-01

    The multiple risk model postulates that accumulating risk factors increase adolescent drunkenness and smoking. The normalisation theory adds to this by arguing that the relation between accumulative risk and drunkenness and smoking is dependent on the distribution of these behaviours in the larger population. More concretely, normalisation theory predicts that: (i) when population level use increases, low risk adolescents will be more likely to use alcohol and cigarettes; and (ii) adolescents facing multiple risk factors will be equally likely to use alcohol and cigarettes, regardless of trends in population level use. The current study empirically tests these assumptions on five waves of nationally representative samples of Israeli Jewish youth. Five cross-sectional waves of data from the Israeli Health Behaviour in School-aged Children survey for Jewish 10th graders were used. Logistic regression models measured the impact of changes in population level use across waves on drunkenness and smoking, and their association with differing levels of risk factors. Between zero and two risk factors, the risk of drunkenness and smoking increases for each additional risk factor. When reaching two risk factors, added risk does not significantly increase the likelihood of smoking and drunkenness. Changes in population level drunkenness and smoking did not systematically relate to changes in the individual level relationship between risk factors and smoking and drunkenness. The pattern of results in this study provides strong evidence for the multiple risk factor model and inconsistent evidence for the normalisation theory. [Sznitman SR, Zlotnick C, Harel-Fisch Y. Normalisation theory: Does it accurately describe temporal changes in adolescent drunkenness and smoking? Drug Alcohol Rev 2016;35:424-432]. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  8. Complexities in Subsetting Satellite Level 2 Data

    NASA Astrophysics Data System (ADS)

    Huwe, P.; Wei, J.; Albayrak, A.; Silberstein, D. S.; Alfred, J.; Savtchenko, A. K.; Johnson, J. E.; Hearty, T.; Meyer, D. J.

    2017-12-01

    Satellite Level 2 data presents unique challenges for tools and services. From nonlinear spatial geometry to inhomogeneous file data structure to inconsistent temporal variables to complex data variable dimensionality to multiple file formats, there are many difficulties in creating general tools for Level 2 data support. At NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we are implementing a general Level 2 Subsetting service for Level 2 data. In this presentation, we will unravel some of the challenges faced in creating this service and the strategies we used to surmount them.

  9. [Neural Mechanisms Underlying the Processing of Temporal Information in Episodic Memory and Its Disturbance].

    PubMed

    Iwata, Saeko; Tsukiura, Takashi

    2017-11-01

    Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.

  10. Response of Bacterioplankton Communities to Cadmium Exposure in Coastal Water Microcosms with High Temporal Variability

    PubMed Central

    Wang, Kai; Xiong, Jinbo; Chen, Xinxin; Zheng, Jialai; Hu, Changju; Yang, Yina; Zhu, Jianlin

    2014-01-01

    Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter−1 of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter−1). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3−-N, NO2−-N, PO43−-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern. PMID:25326310

  11. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.

    PubMed

    Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C

    2016-01-01

    Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.

  12. Time-series panel analysis (TSPA): multivariate modeling of temporal associations in psychotherapy process.

    PubMed

    Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang

    2014-10-01

    Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Navigability of multiplex temporal network

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Song, Qiao-Zhen

    2017-01-01

    Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.

  14. Large-scale assessment of benthic communities across multiple marine protected areas using an autonomous underwater vehicle.

    PubMed

    Ferrari, Renata; Marzinelli, Ezequiel M; Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F; Byrne, Maria; Malcolm, Hamish A; Williams, Stefan B; Steinberg, Peter D

    2018-01-01

    Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate 'no-take' and 'general-use' (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5-10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales.

  15. Large-scale assessment of benthic communities across multiple marine protected areas using an autonomous underwater vehicle

    PubMed Central

    Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F.; Byrne, Maria; Malcolm, Hamish A.; Williams, Stefan B.; Steinberg, Peter D.

    2018-01-01

    Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate ‘no-take’ and ‘general-use’ (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5–10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales. PMID:29547656

  16. Sudden cardiac death: epidemiology and risk factors

    PubMed Central

    Adabag, A. Selcuk; Luepker, Russell V.; Roger, Véronique L.; Gersh, Bernard J.

    2016-01-01

    Sudden cardiac death (SCD) is an important public-health problem with multiple etiologies, risk factors, and changing temporal trends. Substantial progress has been made over the past few decades in identifying markers that confer increased SCD risk at the population level. However, the quest for predicting the high-risk individual who could be a candidate for an implantable cardioverter-defibrillator, or other therapy, continues. In this article, we review the incidence, temporal trends, and triggers of SCD, and its demographic, clinical, and genetic risk factors. We also discuss the available evidence supporting the use of public-access defibrillators. PMID:20142817

  17. Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View

    NASA Astrophysics Data System (ADS)

    Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.

    2017-09-01

    Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  18. Electrophysiological models of neural processing.

    PubMed

    Nelson, Mark E

    2011-01-01

    The brain is an amazing information processing system that allows organisms to adaptively monitor and control complex dynamic interactions with their environment across multiple spatial and temporal scales. Mathematical modeling and computer simulation techniques have become essential tools in understanding diverse aspects of neural processing ranging from sub-millisecond temporal coding in the sound localization circuity of barn owls to long-term memory storage and retrieval in humans that can span decades. The processing capabilities of individual neurons lie at the core of these models, with the emphasis shifting upward and downward across different levels of biological organization depending on the nature of the questions being addressed. This review provides an introduction to the techniques for constructing biophysically based models of individual neurons and local networks. Topics include Hodgkin-Huxley-type models of macroscopic membrane currents, Markov models of individual ion-channel currents, compartmental models of neuronal morphology, and network models involving synaptic interactions among multiple neurons.

  19. Voxel-based morphometry findings in Alzheimer's disease: neuropsychiatric symptoms and disability correlations - preliminary results.

    PubMed

    Vasconcelos, Luciano de Gois; Jackowski, Andrea Parolin; Oliveira, Maira Okada de; Flor, Yoná Mayara Ribeiro; Bueno, Orlando Francisco Amodeo; Brucki, Sonia Maria Dozzi

    2011-01-01

    The role of structural brain changes and their correlations with neuropsychiatric symptoms and disability in Alzheimer's disease are still poorly understood. To establish whether structural changes in grey matter volume in patients with mild Alzheimer's disease are associated with neuropsychiatric symptoms and disability Nineteen Alzheimer's disease patients (9 females; total mean age =75.2 y old +4.7; total mean education level =8.5 y +4.9) underwent a magnetic resonance imaging (MRI) examination and voxel-based morphometry analysis. T1-weighted images were spatially normalized and segmented. Grey matter images were smoothed and analyzed using a multiple regression design. The results were corrected for multiple comparisons. The Neuropsychiatric Inventory was used to evaluate the neuropsychiatric symptoms, and the Functional Activities Questionnaire and Disability Assessment for Dementia were used for functional evaluation A significant negative correlation was found between the bilateral middle frontal gyri, left inferior temporal gyrus, right orbitofrontal gyrus, and Neuropsychiatric Inventory scores. A negative correlation was found between bilateral middle temporal gyri, left hippocampus, bilateral fusiform gyri, and the Functional Activities Questionnaire. There was a positive correlation between the right amygdala, bilateral fusiform gyri, right anterior insula, left inferior and middle temporal gyri, right superior temporal gyrus, and Disability Assessment for Dementia scores The results suggest that the neuropsychiatric symptoms observed in Alzheimer's disease patients could be mainly due to frontal structural abnormalities, whereas disability could be associated with reductions in temporal structures.

  20. Classification and Weakly Supervised Pain Localization using Multiple Segment Representation.

    PubMed

    Sikka, Karan; Dhall, Abhinav; Bartlett, Marian Stewart

    2014-10-01

    Automatic pain recognition from videos is a vital clinical application and, owing to its spontaneous nature, poses interesting challenges to automatic facial expression recognition (AFER) research. Previous pain vs no-pain systems have highlighted two major challenges: (1) ground truth is provided for the sequence, but the presence or absence of the target expression for a given frame is unknown, and (2) the time point and the duration of the pain expression event(s) in each video are unknown. To address these issues we propose a novel framework (referred to as MS-MIL) where each sequence is represented as a bag containing multiple segments, and multiple instance learning (MIL) is employed to handle this weakly labeled data in the form of sequence level ground-truth. These segments are generated via multiple clustering of a sequence or running a multi-scale temporal scanning window, and are represented using a state-of-the-art Bag of Words (BoW) representation. This work extends the idea of detecting facial expressions through 'concept frames' to 'concept segments' and argues through extensive experiments that algorithms such as MIL are needed to reap the benefits of such representation. The key advantages of our approach are: (1) joint detection and localization of painful frames using only sequence-level ground-truth, (2) incorporation of temporal dynamics by representing the data not as individual frames but as segments, and (3) extraction of multiple segments, which is well suited to signals with uncertain temporal location and duration in the video. Extensive experiments on UNBC-McMaster Shoulder Pain dataset highlight the effectiveness of the approach by achieving competitive results on both tasks of pain classification and localization in videos. We also empirically evaluate the contributions of different components of MS-MIL. The paper also includes the visualization of discriminative facial patches, important for pain detection, as discovered by our algorithm and relates them to Action Units that have been associated with pain expression. We conclude the paper by demonstrating that MS-MIL yields a significant improvement on another spontaneous facial expression dataset, the FEEDTUM dataset.

  1. Community temporal variability increases with fluctuating resource availability

    PubMed Central

    Li, Wei; Stevens, M. Henry H.

    2017-01-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs. PMID:28345592

  2. Community temporal variability increases with fluctuating resource availability

    NASA Astrophysics Data System (ADS)

    Li, Wei; Stevens, M. Henry H.

    2017-03-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs.

  3. Influence of temporal context on value in the multiple-chains and successive-encounters procedures.

    PubMed

    O'Daly, Matthew; Angulo, Samuel; Gipson, Cassandra; Fantino, Edmund

    2006-05-01

    This set of studies explored the influence of temporal context across multiple-chain and multiple-successive-encounters procedures. Following training with different temporal contexts, the value of stimuli sharing similar reinforcement schedules was assessed by presenting these stimuli in concurrent probes. The results for the multiple-chain schedule indicate that temporal context does impact the value of a conditioned reinforcer consistent with delay-reduction theory, such that a stimulus signaling a greater reduction in delay until reinforcement has greater value. Further, nonreinforced stimuli that are concurrently presented with the preferred terminal link also have greater value, consistent with value transfer. The effects of context on value for conditions with the multiple-successive-encounters procedure, however, appear to depend on whether the search schedule or alternate handling schedule was manipulated, as well as on whether the tested stimuli were the rich or lean schedules in their components. Overall, the results help delineate the conditions under which temporal context affects conditioned-reinforcement value (acting as a learning variable) and the conditions under which it does not (acting as a performance variable), an issue of relevance to theories of choice.

  4. Satellite Level 3 & 4 Data Subsetting at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Huwe, Paul; Su, Jian; Loeser, Carlee; Ostrenga, Dana; Rui, Hualan; Vollmer, Bruce

    2017-01-01

    Earth Science data are available in many file formats (NetCDF, HDF, GRB, etc.) and in a wide range of sizes, from kilobytes to gigabytes. These properties have become a challenge to users if they are not familiar with these formats or only want a small region of interest (ROI) from a specific dataset. At NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we have developed and implemented a multipurpose subset service to ease user access to Earth Science data. Our Level 3 & 4 Regridder is capable of subsetting across multiple parameters (spatially, temporally, by level, and by variable) as well as having additional beneficial features (temporal means, regridding to target grids, and file conversion to other data formats). In this presentation, we will demonstrate how users can use this service to better access only the data they need in the form they require.

  5. Satellite Level 3 & 4 Data Subsetting at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Huwe, P.; Su, J.; Loeser, C. F.; Ostrenga, D.; Rui, H.; Vollmer, B.

    2017-12-01

    Earth Science data are available in many file formats (NetCDF, HDF, GRB, etc.) and in a wide range of sizes, from kilobytes to gigabytes. These properties have become a challenge to users if they are not familiar with these formats or only want a small region of interest (ROI) from a specific dataset. At NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we have developed and implemented a multipurpose subset service to ease user access to Earth Science data. Our Level 3 & 4 Regridder is capable of subsetting across multiple parameters (spatially, temporally, by level, and by variable) as well as having additional beneficial features (temporal means, regridding to target grids, and file conversion to other data formats). In this presentation, we will demonstrate how users can use this service to better access only the data they need in the form they require.

  6. Quantifying the effect of disruptions to temporal coherence on the intelligibility of compressed American Sign Language video

    NASA Astrophysics Data System (ADS)

    Ciaramello, Frank M.; Hemami, Sheila S.

    2009-02-01

    Communication of American Sign Language (ASL) over mobile phones would be very beneficial to the Deaf community. ASL video encoded to achieve the rates provided by current cellular networks must be heavily compressed and appropriate assessment techniques are required to analyze the intelligibility of the compressed video. As an extension to a purely spatial measure of intelligibility, this paper quantifies the effect of temporal compression artifacts on sign language intelligibility. These artifacts can be the result of motion-compensation errors that distract the observer or frame rate reductions. They reduce the the perception of smooth motion and disrupt the temporal coherence of the video. Motion-compensation errors that affect temporal coherence are identified by measuring the block-level correlation between co-located macroblocks in adjacent frames. The impact of frame rate reductions was quantified through experimental testing. A subjective study was performed in which fluent ASL participants rated the intelligibility of sequences encoded at a range of 5 different frame rates and with 3 different levels of distortion. The subjective data is used to parameterize an objective intelligibility measure which is highly correlated with subjective ratings at multiple frame rates.

  7. Silene latifolia temporal patterns of volatile induction and suppression after floral interaction by the nursery pollinator, Hadena bicruris (Lepidoptera: Noctuidae)

    USDA-ARS?s Scientific Manuscript database

    1. Plant VOC emission can be induced or suppressed after herbivory, oviposition, or pollination, which may influence other trophic levels. Sometimes, a single insect species has multiple roles when interacting with a plant, e.g. as pollinator and herbivore. 2. Two experiments tested whether 14 selec...

  8. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.

    PubMed

    Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer

    2013-02-01

    Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Structured Multi-level Data Fusion and Modelling of Heterogeneous Environmental Data for Future Internet Applications

    NASA Astrophysics Data System (ADS)

    Sabeur, Zoheir; Chakravarthy, Ajay; Bashevoy, Maxim; Modafferi, Stefano

    2013-04-01

    The rapid increase in environmental observations which are conducted by Small to Medium Enterprise communities and volunteers using affordable in situ sensors at various scales, in addition to the more established observatories set up by environmental and space agencies using airborne and space-borne sensing technologies is generating serious amounts of BIG data at ever increasing speeds. Furthermore, the emergence of Future Internet technologies and the urgent requirements for the deployment of specific enablers for the delivery of processed environmental knowledge in real-time with advanced situation awareness to citizens has reached paramount importance. Specifically, it has become highly critical now to build and provide services which automate the aggregation of data from various sources, while surmounting the semantic gaps, conflicts and heterogeneity in data sources. The early stage aggregation of data will enable the pre-processing of data from multiple sources while reconciling the temporal gaps in measurement time series, and aligning their respective a-synchronicities. This low level type of data fusion process needs to be automated and chained to more advanced level of data fusion services specialising in observation forecasts at spaces where sensing is not deployed; or at time slices where sensing has not taken place yet. As a result, multi-level fusion services are required among the families of specific enablers for monitoring environments and spaces in the Future Internet. These have been intially deployed and piloted in the ongoing ENVIROFI project of the FI-PPP programme [1]. Automated fusion and modelling of in situ and remote sensing data has been set up and the experimentation successfully conducted using RBF networks for the spatial fusion of water quality parameters measurements from satellite and stationary buoys in the Irish Sea. The RBF networks method scales for the spatial data fusion of multiple types of observation sources. This important approach provides a strong basis for the delivery of environmental observations at desired spatial and temporal scales to multiple users with various needs of spatial and temporal resolutions. It has also led to building robust future internet specific enablers on data fusion, which can indeed be used for multiple usage areas above and beyond the environmental domains of the Future Internet. In this paper, data and processing workflow scenarios shall be described. The fucntionalities of the multi-level fusion services shall be demonstrated and made accessible to the wider communities of the Fututre Internet. [1] The Environmental Observation Web and its Service Applications within the Future Internet. ENVIROFI IP. FP7-2011-ICT-IF Pr.No: 284898 http://www.envirofi.eu/

  10. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba’s Fruit Eating Bat, Carollia perspicillata

    PubMed Central

    Kordes, Sebastian; Kössl, Manfred

    2017-01-01

    Abstract For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units’ responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams. PMID:29242823

  11. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba's Fruit Eating Bat, Carollia perspicillata.

    PubMed

    Beetz, M Jerome; Kordes, Sebastian; García-Rosales, Francisco; Kössl, Manfred; Hechavarría, Julio C

    2017-01-01

    For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.

  12. Quantifying drivers of wild pig movement across multiple spatial and temporal scales

    USGS Publications Warehouse

    Kay, Shannon L.; Fischer, Justin W.; Monaghan, Andrew J.; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S.; Hartley, Stephen B.; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; Vercauteren, Kurt C.; Pipen, Kim M

    2017-01-01

    The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.

  13. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases. PMID:25692885

  14. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases.

  15. The temporal representation of the delay of dynamic iterated rippled noise with positive and negative gain by single units in the ventral cochlear nucleus.

    PubMed

    Sayles, Mark; Winter, Ian Michael

    2007-09-26

    Spike trains were recorded from single units in the ventral cochlear nucleus of the anaesthetised guinea-pig in response to dynamic iterated rippled noise with positive and negative gain. The short-term running waveform autocorrelation functions of these stimuli show peaks at integer multiples of the time-varying delay when the gain is +1, and troughs at odd-integer multiples and peaks at even-integer multiples of the time-varying delay when the gain is -1. In contrast, the short-term autocorrelation of the Hilbert envelope shows peaks at integer multiples of the time-varying delay for both positive and negative gain stimuli. A running short-term all-order interspike interval analysis demonstrates the ability of single units to represent the modulated pitch contour in their short-term interval statistics. For units with low best frequency (approximate < or = 1.1 kHz) the temporal discharge pattern reflected the waveform fine structure regardless of unit classification (Primary-like, Chopper). For higher best frequency units the pattern of response varied according to unit type. Chopper units with best frequency approximate > or = 1.1 kHz responded to envelope modulation; showing no difference between their response to stimuli with positive and negative gain. Primary-like units with best frequencies in the range 1-3 kHz were still able to represent the difference in the temporal fine structure between dynamic rippled noise with positive and negative gain. No unit with a best frequency above 3 kHz showed a response to the temporal fine structure. Chopper units in this high frequency group showed significantly greater representation of envelope modulation relative to primary-like units with the same range of best frequencies. These results show that at the level of the cochlear nucleus there exists sufficient information in the time domain to represent the time-varying pitch associated with dynamic iterated rippled noise.

  16. Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects.

    PubMed

    Kessler, Robert M; Woodward, Neil D; Riccardi, Patrizia; Li, Rui; Ansari, M Sib; Anderson, Sharlett; Dawant, Benoit; Zald, David; Meltzer, Herbert Y

    2009-06-15

    Studies in schizophrenic patients have reported dopaminergic abnormalities in striatum, substantia nigra, thalamus, anterior cingulate, hippocampus, and cortex that have been related to positive symptoms and cognitive impairments. [(18)F]fallypride positron emission tomography studies were performed in off-medication or never-medicated schizophrenic subjects (n = 11, 6 men, 5 women; mean age of 30.5 +/- 8.0 [SD] years; 4 drug-naive) and age-matched healthy subjects (n = 11, 5 men, 6 women, mean age of 31.6 +/- 9.2 [SD]) to examine dopamine D(2) receptor (DA D(2)r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus. In schizophrenic subjects, increased DA D(2)r levels were seen in the substantia nigra bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with ROI data demonstrated a significant correlation of disorganized thinking/nonparanoid delusions with the right temporal cortex ROI (r = .94, p = .0001), which remained significant after correction for multiple comparisons (p < .03). Correlations of symptoms with parametric images of DA D(2)r levels revealed no significant clusters of correlations with negative symptoms but significant clusters of positive correlations of total positive symptoms, delusions and bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral striatum. The results of this study demonstrate abnormal DA D(2)r-mediated neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and suggest that both temporal cortical and ventral striatal DA D(2)r mediate positive symptoms.

  17. Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus.

    PubMed

    Wennberg, Richard; Cheyne, Douglas

    2014-05-01

    To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations

    PubMed Central

    Safavynia, Seyed A.

    2012-01-01

    Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219

  19. NASA GES DISC Aerosol analysis and visualization services

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Ichoku, C. M.; Petrenko, M.; Yang, W.; Albayrak, A.; Zhao, P.; Johnson, J. E.; Kempler, S.

    2015-12-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. Such misunderstanding may be avoided by providing satellite data with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool - Giovanni-MAPSS and Giovanni-MAPSS_Explorer since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate the improved features from Giovanni-MAPSS and introduce a new visualization service (Giovanni VizMAP) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  20. Multiple Imputation of Groundwater Data to Evaluate Spatial and Temporal Anthropogenic Influences on Subsurface Water Fluxes in Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Manago, K. F.; Hogue, T. S.; Hering, A. S.

    2014-12-01

    In the City of Los Angeles, groundwater accounts for 11% of the total water supply on average, and 30% during drought years. Due to ongoing drought in California, increased reliance on local water supply highlights the need for better understanding of regional groundwater dynamics and estimating sustainable groundwater supply. However, in an urban setting, such as Los Angeles, understanding or modeling groundwater levels is extremely complicated due to various anthropogenic influences such as groundwater pumping, artificial recharge, landscape irrigation, leaking infrastructure, seawater intrusion, and extensive impervious surfaces. This study analyzes anthropogenic effects on groundwater levels using groundwater monitoring well data from the County of Los Angeles Department of Public Works. The groundwater data is irregularly sampled with large gaps between samples, resulting in a sparsely populated dataset. A multiple imputation method is used to fill the missing data, allowing for multiple ensembles and improved error estimates. The filled data is interpolated to create spatial groundwater maps utilizing information from all wells. The groundwater data is evaluated at a monthly time step over the last several decades to analyze the effect of land cover and identify other influencing factors on groundwater levels spatially and temporally. Preliminary results show irrigated parks have the largest influence on groundwater fluctuations, resulting in large seasonal changes, exceeding changes in spreading grounds. It is assumed that these fluctuations are caused by watering practices required to sustain non-native vegetation. Conversely, high intensity urbanized areas resulted in muted groundwater fluctuations and behavior decoupling from climate patterns. Results provides improved understanding of anthropogenic effects on groundwater levels in addition to providing high quality datasets for validation of regional groundwater models.

  1. The correlation between symptomatic fatigue to definite measures of gait in people with multiple sclerosis.

    PubMed

    Kalron, Alon

    2016-02-01

    There is a general consensus relating to the multidimensional aspects of fatigue in people with multiple sclerosis (PwMS), however, the exact impact of this symptom on gait is not fully understood. Our primary aim was to examine the relationship between definite parameters of gait with self-reported symptomatic fatigue in PwMS according to their level of neurological impairment. Spatio-temporal parameters of gait were studied using an electronic walkway. The Multiple Sclerosis Walking Scale (MSWS-12) questionnaire, a patient-rated measure of walking ability was collected. The Modified Fatigue Impact Scale (MFIS) questionnaire was used to determine the level of symptomatic fatigue. One hundred and one PwMS (61 women) were included in the study analysis. Subjects were divided into mild and moderate neurological impaired groups. Fatigue was correlated with 5 (out of 14) spatiotemporal parameters. However, correlation scores were all <0.35, thus considered as weak correlations. In the mild group, the double support period was the only variable positively correlated to fatigue (Spearman's rho=0.28, P=0.05). In the moderate group, step and stride length were solely negatively correlated to fatigue (Spearman's rho=0.32, P=0.03). In contrast to the definite gait parameters, the MSWS-12 self-questionnaire was moderately positively correlated to the level of fatigue. Scores for the total, mild and moderate groups were 0.54, 0.57 and 0.51; P<0.01, respectively. The present results indicate that modifications in spatio-temporal parameters of gait are not closely related to symptomatic fatigue in PwMS. On the contrary, the self-reported MSWS-12 questionnaire is predisposed to level of fatigue in PwMS. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Multiple Levels of Suffering

    PubMed Central

    Kiley, Kasey B.; Haywood, Carlton; Bediako, Shawn M.; Lanzkron, Sophie; Carroll, C. Patrick; Buenaver, Luis F.; Pejsa, Megan; Edwards, Robert R.; Haythornthwaite, Jennifer A.; Campbell, Claudia M.

    2016-01-01

    Objective: People living with sickle cell disease (SCD) experience severe episodic and chronic pain and frequently report poor interpersonal treatment within health-care settings. In this particularly relevant context, we examined the relationship between perceived discrimination and both clinical and laboratory pain. Methods: Seventy-one individuals with SCD provided self-reports of experiences with discrimination in health-care settings and clinical pain severity, and completed a psychophysical pain testing battery in the laboratory. Results: Discrimination in health-care settings was correlated with greater clinical pain severity and enhanced sensitivity to multiple laboratory-induced pain measures, as well as stress, depression, and sleep. After controlling for relevant covariates, discrimination remained a significant predictor of mechanical temporal summation (a marker of central pain facilitation), but not clinical pain severity or suprathreshold heat pain response. Furthermore, a significant interaction between experience with discrimination and clinical pain severity was associated with mechanical temporal summation; increased experience with discrimination was associated with an increased correlation between clinical pain severity and temporal summation of pain. Discussion: Perceived discrimination within health-care settings was associated with pain facilitation. These findings suggest that discrimination may be related to increased central sensitization among SCD patients, and more broadly that health-care social environments may interact with pain pathophysiology. PMID:26889615

  3. Urbanization-induced habitat fragmentation erodes multiple components of temporal diversity in a Southern California native bee assemblage

    PubMed Central

    Ascher, John S.; Holway, David A.

    2017-01-01

    Despite a large number of ecological studies that document diversity loss resulting from anthropogenic disturbance, surprisingly few consider how disturbance affects temporal patterns of diversity that result from seasonal turnover of species. Temporal dynamics can play an important role in the structure and function of biological assemblages. Here, we investigate the temporal diversity patterns of bee faunas in Southern California coastal sage scrub ecosystems that have been extensively fragmented by urbanization. Using a two-year dataset of 235 bee species (n = 12,036 specimens), we compared 1-ha plots in scrub fragments and scrub reserves with respect to three components of temporal diversity: overall plot-level diversity pooled over time (temporal gamma diversity), diversity at discrete points in time (temporal alpha diversity), and seasonal turnover in assemblage composition (temporal beta diversity). Compared to reserves, fragments harbored bee assemblages with lower species richness and assemblage evenness both when summed across temporal samples (i.e., lower temporal gamma diversity) and at single points in time (i.e., lower temporal alpha diversity). Bee assemblages in fragments also exhibited reduced seasonal turnover (i.e., lower temporal beta diversity). While fragments and reserves did not differ in overall bee abundance, bee abundance in fragments peaked later in the season compared to that in reserves. Our results argue for an increased awareness of temporal diversity patterns, as information about the distinct components of temporal diversity is essential both for characterizing the assemblage dynamics of seasonal organisms and for identifying potential impacts of anthropogenic disturbance on ecosystem function through its effects on assemblage dynamics. PMID:28854229

  4. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  5. Visualization of the Eastern Renewable Generation Integration Study: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron

    The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated withmore » evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.« less

  6. Increased 5S rRNA oxidation in Alzheimer's disease.

    PubMed

    Ding, Qunxing; Zhu, Haiyan; Zhang, Bing; Soriano, Augusto; Burns, Roxanne; Markesbery, William R

    2012-01-01

    It is widely accepted that oxidative stress is involved in neurodegenerative disorders such as Alzheimer's disease (AD). Ribosomal RNA (rRNA) is one of the most abundant molecules in most cells and is affected by oxidative stress in the human brain. Previous data have indicated that total rRNA levels were decreased in the brains of subjects with AD and mild cognitive impairment concomitant with an increase in rRNA oxidation. In addition, level of 5S rRNA, one of the essential components of the ribosome complex, was significantly lower in the inferior parietal lobule (IP) brain area of subjects with AD compared with control subjects. To further evaluate the alteration of 5S rRNA in neurodegenerative human brains, multiple brain regions from both AD and age-matched control subjects were used in this study, including IP, superior and middle temporal gyro, temporal pole, and cerebellum. Different molecular pools including 5S rRNA integrated into ribosome complexes, free 5S rRNA, cytoplasmic 5S rRNA, and nuclear 5S rRNA were studied. Free 5S rRNA levels were significantly decreased in the temporal pole region of AD subjects and the oxidation of ribosome-integrated and free 5S rRNA was significantly increased in multiple brain regions in AD subjects compared with controls. Moreover, a greater amount of oxidized 5S rRNA was detected in the cytoplasm and nucleus of AD subjects compared with controls. These results suggest that the increased oxidation of 5S rRNA, especially the oxidation of free 5S rRNA, may be involved in the neurodegeneration observed in AD.

  7. Toward robust estimation of the components of forest population change: simulation results

    Treesearch

    Francis A. Roesch

    2014-01-01

    This report presents the full simulation results of the work described in Roesch (2014), in which multiple levels of simulation were used to test the robustness of estimators for the components of forest change. In that study, a variety of spatial-temporal populations were created based on, but more variable than, an actual forest monitoring dataset, and then those...

  8. Toward Robust Estimation of the Components of Forest Population Change

    Treesearch

    Francis A. Roesch

    2014-01-01

    Multiple levels of simulation are used to test the robustness of estimators of the components of change. I first created a variety of spatial-temporal populations based on, but more variable than, an actual forest monitoring data set and then sampled those populations under a variety of sampling error structures. The performance of each of four estimation approaches is...

  9. Ecosystem-level consequences of symbiont partnerships in an N-fixing shrub from interior Alaskan floodplains

    Treesearch

    R.W. Ruess; M.D. Anderson; J.W. McFarland; K. Kielland; K. Olson; D.L. Taylor

    2013-01-01

    In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont assemblages on a given host and patterns of allocation to nodule activities have been shown to vary according to environmental factors, suggesting that hosts may alter partner choice and manipulate symbiont assemblages...

  10. A practical method of predicting the loudness of complex electrical stimuli

    NASA Astrophysics Data System (ADS)

    McKay, Colette M.; Henshall, Katherine R.; Farrell, Rebecca J.; McDermott, Hugh J.

    2003-04-01

    The output of speech processors for multiple-electrode cochlear implants consists of current waveforms with complex temporal and spatial patterns. The majority of existing processors output sequential biphasic current pulses. This paper describes a practical method of calculating loudness estimates for such stimuli, in addition to the relative loudness contributions from different cochlear regions. The method can be used either to manipulate the loudness or levels in existing processing strategies, or to control intensity cues in novel sound processing strategies. The method is based on a loudness model described by McKay et al. [J. Acoust. Soc. Am. 110, 1514-1524 (2001)] with the addition of the simplifying approximation that current pulses falling within a temporal integration window of several milliseconds' duration contribute independently to the overall loudness of the stimulus. Three experiments were carried out with six implantees who use the CI24M device manufactured by Cochlear Ltd. The first experiment validated the simplifying assumption, and allowed loudness growth functions to be calculated for use in the loudness prediction method. The following experiments confirmed the accuracy of the method using multiple-electrode stimuli with various patterns of electrode locations and current levels.

  11. Optimization as a Tool for Consistency Maintenance in Multi-Resolution Simulation

    NASA Technical Reports Server (NTRS)

    Drewry, Darren T; Reynolds, Jr , Paul F; Emanuel, William R

    2006-01-01

    The need for new approaches to the consistent simulation of related phenomena at multiple levels of resolution is great. While many fields of application would benefit from a complete and approachable solution to this problem, such solutions have proven extremely difficult. We present a multi-resolution simulation methodology that uses numerical optimization as a tool for maintaining external consistency between models of the same phenomena operating at different levels of temporal and/or spatial resolution. Our approach follows from previous work in the disparate fields of inverse modeling and spacetime constraint-based animation. As a case study, our methodology is applied to two environmental models of forest canopy processes that make overlapping predictions under unique sets of operating assumptions, and which execute at different temporal resolutions. Experimental results are presented and future directions are addressed.

  12. Wastewater-Based Epidemiology of Stimulant Drugs: Functional Data Analysis Compared to Traditional Statistical Methods.

    PubMed

    Salvatore, Stefania; Bramness, Jørgen Gustav; Reid, Malcolm J; Thomas, Kevin Victor; Harman, Christopher; Røislien, Jo

    2015-01-01

    Wastewater-based epidemiology (WBE) is a new methodology for estimating the drug load in a population. Simple summary statistics and specification tests have typically been used to analyze WBE data, comparing differences between weekday and weekend loads. Such standard statistical methods may, however, overlook important nuanced information in the data. In this study, we apply functional data analysis (FDA) to WBE data and compare the results to those obtained from more traditional summary measures. We analysed temporal WBE data from 42 European cities, using sewage samples collected daily for one week in March 2013. For each city, the main temporal features of two selected drugs were extracted using functional principal component (FPC) analysis, along with simpler measures such as the area under the curve (AUC). The individual cities' scores on each of the temporal FPCs were then used as outcome variables in multiple linear regression analysis with various city and country characteristics as predictors. The results were compared to those of functional analysis of variance (FANOVA). The three first FPCs explained more than 99% of the temporal variation. The first component (FPC1) represented the level of the drug load, while the second and third temporal components represented the level and the timing of a weekend peak. AUC was highly correlated with FPC1, but other temporal characteristic were not captured by the simple summary measures. FANOVA was less flexible than the FPCA-based regression, and even showed concordance results. Geographical location was the main predictor for the general level of the drug load. FDA of WBE data extracts more detailed information about drug load patterns during the week which are not identified by more traditional statistical methods. Results also suggest that regression based on FPC results is a valuable addition to FANOVA for estimating associations between temporal patterns and covariate information.

  13. Endoscopic facelift of the frontal and temporal areas in multiple planes.

    PubMed

    Hu, Xiaogen; Ma, Haihuan; Xue, Zhiqiang; Qi, Huijie; Chen, Bo

    2017-02-01

    The detachment planes used in endoscopic facelifts play an important role in determining the results of facial rejuvenation. In this study, we introduced the use of multiple detachment planes for endoscopic facelifts of the frontal and temporal areas, and examined its outcome. This study included 47 patients (38 female, 9 male) who requested frontal and temporal facelifts from January 2009 to January 2014. The technique of dissection in multiple planes was used for all 47 patients. In this technique, the frontal dissection was first carried out in the subgaleal plane, before being changed to the subperiosteal plane about 2 cm above the eyebrow line. Temporal dissection was carried out in both the subcutaneous and subgaleal planes. After detachment, frontal and temporal fixations were achieved using nonabsorbable sutures, and the incisions were closed. During follow-up (ranging from 6-24 months after surgery), the patients were shown their pre- and postoperative images, and asked to rate their satisfaction with the procedure. Complications encountered were documented. All 47 patients had complete recovery without any serious complications. The patient satisfaction rate was 93.6%. Minor complications included dimpling at the suture site, asymmetry, overcorrection, transitory paralysis, late oedema, haematoma, infection, scarring and hair loss. These complications resolved spontaneously and were negligible after complete recovery. Dissection in multiple planes is valuable in frontal and temporal endoscopic facelifts. It may be worthwhile to introduce the use of this technique in frontal and temporal facelifts, as it may lead to improved outcomes. Copyright: © Singapore Medical Association

  14. Temporal stability of visually selective responses in intracranial field potentials recorded from human occipital and temporal lobes

    PubMed Central

    Bansal, Arjun K.; Singer, Jedediah M.; Anderson, William S.; Golby, Alexandra; Madsen, Joseph R.

    2012-01-01

    The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces. PMID:22956795

  15. A Relational Encoding of a Conceptual Model with Multiple Temporal Dimensions

    NASA Astrophysics Data System (ADS)

    Gubiani, Donatella; Montanari, Angelo

    The theoretical interest and the practical relevance of a systematic treatment of multiple temporal dimensions is widely recognized in the database and information system communities. Nevertheless, most relational databases have no temporal support at all. A few of them provide a limited support, in terms of temporal data types and predicates, constructors, and functions for the management of time values (borrowed from the SQL standard). One (resp., two) temporal dimensions are supported by historical and transaction-time (resp., bitemporal) databases only. In this paper, we provide a relational encoding of a conceptual model featuring four temporal dimensions, namely, the classical valid and transaction times, plus the event and availability times. We focus our attention on the distinctive technical features of the proposed temporal extension of the relation model. In the last part of the paper, we briefly show how to implement it in a standard DBMS.

  16. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    NASA Astrophysics Data System (ADS)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  17. Dopamine D2 Receptor Levels in Striatum, Thalamus, Substantia Nigra, Limbic Regions, and Cortex in Schizophrenic Subjects

    PubMed Central

    Kessler, Robert M; Woodward, Neil D; Riccardi, Patrizia; Li, Rui; Ansari, M Sib; Anderson, Sharlett; Dawant, Benoit; Zald, David; Meltzer, Herbert Y

    2009-01-01

    Background Studies in schizophrenics have reported dopaminergic abnormalities in striatum, substantia nigra, thalamus, anterior cingulate, hippocampus and cortex which have been related to positive symptoms and cognitive impairments. Methods [18F]fallypride PET studies were performed in off medication or never medicated schizophrenic subjects [N = 11, 6 M, 5 F; mean age of 30.5 ± 8.0 (S.D.); 4 drug naive] and age matched healthy subjects [N = 11, 5M, 6F, mean age of 31.6 ± 9.2 (S.D.)] to examine dopamine D2 receptor (DA D2r) levels in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdala, temporal cortex, anterior cingulate, and hippocampus. Results In schizophrenic subjects increased DA D2r levels were seen in the substantia nigra bilaterally; decreased levels were seen in the left medial thalamus. Correlations of symptoms with region of interest data demonstrated a significant correlation of disorganized thinking/nonparanoid delusions with the right temporal cortex region of interest (r = 0.94, P = 0.0001) which remained significant after correction for multiple comparisons (P<0.03). Correlations of symptoms with parametric images of DA D2r levels revealed no significant clusters of correlations with negative symptoms, but significant clusters of positive correlations of total positive symptoms, delusions and bizarre behavior with the lateral and anterior temporal cortex, and hallucinations with the left ventral striatum. Conclusions The results of this study demonstrate abnormal DA D2r mediated neurotransmission in the substantia nigra consistent with nigral dysfunction in schizophrenia and suggest that both temporal cortical and ventral striatal DA D2r mediate positive symptoms. PMID:19251247

  18. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    PubMed

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  19. "You're Doing Great. Keep Doing What You're Doing": Socially Supportive Communication during First-Generation College Students' Socialization

    ERIC Educational Resources Information Center

    Gist-Mackey, Angela N.; Wiley, Marissa L.; Erba, Joseph

    2018-01-01

    The experiences of first-generation college students (FGCS) are marked by high levels of stress and uncertainty as they navigate the transition to college. This study uses the organizational assimilation model to explore FGCS' transition to college by temporally analyzing multiple sources and types of socially supportive communication found in…

  20. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    DTIC Science & Technology

    2015-09-30

    spatial and temporal distribution of key marine organisms over multiple trophic levels, and (2) natural and anthropogenic variability in ecosystem...areas of climate modeling in upwelling regions (E. Curchitser), physical-biological modeling in the CCLME (J. Fiechter and C. Edwards), data...optimal growth conditions). By comparing interannual changes in fat depot against EOF modes for environmental variability (i.e., SST) and prey

  1. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition.

    PubMed

    Goos, Jeroen D C; Kester, M I; Barkhof, Frederik; Klein, Martin; Blankenstein, Marinus A; Scheltens, Philip; van der Flier, Wiesje M

    2009-11-01

    Microbleeds (MBs) are commonly observed in Alzheimer disease. A minority of patients has multiple MBs. We aimed to investigate associations of multiple MBs in Alzheimer disease with clinical and MRI characteristics and cerebrospinal fluid biomarkers. Patients with Alzheimer disease with multiple (>or=8) MBs on T2*-weighted MRI were matched for age, sex, and field strength with patients with Alzheimer disease without MBs on a 1:2 basis. We included 21 patients with multiple MBs (73+/-7 years, 33% female) and 42 patients without MBs (72+/-7 years, 38% female). Mini-Mental State Examination was used to assess dementia severity. Cognitive functions were assessed using neuropsychological tests. Medial temporal lobe atrophy (0 to 4), global cortical atrophy (0 to 3), and white matter hyperintensities (0 to 30) were assessed using visual rating scales. In a subset, apolipoprotein E genotype and cerebrospinal fluid amyloid beta 1-42, total tau and tau phosphorylated at threonine 181 were determined. Patients with multiple MBs performed worse on Mini-Mental State Examination (multiple MB: 17+/-7; no MB: 22+/-4, P<0.05) despite similar disease duration. Atrophy was not related to presence of MBs, but patients with multiple MBs had more white matter hyperintensities (multiple MB: 8.8+/-4.8; no MB: 3.2+/-3.6, P<0.05). Adjusted for age, sex, white matter hyperintensities, and medial temporal lobe atrophy, the multiple MB group additionally performed worse on Visual Association Test object naming and animal fluency. Patients with multiple MBs had lower cerebrospinal fluid amyloid beta 1-42 levels (307+/-61) than patients without MBs (505+/-201, P<0.05). Adjusted for the same covariates, total tau, and tau phosphorylated at threonine 181 were higher in the multiple MB group. Microbleeds are associated with the clinical manifestation and biochemical hallmarks of Alzheimer disease, suggesting possible involvement of MBs in the pathogenesis of Alzheimer disease.

  2. Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef

    NASA Astrophysics Data System (ADS)

    Staaterman, E.; Rice, A. N.; Mann, D. A.; Paris, C. B.

    2013-06-01

    Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.

  3. Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada, 1957-2005

    USGS Publications Warehouse

    Fenelon, Joseph M.

    2006-01-01

    More than 1,200 water-level measurements from 1957 to 2005 in the Rainier Mesa area of the Nevada Test Site were quality assured and analyzed. Water levels were measured from 50 discrete intervals within 18 boreholes and from 4 tunnel sites. An interpretive database was constructed that describes water-level conditions for each water level measured in the Rainier Mesa area. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes hydrograph narratives that describe the water-level history of each well.

  4. Identification of novel loci for the generation of reporter mice

    PubMed Central

    Rebecchi, Monica; Levandis, Giovanna

    2017-01-01

    Abstract Deciphering the etiology of complex pathologies at molecular level requires longitudinal studies encompassing multiple biochemical pathways (apoptosis, proliferation, inflammation, oxidative stress). In vivo imaging of current reporter animals enabled the spatio-temporal analysis of specific molecular events, however, the lack of a multiplicity of loci for the generalized and regulated expression of the integrated transgenes hampers the creation of systems for the simultaneous analysis of more than a biochemical pathways at the time. We here developed and tested an in vivo-based methodology for the identification of multiple insertional loci suitable for the generation of reliable reporter mice. The validity of the methodology was tested with the generation of novel mice useful to report on inflammation and oxidative stress. PMID:27899606

  5. Temporal Dependency and the Structure of Early Looking.

    PubMed

    Messinger, Daniel S; Mattson, Whitney I; Todd, James Torrence; Gangi, Devon N; Myers, Nicholas D; Bahrick, Lorraine E

    2017-01-01

    Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking.

  6. Temporal Dependency and the Structure of Early Looking

    PubMed Central

    Messinger, Daniel S.; Mattson, Whitney I.; Todd, James Torrence; Gangi, Devon N.; Myers, Nicholas D.; Bahrick, Lorraine E.

    2017-01-01

    Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking. PMID:28076362

  7. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Change detection using vegetation indices and multiplatform satellite imagery at multiple temporal and spatial scales

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.; Weng, Qihao

    2014-01-01

    This chapter describes emerging methods for using satellite imagery across temporal and spatial scales using a case study approach to illustrate some of the opportunities now available for combining observations across scales. It explores the use of multiplatform sensor systems to characterize ecological change, as exemplified by efforts to scale the effects of a biocontrol insect (the leaf beetle Diorhabda carinulata) on the phenology and water use of Tamarix shrubs (Tamarix ramosissima and related species and hybrids) targeted for removal on western U.S. rivers, from the level of individual leaves to the regional level of measurement. Finally, the chapter summarizes the lessons learned and emphasize the need for ground data to calibrate and validate remote sensing data and the types of errors inherent in scaling point data over wide areas, illustrated with research on evapotranspiration (ET) of Tamarix using a wide range of ground measurement and remote sensing methods.

  9. Characterize Aerosols from MODIS/MISR/OMI/MERRA-2: Dynamic Image Browse Perspective

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Yang, W.; Shen, S.; Zhao, P.; Albayrak, A.; Johnson, J. E.; Kempler, S. J.; Pham, L.

    2016-12-01

    Among the known atmospheric constituents, aerosols still represent the greatest uncertainty in climate research. To understand the uncertainty is to bring altogether of observational (in-situ and remote sensing) and modeling datasets and inter-compare them synergistically for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if these earth science data (satellite and modeling) are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS (Multi-sensor Aerosol Products Sampling System) applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate a new visualization service (NASA Level 2 Data Quality Visualization, DQViz) supporting various visualization and data accessing capabilities from satellite Level 2 (MODIS/MISR/OMI) and long term assimilated aerosols from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 displaying at their own native physical-retrieved spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  10. Multiple Levels of Suffering: Discrimination in Health-Care Settings is Associated With Enhanced Laboratory Pain Sensitivity in Sickle Cell Disease.

    PubMed

    Mathur, Vani A; Kiley, Kasey B; Haywood, Carlton; Bediako, Shawn M; Lanzkron, Sophie; Carroll, C Patrick; Buenaver, Luis F; Pejsa, Megan; Edwards, Robert R; Haythornthwaite, Jennifer A; Campbell, Claudia M

    2016-12-01

    People living with sickle cell disease (SCD) experience severe episodic and chronic pain and frequently report poor interpersonal treatment within health-care settings. In this particularly relevant context, we examined the relationship between perceived discrimination and both clinical and laboratory pain. Seventy-one individuals with SCD provided self-reports of experiences with discrimination in health-care settings and clinical pain severity, and completed a psychophysical pain testing battery in the laboratory. Discrimination in health-care settings was correlated with greater clinical pain severity and enhanced sensitivity to multiple laboratory-induced pain measures, as well as stress, depression, and sleep. After controlling for relevant covariates, discrimination remained a significant predictor of mechanical temporal summation (a marker of central pain facilitation), but not clinical pain severity or suprathreshold heat pain response. Furthermore, a significant interaction between experience with discrimination and clinical pain severity was associated with mechanical temporal summation; increased experience with discrimination was associated with an increased correlation between clinical pain severity and temporal summation of pain. Perceived discrimination within health-care settings was associated with pain facilitation. These findings suggest that discrimination may be related to increased central sensitization among SCD patients, and more broadly that health-care social environments may interact with pain pathophysiology.

  11. Perspectives on why digital ecologies matter: combining population genetics and ecologically informed agent-based models with GIS for managing dipteran livestock pests.

    PubMed

    Peck, Steven L

    2014-10-01

    It is becoming clear that handling the inherent complexity found in ecological systems is an essential task for finding ways to control insect pests of tropical livestock such as tsetse flies, and old and new world screwworms. In particular, challenging multivalent management programs, such as Area Wide Integrated Pest Management (AW-IPM), face daunting problems of complexity at multiple spatial scales, ranging from landscape level processes to those of smaller scales such as the parasite loads of individual animals. Daunting temporal challenges also await resolution, such as matching management time frames to those found on ecological and even evolutionary temporal scales. How does one deal with representing processes with models that involve multiple spatial and temporal scales? Agent-based models (ABM), combined with geographic information systems (GIS), may allow for understanding, predicting and managing pest control efforts in livestock pests. This paper argues that by incorporating digital ecologies in our management efforts clearer and more informed decisions can be made. I also point out the power of these models in making better predictions in order to anticipate the range of outcomes possible or likely. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  12. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides).

    PubMed

    Jønsson, Knud Andreas; Fabre, Pierre-Henri; Kennedy, Jonathan D; Holt, Ben G; Borregaard, Michael K; Rahbek, Carsten; Fjeldså, Jon

    2016-01-01

    The Corvides (previously referred to as the core Corvoidea) are a morphologically diverse clade of passerine birds comprising nearly 800 species. The group originated some 30 million years ago in the proto-Papuan archipelago, to the north of Australia, from where lineages have dispersed and colonized all of the world's major continental and insular landmasses (except Antarctica). During the last decade multiple species-level phylogenies have been generated for individual corvoid families and more recently the inter-familial relationships have been resolved, based on phylogenetic analyses using multiple nuclear loci. In the current study we analyse eight nuclear and four mitochondrial loci to generate a dated phylogeny for the majority of corvoid species. This phylogeny includes 667 out of 780 species (85.5%), 141 out of 143 genera (98.6%) and all 31 currently recognized families, thus providing a baseline for comprehensive macroecological, macroevolutionary and biogeographical analyses. Using this phylogeny we assess the temporal consistency of the current taxonomic classification of families and genera. By adopting an approach that enforces temporal consistency by causing the fewest possible taxonomic changes to currently recognized families and genera, we find the current familial classification to be largely temporally consistent, whereas that of genera is not. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Towards a consistent framework to oversample multi-sensors, multi-species satellite data into a common grid

    NASA Astrophysics Data System (ADS)

    Sun, K.; Zhu, L.; Gonzalez Abad, G.; Nowlan, C. R.; Miller, C. E.; Huang, G.; Liu, X.; Chance, K.; Yang, K.

    2017-12-01

    It has been well demonstrated that regridding Level 2 products (satellite observations from individual footprints, or pixels) from multiple sensors/species onto regular spatial and temporal grids makes the data more accessible for scientific studies and can even lead to additional discoveries. However, synergizing multiple species retrieved from multiple satellite sensors faces many challenges, including differences in spatial coverage, viewing geometry, and data filtering criteria. These differences will lead to errors and biases if not treated carefully. Operational gridded products are often at 0.25°×0.25° resolution with a global scale, which is too coarse for local heterogeneous emission sources (e.g., urban areas), and at fixed temporal intervals (e.g., daily or monthly). We propose a consistent framework to fully use and properly weight the information of all possible individual satellite observations. A key aspect of this work is an accurate knowledge of the spatial response function (SRF) of the satellite Level 2 pixels. We found that the conventional overlap-area-weighting method (tessellation) is accurate only when the SRF is homogeneous within the parameterized pixel boundary and zero outside the boundary. There will be a tessellation error if the SRF is a smooth distribution, and if this distribution is not properly considered. On the other hand, discretizing the SRF at the destination grid will also induce errors. By balancing these error sources, we found that the SRF should be used in gridding OMI data to 0.2° for fine resolutions. Case studies by merging multiple species and wind data into 0.01° grid will be shown in the presentation.

  14. The impact of classroom aggression on the development of aggressive behavior problems in children

    PubMed Central

    Thomas, Duane E.; Bierman, Karen L.

    2009-01-01

    Prior research suggests that exposure to elementary classrooms characterized by high levels of student aggression may contribute to the development of child aggressive behavior problems. To explore this process in more detail, this study followed a longitudinal sample of 4,907 children and examined demographic factors associated with exposure to high-aggression classrooms, including school context factors (school size, student poverty levels, and rural vs. urban location) and child ethnicity (African American, European American). The developmental impact of different temporal patterns of exposure (e.g., primacy, recency, chronicity) to high-aggression classrooms was evaluated on child aggression. Analyses revealed that African American children attending large, urban schools that served socioeconomically disadvantaged students were more likely than other students to be exposed to high-aggressive classroom contexts. Hierarchical regressions demonstrated cumulative effects for temporal exposure, whereby children with multiple years of exposure showed higher levels of aggressive behavior after 3 years than children with primacy, less recent, and less chronic exposure, controlling for initial levels of aggression. Implications are discussed for developmental research and preventive interventions. PMID:16600064

  15. Impact of doping on the carrier dynamics in graphene

    PubMed Central

    Kadi, Faris; Winzer, Torben; Knorr, Andreas; Malic, Ermin

    2015-01-01

    We present a microscopic study on the impact of doping on the carrier dynamics in graphene, in particular focusing on its influence on the technologically relevant carrier multiplication in realistic, doped graphene samples. Treating the time- and momentum-resolved carrier-light, carrier-carrier, and carrier-phonon interactions on the same microscopic footing, the appearance of Auger-induced carrier multiplication up to a Fermi level of 300 meV is revealed. Furthermore, we show that doping favors the so-called hot carrier multiplication occurring within one band. Our results are directly compared to recent time-resolved ARPES measurements and exhibit an excellent agreement on the temporal evolution of the hot carrier multiplication for n- and p-doped graphene. The gained insights shed light on the ultrafast carrier dynamics in realistic, doped graphene samples. PMID:26577536

  16. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  17. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    NASA Astrophysics Data System (ADS)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a constellation of 6U InSAR sensors that individually approach the performance capabilities of existing instruments, but collectively surpass the temporal coverage capabilities of single-platform sensors. We discuss the key applications addressed by this constellation and the capabilities that the constellation enables.

  18. Virtual temporal bone dissection system: OSU virtual temporal bone system: development and testing.

    PubMed

    Wiet, Gregory J; Stredney, Don; Kerwin, Thomas; Hittle, Bradley; Fernandez, Soledad A; Abdel-Rasoul, Mahmoud; Welling, D Bradley

    2012-03-01

    The objective of this project was to develop a virtual temporal bone dissection system that would provide an enhanced educational experience for the training of otologic surgeons. A randomized, controlled, multi-institutional, single-blinded validation study. The project encompassed four areas of emphasis: structural data acquisition, integration of the system, dissemination of the system, and validation. Structural acquisition was performed on multiple imaging platforms. Integration achieved a cost-effective system. Dissemination was achieved on different levels including casual interest, downloading of software, and full involvement in development and validation studies. A validation study was performed at eight different training institutions across the country using a two-arm randomized trial where study subjects were randomized to a 2-week practice session using either the virtual temporal bone or standard cadaveric temporal bones. Eighty subjects were enrolled and randomized to one of the two treatment arms; 65 completed the study. There was no difference between the two groups using a blinded rating tool to assess performance after training. A virtual temporal bone dissection system has been developed and compared to cadaveric temporal bones for practice using a multicenter trial. There was no statistical difference between practice on the current simulator compared to practice on human cadaveric temporal bones. Further refinements in structural acquisition and interface design have been identified, which can be implemented prior to full incorporation into training programs and used for objective skills assessment. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  19. A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London.

    PubMed

    Rushworth, Alastair; Lee, Duncan; Mitchell, Richard

    2014-07-01

    It has long been known that air pollution is harmful to human health, as many epidemiological studies have been conducted into its effects. Collectively, these studies have investigated both the acute and chronic effects of pollution, with the latter typically based on individual level cohort designs that can be expensive to implement. As a result of the increasing availability of small-area statistics, ecological spatio-temporal study designs are also being used, with which a key statistical problem is allowing for residual spatio-temporal autocorrelation that remains after the covariate effects have been removed. We present a new model for estimating the effects of air pollution on human health, which allows for residual spatio-temporal autocorrelation, and a study into the long-term effects of air pollution on human health in Greater London, England. The individual and joint effects of different pollutants are explored, via the use of single pollutant models and multiple pollutant indices. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  1. Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise

    NASA Astrophysics Data System (ADS)

    Morita, Satoru

    2018-05-01

    Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.

  2. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.

  3. Spatial and temporal variation in evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...

  4. Seeking Temporal Predictability in Speech: Comparing Statistical Approaches on 18 World Languages.

    PubMed

    Jadoul, Yannick; Ravignani, Andrea; Thompson, Bill; Filippi, Piera; de Boer, Bart

    2016-01-01

    Temporal regularities in speech, such as interdependencies in the timing of speech events, are thought to scaffold early acquisition of the building blocks in speech. By providing on-line clues to the location and duration of upcoming syllables, temporal structure may aid segmentation and clustering of continuous speech into separable units. This hypothesis tacitly assumes that learners exploit predictability in the temporal structure of speech. Existing measures of speech timing tend to focus on first-order regularities among adjacent units, and are overly sensitive to idiosyncrasies in the data they describe. Here, we compare several statistical methods on a sample of 18 languages, testing whether syllable occurrence is predictable over time. Rather than looking for differences between languages, we aim to find across languages (using clearly defined acoustic, rather than orthographic, measures), temporal predictability in the speech signal which could be exploited by a language learner. First, we analyse distributional regularities using two novel techniques: a Bayesian ideal learner analysis, and a simple distributional measure. Second, we model higher-order temporal structure-regularities arising in an ordered series of syllable timings-testing the hypothesis that non-adjacent temporal structures may explain the gap between subjectively-perceived temporal regularities, and the absence of universally-accepted lower-order objective measures. Together, our analyses provide limited evidence for predictability at different time scales, though higher-order predictability is difficult to reliably infer. We conclude that temporal predictability in speech may well arise from a combination of individually weak perceptual cues at multiple structural levels, but is challenging to pinpoint.

  5. Seeking Temporal Predictability in Speech: Comparing Statistical Approaches on 18 World Languages

    PubMed Central

    Jadoul, Yannick; Ravignani, Andrea; Thompson, Bill; Filippi, Piera; de Boer, Bart

    2016-01-01

    Temporal regularities in speech, such as interdependencies in the timing of speech events, are thought to scaffold early acquisition of the building blocks in speech. By providing on-line clues to the location and duration of upcoming syllables, temporal structure may aid segmentation and clustering of continuous speech into separable units. This hypothesis tacitly assumes that learners exploit predictability in the temporal structure of speech. Existing measures of speech timing tend to focus on first-order regularities among adjacent units, and are overly sensitive to idiosyncrasies in the data they describe. Here, we compare several statistical methods on a sample of 18 languages, testing whether syllable occurrence is predictable over time. Rather than looking for differences between languages, we aim to find across languages (using clearly defined acoustic, rather than orthographic, measures), temporal predictability in the speech signal which could be exploited by a language learner. First, we analyse distributional regularities using two novel techniques: a Bayesian ideal learner analysis, and a simple distributional measure. Second, we model higher-order temporal structure—regularities arising in an ordered series of syllable timings—testing the hypothesis that non-adjacent temporal structures may explain the gap between subjectively-perceived temporal regularities, and the absence of universally-accepted lower-order objective measures. Together, our analyses provide limited evidence for predictability at different time scales, though higher-order predictability is difficult to reliably infer. We conclude that temporal predictability in speech may well arise from a combination of individually weak perceptual cues at multiple structural levels, but is challenging to pinpoint. PMID:27994544

  6. Early and late components of EEG delay activity correlate differently with scene working memory performance

    PubMed Central

    Ng, Kenneth; Reichert, Chelsea P.

    2017-01-01

    Sustained and elevated activity during the working memory delay period has long been considered the primary neural correlate for maintaining information over short time intervals. This idea has recently been reinterpreted in light of findings generated from multiple neural recording modalities and levels of analysis. To further investigate the sustained or transient nature of activity, the temporal-spectral evolution (TSE) of delay period activity was examined in humans with high density EEG during performance of a Sternberg working memory paradigm with a relatively long six second delay and with novel scenes as stimuli. Multiple analyses were conducted using different trial window durations and different baseline periods for TSE computation. Sensor level analyses revealed transient rather than sustained activity during delay periods. Specifically, the consistent finding among the analyses was that high amplitude activity encompassing the theta range was found early in the first three seconds of the delay period. These increases in activity early in the delay period correlated positively with subsequent ability to distinguish new from old probe scenes. Source level signal estimation implicated a right parietal region of transient early delay activity that correlated positively with working memory ability. This pattern of results adds to recent evidence that transient rather than sustained delay period activity supports visual working memory performance. The findings are discussed in relation to synchronous and desynchronous intra- and inter-regional neural transmission, and choosing an optimal baseline for expressing temporal-spectral delay activity change. PMID:29016657

  7. Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets

    NASA Astrophysics Data System (ADS)

    Sorokine, A.; Stewart, R. N.

    2017-10-01

    Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.

  8. Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    PubMed Central

    Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281

  9. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    PubMed

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  10. TEMPORAL CHANGE IN FOREST FRAGMENTATION AT MULTIPLE SCALES

    EPA Science Inventory

    Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay r...

  11. Transformation of a MGUS to overt multiple myeloma: the possible role of a pituitary macroadenoma secreting high levels of insulin-like growth factor 1 (IGF-1).

    PubMed

    Tucci, Alessandra; Bonadonna, Stefania; Cattaneo, Chiara; Ungari, Marco; Giustina, Andrea; Guiseppe, Rossi

    2003-03-01

    We present a female patient with monoclonal gammopathy of undetermined significance who has remained stable for five years but evolved to overt myeloma in strict temporal relationship with the diagnosis of GH-secreting pituitary macroadenoma. IGF-I serum levels correlated with serum and urine M component. Since the in vitro role of IGF-I on proliferation and survival of normal and neoplastic plasma cells has been recently emphasized, the pathogenetic link between acromegaly and transformation of gammopathy to overt myeloma in this case is discussed.

  12. Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval

    PubMed Central

    Watrous, Andrew J.; Tandon, Nitin; Connor, Chris; Pieters, Thomas; Ekstrom, Arne D.

    2013-01-01

    The medial temporal lobes, prefrontal cortex, and parts of parietal cortex form the neural underpinnings of episodic memory, which includes remembering both where and when an event occurred. Yet how these three key regions interact during retrieval of spatial and temporal context remains largely untested. Here, we employed simultaneous electrocorticographical recordings across multiple lobular regions, employing phase synchronization as a measure of network functional connectivity, while patients retrieved spatial and temporal context associated with an episode. Successful memory retrieval was characterized by greater global connectivity compared to incorrect retrieval, with the MTL acting as a convergence hub for these interactions. Spatial vs. temporal context retrieval resulted in prominent differences in both the spectral and temporal patterns of network interactions. These results emphasize dynamic network interactions as central to episodic memory retrieval, providing novel insight into how multiple contexts underlying a single event can be recreated within the same network. PMID:23354333

  13. Indicators of burn severity at extended temporal scales: a decade of ecosystem response in mixed-conifer forests of western Montana

    Treesearch

    Sarah A. Lewis; Andrew T. Hudak; Peter R. Robichaud; Penelope Morgan; Kevin L. Satterberg; Eva K. Strand; Alistair M. S. Smith; Joseph A. Zamudio; Leigh B. Lentile

    2017-01-01

    We collected field and remotely sensed data spanning 10 years after three 2003 Montana wildfires to monitor ecological change across multiple temporal and spatial scales. Multiple endmember spectral mixture analysis was used to create post-fire maps of: char, soil, green (GV) and non-photosynthetic (NPV) vegetation from high-resolution 2003 hyperspectral (HS) and 2007...

  14. Higher homocysteine associated with thinner cortical gray matter in 803 ADNI subjects

    PubMed Central

    Madsen, Sarah K.; Rajagopalan, Priya; Joshi, Shantanu H.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor – high homocysteine levels in the blood – is known to increase risk for Alzheimer’s disease and vascular disorders. Here we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, surface area) computed from brain MRI in 803 elderly subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital and right temporal regions; and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex, and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, mild cognitive impairment, or Alzheimer’s disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. PMID:25444607

  15. Short-Term Depression, Temporal Summation, and Onset Inhibition Shape Interval Tuning in Midbrain Neurons

    PubMed Central

    Baker, Christa A.

    2014-01-01

    A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741

  16. The Temporal and Spatial Variability of the Confined Aquifer Head and Storage Properties in the San Luis Valley, Colorado Inferred From Multiple InSAR Missions

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.

    2017-11-01

    Interferometric Synthetic Aperture Radar (InSAR) data from multiple satellite missions were combined to study the temporal and spatial variability of head and storage properties in a confined aquifer system on a decadal time scale. The area of study was a 4,500 km2 agricultural basin in the San Luis Valley (SLV), Colorado. We had available previous analyses of C-band ERS-1/2 data from June 1992 to November 2000, and L-band ALOS PALSAR data from October 2009 to March 2011. We used C-band Envisat data to fill in the time period from November 2006 to July 2010. In processing the Envisat data, we successfully employed a phase interpolation between persistent scatterer pixels to reduce the impact of vegetation decorrelation, which can significantly reduce the quality of C-band InSAR data over agricultural basins. In comparing the results from the L-band ALOS data and C-band Envisat data in a 10 month overlapping time period, we found that the shorter wavelength of C-band InSAR allowed us to preserve small deformation signals that were not detectable using L-band ALOS data. A significant result was the finding that the elastic storage properties of the SLV confined aquifer system remained stable over the 20 year time period and vary slowly in space, allowing us to combine InSAR data acquired from multiple missions to fill the temporal and spatial gaps in well data. The InSAR estimated head levels were validated with well measurements, which indicate little permanent water-storage loss over the study time period in the SLV.

  17. Lichen physiology and cell biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.H.

    1985-01-01

    This book presents information on topics relating to mineral element accumulation in bog lichens, nitrogen losses from diazotrophic lichens, influence of automobile exhaust and lead on the oxygen exchange of lichens, temporal variation in lichen element levels, and lead and uranium uptake by lichens. Other topics include the architecture of the concentric bodies in the mycobiont of Peltigera praetextata; multiple enzyme forms in lichens, photosynthesis, water relations multiple enzyme forms in lichens, photosynthesis, water relations and thallus structure of strictaceae lichens; and aspects of carbohydrate metabolism in lichens. The distribution of uranium and companion elements in lichen heath associated withmore » undisturbed uranium deposits in the Canadian Arctic is also discussed.« less

  18. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading.

    PubMed

    Ravaglioli, Chiara; Capocchi, Antonella; Fontanini, Debora; Mori, Giovanna; Nuccio, Caterina; Bulleri, Fabio

    2018-05-01

    Coastal ecosystems are exposed to multiple stressors. Predicting their outcomes is complicated by variations in their temporal regimes. Here, by means of a 16-month experiment, we investigated tolerance and resistance traits of Posidonia oceanica to herbivore damage under different regimes of nutrient loading. Chronic and pulse nutrient supply were combined with simulated fish herbivory, treated as a pulse stressor. At ambient nutrient levels, P. oceanica could cope with severe herbivory, likely through an increase in photosynthetic activity. Elevated nutrient levels, regardless of the temporal regime, negatively affected plant growth and increased leaf nutritional quality. This ultimately resulted in a reduction of plant biomass that was particularly severe under chronic fertilization. Our results suggest that both chronic and pulse nutrient loadings increase plant palatability to macro-grazers. Strategies for seagrass management should not be exclusively applied in areas exposed to chronic fertilization since even short-term nutrient pulses could alter seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A Fire Severity Mapping System (FSMS) for real-time management applications and long term planning: Developing a map of the landscape potential for severe fire in the western United States

    Treesearch

    Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane

    2009-01-01

    The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...

  20. Temporal Coordination and Adaptation to Rate Change in Music Performance

    ERIC Educational Resources Information Center

    Loehr, Janeen D.; Large, Edward W.; Palmer, Caroline

    2011-01-01

    People often coordinate their actions with sequences that exhibit temporal variability and unfold at multiple periodicities. We compared oscillator- and timekeeper-based accounts of temporal coordination by examining musicians' coordination of rhythmic musical sequences with a metronome that gradually changed rate at the end of a musical phrase…

  1. Exploring multiple feature combination strategies with a recurrent neural network architecture for off-line handwriting recognition

    NASA Astrophysics Data System (ADS)

    Mioulet, L.; Bideault, G.; Chatelain, C.; Paquet, T.; Brunessaux, S.

    2015-01-01

    The BLSTM-CTC is a novel recurrent neural network architecture that has outperformed previous state of the art algorithms in tasks such as speech recognition or handwriting recognition. It has the ability to process long term dependencies in temporal signals in order to label unsegmented data. This paper describes different ways of combining features using a BLSTM-CTC architecture. Not only do we explore the low level combination (feature space combination) but we also explore high level combination (decoding combination) and mid-level (internal system representation combination). The results are compared on the RIMES word database. Our results show that the low level combination works best, thanks to the powerful data modeling of the LSTM neurons.

  2. Evaluating the status of individuals and populations: Advantages of multiple approaches and time scales: Chapter 6

    USGS Publications Warehouse

    Monson, Daniel H.; Bowen, Lizabeth

    2015-01-01

    Overall, a variety of indices used to measure population status throughout the sea otter’s range have provided insights for understanding the mechanisms driving the trajectory of various sea otter populations, which a single index could not, and we suggest using multiple methods to measure a population’s status at multiple spatial and temporal scales. The work described here also illustrates the usefulness of long-term data sets and/or approaches that can be used to assess population status retrospectively, providing information otherwise not available. While not all systems will be as amenable to using all the approaches presented here, we expect innovative researchers could adapt analogous multi-scale methods to a broad range of habitats and species including apex predators occupying the top trophic levels, which are often of conservation concern.

  3. A Hierarchical Analysis of Tree Growth and Environmental Drivers Across Eastern US Temperate Forests

    NASA Astrophysics Data System (ADS)

    Mantooth, J.; Dietze, M.

    2014-12-01

    Improving predictions of how forests in the eastern United States will respond to future global change requires a better understanding of the drivers of variability in tree growth rates. Current inventory data lack the temporal resolution to characterize interannual variability, while existing growth records lack the extent required to assess spatial scales of variability. Therefore, we established a network of forest inventory plots across ten sites across the eastern US, and measured growth in adult trees using increment cores. Sites were chosen to maximize climate space explored, while within sites, plots were spread across primary environmental gradients to explore landscape-level variability in growth. Using the annual growth record available from tree cores, we explored the responses of trees to multiple environmental covariates over multiple spatial and temporal scales. We hypothesized that within and across sites growth rates vary among species, and that intraspecific growth rates increase with temperature along a species' range. We also hypothesized that trees show synchrony in growth responses to landscape-scale climatic changes. Initial analyses of growth increments indicate that across sites, trees with intermediate shade tolerance, e.g. Red Oak (Quercus rubra), tend to have the highest growth rates. At the site level, there is evidence for synchrony in response to large-scale climatic events (e.g. prolonged drought and above average temperatures). However, growth responses to climate at the landscape scale have yet to be detected. Our current analysis utilizes hierarchical Bayesian state-space modeling to focus on growth responses of adult trees to environmental covariates at multiple spatial and temporal scales. This predictive model of tree growth currently incorporates observed effects at the individual, plot, site, and landscape scale. Current analysis using this model shows a potential slowing of growth in the past decade for two sites in the northeastern US (Harvard Forest and Bartlett Experimental Forest), however more work is required to determine the robustness of this trend. Finally, these observations are being incorporated into ecosystem models using the Brown Dog informatics tools and the Predictive Ecosystem Analyzer (PEcAn) data assimilation workflow.

  4. Temporal trends of postinjury multiple-organ failure: Still resource intensive, morbid, and lethal

    PubMed Central

    Sauaia, Angela; Moore, Ernest E.; Johnson, Jeffrey L.; Chin, Theresa L.; Banerjee, Anirban; Sperry, Jason L.; Maier, Ronald V.; Burlew, C. Cothren

    2014-01-01

    BACKGROUND While the incidence of postinjury multiple-organ failure (MOF) has declined during the past decade, temporal trends of its morbidity, mortality, presentation patterns, and health care resources use have been inconsistent. The purpose of this study was to describe the evolving epidemiology of postinjury MOF from 2003 to 2010 in multiple trauma centers sharing standard treatment protocols. METHODS “Inflammation and Host Response to Injury Collaborative Program” institutions that enrolled more than 20 eligible patients per biennial during the 2003 to 2010 study period were included. The patients were aged 16 years to 90 years, sustained blunt torso trauma with hemorrhagic shock (systolic blood pressure < 90 mm Hg, base deficit ≥ 6 mEq/L, blood transfusion within the first 12 hours), but without severe head injury (motor Glasgow Coma Scale [GCS] score < 4). MOF temporal trends (Denver MOF score > 3) were adjusted for admission risk factors (age, sex, body max index, Injury Severity Score [ISS], systolic blood pressure, and base deficit) using survival analysis. RESULTS A total of 1,643 patients from four institutions were evaluated. MOF incidence decreased over time (from 17% in 2003–2004 to 9.8% in 2009–2010). MOF-related death rate (33% in 2003–2004 to 36% in 2009–2010), intensive care unit stay, and mechanical ventilation duration did not change over the study period. Adjustment for admission risk factors confirmed the crude trends. MOF patients required much longer ventilation and intensive care unit stay, compared with non-MOF patients. Most of the MOF-related deaths occurred within 2 days of the MOF diagnosis. Lung and cardiac dysfunctions became less frequent (57.6% to 50.8%, 20.9% to 12.5%, respectively), but kidney and liver failure rates did not change (10.1% to 12.5%, 15.2% to 14.1%). CONCLUSION Postinjury MOF remains a resource-intensive, morbid, and lethal condition. Lung injury is an enduring challenge and should be a research priority. The lack of outcome improvements suggests that reversing MOF is difficult and prevention is still the best strategy. LEVEL OF EVIDENCE Epidemiologic study, level III. PMID:24553523

  5. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment

    NASA Astrophysics Data System (ADS)

    Sahoo, Sasmita; Jha, Madan K.

    2013-12-01

    The potential of multiple linear regression (MLR) and artificial neural network (ANN) techniques in predicting transient water levels over a groundwater basin were compared. MLR and ANN modeling was carried out at 17 sites in Japan, considering all significant inputs: rainfall, ambient temperature, river stage, 11 seasonal dummy variables, and influential lags of rainfall, ambient temperature, river stage and groundwater level. Seventeen site-specific ANN models were developed, using multi-layer feed-forward neural networks trained with Levenberg-Marquardt backpropagation algorithms. The performance of the models was evaluated using statistical and graphical indicators. Comparison of the goodness-of-fit statistics of the MLR models with those of the ANN models indicated that there is better agreement between the ANN-predicted groundwater levels and the observed groundwater levels at all the sites, compared to the MLR. This finding was supported by the graphical indicators and the residual analysis. Thus, it is concluded that the ANN technique is superior to the MLR technique in predicting spatio-temporal distribution of groundwater levels in a basin. However, considering the practical advantages of the MLR technique, it is recommended as an alternative and cost-effective groundwater modeling tool.

  6. Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.

    PubMed

    Allen, Edward E; Norris, James L; John, David J; Thomas, Stan J; Turkett, William H; Fetrow, Jacquelyn S

    2010-01-01

    Multiple approaches for reverse-engineering biological networks from time-series data have been proposed in the computational biology literature. These approaches can be classified by their underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their time paradigm, which includes next-state and co-temporal modeling. The types of biological relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is important to understand the strengths and weaknesses of the various algorithms and time paradigms on actual experimental data. We assess how well the co-temporal implementations of three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) identify two types of entity relationships, parent and sibling, between biological entities, 2) deal with experimental sparse time course data, and 3) handle experimental noise seen in replicate data sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting models match literature models in terms of siblings and parent relationships. Results indicate that all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling relationships, but perform relatively poorly in finding parent relationships.

  7. Hemichorea after multiple bee stings.

    PubMed

    An, Jin Young; Kim, Ji Seon; Min, Jin Hong; Han, Kyu Hong; Kang, Jun Ho; Lee, Suk Woo; Kim, Hoon; Park, Jung Soo

    2014-02-01

    Bee sting is one of the most commonly encountered insect bites in the world. Despite the common occurrence of local and systemic allergic reactions, there are few reports of ischemic stroke after bee stings. To the best our knowledge, there have been no reports on involuntary hyperkinetic movement disorders after multiple bee stings. We report the case of a 50-year-old man who developed involuntary movements of the left leg 24 hours after multiple bee stings, and the cause was confirmed to be a right temporal infarction on a diffusion magnetic resonance imaging scan. Thus, we concluded that the involuntary movement disorder was caused by right temporal infarction that occurred after multiple bee stings.

  8. Mood-Reactive Self-Esteem and Depression Vulnerability: Person-Specific Symptom Dynamics via Smart Phone Assessment.

    PubMed

    Clasen, Peter C; Fisher, Aaron J; Beevers, Christopher G

    2015-01-01

    Cognitive theories of depression suggest that mood-reactive self-esteem, a pattern of cognitive reactivity where low self-esteem is temporally dependent on levels of sadness, represents vulnerability for depression. Few studies have directly tested this hypothesis, particularly using intensive data collection methods (i.e., experience sampling) required to capture the temporal dynamics of sadness and self-esteem as they unfold naturally, over time. In this study we used participants' smartphones to collect multiple daily ratings of sadness and self-esteem over three weeks, in the real world. We then applied dynamic factor modeling to explore theoretically driven hypotheses about the temporal dependency of self-esteem on sadness (i.e., mood-reactive self-esteem) and its relationship to indices of depression vulnerability both contemporaneously (e.g., rumination, sad mood persistence) and prospectively (e.g., future symptomatology). In sum, individuals who demonstrated mood-reactive self-esteem reported higher levels of rumination at baseline, more persistent sad mood over three weeks, and increased depression symptoms at the end of three weeks above and beyond a trait-like index of self-esteem. The integration of smartphone assessment and person-specific analytics employed in this study offers an exiting new avenue to advance the study and treatment of depression.

  9. Mood-Reactive Self-Esteem and Depression Vulnerability: Person-Specific Symptom Dynamics via Smart Phone Assessment

    PubMed Central

    Clasen, Peter C.; Fisher, Aaron J.; Beevers, Christopher G.

    2015-01-01

    Cognitive theories of depression suggest that mood-reactive self-esteem, a pattern of cognitive reactivity where low self-esteem is temporally dependent on levels of sadness, represents vulnerability for depression. Few studies have directly tested this hypothesis, particularly using intensive data collection methods (i.e., experience sampling) required to capture the temporal dynamics of sadness and self-esteem as they unfold naturally, over time. In this study we used participants’ smartphones to collect multiple daily ratings of sadness and self-esteem over three weeks, in the real world. We then applied dynamic factor modeling to explore theoretically driven hypotheses about the temporal dependency of self-esteem on sadness (i.e., mood-reactive self-esteem) and its relationship to indices of depression vulnerability both contemporaneously (e.g., rumination, sad mood persistence) and prospectively (e.g., future symptomatology). In sum, individuals who demonstrated mood-reactive self-esteem reported higher levels of rumination at baseline, more persistent sad mood over three weeks, and increased depression symptoms at the end of three weeks above and beyond a trait-like index of self-esteem. The integration of smartphone assessment and person-specific analytics employed in this study offers an exiting new avenue to advance the study and treatment of depression. PMID:26131724

  10. Altered Medial Frontal and Superior Temporal Response to Implicit Processing of Emotions in Autism.

    PubMed

    Kana, Rajesh K; Patriquin, Michelle A; Black, Briley S; Channell, Marie M; Wicker, Bruno

    2016-01-01

    Interpreting emotional expressions appropriately poses a challenge for individuals with autism spectrum disorder (ASD). In particular, difficulties with emotional processing in ASD are more pronounced in contexts where emotional expressions are subtle, automatic, and reflexive-that is, implicit. In contrast, explicit emotional processing, which requires the cognitive evaluation of an emotional experience, appears to be relatively intact in individuals with ASD. In the present study, we examined the brain activation and functional connectivity differences underlying explicit and implicit emotional processing in age- and IQ-matched adults with (n = 17) and without (n = 15) ASD. Results indicated: (1) significantly reduced levels of brain activation in participants with ASD in medial prefrontal cortex (MPFC) and superior temporal gyrus (STG) during implicit emotion processing; (2) significantly weaker functional connectivity in the ASD group in connections of the MPFC with the amygdala, temporal lobe, parietal lobe, and fusiform gyrus; (3) No group difference in performance accuracy or reaction time; and (4) Significant positive relationship between empathizing ability and STG activity in ASD but not in typically developing participants. These findings suggest that the neural mechanisms underlying implicit, but not explicit, emotion processing may be altered at multiple levels in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  11. Disease and community structure: white-nose syndrome alters spatial and temporal niche partitioning in sympatric bat species

    USGS Publications Warehouse

    Jachowski, David S.; Dobony, Christopher A.; Coleman, Laci S.; Ford, W. Mark; Britzke, Eric R.; Rodrigue, Jane L.

    2014-01-01

    AimEmerging infectious diseases present a major perturbation with apparent direct effects such as reduced population density, extirpation and/or extinction. Comparatively less is known about the potential indirect effects of disease that likely alter community structure and larger ecosystem function. Since 2006, white-nose syndrome (WNS) has resulted in the loss of over 6 million hibernating bats in eastern North America. Considerable evidence exists concerning niche partitioning in sympatric bat species in this region, and the unprecedented, rapid decline in multiple species following WNS may provide an opportunity to observe a dramatic restructuring of the bat community.LocationWe conducted our study at Fort Drum Army Installation in Jefferson and Lewis counties, New York, USA, where WNS first impacted extant bat species in winter 2007–2008.MethodsAcoustical monitoring during 2003–2011 allowed us to test the hypothesis that spatial and temporal niche partitioning by bats was relaxed post-WNS.ResultsWe detected nine bat species pre- and post-WNS. Activity for most bat species declined post-WNS. Dramatic post-WNS declines in activity of little brown bat (Myotis lucifugus, MYLU), formerly the most abundant bat species in the region, were associated with complex, often species-specific responses by other species that generally favoured increased spatial and temporal overlap with MYLU.Main conclusionsIn addition to the obvious direct effects of disease on bat populations and activity levels, our results provide evidence that disease can have cascading indirect effects on community structure. Recent occurrence of WNS in North America, combined with multiple existing stressors, is resulting in dramatic shifts in temporal and spatial niche partitioning within bat communities. These changes might influence long-term population viability of some bat species as well as broader scale ecosystem structure and function.

  12. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify a variety of plant phenomena and improve monitoring capabilities.

  13. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    NASA Astrophysics Data System (ADS)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that distinct strategies for coping with seasonality underlie phenological diversity. Observed drought responses highlight the importance of non-linear community responses to climate. Community phenology exhibits scale-specific patterns highlighting the need for multi-scale approaches to community dynamics.

  14. Calcium as a signal integrator in developing epithelial tissues.

    PubMed

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  15. Multiplicative Forests for Continuous-Time Processes

    PubMed Central

    Weiss, Jeremy C.; Natarajan, Sriraam; Page, David

    2013-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability. PMID:25284967

  16. Multiplicative Forests for Continuous-Time Processes.

    PubMed

    Weiss, Jeremy C; Natarajan, Sriraam; Page, David

    2012-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability.

  17. Evolutions Of Diff-Tomo For Sensing Subcanopy Deformations And Height-Varying Temporal Coherence

    NASA Astrophysics Data System (ADS)

    Lombardini, Fabrizio; Cai, Francesco

    2012-01-01

    Interest is continuing to grow in advanced interferometric SAR methods for sensing complex scenarios with multiple (layover or volumetric) scatterers mapped in the SAR cell. Multibaseline SAR tomographic (3D) elevation beam forming is a promising technique in this field. Recently, the Tomo concept has been integrated with the differential interferometry concept, producing the advanced “differential tomography” (Diff-Tomo, “4D”) processing mode which furnishes “space-time” signatures of multiple scatterer dynamics in the SAR cell. Advances in the application of this new framework are investigated for complex volume scattering scenarios including temporal signal variations, both from scatterer temporal decorrelation and deformation motions. In particular, new results are reported concerning the potentials of Diff-Tomo for the analysis of forest scenarios, based on the original concept of the space-time signatures of temporal decorrelation. E-SAR P-band data results are expanded of tomography robust to temporal decorrelation, and first trials are reported of separation of different temporal decorrelation mechanisms of canopy and ground, and of sensing possible sub-canopy subsidences.

  18. Coding Strategies and Implementations of Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

  19. Prevalence of Temporal Bone Fractures in Patients with Mandibular Fractures Using Multidetector-Row CT.

    PubMed

    Ogura, I; Kaneda, T; Sasaki, Y; Buch, K; Sakai, O

    2015-06-01

    Temporal bone fracture after mandibular trauma is thought to be rare, and its prevalence has not been reported in the literature. The purpose of this study was to investigate the prevalence of temporal bone fractures in patients with mandibular fractures and the relationship between temporal bone fractures and the mandibular fracture location using multidetector-row computed tomography (MDCT). A prospective study was performed in 201 patients with mandibular fractures who underwent 64-MDCT scans. The mandibular fracture locations were classified as median, paramedian, angle, and condylar types. Statistical analysis for the relationship between prevalence of temporal bone fractures and mandibular fracture locations was performed using χ(2) test with Fisher's exact test. A P-value < 0.05 was considered statistically significant. The percentage of cases with temporal bone fracture was 3.0 % of all patients with mandibular fractures and 19.0 % of those with multiple mandibular fractures of paramedian and condylar type. There was a significant relationship between the incidence of temporal bone fracture and the paramedian- and condylar-type mandibular fracture (P = 0.001). Multiple mandibular fractures of paramedian and condylar type may be a stronger indicator for temporal bone fractures. This study suggests that patients with mandibular fracture, especially the paramedian and condylar type, should be examined for coexisting temporal bone fracture using MDCT.

  20. A task control architecture for autonomous robots

    NASA Technical Reports Server (NTRS)

    Simmons, Reid; Mitchell, Tom

    1990-01-01

    An architecture is presented for controlling robots that have multiple tasks, operate in dynamic domains, and require a fair degree of autonomy. The architecture is built on several layers of functionality, including a distributed communication layer, a behavior layer for querying sensors, expanding goals, and executing commands, and a task level for managing the temporal aspects of planning and achieving goals, coordinating tasks, allocating resources, monitoring, and recovering from errors. Application to a legged planetary rover and an indoor mobile manipulator is described.

  1. Body-force-driven multiplicity and stability of combined free and forced convection in rotating curved ducts: Coriolis force

    NASA Astrophysics Data System (ADS)

    Yang, T.; Wang, L.

    A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.

  2. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Precision pharmacology for Alzheimer's disease.

    PubMed

    Hampel, Harald; Vergallo, Andrea; Aguilar, Lisi Flores; Benda, Norbert; Broich, Karl; Cuello, A Claudio; Cummings, Jeffrey; Dubois, Bruno; Federoff, Howard J; Fiandaca, Massimo; Genthon, Remy; Haberkamp, Marion; Karran, Eric; Mapstone, Mark; Perry, George; Schneider, Lon S; Welikovitch, Lindsay A; Woodcock, Janet; Baldacci, Filippo; Lista, Simone

    2018-04-01

    The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective disease-modifying pathway-based targeted therapies. PP is based on an exploratory and integrative strategy to complex diseases such as brain proteinopathies including AD, aimed at identifying simultaneous aberrant molecular pathways and predicting their temporal impact on the systems levels. The depiction of pathway-based molecular signatures of complex diseases contributes to the accurate and mechanistic stratification of distinct subcohorts of individuals at the earliest compensatory stage when treatment intervention may reverse, stop, or delay the disease. In addition, individualized drug selection may optimize treatment safety by decreasing risk and amplitude of side effects and adverse reactions. From a methodological point of view, comprehensive "omics"-based biomarkers will guide the exploration of spatio-temporal systems-wide morpho-functional shifts along the continuum of AD pathophysiology, from adaptation to irreversible failure. The Alzheimer Precision Medicine Initiative (APMI) and the APMI cohort program (APMI-CP) have commenced to facilitate a paradigm shift towards effective drug discovery and development in AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Flood extent and water level estimation from SAR using data-model integration

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2017-12-01

    Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.

  5. Spatio-temporal variation of fish taxonomic composition in a South-East Asian flood-pulse system.

    PubMed

    Kong, Heng; Chevalier, Mathieu; Laffaille, Pascal; Lek, Sovan

    2017-01-01

    The Tonle Sap Lake (TSL) is a flood-pulse system. It is the largest natural lake in South-East Asia and constitutes one of the largest fisheries over the world, supporting the livelihood of million peoples. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the annual flood-pulse of the TSL. Such modifications are expected to have strong impacts on fish biodiversity and abundance. This paper aims to characterize the spatio-temporal variations of fish taxonomic composition and to highlights the underlying determinants of these variations. For this purpose, we used data collected from a community catch monitoring program conducted at six sites during 141 weeks, covering two full hydrological cycles. For each week, we estimated beta diversity as the total variance of the site-by-species community matrix and partitioned it into Local Contribution to Beta Diversity (LCBD) and Species Contribution to Beta Diversity (SCBD). We then performed multiple linear regressions to determine whether species richness, species abundances and water level explained the temporal variation in the contribution of site and species to beta diversity. Our results indicate strong temporal variation of beta diversity due to differential contributions of sites and species to the spatial variation of fish taxonomic composition. We further found that the direction, the shape and the relative effect of species richness, abundances and water level on temporal variation in LCBD and SCBD values greatly varied among sites, thus suggesting spatial variation in the processes leading to temporal variation in community composition. Overall, our results suggest that fish taxonomic composition is not homogeneously distributed over space and time and is likely to be impacted in the future if the flood-pulse dynamic of the system is altered by human activities.

  6. Breaking down barriers in cooperative fault management: Temporal and functional information displays

    NASA Technical Reports Server (NTRS)

    Potter, Scott S.; Woods, David D.

    1994-01-01

    At the highest level, the fundamental question addressed by this research is how to aid human operators engaged in dynamic fault management. In dynamic fault management there is some underlying dynamic process (an engineered or physiological process referred to as the monitored process - MP) whose state changes over time and whose behavior must be monitored and controlled. In these types of applications (dynamic, real-time systems), a vast array of sensor data is available to provide information on the state of the MP. Faults disturb the MP and diagnosis must be performed in parallel with responses to maintain process integrity and to correct the underlying problem. These situations frequently involve time pressure, multiple interacting goals, high consequences of failure, and multiple interleaved tasks.

  7. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    PubMed

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  8. Temporal characteristics of audiovisual information processing.

    PubMed

    Fuhrmann Alpert, Galit; Hein, Grit; Tsai, Nancy; Naumer, Marcus J; Knight, Robert T

    2008-05-14

    In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and a novel information-theoretic approach to study the flow of AV sensory information. Subjects passively perceived sounds and images of objects presented either alone or simultaneously. Applying the measure of mutual information, we computed for each voxel the latency in which the blood oxygenation level-dependent signal had the highest information content about the preceding stimulus. The results indicate that, after AV stimulation, the earliest informative activity occurs in right Heschl's gyrus, left primary visual cortex, and the posterior portion of the superior temporal gyrus, which is known as a region involved in object-related AV integration. Informative activity in the anterior portion of superior temporal gyrus, middle temporal gyrus, right occipital cortex, and inferior frontal cortex was found at a later latency. Moreover, AV presentation resulted in shorter latencies in multiple cortical areas compared with isolated auditory or visual presentation. The results provide evidence for bottom-up processing from primary sensory areas into higher association areas during AV integration in humans and suggest that AV presentation shortens processing time in early sensory cortices.

  9. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2014-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903

  10. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod

    2015-05-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.

  11. Patterns of genomic variation in Coho salmon following reintroduction to the interior Columbia River.

    PubMed

    Campbell, Nathan R; Kamphaus, Cory; Murdoch, Keely; Narum, Shawn R

    2017-12-01

    Coho salmon were extirpated in the mid-20th century from the interior reaches of the Columbia River but were reintroduced with relatively abundant source stocks from the lower Columbia River near the Pacific coast. Reintroduction of Coho salmon to the interior Columbia River (Wenatchee River) using lower river stocks placed selective pressures on the new colonizers due to substantial differences with their original habitat such as migration distance and navigation of six additional hydropower dams. We used restriction site-associated DNA sequencing (RAD-seq) to genotype 5,392 SNPs in reintroduced Coho salmon in the Wenatchee River over four generations to test for signals of temporal structure and adaptive variation. Temporal genetic structure among the three broodlines of reintroduced fish was evident among the initial return years (2000, 2001, and 2002) and their descendants, which indicated levels of reproductive isolation among broodlines. Signals of adaptive variation were detected from multiple outlier tests and identified candidate genes for further study. This study illustrated that genetic variation and structure of reintroduced populations are likely to reflect source stocks for multiple generations but may shift over time once established in nature.

  12. Detecting time-specific differences between temporal nonlinear curves: Analyzing data from the visual world paradigm

    PubMed Central

    Oleson, Jacob J; Cavanaugh, Joseph E; McMurray, Bob; Brown, Grant

    2015-01-01

    In multiple fields of study, time series measured at high frequencies are used to estimate population curves that describe the temporal evolution of some characteristic of interest. These curves are typically nonlinear, and the deviations of each series from the corresponding curve are highly autocorrelated. In this scenario, we propose a procedure to compare the response curves for different groups at specific points in time. The method involves fitting the curves, performing potentially hundreds of serially correlated tests, and appropriately adjusting the overall alpha level of the tests. Our motivating application comes from psycholinguistics and the visual world paradigm. We describe how the proposed technique can be adapted to compare fixation curves within subjects as well as between groups. Our results lead to conclusions beyond the scope of previous analyses. PMID:26400088

  13. The overlapping relationship between emotion perception and theory of mind.

    PubMed

    Mitchell, Rachel L C; Phillips, Louise H

    2015-04-01

    Socio-cognitive skills are crucial for successful interpersonal interactions. Two particularly important socio-cognitive processes are emotion perception (EP) and theory of mind (ToM), but agreement is lacking on terminology and conceptual links between these constructs. Here we seek to clarify the relationship between the two at multiple levels, from concept to neuroanatomy. EP is often regarded as a low-level perceptual process necessary to decode affective cues, while ToM is usually seen as a higher-level cognitive process involving mental state deduction. In information processing models, EP tends to precede ToM. At the neuroanatomical level, lesion study data suggest that EP and ToM are both right-hemisphere based, but there is also evidence that ToM requires temporal-cingulate networks, whereas EP requires partially separable regions linked to distinct emotions. Common regions identified in fMRI studies of EP and ToM have included medial prefrontal cortex and temporal lobe areas, but differences emerge depending on the perceptual, cognitive and emotional demands of the EP and ToM tasks. For the future, clarity of definition of EP and ToM will be paramount to produce distinct task manipulations and inform models of socio-cognitive processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies

    PubMed Central

    Blonder, Benjamin; Dornhaus, Anna

    2011-01-01

    Background An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. Methodology/Findings Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. Conclusions/Significance Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales. PMID:21625450

  15. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    PubMed Central

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.

    2014-01-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  16. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    PubMed

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  17. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements: 2. Paired and multiple targets.

    PubMed

    Schiller, P H; Chou, I

    2000-01-01

    This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.

  18. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities.

    PubMed

    Fujisaki, Waka; Nishida, Shin'ya

    2010-08-07

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information ('what') across different channels, temporal coincidence ('when') along with spatial coincidence ('where') provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2-3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4-9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed 'what' and 'when' properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in 'when' processing, the binding performance reflects the central temporal limit of integrating 'when' and 'what' properties.

  20. Using a Bayesian network to predict barrier island geomorphologic characteristics

    USGS Publications Warehouse

    Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron

    2015-01-01

    Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.

  1. Environmental stochasticity controls soil erosion variability

    PubMed Central

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  2. Preserved ability to recognize keywords related to remote events in the absence of retrieval of relevant knowledge: a case of postencephalitic amnesia.

    PubMed

    Tsukiura, Takashi; Ohtake, Hiroya; Fujii, Toshikatsu; Miura, Rina; Ogawa, Tatsuji; Yamadori, Atsushi

    2003-02-01

    We describe a case of severe anterograde and retrograde amnesia resulting from herpes simplex encephalitis. Magnetic resonance imaging revealed pathological changes in the bilateral hippocampi, parahippocampal gyri, fusiform gyri, medial temporal poles, posterior part of the cingulate gyri, and insula. The patient showed severe amnesia for autobiographical episodic memory in relation to events that had occurred throughout her life, but temporally graded amnesia for autobiographical semantic memory, and severe amnesia without a temporal gradient for public events and famous people. However, using a multiple-choice method, she showed a high level of accuracy when choosing keywords related to public or personal events, although this did not prompt her recollection of the events. An important indication of these results is that, even with severe retrograde amnesia, memories of past events are not completely lost. We propose that an event may be stored in a fragmented form, consisting of many components, and that normal recall of an event may require recombination or reconstruction of these components. Copyright 2003 Elsevier Science (USA)

  3. Monitoring gait in multiple sclerosis with novel wearable motion sensors.

    PubMed

    Moon, Yaejin; McGinnis, Ryan S; Seagers, Kirsten; Motl, Robert W; Sheth, Nirav; Wright, John A; Ghaffari, Roozbeh; Sosnoff, Jacob J

    2017-01-01

    Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6-2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic.

  4. Microencephaloceles: another dual pathology of intractable temporal lobe epilepsy in childhood.

    PubMed

    Aquilina, Kristian; Clarke, Dave F; Wheless, James W; Boop, Frederick A

    2010-04-01

    Temporal lobe encephaloceles can be associated with temporal lobe epilepsy. The authors report on the case of an adolescent with multiple microencephaloceles, in the anterolateral middle fossa floor, identified at surgery (temporal lobectomy) for intractable partial-onset seizures of temporal origin. Magnetic resonance imaging revealed only hippocampal atrophy. Subdural electrodes demonstrated ictal activity arising primarily from the anterior and lateral temporal lobe, close to the microencephaloceles, spreading to the anterior and posterior mesial structures. Pathological examination revealed diffuse temporal gliosis involving the hippocampus, together with microdysgenesis of the amygdala. The literature on epilepsy secondary to encephaloceles is reviewed and the contribution of the microencephaloceles to the seizure disorder in this patient is discussed.

  5. Temporal change in forest fragmentation at multiple scales

    Treesearch

    J.D. Wickham; K.H. Riitters; T.G. Wade; J.W. Coulston

    2007-01-01

    Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay region and the state of New Jersey to compare patch-based and area–density scaling measures...

  6. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss

    PubMed Central

    Ananthakrishnan, Saradha; Krishnan, Ananthanarayan; Bartlett, Edward

    2015-01-01

    Objective Listeners with sensorineural hearing loss (SNHL) typically experience reduced speech perception, which is not completely restored with amplification. This likely occurs because cochlear damage, in addition to elevating audiometric thresholds, alters the neural representation of speech transmitted to higher centers along the auditory neuroaxis. While the deleterious effects of SNHL on speech perception in humans have been well-documented using behavioral paradigms, our understanding of the neural correlates underlying these perceptual deficits remains limited. Using the scalp-recorded Frequency Following Response (FFR), the authors examine the effects of SNHL and aging on subcortical neural representation of acoustic features important for pitch and speech perception, namely the periodicity envelope (F0) and temporal fine structure (TFS) (formant structure), as reflected in the phase-locked neural activity generating the FFR. Design FFRs were obtained from 10 listeners with normal hearing (NH) and 9 listeners with mild-moderate SNHL in response to a steady-state English back vowel /u/ presented at multiple intensity levels. Use of multiple presentation levels facilitated comparisons at equal sound pressure level (SPL) and equal sensation level (SL). In a second follow-up experiment to address the effect of age on envelope and TFS representation, FFRs were obtained from 25 NH and 19 listeners with mild to moderately-severe SNHL to the same vowel stimulus presented at 80 dB SPL. Temporal waveforms, Fast Fourier Transform (FFT) and spectrograms were used to evaluate the magnitude of the phase-locked activity at F0 (periodicity envelope) and F1 (TFS). Results Neural representation of both envelope (F0) and TFS (F1) at equal SPLs was stronger in NH listeners compared to listeners with SNHL. Also, comparison of neural representation of F0 and F1 across stimulus levels expressed in SPL and SL (accounting for audibility) revealed that level-related changes in F0 and F1 magnitude were different for listeners with SNHL compared to listeners with normal hearing. Further, the degradation in subcortical neural representation was observed to persist in listeners with SNHL even when the effects of age were controlled for. Conclusions Overall, our results suggest a relatively greater degradation in the neural representation of TFS compared to periodicity envelope in individuals with SNHL. This degraded neural representation of TFS in SNHL, as reflected in the brainstem FFR, may reflect a disruption in the temporal pattern of phase-locked neural activity arising from altered tonotopic maps and/or wider filters causing poor frequency selectivity in these listeners. Lastly, while preliminary results indicate that the deleterious effects of SNHL may be greater than age-related degradation in subcortical neural representation, the lack of a balanced age-matched control group in this study does not permit us to completely rule out the effects of age on subcortical neural representation. PMID:26583482

  8. Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking

    PubMed Central

    Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka

    2017-01-01

    Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430

  9. Insight into others' minds: spatio-temporal representations by intrinsic frame of reference.

    PubMed

    Sun, Yanlong; Wang, Hongbin

    2014-01-01

    Recent research has seen a growing interest in connections between domains of spatial and social cognition. Much evidence indicates that processes of representing space in distinct frames of reference (FOR) contribute to basic spatial abilities as well as sophisticated social abilities such as tracking other's intention and belief. Argument remains, however, that belief reasoning in social domain requires an innately dedicated system and cannot be reduced to low-level encoding of spatial relationships. Here we offer an integrated account advocating the critical roles of spatial representations in intrinsic frame of reference. By re-examining the results from a spatial task (Tamborello etal., 2012) and a false-belief task (Onishi and Baillargeon, 2005), we argue that spatial and social abilities share a common origin at the level of spatio-temporal association and predictive learning, where multiple FOR-based representations provide the basic building blocks for efficient and flexible partitioning of the environmental statistics. We also discuss neuroscience evidence supporting these mechanisms. We conclude that FOR-based representations may bridge the conceptual as well as the implementation gaps between the burgeoning fields of social and spatial cognition.

  10. Minimal Information for Neural Electromagnetic Ontologies (MINEMO): A standards-compliant method for analysis and integration of event-related potentials (ERP) data

    PubMed Central

    Frishkoff, Gwen; Sydes, Jason; Mueller, Kurt; Frank, Robert; Curran, Tim; Connolly, John; Kilborn, Kerry; Molfese, Dennis; Perfetti, Charles; Malony, Allen

    2011-01-01

    We present MINEMO (Minimal Information for Neural ElectroMagnetic Ontologies), a checklist for the description of event-related potentials (ERP) studies. MINEMO extends MINI (Minimal Information for Neuroscience Investigations)to the ERP domain. Checklist terms are explicated in NEMO, a formal ontology that is designed to support ERP data sharing and integration. MINEMO is also linked to an ERP database and web application (the NEMO portal). Users upload their data and enter MINEMO information through the portal. The database then stores these entries in RDF (Resource Description Framework), along with summary metrics, i.e., spatial and temporal metadata. Together these spatial, temporal, and functional metadata provide a complete description of ERP data and the context in which these data were acquired. The RDF files then serve as inputs to ontology-based labeling and meta-analysis. Our ultimate goal is to represent ERPs using a rich semantic structure, so results can be queried at multiple levels, to stimulate novel hypotheses and to promote a high-level, integrative account of ERP results across diverse study methods and paradigms. PMID:22180824

  11. Descriptive Correlates of Urban Pediatric Violent Injury Using Emergency Medical Service Patient-Level Data.

    PubMed

    Walthall, Jennifer D H; Burgess, Aaron; Weinstein, Elizabeth; Miramonti, Charles; Arkins, Thomas; Wiehe, Sarah

    2018-02-01

    This study aimed to describe spatiotemporal correlates of pediatric violent injury in an urban community. We performed a retrospective cohort study using patient-level data (2009-2011) from a novel emergency medical service computerized entry system for violent injury resulting in an ambulance dispatch among children aged 0 to 16 years. Assault location and patient residence location were cleaned and geocoded at a success rate of 98%. Distances from the assault location to both home and nearest school were calculated. Time and day of injury were used to evaluate temporal trends. Data from the event points were analyzed to locate injury "hotspots." Seventy-six percent of events occurred within 2 blocks of the patient's home. Clusters of violent injury correlated with areas with high adult crime and areas with multiple schools. More than half of the events occurred between 3:00 PM and 11:00 PM. During these peak hours, Sundays had significantly fewer events. Pediatric violent injuries occurred in identifiable geographic and temporal patterns. This has implications for injury prevention programming to prioritize highest-risk areas.

  12. Sound quality characteristics of refrigerator noise in real living environments with relation to psychoacoustical and autocorrelation function parameters.

    PubMed

    Sato, Shin-ichi; You, Jin; Jeon, Jin Yong

    2007-07-01

    Psychoacoustical and autocorrelation function (ACF) parameters were employed to describe the temporal fluctuations of refrigerator noise during starting, transition into/from the stationary phase and termination of operation. The temporal fluctuations of refrigerator noise include a click at start-up, followed by a rapid increase in volume, a change of pitch, and termination of the operation. Subjective evaluations of the noise of 24 different refrigerators were conducted in a real living environment. The relationship between objective measures and perceived noisiness was examined by multiple regression analysis. Sound quality indices were developed based on psychoacoustical and ACF parameters. The psychoacoustical parameters found to be important for evaluating noisiness in the stationary phase were loudness and roughness. The relationship between noisiness and ACF parameters shows that sound energy and its fluctuations are important for evaluating noisiness. Also, refrigerator sounds that had a fluctuation of pitch were rated as more annoying. The tolerance level for the starting phase of refrigerator noise was found to be 33 dBA, which is the level where 65% of the participants in the subjective tests were satisfied.

  13. Unitary vs multiple semantics: PET studies of word and picture processing.

    PubMed

    Bright, P; Moss, H; Tyler, L K

    2004-06-01

    In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990; Lambon Ralph, Graham, Patterson, & Hodges, 1999; Rapp, Hillis, & Caramazza, 1993)? We present an analysis of four PET studies (three semantic categorisation tasks and one lexical decision task), two of which employ words as stimuli and two of which employ pictures. Using conjunction analyses, we found robust semantic activation, common to both input modalities in anterior and medial aspects of the left fusiform gyrus, left parahippocampal and perirhinal cortices, and left inferior frontal gyrus (BA 47). There were modality-specific activations in both temporal poles (words) and occipitotemporal cortices (pictures). We propose that the temporal poles are involved in processing both words and pictures, but their engagement might be primarily determined by the level of specificity at which an object is processed. Activation in posterior temporal regions associated with picture processing most likely reflects intermediate, pre-semantic stages of visual processing. Our data are most consistent with a hierarchically structured, unitary system of semantic representations for both verbal and visual modalities, subserved by anterior regions of the inferior temporal cortex.

  14. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    PubMed

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  15. Evolutionary history of Daphnia drives divergence in grazing selectivity and alters temporal community dynamics of producers.

    PubMed

    Park, John S; Post, David M

    2018-01-01

    Consumers with different seasonal life histories encounter different communities of producers during specific seasonal phases. If consumers evolve to prefer the producers that they encounter, then consumers may reciprocally influence the temporal composition of producer communities. Here, we study the keystone consumer Daphnia ambigua, whose seasonal life history has diverged due to intraspecific predator divergence across lakes of New England. We ask whether grazing preferences of Daphnia have diverged also and test whether any grazing differences influence temporal composition patterns of producers. We reared clonal populations of Daphnia from natural populations representing the two diverged life history types for multiple generations. We conducted short-term (24 hr) and long-term (27 days) grazing experiments in equal polycultures consisting of three diatom and two green algae species, treated with no consumer, Daphnia from lakes with anadromous alewife, or from lakes with landlocked alewife. After 24 hr, life history and grazing preference divergence in Daphnia ambigua drove significant differences in producer composition. However, those differences disappeared at the end of the 27-day experiment. Our results illustrate that, despite potentially more complex long-term dynamics, a multitrophic cascade of evolutionary divergence from a predator can influence temporal community dynamics at the producer level.

  16. Oscillators entrained by food and the emergence of anticipatory timing behaviors

    PubMed Central

    SILVER, Rae; BALSAM, Peter

    2011-01-01

    Circadian rhythms are adjusted to the external environment by the light–dark cycle via the suprachiasmatic nucleus, and to the internal environment of the body by multiple cues that derive from feeding/fasting. These cues determine the timing of sleep/wake cycles and all the activities associated with these states. We suggest that numerous sources of temporal information, including hormonal cues such as corticoids, insulin, and ghrelin, as well as conditioned learned responses determined by the temporal relationships between photic and feeding/fasting signals, can determine the timing of regularly recurring circadian responses. We further propose that these temporal signals can act additively to modulate the pattern of daily activity. Based on such reasoning, we describe the rationale and methodology for separating the influences of these diverse sources of temporal information. The evidence indicates that there are individual differences in sensitivity to internal and external signals that vary over circadian time, time since the previous meal, time until the next meal, or with duration of food deprivation. All of these cues are integrated in sites and circuits modulating physiology and behavior. Individuals detect changes in internal and external signals, interpret those changes as “hunger,” and adjust their physiological responses and activity levels accordingly. PMID:21544255

  17. Differential Neural Activity during Search of Specific and General Autobiographical Memories elicited by Musical Cues

    PubMed Central

    Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.

    2011-01-01

    Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime period, general event, and event-specific). Sixteen young adults participated in a neuroimaging study in which they retrieved autobiographical memories associated with musical cues. These musical cues led to the retrieval of highly emotional memories that had low levels of prior retrieval. Retrieval of all autobiographical memory levels was associated with activity in regions in the autobiographical memory network, specifically the ventromedial prefrontal cortex, posterior cingulate, and right medial temporal lobe. Owing to the use of music, memories from varying levels of specificity were retrieved, allowing for comparison of event memory and abstract personal knowledge, as well as comparison of specific and general event memory. Dorsolateral and dorsomedial prefrontal regions were engaged during event retrieval relative to personal knowledge retrieval, and retrieval of specific event memories was associated with increased activity in the bilateral medial temporal lobe and dorsomedial prefrontal cortex relative to retrieval of general event memories. These results suggest that the initial search processes for memories of different specificity levels preferentially engage different components of the autobiographical memory network. The potential underlying causes of these neural differences are discussed. PMID:21600227

  18. Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study

    PubMed Central

    Qiu, Wei-hong; Wu, Hui-xiang; Yang, Qing-lu; Kang, Zhuang; Chen, Zhao-cong; Li, Kui; Qiu, Guo-rong; Xie, Chun-qing; Wan, Gui-fang; Chen, Shao-qiong

    2017-01-01

    Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas. PMID:28250756

  19. VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data.

    PubMed

    Chen, Wei; Huang, Zhaosong; Wu, Feiran; Zhu, Minfeng; Guan, Huihua; Maciejewski, Ross

    2017-10-02

    Urban data is massive, heterogeneous, and spatio-temporal, posing a substantial challenge for visualization and analysis. In this paper, we design and implement a novel visual analytics approach, Visual Analyzer for Urban Data (VAUD), that supports the visualization, querying, and exploration of urban data. Our approach allows for cross-domain correlation from multiple data sources by leveraging spatial-temporal and social inter-connectedness features. Through our approach, the analyst is able to select, filter, aggregate across multiple data sources and extract information that would be hidden to a single data subset. To illustrate the effectiveness of our approach, we provide case studies on a real urban dataset that contains the cyber-, physical-, and socialinformation of 14 million citizens over 22 days.

  20. Decadal trends in Indian Ocean ambient sound.

    PubMed

    Miksis-Olds, Jennifer L; Bradley, David L; Niu, Xiaoyue Maggie

    2013-11-01

    The increase of ocean noise documented in the North Pacific has sparked concern on whether the observed increases are a global or regional phenomenon. This work provides evidence of low frequency sound increases in the Indian Ocean. A decade (2002-2012) of recordings made off the island of Diego Garcia, UK in the Indian Ocean was parsed into time series according to frequency band and sound level. Quarterly sound level comparisons between the first and last years were also performed. The combination of time series and temporal comparison analyses over multiple measurement parameters produced results beyond those obtainable from a single parameter analysis. The ocean sound floor has increased over the past decade in the Indian Ocean. Increases were most prominent in recordings made south of Diego Garcia in the 85-105 Hz band. The highest sound level trends differed between the two sides of the island; the highest sound levels decreased in the north and increased in the south. Rate, direction, and magnitude of changes among the multiple parameters supported interpretation of source functions driving the trends. The observed sound floor increases are consistent with concurrent increases in shipping, wind speed, wave height, and blue whale abundance in the Indian Ocean.

  1. Featured Article: Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone.

    PubMed

    Ludwig, Michael D; Zagon, Ian S; McLaughlin, Patricia J

    2017-09-01

    Low-dose naltrexone is a widely used off-label therapeutic prescribed for a variety of immune-related disorders. The mechanism underlying low-dose naltrexone's efficacy for fatigue, Crohn's disease, fibromyalgia, and multiple sclerosis is, in part, intermittent blockade of opioid receptors followed by upregulation of endogenous opioids. Short, intermittent blockade by naltrexone specifically blocks the opioid growth factor receptor resulting in biofeedback events that increase production of the endogenous opioid growth factor (OGF) (chemically termed [Met 5 ]-enkephalin) facilitating interactions between opioid growth factor and opioid growth factor receptor that ultimately, result in inhibited cell proliferation. Preclinical studies have reported that enkephalin levels are deficient in animal models of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Our hypothesis is that serum enkephalin levels are diminished in humans with multiple sclerosis and experimental autoimmune encephalomyelitis mice, and that change in serum opioid growth factor levels may serve as a reasonable candidate biomarker for the onset of experimental autoimmune encephalomyelitis and response to therapy. To address this, we designed a two-part study to measure endogenous opioids in multiple sclerosis patients, and to investigate the temporal pattern of decline in serum enkephalin concentrations in mice with chronic progressive experimental autoimmune encephalomyelitis and treated with low-dose naltrexone. For comparison, we investigated whether low-dose naltrexone exposure in normal mice also resulted in altered enkephalin levels. In both animal models, we monitored tactile and heat sensitivity, as well as differential white blood cell counts as indicators of inflammation. Serum [Met 5 ]-enkephalin levels were lower in humans with multiple sclerosis relative to non-multiple sclerosis patients, and low-dose naltrexone restored their levels. In experimental autoimmune encephalomyelitis mice, [Met 5 ]-enkephalin levels were depressed prior to the appearance of clinical disease, and were restored with low-dose naltrexone treatment. Low-dose naltrexone therapy had no effect on serum [Met 5 ]-enkephalin or β-endorphin in normal mice. Thus, [Met 5 ]-enkephalin (i.e. opioid growth factor) may be a reasonable candidate biomarker for multiple sclerosis, and may signal new pathways for treatment of autoimmune disorders. Impact statement This report presents human and animal data identifying a novel biomarker for the onset and progression of multiple sclerosis (MS). Humans diagnosed with MS have reduced serum levels of OGF (i.e. [Met 5 ]-enkephalin) relative to non-MS neurologic patients, and low-dose naltrexone (LDN) therapy restored their enkephalin levels. Serum OGF levels were reduced in mice immunized with MOG 35-55 prior to any clinical behavioral sign of experimental autoimmune encephalomyelitis, and LDN therapy restored their serum OGF levels. β-endorphin concentrations were not altered by LDN in humans or mice. Thus, blood levels of OGF may serve as a new, selective biomarker for the progression of MS, as well as response to therapy.

  2. A Flexible Approach for the Statistical Visualization of Ensemble Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, K.; Wilson, A.; Bremer, P.

    2009-09-29

    Scientists are increasingly moving towards ensemble data sets to explore relationships present in dynamic systems. Ensemble data sets combine spatio-temporal simulation results generated using multiple numerical models, sampled input conditions and perturbed parameters. While ensemble data sets are a powerful tool for mitigating uncertainty, they pose significant visualization and analysis challenges due to their complexity. We present a collection of overview and statistical displays linked through a high level of interactivity to provide a framework for gaining key scientific insight into the distribution of the simulation results as well as the uncertainty associated with the data. In contrast to methodsmore » that present large amounts of diverse information in a single display, we argue that combining multiple linked statistical displays yields a clearer presentation of the data and facilitates a greater level of visual data analysis. We demonstrate this approach using driving problems from climate modeling and meteorology and discuss generalizations to other fields.« less

  3. Compilation and analysis of multiple groundwater-quality datasets for Idaho

    USGS Publications Warehouse

    Hundt, Stephen A.; Hopkins, Candice B.

    2018-05-09

    Groundwater is an important source of drinking and irrigation water throughout Idaho, and groundwater quality is monitored by various Federal, State, and local agencies. The historical, multi-agency records of groundwater quality include a valuable dataset that has yet to be compiled or analyzed on a statewide level. The purpose of this study is to combine groundwater-quality data from multiple sources into a single database, to summarize this dataset, and to perform bulk analyses to reveal spatial and temporal patterns of water quality throughout Idaho. Data were retrieved from the Water Quality Portal (https://www.waterqualitydata.us/), the Idaho Department of Environmental Quality, and the Idaho Department of Water Resources. Analyses included counting the number of times a sample location had concentrations above Maximum Contaminant Levels (MCL), performing trends tests, and calculating correlations between water-quality analytes. The water-quality database and the analysis results are available through USGS ScienceBase (https://doi.org/10.5066/F72V2FBG).

  4. The South Georgia and the South Sandwich Islands MPA: protecting a biodiverse oceanic island chain situated in the flow of the antarctic circumpolar current.

    PubMed

    Trathan, Philip N; Collins, Martin A; Grant, Susie M; Belchier, Mark; Barnes, David K A; Brown, Judith; Staniland, Iain J

    2014-01-01

    South Georgia and the South Sandwich Islands (SGSSI) are surrounded by oceans that are species-rich, have high levels of biodiversity, important endemism and which also support large aggregations of charismatic upper trophic level species. Spatial management around these islands is complex, particularly in the context of commercial fisheries that exploit some of these living resources. Furthermore, management is especially complicated as local productivity relies fundamentally upon biological production transported from outside the area. The MPA uses practical management boundaries, allowing access for the current legal fisheries for Patagonian toothfish, mackerel icefish and Antarctic krill. Management measures developed as part of the planning process designated the whole SGSSI Maritime Zone as an IUCN Category VI reserve, within which a number of IUCN Category I reserves were identified. Multiple-use zones and temporal closures were also designated. A key multiple-use principle was to identify whether the ecological impacts of a particular fishery threatened either the pelagic or benthic domain.

  5. The relation between circadian asynchrony, functional redundancy, and trophic performance in tropical ant communities.

    PubMed

    Houadria, Mickal; Blüthgen, Nico; Salas-Lopez, Alex; Schmitt, Mona-Isabel; Arndt, Johanna; Schneider, Eric; Orivel, Jérôme; Menzel, Florian

    2016-01-01

    The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well-studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high-performing species, but not by even contributions of multiple, less-efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity-stability relationship in an ecosystem.

  6. Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.

  7. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture

    PubMed Central

    Maherchandani, Sunil; Shringi, B. N.; Kashyap, Sudhir Kumar

    2018-01-01

    ABSTRACT Aims: Multiple antimicrobial resistance in Escherichia coli of wild vertebrates is a global concern with scarce assessments on the subject from developing countries that have high human-wild species interactions. We studied the ecology of E. coli in a wintering population of Egyptian Vultures in India to understand temporal changes in both E. coli strains and patterns of antimicrobial resistance. Methods and Results: We ribotyped E. coli strains and assessed antimicrobial resistance from wintering vultures at a highly synanthropic carcass dump in north-west India. Both E. coli occurence (90.32%) and resistance to multiple antimicrobials (71.43%) were very high. Clear temporal patterns were apparent. Diversity of strains changed and homogenized at the end of the Vultures’ wintering period, while the resistance pattern showed significantly difference inter-annually, as well as between arrival and departing individuals within a wintering cycle. Significance of study: The carcass dump environment altered both E. coli strains and multiple antimicrobial resistance in migratory Egyptian Vultures within a season. Long-distance migratory species could therefore disseminate resistant E. coli strains across broad geographical scales rendering regional mitigation strategies to control multiple antimicrobial resistance in bacteria ineffective. PMID:29755700

  8. Object-oriented millisecond timers for the PC.

    PubMed

    Hamm, J P

    2001-11-01

    Object-oriented programming provides a useful structure for designing reusable code. Accurate millisecond timing is essential for many areas of research. With this in mind, this paper provides a Turbo Pascal unit containing an object-oriented millisecond timer. This approach allows for multiple timers to be running independently. The timers may also be set at different levels of temporal precision, such as 10(-3) (milliseconds) or 10(-5) sec. The object also is able to store the time of a flagged event for later examination without interrupting the ongoing timing operation.

  9. Spectral splitting of optical pulses inside a dispersive medium at a temporal boundary

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-11-07

    We show numerically that the spectrum of an optical pulse splits into multiple, widely separated, spectral bands when it arrives at a temporal boundary across which refractive index changes suddenly. At the same time, the pulse breaks into several temporally separated pulses traveling at different speeds. The number of such pulses depends on the dispersive properties of the medium. We study the effect of second- and third-order dispersion in detail but also consider briefly the impact of other higher-order terms. As a result, a temporal waveguide formed with two temporal boundaries can reflect the temporally separated pulses again and again,more » increasing the number of pulses trapped within the temporal waveguide.« less

  10. The Verriest Lecture: Color lessons from space, time, and motion

    PubMed Central

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  11. Integrating data types to enhance shoreline change assessments

    NASA Astrophysics Data System (ADS)

    Long, J.; Henderson, R.; Plant, N. G.; Nelson, P. R.

    2016-12-01

    Shorelines represent the variable boundary between terrestrial and marine environments. Assessment of geographic and temporal variability in shoreline position and related variability in shoreline change rates are an important part of studies and applications related to impacts from sea-level rise and storms. The results from these assessments are used to quantify future ecosystem services and coastal resilience and guide selection of appropriate coastal restoration and protection designs. But existing assessments typically fail to incorporate all available shoreline observations because they are derived from multiple data types and have different or unknown biases and uncertainties. Shoreline-change research and assessments often focus on either the long-term trajectory using sparse data over multiple decades or shorter-term evolution using data collected more frequently but over a shorter period of time. The combination of data collected with significantly different temporal resolution is not often considered. Also, differences in the definition of the shoreline metric itself can occur, whether using a single or multiple data source(s), due to variation the signal being detected in the data (e.g. instantaneous land/water interface, swash zone, wrack line, or topographic contours). Previous studies have not explored whether more robust shoreline change assessments are possible if all available data are utilized and all uncertainties are considered. In this study, we test the hypothesis that incorporating all available shoreline data will lead to both improved historical assessments and enhance the predictive capability of shoreline-change forecasts. Using over 250 observations of shoreline position at Dauphin Island, Alabama over the last century, we compare shoreline-change rates derived from individual data sources (airborne lidar, satellite, aerial photographs) with an assessment using the combination of all available data. Biases or simple uncertainties in the shoreline metric from different data types and varying temporal/spatial resolution of the data are examined. As part of this test, we also demonstrate application of data assimilation techniques to predict shoreline position by accurately including the uncertainty in each type of data.

  12. A spatio-temporal index for aerial full waveform laser scanning data

    NASA Astrophysics Data System (ADS)

    Laefer, Debra F.; Vo, Anh-Vu; Bertolotto, Michela

    2018-04-01

    Aerial laser scanning is increasingly available in the full waveform version of the raw signal, which can provide greater insight into and control over the data and, thus, richer information about the scanned scenes. However, when compared to conventional discrete point storage, preserving raw waveforms leads to vastly larger and more complex data volumes. To begin addressing these challenges, this paper introduces a novel bi-level approach for storing and indexing full waveform (FWF) laser scanning data in a relational database environment, while considering both the spatial and the temporal dimensions of that data. In the storage scheme's upper level, the full waveform datasets are partitioned into spatial and temporal coherent groups that are indexed by a two-dimensional R∗-tree. To further accelerate intra-block data retrieval, at the lower level a three-dimensional local octree is created for each pulse block. The local octrees are implemented in-memory and can be efficiently written to a database for reuse. The indexing solution enables scalable and efficient three-dimensional (3D) spatial and spatio-temporal queries on the actual pulse data - functionalities not available in other systems. The proposed FWF laser scanning data solution is capable of managing multiple FWF datasets derived from large flight missions. The flight structure is embedded into the data storage model and can be used for querying predicates. Such functionality is important to FWF data exploration since aircraft locations and orientations are frequently required for FWF data analyses. Empirical tests on real datasets of up to 1 billion pulses from Dublin, Ireland prove the almost perfect scalability of the system. The use of the local 3D octree in the indexing structure accelerated pulse clipping by 1.2-3.5 times for non-axis-aligned (NAA) polyhedron shaped clipping windows, while axis-aligned (AA) polyhedron clipping was better served using only the top indexing layer. The distinct behaviours of the hybrid indexing for AA and NAA clipping windows are attributable to the different proportion of the local-index-related overheads with respect to the total querying costs. When temporal constraints were added, generally the number of costly spatial checks were reduced, thereby shortening the querying times.

  13. MEG evidence that the central auditory system simultaneously encodes multiple temporal cues.

    PubMed

    Simpson, Michael I G; Barnes, Gareth R; Johnson, Sam R; Hillebrand, Arjan; Singh, Krish D; Green, Gary G R

    2009-09-01

    Speech contains complex amplitude modulations that have envelopes with multiple temporal cues. The processing of these complex envelopes is not well explained by the classical models of amplitude modulation processing. This may be because the evidence for the models typically comes from the use of simple sinusoidal amplitude modulations. In this study we used magnetoencephalography (MEG) to generate source space current estimates of the steady-state responses to simple one-component amplitude modulations and to a two-component amplitude modulation. A two-component modulation introduces the simplest form of modulation complexity into the waveform; the summation of the two-modulation rates introduces a beat-like modulation at the difference frequency between the two modulation rates. We compared the cortical representations of responses to the one-component and two-component modulations. In particular, we show that the temporal complexity in the two-component amplitude modulation stimuli was preserved at the cortical level. The method of stimulus normalization that we used also allows us to interpret these results as evidence that the important feature in sound modulations is the relative depth of one modulation rate with respect to another, rather than the absolute carrier-to-sideband modulation depth. More generally, this may be interpreted as evidence that modulation detection accurately preserves a representation of the modulation envelope. This is an important observation with respect to models of modulation processing, as it suggests that models may need a dynamic processing step to effectively model non-stationary stimuli. We suggest that the classic modulation filterbank model needs to be modified to take these findings into account.

  14. Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Gay, Trent E.; Lewis, Elliott S.

    2016-02-01

    Forest canopies alter rainfall reaching the surface by redistributing it as throughfall. Throughfall supplies water and nutrients to a variety of ecohydrological components (soil microbial communities, stream water discharge/chemistry, and stormflow pathways) and is controlled by canopy structural interactions with meteorological conditions across temporal scales. This work introduces and applies multiple correspondence analyses (MCAs) to a range of meteorological thresholds (median intensity, median absolute deviation (MAD) of intensity, median wind-driven droplet inclination angle, and MAD of wind speed) for an example throughfall problem: identification of interacting storm conditions corresponding to temporal concentration in relative throughfall beyond the median observation (⩾73% of rain). MCA results from the example show that equalling or exceeding rain intensity thresholds (median and MAD) corresponded with temporal concentration of relative throughfall across all storms. Under these intensity conditions, two wind mechanisms produced significant correspondences: (1) high, steady wind-driven droplet inclination angles increased surface wetting; and (2) sporadic winds shook entrained droplets from surfaces. A discussion is provided showing that these example MCA findings agree well with previous work relying on more historically common methods (e.g., multiple regression and analytical models). Meteorological threshold correspondences to temporal concentration of relative throughfall at our site may be a function of heavy Tillandsia usneoides coverage. Applications of MCA within other forests may provide useful insights to how temporal throughfall dynamics are affected for drainage pathways dependent on different structures (leaves, twigs, branches, etc.).

  15. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities.

    PubMed

    Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.

  16. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities

    PubMed Central

    Fujisaki, Waka; Nishida, Shin'ya

    2010-01-01

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information (‘what’) across different channels, temporal coincidence (‘when’) along with spatial coincidence (‘where’) provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2–3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4–9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed ‘what’ and ‘when’ properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in ‘when’ processing, the binding performance reflects the central temporal limit of integrating ‘when’ and ‘what’ properties. PMID:20335212

  17. Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease.

    PubMed

    Zhang, Xiuming; Mormino, Elizabeth C; Sun, Nanbo; Sperling, Reisa A; Sabuncu, Mert R; Yeo, B T Thomas

    2016-10-18

    We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.

  18. Neural correlates of processing sentences and compound words in Chinese

    PubMed Central

    Hung, Yi-Hui; Tzeng, Ovid; Wu, Denise H.

    2017-01-01

    Sentence reading involves multiple linguistic operations including processing of lexical and compositional semantics, and determining structural and grammatical relationships among words. Previous studies on Indo-European languages have associated left anterior temporal lobe (aTL) and left interior frontal gyrus (IFG) with reading sentences compared to reading unstructured word lists. To examine whether these brain regions are also involved in reading a typologically distinct language with limited morphosyntax and lack of agreement between sentential arguments, an FMRI study was conducted to compare passive reading of Chinese sentences, unstructured word lists and disconnected character lists that are created by only changing the order of an identical set of characters. Similar to previous findings from other languages, stronger activation was found in mainly left-lateralized anterior temporal regions (including aTL) for reading sentences compared to unstructured word and character lists. On the other hand, stronger activation was identified in left posterior temporal sulcus for reading unstructured words compared to unstructured characters. Furthermore, reading unstructured word lists compared to sentences evoked stronger activation in left IFG and left inferior parietal lobule. Consistent with the literature on Indo-European languages, the present results suggest that left anterior temporal regions subserve sentence-level integration, while left IFG supports restoration of sentence structure. In addition, left posterior temporal sulcus is associated with morphological compounding. Taken together, reading Chinese sentences engages a common network as reading other languages, with particular reliance on integration of semantic constituents. PMID:29194453

  19. A novel multiple description scalable coding scheme for mobile wireless video transmission

    NASA Astrophysics Data System (ADS)

    Zheng, Haifeng; Yu, Lun; Chen, Chang Wen

    2005-03-01

    We proposed in this paper a novel multiple description scalable coding (MDSC) scheme based on in-band motion compensation temporal filtering (IBMCTF) technique in order to achieve high video coding performance and robust video transmission. The input video sequence is first split into equal-sized groups of frames (GOFs). Within a GOF, each frame is hierarchically decomposed by discrete wavelet transform. Since there is a direct relationship between wavelet coefficients and what they represent in the image content after wavelet decomposition, we are able to reorganize the spatial orientation trees to generate multiple bit-streams and employed SPIHT algorithm to achieve high coding efficiency. We have shown that multiple bit-stream transmission is very effective in combating error propagation in both Internet video streaming and mobile wireless video. Furthermore, we adopt the IBMCTF scheme to remove the redundancy for inter-frames along the temporal direction using motion compensated temporal filtering, thus high coding performance and flexible scalability can be provided in this scheme. In order to make compressed video resilient to channel error and to guarantee robust video transmission over mobile wireless channels, we add redundancy to each bit-stream and apply error concealment strategy for lost motion vectors. Unlike traditional multiple description schemes, the integration of these techniques enable us to generate more than two bit-streams that may be more appropriate for multiple antenna transmission of compressed video. Simulate results on standard video sequences have shown that the proposed scheme provides flexible tradeoff between coding efficiency and error resilience.

  20. Brain networks of temporal preparation: A multiple regression analysis of neuropsychological data.

    PubMed

    Triviño, Mónica; Correa, Ángel; Lupiáñez, Juan; Funes, María Jesús; Catena, Andrés; He, Xun; Humphreys, Glyn W

    2016-11-15

    There are only a few studies on the brain networks involved in the ability to prepare in time, and most of them followed a correlational rather than a neuropsychological approach. The present neuropsychological study performed multiple regression analysis to address the relationship between both grey and white matter (measured by magnetic resonance imaging in patients with brain lesion) and different effects in temporal preparation (Temporal orienting, Foreperiod and Sequential effects). Two versions of a temporal preparation task were administered to a group of 23 patients with acquired brain injury. In one task, the cue presented (a red versus green square) to inform participants about the time of appearance (early versus late) of a target stimulus was blocked, while in the other task the cue was manipulated on a trial-by-trial basis. The duration of the cue-target time intervals (400 versus 1400ms) was always manipulated within blocks in both tasks. Regression analysis were conducted between either the grey matter lesion size or the white matter tracts disconnection and the three temporal preparation effects separately. The main finding was that each temporal preparation effect was predicted by a different network of structures, depending on cue expectancy. Specifically, the Temporal orienting effect was related to both prefrontal and temporal brain areas. The Foreperiod effect was related to right and left prefrontal structures. Sequential effects were predicted by both parietal cortex and left subcortical structures. These findings show a clear dissociation of brain circuits involved in the different ways to prepare in time, showing for the first time the involvement of temporal areas in the Temporal orienting effect, as well as the parietal cortex in the Sequential effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise

    PubMed Central

    Zammit-Mangion, Andrew; Rougier, Jonathan; Schön, Nana; Lindgren, Finn; Bamber, Jonathan

    2015-01-01

    Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd. PMID:25937792

  2. Epilepsy in multiple sclerosis: The role of temporal lobe damage.

    PubMed

    Calabrese, M; Castellaro, M; Bertoldo, A; De Luca, A; Pizzini, F B; Ricciardi, G K; Pitteri, M; Zimatore, S; Magliozzi, R; Benedetti, M D; Manganotti, P; Montemezzi, S; Reynolds, R; Gajofatto, A; Monaco, S

    2017-03-01

    Although temporal lobe pathology may explain some of the symptoms of multiple sclerosis (MS), its role in the pathogenesis of seizures has not been clarified yet. To investigate the role of temporal lobe damage in MS patients suffering from epilepsy, by the application of advanced multimodal 3T magnetic resonance imaging (MRI) analysis. A total of 23 relapsing remitting MS patients who had epileptic seizures (RRMS/E) and 23 disease duration matched RRMS patients without any history of seizures were enrolled. Each patient underwent advanced 3T MRI protocol specifically conceived to evaluate grey matter (GM) damage. This includes grey matter lesions (GMLs) identification, evaluation of regional cortical thickness and indices derived from the Neurite Orientation Dispersion and Density Imaging model. Regional analysis revealed that in RRMS/E, the regions most affected by GMLs were the hippocampus (14.2%), the lateral temporal lobe (13.5%), the cingulate (10.0%) and the insula (8.4%). Cortical thinning and alteration of diffusion metrics were observed in several regions of temporal lobe, in insular cortex and in cingulate gyrus of RRMS/E compared to RRMS ( p< 0.05 for all comparisons). Compared to RRMS, RRMS/E showed more severe damage of temporal lobe, which exceeds what would be expected on the basis of the global GM damage observed.

  3. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance level, but their temporal variation could be well modeled by using the fourth-order polynomial. Overall, this study further emphasized the importance of using multiple GCMs for studying climate change impacts on hydrology. Furthermore, the temporal variation of uncertainty sourced from GCMs should be given more attention.

  4. Interleaved Practice in Multi-Dimensional Learning Tasks: Which Dimension Should We Interleave?

    ERIC Educational Resources Information Center

    Rau, Martina A.; Aleven, Vincent; Rummel, Nikol

    2013-01-01

    Research shows that multiple representations can enhance student learning. Many curricula use multiple representations across multiple task types. The temporal sequence of representations and task types is likely to impact student learning. Research on contextual interference shows that interleaving learning tasks leads to better learning results…

  5. Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: a pattern classification approach.

    PubMed

    Wu, Mon-Ju; Wu, Hanjing Emily; Mwangi, Benson; Sanches, Marsal; Selvaraj, Sudhakar; Zunta-Soares, Giovana B; Soares, Jair C

    2015-03-01

    Diagnosis of pediatric neuropsychiatric disorders such as unipolar depression is largely based on clinical judgment - without objective biomarkers to guide diagnostic process and subsequent therapeutic interventions. Neuroimaging studies have previously reported average group-level neuroanatomical differences between patients with pediatric unipolar depression and healthy controls. In the present study, we investigated the utility of multiple neuromorphometric indices in distinguishing pediatric unipolar depression patients from healthy controls at an individual subject level. We acquired structural T1-weighted scans from 25 pediatric unipolar depression patients and 26 demographically matched healthy controls. Multiple neuromorphometric indices such as cortical thickness, volume, and cortical folding patterns were obtained. A support vector machine pattern classification model was 'trained' to distinguish individual subjects with pediatric unipolar depression from healthy controls based on multiple neuromorphometric indices and model predictive validity (sensitivity and specificity) calculated. The model correctly identified 40 out of 51 subjects translating to 78.4% accuracy, 76.0% sensitivity and 80.8% specificity, chi-square p-value = 0.000049. Volumetric and cortical folding abnormalities in the right thalamus and right temporal pole respectively were most central in distinguishing individual patients with pediatric unipolar depression from healthy controls. These findings provide evidence that a support vector machine pattern classification model using multiple neuromorphometric indices may qualify as diagnostic marker for pediatric unipolar depression. In addition, our results identified the most relevant neuromorphometric features in distinguishing PUD patients from healthy controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb

    PubMed Central

    Wachowiak, Matt; Economo, Michael N.; Díaz-Quesada, Marta; Brunert, Daniela; Wesson, Daniel W.; White, John. A.; Rothermel, Markus

    2013-01-01

    Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. Here we used recently-optimized variants of the genetically-encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically- and anatomically-defined neuronal populations in the olfactory bulb (OB), including two types of GABA-ergic interneurons (periglomerular (PG) and short axon (SA) cells) and OB output neurons (mitral/tufted (MT) cells) projecting to piriform cortex. We first established that changes in neuronal spiking can be accurately related to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, while MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple while those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results point to multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further dissecting early olfactory processing using optical and genetic tools. PMID:23516293

  7. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil).

    PubMed

    Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E

    2018-05-01

    Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed?

    PubMed

    McLean, Gregor M T; Stuart, Geoffrey W; Coltheart, Veronika; Castles, Anne

    2011-12-01

    A controversial question in reading research is whether dyslexia is associated with impairments in the magnocellular system and, if so, how these low-level visual impairments might affect reading acquisition. This study used a novel chromatic flicker perception task to specifically explore temporal aspects of magnocellular functioning in 40 children with dyslexia and 42 age-matched controls (aged 7-11). The relationship between magnocellular temporal resolution and higher-level aspects of visual temporal processing including inspection time, single and dual-target (attentional blink) RSVP performance, go/no-go reaction time, and rapid naming was also assessed. The Dyslexia group exhibited significant deficits in magnocellular temporal resolution compared with controls, but the two groups did not differ in parvocellular temporal resolution. Despite the significant group differences, associations between magnocellular temporal resolution and reading ability were relatively weak, and links between low-level temporal resolution and reading ability did not appear specific to the magnocellular system. Factor analyses revealed that a collective Perceptual Speed factor, involving both low-level and higher-level visual temporal processing measures, accounted for unique variance in reading ability independently of phonological processing, rapid naming, and general ability.

  9. Neural coding of time-varying interaural time differences and time-varying amplitude in the inferior colliculus

    PubMed Central

    2017-01-01

    Binaural cues occurring in natural environments are frequently time varying, either from the motion of a sound source or through interactions between the cues produced by multiple sources. Yet, a broad understanding of how the auditory system processes dynamic binaural cues is still lacking. In the current study, we directly compared neural responses in the inferior colliculus (IC) of unanesthetized rabbits to broadband noise with time-varying interaural time differences (ITD) with responses to noise with sinusoidal amplitude modulation (SAM) over a wide range of modulation frequencies. On the basis of prior research, we hypothesized that the IC, one of the first stages to exhibit tuning of firing rate to modulation frequency, might use a common mechanism to encode time-varying information in general. Instead, we found weaker temporal coding for dynamic ITD compared with amplitude modulation and stronger effects of adaptation for amplitude modulation. The differences in temporal coding of dynamic ITD compared with SAM at the single-neuron level could be a neural correlate of “binaural sluggishness,” the inability to perceive fluctuations in time-varying binaural cues at high modulation frequencies, for which a physiological explanation has so far remained elusive. At ITD-variation frequencies of 64 Hz and above, where a temporal code was less effective, noise with a dynamic ITD could still be distinguished from noise with a constant ITD through differences in average firing rate in many neurons, suggesting a frequency-dependent tradeoff between rate and temporal coding of time-varying binaural information. NEW & NOTEWORTHY Humans use time-varying binaural cues to parse auditory scenes comprising multiple sound sources and reverberation. However, the neural mechanisms for doing so are poorly understood. Our results demonstrate a potential neural correlate for the reduced detectability of fluctuations in time-varying binaural information at high speeds, as occurs in reverberation. The results also suggest that the neural mechanisms for processing time-varying binaural and monaural cues are largely distinct. PMID:28381487

  10. Normalization of neuronal responses in cortical area MT across signal strengths and motion directions

    PubMed Central

    Xiao, Jianbo; Niu, Yu-Qiong; Wiesner, Steven

    2014-01-01

    Multiple visual stimuli are common in natural scenes, yet it remains unclear how multiple stimuli interact to influence neuronal responses. We investigated this question by manipulating relative signal strengths of two stimuli moving simultaneously within the receptive fields (RFs) of neurons in the extrastriate middle temporal (MT) cortex. Visual stimuli were overlapping random-dot patterns moving in two directions separated by 90°. We first varied the motion coherence of each random-dot pattern and characterized, across the direction tuning curve, the relationship between neuronal responses elicited by bidirectional stimuli and by the constituent motion components. The tuning curve for bidirectional stimuli showed response normalization and can be accounted for by a weighted sum of the responses to the motion components. Allowing nonlinear, multiplicative interaction between the two component responses significantly improved the data fit for some neurons, and the interaction mainly had a suppressive effect on the neuronal response. The weighting of the component responses was not fixed but dependent on relative signal strengths. When two stimulus components moved at different coherence levels, the response weight for the higher-coherence component was significantly greater than that for the lower-coherence component. We also varied relative luminance levels of two coherently moving stimuli and found that MT response weight for the higher-luminance component was also greater. These results suggest that competition between multiple stimuli within a neuron's RF depends on relative signal strengths of the stimuli and that multiplicative nonlinearity may play an important role in shaping the response tuning for multiple stimuli. PMID:24899674

  11. Temporal characteristics of the influence of punishment on perceptual decision making in the human brain.

    PubMed

    Blank, Helen; Biele, Guido; Heekeren, Hauke R; Philiastides, Marios G

    2013-02-27

    Perceptual decision making is the process by which information from sensory systems is combined and used to influence our behavior. In addition to the sensory input, this process can be affected by other factors, such as reward and punishment for correct and incorrect responses. To investigate the temporal dynamics of how monetary punishment influences perceptual decision making in humans, we collected electroencephalography (EEG) data during a perceptual categorization task whereby the punishment level for incorrect responses was parametrically manipulated across blocks of trials. Behaviorally, we observed improved accuracy for high relative to low punishment levels. Using multivariate linear discriminant analysis of the EEG, we identified multiple punishment-induced discriminating components with spatially distinct scalp topographies. Compared with components related to sensory evidence, components discriminating punishment levels appeared later in the trial, suggesting that punishment affects primarily late postsensory, decision-related processing. Crucially, the amplitude of these punishment components across participants was predictive of the size of the behavioral improvements induced by punishment. Finally, trial-by-trial changes in prestimulus oscillatory activity in the alpha and gamma bands were good predictors of the amplitude of these components. We discuss these findings in the context of increased motivation/attention, resulting from increases in punishment, which in turn yields improved decision-related processing.

  12. Temporal trends of Dechlorane Plus in air and precipitation around the North American Great Lakes.

    PubMed

    Olukunle, Olubiyi I; Lehman, Daniel C; Salamova, Amina; Venier, Marta; Hites, Ronald A

    2018-06-13

    Dechlorane Plus (DP) is a chlorinated flame retardant manufactured only in Niagara Falls, New York and in Huai'an, China. To determine if the environmental levels of this compound were changing significantly, we measured the long-term temporal trends of its concentrations near the Great Lakes between 2005 and 2015 using air (vapor + particle phase) samples (N = 1047) and precipitation samples (N = 449). We used a multiple linear regression model of DP concentrations to isolate the variabilities due to sampling date and population near the sampling site. The results show that the total DP concentrations in precipitation varied seasonally, maximizing on January 18, but the concentrations in the vapor + particle phase did not show seasonal variations. Vapor + particle phase DP levels were relatively high in Cleveland, and precipitation DP levels were relatively high at Point Petre. DP's concentrations in neither phase were changing as a function of sampling date, indicating that the input of this compound into the environment is continuing, presumably because its use and production are not regulated. Based on the ratio of the anti conformer relative to the total of the two conformer concentrations, we suggest that the syn conformer is somewhat more environmentally stable than the anti conformer. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Spatial and Temporal Variation in Enterococcal Abundance and Its Relationship to the Microbial Community in Hawaii Beach Sand and Water

    PubMed Central

    Cui, Henglin; Yang, Kun; Pagaling, Eulyn

    2013-01-01

    Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand. PMID:23563940

  14. Managing temporal relations

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.

    1990-01-01

    Various temporal constraints on the execution of activities are described, and their representation in the scheduling system MAESTRO is discussed. Initial examples are presented using a sample activity described. Those examples are expanded to include a second activity, and the types of temporal constraints that can obtain between two activities are explored. Soft constraints, or preferences, in activity placement are discussed. Multiple performances of activities are considered, with respect to both hard and soft constraints. The primary methods used in MAESTRO to handle temporal constraints are described as are certain aspects of contingency handling with respect to temporal constraints. A discussion of the overall approach, with indications of future directions for this research, concludes the study.

  15. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    PubMed Central

    Lindén, Henrik; Lansner, Anders

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model’s feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison. PMID:27213810

  16. Joint Video Stitching and Stabilization from Moving Cameras.

    PubMed

    Guo, Heng; Liu, Shuaicheng; He, Tong; Zhu, Shuyuan; Zeng, Bing; Gabbouj, Moncef

    2016-09-08

    In this paper, we extend image stitching to video stitching for videos that are captured for the same scene simultaneously by multiple moving cameras. In practice, videos captured under this circumstance often appear shaky. Directly applying image stitching methods for shaking videos often suffers from strong spatial and temporal artifacts. To solve this problem, we propose a unified framework in which video stitching and stabilization are performed jointly. Specifically, our system takes several overlapping videos as inputs. We estimate both inter motions (between different videos) and intra motions (between neighboring frames within a video). Then, we solve an optimal virtual 2D camera path from all original paths. An enlarged field of view along the virtual path is finally obtained by a space-temporal optimization that takes both inter and intra motions into consideration. Two important components of this optimization are that (1) a grid-based tracking method is designed for an improved robustness, which produces features that are distributed evenly within and across multiple views, and (2) a mesh-based motion model is adopted for the handling of the scene parallax. Some experimental results are provided to demonstrate the effectiveness of our approach on various consumer-level videos and a Plugin, named "Video Stitcher" is developed at Adobe After Effects CC2015 to show the processed videos.

  17. Developing a multi-stressor gradient for coral reefs | Science ...

    EPA Pesticide Factsheets

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit

  18. Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI.

    PubMed

    Elliott, Colm; Arnold, Douglas L; Collins, D Louis; Arbel, Tal

    2013-08-01

    Detection of new Multiple Sclerosis (MS) lesions on magnetic resonance imaging (MRI) is important as a marker of disease activity and as a potential surrogate for relapses. We propose an approach where sequential scans are jointly segmented, to provide a temporally consistent tissue segmentation while remaining sensitive to newly appearing lesions. The method uses a two-stage classification process: 1) a Bayesian classifier provides a probabilistic brain tissue classification at each voxel of reference and follow-up scans, and 2) a random-forest based lesion-level classification provides a final identification of new lesions. Generative models are learned based on 364 scans from 95 subjects from a multi-center clinical trial. The method is evaluated on sequential brain MRI of 160 subjects from a separate multi-center clinical trial, and is compared to 1) semi-automatically generated ground truth segmentations and 2) fully manual identification of new lesions generated independently by nine expert raters on a subset of 60 subjects. For new lesions greater than 0.15 cc in size, the classifier has near perfect performance (99% sensitivity, 2% false detection rate), as compared to ground truth. The proposed method was also shown to exceed the performance of any one of the nine expert manual identifications.

  19. EliXR-TIME: A Temporal Knowledge Representation for Clinical Research Eligibility Criteria.

    PubMed

    Boland, Mary Regina; Tu, Samson W; Carini, Simona; Sim, Ida; Weng, Chunhua

    2012-01-01

    Effective clinical text processing requires accurate extraction and representation of temporal expressions. Multiple temporal information extraction models were developed but a similar need for extracting temporal expressions in eligibility criteria (e.g., for eligibility determination) remains. We identified the temporal knowledge representation requirements of eligibility criteria by reviewing 100 temporal criteria. We developed EliXR-TIME, a frame-based representation designed to support semantic annotation for temporal expressions in eligibility criteria by reusing applicable classes from well-known clinical temporal knowledge representations. We used EliXR-TIME to analyze a training set of 50 new temporal eligibility criteria. We evaluated EliXR-TIME using an additional random sample of 20 eligibility criteria with temporal expressions that have no overlap with the training data, yielding 92.7% (76 / 82) inter-coder agreement on sentence chunking and 72% (72 / 100) agreement on semantic annotation. We conclude that this knowledge representation can facilitate semantic annotation of the temporal expressions in eligibility criteria.

  20. Visually Exploring Transportation Schedules.

    PubMed

    Palomo, Cesar; Guo, Zhan; Silva, Cláudio T; Freire, Juliana

    2016-01-01

    Public transportation schedules are designed by agencies to optimize service quality under multiple constraints. However, real service usually deviates from the plan. Therefore, transportation analysts need to identify, compare and explain both eventual and systemic performance issues that must be addressed so that better timetables can be created. The purely statistical tools commonly used by analysts pose many difficulties due to the large number of attributes at trip- and station-level for planned and real service. Also challenging is the need for models at multiple scales to search for patterns at different times and stations, since analysts do not know exactly where or when relevant patterns might emerge and need to compute statistical summaries for multiple attributes at different granularities. To aid in this analysis, we worked in close collaboration with a transportation expert to design TR-EX, a visual exploration tool developed to identify, inspect and compare spatio-temporal patterns for planned and real transportation service. TR-EX combines two new visual encodings inspired by Marey's Train Schedule: Trips Explorer for trip-level analysis of frequency, deviation and speed; and Stops Explorer for station-level study of delay, wait time, reliability and performance deficiencies such as bunching. To tackle overplotting and to provide a robust representation for a large numbers of trips and stops at multiple scales, the system supports variable kernel bandwidths to achieve the level of detail required by users for different tasks. We justify our design decisions based on specific analysis needs of transportation analysts. We provide anecdotal evidence of the efficacy of TR-EX through a series of case studies that explore NYC subway service, which illustrate how TR-EX can be used to confirm hypotheses and derive new insights through visual exploration.

  1. Multiplicative mixing of object identity and image attributes in single inferior temporal neurons.

    PubMed

    Ratan Murty, N Apurva; Arun, S P

    2018-04-03

    Object recognition is challenging because the same object can produce vastly different images, mixing signals related to its identity with signals due to its image attributes, such as size, position, rotation, etc. Previous studies have shown that both signals are present in high-level visual areas, but precisely how they are combined has remained unclear. One possibility is that neurons might encode identity and attribute signals multiplicatively so that each can be efficiently decoded without interference from the other. Here, we show that, in high-level visual cortex, responses of single neurons can be explained better as a product rather than a sum of tuning for object identity and tuning for image attributes. This subtle effect in single neurons produced substantially better population decoding of object identity and image attributes in the neural population as a whole. This property was absent both in low-level vision models and in deep neural networks. It was also unique to invariances: when tested with two-part objects, neural responses were explained better as a sum than as a product of part tuning. Taken together, our results indicate that signals requiring separate decoding, such as object identity and image attributes, are combined multiplicatively in IT neurons, whereas signals that require integration (such as parts in an object) are combined additively. Copyright © 2018 the Author(s). Published by PNAS.

  2. Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR.

    PubMed

    Phillips, Brittany L; Banerjee, Ayan; Sanchez, Brenda J; Di Marco, Sergio; Gallouzi, Imed-Eddine; Pavlath, Grace K; Corbett, Anita H

    2018-06-25

    RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11-18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.

  3. Few multi-year precipitation-reduction experiments find a shift in the productivity-precipitation relationship

    DOE PAGES

    Estiarte, Marc; Vicca, Sara; Penuelas, Josep; ...

    2016-04-06

    Well-defined productivity–precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity–precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation–reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effectsmore » of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation–manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity–precipitation relationship downward the spatial fit. Seventy two percent of expiriments showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation–reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.« less

  4. Few multi-year precipitation-reduction experiments find a shift in the productivity-precipitation relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estiarte, Marc; Vicca, Sara; Penuelas, Josep

    Well-defined productivity–precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity–precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation–reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effectsmore » of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation–manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity–precipitation relationship downward the spatial fit. Seventy two percent of expiriments showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation–reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.« less

  5. Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship.

    PubMed

    Estiarte, Marc; Vicca, Sara; Peñuelas, Josep; Bahn, Michael; Beier, Claus; Emmett, Bridget A; Fay, Philip A; Hanson, Paul J; Hasibeder, Roland; Kigel, Jaime; Kröel-Dulay, Gyorgy; Larsen, Klaus Steenberg; Lellei-Kovács, Eszter; Limousin, Jean-Marc; Ogaya, Romà; Ourcival, Jean-Marc; Reinsch, Sabine; Sala, Osvaldo E; Schmidt, Inger Kappel; Sternberg, Marcelo; Tielbörger, Katja; Tietema, Albert; Janssens, Ivan A

    2016-07-01

    Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid. © 2016 John Wiley & Sons Ltd.

  6. Music mnemonics aid Verbal Memory and Induce Learning – Related Brain Plasticity in Multiple Sclerosis

    PubMed Central

    Thaut, Michael H.; Peterson, David A.; McIntosh, Gerald C.; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey’s auditory verbal learning test. We defined the “learning-related synchronization” (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances “deep encoding” during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  7. Waveform Optimization for Target Estimation by Cognitive Radar with Multiple Antennas.

    PubMed

    Yao, Yu; Zhao, Junhui; Wu, Lenan

    2018-05-29

    A new scheme based on Kalman filtering to optimize the waveforms of an adaptive multi-antenna radar system for target impulse response (TIR) estimation is presented. This work aims to improve the performance of TIR estimation by making use of the temporal correlation between successive received signals, and minimize the mean square error (MSE) of TIR estimation. The waveform design approach is based upon constant learning from the target feature at the receiver. Under the multiple antennas scenario, a dynamic feedback loop control system is established to real-time monitor the change in the target features extracted form received signals. The transmitter adapts its transmitted waveform to suit the time-invariant environment. Finally, the simulation results show that, as compared with the waveform design method based on the MAP criterion, the proposed waveform design algorithm is able to improve the performance of TIR estimation for extended targets with multiple iterations, and has a relatively lower level of complexity.

  8. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks.

    PubMed

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O; Cohn, Emily; Mekaru, Sumiko R; Brownstein, John S; Ramakrishnan, Naren

    2017-01-19

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.

  9. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren

    2017-01-01

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.

  10. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks

    PubMed Central

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren

    2017-01-01

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations. PMID:28102319

  11. Multiple-class antimicrobial resistance surveillance in swine Escherichia coli F4, Pasteurella multocida and Streptococcus suis isolates from Ontario and the impact of the 2004-2006 Porcine Circovirus type-2 Associated Disease outbreak.

    PubMed

    Glass-Kaastra, Shiona K; Pearl, David L; Reid-Smith, Richard; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A

    2014-02-01

    The objective of this work was to describe trends in multiple-class antimicrobial resistance present in clinical isolates of Escherichia coli F4, Pasteurella multocida and Streptococcus suis from Ontario swine 1998-2010. Temporal changes in multiple-class resistance varied by the pathogens examined; significant yearly changes were apparent for the E. coli and P. multocida data. Although not present in the E. coli data, significant increases in multiple-class resistance within P. multocida isolates occurred from 2003 to 2005, coinciding with the expected increase in antimicrobials used to treat clinical signs of Porcine Circovirus Associated Disease (PCVAD) before it was confirmed. Prospective temporal scan statistics for multiple-class resistance suggest that significant clusters of increased resistance may have been found in the spring of 2004; months before the identification of the PCVAD outbreak in the fall of 2004. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Temporally graded semantic memory loss in amnesia and semantic dementia: Further evidence for opposite gradients.

    PubMed

    Estmacott, Robyn W; Moscovitch, Morris

    2002-03-01

    The consolidation theory of long-term memory (e.g., Squire, 1992) predicts that damage to the medial temporal lobes will result in temporally graded retrograde memory loss, with a disproportionate impairment of recent relative to remote knowledge; in contrast, severe atrophy of the temporal neocortex is predicted to result in the reverse temporally graded pattern, with a selective sparing of recent memory (K.S. Graham & Hodges, 1997). Previously, we reported evidence that autobiographical episodic memory does not follow this temporal pattern (Westmacott, Leach, Freedman, & Moscovitch, 2001). In the present study, we found evidence suggesting that semantic memory loss does follow the predicted temporal pattern. We used a set of tasks that tap implicit and explicit memory for famous names and English vocabulary terms from across the 20th century. KC, a person with medial temporal amnesia, consistently demonstrated across tasks a selective deficit for famous names and vocabulary terms from the 5-year period just prior to injury; this deficit was particularly profound for elaborated semantic knowledge (e.g., word definitions, occupation of famous person). However, when asked to guess on unfamiliar items, KC's performance for names and words from this 5-year time period increased substantially, suggesting that he retains some of this knowledge at an implicit or rudimentary level. Conversely, EL, a semantic dementia patient with temporal neocortical atrophy and relative sparing of the medial temporal lobe, demonstrated a selective sparing of names and words from the most recent time period. However, this selective sparing of recent semantic memory was demonstrated in the implicit tasks only; performance on explicit tasks suggested an equally severe impairment of semantics across all time periods. Unlike the data from our previous study of autobiographical episodic memory, these findings are consistent with the predictions both of consolidation theory (Hodges & Graham, 1998; Squire, 1992) and multiple trace theory (Nadel & Moscovitch, 1999) that the hippocampus plays a timelimited role in the acquisition and representation of long-term semantic memories. Moreover, our findings suggest that tasks requiring minimal verbal production and explicit recall may provide a more sensitive and comprehensive assessment of intact memory capacity in brain-damaged individuals.

  13. Influence of atmospheric transport on ozone and trace- level toxic air contaminants over the northeastern United States

    NASA Astrophysics Data System (ADS)

    Brankov, Elvira

    This thesis presents a methodology for examining the relationship between synoptic-scale atmospheric transport patterns and observed pollutant concentration levels. It involves calculating a large number of back-trajectories from the observational site and subjecting them to cluster analysis. The pollutant concentration data observed at that site are then segregated according to the back-trajectory clusters. If the pollutant observations extend over several seasons, it is important to filter out seasonal and long-term components from the time series data before pollutant cluster-segregation, because only the short-term component of the time series data is related to the synoptic-scale transport. Multiple comparison procedures are used to test for significant differences in the chemical composition of pollutant data associated with each cluster. This procedure is useful in indicating potential pollutant source regions and isolating meteorological regimes associated with pollutant transport from those regions. If many observational sites are available, the spatial and temporal scales of the pollution transport from a given direction can be extracted through the time-lagged inter- site correlation analysis of pollutant concentrations. The proposed methodology is applicable to any pollutant at any site if sufficiently abundant data set is available. This is illustrated through examination of five-year long time series data of ozone concentrations at several sites in the Northeast. The results provide evidence of ozone transport to these sites, revealing the characteristic spatial and temporal scales involved in the transport and identifying source regions for this pollutant. Problems related to statistical analyses of censored data are addressed in the second half of this thesis. Although censoring (reporting concentrations in a non-quantitative way) is typical for trace-level measurements, methods for statistical analysis, inference and interpretation of such data are complex and still under development. In this study, multiple comparison of censored data sets was required in order to examine the influence of synoptic- scale circulations on concentration levels of several trace-level toxic pollutants observed in the Northeast (e.g., As, Se, Mn, V, etc.). Since the traditional multiple comparison procedures are not readily applicable to such data sets, a Monte Carlo simulation study was performed to assess several nonparametric methods for multiple comparison of censored data sets. Application of an appropriate comparison procedure to clusters of toxic trace elements observed in the Northeast led to the identification of potential source regions and atmospheric patterns associated with the long-range transport of these pollutants. A method for comparison of proportions and elemental ratio calculations were used to confirm/clarify these inferences with a greater degree of confidence.

  14. Laboratory studies of scales for measuring helicopter noise

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1982-01-01

    The adequacy of the effective perceived noise level (EPNL) procedure for rating helicopter noise annoyance was investigated. Recordings of 89 helicopters and 30 fixed wing aircraft (CTOL) flyover sounds were rated with respect to annoyance by groups of approximately 40 subjects. The average annoyance scores were transformed to annoyance levels defined as the equally annoying sound levels of a fixed reference sound. The sound levels of the test sounds were measured on various scales, with and without corrections for duration, tones, and impulsiveness. On average, the helicopter sounds were judged equally annoying to CTOL sounds when their duration corrected levels are approximately 2 dB higher. Multiple regression analysis indicated that, provided the helicopter/CTOL difference of about 2 dB is taken into account, the particular linear combination of level, duration, and tone corrections inherent in EPNL is close to optimum. The results reveal no general requirement for special EPNL correction terms to penalize helicopter sounds which are particularly impulsive; impulsiveness causes spectral and temporal changes which themselves adequately amplify conventionally measured sound levels.

  15. Multi-pixel high-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Dengler, Robert J. (Inventor); Siegel, Peter H. (Inventor); Chattopadhyay, Goutam (Inventor); Ward, John S. (Inventor); Juan, Nuria Llombart (Inventor); Bryllert, Tomas E. (Inventor); Mehdi, Imran (Inventor); Tarsala, Jan A. (Inventor)

    2012-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.

  16. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities

    PubMed Central

    Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658

  17. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland

    PubMed Central

    Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069

  18. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    PubMed

    Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  19. Temporal Immediacy: A Two-System Theory of Mind for Understanding and Changing Health Behaviors.

    PubMed

    Cook, Paul F; Schmiege, Sarah J; Reeder, Blaine; Horton-Deutsch, Sara; Lowe, Nancy K; Meek, Paula

    Health promotion and chronic disease management both require behavior change, but people find it hard to change behavior despite having good intentions. The problem arises because patients' narratives about experiences and intentions are filtered through memory and language. These narratives inaccurately reflect intuitive decision-making or actual behaviors. We propose a principle-temporal immediacy-as a moderator variable that explains which of two mental systems (narrative or intuitive) will be activated in any given situation. We reviewed multiple scientific areas to test temporal immediacy as an explanation for findings. In an iterative process, we used evidence from philosophy, cognitive neuroscience, behavioral economics, symptom science, and ecological momentary assessment to develop our theoretical perspective. These perspectives each suggest two cognitive systems that differ in their level of temporal immediacy: an intuitive system that produces behavior in response to everyday states and a narrative system that interprets and explains these experiences after the fact. Writers from Plato onward describe two competing influences on behavior-often with moral overtones. People tend to identify with the language-based narrative system and blame unhelpful results on the less accessible intuitive system, but neither is completely rational, and the intuitive system has strengths based on speed and serial processing. The systems differ based on temporal immediacy-the description of an experience as either "now" or "usually"-with the intuitive system generating behaviors automatically in real time and the narrative system producing beliefs about the past or future. The principle of temporal immediacy is a tool to integrate nursing science with other disciplinary traditions and to improve research and practice. Interventions should build on each system's strengths, rather than treating the intuitive system as a barrier for the narrative system to overcome. Nursing researchers need to study the roles and effects of both systems.

  20. The temporal interplay of self-esteem instability and affective instability in borderline personality disorder patients' everyday lives.

    PubMed

    Santangelo, Philip S; Reinhard, Iris; Koudela-Hamila, Susanne; Bohus, Martin; Holtmann, Jana; Eid, Michael; Ebner-Priemer, Ulrich W

    2017-11-01

    Borderline personality disorder (BPD) is defined by a pervasive pattern of instability. Although there is ample empirical evidence that unstable self-esteem is associated with a myriad of BPD-like symptoms, self-esteem instability and its temporal dynamics have received little empirical attention in patients with BPD. Even worse, the temporal interplay of affective instability and self-esteem instability has been neglected completely, although it has been hypothesized recently that the lack of specificity of affective instability in association with BPD might be explained by the highly intertwined temporal relationship between affective and self-esteem instability. To investigate self-esteem instability, its temporal interplay with affective instability, and its association with psychopathology, 60 patients with BPD and 60 healthy controls (HCs) completed electronic diaries for 4 consecutive days during their everyday lives. Participants reported their current self-esteem, valence, and tense arousal levels 12 times a day in approximately one-hr intervals. We used multiple state-of-the-art statistical techniques and graphical approaches to reveal patterns of instability, clarify group differences, and examine the temporal interplay of self-esteem instability and affective instability. As hypothesized, instability in both self-esteem and affect was clearly elevated in the patients with BPD. In addition, self-esteem instability and affective instability were highly correlated. Both types of instability were related to general psychopathology. Because self-esteem instability could not fully explain affective instability and vice versa and neither affective instability nor self-esteem instability was able to explain psychopathology completely, our findings suggest that these types of instability represent unique facets of BPD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Detection of whole-brain abnormalities in temporal lobe epilepsy using tensor-based morphometry with DARTEL

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu

    2009-10-01

    Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.

  2. Cognitive Processes in the Production of Multiple-Goal Messages: Evidence from the Temporal Characteristics of Speech.

    ERIC Educational Resources Information Center

    Greene, John O.; And Others

    1993-01-01

    Finds that the increased cognitive load accompanying multiple-goal messages arises from demands on time and processing capacity associated with assembling incompatible message features and that multiple-goal messages are characterized by heavier demand on processing capacity associated with maintaining more complex message-relevant specifications…

  3. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  4. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  5. Spatial and temporal variation in efficiency of the Moore egg collector

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Farless, Nicole

    2013-01-01

    The Moore egg collector (MEC) was developed for quantitative and nondestructive capture of semibuoyant fish eggs. Previous studies have indicated that capture efficiency of the MEC was low and the use of one device did not adequately represent the spatial distribution within the water column of egg surrogates (gellan beads) of pelagic broadcast-spawning cyprinids. The objective of this study was to assess whether use of multiple MECs showed differences in spatial and temporal distribution of bead catches. Capture efficiency of three MECs was tested at four 500-m sites on the South Canadian River, a Great Plains river in Oklahoma. For each trial, approximately 100,000 beads were released and mean capture efficiency was 0.47–2.16%. Kolmogorov–Smirnov tests indicated the spatial distributions of bead catches were different among multiple MECs at three of four sites. Temporal variability in timing of peak catches of gellan beads was also evident between MECs. We concluded that the use of multiple MECs is necessary to properly sample eggs of pelagic broadcast-spawning cyprinids.

  6. An inverter-based capacitive trans-impedance amplifier readout with offset cancellation and temporal noise reduction for IR focal plane array

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Han; Hsieh, Chih-Cheng

    2013-09-01

    This paper presents a readout integrated circuit (ROIC) with inverter-based capacitive trans-impedance amplifier (CTIA) and pseudo-multiple sampling technique for infrared focal plane array (IRFPA). The proposed inverter-based CTIA with a coupling capacitor [1], executing auto-zeroing technique to cancel out the varied offset voltage from process variation, is used to substitute differential amplifier in conventional CTIA. The tunable detector bias is applied from a global external bias before exposure. This scheme not only retains stable detector bias voltage and signal injection efficiency, but also reduces the pixel area as well. Pseudo-multiple sampling technique [2] is adopted to reduce the temporal noise of readout circuit. The noise reduction performance is comparable to the conventional multiple sampling operation without need of longer readout time proportional to the number of samples. A CMOS image sensor chip with 55×65 pixel array has been fabricated in 0.18um CMOS technology. It achieves a 12um×12um pixel size, a frame rate of 72 fps, a power-per-pixel of 0.66uW/pixel, and a readout temporal noise of 1.06mVrms (16 times of pseudo-multiple sampling), respectively.

  7. High Temporal Resolution Permafrost Monitoring Using a Multiple Stack Insar Technique

    NASA Astrophysics Data System (ADS)

    Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J.

    2015-04-01

    The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.

  8. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  9. TEMPORAL AND SPATIAL PATTERNS OF METHANE EMISSIONS FROM A RESERVOIR DRAINING AN AGRICULTURAL WATERSHED (abstract)

    EPA Science Inventory

    We used multiple approaches to characterize temporal and spatial patterns in methane (CH4) emissions from a mid-latitude reservoir (William H. Harsha Lake, Ohio, USA) draining an agricultural watershed. Weekly to monthly monitoring at six sites in the reservoir during a 13 month...

  10. Role of Gamma-Band Synchronization in Priming of Form Discrimination for Multiobject Displays

    ERIC Educational Resources Information Center

    Lu, Hongjing; Morrison, Robert G.; Hummel, John E.; Holyoak, Keith J.

    2006-01-01

    Previous research has shown that synchronized flicker can facilitate detection of a single Kanizsa square. The present study investigated the role of temporally structured priming in discrimination tasks involving perceptual relations between multiple Kanizsa-type figures. Results indicate that visual information presented as temporally structured…

  11. Temporal Frequency Modulates Reaction Time Responses to First-Order and Second-Order Motion

    ERIC Educational Resources Information Center

    Hutchinson, Claire V.; Ledgeway, Tim

    2010-01-01

    This study investigated the effect of temporal frequency and modulation depth on reaction times for discriminating the direction of first-order (luminance-defined) and second-order (contrast-defined) motion, equated for visibility using equal multiples of direction-discrimination threshold. Results showed that reaction times were heavily…

  12. Comparing multiple turbulence restoration algorithms performance on noisy anisoplanatic imagery

    NASA Astrophysics Data System (ADS)

    Rucci, Michael A.; Hardie, Russell C.; Dapore, Alexander J.

    2017-05-01

    In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a block matching method with restoration filter. These algorithms were chosen because they incorporate different approaches and processing techniques. The results quantitatively show how well the algorithms are able to restore the simulated degraded imagery.

  13. Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: is there an interaction between low level radiation and weather conditions?

    PubMed

    Pozolotina, Vera N; Antonova, Elena V

    2017-03-01

    The multiple stressors, in different combinations, may impact differently upon seed quality, and low-level doses of radiation may enhance synergistic or antagonistic effects. During 1991-2014 we investigated the quality of the dandelion (Taraxacum officinale s.l.) seed progeny growing under low-level radiation exposure at the East-Ural Radioactive Trace (EURT) area (result of the Kyshtym accident, Russia), and in plants from areas exposed to background radiation. The viability of the dandelion seed progeny was assessed according to chronic radiation exposure, accounting for the variability of weather conditions among years. Environmental factors (temperature, precipitation, and their ratio in different months) can modify the radiobiological effects. We found a wide range of possible responses to multiple stressors: inhibition, stimulation, and indifferent effects in different seasons. The intraspecific variability of the quality of dandelion seed progeny was greatly increased under conditions of low doses of chronic irradiation. Temperature was the most significant factor for seed progeny formation in the EURT zone, whereas the sums of precipitation and ratios of precipitation to temperature dominantly affected organisms from the background population.

  14. Visual traffic jam analysis based on trajectory data.

    PubMed

    Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub

    2013-12-01

    In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

  15. Complementary roles for amygdala and periaqueductal gray in temporal-difference fear learning.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2009-01-01

    Pavlovian fear conditioning is not a unitary process. At the neurobiological level multiple brain regions and neurotransmitters contribute to fear learning. At the behavioral level many variables contribute to fear learning including the physical salience of the events being learned about, the direction and magnitude of predictive error, and the rate at which these are learned about. These experiments used a serial compound conditioning design to determine the roles of basolateral amygdala (BLA) NMDA receptors and ventrolateral midbrain periaqueductal gray (vlPAG) mu-opioid receptors (MOR) in predictive fear learning. Rats received a three-stage design, which arranged for both positive and negative prediction errors producing bidirectional changes in fear learning within the same subjects during the test stage. Intra-BLA infusion of the NR2B receptor antagonist Ifenprodil prevented all learning. In contrast, intra-vlPAG infusion of the MOR antagonist CTAP enhanced learning in response to positive predictive error but impaired learning in response to negative predictive error--a pattern similar to Hebbian learning and an indication that fear learning had been divorced from predictive error. These findings identify complementary but dissociable roles for amygdala NMDA receptors and vlPAG MOR in temporal-difference predictive fear learning.

  16. Triangulations of sprites relative to parent lighting near the Oklahoma Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lu, G.; Cummer, S. A.; Li, J.; Lyons, W. A.; Stanley, M. A.; Krehbiel, P. R.; Rison, W.; Thomas, R. J.; Weiss, S. A.; Beasley, W. H.; Bruning, E. C.; MacGorman, D. R.; Palivec, K.; Samaras, T. M.

    2012-12-01

    Temporal and spatial development of sprite-producing lightning flashes is examined with coordinated observations over an asymmetric mesoscale convective system on June 29, 2011 near the Oklahoma Lightning Mapping Array (OK-LMA). About 30 sprites were mutually observed from Bennett, Colorado and Hawley, Texas, allowing us to triangulate sprite formation in comparison with spatial/temporal development of the parent lightning. Complementary measurements of broadband (<1 Hz to ~300 kHz) radio frequency lightning signals are available from several magnetic sensors across the United States. Our analyses indicate that although sprite locations can be significantly offset horizontally (up to 70 km) from the parent ground stroke, they are usually laterally within 30 km of the in-cloud lightning activity during the 100 ms time interval prior to the sprite production. This is true for short-delayed sprites produced within 20 ms after a causative stroke, and long-delayed sprites appearing up to more than 200 ms after the stroke. Multiple sprites appearing as dancing/jumping events can be produced during one single flash either in a single lightning channel, through series of current surges superposed on a long and intense continuing current, or in multiple lightning channels through distinct ground strokes of the flash. The burst of continuous very-low-frequency/low-frequency lightning sferics commonly observed in association with sprites is linked to the horizontal progression of multiple negative leaders through positive charged regions of the cloud, which are typically centered at altitudes ~1-2 km (or more) above the freezing level.

  17. An integrated GIS-based data model for multimodal urban public transportation analysis and management

    NASA Astrophysics Data System (ADS)

    Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin

    2008-10-01

    Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.

  18. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity

    PubMed Central

    2014-01-01

    Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist. PMID:24447386

  19. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity.

    PubMed

    Kesäniemi, Jenni E; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, K Emily

    2014-01-22

    Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.

  20. Dual-color multiple-particle tracking at 50-nm localization and over 100-µm range in 3D with temporal focusing two-photon microscopy

    PubMed Central

    Ding, Yu; Li, Chunqiang

    2016-01-01

    Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724

  1. Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention.

    PubMed

    Vorobyev, Victor A; Alho, Kimmo; Medvedev, Svyatoslav V; Pakhomov, Sergey V; Roudas, Marina S; Rutkovskaya, Julia M; Tervaniemi, Mari; Van Zuijen, Titia L; Näätänen, Risto

    2004-07-01

    Positron emission tomography (PET) was used to investigate the neural basis of selective processing of linguistic material during concurrent presentation of multiple stimulus streams ("cocktail-party effect"). Fifteen healthy right-handed adult males were to attend to one of three simultaneously presented messages: one presented visually, one to the left ear, and one to the right ear. During the control condition, subjects attended to visually presented consonant letter strings and ignored auditory messages. This paper reports the modality-nonspecific language processing and visual word-form processing, whereas the auditory attention effects have been reported elsewhere [Cogn. Brain Res. 17 (2003) 201]. The left-hemisphere areas activated by both the selective processing of text and speech were as follows: the inferior prefrontal (Brodmann's area, BA 45, 47), anterior temporal (BA 38), posterior insular (BA 13), inferior (BA 20) and middle temporal (BA 21), occipital (BA 18/30) cortices, the caudate nucleus, and the amygdala. In addition, bilateral activations were observed in the medial occipito-temporal cortex and the cerebellum. Decreases of activation during both text and speech processing were found in the parietal (BA 7, 40), frontal (BA 6, 8, 44) and occipito-temporal (BA 37) regions of the right hemisphere. Furthermore, the present data suggest that the left occipito-temporal cortex (BA 18, 20, 37, 21) can be subdivided into three functionally distinct regions in the posterior-anterior direction on the basis of their activation during attentive processing of sublexical orthography, visual word form, and supramodal higher-level aspects of language.

  2. Monitoring gait in multiple sclerosis with novel wearable motion sensors

    PubMed Central

    McGinnis, Ryan S.; Seagers, Kirsten; Motl, Robert W.; Sheth, Nirav; Wright, John A.; Ghaffari, Roozbeh; Sosnoff, Jacob J.

    2017-01-01

    Background Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. Methods A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Results Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6–2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). Conclusion BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic. PMID:28178288

  3. Development of an Imaging Fourier Transform Spectrometer

    DTIC Science & Technology

    1986-05-01

    during multiple tests or concurrently applying many identical instrument systems to a single test. These difficult, expensive, and time-consuming...processes would introduce AEDC-TR-86-17 uncertainties due to nonstationary sources and instrument instability associated with multiple firings or... multiple instruments. For even moderate spatial, spectral, and temporal resolution, none of the previously mentioned approaches is reasonable. The

  4. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    PubMed

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Trends and determinants of discretionary salt use: National Health and Nutrition Examination Survey, 2003-2012

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to examine the recent temporal trends and current determinants of discretionary salt use in the United States. We used data from the National Health and Nutrition Examination Survey (NHANES), 2003-2012. We used multiple logistic regression to assess temporal trends ...

  6. Temporal change in fragmentation of continental US forests

    Treesearch

    James D. Wickham; Kurt H. Riitters; Timothy G. Wade; Collin Homer

    2008-01-01

    Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US....

  7. Sobering up: A Quantitative Review of Temporal Declines in Expectations

    ERIC Educational Resources Information Center

    Sweeny, Kate; Krizan, Zlatan

    2013-01-01

    Although people's outlook on the future tends to be characterized by hope and optimism, over time this outlook often becomes more dire. We review multiple theoretical accounts of this tendency to "sober up" as feedback about outcomes draws near, and we explicate factors critical to promoting these temporal declines in expectations. We then…

  8. Spatial and temporal ecology of eastern spadefoot toads on a Florida landscape

    Treesearch

    Cathryn H. Greenberg; George W. Tanner

    2005-01-01

    Effective amphibian conservation must consider population and landscape processes, but information at multiple scales is rare. We explore spatial and temporal patterns of breeding and recruitment by eastern spadefoot toads (Scaphiopus holbrookii), using nine years of data from continuous monitoring with drift fences and pitfall traps at eight...

  9. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  10. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  11. Free-living and laboratory gait characteristics in patients with multiple sclerosis

    PubMed Central

    Nair, K. P. S.; Clarke, Alison J.; Van der Meulen, Jill M.; Mazzà, Claudia

    2018-01-01

    Background Wearable sensors offer the potential to bring new knowledge to inform interventions in patients affected by multiple sclerosis (MS) by thoroughly quantifying gait characteristics and gait deficits from prolonged daily living measurements. The aim of this study was to characterise gait in both laboratory and daily life conditions for a group of patients with moderate to severe ambulatory impairment due to MS. To this purpose, algorithms to detect and characterise gait from wearable inertial sensors data were also validated. Methods Fourteen patients with MS were divided into two groups according to their disability level (EDSS 6.5–6.0 and EDSS 5.5–5.0, respectively). They performed both intermittent and continuous walking bouts (WBs) in a gait laboratory wearing waist and shank mounted inertial sensors. An algorithm (W-CWT) to estimate gait events and temporal parameters (mean and variability values) using data recorded from the waist mounted sensor (Dynaport, Mc Roberts) was tested against a reference algorithm (S-REF) based on the shank-worn sensors (OPAL, APDM). Subsequently, the accuracy of another algorithm (W-PAM) to detect and classify WBs was also tested. The validated algorithms were then used to quantify gait characteristics during short (sWB, 5–50 steps), intermediate (iWB, 51–100 steps) and long (lWB, >100 steps) daily living WBs and laboratory walking. Group means were compared using a two-way ANOVA. Results W-CWT compared to S-REF showed good gait event accuracy (0.05–0.10 s absolute error) and was not influenced by disability level. It slightly overestimated stride time in intermittent walking (0.012 s) and overestimated highly variability of temporal parameters in both intermittent (17.5%–58.2%) and continuous walking (11.2%–76.7%). The accuracy of W-PAM was speed-dependent and decreased with increasing disability. The ANOVA analysis showed that patients walked at a slower pace in daily living than in the laboratory. In daily living gait, all mean temporal parameters decreased as the WB duration increased. In the sWB, the patients with a lower disability score showed, on average, lower values of the temporal parameters. Variability decreased as the WB duration increased. Conclusions This study validated a method to quantify walking in real life in people with MS and showed how gait characteristics estimated from short walking bouts during daily living may be the most informative to quantify level of disability and effects of interventions in patients moderately affected by MS. The study provides a robust approach for the quantification of recognised clinically relevant outcomes and an innovative perspective in the study of real life walking. PMID:29715279

  12. Local adaptation in transgenerational responses to predators

    PubMed Central

    Walsh, Matthew R.; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B.; Post, David M.

    2016-01-01

    Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. ‘within-generation’ plasticity), such ‘transgenerational plasticity’ (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. PMID:26817775

  13. Outlines of a multiple trace theory of temporal preparation.

    PubMed

    Los, Sander A; Kruijne, Wouter; Meeter, Martijn

    2014-01-01

    We outline a new multiple trace theory of temporal preparation (MTP), which accounts for behavior in reaction time (RT) tasks in which the participant is presented with a warning stimulus (S1) followed by a target stimulus (S2) that requires a speeded response. The theory assumes that during the foreperiod (FP; the S1-S2 interval) inhibition is applied to prevent premature response, while a wave of activation occurs upon the presentation of S2. On each trial, these actions are stored in a separate memory trace, which, jointly with earlier formed memory traces, starts contributing to preparation on subsequent trials. We show that MTP accounts for classic effects in temporal preparation, including mean RT-FP functions observed under a variety of FP distributions and asymmetric sequential effects. We discuss the advantages of MTP over other accounts of these effects (trace-conditioning and hazard-based explanations) and suggest a critical experiment to empirically distinguish among them.

  14. Three-dimensional spatiotemporal focusing of holographic patterns

    PubMed Central

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-01-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044

  15. A multiple wavelet coherency method for temporal streamflow-precipitation-temperature relationships in 17 small catchments on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Liu, B.

    2017-12-01

    Climate change and human activities are two critical factors causing the dramatical variations of streamflow in the Yellow River Basin of China during the last several decades. More and more attention has been paid to the temporal relationships of streamflow with precipitation and temperature recently. The objective of the current study was to explore the contributions of precipitation and temperature to the temporal variations of streamflow on the Loess Plateau using a multiple wavelet coherency method. Annual streamflow during 1961-2013 for 17 small catchments were collected from the Yellow River Conservancy Commission and annual precipitation and temperature for each catchment were derived from the meteorological data at the national weather stations across the Loess Plateau through the China Meteorological Data Sharing Service System. An abrupt decrease was observed in the annual streamflow around year 2000 for any of the 17 catchments investigated, which was believed to be related with the extensive Grain for Green Project. According to bivariate wavelet coherences, however, annual streamflow showed strong temporal variations with annual precipitation at 8 out of the 17 catchments, where the percentage area of significant coherency (PASC) exceeded 50%. Especially in Weihe and Yiluohe catchments, the corresponding PASC were close to 100%, suggesting that annual precipitation change accounted for almost all the temporal streamflow variations. Compared to annual precipitation, the temporal correlation of temperature with streamflow was relatively small, as implied in the lower mean wavelet coherence (MWC) and PASC. Moreover, including temperature in addition to precipitation in the multiple wavelet coherency analysis failed to increase either MWC or PASC in any of the 17 catchments except for Qingjianhe and Qiushuihe catchments. It was indicated that for most catchments on the Loess Plateau, annual temperature was not significantly different from the red noise in explaining the additional variation in streamflow. In view of the small PASC values resulted for most catchments, there existed other environmental and/or anthropogenic factors responsible for the temporal variations of streamflow.

  16. Dynamical measurements of motion behavior of free fluorescent sphere using the wide field temporal focusing microscopy with astigmatism method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching

    2017-02-01

    A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.

  17. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; ...

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  18. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  19. Spatial and temporal coherence in perceptual binding

    PubMed Central

    Blake, Randolph; Yang, Yuede

    1997-01-01

    Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals. PMID:9192701

  20. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    PubMed

    Valli, Isabel; Stone, James; Mechelli, Andrea; Bhattacharyya, Sagnik; Raffin, Marie; Allen, Paul; Fusar-Poli, Paolo; Lythgoe, David; O'Gorman, Ruth; Seal, Marc; McGuire, Philip

    2011-01-01

    Both medial temporal cortical dysfunction and perturbed glutamatergic neurotransmission are regarded as fundamental pathophysiological features of psychosis. However, although animal models of psychosis suggest that these two abnormalities are interrelated, their relationship in humans has yet to be investigated. We used a combination of functional magnetic resonance imaging and magnetic resonance spectroscopy to investigate the relationship between medial temporal activation during an episodic memory task and local glutamate levels in 22 individuals with an at-risk mental state for psychosis and 14 healthy volunteers. We observed a significant between-group difference in the coupling of medial temporal activation with local glutamate levels. In control subjects, medial temporal activation during episodic encoding was positively associated with medial temporal glutamate. However, in the clinical population, medial temporal activation was reduced, and the relationship with glutamate was absent. In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. STRAD Wheel: Web-Based Library for Visualizing Temporal Data.

    PubMed

    Fernondez-Prieto, Diana; Naranjo-Valero, Carol; Hernandez, Jose Tiberio; Hagen, Hans

    2017-01-01

    Recent advances in web development, including the introduction of HTML5, have opened a door for visualization researchers and developers to quickly access larger audiences worldwide. Open source libraries for the creation of interactive visualizations are becoming more specialized but also modular, which makes them easy to incorporate in domain-specific applications. In this context, the authors developed STRAD (Spatio-Temporal-Radar) Wheel, a web-based library that focuses on the visualization and interactive query of temporal data in a compact view with multiple temporal granularities. This article includes two application examples in urban planning to help illustrate the proposed visualization's use in practice.

  2. Environmental monitoring of Galway Bay: fusing data from remote and in-situ sources

    NASA Astrophysics Data System (ADS)

    O'Connor, Edel; Hayes, Jer; Smeaton, Alan F.; O'Connor, Noel E.; Diamond, Dermot

    2009-09-01

    Changes in sea surface temperature can be used as an indicator of water quality. In-situ sensors are being used for continuous autonomous monitoring. However these sensors have limited spatial resolution as they are in effect single point sensors. Satellite remote sensing can be used to provide better spatial coverage at good temporal scales. However in-situ sensors have a richer temporal scale for a particular point of interest. Work carried out in Galway Bay has combined data from multiple satellite sources and in-situ sensors and investigated the benefits and drawbacks of using multiple sensing modalities for monitoring a marine location.

  3. Mapping Resting-State Brain Networks in Conscious Animals

    PubMed Central

    Zhang, Nanyin; Rane, Pallavi; Huang, Wei; Liang, Zhifeng; Kennedy, David; Frazier, Jean A.; King, Jean

    2010-01-01

    In the present study we mapped brain functional connectivity in the conscious rat at the “resting state” based on intrinsic blood-oxygenation-level dependent (BOLD) fluctuations. The conscious condition eliminated potential confounding effects of anesthetic agents on the connectivity between brain regions. Indeed, using correlational analysis we identified multiple cortical and subcortical regions that demonstrated temporally synchronous variation with anatomically well-defined regions that are crucial to cognitive and emotional information processing including the prefrontal cortex (PFC), thalamus and retrosplenial cortex. The functional connectivity maps created were stringently validated by controlling for false positive detection of correlation, the physiologic basis of the signal source, as well as quantitatively evaluating the reproducibility of maps. Taken together, the present study has demonstrated the feasibility of assessing functional connectivity in conscious animals using fMRI and thus provided a convenient and non-invasive tool to systematically investigate the connectional architecture of selected brain networks in multiple animal models. PMID:20382183

  4. A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Hargrave, G. K.

    2006-01-01

    Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.

  5. The World Spatiotemporal Analytics and Mapping Project (WSTAMP): Discovering, Exploring, and Mapping Spatiotemporal Patterns Across Heterogenous Space-Time Data

    NASA Astrophysics Data System (ADS)

    Morton, A.; Stewart, R.; Held, E.; Piburn, J.; Allen, M. R.; McManamay, R.; Sanyal, J.; Sorokine, A.; Bhaduri, B. L.

    2017-12-01

    Spatiotemporal (ST) analytics applied to major spatio-temporal data sources from major vendors such as USGS, NOAA, World Bank and World Health Organization have tremendous value in shedding light on the evolution of physical, cultural, and geopolitical landscapes on a local and global level. Especially powerful is the integration of these physical and cultural datasets across multiple and disparate formats, facilitating new interdisciplinary analytics and insights. Realizing this potential first requires an ST data model that addresses challenges in properly merging data from multiple authors, with evolving ontological perspectives, semantical differences, changing attributes, and content that is textual, numeric, categorical, and hierarchical. Equally challenging is the development of analytical and visualization approaches that provide a serious exploration of this integrated data while remaining accessible to practitioners with varied backgrounds. The WSTAMP project at the Oak Ridge National Laboratory has yielded two major results in addressing these challenges: 1) development of the WSTAMP database, a significant advance in ST data modeling that integrates 16000+ attributes covering 200+ countries for over 50 years from over 30 major sources and 2) a novel online ST exploratory and analysis tool providing an array of modern statistical and visualization techniques for analyzing these data temporally, spatially, and spatiotemporally under a standard analytic workflow. We report on these advances, provide an illustrative case study, and inform how others may freely access the tool.

  6. How does spatial extent of fMRI datasets affect independent component analysis decomposition?

    PubMed

    Aragri, Adriana; Scarabino, Tommaso; Seifritz, Erich; Comani, Silvia; Cirillo, Sossio; Tedeschi, Gioacchino; Esposito, Fabrizio; Di Salle, Francesco

    2006-09-01

    Spatial independent component analysis (sICA) of functional magnetic resonance imaging (fMRI) time series can generate meaningful activation maps and associated descriptive signals, which are useful to evaluate datasets of the entire brain or selected portions of it. Besides computational implications, variations in the input dataset combined with the multivariate nature of ICA may lead to different spatial or temporal readouts of brain activation phenomena. By reducing and increasing a volume of interest (VOI), we applied sICA to different datasets from real activation experiments with multislice acquisition and single or multiple sensory-motor task-induced blood oxygenation level-dependent (BOLD) signal sources with different spatial and temporal structure. Using receiver operating characteristics (ROC) methodology for accuracy evaluation and multiple regression analysis as benchmark, we compared sICA decompositions of reduced and increased VOI fMRI time-series containing auditory, motor and hemifield visual activation occurring separately or simultaneously in time. Both approaches yielded valid results; however, the results of the increased VOI approach were spatially more accurate compared to the results of the decreased VOI approach. This is consistent with the capability of sICA to take advantage of extended samples of statistical observations and suggests that sICA is more powerful with extended rather than reduced VOI datasets to delineate brain activity. (c) 2006 Wiley-Liss, Inc.

  7. Machine Learning EEG to Predict Cognitive Functioning and Processing Speed Over a 2-Year Period in Multiple Sclerosis Patients and Controls.

    PubMed

    Kiiski, Hanni; Jollans, Lee; Donnchadha, Seán Ó; Nolan, Hugh; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B; Whelan, Robert

    2018-05-01

    Event-related potentials (ERPs) show promise to be objective indicators of cognitive functioning. The aim of the study was to examine if ERPs recorded during an oddball task would predict cognitive functioning and information processing speed in Multiple Sclerosis (MS) patients and controls at the individual level. Seventy-eight participants (35 MS patients, 43 healthy age-matched controls) completed visual and auditory 2- and 3-stimulus oddball tasks with 128-channel EEG, and a neuropsychological battery, at baseline (month 0) and at Months 13 and 26. ERPs from 0 to 700 ms and across the whole scalp were transformed into 1728 individual spatio-temporal datapoints per participant. A machine learning method that included penalized linear regression used the entire spatio-temporal ERP to predict composite scores of both cognitive functioning and processing speed at baseline (month 0), and months 13 and 26. The results showed ERPs during the visual oddball tasks could predict cognitive functioning and information processing speed at baseline and a year later in a sample of MS patients and healthy controls. In contrast, ERPs during auditory tasks were not predictive of cognitive performance. These objective neurophysiological indicators of cognitive functioning and processing speed, and machine learning methods that can interrogate high-dimensional data, show promise in outcome prediction.

  8. A study of the temporal stability of multiple cell vortices

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.

    1989-01-01

    The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.

  9. Mesenchymal stem cells can modulate longitudinal changes in cortical thickness and its related cognitive decline in patients with multiple system atrophy

    PubMed Central

    Sunwoo, Mun Kyung; Yun, Hyuk Jin; Song, Sook K.; Ham, Ji Hyun; Hong, Jin Yong; Lee, Ji E.; Lee, Hye S.; Sohn, Young H.; Lee, Jong-Min; Lee, Phil Hyu

    2014-01-01

    Multiple system atrophy (MSA) is an adult-onset, sporadic neurodegenerative disease. Because the prognosis of MSA is fatal, neuroprotective or regenerative strategies may be invaluable in MSA treatment. Previously, we obtained clinical and imaging evidence that mesenchymal stem cell (MSC) treatment could have a neuroprotective role in MSA patients. In the present study, we evaluated the effects of MSC therapy on longitudinal changes in subcortical deep gray matter volumes and cortical thickness and their association with cognitive performance. Clinical and imaging data were obtained from our previous randomized trial of autologous MSC in MSA patients. During 1-year follow-up, we assessed longitudinal differences in automatic segmentation-based subcortical deep gray matter volumes and vertex-wise cortical thickness between placebo (n = 15) and MSC groups (n = 11). Next, we performed correlation analysis between the changes in cortical thickness and changes in the Korean version of the Montreal Cognitive Assessment (MoCA) scores and cognitive performance of each cognitive subdomain using a multiple, comparison correction. There were no significant differences in age at baseline, age at disease onset, gender ratio, disease duration, clinical severity, MoCA score, or education level between the groups. The automated subcortical volumetric analysis revealed that the changes in subcortical deep gray matter volumes of the caudate, putamen, and thalamus did not differ significantly between the groups. The areas of cortical thinning over time in the placebo group were more extensive, including the frontal, temporal, and parietal areas, whereas these areas in the MSC group were less extensive. Correlation analysis indicated that declines in MoCA scores and phonemic fluency during the follow-up period were significantly correlated with cortical thinning of the frontal and posterior temporal areas and anterior temporal areas in MSA patients, respectively. In contrast, no significant correlations were observed in the MSC group. These results suggest that MSC treatment in patients with MSA may modulate cortical thinning over time and related cognitive performance, inferring a future therapeutic candidate for cognitive disorders. PMID:24982631

  10. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  11. Temporal trends in 137Cs concentrations in the bark, sapwood, heartwood, and whole wood of four tree species in Japanese forests from 2011 to 2016.

    PubMed

    Ohashi, Shinta; Kuroda, Katsushi; Takano, Tsutomu; Suzuki, Youki; Fujiwara, Takeshi; Abe, Hisashi; Kagawa, Akira; Sugiyama, Masaki; Kubojima, Yoshitaka; Zhang, Chunhua; Yamamoto, Koichi

    2017-11-01

    To understand the changes in radiocesium ( 137 Cs) concentrations in stem woods after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, we investigated 137 Cs concentrations in the bark, sapwood, heartwood, and whole wood of four major tree species at multiple sites with different levels of radiocesium deposition from the FDNPP accident since 2011 (since 2012 at some sites): Japanese cedar at four sites, hinoki cypress and Japanese konara oak at two sites, and Japanese red pine at one site. Our previous report on 137 Cs concentrations in bark and whole wood samples collected from 2011 to 2015 suggested that temporal variations were different among sites even within the same species. In the present study, we provided data on bark and whole wood samples in 2016 and separately measured 137 Cs concentrations in sapwood and heartwood samples from 2011 to 2016; we further discussed temporal trends in 137 Cs concentrations in each part of tree stems, particularly those in 137 Cs distributions between sapwood and heartwood, in relation to their species and site dependencies. Temporal trends in bark and whole wood samples collected from 2011 to 2016 were consistent with those reported in samples collected from 2011 to 2015. Temporal variations in 137 Cs concentrations in barks showed either a decreasing trend or no clear trend, implying that 137 Cs deposition in barks is inhomogeneous and that decontamination is relatively slow in some cases. Temporal trends in 137 Cs concentrations in sapwood, heartwood, and whole wood were different among species and also among sites within the same species. Relatively common trends within the same species, which were increasing, were observed in cedar heartwood, and in oak sapwood and whole wood. On the other hand, the ratio of 137 Cs concentration in heartwood to that in sapwood (fresh weight basis) was commonly increased to more than 2 in cedar, although distinct temporal trends were not found in the other species, for which the ratio was around 1 in cypress and pine and below 0.5 in oak, suggesting that 137 Cs transfer from sapwood to heartwood shows species dependency. Consequently, the species dependency of 137 Cs transfer within the tree appears easily, while that from the environment to the trees can be masked by various factors. Thus, prediction of 137 Cs concentrations in stem wood should be carried out carefully as it still requires investigations at multiple sites with a larger sample size and an understanding of the species-specific 137 Cs transfer mechanism. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning.

    PubMed

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S

    2016-09-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for 9 days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants' discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Multisensor data fusion across time and space

    NASA Astrophysics Data System (ADS)

    Villeneuve, Pierre V.; Beaven, Scott G.; Reed, Robert A.

    2014-06-01

    Field measurement campaigns typically deploy numerous sensors having different sampling characteristics for spatial, temporal, and spectral domains. Data analysis and exploitation is made more difficult and time consuming as the sample data grids between sensors do not align. This report summarizes our recent effort to demonstrate feasibility of a processing chain capable of "fusing" image data from multiple independent and asynchronous sensors into a form amenable to analysis and exploitation using commercially-available tools. Two important technical issues were addressed in this work: 1) Image spatial registration onto a common pixel grid, 2) Image temporal interpolation onto a common time base. The first step leverages existing image matching and registration algorithms. The second step relies upon a new and innovative use of optical flow algorithms to perform accurate temporal upsampling of slower frame rate imagery. Optical flow field vectors were first derived from high-frame rate, high-resolution imagery, and then finally used as a basis for temporal upsampling of the slower frame rate sensor's imagery. Optical flow field values are computed using a multi-scale image pyramid, thus allowing for more extreme object motion. This involves preprocessing imagery to varying resolution scales and initializing new vector flow estimates using that from the previous coarser-resolution image. Overall performance of this processing chain is demonstrated using sample data involving complex too motion observed by multiple sensors mounted to the same base. Multiple sensors were included, including a high-speed visible camera, up to a coarser resolution LWIR camera.

  14. Functional consequences of experience-dependent plasticity on tactile perception following perceptual learning

    PubMed Central

    Trzcinski, Natalie K; Gomez-Ramirez, Manuel; Hsiao, Steven S.

    2016-01-01

    Continuous training enhances perceptual discrimination and promotes neural changes in areas encoding the experienced stimuli. This type of experience-dependent plasticity has been demonstrated in several sensory and motor systems. Particularly, non-human primates trained to detect consecutive tactile bar indentations across multiple digits showed expanded excitatory receptive fields (RFs) in somatosensory cortex. However, the perceptual implications of these anatomical changes remain undetermined. Here, we trained human participants for nine days on a tactile task that promoted expansion of multi-digit RFs. Participants were required to detect consecutive indentations of bar stimuli spanning multiple digits. Throughout the training regime we tracked participants’ discrimination thresholds on spatial (grating orientation) and temporal tasks on the trained and untrained hands in separate sessions. We hypothesized that training on the multi-digit task would decrease perceptual thresholds on tasks that require stimulus processing across multiple digits, while also increasing thresholds on tasks requiring discrimination on single digits. We observed an increase in orientation thresholds on a single-digit. Importantly, this effect was selective for the stimulus orientation and hand used during multi-digit training. We also found that temporal acuity between digits improved across trained digits, suggesting that discriminating the temporal order of multi-digit stimuli can transfer to temporal discrimination of other tactile stimuli. These results suggest that experience-dependent plasticity following perceptual learning improves and interferes with tactile abilities in manners predictive of the task and stimulus features used during training. PMID:27422224

  15. Advancing Analysis of Spatio-Temporal Variations of Soil Nutrients in the Water Level Fluctuation Zone of China’s Three Gorges Reservoir Using Self-Organizing Map

    PubMed Central

    Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa

    2015-01-01

    The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612

  16. The neural basis of responsive caregiving behaviour: Investigating temporal dynamics within the parental brain.

    PubMed

    Young, Katherine S; Parsons, Christine E; Stein, Alan; Vuust, Peter; Craske, Michelle G; Kringelbach, Morten L

    2017-05-15

    Whether it is the sound of a distressed cry or the image of a cute face, infants capture our attention. Parents and other adults alike are drawn into interactions to engage in play, nurturance and provide care. Responsive caregiving behaviour is a key feature of the parent-infant relationship, forming the foundation upon which attachment is built. Infant cues are considered to be 'innate releasers' or 'motivational entities' eliciting responses in nearby adults (Lorenz 1943; Murray, 1979) [42,43]. Through the advent of modern neuroimaging, we are beginning to understand the initiation of this motivational state at the neurobiological level. In this review, we first describe a current model of the 'parental brain', based on functional MRI studies assessing neural responses to infant cues. Next, we discuss recent findings from temporally sensitive techniques (magneto- and electroencephalography) that illuminate the temporal dynamics of this neural network. We focus on converging evidence highlighting a specific role for the orbitofrontal cortex in supporting rapid orienting responses to infant cues. In addition, we consider to what extent these neural processes are tied to parenthood, or whether they might be present universally in all adults. We highlight important avenues for future research, including utilizing multiple levels of analysis for a comprehensive understanding of adaptive caregiving behaviour. Finally, we discuss how this research can help us understand disrupted parent-infant relationships, such as in situations where parents' contingent responding to infant cues is disrupted; for example, in parental depression or anxiety where cognitive attentional processes are disrupted. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2017-07-01

    A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.

  18. Timing of stressors alters interactive effects on a coastal foundation species.

    PubMed

    Bible, Jillian M; Cheng, Brian S; Chang, Andrew L; Ferner, Matthew C; Wasson, Kerstin; Zabin, Chela J; Latta, Marilyn; Sanford, Eric; Deck, Anna; Grosholz, Edwin D

    2017-09-01

    The effects of climate-driven stressors on organismal performance and ecosystem functioning have been investigated across many systems; however, manipulative experiments generally apply stressors as constant and simultaneous treatments, rather than accurately reflecting temporal patterns in the natural environment. Here, we assessed the effects of temporal patterns of high aerial temperature and low salinity on survival of Olympia oysters (Ostrea lurida), a foundation species of conservation and restoration concern. As single stressors, low salinity (5 and 10 psu) and the highest air temperature (40°C) resulted in oyster mortality of 55.8, 11.3, and 23.5%, respectively. When applied on the same day, low salinity and high air temperature had synergistic negative effects that increased oyster mortality. This was true even for stressor levels that were relatively mild when applied alone (10 psu and 35°C). However, recovery times of two or four weeks between stressors eliminated the synergistic effects. Given that most natural systems threatened by climate change are subject to multiple stressors that vary in the timing of their occurrence, our results suggest that it is important to examine temporal variation of stressors in order to more accurately understand the possible biological responses to global change. © 2017 by the Ecological Society of America.

  19. A method for examining temporal changes in cyanobacterial ...

    EPA Pesticide Factsheets

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here

  20. SPICODYN: A Toolbox for the Analysis of Neuronal Network Dynamics and Connectivity from Multi-Site Spike Signal Recordings.

    PubMed

    Pastore, Vito Paolo; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo

    2018-01-01

    We implemented an automated and efficient open-source software for the analysis of multi-site neuronal spike signals. The software package, named SPICODYN, has been developed as a standalone windows GUI application, using C# programming language with Microsoft Visual Studio based on .NET framework 4.5 development environment. Accepted input data formats are HDF5, level 5 MAT and text files, containing recorded or generated time series spike signals data. SPICODYN processes such electrophysiological signals focusing on: spiking and bursting dynamics and functional-effective connectivity analysis. In particular, for inferring network connectivity, a new implementation of the transfer entropy method is presented dealing with multiple time delays (temporal extension) and with multiple binary patterns (high order extension). SPICODYN is specifically tailored to process data coming from different Multi-Electrode Arrays setups, guarantying, in those specific cases, automated processing. The optimized implementation of the Delayed Transfer Entropy and the High-Order Transfer Entropy algorithms, allows performing accurate and rapid analysis on multiple spike trains from thousands of electrodes.

  1. The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.

    PubMed

    Sun, Yanlong; Wang, Hongbin

    2013-01-01

    According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.

  2. The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information

    PubMed Central

    Sun, Yanlong; Wang, Hongbin

    2013-01-01

    According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165

  3. Temporal trends in dancing among adults between 1994 and 2012: The Health Survey for England.

    PubMed

    Vassallo, Amy Jo; Hiller, Claire E; Pappas, Evangelos; Stamatakis, Emmanuel

    2018-01-01

    The benefits of physical activity are established, however, increasing population physical activity levels remains a challenge. Participating in activities that are enjoyable and multidimensional, such as dancing, are associated with better adherence. However, the extent to which the general population participates in dancing and its temporal trends has not been well studied. The aim of this study was to investigate temporal trends and patterns and correlates of dance participation in England from 1994 to 2012 using a series of large nationally representative surveys. We used data from the Health Survey for England 1994, 1997, 1998, 1999, 2003, 2004, 2006, 2008 and 2012 to examine dance temporal trends. Temporal trends data were age-standardized and correlates of dance participation were examined for males and females over each study year. Changes in population prevalence of dance participation were determined using multiple logistical regression with 1997 as the reference year. Of all survey participants (n=98,178) 7.8% (95%CI: 7.63-7.96) reported dance participation. There was a marked steady decrease over time, with the steepest decline from 2003 onwards. The multivariable-adjusted odds ratios for dance participation were 0.51 for males (95%CI 0.408-0.630, p<0.001) and 0.69 for females (95%CI: 0.598-0.973, p<0.001) in 2012 compared to 1997. Dance participation in adults in England has decreased markedly over time. This study suggests that dance is not being adequately utilized as a health enhancing physical activity, and therefore further research and resources should be dedicated to supporting dance in the community. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs

    PubMed Central

    Siegle, Greg

    2009-01-01

    Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927

  5. Longitudinal brain white matter alterations in minimal hepatic encephalopathy before and after liver transplantation.

    PubMed

    Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan

    2014-01-01

    Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.

  6. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves

    NASA Astrophysics Data System (ADS)

    Antikainen, Aku; Arteaga-Sierra, Francisco R.; Agrawal, Govind P.

    2017-03-01

    We show that temporal reflections off a moving refractive index barrier play a major role in the spectral broadening of a dual-wavelength input inside a highly nonlinear, dispersion-decreasing fiber. We also find that a recently developed linear theory of temporal reflections works well in predicting the reflected frequencies. Successive temporal reflections from multiple closely spaced solitons create a blueshifted spectral band, while continuous narrowing of solitons inside the dispersion-decreasing fiber enhances Raman-induced redshifts, leading to supercontinuum generation at relatively low pump powers. We also show how dispersive wave emission can be considered a special case of the more general process of temporal reflections. Hence our findings have implications on all systems able to support solitons.

  8. [Medial longitudinal fasciculus (MLF) syndrome in a patient with giant cell arteritis].

    PubMed

    Uenaka, Takeshi; Hamaguchi, Hirotoshi; Sekiguchi, Kenji; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2015-01-01

    A 76-year-old female was referred to our department because of diplopia for two months and intermittent claudication for five months. She showed medial longitudinal fasciculus (MLF) syndrome. Brain MRI (T2WI) showed multiple infarctions in the right pontine tegmentum and left paramedian midbrain. A biopsy of superficial temporal artery showed the characteristic findings of glanulomatous inflammation indicative of giant cell arteritis. We thought the mechanism of this cerebral infarction as artery to artery embolization or intracranial arteritis. Treatment with oral prednisolone (1 mg/kg/day) improved her limb claudication and normalized serum C-reactive protein level.

  9. Palm Swamp Wetland Ecosystems of the Upper Amazon: Characterizing their Distribution and Inundation State Using Multiple Resolution Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.

    2011-12-01

    Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA/EORC. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes.

    PubMed

    Hohmann, Nora; Koch, Marcus A

    2017-10-23

    Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion.

  11. Sequential detection of temporal communities by estrangement confinement.

    PubMed

    Kawadia, Vikas; Sreenivasan, Sameet

    2012-01-01

    Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks.

  12. Flexible retrospective selection of temporal resolution in real-time speech MRI using a golden-ratio spiral view order.

    PubMed

    Kim, Yoon-Chul; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-05-01

    In speech production research using real-time magnetic resonance imaging (MRI), the analysis of articulatory dynamics is performed retrospectively. A flexible selection of temporal resolution is highly desirable because of natural variations in speech rate and variations in the speed of different articulators. The purpose of the study is to demonstrate a first application of golden-ratio spiral temporal view order to real-time speech MRI and investigate its performance by comparison with conventional bit-reversed temporal view order. Golden-ratio view order proved to be more effective at capturing the dynamics of rapid tongue tip motion. A method for automated blockwise selection of temporal resolution is presented that enables the synthesis of a single video from multiple temporal resolution videos and potentially facilitates subsequent vocal tract shape analysis. Copyright © 2010 Wiley-Liss, Inc.

  13. Spatio-temporal alignment of multiple sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao

    2018-01-01

    Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.

  14. Epilepsy surgery in the elderly: an unusual case of a 75-year-old man with recurrent status epilepticus.

    PubMed

    Tellez-Zenteno, Jose F; Sadanand, Venkatraman; Riesberry, Martha; Robinson, Christopher A; Ogieglo, Lissa; Masiowski, Paul; Vrbancic, Mirna

    2009-06-01

    Epilepsy surgery is increasingly well-supported as an effective treatment for patients with intractable epilepsy. It is most often performed on younger patients and the safety and efficacy of epilepsy surgery in elderly patients are not frequently described. We report a case of a 75-year-old right-handed man who underwent a left fronto-temporal craniotomy for resection of a suprasellar meningioma in 2002. Immediately following hospital discharge, he began to experience complex partial seizures. He continued to have frequent seizures despite treatment with multiple combinations of antiepileptic medications. He presented with status epilepticus every two or three months, and required long periods of hospitalization on each occasion for post-ictal confusion and aphasia. Scalp EEG showed continuous spikes and polyspikes and persistent slowing in the left temporal area, as well as spikes in the left frontal area. EEG telemetry recorded multiple seizures, all with a clear focus in the left temporal area. MRI scan showed an area of encephalomalacia in the left temporal lobe, as well as post-surgical changes in the left frontal area. Neuropsychological testing showed bilateral memory impairment with no significant cognitive decline expected after unilateral temporal lobe resection. A left anteromesial temporal lobectomy was performed with intraoperative electrocorticography. Since surgery, the patient was not seizure-free (Engel class II-b), but had no further episodes of status epilepticus in one year and two months of follow-up. This is one of the oldest patients reported in the literature with epilepsy surgery and supports the possibility of epilepsy surgery in elderly patients for particular cases. In addition, few cases with such a malignant evolution of temporal lobe epilepsy have been described in this age group.

  15. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  16. Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data.

    Treesearch

    D.J. Hayes; W.B. Cohen

    2006-01-01

    This article describes the development of a methodology for scaling observations of changes in tropical forest cover to large areas at high temporal frequency from coarse-resolution satellite imagery. The approach for estimating proportional forest cover change as a continuous variable is based on a regression model that relates multispectral, multitemporal Moderate...

  17. Attention-Deficit/Hyperactivity Disorder and Sluggish Cognitive Tempo throughout Childhood: Temporal Invariance and Stability from Preschool through Ninth Grade

    ERIC Educational Resources Information Center

    Leopold, Daniel R.; Christopher, Micaela E.; Burns, G. Leonard; Becker, Stephen P.; Olson, Richard K.; Willcutt, Erik G.

    2016-01-01

    Background: Although multiple cross-sectional studies have shown symptoms of sluggish cognitive tempo (SCT) and attention-deficit/hyperactivity disorder (ADHD) to be statistically distinct, studies have yet to examine the temporal stability and measurement invariance of SCT in a longitudinal sample. To date, only six studies have assessed SCT…

  18. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    PubMed Central

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  19. Multiple adaptable mechanisms early in the primate visual pathway

    PubMed Central

    Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter

    2011-01-01

    We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535

  20. Temporal Assessment of the Impact of Exposure to Cow Feces in Two Watersheds by Multiple Host-Specific PCR Assays

    EPA Science Inventory

    Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay wa...

  1. Temporal Assessment of the Impact of Exposure to Cow Feces inTwo Watersheds by Multiple Host-Specific PCR Assays

    EPA Science Inventory

    Fecal exposure in two watersheds with different management histories was assessed by tracking cattle fecal bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was t...

  2. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    PubMed

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic and typically change at faster rates. Using a novel fMRI paradigm, we measured temporal processing capacities of functional regions in human high-level visual cortex. Contrary to prevailing theories, we find that different regions have different processing capacities, which have behavioral implications. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. These results suggest that temporal processing capacity is a characteristic of domain-specific networks in high-level visual cortex and contributes to the segregation of cortical regions. Copyright © 2015 the authors 0270-6474/15/3512412-13$15.00/0.

  3. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex

    PubMed Central

    Lafer-Sousa, Rosa; Conway, Bevil R.

    2014-01-01

    Visual-object processing culminates in inferior temporal (IT) cortex. To assess the organization of IT, we measured fMRI responses in alert monkey to achromatic images (faces, fruit, bodies, places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and, remarkably, yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations; color-biased regions spanned mid-peripheral representations; and place-biased regions overlapped peripheral representations. These results suggest that IT comprises parallel, multi-stage processing networks subject to one organizing principle. PMID:24141314

  4. Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing

    PubMed Central

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2011-01-01

    Compression in the basilar-membrane input–output response flattens the temporal envelope of a fluctuating signal when more gain is applied to lower level than higher level temporal components. As a result, level-dependent changes in gap detection for signals with different depths of envelope fluctuation and for subjects with normal and impaired hearing may reveal effects of compression. To test these assumptions, gap detection with and without a broadband noise was measured with 1 000-Hz-wide (flatter) and 50-Hz-wide (fluctuating) noise markers as a function of marker level. As marker level increased, background level also increased, maintaining a fixed acoustic signal-to-noise ratio (SNR) to minimize sensation-level effects on gap detection. Significant level-dependent changes in gap detection were observed, consistent with effects of cochlear compression. For the flatter marker, gap detection that declines with increases in level up to mid levels and improves with further increases in level may be explained by an effective flattening of the temporal envelope at mid levels, where compression effects are expected to be strongest. A flatter effective temporal envelope corresponds to a reduced effective SNR. The effects of a reduction in compression (resulting in larger effective SNRs) may contribute to better-than-normal gap detection observed for some hearing-impaired listeners. PMID:22087921

  5. Can axial pain be helpful to determine surgical level in the multilevel cervical radiculopathy?

    PubMed

    Suh, Bo-Kyung; You, Ki Han; Park, Moon Soo

    2017-01-01

    Spine surgeons are required to differentiate symptomatic cervical disc herniation with asymptomatic radiographic herniation. Although the dermatomal sensory dysfunction of upper extremity is the most important clue, axial pain including cervicogenic headache and parascapular pain may be helpful to find surgical target level. However, there is no review article about the axial pain originated from cervical spondylotic radiculopathy and relieved by surgical decompression. The purpose is to review the literatures about the axial pain, which can be utilized in determining target level to be decompressed in the patients with cervical radiculopathy at multiple levels. Cervicogenic headaches of suboccipital headaches, retro-orbital pain, retro-auricular pain, or temporal pain may be associated with C2, C3, and C4 radiculopathies. The pain around scapula may be associated with C5, C6, C7, and C8 radiculopathies. However, there is insufficient evidence to make recommendations for the use in clinical practice because they did not evaluate sensitivity and specificity.

  6. Operationalizing Surveillance of Chronic Disease Self-Management and Self-Management Support

    PubMed Central

    Sacks, Jeffrey J.; Terrillion, Albert J.; Colligan, Erin M.

    2018-01-01

    Sixty percent of US adults have at least one chronic condition, and more than 40% have multiple conditions. Self-management (SM) by the individual, along with self-management support (SMS) by others, are nonpharmacological interventions with few side effects that are critical to optimal chronic disease control. Ruiz and colleagues laid the conceptual groundwork for surveillance of SM/SMS at 5 socio-ecological levels (individual, health system, community, policy, and media). We extend that work by proposing operationalized indicators at each socio-ecologic level and suggest that the indicators be embedded in existing surveillance systems at national, state, and local levels. Without a robust measurement system at the population level, we will not know how far we have to go or how far we have come in making SM and SMS a reality. The data can also be used to facilitate planning and service delivery strategies, monitor temporal changes, and stimulate SM/SMS–related research. PMID:29625631

  7. Application of a temporal reasoning framework tool in analysis of medical device adverse events.

    PubMed

    Clark, Kimberly K; Sharma, Deepak K; Chute, Christopher G; Tao, Cui

    2011-01-01

    The Clinical Narrative Temporal Relation Ontology (CNTRO)1 project offers a semantic-web based reasoning framework, which represents temporal events and relationships within clinical narrative texts, and infer new knowledge over them. In this paper, the CNTRO reasoning framework is applied to temporal analysis of medical device adverse event files. One specific adverse event was used as a test case: late stent thrombosis. Adverse event narratives were obtained from the Food and Drug Administration's (FDA) Manufacturing and User Facility Device Experience (MAUDE) database2. 15 adverse event files in which late stent thrombosis was confirmed were randomly selected across multiple drug eluting stent devices. From these files, 81 events and 72 temporal relations were annotated. 73 temporal questions were generated, of which 65 were correctly answered by the CNTRO system. This results in an overall accuracy of 89%. This system should be pursued further to continue assessing its potential benefits in temporal analysis of medical device adverse events.

  8. Superadditive responses in superior temporal sulcus predict audiovisual benefits in object categorization.

    PubMed

    Werner, Sebastian; Noppeney, Uta

    2010-08-01

    Merging information from multiple senses provides a more reliable percept of our environment. Yet, little is known about where and how various sensory features are combined within the cortical hierarchy. Combining functional magnetic resonance imaging and psychophysics, we investigated the neural mechanisms underlying integration of audiovisual object features. Subjects categorized or passively perceived audiovisual object stimuli with the informativeness (i.e., degradation) of the auditory and visual modalities being manipulated factorially. Controlling for low-level integration processes, we show higher level audiovisual integration selectively in the superior temporal sulci (STS) bilaterally. The multisensory interactions were primarily subadditive and even suppressive for intact stimuli but turned into additive effects for degraded stimuli. Consistent with the inverse effectiveness principle, auditory and visual informativeness determine the profile of audiovisual integration in STS similarly to the influence of physical stimulus intensity in the superior colliculus. Importantly, when holding stimulus degradation constant, subjects' audiovisual behavioral benefit predicts their multisensory integration profile in STS: only subjects that benefit from multisensory integration exhibit superadditive interactions, while those that do not benefit show suppressive interactions. In conclusion, superadditive and subadditive integration profiles in STS are functionally relevant and related to behavioral indices of multisensory integration with superadditive interactions mediating successful audiovisual object categorization.

  9. A meiotic gene regulatory cascade driven by alternative fates for newly synthesized transcripts

    PubMed Central

    Cremona, Nicole; Potter, Kristine; Wise, Jo Ann

    2011-01-01

    To determine the relative importance of transcriptional regulation versus RNA processing and turnover during the transition from proliferation to meiotic differentiation in the fission yeast Schizosaccharomyces pombe, we analyzed temporal profiles and effects of RNA surveillance factor mutants on expression of 32 meiotic genes. A comparison of nascent transcription with steady-state RNA accumulation reveals that the vast majority of these genes show a lag between maximal RNA synthesis and peak RNA accumulation. During meiosis, total RNA levels parallel 3′ processing, which occurs in multiple, temporally distinct waves that peak from 3 to 6 h after meiotic induction. Most early genes and one middle gene, mei4, share a regulatory mechanism in which a specialized RNA surveillance factor targets newly synthesized transcripts for destruction. Mei4p, a member of the forkhead transcription factor family, in turn regulates a host of downstream genes. Remarkably, a spike in transcription is observed for less than one-third of the genes surveyed, and even these show evidence of RNA-level regulation. In aggregate, our findings lead us to propose that a regulatory cascade driven by changes in processing and stability of newly synthesized transcripts operates alongside the well-known transcriptional cascade as fission yeast cells enter meiosis. PMID:21148298

  10. Information Mining of Spatio-Temporal Evolution of Lakes Based on Multiple Dynamic Measurements

    NASA Astrophysics Data System (ADS)

    Feng, W.; Chen, J.

    2017-09-01

    Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes' area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1) the swap dynamic degree (SDD) reflects the space activity of lakes in the study period. 2) the attenuation dynamic degree (ADD) reflects the net attenuation of lakes into non-lake areas. 3) the fragmentation dynamic degree (FDD) reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation - fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  11. Combining physiological, environmental and locational sensors for citizen-oriented health applications.

    PubMed

    Huck, J J; Whyatt, J D; Coulton, P; Davison, B; Gradinar, A

    2017-03-01

    This work investigates the potential of combining the outputs of multiple low-cost sensor technologies for the direct measurement of spatio-temporal variations in phenomena that exist at the interface between our bodies and the environment. The example used herein is the measurement of personal exposure to traffic pollution, which may be considered as a function of the concentration of pollutants in the air and the frequency and volume of that air which enters our lungs. The sensor-based approach described in this paper removes the 'traditional' requirements either to model or interpolate pollution levels or to make assumptions about the physiology of an individual. Rather, a wholly empirical analysis into pollution exposure is possible, based upon high-resolution spatio-temporal data drawn from sensors for NO 2 , nasal airflow and location (GPS). Data are collected via a custom smartphone application and mapped to give an unprecedented insight into exposure to traffic pollution at the individual level. Whilst the quality of data from low-cost miniaturised sensors is not suitable for all applications, there certainly are many applications for which these data would be well suited, particularly those in the field of citizen science. This paper demonstrates both the potential and limitations of sensor-based approaches and discusses the wider relevance of these technologies for the advancement of citizen science.

  12. Neural Mechanism for Mirrored Self-face Recognition.

    PubMed

    Sugiura, Motoaki; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Akimoto, Yoritaka; Nozawa, Takayuki; Yomogida, Yukihito; Hanawa, Sugiko; Yamamoto, Yuki; Sakuma, Atsushi; Nakagawa, Seishu; Kawashima, Ryuta

    2015-09-01

    Self-face recognition in the mirror is considered to involve multiple processes that integrate 2 perceptual cues: temporal contingency of the visual feedback on one's action (contingency cue) and matching with self-face representation in long-term memory (figurative cue). The aim of this study was to examine the neural bases of these processes by manipulating 2 perceptual cues using a "virtual mirror" system. This system allowed online dynamic presentations of real-time and delayed self- or other facial actions. Perception-level processes were identified as responses to only a single perceptual cue. The effect of the contingency cue was identified in the cuneus. The regions sensitive to the figurative cue were subdivided by the response to a static self-face, which was identified in the right temporal, parietal, and frontal regions, but not in the bilateral occipitoparietal regions. Semantic- or integration-level processes, including amodal self-representation and belief validation, which allow modality-independent self-recognition and the resolution of potential conflicts between perceptual cues, respectively, were identified in distinct regions in the right frontal and insular cortices. The results are supportive of the multicomponent notion of self-recognition and suggest a critical role for contingency detection in the co-emergence of self-recognition and empathy in infants. © The Author 2014. Published by Oxford University Press.

  13. The Mitochondrial Protein Import Component, TRANSLOCASE OF THE INNER MEMBRANE17-1, Plays a Role in Defining the Timing of Germination in Arabidopsis1[W][OPEN

    PubMed Central

    Wang, Yan; Law, Simon R.; Ivanova, Aneta; van Aken, Olivier; Kubiszewski-Jakubiak, Szymon; Uggalla, Vindya; van der Merwe, Margaretha; Duncan, Owen; Narsai, Reena; Whelan, James; Murcha, Monika W.

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), small gene families encode multiple isoforms for many of the components of the mitochondrial protein import apparatus. There are three isoforms of the TRANSLOCASE OF THE INNER MEMBRANE17 (Tim17). Transcriptome analysis indicates that AtTim17-1 is only detectable in dry seed. In this study, two independent transfer DNA insertional mutant lines of tim17-1 exhibited a germination-specific phenotype, showing a significant increase in the rate of germination. Microarray analyses revealed that Attim17-1 displayed alterations in the temporal sequence of transcriptomic events during germination, peaking earlier compared with the wild type. Promoter analysis of AtTim17-1 further identified an abscisic acid (ABA)-responsive element, which binds ABA-responsive transcription factors, acting to repress the expression of AtTim17-1. Attim17-1 dry seeds contained significantly increased levels of ABA and gibberellin, 2- and 5-fold, respectively. These results support the model that mitochondrial biogenesis is regulated in a tight temporal sequence of events during germination and that altering mitochondrial biogenesis feeds back to alter the germination rate, as evidenced by the altered levels of the master regulatory hormones that define germination. PMID:25253887

  14. Neural Mechanism for Mirrored Self-face Recognition

    PubMed Central

    Sugiura, Motoaki; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Akimoto, Yoritaka; Nozawa, Takayuki; Yomogida, Yukihito; Hanawa, Sugiko; Yamamoto, Yuki; Sakuma, Atsushi; Nakagawa, Seishu; Kawashima, Ryuta

    2015-01-01

    Self-face recognition in the mirror is considered to involve multiple processes that integrate 2 perceptual cues: temporal contingency of the visual feedback on one's action (contingency cue) and matching with self-face representation in long-term memory (figurative cue). The aim of this study was to examine the neural bases of these processes by manipulating 2 perceptual cues using a “virtual mirror” system. This system allowed online dynamic presentations of real-time and delayed self- or other facial actions. Perception-level processes were identified as responses to only a single perceptual cue. The effect of the contingency cue was identified in the cuneus. The regions sensitive to the figurative cue were subdivided by the response to a static self-face, which was identified in the right temporal, parietal, and frontal regions, but not in the bilateral occipitoparietal regions. Semantic- or integration-level processes, including amodal self-representation and belief validation, which allow modality-independent self-recognition and the resolution of potential conflicts between perceptual cues, respectively, were identified in distinct regions in the right frontal and insular cortices. The results are supportive of the multicomponent notion of self-recognition and suggest a critical role for contingency detection in the co-emergence of self-recognition and empathy in infants. PMID:24770712

  15. An interval logic for higher-level temporal reasoning

    NASA Technical Reports Server (NTRS)

    Schwartz, R. L.; Melliar-Smith, P. M.; Vogt, F. H.; Plaisted, D. A.

    1983-01-01

    Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included.

  16. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps.

    PubMed

    Fuchs, Sven; Röthlisberger, Veronika; Thaler, Thomas; Zischg, Andreas; Keiler, Margreth

    2017-03-04

    A coevolutionary perspective is adopted to understand the dynamics of exposure to mountain hazards in the European Alps. A spatially explicit, object-based temporal assessment of elements at risk to mountain hazards (river floods, torrential floods, and debris flows) in Austria and Switzerland is presented for the period from 1919 to 2012. The assessment is based on two different data sets: (1) hazard information adhering to legally binding land use planning restrictions and (2) information on building types combined from different national-level spatial data. We discuss these transdisciplinary dynamics and focus on economic, social, and institutional interdependencies and interactions between human and physical systems. Exposure changes in response to multiple drivers, including population growth and land use conflicts. The results show that whereas some regional assets are associated with a strong increase in exposure to hazards, others are characterized by a below-average level of exposure. The spatiotemporal results indicate relatively stable hot spots in the European Alps. These results coincide with the topography of the countries and with the respective range of economic activities and political settings. Furthermore, the differences between management approaches as a result of multiple institutional settings are discussed. A coevolutionary framework widens the explanatory power of multiple drivers to changes in exposure and risk and supports a shift from structural, security-based policies toward an integrated, risk-based natural hazard management system.

  17. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps

    PubMed Central

    Fuchs, Sven; Röthlisberger, Veronika; Thaler, Thomas; Zischg, Andreas; Keiler, Margreth

    2017-01-01

    A coevolutionary perspective is adopted to understand the dynamics of exposure to mountain hazards in the European Alps. A spatially explicit, object-based temporal assessment of elements at risk to mountain hazards (river floods, torrential floods, and debris flows) in Austria and Switzerland is presented for the period from 1919 to 2012. The assessment is based on two different data sets: (1) hazard information adhering to legally binding land use planning restrictions and (2) information on building types combined from different national-level spatial data. We discuss these transdisciplinary dynamics and focus on economic, social, and institutional interdependencies and interactions between human and physical systems. Exposure changes in response to multiple drivers, including population growth and land use conflicts. The results show that whereas some regional assets are associated with a strong increase in exposure to hazards, others are characterized by a below-average level of exposure. The spatiotemporal results indicate relatively stable hot spots in the European Alps. These results coincide with the topography of the countries and with the respective range of economic activities and political settings. Furthermore, the differences between management approaches as a result of multiple institutional settings are discussed. A coevolutionary framework widens the explanatory power of multiple drivers to changes in exposure and risk and supports a shift from structural, security-based policies toward an integrated, risk-based natural hazard management system. PMID:28267154

  18. Flood hazard management from a coevolutionary perspective: exposure and policy response in the European Alps

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Röthlisberger, Veronika; Thaler, Thomas; Zischg, Andreas; Keiler, Margreth

    2017-04-01

    A coevolutionary perspective is adopted to understand the dynamics of exposure to hydrological hazards in the European Alps. A spatially explicit, object-based temporal assessment of elements at risk to flood hazards (river floods, torrential floods and debris flows) in Austria and Switzerland is presented for the 1919-2012 period. The assessment is based on two different datasets, (a) hazard information adhering to legally binding land use planning restrictions and (b) information on building types combined from different national level spatial data. We discuss these transdisciplinary dynamics and focus on economic, social and institutional interdependencies and interactions between human and physical systems. Exposure changes in the response to multiple drivers, including population growth and land use conflicts. The results show that while some regional assets are associated with a strong increase in exposure to hazards, others are characterized by a below-average level of exposure. The spatiotemporal results indicate relatively stable hot spots in the European Alps. These results coincide with the topography of the countries and with the respective range of economic activities and political settings. Furthermore, the differences between management approaches as a result of multiple institutional settings are discussed. A coevolutionary framework widens the explanatory power of multiple drivers to changes in exposure and risk, and supports a shift from structural, security-based policies towards an integrated, risk-based natural hazard management system.

  19. Evaluating Hierarchical Structure in Music Annotations

    PubMed Central

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M.; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement. PMID:28824514

  20. Spatio-temporal Analysis for New York State SPARCS Data

    PubMed Central

    Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng

    2017-01-01

    Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148

  1. Improvement of TOPEX/POSEIDON and Jason-1 Geophysical Data Record for Global Change Studies and Coastal Applications

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    1999-01-01

    The Earth's modem climate change has been characterized by interlinked changes in temperature, CO2, ice sheets and sea level. Global sea level change is a critical indicator for study of contemporary climate change. Sea level rise appears to have accelerated since the ice sheet retreats have stopped some 5000 years ago and it is estimated that the sea level rise has been approx. 15 cm over the last century. Contemporary radar altimeters represent the only technique capable of monitoring global sea level change with accuracy approaching 1 mm/yr and with a temporal scale of days and a spatial scale of 100 km or longer. This report highlights the major accomplishments of the TOPEX/POSEIDON (T/P) Extended Mission and Jason-1 science investigation. The primary objectives of the investigation include the calibration and improvement of T/P and Jason-1 altimeter data for global sea level change and coastal tide and circulation studies. The scientific objectives of the investigation include: (1) the calibration and improvement of T/P and Jason-1 data as a reference measurement system for the accurate cross-linking with other altimeter systems (Seasat, Geosat, ERS-1, ERS-2, GFO-1, and Envisat), (2) the improved determination and the associated uncertainties of the long-term (15-year) global mean sea level change using multiple altimeters, (3) the characterization of the sea level change by analyses of independent data, including tide gauges, sea surface temperature, and (4) the improvement coastal radar altimetry for studies including coastal ocean tide modeling and coastal circulation. Major accomplishments of the investigation include the development of techniques for low-cost radar altimeter absolute calibration (including the associated GPS-buoy technology), coastal ocean tide modeling, and the linking of multiple altimeter systems and the resulting determination of the 15-year (1985-1999) global mean sea level variations. The current rate of 15-year sea level rise observed by multiple satellite altimetry is +2.3 +/- 1.2 mm/yr, which is in general agreement with the analysis of sparsely distributed tide gauge measurements for the same data span, and represents the first such determination of sea level change in its kind.

  2. Models of Temporal Discounting 1937-2000: An Interdisciplinary Exchange between Economics and Psychology.

    PubMed

    Grüne-Yanoff, Till

    2015-12-01

    Today's models of temporal discounting are the result of multiple interdisciplinary exchanges between psychology and economics. Although these exchanges did not result in an integrated discipline, they had important effects on all disciplines involved. The paper describes these exchanges from the 1930s onwards, focusing on two episodes in particular: an attempted synthesis by psychiatrist George Ainslie and others in the 1970s; and the attempted application of this new discounting model by a generation of economists and psychologists in the 1980s, which ultimately ended in the diversity of measurements disappointment. I draw four main conclusions. First, multiple notions of temporal discounting must be conceptually distinguished. Second, behavioral economics is not an integration or unification of psychology and economics. Third, the analysis identifies some central disciplinary markers that distinguish modeling strategies in economics and psychology. Finally, it offers a case of interdisciplinary success that does not fit the currently dominant account of interdisciplinarity as integration.

  3. Temporal Context in Speech Processing and Attentional Stream Selection: A Behavioral and Neural perspective

    PubMed Central

    Zion Golumbic, Elana M.; Poeppel, David; Schroeder, Charles E.

    2012-01-01

    The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the ‘Cocktail Party’ effect. Yet, the neural mechanisms underlying on-line speech decoding and attentional stream selection are not well understood. We review findings from behavioral and neurophysiological investigations that underscore the importance of the temporal structure of speech for achieving these perceptual feats. We discuss the hypothesis that entrainment of ambient neuronal oscillations to speech’s temporal structure, across multiple time-scales, serves to facilitate its decoding and underlies the selection of an attended speech stream over other competing input. In this regard, speech decoding and attentional stream selection are examples of ‘active sensing’, emphasizing an interaction between proactive and predictive top-down modulation of neuronal dynamics and bottom-up sensory input. PMID:22285024

  4. Adjustable repetition-rate multiplication of optical pulses using fractional temporal Talbot effect with preceded binary intensity modulation

    NASA Astrophysics Data System (ADS)

    Xie, Qijie; Zheng, Bofang; Shu, Chester

    2017-05-01

    We demonstrate a simple approach for adjustable multiplication of optical pulses in a fiber using the temporal Talbot effect. Binary electrical patterns are used to control the multiplication factor in our approach. The input 10 GHz picosecond pulses are pedestal-free and are shaped directly from a CW laser. The pulses are then intensity modulated by different sets of binary patterns prior to entering a fiber of fixed dispersion. Tunable repetition-rate multiplication by different factors of 2, 4, and 8 have been achieved and up to 80 GHz pulse train has been experimentally generated. We also evaluate numerically the influence of the extinction ratio of the intensity modulator on the performance of the multiplied pulse train. In addition, the impact of the modulator bias on the uniformity of the output pulses has also been analyzed through simulation and experiment and a good agreement is reached. Last, we perform numerical simulation on the RF spectral characteristics of the output pulses. The insensitivity of the signal-to-subharmonic noise ratio (SSNR) to the laser linewidth shows that our multiplication scheme is highly tolerant to the incoherence of the input optical pulses.

  5. A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium

    PubMed Central

    2012-01-01

    Background Ticks are the most important pathogen vectors in Europe. They are known to be influenced by environmental factors, but these links are usually studied at specific temporal or spatial scales. Focusing on Ixodes ricinus in Belgium, we attempt to bridge the gap between current “single-sided” studies that focus on temporal or spatial variation only. Here, spatial and temporal patterns of ticks are modelled together. Methods A multi-level analysis of the Ixodes ricinus patterns in Belgium was performed. Joint effects of weather, habitat quality and hunting on field sampled tick abundance were examined at two levels, namely, sampling level, which is associated with temporal dynamics, and site level, which is related to spatial dynamics. Independent variables were collected from standard weather station records, game management data and remote sensing-based land cover data. Results At sampling level, only a marginally significant effect of daily relative humidity and temperature on the abundance of questing nymphs was identified. Average wind speed of seven days prior to the sampling day was found important to both questing nymphs and adults. At site level, a group of landscape-level forest fragmentation indices were highlighted for both questing nymph and adult abundance, including the nearest-neighbour distance, the shape and the aggregation level of forest patches. No cross-level effects or spatial autocorrelation were found. Conclusions Nymphal and adult ticks responded differently to environmental variables at different spatial and temporal scales. Our results can advise spatio-temporal extents of environment data collection for continuing empirical investigations and potential parameters for biological tick models. PMID:22830528

  6. Relativity theory and time perception: single or multiple clocks?

    PubMed

    Buhusi, Catalin V; Meck, Warren H

    2009-07-22

    Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  7. Spatial and Temporal Scaling of Thermal Infrared Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Goel, Narendra S.

    1995-01-01

    Although remote sensing has a central role to play in the acquisition of synoptic data obtained at multiple spatial and temporal scales to facilitate our understanding of local and regional processes as they influence the global climate, the use of thermal infrared (TIR) remote sensing data in this capacity has received only minimal attention. This results from some fundamental challenges that are associated with employing TIR data collected at different space and time scales, either with the same or different sensing systems, and also from other problems that arise in applying a multiple scaled approach to the measurement of surface temperatures. In this paper, we describe some of the more important problems associated with using TIR remote sensing data obtained at different spatial and temporal scales, examine why these problems appear as impediments to using multiple scaled TIR data, and provide some suggestions for future research activities that may address these problems. We elucidate the fundamental concept of scale as it relates to remote sensing and explore how space and time relationships affect TIR data from a problem-dependency perspective. We also describe how linearity and non-linearity observation versus parameter relationships affect the quantitative analysis of TIR data. Some insight is given on how the atmosphere between target and sensor influences the accurate measurement of surface temperatures and how these effects will be compounded in analyzing multiple scaled TIR data. Last, we describe some of the challenges in modeling TIR data obtained at different space and time scales and discuss how multiple scaled TIR data can be used to provide new and important information for measuring and modeling land-atmosphere energy balance processes.

  8. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    PubMed

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  9. Spatiotemporal dynamics of similarity-based neural representations of facial identity.

    PubMed

    Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene

    2017-01-10

    Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.

  10. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations

    PubMed Central

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727

  11. Primary Drug Resistance in South Africa: Data from 10 Years of Surveys

    PubMed Central

    Manasa, Justen; Katzenstein, David; Cassol, Sharon; Newell, Marie-Louise

    2012-01-01

    Abstract HIV-1 transmitted drug resistance (TDR) could reverse the gains of antiretroviral rollout. To ensure that current first-line therapies remain effective, TDR levels in recently infected treatment-naive patients need to be monitored. A literature review and data mining exercise was carried out to determine the temporal trends in TDR in South Africa. In addition, 72 sequences from seroconvertors identified from Africa Centre's 2010 HIV surveillance round were also examined for TDR. Publicly available data on TDR were retrieved from GenBank, curated in RegaDB, and analyzed using the Calibrated Population Resistance Program. There was no evidence of TDR from the 2010 rural KwaZulu Natal samples. Ten datasets with a total of 1618 sequences collected between 2000 and 2010 were pooled to provide a temporal analysis of TDR. The year with the highest TDR rate was 2002 [6.67%, 95% confidence interval (CI): 3.09–13.79%; n=6/90]. After 2002, TDR levels returned to <5% (WHO low-level threshold) and showed no statistically significant increase in the interval between 2002 and 2010. The most common mutations were associated with NNRTI resistance, K103N, followed by Y181C and Y188C/L. Five sequences had multiple resistance mutations associated with NNRTI resistance. There is no evidence of TDR in rural KwaZulu-Natal. TDR levels in South Africa have remained low following a downward trend since 2003. Continuous vigilance in monitoring of TDR is needed as more patients are initiated and maintained onto antiretroviral therapy. PMID:22251009

  12. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals

    PubMed Central

    Koos, Tibor; Buzsáki, György

    2012-01-01

    Neuronal control with high temporal precision is possible with optogenetics, yet currently available methods do not enable to control independently multiple locations in the brains of freely moving animals. Here, we describe a diode-probe system that allows real-time and location-specific control of neuronal activity at multiple sites. Manipulation of neuronal activity in arbitrary spatiotemporal patterns is achieved by means of an optoelectronic array, manufactured by attaching multiple diode-fiber assemblies to high-density silicon probes or wire tetrodes and implanted into the brains of animals that are expressing light-responsive opsins. Each diode can be controlled separately, allowing localized light stimulation of neuronal activators and silencers in any temporal configuration and concurrent recording of the stimulated neurons. Because the only connections to the animals are via a highly flexible wire cable, unimpeded behavior is allowed for circuit monitoring and multisite perturbations in the intact brain. The capacity of the system to generate unique neural activity patterns facilitates multisite manipulation of neural circuits in a closed-loop manner and opens the door to addressing novel questions. PMID:22496529

  13. A Hierarchical and Dynamic Seascape Framework for Scaling and Comparing Ocean Biodiversity Observations

    NASA Astrophysics Data System (ADS)

    Kavanaugh, M.; Muller-Karger, F. E.; Montes, E.; Santora, J. A.; Chavez, F.; Messié, M.; Doney, S. C.

    2016-02-01

    The pelagic ocean is a complex system in which physical, chemical and biological processes interact to shape patterns on multiple spatial and temporal scales and levels of ecological organization. Monitoring and management of marine seascapes must consider a hierarchical and dynamic mosaic, where the boundaries, extent, and location of features change with time. As part of a Marine Biodiversity Observing Network demonstration project, we conducted a multiscale classification of dynamic coastal seascapes in the northeastern Pacific and Gulf of Mexico using multivariate satellite and modeled data. Synoptic patterns were validated using mooring and ship-based observations that spanned multiple trophic levels and were collected as part of several long-term monitoring programs, including the Monterey Bay and Florida Keys National Marine Sanctuaries. Seascape extent and habitat diversity varied as a function of both seasonal and interannual forcing. We discuss the patterns of in situ observations in the context of seascape dynamics and the effect on rarefaction, spatial patchiness, and tracking and comparing ecosystems through time. A seascape framework presents an effective means to translate local biodiversity measurements to broader spatiotemporal scales, scales relevant for modeling the effects of global change and enabling whole-ecosystem management in the dynamic ocean.

  14. A Multiple-Label Guided Clustering Algorithm for Historical Document Dating and Localization.

    PubMed

    He, Sheng; Samara, Petros; Burgers, Jan; Schomaker, Lambert

    2016-11-01

    It is of essential importance for historians to know the date and place of origin of the documents they study. It would be a huge advancement for historical scholars if it would be possible to automatically estimate the geographical and temporal provenance of a handwritten document by inferring them from the handwriting style of such a document. We propose a multiple-label guided clustering algorithm to discover the correlations between the concrete low-level visual elements in historical documents and abstract labels, such as date and location. First, a novel descriptor, called histogram of orientations of handwritten strokes, is proposed to extract and describe the visual elements, which is built on a scale-invariant polar-feature space. In addition, the multi-label self-organizing map (MLSOM) is proposed to discover the correlations between the low-level visual elements and their labels in a single framework. Our proposed MLSOM can be used to predict the labels directly. Moreover, the MLSOM can also be considered as a pre-structured clustering method to build a codebook, which contains more discriminative information on date and geography. The experimental results on the medieval paleographic scale data set demonstrate that our method achieves state-of-the-art results.

  15. Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer's disease, and related to neuropathological disease stage.

    PubMed

    Naylor, Jennifer C; Hulette, Christine M; Steffens, David C; Shampine, Lawrence J; Ervin, John F; Payne, Victoria M; Massing, Mark W; Kilts, Jason D; Strauss, Jennifer L; Calhoun, Patrick S; Calnaido, Rohana P; Blazer, Daniel G; Lieberman, Jeffrey A; Madison, Roger D; Marx, Christine E

    2008-08-01

    It is currently unknown whether cerebrospinal fluid (CSF) neurosteroid levels are related to brain neurosteroid levels in humans. CSF and brain dehydroepiandrosterone (DHEA) levels are elevated in patients with Alzheimer's disease (AD), but it is unclear whether CSF DHEA levels are correlated with brain DHEA levels within the same subject cohort. We therefore determined DHEA and pregnenolone levels in AD patients (n = 25) and cognitively intact control subjects (n = 16) in both CSF and temporal cortex. DHEA and pregnenolone levels were determined by gas chromatography/mass spectrometry preceded by HPLC. Frozen CSF and temporal cortex specimens were provided by the Alzheimer's Disease Research Center at Duke University Medical Center. Data were analyzed by Mann-Whitney U test statistic and Spearman correlational analyses. CSF DHEA levels are positively correlated with temporal cortex DHEA levels (r = 0.59, P < 0.0001) and neuropathological disease stage (Braak and Braak) (r = 0.42, P = 0.007). CSF pregnenolone levels are also positively correlated with temporal cortex pregnenolone levels (r = 0.57, P < 0.0001) and tend to be correlated with neuropathological disease stage (Braak) (r = 0.30, P = 0.06). CSF DHEA levels are elevated (P = 0.032), and pregnenolone levels tend to be elevated (P = 0.10) in patients with AD, compared with cognitively intact control subjects. These findings indicate that CSF DHEA and pregnenolone levels are correlated with temporal cortex brain levels of these neurosteroids and that CSF DHEA is elevated in AD and related to neuropathological disease stage. Neurosteroids may thus be relevant to the pathophysiology of AD.

  16. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan.

    PubMed

    Badgley, Brian D; Ferguson, John; Vanden Heuvel, Amy; Kleinheinz, Gregory T; McDermott, Colleen M; Sandrin, Todd R; Kinzelman, Julie; Junion, Emily A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan

    USGS Publications Warehouse

    Badgley, B.D.; Ferguson, J.; Heuvel, A.V.; Kleinheinz, G.T.; McDermott, C.M.; Sandrin, T.R.; Kinzelman, J.; Junion, E.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.

  18. Trends and geographic patterns in drug-poisoning death rates in the U.S., 1999-2009.

    PubMed

    Rossen, Lauren M; Khan, Diba; Warner, Margaret

    2013-12-01

    Drug poisoning mortality has increased substantially in the U.S. over the past 3 decades. Previous studies have described state-level variation and urban-rural differences in drug-poisoning deaths, but variation at the county level has largely not been explored in part because crude county-level death rates are often highly unstable. The goal of the study was to use small-area estimation techniques to produce stable county-level estimates of age-adjusted death rates (AADR) associated with drug poisoning for the U.S., 1999-2009, in order to examine geographic and temporal variation. Population-based observational study using data on 304,087 drug-poisoning deaths in the U.S. from the 1999-2009 National Vital Statistics Multiple Cause of Death Files (analyzed in 2012). Because of the zero-inflated and right-skewed distribution of drug-poisoning death rates, a two-stage modeling procedure was used in which the first stage modeled the probability of observing a death for a given county and year, and the second stage modeled the log-transformed drug-poisoning death rate given that a death occurred. Empirical Bayes estimates of county-level drug-poisoning death rates were mapped to explore temporal and geographic variation. Only 3% of counties had drug-poisoning AADRs greater than ten per 100,000 per year in 1999-2000, compared to 54% in 2008-2009. Drug-poisoning AADRs grew by 394% in rural areas compared to 279% for large central metropolitan counties, but the highest drug-poisoning AADRs were observed in central metropolitan areas from 1999 to 2009. There was substantial geographic variation in drug-poisoning mortality across the U.S. Published by American Journal of Preventive Medicine on behalf of American Journal of Preventive Medicine.

  19. Implications of temporal variation in maternal care for the prediction of neurobiological and behavioral outcomes in offspring

    PubMed Central

    Peña, Catherine Jensen; Champagne, Frances A.

    2014-01-01

    Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Amongst juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects. PMID:23398440

  20. Comparison of temporal properties of auditory single units in response to cochlear infrared laser stimulation recorded with multi-channel and single tungsten electrodes

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodong; Xia, Nan; Young, Hunter; Richter, Claus-Peter

    2015-02-01

    Auditory prostheses may benefit from Infrared Neural Stimulation (INS) because optical stimulation allows for spatially selective activation of neuron populations. Selective activation of neurons in the cochlear spiral ganglion can be determined in the central nucleus of the inferior colliculus (ICC) because the tonotopic organization of frequencies in the cochlea is maintained throughout the auditory pathway. The activation profile of INS is well represented in the ICC by multichannel electrodes (MCEs). To characterize single unit properties in response to INS, however, single tungsten electrodes (STEs) should be used because of its better signal-to-noise ratio. In this study, we compared the temporal properties of ICC single units recorded with MCEs and STEs in order to characterize the response properties of single auditory neurons in response to INS in guinea pigs. The length along the cochlea stimulated with infrared radiation corresponded to a frequency range of about 0.6 octaves, similar to that recorded with STEs. The temporal properties of single units recorded with MCEs showed higher maximum rates, shorter latencies, and higher firing efficiencies compared to those recorded with STEs. When the preset amplitude threshold for triggering MCE recordings was raised to twice over the noise level, the temporal properties of the single units became similar to those obtained with STEs. Undistinguishable neural activities from multiple sources in MCE recordings could be responsible for the response property difference between MCEs and STEs. Thus, caution should be taken in single unit recordings with MCEs.

  1. Evaluating Anthropogenic Carbon Emissions in the Urban Salt Lake Valley through Inverse Modeling: Combining Long-term CO2 Observations and an Emission Inventory using a Multiple-box Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.

    2016-12-01

    The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.

  2. Dealing with Multiple Solutions in Structural Vector Autoregressive Models.

    PubMed

    Beltz, Adriene M; Molenaar, Peter C M

    2016-01-01

    Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.

  3. Testing for shared biogeographic history in the lower Central American freshwater fish assemblage using comparative phylogeography: concerted, independent, or multiple evolutionary responses?

    PubMed Central

    Bagley, Justin C; Johnson, Jerald B

    2014-01-01

    A central goal of comparative phylogeography is determining whether codistributed species experienced (1) concerted evolutionary responses to past geological and climatic events, indicated by congruent spatial and temporal patterns (“concerted-response hypothesis”); (2) independent responses, indicated by spatial incongruence (“independent-response hypothesis”); or (3) multiple responses (“multiple-response hypothesis”), indicated by spatial congruence but temporal incongruence (“pseudocongruence”) or spatial and temporal incongruence (“pseudoincongruence”). We tested these competing hypotheses using DNA sequence data from three livebearing fish species codistributed in the Nicaraguan depression of Central America (Alfaro cultratus, Poecilia gillii, and Xenophallus umbratilis) that we predicted might display congruent responses due to co-occurrence in identical freshwater drainages. Spatial analyses recovered different subdivisions of genetic structure for each species, despite shared finer-scale breaks in northwestern Costa Rica (also supported by phylogenetic results). Isolation-with-migration models estimated incongruent timelines of among-region divergences, with A. cultratus and Xenophallus populations diverging over Miocene–mid-Pleistocene while P. gillii populations diverged over mid-late Pleistocene. Approximate Bayesian computation also lent substantial support to multiple discrete divergences over a model of simultaneous divergence across shared spatial breaks (e.g., Bayes factor [B10] = 4.303 for Ψ [no. of divergences] > 1 vs. Ψ = 1). Thus, the data support phylogeographic pseudoincongruence consistent with the multiple-response hypothesis. Model comparisons also indicated incongruence in historical demography, for example, support for intraspecific late Pleistocene population growth was unique to P. gillii, despite evidence for finer-scale population expansions in the other taxa. Empirical tests for phylogeographic congruence indicate that multiple evolutionary responses to historical events have shaped the population structure of freshwater species codistributed within the complex landscapes in/around the Nicaraguan depression. Recent community assembly through different routes (i.e., different past distributions or colonization routes), and intrinsic ecological differences among species, has likely contributed to the unique phylogeographical patterns displayed by these Neotropical fishes. PMID:24967085

  4. Inhibitory and modulatory inputs to the vocal central pattern generator of a teleost fish

    PubMed Central

    Rosner, Elisabeth; Rohmann, Kevin N.; Bass, Andrew H.

    2018-01-01

    Abstract Vocalization is a behavioral feature that is shared among multiple vertebrate lineages, including fish. The temporal patterning of vocal communication signals is set, in part, by central pattern generators (CPGs). Toadfishes are well‐established models for CPG coding of vocalization at the hindbrain level. The vocal CPG comprises three topographically separate nuclei: pre‐pacemaker, pacemaker, motor. While the connectivity between these nuclei is well understood, their neurochemical profile remains largely unexplored. The highly vocal Gulf toadfish, Opsanus beta, has been the subject of previous behavioral, neuroanatomical and neurophysiological studies. Combining transneuronal neurobiotin‐labeling with immunohistochemistry, we map the distribution of inhibitory neurotransmitters and neuromodulators along with gap junctions in the vocal CPG of this species. Dense GABAergic and glycinergic label is found throughout the CPG, with labeled somata immediately adjacent to or within CPG nuclei, including a distinct subset of pacemaker neurons co‐labeled with neurobiotin and glycine. Neurobiotin‐labeled motor and pacemaker neurons are densely co‐labeled with the gap junction protein connexin 35/36, supporting the hypothesis that transneuronal neurobiotin‐labeling occurs, at least in part, via gap junction coupling. Serotonergic and catecholaminergic label is also robust within the entire vocal CPG, with additional cholinergic label in pacemaker and prepacemaker nuclei. Likely sources of these putative modulatory inputs are neurons within or immediately adjacent to vocal CPG neurons. Together with prior neurophysiological investigations, the results reveal potential mechanisms for generating multiple classes of social context‐dependent vocalizations with widely divergent temporal and spectral properties. PMID:29424431

  5. Temporal dynamics of direct N2O fluxes from agro-ecosystems in cold climates: importance of year-round measurements in multiple cropping systems

    NASA Astrophysics Data System (ADS)

    Wagner-Riddle, C.; Tenuta, M.

    2014-12-01

    Soil N2O fluxes (direct emissions) are highly variable in time and space due to soil, weather and management drivers. In cold climates, freeze/thaw cycles and short growing seasons can enhance soil N2O production contributing to the temporal variability of fluxes. Year-round measurements of N2O fluxes in multiple cropping systems are needed to decrease the uncertainty of annual emission estimates and to devise mitigation practices for emission reduction in cold climates. We have deployed a micrometeorological flux-gradient approach coupled to a tunable diode laser absorption spectroscopy system at two long-term sites in Canada: Elora, Ontario (2000-2014) and Glenlea, Manitoba (2006-2014). Quasi-simultaneous half-hourly flux measurements on four 4-ha fields within a level and aerodynamically homogeneous landscape were obtained allowing for comparison of crop type and/or management practices within and between years. Annual crops such as corn, soybeans, wheat, and barley received typical inorganic fertilizer and/or manure applications, and best management practices such as timing of application and reduced tillage were studied. Perennial grass-alfalfa hayfields were compared to annual crops during selected time periods. Here we synthesize the long-term datasets from these two sites, and quantify the overall contribution of non-growing season (mainly freeze/thaw cycles) and growing season (mainly nitrogen application) to annual emission totals. Uncertainties of regional estimates for cold-climates will be assessed using these long-term datasets.

  6. Model-free uncertainty estimation in stochastical optical fluctuation imaging (SOFI) leads to a doubled temporal resolution

    PubMed Central

    Vandenberg, Wim; Duwé, Sam; Leutenegger, Marcel; Moeyaert, Benjamien; Krajnik, Bartosz; Lasser, Theo; Dedecker, Peter

    2016-01-01

    Stochastic optical fluctuation imaging (SOFI) is a super-resolution fluorescence imaging technique that makes use of stochastic fluctuations in the emission of the fluorophores. During a SOFI measurement multiple fluorescence images are acquired from the sample, followed by the calculation of the spatiotemporal cumulants of the intensities observed at each position. Compared to other techniques, SOFI works well under conditions of low signal-to-noise, high background, or high emitter densities. However, it can be difficult to unambiguously determine the reliability of images produced by any superresolution imaging technique. In this work we present a strategy that enables the estimation of the variance or uncertainty associated with each pixel in the SOFI image. In addition to estimating the image quality or reliability, we show that this can be used to optimize the signal-to-noise ratio (SNR) of SOFI images by including multiple pixel combinations in the cumulant calculation. We present an algorithm to perform this optimization, which automatically takes all relevant instrumental, sample, and probe parameters into account. Depending on the optical magnification of the system, this strategy can be used to improve the SNR of a SOFI image by 40% to 90%. This gain in information is entirely free, in the sense that it does not require additional efforts or complications. Alternatively our approach can be applied to reduce the number of fluorescence images to meet a particular quality level by about 30% to 50%, strongly improving the temporal resolution of SOFI imaging. PMID:26977356

  7. Ecosystem Processes at the Watershed Scale: Stability and Resilience of Catchment Spatial Structure and Function to Disturbance

    NASA Astrophysics Data System (ADS)

    Baron, J.; Mast, A.; Clow, D. W.; Wetherbee, G. A.

    2014-12-01

    Ecohydrological systems evolve spontaneously in response to geologic, hydroclimate and biodiversity drivers. The stability and resilience of these systems to multiple disturbances can be addressed over specific temporal extents, potentially embedded within long term transience in response to geologic or climate change. The limits of ecohydrological resilience of system state in terms of vegetation canopy and soil catenae and the space/time distribution of water, carbon and nutrient cycling is determined by a set of critical feedbacks and potential substitutions of plant functional forms in response to disturbance. The ability of forest systems to return to states functionally similar to states prior to major disturbance, or combinations of multiple disturbances, is a critical question given increasing hydroclimate extremes, biological invasions, and human disturbance. Over the past century, forest landscape ecological patterns appear to have the ability to recover from significant disturbance and re-establish similar hydrological and ecological function in humid, biodiverse regions such as the southern Appalachians, and potentially drier forest ecosystems. Understanding and prediction of past and future long term dynamics requires explicit representation of spatial and temporal feedbacks and dependencies between hydrological, ecosystem and geomorphic processes, and the spatial pattern of species or plant functional type (PFT). Comprehensive models of watershed ecohydrological resilience requires careful balance between the level of process and parameter detail between the interacting components, relative to the structure, organization, space and time scales of the landscape.

  8. Through a glass darkly: some insights on change talk via magnetoencephalography.

    PubMed

    Houck, Jon M; Moyers, Theresa B; Tesche, Claudia D

    2013-06-01

    Motivational interviewing (MI) is a directive, client-centered therapeutic method employed in the treatment of substance abuse, with strong evidence of effectiveness. To date, the sole mechanism of action in MI with any consistent empirical support is "change talk" (CT), which is generally defined as client within-session speech in support of a behavior change. "Sustain talk" (ST) incorporates speech in support of the status quo. MI maintains that during treatment, clients essentially talk themselves into change. Multiple studies have now supported this theory, linking within-session speech to substance use outcomes. Although a causal chain has been established linking therapist behavior, client CT, and substance use outcome, the neural substrate of CT has been largely uncharted. We addressed this gap by measuring neural responses to clients' own CT using magnetoencephalography (MEG), a noninvasive neuroimaging technique with excellent spatial and temporal resolution. Following a recorded MI session, MEG was used to measure brain activity while participants heard multiple repetitions of their CT and ST utterances from that session, intermingled and presented in a random order. Results suggest that CT processing occurs in a right-hemisphere network that includes the inferior frontal gyrus, insula, and superior temporal cortex. These results support a representation of CT at the neural level, consistent with the role of these structures in self-perception. This suggests that during treatment sessions, clinicians who are able to evoke this special kind of language are tapping into neural circuitry that may be essential to behavior change. 2013 APA, all rights reserved

  9. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking

    PubMed Central

    Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems. PMID:27187178

  10. Cerebral dopaminergic and glutamatergic transmission relate to different subjective responses of acute alcohol intake: an in vivo multimodal imaging study.

    PubMed

    Leurquin-Sterk, Gil; Ceccarini, Jenny; Crunelle, Cleo Lina; Weerasekera, Akila; de Laat, Bart; Himmelreich, Uwe; Bormans, Guy; Van Laere, Koen

    2018-05-01

    Converging preclinical evidence links extrastriatal dopamine release and glutamatergic transmission via the metabotropic glutamate receptor 5 (mGluR5) to the rewarding properties of alcohol. To date, human evidence is lacking on how and where in the brain these processes occur. Mesocorticolimbic dopamine release upon intravenous alcohol administration and mGluR5 availability were measured in 11 moderate social drinkers by single-session [ 18 F]fallypride and [ 18 F]FPEB positron emission tomography, respectively. Additionally, baseline and postalcohol glutamate and glutamine levels in the anterior cingulate cortex (ACC) were measured by using proton-magnetic resonance spectroscopy. To investigate differences in reward domains linked to both neurotransmitters, regional imaging data were related to subjective alcohol responses. Alcohol induced significant [ 18 F]fallypride displacement in the prefrontal cortex (PFC), temporal and parietal cortices and thalamus (P < 0.05, corrected for multiple comparisons). Dopamine release in the ACC and orbitofrontal and ventromedial PFCs were correlated with subjective 'liking' and 'wanting' effects (P < 0.05). In contrast, baseline mGluR5 availability was positively correlated with the 'high' effect of alcohol in dorsolateral, ventrolateral and ventromedial PFCs and in the medial temporal lobe, thalamus and caudate nucleus (P < 0.05). Although neither proton-magnetic resonance spectroscopy glutamate nor glutamine levels were affected by alcohol, baseline ACC glutamate levels were negatively associated with the alcohol 'liking' effect (P < 0.003). These data reveal new mechanistic understanding and differential neurobiological underpinnings of the effects of acute alcohol consumption on human behavior. Specifically, prefrontal dopamine release may encode alcohol 'liking' and 'wanting' effects in specific areas underlying value processing and motivation, whereas mGluR5 availability in distinct prefrontal-temporal-subcortical regions is more related to the alcohol 'high' effect. © 2017 Society for the Study of Addiction.

  11. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking.

    PubMed

    Pârvu, Ovidiu; Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems.

  12. Cognitive decline and brain volume loss are signatures of cerebral Aβ deposition identified with PIB

    PubMed Central

    Storandt, Martha; Mintun, Mark A.; Head, Denise; Morris, John C.

    2009-01-01

    Objective To examine the relation of amyloid-beta (Aβ) levels in cerebral cortex with structural brain integrity and cognitive performance in older people with a Clinical Dementia Rating (CDR) of 0 (cognitively normal). Methods The relations between mean cortical [11C] PIB binding potential values, proportional to the density of fibrillar Aβ binding sites in the brain, concurrent regional brain volumes as assessed by magnetic resonance imaging, and both concurrent and longitudinal (up to 19 years) cognitive performance in multiple domains were examined in 135 CDR 0 individuals aged 65 to 88 years. Results Elevated cerebral Aβ levels, in some cases comparable to that seen in individuals with Alzheimer's disease, were observed in 29 CDR 0 individuals. Significantly smaller regional volumes in the hippocampus, temporal neocortex, anterior cingulate, and posterior cingulate were observed in these CDR 0 individuals with elevated Aβ levels. Concurrent cognitive performance was unrelated to Aβ levels but was related to regional brain volumes with the exception of caudate. Longitudinal cognitive decline was associated with elevated Aβ levels and decreased hippocampal volume. Decline was not limited to episodic memory but included working memory and visuospatial abilities as well. Interpretation [11C] PIB, an in vivo measure of cerebral amyloidosis, is associated with regionally specific brain atrophy cross-sectionally and a pattern of longitudinal cognitive decline in multiple cognitive domains that occurs prior to the clinical diagnosis of Alzheimer' disease. These findings contribute to the understanding of the cognitive and structural consequences of Aβ levels in CDR 0 older adults. PMID:20008651

  13. A modeling study of the impacts of Mississippi River diversion and sea-level rise on water quality of a deltaic estuary

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.

    2017-01-01

    Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.

  14. Antiretroviral drug costs and prescription patterns in British Columbia, Canada: 1996-2011.

    PubMed

    Nosyk, Bohdan; Montaner, Julio S G; Yip, Benita; Lima, Viviane D; Hogg, Robert S

    2014-04-01

    Treatment options and therapeutic guidelines have evolved substantially since highly active antiretroviral treatment (HAART) became the standard of HIV care in 1996. We conducted the present population-based analysis to characterize the determinants of direct costs of HAART over time in British Columbia, Canada. We considered individuals ever receiving HAART in British Columbia from 1996 to 2011. Linear mixed-effects regression models were constructed to determine the effects of demographic indicators, clinical stage, and treatment characteristics on quarterly costs of HAART (in 2010$CDN) among individuals initiating in different temporal periods. The least-square mean values were estimated by CD4 category and over time for each temporal cohort. Longitudinal data on HAART recipients (N = 9601, 17.6% female, mean age at initiation = 40.5) were analyzed. Multiple regression analyses identified demographics, treatment adherence, and pharmacological class to be independently associated with quarterly HAART costs. Higher CD4 cell counts were associated with modestly lower costs among pre-HAART initiators [least-square means (95% confidence interval), CD4 > 500: 4674 (4632-4716); CD4: 350-499: 4765 (4721-4809) CD4: 200-349: 4826 (4780-4871); CD4 <200: 4809 (4759-4859)]; however these differences were not significant among post-2003 HAART initiators. Population-level mean costs increased through 2006 and stabilized post-2003 HAART initiators incurred quarterly costs up to 23% lower than pre-2000 HAART initiators in 2010. Our results highlight the magnitude of the temporal changes in HAART costs, and disparities between recent and pre-HAART initiators. This methodology can improve the precision of economic modeling efforts by using detailed cost functions for annual, population-level medication costs according to the distribution of clients by clinical stage and era of treatment initiation.

  15. Temporal Trends in Population Level Impacts of Risk Factors for Sexually Transmitted Infections Among Men Who Have Sex with Men, Heterosexual Men, and Women: Disparities by Sexual Identity (1998-2013).

    PubMed

    Wand, Handan; Knight, Vickie; Lu, Heng; McNulty, Anna

    2017-12-21

    Sexually transmitted infections (STIs) remain a significant public health problem worldwide. We aimed to describe the temporal trends and relative contributions of established risk factors to STIs among sexual health center attendees. This retrospective study included more than 90,000 individuals who attended a sexual health center in Sydney, Australia, during the period 1998-2013. Multivariable logistic regression models were used to identify the correlates of STI diagnoses for three groups: men who have sex with men (MSM), heterosexual men, and women separately. Trends in population attributable risk percentages (PAR%) were estimated to assess the relative contributions of the risk factors on STI diagnosis. STI diagnosis rates among sexual health clinic attendees increased by 75% from 16 to 28% among MSM and more than doubled among heterosexual men and women (7-15 and 5-12%, respectively). Inconsistent condom use, three or more sex partners, sex overseas, past STI diagnosis, and contact with an STI case collectively contributed 61, 74 and 55% of the STI diagnoses among MSM, heterosexual men and women, respectively. Increase in STI diagnosis associated with temporal trends in combined risk factors including condomless sex, multiple sex partners, past STI diagnosis, and contact with an STI case. Although the majority of the factors considered in this study have been significantly associated with STI positivity in all three groups, their overall population level contributions to the epidemic have changed substantially. Our results indicated significant disparities between the MSM and heterosexual men and women as well as sex-specific differences in terms of sexual behaviors.

  16. Retrograde amnesia in patients with hippocampal, medial temporal, temporal lobe, or frontal pathology.

    PubMed

    Bright, Peter; Buckman, Joseph; Fradera, Alex; Yoshimasu, Haruo; Colchester, Alan C F; Kopelman, Michael D

    2006-01-01

    There is considerable controversy concerning the theoretical basis of retrograde amnesia (R.A.). In the present paper, we compare medial temporal, medial plus lateral temporal, and frontal lesion patients on a new autobiographical memory task and measures of the more semantic aspects of memory (famous faces and news events). Only those patients with damage extending beyond the medial temporal cortex into the lateral temporal regions showed severe impairment on free recall remote memory tasks, and this held for both the autobiographical and the more semantic memory tests. However, on t-test analysis, the medial temporal group was impaired in retrieving recent autobiographical memories. Within the medial temporal group, those patients who had combined hippocampal and parahippocampal atrophy (H+) on quantified MRI performed somewhat worse on the semantic tasks than those with atrophy confined to the hippocampi (H-), but scores were very similar on autobiographical episodic recall. Correlational analyses with regional MRI volumes showed that lateral temporal volume was correlated significantly with performance on all three retrograde amnesia tests. The findings are discussed in terms of consolidation, reconsolidation, and multiple trace theory: We suggest that a widely distributed network of regions underlies the retrieval of past memories, and that the extent of lateral temporal damage appears to be critical to the emergence of a severe remote memory impairment.

  17. Pre-Processed Recursive Lattice Reduction for Complexity Reduction in Spatially and Temporally Correlated MIMO Channels

    NASA Astrophysics Data System (ADS)

    An, Chan-Ho; Yang, Janghoon; Jang, Seunghun; Kim, Dong Ku

    In this letter, a pre-processed lattice reduction (PLR) scheme is developed for the lattice reduction aided (LRA) detection of multiple input multiple-output (MIMO) systems in spatially correlated channel. The PLR computes the LLL-reduced matrix of the equivalent matrix, which is the product of the present channel matrix and unimodular transformation matrix for LR of spatial correlation matrix, rather than the present channel matrix itself. In conjunction with PLR followed by recursive lattice reduction (RLR) scheme [7], pre-processed RLR (PRLR) is shown to efficiently carry out the LR of the channel matrix, especially for the burst packet message in spatially and temporally correlated channel while matching the performance of conventional LRA detection.

  18. Visual representation of spatiotemporal structure

    NASA Astrophysics Data System (ADS)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  19. Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex

    PubMed Central

    Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2008-01-01

    The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma – 40 Hz and beta2 – 25 Hz), coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 – 15 Hz) showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant – approximately the golden mean – which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing – parallel information processing on multiple temporal scales. PMID:18946516

  20. Factors controlling spatial and temporal patterns of multiple pesticide compounds in groundwater (Hesbaye chalk aquifer, Belgium).

    PubMed

    Hakoun, Vivien; Orban, Philippe; Dassargues, Alain; Brouyère, Serge

    2017-04-01

    Factors governing spatial and temporal patterns of pesticide compounds (pesticides and metabolites) concentrations in chalk aquifers remain unclear due to complex flow processes and multiple sources. To uncover which factors govern pesticide compound concentrations in a chalk aquifer, we develop a methodology based on time series analyses, uni- and multivariate statistics accounting for concentrations below detection limits. The methodology is applied to long records (1996-2013) of a restricted compound (bentazone), three banned compounds (atrazine, diuron and simazine) and two metabolites (deethylatrazine (DEA) and 2,6-dichlorobenzamide (BAM)) sampled in the Hesbaye chalk aquifer in Belgium. In the confined area, all compounds had non-detects fractions >80%. By contrast, maximum concentrations exceeded EU's drinking-water standard (100 ng L -1 ) in the unconfined area. This contrast confirms that recent recharge and polluted water did not reach the confined area, yet. Multivariate analyses based on variables representative of the hydrogeological setting revealed higher diuron and simazine concentrations in the southeast of the unconfined area, where urban activities dominate land use and where the aquifer lacks protection from a less permeable layer of hardened chalk. At individual sites, positive correlations (up to τ=0.48 for bentazone) between pesticide compound concentrations and multi-annual groundwater level fluctuations confirm occurrences of remobilization. A downward temporal trend of atrazine concentrations likely reflects decreasing use of this compound over the last 28 years. However, the lack of a break in concentrations time series and maximum concentrations of atrazine, simazine, DEA and BAM exceeding EU's standard post-ban years provide evidence of persistence. Contrasting upward trends in bentazone concentrations show that a time lag is required for restriction measures to be efficient. These results shed light on factors governing pesticide compound concentrations in chalk aquifers. The developed methodology is not restricted to chalk aquifers, it could be transposed to study other pollutants with concentrations below detection limits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A geospatial database model for the management of remote sensing datasets at multiple spectral, spatial, and temporal scales

    NASA Astrophysics Data System (ADS)

    Ifimov, Gabriela; Pigeau, Grace; Arroyo-Mora, J. Pablo; Soffer, Raymond; Leblanc, George

    2017-10-01

    In this study the development and implementation of a geospatial database model for the management of multiscale datasets encompassing airborne imagery and associated metadata is presented. To develop the multi-source geospatial database we have used a Relational Database Management System (RDBMS) on a Structure Query Language (SQL) server which was then integrated into ArcGIS and implemented as a geodatabase. The acquired datasets were compiled, standardized, and integrated into the RDBMS, where logical associations between different types of information were linked (e.g. location, date, and instrument). Airborne data, at different processing levels (digital numbers through geocorrected reflectance), were implemented in the geospatial database where the datasets are linked spatially and temporally. An example dataset consisting of airborne hyperspectral imagery, collected for inter and intra-annual vegetation characterization and detection of potential hydrocarbon seepage events over pipeline areas, is presented. Our work provides a model for the management of airborne imagery, which is a challenging aspect of data management in remote sensing, especially when large volumes of data are collected.

  2. Classification of epilepsy types through global network analysis of scalp electroencephalograms

    NASA Astrophysics Data System (ADS)

    Lee, Uncheol; Kim, Seunghwan; Jung, Ki-Young

    2006-04-01

    Epilepsy is a dynamic disease in which self-organization and emergent structures occur dynamically at multiple levels of neuronal integration. Therefore, the transient relationship within multichannel electroencephalograms (EEGs) is crucial for understanding epileptic processes. In this paper, we show that the global relationship within multichannel EEGs provides us with more useful information in classifying two different epilepsy types than pairwise relationships such as cross correlation. To demonstrate this, we determine the global network structure within channels of the scalp EEG based on the minimum spanning tree method. The topological dissimilarity of the network structures from different types of temporal lobe epilepsy is described in the form of the divergence rate and is computed for 11 patients with left (LTLE) and right temporal lobe epilepsy (RTLE). We find that patients with LTLE and RTLE exhibit different large scale network structures, which emerge at the epoch immediately before the seizure onset, not in the preceding epochs. Our results suggest that patients with the two different epilepsy types display distinct large scale dynamical networks with characteristic epileptic network structures.

  3. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  4. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  6. Short- and long-term rhythmic interventions: perspectives for language rehabilitation.

    PubMed

    Schön, Daniele; Tillmann, Barbara

    2015-03-01

    This paper brings together different perspectives on the investigation and understanding of temporal processing and temporal expectations. We aim to bridge different temporal deficit hypotheses in dyslexia, dysphasia, or deafness in a larger framework, taking into account multiple nested temporal scales. We present data testing the hypothesis that temporal attention can be influenced by external rhythmic auditory stimulation (i.e., musical rhythm) and benefits subsequent language processing, including syntax processing and speech production. We also present data testing the hypothesis that phonological awareness can be influenced by several months of musical training and, more particularly, rhythmic training, which in turn improves reading skills. Together, our data support the hypothesis of a causal role of rhythm-based processing for language processing and acquisition. These results open new avenues for music-based remediation of language and hearing impairment. © 2015 New York Academy of Sciences.

  7. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  8. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  9. Combining feature extraction and classification for fNIRS BCIs by regularized least squares optimization.

    PubMed

    Heger, Dominic; Herff, Christian; Schultz, Tanja

    2014-01-01

    In this paper, we show that multiple operations of the typical pattern recognition chain of an fNIRS-based BCI, including feature extraction and classification, can be unified by solving a convex optimization problem. We formulate a regularized least squares problem that learns a single affine transformation of raw HbO(2) and HbR signals. We show that this transformation can achieve competitive results in an fNIRS BCI classification task, as it significantly improves recognition of different levels of workload over previously published results on a publicly available n-back data set. Furthermore, we visualize the learned models and analyze their spatio-temporal characteristics.

  10. On remembering and forgetting our autobiographical pasts: retrograde amnesia and Andrew Mayes's contribution to neuropsychological method.

    PubMed

    Kopelman, M D; Bright, P

    2012-11-01

    Andrew Mayes's contribution to the neuropsychology of memory has consisted in steadily teasing out the nature of the memory deficit in the amnesic syndrome. This has been done with careful attention to matters of method at all stages. This particularly applies to his investigations of forgetting rates in amnesia and to his studies of retrograde amnesia. Following a brief outline of his work, the main current theories of retrograde amnesia are considered: consolidation theory, episodic-to-semantic shift theory, and multiple trace theory. Findings across the main studies in Alzheimer dementia are reviewed to illustrate what appears to be consistently found, and what is much more inconsistent. A number of problems and issues in current theories are then highlighted--including the nature of the temporal gradient, correlations with the extent of temporal lobe damage, what we would expect 'normal' remote memory curves to look like, how they would appear in focal retrograde amnesia, and whether we can pinpoint retrograde amnesia to hippocampal/medial temporal damage on the basis of existing studies. A recent study of retrograde amnesia is re-analysed to demonstrate temporal gradients on recollected episodic memories in hippocampal/medial temporal patients. It is concluded that there are two requirements for better understanding of the nature of retrograde amnesia: (i) a tighter, Mayesian attention to method in terms of both the neuropsychology and neuroimaging in investigations of retrograde amnesia; and (ii) acknowledging that there may be multiple factors underlying a temporal gradient, and that episodic and semantic memory show important interdependencies at both encoding and retrieval. Such factors may be critical to understanding what is remembered and what is forgotten from our autobiographical pasts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Advances in memory research: single-neuron recordings from the human medial temporal lobe aid our understanding of declarative memory.

    PubMed

    Viskontas, Indre V

    2008-12-01

    To gain a complete understanding of how the brain functions, both in illness and good health, data from multiple levels of analysis must be integrated. Technical advances have made direct recordings of neuronal activity deep inside the human brain tractable, providing a rare glimpse into cellular processes during long-term memory formation. Recent findings using intracranial recordings in the medial temporal lobe inform current neural network models of memory, and may lead to a more comprehensive understanding of the neural basis of memory-related processes. These recordings have shown that cells in the hippocampus appear to support declarative learning by distinguishing novel and familiar stimuli via changes in firing patterns. Some cells with highly selective and invariant responses have also been described, and these responses seem to represent abstract concepts such as identity, rather than superficial perceptual features of items. Importantly, however, both selective and globally responsive cells are capable of changing their preferred stimulus depending on the conscious demands of the task. Firing patterns of human medial temporal lobe neurons indicate that cells can be both plastic and stable in terms of the information that they code; although some cells show highly selective and reproducible excitatory responses when presented with a familiar object, other cells change their receptive fields in line with changes in experience and the cognitive environment.

  12. Toward an understanding of the cerebral substrates of woman's orgasm.

    PubMed

    Bianchi-Demicheli, Francesco; Ortigue, Stephanie

    2007-09-20

    The way women experience orgasm is of interest to scientists, clinicians, and laypeople. Whereas the origin and the function of a woman's orgasm remains controversial, the current models of sexual function acknowledge a combined role of central (spinal and cerebral) and peripheral processes during orgasm experience. At the central level, although it is accepted that the spinal cord drives orgasm, the cerebral involvement and cognitive representation of a woman's orgasm has not been extensively investigated. Important gaps in our knowledge remain. Recently, the astonishing advances of neuroimaging techniques applied in parallel with a neuropsychological approach allowed the unravelling of specific functional neuroanatomy of a woman's orgasm. Here, clinical and experimental findings on the cortico-subcortical pathway of a woman's orgasm are reviewed and compared with the neural basis of a man's orgasm. By defining the specific brain areas that sustain the assumed higher-order representation of a woman's orgasm, this review provides a foundation for future studies. The next challenge of functional imaging and neuropsychological studies is to understand the hierarchical interactions between these multiple cortical areas, not only with a correlation analysis but also with high spatio-temporal resolution techniques demonstrating the causal necessity, the temporal time course and the direction of the causality. Further studies using a multi-disciplinary approach are needed to identify the spatio-temporal dynamic of a woman's orgasm, its dysfunctions and possible new treatments.

  13. Time perception and illness acceptance among remitting-relapsing multiple sclerosis patients under treatment.

    PubMed

    Król, Joanna; Szcześniak, Małgorzata; Koziarska, Dorota; Rzepa, Teresa

    2015-01-01

    The aim of the study was to determine temporal orientation in patients diagnosed with RR-MS as compared with that of healthy individuals; to analyse self-evaluated acceptance levels in terms of physical and psychological condition and self-reliance; an attempt to identify factors of illness acceptance in patients with RR-MS including temporal perspective. Acceptance of Illness Scale (AIS, adapted into Polish by Z. Juczyński), Zimbardo Time Perspective Inventory (ZTPI, adapted into Polish by M. Mażewski), and original interview aimed to assess socio-demographic data and self-evaluated physical as well as psychological condition and self-reliance of patients with MS (referred to the neurological testing according to the EDSS). Patients with RR-MS focus on fatalistic and hedonistic present more than healthy individuals. They also tend to reflect on their negative past experience. Acceptance of illness correlated positively with subjective assessment of physical and psychological condition as well as self-reliance, and negatively with objective disability score (measured with the use of EDSS) and a factor considering time of disease duration. Avoiding contemplation of negative past and concentrating on hedonistic future constitute significant predictors of illness acceptance. These results may be of importance in terms of holistic approach to treatment of RR-MS patients. In the initial stage of the disease progression, patients might benefit from psychological support due to change in temporal orientation.

  14. Application of satellite radar altimetry for near-real time monitoring of floods

    NASA Astrophysics Data System (ADS)

    Lee, H.; Calmant, S.; Shum, C.; Kim, J.; Huang, Z.; Bettadpur, S. V.; Alsdorf, D. E.

    2011-12-01

    According to the 2004 UNESCO World Disasters Report, it is estimated that flooding affected 116 million people globally, causing about 7000 deaths and leading to $7.5 billion in losses. The report also indicates that flood is the most frequently occurring disaster type among all other natural disasters. Hence, timely monitoring of changing of river, wetland and lake/reservoir levels is important to support disaster monitoring and proper response. Yet, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water discharge and storage changes globally. Although satellite radar altimetry has been successfully used to observe water height changes over rivers, lakes, reservoirs, and wetlands, there have been few studies for near-real time monitoring of floods mainly due to its limited spatial and temporal sampling of surface water elevations. In this study, we monitor flood by examining its spatial and temporal origin of the flooding and its timely propagation using multiple altimeter-river intersections over the entire hydrologic basin. We apply our method to the Amazon 2009 flood event that caused the most severe flooding in more than two decades. We also compare our results with inundated areas estimated from ALOS PALSAR ScanSAR measurements and GRACE 15-day Quick-Look (QL) gravity field data product. Our developed method would potentially enhance the capability of satellite altimeter toward near-real time monitoring of floods and mitigating their hazards.

  15. The COP9 Signalosome Converts Temporal Hormone Signaling to Spatial Restriction on Neural Competence

    PubMed Central

    Huang, Yi-Chun; Lu, Yu-Nung; Wu, June-Tai; Chien, Cheng-Ting; Pi, Haiwei

    2014-01-01

    During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM. PMID:25393278

  16. How humans search for targets through time: A review of data and theory from the attentional blink

    PubMed Central

    Dux, Paul E.; Marois, Réne

    2009-01-01

    Under conditions of rapid serial visual presentation (RSVP), subjects display a reduced ability to report the second of two targets (Target 2; T2) in a stream of distractors if it appears within 200–500 ms of Target 1 (T1). This effect, known as the attentional blink (AB), has been central in characterizing the limits of humans’ ability to consciously perceive stimuli distributed across time. Here we review theoretical accounts of the AB and examine how they explain key findings in the literature. We conclude that the AB arises from attentional demands of T1 for selection, working memory encoding, episodic registration and response selection, which prevents this high-level central resource from being applied to T2 at short T1–T2 lags. T1 processing also transiently impairs the re-deployment of these attentional resources to subsequent targets, and the inhibition of distractors that appear in close temporal proximity to T2. While these findings are consistent with a multi-factorial account of the AB, they can also be largely explained by assuming that the activation of these multiple processes depend on a common capacity-limited attentional process to select behaviorally relevant events presented amongst temporally distributed distractors. Thus, at its core, the attentional blink may ultimately reveal the temporal limits of the deployment of selective attention. PMID:19933555

  17. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  18. Levels of Processing with Free and Cued Recall and Unilateral Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Lespinet-Najib, Veronique; N'Kaoua, Bernard; Sauzeon, Helene; Bresson, Christel; Rougier, Alain; Claverie, Bernard

    2004-01-01

    This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right ''RTLE''=24; left ''LTLE''=24) and a normal group (n=24). The results indicated…

  19. Temporal scale dependent interactions between multiple environmental disturbances in microcosm ecosystems.

    PubMed

    Garnier, Aurélie; Pennekamp, Frank; Lemoine, Mélissa; Petchey, Owen L

    2017-12-01

    Global environmental change has negative impacts on ecological systems, impacting the stable provision of functions, goods, and services. Whereas effects of individual environmental changes (e.g. temperature change or change in resource availability) are reasonably well understood, we lack information about if and how multiple changes interact. We examined interactions among four types of environmental disturbance (temperature, nutrient ratio, carbon enrichment, and light) in a fully factorial design using a microbial aquatic ecosystem and observed responses of dissolved oxygen saturation at three temporal scales (resistance, resilience, and return time). We tested whether multiple disturbances combine in a dominant, additive, or interactive fashion, and compared the predictability of dissolved oxygen across scales. Carbon enrichment and shading reduced oxygen concentration in the short term (i.e. resistance); although no other effects or interactions were statistically significant, resistance decreased as the number of disturbances increased. In the medium term, only enrichment accelerated recovery, but none of the other effects (including interactions) were significant. In the long term, enrichment and shading lengthened return times, and we found significant two-way synergistic interactions between disturbances. The best performing model (dominant, additive, or interactive) depended on the temporal scale of response. In the short term (i.e. for resistance), the dominance model predicted resistance of dissolved oxygen best, due to a large effect of carbon enrichment, whereas none of the models could predict the medium term (i.e. resilience). The long-term response was best predicted by models including interactions among disturbances. Our results indicate the importance of accounting for the temporal scale of responses when researching the effects of environmental disturbances on ecosystems. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. a Web-Based Interactive Platform for Co-Clustering Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Wu, X.; Poorthuis, A.; Zurita-Milla, R.; Kraak, M.-J.

    2017-09-01

    Since current studies on clustering analysis mainly focus on exploring spatial or temporal patterns separately, a co-clustering algorithm is utilized in this study to enable the concurrent analysis of spatio-temporal patterns. To allow users to adopt and adapt the algorithm for their own analysis, it is integrated within the server side of an interactive web-based platform. The client side of the platform, running within any modern browser, is a graphical user interface (GUI) with multiple linked visualizations that facilitates the understanding, exploration and interpretation of the raw dataset and co-clustering results. Users can also upload their own datasets and adjust clustering parameters within the platform. To illustrate the use of this platform, an annual temperature dataset from 28 weather stations over 20 years in the Netherlands is used. After the dataset is loaded, it is visualized in a set of linked visualizations: a geographical map, a timeline and a heatmap. This aids the user in understanding the nature of their dataset and the appropriate selection of co-clustering parameters. Once the dataset is processed by the co-clustering algorithm, the results are visualized in the small multiples, a heatmap and a timeline to provide various views for better understanding and also further interpretation. Since the visualization and analysis are integrated in a seamless platform, the user can explore different sets of co-clustering parameters and instantly view the results in order to do iterative, exploratory data analysis. As such, this interactive web-based platform allows users to analyze spatio-temporal data using the co-clustering method and also helps the understanding of the results using multiple linked visualizations.

  1. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.

    PubMed

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-11-05

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.

  2. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences

    PubMed Central

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-01-01

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424

  3. Multilevel depth and image fusion for human activity detection.

    PubMed

    Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng

    2013-10-01

    Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.

  4. Distributed Representation of Visual Objects by Single Neurons in the Human Brain

    PubMed Central

    Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.

    2015-01-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044

  5. ePRISM: A case study in multiple proxy and mixed temporal resolution integration

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.

    2010-01-01

    As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.

  6. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy

    PubMed Central

    Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael

    2012-01-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252

  7. Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection

    PubMed Central

    Denison, Rachel N.; Silver, Michael A.

    2014-01-01

    During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685

  8. Supporting Children in Mastering Temporal Relations of Stories: The TERENCE Learning Approach

    ERIC Educational Resources Information Center

    Di Mascio, Tania; Gennari, Rosella; Melonio, Alessandra; Tarantino, Laura

    2016-01-01

    Though temporal reasoning is a key factor for text comprehension, existing proposals for visualizing temporal information and temporal connectives proves to be inadequate for children, not only for their levels of abstraction and detail, but also because they rely on pre-existing mental models of time and temporal connectives, while in the case of…

  9. Individuation of objects and events: a developmental study.

    PubMed

    Wagner, Laura; Carey, Susan

    2003-12-01

    This study investigates children's ability to use language to guide their choice of individuation criterion in the domains of objects and events. Previous work (Shipley, E. F., & Shepperson, B. (1990). Countable entities: developmental changes. Cognition, 34, 109-136.) has shown that children have a strong bias to use a spatio-temporal individuation strategy when counting objects and that children will ignore a conflicting linguistic description in favor of this spatio-temporal bias. Experiment 1 asked children (3-, 4-, and 5-year-olds) and adults to count objects and events under different linguistic descriptions. In the object task, subjects counted pictures of familiar objects split into multiple pieces (as in Shipley, E. F., & Shepperson, B. (1990). Countable entities: developmental changes. Cognition, 34, 109-136.) and described either using an appropriate kind label (e.g. "car") or the general term "thing". In the event task, subjects watched short animated movies consisting of a goal-oriented event achieved via multiple, temporally separated steps. The events were described either with an appropriate telic predicate targeting the goal (e.g. "paint a flower") or with an atelic predicate targeting the steps in the process (e.g. "paint") and the subjects' task was to count the events. Relative to adults, children preferred a spatio-temporal counting strategy in both tasks; there was no difference among the three groups of children. However, children were able to significantly change their counting strategy to follow the linguistic description in the event but not the object task. Experiment 2 extended the object task to include counting of other types of non-spatio-temporal units such as sub-parts of objects and collections. Results showed that children could use the linguistic descriptions to guide their counting strategy for these new items, though they continued to show a bias for a spatio-temporal individuation strategy with the collections. We suggest potential cognitive origins for the spatio-temporal individuation bias and how it interacts with children's developing linguistic knowledge.

  10. T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.

    PubMed

    Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael

    2017-01-01

    A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  12. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  13. Role of mastoid pneumatization in temporal bone fractures.

    PubMed

    Ilea, A; Butnaru, A; Sfrângeu, S A; Hedeşiu, M; Dudescu, C M; Berce, P; Chezan, H; Hurubeanu, L; Trombiţaş, V E; Câmpian, R S; Albu, S

    2014-07-01

    The mastoid portion of the temporal bone has multiple functional roles in the organism, including regulation of pressure in the middle ear and protection of the inner ear. We investigated whether mastoid pneumatization plays a role in the protection of vital structures in the temporal bone during direct lateral trauma. The study was performed on 20 human temporal bones isolated from cadavers. In the study group formed by 10 temporal bone samples, mastoid cells were removed and the resulting neocavities were filled. The mastoids were maintained intact in the control group. All samples were impacted at the same speed and kinetic energy. The resultant temporal bone fractures were evaluated by CT. Temporal squama fractures were 2.88 times more frequent, and mastoid fractures were 2.76 times more frequent in the study group. Facial nerve canal fractures were 6 times more frequent in the study group and involved all the segments of the facial nerve. Carotid canal fractures and jugular foramen fractures were 2.33 and 2.5 times, respectively, more frequent in the study group. The mastoid portion of the temporal bone plays a role in the absorption and dispersion of kinetic energy during direct lateral trauma to the temporal bone, reducing the incidence of fracture in the setting of direct trauma. © 2014 by American Journal of Neuroradiology.

  14. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    PubMed

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P <0.005). Multiple comparison analysis showed that compared with patients in the 1-month follow-up, patients in the 3-month follow-up showed that brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior temporal gyrus, left middle temporal gyrus, right temporal pole, right island of inferior frontal gyrus, and decreased in left cerebelum, left orbital inferior frontal gyrus; patients in the 12-month follow-up showed that there were no obvious increase and decrease brain function areas.Compared with patients in the 6-month follow-up, patients in the 12-month follow-up showed that there were no obvious increase brain function areas , but brain function areas decreased in bilateral middle temportal gyrus( P <0.001). Brain regions were positively related to blood ammonia in right middle cingulate gyrus, right central operculum, left parahippocampal gyrus, while as brain regions were negatively related to blood ammonia in bilateral medial prefrontal lobe, anterior cingulate and paracingulate gyrus, right top edge of angular gyrus, right middle temportal gyrus, left anterior central gyrus, left posterior central gyrus (all P <0.005). Conclusion: The resting state brain function increased or decreased with course of disease in cirrhosis patients after TIPS operation. The brain activity of limbic system and sensorimotor system all had significant correlation with blood ammonia levels. The blood ammonia level and the function of relative brain regions after 6-month with TIPS operation can be gradually improved.

  15. Zooplankton and the Ocean Carbon Cycle.

    PubMed

    Steinberg, Deborah K; Landry, Michael R

    2017-01-03

    Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.

  16. Geovisualization of Local and Regional Migration Using Web-mined Demographics

    NASA Astrophysics Data System (ADS)

    Schuermann, R. T.; Chow, T. E.

    2014-11-01

    The intent of this research was to augment and facilitate analyses, which gauges the feasibility of web-mined demographics to study spatio-temporal dynamics of migration. As a case study, we explored the spatio-temporal dynamics of Vietnamese Americans (VA) in Texas through geovisualization of mined demographic microdata from the World Wide Web. Based on string matching across all demographic attributes, including full name, address, date of birth, age and phone number, multiple records of the same entity (i.e. person) over time were resolved and reconciled into a database. Migration trajectories were geovisualized through animated sprites by connecting the different addresses associated with the same person and segmenting the trajectory into small fragments. Intra-metropolitan migration patterns appeared at the local scale within many metropolitan areas. At the scale of metropolitan area, varying degrees of immigration and emigration manifest different types of migration clusters. This paper presents a methodology incorporating GIS methods and cartographic design to produce geovisualization animation, enabling the cognitive identification of migration patterns at multiple scales. Identification of spatio-temporal patterns often stimulates further research to better understand the phenomenon and enhance subsequent modeling.

  17. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data.

    PubMed

    Yang, Yong; Christakos, George; Huang, Wei; Lin, Chengda; Fu, Peihong; Mei, Yang

    2016-04-12

    Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

  18. Improved spatial and temporal characteristics of ionospheric irregularities and polar mesospheric summer echoes using coherent MIMO and aperture synthesis radar imaging

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Urco, J. M.; Milla, M. A.; Vierinen, J.

    2017-12-01

    We have recently implemented Multiple-input multiple-output (MIMO) radar techniques to resolve temporal and spatial ambiguities of ionospheric and atmospheric irregularities, with improve capabilities than previously experiments using single-input multi-output (SIMO) techniques. SIMO techniques in the atmospheric and ionospheric coherent scatter radar field are usually called aperture synthesis radar imaging. Our implementations have done at the Jicamarca Radio Observatory (JRO) in Lima, Peru, and at the Middle Atmosphere Alomar Radar System (MAARSY) in Andenes, Norway, to study equatorial electrojet (EEJ) field-aligned irregularities and polar mesospheric summer echoes (PMSE), respectively. Figure 1 shows an example of a configuration used at MAARSY and the comparison between the SIMO and MIMO resulting antenna point spread functions, respectively. Although in this work we present the details of the implementations at each facility, we will focus on the observed peculiarities of each phenomenon, making emphasis in the underlying physical mechanisms that govern their existence and their spatial and temporal modulation. For example, what are the typical horizontal scales of PMSE variability in both intensity and wind field?

  19. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Christakos, George; Huang, Wei; Lin, Chengda; Fu, Peihong; Mei, Yang

    2016-04-01

    Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

  20. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  1. Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback

    NASA Astrophysics Data System (ADS)

    Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni

    2018-04-01

    Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.

  2. 3D Printed Pediatric Temporal Bone: A Novel Training Model.

    PubMed

    Longfield, Evan A; Brickman, Todd M; Jeyakumar, Anita

    2015-06-01

    Temporal bone dissection is a fundamental element of otologic training. Cadaveric temporal bones (CTB) are the gold standard surgical training model; however, many institutions do not have ready access to them and their cost can be significant: $300 to $500. Furthermore, pediatric cadaveric temporal bones are not readily available. Our objective is to develop a pediatric temporal bone model. Temporal bone model. Tertiary Children's Hospital. Pediatric patient model. We describe the novel use of a 3D printer for the generation of a plaster training model from a pediatric high- resolution CT temporal bone scan of a normal pediatric temporal bone. Three models were produced and were evaluated. The models utilized multiple colors (white for bone, yellow for the facial nerve) and were of high quality. Two models were drilled as a proof of concept and found to be an acceptable facsimile of the patient's anatomy, rendering all necessary surgical landmarks accurately. The only negative comments pertaining to the 3D printed temporal bone as a training model were the lack of variation in hardness between cortical and cancellous bone, noting a tactile variation from cadaveric temporal bones. Our novel pediatric 3D temporal bone training model is a viable, low-cost training option for previously inaccessible pediatric temporal bone training. Our hope is that, as 3D printers become commonplace, these models could be rapidly reproduced, allowing for trainees to print models of patients before performing surgery on the living patient.

  3. Spatially extended hybrid methods: a review

    PubMed Central

    2018-01-01

    Many biological and physical systems exhibit behaviour at multiple spatial, temporal or population scales. Multiscale processes provide challenges when they are to be simulated using numerical techniques. While coarser methods such as partial differential equations are typically fast to simulate, they lack the individual-level detail that may be required in regions of low concentration or small spatial scale. However, to simulate at such an individual level throughout a domain and in regions where concentrations are high can be computationally expensive. Spatially coupled hybrid methods provide a bridge, allowing for multiple representations of the same species in one spatial domain by partitioning space into distinct modelling subdomains. Over the past 20 years, such hybrid methods have risen to prominence, leading to what is now a very active research area across multiple disciplines including chemistry, physics and mathematics. There are three main motivations for undertaking this review. Firstly, we have collated a large number of spatially extended hybrid methods and presented them in a single coherent document, while comparing and contrasting them, so that anyone who requires a multiscale hybrid method will be able to find the most appropriate one for their need. Secondly, we have provided canonical examples with algorithms and accompanying code, serving to demonstrate how these types of methods work in practice. Finally, we have presented papers that employ these methods on real biological and physical problems, demonstrating their utility. We also consider some open research questions in the area of hybrid method development and the future directions for the field. PMID:29491179

  4. Identify abnormalities in resting-state brain function between first-episode, drug-naive major depressive disorder and remitted individuals: a 3-year retrospective study.

    PubMed

    Yang, Chunxia; Zhang, Aixia; Jia, Aixiang; Ma, Jack X; Sun, Ning; Wang, Yanfang; Li, Xinrong; Liu, Zhifen; Liu, Sha; Xu, Yong; Zhang, Kerang

    2018-06-15

    This study aims to identify and characterize neurobiological markers for major depressive disorder (MDD) from resting-state brain functional MRI. We examined the abnormality in the regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) in first-episode, drug-naive major depressive disorder (fMDD), and remitted major depressive disorder (rMDD) and correlated these fluctuations with clinical markers of MDD. We conducted a retrospective study and reviewed the medical records of 43 patients with fMDD. Overall, 13 of the 43 patients who had at least 3 years of follow-up care and the 17-item Hamilton Depression rating scale less than 7 took no antidepressants for more than half a year at the end of the 3-year follow-up. We further chose a group of 14 healthy controls matched for age, sex and education level with patients with rMDD. Multiple comparison analysis was performed for ALFF and ReHo. The statistical significance level was set at P value of less than 0.05. We examined whether there were differences among the three groups in the whole-brain ALFF and ReHo during resting state. Compared with healthy controls, patients with fMDD showed significant decrease of ReHo in the right anterior lobe of cerebellum and significant increase of ReHo in the right inferior temporal gyrus, and significant decrease of ALFF in the left inferior parietal lobule and right caudate nucleus. Compared with patients with rMDD, those with fMDD showed significant increase of ReHo in the right fusiform gyrus and the left middle temporal gyrus, and significant increase of ALFF in the right superior temporal gyrus. Compared with healthy controls, patients with rMDD showed significant increase of ReHo in the right supramarginal and significant decrease of ReHo in the right precuneus, and significant decrease of ALFF in the right lingual gyrus and in the left superior frontal lobe. Only patients with fMDD showed the relatively robust increase in intrinsic activity of temporal gyrus. The temporal gyrus may play a critical role in depressive symptomatology. Abnormal right fusiform gyrus, left middle temporal gyrus, and right superior temporal gyrus alterations were present only in patients with rMDD but not in patients with fMDD, indicating that these alterations may be a therapeutic target for MDD. Abnormal right supramarginal, right precuneus, right lingual gyrus and left superior frontal lobe alterations were present only in patients with rMDD and not in healthy control, and thus may be used as a state marker of MDD.

  5. A Temporal Model of Level-Invariant, Tone-in-Noise Detection

    ERIC Educational Resources Information Center

    Berg, Bruce G.

    2004-01-01

    Level-invariant detection refers to findings that thresholds in tone-in-noise detection are unaffected by roving-level procedures that degrade energy cues. Such data are inconsistent with ideas that detection is based on the energy passed by an auditory filter. A hypothesis that detection is based on a level-invariant temporal cue is advanced.…

  6. Spatio-Temporal Variation of Longevity Clusters and the Influence of Social Development Level on Lifespan in a Chinese Longevous Area (1982–2010)

    PubMed Central

    Qin, Jian; Xia, Tianlong; Li, You; Liang, Xue; Wei, Peng; Long, Bingshuang; Lei, Mingzhi; Wei, Xiao; Tang, Xianyan; Zhang, Zhiyong

    2017-01-01

    The study aims to determine the spatial and temporal variation of a longevous region and explore the correlation between longevity and socioeconomic development. Population data at the township level were obtained from the last four population censuses (1982–2010). Five main lifespan indicators and the Human Development Index (HDI) were calculated. Getis-Ord G*, Gravity modeling, and Pearson’s r between lifespan indicators and HDI were applied. In this study, a stable longevous gathering area was discovered in Hechi during different periods. Under the influence of social and economic development, more longevous areas appeared. However, the effects of genetic and natural environmental factors on longevity were always dominant in this remote and mountainous city. Furthermore, longevity indicators lacked any significant correlation with life expectancy. No significant positive correlation was detected between lifespan indicators and HDI. Thus, we conclude that lifespan indicators can determine the spatial distribution and variation pattern of longevity from multiple dimensions. The geographical scope of longevity in Hechi City is gradually expanding, and significant spatial clustering was detected in southwestern, southern, and eastern parts of Hechi. This study also found that social economic development is likely to have a certain impact on new longevous areas, but their role on extreme longevity is not significant. PMID:28753971

  7. Multi-level, multi-scale resource selection functions and resistance surfaces for conservation planning: Pumas as a case study

    PubMed Central

    Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.

    2017-01-01

    The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466

  8. Multi-level, multi-scale resource selection functions and resistance surfaces for conservation planning: Pumas as a case study.

    PubMed

    Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M

    2017-01-01

    The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.

  9. Increasing Level of Aspiration by Matching Construal Level and Temporal Distance: The Motivating Effects of Contemplating "How" Now and "Why" Later

    ERIC Educational Resources Information Center

    Fessel, Florian

    2009-01-01

    Individuals trying to achieve goals often set a level of aspiration ahead of time, that is, they determine which specific outcomes in goal pursuit they desire to obtain. In the research contained in the current dissertation, I demonstrate that temporal distance and construal level have diametrically opposing effects on level of aspiration such…

  10. Assessing risks to multiple resources affected by wildfire and forest management using an integrated probabilistic framework

    Treesearch

    Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani

    2010-01-01

    The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...

  11. Temporal aspects of tumorigenic response to individual and mixed carcinogens. [Response of mouse skin to benzo(a)pyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.E.; Burns, F.J.

    1976-02-01

    Results are reported from experiments that involved either single or multiple doses of benzo(a)pyrene in mouse skin followed by prolonged observation. Preliminary results indicate linearity in dose and time and no evidence of recovery or enhancement for multiple doses of initiator given for extended periods of time. (auth)

  12. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    NASA Astrophysics Data System (ADS)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  13. SWATShare- A Platform for Collaborative Hydrology Research and Education with Cyber-enabled Sharing, Running and Visualization of SWAT Models

    NASA Astrophysics Data System (ADS)

    Rajib, M. A.; Merwade, V.; Song, C.; Zhao, L.; Kim, I. L.; Zhe, S.

    2014-12-01

    Setting up of any hydrologic model requires a large amount of efforts including compilation of all the data, creation of input files, calibration and validation. Given the amount of efforts involved, it is possible that models for a watershed get created multiple times by multiple groups or organizations to accomplish different research, educational or policy goals. To reduce the duplication of efforts and enable collaboration among different groups or organizations around an already existing hydrology model, a platform is needed where anyone can search for existing models, perform simple scenario analysis and visualize model results. The creator and users of a model on such a platform can then collaborate to accomplish new research or educational objectives. From this perspective, a prototype cyber-infrastructure (CI), called SWATShare, is developed for sharing, running and visualizing Soil Water Assessment Tool (SWAT) models in an interactive GIS-enabled web environment. Users can utilize SWATShare to publish or upload their own models, search and download existing SWAT models developed by others, run simulations including calibration using high performance resources provided by XSEDE and Cloud. Besides running and sharing, SWATShare hosts a novel spatio-temporal visualization system for SWAT model outputs. In temporal scale, the system creates time-series plots for all the hydrology and water quality variables available along the reach as well as in watershed-level. In spatial scale, the system can dynamically generate sub-basin level thematic maps for any variable at any user-defined date or date range; and thereby, allowing users to run animations or download the data for subsequent analyses. In addition to research, SWATShare can also be used within a classroom setting as an educational tool for modeling and comparing the hydrologic processes under different geographic and climatic settings. SWATShare is publicly available at https://www.water-hub.org/swatshare.

  14. Economic Expansion Is a Major Determinant of Physician Supply and Utilization

    PubMed Central

    Cooper, Richard A; Getzen, Thomas E; Laud, Prakash

    2003-01-01

    Objective To assess the relationship between levels of economic development and the supply and utilization of physicians. Data Sources Data were obtained from the American Medical Association, American Osteopathic Association, Organization for Economic Cooperation and Development (OECD), Bureau of Health Professions, Bureau of Labor Statistics, Bureau of Economic Analysis, Census Bureau, Health Care Financing Administration, and historical sources. Study Design Economic development, expressed as real per capita gross domestic product (GDP) or personal income, was correlated with per capita health care labor and physician supply within countries and states over periods of time spanning 25–70 years and across countries, states, and metropolitan statistical areas (MSAs) at multiple points in time over periods of up to 30 years. Longitudinal data were analyzed in four complementary ways: (1) simple univariate regressions; (2) regressions in which temporal trends were partialled out; (3) time series comparing percentage differences across segments of time; and (4) a bivariate Granger causality test. Cross-sectional data were assessed at multiple time points by means of univariate regression analyses. Principal Findings Under each analytic scenario, physician supply correlated with differences in GDP or personal income. Longitudinal correlations were associated with temporal lags of approximately 5 years for health employment and 10 years for changes in physician supply. The magnitude of changes in per capita physician supply in the United States was equivalent to differences of approximately 0.75 percent for each 1.0 percent difference in GDP. The greatest effects of economic expansion were on the medical specialties, whereas the surgical and hospital-based specialties were affected to a lesser degree, and levels of economic expansion had little influence on family/general practice. Conclusions Economic expansion has a strong, lagged relationship with changes in physician supply. This suggests that economic projections could serve as a gauge for projecting the future utilization of physician services. PMID:12785567

  15. Tick exposure and extreme climate events impact survival and threaten the persistence of a long-lived lizard.

    PubMed

    Jones, Alice R; Bull, C Michael; Brook, Barry W; Wells, Konstans; Pollock, Kenneth H; Fordham, Damien A

    2016-03-01

    Assessing the impacts of multiple, often synergistic, stressors on the population dynamics of long-lived species is becoming increasingly important due to recent and future global change. Tiliqua rugosa (sleepy lizard) is a long-lived skink (>30 years) that is adapted to survive in semi-arid environments with varying levels of parasite exposure and highly seasonal food availability. We used an exhaustive database of 30 years of capture-mark-recapture records to quantify the impacts of both parasite exposure and environmental conditions on the lizard's survival rates and long-term population dynamics. Lizard abundance was relatively stable throughout the study period; however, there were changing patterns in adult and juvenile apparent survival rates, driven by spatial and temporal variation in levels of tick exposure and temporal variation in environmental conditions. Extreme weather events during the winter and spring seasons were identified as important environmental drivers of survival. Climate models predict a dramatic increase in the frequency of extreme hot and dry winter and spring seasons in our South Australian study region; from a contemporary probability of 0.17 up to 0.47-0.83 in 2080 depending on the emissions scenario. Our stochastic population model projections showed that these future climatic conditions will induce a decline in the abundance of this long-lived reptile of up to 67% within 30 years from 2080, under worst case scenario modelling. The results have broad implications for future work investigating the drivers of population dynamics and persistence. We highlight the importance of long-term data sets and accounting for synergistic impacts between multiple stressors. We show that predicted increases in the frequency of extreme climate events have the potential to considerably and negatively influence a long-lived species, which might previously have been assumed to be resilient to environmental perturbations. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  16. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    PubMed

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Increasing socioeconomic gap between the young and old: temporal trends in health and overall deprivation in England by age, sex, urbanity and ethnicity, 2004-2015.

    PubMed

    Kontopantelis, Evangelos; Mamas, Mamas A; van Marwijk, Harm; Buchan, Iain; Ryan, Andrew M; Doran, Tim

    2018-07-01

    At a low geographical level, little is known about the associations between population characteristics and deprivation, and their trends, which would be directly affected by the house market, labour pressures and government policies. We describe temporal trends in health and overall deprivation in England by age, sex, urbanity and ethnicity. Repeated cross-sectional whole population study for England, 2004-2015, at a low geographical level (average 1500 residents). We calculated weighted medians of the Index of Multiple Deprivation (IMD) for each subgroup of interest. Over time, we observed increases in relative deprivation for people aged under 30, and aged 30-59, while median deprivation decreased for those aged 60 or over. Subgroup analyses indicated that relative overall deprivation was consistently higher for young adults (aged 20-29) and infants (aged 0-4), with increases in deprivation for the latter. Levels of overall deprivation in 2004 greatly varied by ethnicity, with the lowest levels observed for White British and the highest for Blacks. Over time, small reductions were observed in the deprivation gap between White British and all other ethnic groups. Findings were consistent across overall IMD and its health and disability subdomain, but large regional variability was also observed. Government policies, the financial crisis of 2008, education funding and the increasing cost of houses relative to real wages are important parameters in interpreting our findings. Socioeconomic deprivation is an important determinant of health and the inequalities this work highlights may have significant implications for future fiscal and healthcare policy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Information processing in the CNS: a supramolecular chemistry?

    PubMed

    Tozzi, Arturo

    2015-10-01

    How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of neurons) embodies different molecular information that hands an operational effect on neuronal computation.

  19. Spatiotemporal dynamics of similarity-based neural representations of facial identity

    PubMed Central

    Vida, Mark D.; Nestor, Adrian; Plaut, David C.; Behrmann, Marlene

    2017-01-01

    Humans’ remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level “image-based” and higher level “identity-based” model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise. PMID:28028220

  20. Deficits in Visuo-Motor Temporal Integration Impacts Manual Dexterity in Probable Developmental Coordination Disorder.

    PubMed

    Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio

    2018-01-01

    The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD.

  1. Deficits in Visuo-Motor Temporal Integration Impacts Manual Dexterity in Probable Developmental Coordination Disorder

    PubMed Central

    Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio

    2018-01-01

    The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD. PMID:29556211

  2. Coordinated Interpersonal Behaviour in Collective Dance Improvisation: The Aesthetics of Kinaesthetic Togetherness.

    PubMed

    Himberg, Tommi; Laroche, Julien; Bigé, Romain; Buchkowski, Megan; Bachrach, Asaf

    2018-02-09

    Collective dance improvisation (e.g., traditional and social dancing, contact improvisation) is a participatory, relational and embodied art form which eschews standard concepts in aesthetics. We present our ongoing research into the mechanisms underlying the lived experience of "togetherness" associated with such practices. Togetherness in collective dance improvisation is kinaesthetic (based on movement and its perception), and so can be simultaneously addressed from the perspective of the performers and the spectators, and be measured. We utilise these multiple levels of description: the first-person, phenomenological level of personal experiences, the third-person description of brain and body activity, and the level of interpersonal dynamics. Here, we describe two of our protocols: a four-person mirror game and a 'rhythm battle' dance improvisation score. Using an interpersonal closeness measure after the practice, we correlate subjective sense of individual/group connectedness and observed levels of in-group temporal synchronization. We propose that kinaesthetic togetherness, or interpersonal resonance, is integral to the aesthetic pleasure of the participants and spectators, and that embodied feeling of togetherness might play a role more generally in aesthetic experience in the performing arts.

  3. Effects of temporal correlations in social multiplex networks.

    PubMed

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-08-17

    Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

  4. Fiber-array based optogenetic prosthetic system for stimulation therapy

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra

    2012-02-01

    Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

  5. Multiple Types of Memory and Everyday Functional Assessment in Older Adults

    PubMed Central

    Beaver, Jenna

    2017-01-01

    Abstract Objective Current proxy measures for assessing everyday functioning (e.g., questionnaires, performance-based measures, and direct observation) show discrepancies in their rating of functional status. The present study investigated the relationship between multiple proxy measures of functional status and content memory (i.e., memory for information), temporal order memory, and prospective memory in an older adult sample. Method A total of 197 community-dwelling older adults who did (n = 45) or did not meet (n = 152) criteria for mild cognitive impairment (MCI), completed six different assessments of functional status (two questionnaires, two performance-based tasks, and two direct observation tasks) as well as experimental measures of content memory, prospective memory, and temporal order memory. Results After controlling for demographics and content memory, the temporal order and prospective memory measures explained a significant amount of variance in all proxy functional status measures. When all variables were entered into the regression analyses, content memory and prospective memory were found to be significant predictors of all measures of functional status, whereas temporal order memory was a significant predictor for the questionnaire and direct observation measures, but not performance-based measures. Conclusion The results suggest that direct observation and questionnaire measures may be able to capture components of everyday functioning that require context and temporal sequencing abilities, such as multi-tasking, that are not as well captured in many current laboratory performance-based measures of functional status. Future research should aim to inform the development and use of maximally effective and valid proxy measures of functional ability. PMID:28334170

  6. Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy

    PubMed Central

    Szaflarski, Jerzy P.; Gloss, David; Binder, Jeffrey R.; Gaillard, William D.; Golby, Alexandra J.; Holland, Scott K.; Ojemann, Jeffrey; Spencer, David C.; Swanson, Sara J.; French, Jacqueline A.; Theodore, William H.

    2017-01-01

    Objective: To assess the diagnostic accuracy and prognostic value of functional MRI (fMRI) in determining lateralization and predicting postsurgical language and memory outcomes. Methods: An 11-member panel evaluated and rated available evidence according to the 2004 American Academy of Neurology process. At least 2 panelists reviewed the full text of 172 articles and selected 37 for data extraction. Case reports, reports with <15 cases, meta-analyses, and editorials were excluded. Results and recommendations: The use of fMRI may be considered an option for lateralizing language functions in place of intracarotid amobarbital procedure (IAP) in patients with medial temporal lobe epilepsy (MTLE; Level C), temporal epilepsy in general (Level C), or extratemporal epilepsy (Level C). For patients with temporal neocortical epilepsy or temporal tumors, the evidence is insufficient (Level U). fMRI may be considered to predict postsurgical language deficits after anterior temporal lobe resection (Level C). The use of fMRI may be considered for lateralizing memory functions in place of IAP in patients with MTLE (Level C) but is of unclear utility in other epilepsy types (Level U). fMRI of verbal memory or language encoding should be considered for predicting verbal memory outcome (Level B). fMRI using nonverbal memory encoding may be considered for predicting visuospatial memory outcomes (Level C). Presurgical fMRI could be an adequate alternative to IAP memory testing for predicting verbal memory outcome (Level C). Clinicians should carefully advise patients of the risks and benefits of fMRI vs IAP during discussions concerning choice of specific modality in each case. PMID:28077494

  7. Temporal variability in urinary levels of drinking water disinfection byproducts dichloroacetic acid and trichloroacetic acid among men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi-Xin; Zeng, Qiang; Wang, Le

    Urinary haloacetic acids (HAAs), such as dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), have been suggested as potential biomarkers of exposure to drinking water disinfection byproducts (DBPs). However, variable exposure to and the short elimination half-lives of these biomarkers can result in considerable variability in urinary measurements, leading to exposure misclassification. Here we examined the variability of DCAA and TCAA levels in the urine among eleven men who provided urine samples on 8 days over 3 months. The urinary concentrations of DCAA and TCAA were measured by gas chromatography coupled with electron capture detection. We calculated the intraclass correlation coefficientsmore » (ICCs) to characterize the within-person and between-person variances and computed the sensitivity and specificity to assess how well single or multiple urine collections accurately determined personal 3-month average DCAA and TCAA levels. The within-person variance was much higher than the between-person variance for all three sample types (spot, first morning, and 24-h urine samples) for DCAA (ICC=0.08–0.37) and TCAA (ICC=0.09–0.23), regardless of the sampling interval. A single-spot urinary sample predicted high (top 33%) 3-month average DCAA and TCAA levels with high specificity (0.79 and 0.78, respectively) but relatively low sensitivity (0.47 and 0.50, respectively). Collecting two or three urine samples from each participant improved the classification. The poor reproducibility of the measured urinary DCAA and TCAA concentrations indicate that a single measurement may not accurately reflect individual long-term exposure. Collection of multiple urine samples from one person is an option for reducing exposure classification errors in studies exploring the effects of DBP exposure on reproductive health. - Highlights: • We evaluated the variability of DCAA and TCAA levels in the urine among men. • Urinary DCAA and TCAA levels varied greatly over a 3-month period. • Single measurement may not accurately reflect personal long-term exposure levels. • Collecting multiple samples from one person improved the exposure classification.« less

  8. Comprehensive mitigation framework for concurrent application of multiple clinical practice guidelines.

    PubMed

    Wilk, Szymon; Michalowski, Martin; Michalowski, Wojtek; Rosu, Daniela; Carrier, Marc; Kezadri-Hamiaz, Mounira

    2017-02-01

    In this work we propose a comprehensive framework based on first-order logic (FOL) for mitigating (identifying and addressing) interactions between multiple clinical practice guidelines (CPGs) applied to a multi-morbid patient while also considering patient preferences related to the prescribed treatment. With this framework we respond to two fundamental challenges associated with clinical decision support: (1) concurrent application of multiple CPGs and (2) incorporation of patient preferences into the decision making process. We significantly expand our earlier research by (1) proposing a revised and improved mitigation-oriented representation of CPGs and secondary medical knowledge for addressing adverse interactions and incorporating patient preferences and (2) introducing a new mitigation algorithm. Specifically, actionable graphs representing CPGs allow for parallel and temporal activities (decisions and actions). Revision operators representing secondary medical knowledge support temporal interactions and complex revisions across multiple actionable graphs. The mitigation algorithm uses the actionable graphs, revision operators and available (and possibly incomplete) patient information represented in FOL. It relies on a depth-first search strategy to find a valid sequence of revisions and uses theorem proving and model finding techniques to identify applicable revision operators and to establish a management scenario for a given patient if one exists. The management scenario defines a safe (interaction-free) and preferred set of activities together with possible patient states. We illustrate the use of our framework with a clinical case study describing two patients who suffer from chronic kidney disease, hypertension, and atrial fibrillation, and who are managed according to CPGs for these diseases. While in this paper we are primarily concerned with the methodological aspects of mitigation, we also briefly discuss a high-level proof of concept implementation of the proposed framework in the form of a clinical decision support system (CDSS). The proposed mitigation CDSS "insulates" clinicians from the complexities of the FOL representations and provides semantically meaningful summaries of mitigation results. Ultimately we plan to implement the mitigation CDSS within our MET (Mobile Emergency Triage) decision support environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian

    2017-11-01

    Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.

  10. Importance of Local and Regional Scales in Shaping Mycobacterial Abundance in Freshwater Lakes.

    PubMed

    Roguet, Adélaïde; Therial, Claire; Catherine, Arnaud; Bressy, Adèle; Varrault, Gilles; Bouhdamane, Lila; Tran, Viet; Lemaire, Bruno J; Vincon-Leite, Brigitte; Saad, Mohamed; Moulin, Laurent; Lucas, Françoise S

    2018-05-01

    Biogeographical studies considering the entire bacterial community may underestimate mechanisms of bacterial assemblages at lower taxonomic levels. In this context, the study aimed to identify factors affecting the spatial and temporal dynamic of the Mycobacterium, a genus widespread in aquatic ecosystems. Nontuberculous mycobacteria (NTM) density variations were quantified in the water column of freshwater lakes at the regional scale (annual monitoring of 49 lakes in the Paris area) and at the local scale (2-year monthly monitoring in Créteil Lake) by real-time quantitative PCR targeting the atpE gene. At the regional scale, mycobacteria densities in water samples ranged from 6.7 × 10 3 to 1.9 × 10 8 genome units per liter. Density variations were primarily explained by water pH, labile iron, and dispersal processes through the connection of the lakes to a river. In Créteil Lake, no spatial variation of mycobacterial densities was noticed over the 2-year monthly survey, except after large rainfall events. Indeed, storm sewer effluents locally and temporarily increased NTM densities in the water column. The temporal dynamic of the NTM densities in Créteil Lake was associated with suspended solid concentrations. No clear seasonal variation was noticed despite a shift in NTM densities observed over the 2012-2013 winter. Temporal NTM densities fluctuations were well predicted by the neutral community model, suggesting a random balance between loss and gain of mycobacterial taxa within Créteil Lake. This study highlights the importance of considering multiple spatial scales for understanding the spatio-temporal dynamic of bacterial populations in natural environments.

  11. Roles of frontal and temporal regions in reinterpreting semantically ambiguous sentences

    PubMed Central

    Vitello, Sylvia; Warren, Jane E.; Devlin, Joseph T.; Rodd, Jennifer M.

    2014-01-01

    Semantic ambiguity resolution is an essential and frequent part of speech comprehension because many words map onto multiple meanings (e.g., “bark,” “bank”). Neuroimaging research highlights the importance of the left inferior frontal gyrus (LIFG) and the left posterior temporal cortex in this process but the roles they serve in ambiguity resolution are uncertain. One possibility is that both regions are engaged in the processes of semantic reinterpretation that follows incorrect interpretation of an ambiguous word. Here we used fMRI to investigate this hypothesis. 20 native British English monolinguals were scanned whilst listening to sentences that contained an ambiguous word. To induce semantic reinterpretation, the disambiguating information was presented after the ambiguous word and delayed until the end of the sentence (e.g., “the teacher explained that the BARK was going to be very damp”). These sentences were compared to well-matched unambiguous sentences. Supporting the reinterpretation hypothesis, these ambiguous sentences produced more activation in both the LIFG and the left posterior inferior temporal cortex. Importantly, all but one subject showed ambiguity-related peaks within both regions, demonstrating that the group-level results were driven by high inter-subject consistency. Further support came from the finding that activation in both regions was modulated by meaning dominance. Specifically, sentences containing biased ambiguous words, which have one more dominant meaning, produced greater activation than those with balanced ambiguous words, which have two equally frequent meanings. Because the context always supported the less frequent meaning, the biased words require reinterpretation more often than balanced words. This is the first evidence of dominance effects in the spoken modality and provides strong support that frontal and temporal regions support the updating of semantic representations during speech comprehension. PMID:25120445

  12. Estimating Water Levels with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any of its components or the U.S. Government

  13. Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years.

    PubMed

    Garcia-Martin, Elena; Ara, Jose R; Martin, Jesus; Almarcegui, Carmen; Dolz, Isabel; Vilades, Elisa; Gil-Arribas, Laura; Fernandez, Francisco J; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2017-05-01

    To quantify retinal nerve fiber layer (RNFL) changes in patients with multiple sclerosis (MS) and healthy controls with a 5-year follow-up and to analyze correlations between disability progression and RNFL degeneration. Observational and longitudinal study. One hundred patients with relapsing-remitting MS and 50 healthy controls. All participants underwent a complete ophthalmic and electrophysiologic exploration and were re-evaluated annually for 5 years. Visual acuity (Snellen chart), color vision (Ishihara pseudoisochromatic plates), visual field examination, optical coherence tomography (OCT), scanning laser polarimetry (SLP), and visual evoked potentials. Expanded Disability Status Scale (EDSS) scores, disease duration, treatments, prior optic neuritis episodes, and quality of life (QOL; based on the 54-item Multiple Sclerosis Quality of Life Scale score). Optical coherence tomography (OCT) revealed changes in all RNFL thicknesses in both groups. In the MS group, changes were detected in average thickness and in the mean deviation using the GDx-VCC nerve fiber analyzer (Laser Diagnostic Technologies, San Diego, CA) and in the P100 latency of visual evoked potentials; no changes were detected in visual acuity, color vision, or visual fields. Optical coherence tomography showed greater differences in the inferior and temporal RNFL thicknesses in both groups. In MS patients only, OCT revealed a moderate correlation between the increase in EDSS and temporal and superior RNFL thinning. Temporal RNFL thinning based on OCT results was correlated moderately with decreased QOL. Multiple sclerosis patients exhibit a progressive axonal loss in the optic nerve fiber layer. Retinal nerve fiber layer thinning based on OCT results is a useful marker for assessing MS progression and correlates with increased disability and reduced QOL. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Solar Data Mining at Georgia State University

    NASA Astrophysics Data System (ADS)

    Angryk, R.; Martens, P. C.; Schuh, M.; Aydin, B.; Kempton, D.; Banda, J.; Ma, R.; Naduvil-Vadukootu, S.; Akkineni, V.; Küçük, A.; Filali Boubrahimi, S.; Hamdi, S. M.

    2016-12-01

    In this talk we give an overview of research projects related to solar data analysis that are conducted at Georgia State University. We will provide update on multiple advances made by our research team on the analysis of image parameters, spatio-temporal patterns mining, temporal data analysis and our experiences with big, heterogeneous solar data visualization, analysis, processing and storage. We will talk about up-to-date data mining methodologies, and their importance for big data-driven solar physics research.

  15. The Electrically Evoked Auditory Change Complex Evoked by Temporal Gaps Using Cochlear Implants or Auditory Brainstem Implants in Children With Cochlear Nerve Deficiency.

    PubMed

    He, Shuman; McFayden, Tyler C; Shahsavarani, Bahar S; Teagle, Holly F B; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A

    This study aimed to (1) establish the feasibility of measuring the electrically evoked auditory change complex (eACC) in response to temporal gaps in children with cochlear nerve deficiency (CND) who are using cochlear implants (CIs) and/or auditory brainstem implants (ABIs); and (2) explore the association between neural encoding of, and perceptual sensitivity to, temporal gaps in these patients. Study participants included 5 children (S1 to S5) ranging in age from 3.8 to 8.2 years (mean: 6.3 years) at the time of testing. All subjects were unilaterally implanted with a Nucleus 24M ABI due to CND. For each subject, two or more stimulating electrodes of the ABI were tested. S2, S3, and S5 previously received a CI in the contralateral ear. For these 3 subjects, at least two stimulating electrodes of their CIs were also tested. For electrophysiological measures, the stimulus was an 800-msec biphasic pulse train delivered to individual electrodes at the maximum comfortable level (C level). The electrically evoked responses, including the onset response and the eACC, were measured for two stimulation conditions. In the standard condition, the 800-msec pulse train was delivered uninterrupted to individual stimulating electrodes. In the gapped condition, a temporal gap was inserted into the pulse train after 400 msec of stimulation. Gap durations tested in this study ranged from 2 up to 128 msec. The shortest gap that could reliably evoke the eACC was defined as the objective gap detection threshold (GDT). For behavioral GDT measures, the stimulus was a 500-msec biphasic pulse train presented at the C level. The behavioral GDT was measured for individual stimulating electrodes using a one-interval, two-alternative forced-choice procedure. The eACCs to temporal gaps were recorded successfully in all subjects for at least one stimulating electrode using either the ABI or the CI. Objective GDTs showed intersubject variations, as well as variations across stimulating electrodes of the ABI or the CI within each subject. Behavioral GDTs were measured for one ABI electrode in S2 and for multiple ABI and CI electrodes in S5. All other subjects could not complete the task. S5 showed smaller behavioral GDTs for CI electrodes than those measured for ABI electrodes. One CI and two ABI electrodes in S5 showed comparable objective and behavioral GDTs. In contrast, one CI and two ABI electrodes in S5 and one ABI electrode in S2 showed measurable behavioral GDTs but no identifiable eACCs. The eACCs to temporal gaps were recorded in children with CND using either ABIs or CIs. Both objective and behavioral GDTs showed inter- and intrasubject variations. Consistency between results of eACC recordings and psychophysical measures of GDT was observed for some but not all ABI or CI electrodes in these subjects.

  16. Temporally Graded Activation of Neocortical Regions in Response to Memories of Different Ages

    PubMed Central

    Woodard, John L.; Seidenberg, Michael; Nielson, Kristy A.; Miller, Sarah K.; Franczak, Malgorzata; Antuono, Piero; Douville, Kelli L.; Rao, Stephen M.

    2007-01-01

    The temporally graded memory impairment seen in many neurobehavioral disorders implies different neuroanatomical pathways and/or cognitive mechanisms involved in storage and retrieval of memories of different ages. A dynamic interaction between medial-temporal and neocortical brain regions has been proposed to account for memory’s greater permanence with time. Despite considerable debate concerning its time-dependent role in memory retrieval, medial-temporal lobe activity has been well studied. However, the relative participation of neocortical regions in recent and remote memory retrieval has received much less attention. Using functional magnetic resonance imaging, we demonstrate robust, temporally graded signal differences in posterior cingulate, right middle frontal, right fusiform, and left middle temporal regions in healthy older adults during famous name identification from two disparate time epochs. Importantly, no neocortical regions demonstrated greater response to older than to recent stimuli. Our results suggest a possible role of these neocortical regions in temporally dating items in memory and in establishing and maintaining memory traces throughout the lifespan. Theoretical implications of these findings for the two dominant models of remote memory functioning (Consolidation Theory and Multiple Trace Theory) are discussed. PMID:17583988

  17. Ocean Color and Earth Science Data Records

    NASA Astrophysics Data System (ADS)

    Maritorena, S.

    2014-12-01

    The development of consistent, high quality time series of biogeochemical products from a single ocean color sensor is a difficult task that involves many aspects related to pre- and post-launch instrument calibration and characterization, stability monitoring and the removal of the contribution of the atmosphere which represents most of the signal measured at the sensor. It is even more challenging to build Climate Data Records (CDRs) or Earth Science Data Records (ESDRs) from multiple sensors as design, technology and methodologies (bands, spectral/spatial resolution, Cal/Val, algorithms) differ from sensor to sensor. NASA MEaSUREs, ESA Climate Change Initiative (CCI) and IOCCG Virtual Constellation are some of the underway efforts that investigate or produce ocean color CDRs or ESDRs from the recent and current global missions (SeaWiFS, MODIS, MERIS). These studies look at key aspects of the development of unified data records from multiple sensors, e.g. the concatenation of the "best" individual records vs. the merging of multiple records or band homogenization vs. spectral diversity. The pros and cons of the different approaches are closely dependent upon the overall science purpose of the data record and its temporal resolution. While monthly data are generally adequate for biogeochemical modeling or to assess decadal trends, higher temporal resolution data records are required to look into changes in phenology or the dynamics of phytoplankton blooms. Similarly, short temporal resolution (daily to weekly) time series may benefit more from being built through the merging of data from multiple sensors while a simple concatenation of data from individual sensors might be better suited for longer temporal resolution (e.g. monthly time series). Several Ocean Color ESDRs were developed as part of the NASA MEaSUREs project. Some of these time series are built by merging the reflectance data from SeaWiFS, MODIS-Aqua and Envisat-MERIS in a semi-analytical ocean color model that generates both merged reflectance and merged biogeochemical products. The benefits and limitations of this merging approach to develop ESDRs will be presented and discussed along with those of alternative approaches.

  18. Automated Historical and Real-Time Cyclone Discovery With Multimodal Remote Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ho, S.; Talukder, A.; Liu, T.; Tang, W.; Bingham, A.

    2008-12-01

    Existing cyclone detection and tracking solutions involve extensive manual analysis of modeled-data and field campaign data by teams of experts. We have developed a novel automated global cyclone detection and tracking system by assimilating and sharing information from multiple remote satellites. This unprecedented solution of combining multiple remote satellite measurements in an autonomous manner allows leveraging off the strengths of each individual satellite. Use of multiple satellite data sources also results in significantly improved temporal tracking accuracy for cyclones. Our solution involves an automated feature extraction and machine learning technique based on an ensemble classifier and Kalman filter for cyclone detection and tracking from multiple heterogeneous satellite data sources. Our feature-based methodology that focuses on automated cyclone discovery is fundamentally different from, and actually complements, the well-known Dvorak technique for cyclone intensity estimation (that often relies on manual detection of cyclonic regions) from field and remote data. Our solution currently employs the QuikSCAT wind measurement and the merged level 3 TRMM precipitation data for automated cyclone discovery. Assimilation of other types of remote measurements is ongoing and planned in the near future. Experimental results of our automated solution on historical cyclone datasets demonstrate the superior performance of our automated approach compared to previous work. Performance of our detection solution compares favorably against the list of cyclones occurring in North Atlantic Ocean for the 2005 calendar year reported by the National Hurricane Center (NHC) in our initial analysis. We have also demonstrated the robustness of our cyclone tracking methodology in other regions over the world by using multiple heterogeneous satellite data for detection and tracking of three arbitrary historical cyclones in other regions. Our cyclone detection and tracking methodology can be applied to (i) historical data to support Earth scientists in climate modeling, cyclonic-climate interactions, and obtain a better understanding of the cause and effects of cyclone (e.g. cyclo-genesis), and (ii) automatic cyclone discovery in near real-time using streaming satellite to support and improve the planning of global cyclone field campaigns. Additional satellite data from GOES and other orbiting satellites can be easily assimilated and integrated into our automated cyclone detection and tracking module to improve the temporal tracking accuracy of cyclones down to ½ hr and reduce the incidence of false alarms.

  19. Pulmonary artery imaging under free-breathing using golden-angle radial bSSFP MRI: a proof of concept.

    PubMed

    Fyrdahl, Alexander; Vargas Paris, Roberto; Nyrén, Sven; Holst, Karen; Ugander, Martin; Lindholm, Peter; Sigfridsson, Andreas

    2018-03-14

    To evaluate the feasibility of an improved motion and flow robust methodology for imaging the pulmonary vasculature using non-contrast-enhanced, free-breathing, golden-angle radial MRI. Healthy volunteers (n = 10, age 46 ± 11 years, 50% female) and patients (n = 2, ages 27 and 84, both female) were imaged at 1.5 T using a Cartesian and golden-angle radial 2D balanced SSFP pulse sequence. The acquisitions were made under free breathing without contrast agent enhancement. The radial acquisitions were reconstructed at 3 temporal footprints. All series were scored from 1 to 5 for perceived diagnostic quality, artifact level, and vessel sharpness in multiple anatomical locations. In addition, vessel sharpness and blood-to-blood clot contrast were measured. Quantitative measurements showed higher vessel sharpness for golden-angle radial (n = 76, 0.79 ± 0.11 versus 0.71 ± 0.16, p < .05). Blood-to-blood clot contrast was found to be 23% higher in golden-angle radial in the 2 patients. At comparable temporal footprints, golden-angle radial was scored higher for diagnostic quality (mean ± SD, 2.3 ± 0.7 versus 2.2 ± 0.6, p < .01) and vessel sharpness (2.2 ± 0.8 versus 2.1 ± 0.5, p < .01), whereas the artifact level did not differ (3.0 ± 0.9 versus 3.0 ± 1.0, p = .80). The ability to retrospectively choose a temporal resolution and perform sliding-window reconstructions was demonstrated in patients. In pulmonary artery imaging, the motion and flow robustness of a radial trajectory does both improve image quality over Cartesian trajectory in healthy volunteers, and allows for flexible selection of temporal footprints and the ability to perform real-time sliding window reconstructions, which could potentially provide further diagnostic insight. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy.

    PubMed

    Frost, J J; Mayberg, H S; Fisher, R S; Douglass, K H; Dannals, R F; Links, J M; Wilson, A A; Ravert, H T; Rosenbaum, A E; Snyder, S H

    1988-03-01

    Neurochemical studies in animal models of epilepsy have demonstrated the importance of multiple neurotransmitters and their receptors in mediating seizures. The role of opiate receptors and endogenous opioid peptides in seizure mechanisms is well developed and is the basis for measuring opiate receptors in patients with epilepsy. Patients with complex partial seizures due to unilateral temporal seizure foci were studied by positron emission tomography using 11C-carfentanil to measure mu-opiate receptors and 18F-fluoro-deoxy-D-glucose to measure glucose utilization. Opiate receptor binding is greater in the temporal neocortex on the side of the electrical focus than on the opposite side. Modeling studies indicate that the increase in binding is due to an increase in affinity or the number of unoccupied receptors. No significant asymmetry of 11C-carfentanil binding was detected in the amygdala or hippocampus. Glucose utilization correlated inversely with 11C-carfentanil binding in the temporal neocortex. Increased opiate receptors in the temporal neocortex may represent a tonic anticonvulsant system that limits the spread of electrical activity from other temporal lobe structures.

  1. Hierarchical organization in the temporal structure of infant-direct speech and song.

    PubMed

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Between-year variation in population sex ratio increases with complexity of the breeding system in Hymenoptera.

    PubMed

    Kümmerli, Rolf; Keller, Laurent

    2011-06-01

    While adaptive adjustment of sex ratio in the function of colony kin structure and food availability commonly occurs in social Hymenoptera, long-term studies have revealed substantial unexplained between-year variation in sex ratio at the population level. In order to identify factors that contribute to increased between-year variation in population sex ratio, we conducted a comparative analysis across 47 Hymenoptera species differing in their breeding system. We found that between-year variation in population sex ratio steadily increased as one moved from solitary species, to primitively eusocial species, to single-queen eusocial species, to multiple-queen eusocial species. Specifically, between-year variation in population sex ratio was low (6.6% of total possible variation) in solitary species, which is consistent with the view that in solitary species, sex ratio can vary only in response to fluctuations in ecological factors such as food availability. In contrast, we found significantly higher (19.5%) between-year variation in population sex ratio in multiple-queen eusocial species, which supports the view that in these species, sex ratio can also fluctuate in response to temporal changes in social factors such as queen number and queen-worker control over sex ratio, as well as factors influencing caste determination. The simultaneous adjustment of sex ratio in response to temporal fluctuations in ecological and social factors seems to preclude the existence of a single sex ratio optimum. The absence of such an optimum may reflect an additional cost associated with the evolution of complex breeding systems in Hymenoptera societies.

  3. Patterns of mortality in a montane mixed-conifer forest in San Diego County, California.

    PubMed

    Freeman, Mary Pyott; Stow, Douglas A; An, Li

    2017-10-01

    We examine spatial patterns of conifer tree mortality and their changes over time for the montane mixed-conifer forests of San Diego County. These forest areas have recently experienced extensive tree mortality due to multiple factors. A spatial contextual image processing approach was utilized with high spatial resolution digital airborne imagery to map dead trees for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan, and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Mean mortality remained static from 1997 to 2002 (4, 2.2, and 4.2 trees/ha for Palomar, Volcan, and Laguna) and then increased by 2005 to 10.3, 9.7, and 5.2 trees/ha, respectively. The increase in mortality between 2002 and 2005 represents the temporal pattern of a discrete disturbance event, attributable to the 2002-2003 drought. Dead trees are significantly clustered for all dates, based on spatial cluster analysis, indicating that they form distinct groups, as opposed to spatially random single dead trees. Other tests indicate no directional shift or spread of mortality over time, but rather an increase in density. While general temporal and spatial mortality processes are uniform across all study areas, the plot-based species and quantity distribution of mortality, and diameter distributions of dead vs. living trees, vary by study area. The results of this study improve our understanding of stand- to landscape-level forest structure and dynamics, particularly by examining them from the multiple perspectives of field and remotely sensed data. © 2017 by the Ecological Society of America.

  4. Automated Real-Time Behavioral and Physiological Data Acquisition and Display Integrated with Stimulus Presentation for fMRI

    PubMed Central

    Voyvodic, James T.; Glover, Gary H.; Greve, Douglas; Gadde, Syam

    2011-01-01

    Functional magnetic resonance imaging (fMRI) is based on correlating blood oxygen-level dependent (BOLD) signal fluctuations in the brain with other time-varying signals. Although the most common reference for correlation is the timing of a behavioral task performed during the scan, many other behavioral and physiological variables can also influence fMRI signals. Variations in cardiac and respiratory functions in particular are known to contribute significant BOLD signal fluctuations. Variables such as skin conduction, eye movements, and other measures that may be relevant to task performance can also be correlated with BOLD signals and can therefore be used in image analysis to differentiate multiple components in complex brain activity signals. Combining real-time recording and data management of multiple behavioral and physiological signals in a way that can be routinely used with any task stimulus paradigm is a non-trivial software design problem. Here we discuss software methods that allow users control of paradigm-specific audio–visual or other task stimuli combined with automated simultaneous recording of multi-channel behavioral and physiological response variables, all synchronized with sub-millisecond temporal accuracy. We also discuss the implementation and importance of real-time display feedback to ensure data quality of all recorded variables. Finally, we discuss standards and formats for storage of temporal covariate data and its integration into fMRI image analysis. These neuroinformatics methods have been adopted for behavioral task control at all sites in the Functional Biomedical Informatics Research Network (FBIRN) multi-center fMRI study. PMID:22232596

  5. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    PubMed

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  6. Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement.

    PubMed

    Johari, Karim; Behroozmand, Roozbeh

    2017-08-01

    Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Reconstruction of improvised explosive device blast loading to personnel in the open

    NASA Astrophysics Data System (ADS)

    Wiri, Suthee; Needham, Charles

    2016-05-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  8. Resilience and stability of a pelagic marine ecosystem

    PubMed Central

    Lindegren, Martin; Checkley, David M.; Ohman, Mark D.; Koslow, J. Anthony; Goericke, Ralf

    2016-01-01

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS. PMID:26763697

  9. Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights

    PubMed Central

    2018-01-01

    Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities—including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species—and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution. This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’. PMID:29440515

  10. Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights.

    PubMed

    Kolodny, Oren; Feldman, Marcus W; Creanza, Nicole

    2018-04-05

    Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  11. Symptom variability, affect and physical activity in ambulatory persons with multiple sclerosis: Understanding patterns and time-bound relationships.

    PubMed

    Kasser, Susan L; Goldstein, Amanda; Wood, Phillip K; Sibold, Jeremy

    2017-04-01

    Individuals with multiple sclerosis (MS) experience a clinical course that is highly variable with daily fluctuations in symptoms significantly affecting functional ability and quality of life. Yet, understanding how MS symptoms co-vary and associate with physical and psychological health is unclear. The purpose of the study was to explore variability patterns and time-bound relationships across symptoms, affect, and physical activity in individuals with MS. The study employed a multivariate, replicated, single-subject repeated-measures (MRSRM) design and involved four individuals with MS. Mood, fatigue, pain, balance confidence, and losses of balance were measured daily over 28 days by self-report. Physical activity was also measured daily over this same time period via accelerometry. Dynamic factor analysis (DFA) was used to determine the dimensionality and lagged relationships across the variables. Person-specific models revealed considerable time-dependent co-variation patterns as well as pattern variation across subjects. Results also offered insight into distinct variability structures at varying levels of disability. Modeling person-level variability may be beneficial for addressing the heterogeneity of experiences in individuals with MS and for understanding temporal and dynamic interrelationships among perceived symptoms, affect, and health outcomes in this group. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Adaptive Management Approach to Oil and Gas Activities in Areas Occupied by Pacific Walrus

    NASA Astrophysics Data System (ADS)

    Ireland, D.; Broker, K.; San Filippo, V.; Brzuzy, L.; Morse, L.

    2016-12-01

    During Shell's 2015 exploration drilling program in the Chukchi Sea, activities were conducted in accordance with a Letter of Authorization issued by the United States Fish and Wildlife Service that allowed the incidental harassment of Pacific Walrus and Polar Bears under the Marine Mammal Protection Act. As a part of the request for authorization, Shell proposed a process to monitor and assess the potential for activities to interact with walruses on ice, especially if ice posed a potential threat to the drill site. The process assimilated near real-time information from multiple data sources including vessel-based observations, aerial surveys, satellite-linked GPS tags on walrus, and satellite imagery of ice conditions and movements. These data were reviewed daily and assessed in the context of planned activities to assign a risk level (low, medium, or high). The risk level was communicated to all assets in the field and decision makers during morning briefings. A low risk level meant that planned activities could occur without further review. A medium risk level meant that some operations had a greater potential of interacting with walrus on ice and that additional discussions of those activities were required to determine the relative risk of potential impacts compare to the importance of the planned activity. A high risk level meant that the planned activities were necessary and walrus on ice were likely to be encountered. Assignment of a high risk level triggered contact with agency personnel and directly incorporated them into the assessment and decision making process. This process made effective use of relevant available information to provide meaningful assessments at temporal and spatial scales that allowed approved activities to proceed while minimizing potential impacts. More so, this process provides a valuable alternative to large-scale restriction areas with coarse temporal resolution without reducing protection to target species.

  13. Adaptive Management Approach to Oil and Gas Activities in Areas Occupied by Pacific Walrus

    NASA Astrophysics Data System (ADS)

    Ireland, D.; Broker, K.; San Filippo, V.; Brzuzy, L.; Morse, L.

    2016-02-01

    During Shell's 2015 exploration drilling program in the Chukchi Sea, activities were conducted in accordance with a Letter of Authorization issued by the United States Fish and Wildlife Service that allowed the incidental harassment of Pacific Walrus and Polar Bears under the Marine Mammal Protection Act. As a part of the request for authorization, Shell proposed a process to monitor and assess the potential for activities to interact with walruses on ice, especially if ice posed a potential threat to the drill site. The process assimilated near real-time information from multiple data sources including vessel-based observations, aerial surveys, satellite-linked GPS tags on walrus, and satellite imagery of ice conditions and movements. These data were reviewed daily and assessed in the context of planned activities to assign a risk level (low, medium, or high). The risk level was communicated to all assets in the field and decision makers during morning briefings. A low risk level meant that planned activities could occur without further review. A medium risk level meant that some operations had a greater potential of interacting with walrus on ice and that additional discussions of those activities were required to determine the relative risk of potential impacts compare to the importance of the planned activity. A high risk level meant that the planned activities were necessary and walrus on ice were likely to be encountered. Assignment of a high risk level triggered contact with agency personnel and directly incorporated them into the assessment and decision making process. This process made effective use of relevant available information to provide meaningful assessments at temporal and spatial scales that allowed approved activities to proceed while minimizing potential impacts. More so, this process provides a valuable alternative to large-scale restriction areas with coarse temporal resolution without reducing protection to target species.

  14. A Multi-Scale Distribution Model for Non-Equilibrium Populations Suggests Resource Limitation in an Endangered Rodent

    PubMed Central

    Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.

    2014-01-01

    Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists. PMID:25237807

  15. Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.

    PubMed

    Bridge, L J; Mead, J; Frattini, E; Winfield, I; Ladds, G

    2018-04-07

    Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (α GTP ), towards the analysis of dynamic functional responses. The model is generally applicable to systems with N G G proteins and N* active receptor states. Numerical simulations for N G =N * =2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (G i and G s ) that become activated upon stimulation of the adenosine A 1 receptor with adenosine derivative compounds. Finally, we show that our model can qualitatively describe the temporal dynamics of this competing G protein activation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Clinical time series prediction: towards a hierarchical dynamical system framework

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. PMID:25534671

  17. Proton magnetic resonance spectroscopy (MRS) in on-line game addiction

    PubMed Central

    Han, Doug Hyun; Lee, Young Sik; Shi, Xianfeng; Renshaw, Perry F.

    2015-01-01

    Recent brain imaging studies suggested that both the frontal and temporal cortices are important candidate areas for mediating the symptoms of internet addiction. We hypothesized that deficits of prefrontal and temporal cortical function in patients with on-line game addiction (PGA) would be reflected in decreased levels of N-acetyl aspartate (NAA) and cytosolic, choline containing compound (Cho). Seventy three young PGA and 38 age and sex matched healthy control subjects were recruited in the study. Structural MR and 1H MRS data were acquired using a 3.0 T MRI scanner. Voxels were sequentially placed in right frontal cortex and right medial temporal cortices. In the right frontal cortex, the levels of NAA in PGA were lower than those in healthy controls. In the medial temporal cortex, the levels of Cho in PGA participants were lower than those observed in healthy controls. The Young Internet Addiction Scale (YIAS) scores and perseverative responses in PGA were negatively correlated with the level of NAA in right frontal cortex. The Beck Depressive Inventory (BDI) scores in the PGA cohort were negatively correlated with Cho levels in the right temporal lobe. To the best of our knowledge, this is the first MRS study of individuals with on-line game addiction. Although, the subjects with on-line game addiction in the current study were free from psychiatric co-morbidity, patients with on-line game addiction appear to share characteristics with ADHD and MDD in terms of neurochemical changes in frontal and temporal cortices. PMID:25088284

  18. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also slightly outperformed the other MRC models with respect to the intensity-frequency relationship. To assess the performance of the coupled Poisson rectangular pulse and constrained cascade model, precipitation events were stochastically generated by the Poisson rectangular pulse model and then disaggregated by the constrained cascade model. We found that the coupled model performs satisfactorily in terms of the temporal pattern of the precipitation time series, event characteristics and the intensity-frequency relationship.

  19. Multiscale spatial and temporal estimation of the b-value

    NASA Astrophysics Data System (ADS)

    García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.

    2017-12-01

    The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.

  20. Reconstruction of stochastic temporal networks through diffusive arrival times

    NASA Astrophysics Data System (ADS)

    Li, Xun; Li, Xiang

    2017-06-01

    Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications.

  1. Reconstruction of stochastic temporal networks through diffusive arrival times

    PubMed Central

    Li, Xun; Li, Xiang

    2017-01-01

    Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications. PMID:28604687

  2. In situ protocol for butterfly pupal wings using riboprobes.

    PubMed

    Ramos, Diane; Monteiro, Antonia

    2007-01-01

    Here we present, in video format, a protocol for in situ hybridizations in pupal wings of the butterfly Bicyclus anynana using riboprobes. In situ hybridizations, a mainstay of developmental biology, are useful to study the spatial and temporal patterns of gene expression in developing tissues at the level of transcription. If antibodies that target the protein products of gene transcription have not yet been developed, and/or there are multiple gene copies of a particular protein in the genome that cannot be differentiated using available antibodies, in situs can be used instead. While an in situ technique for larval wing discs has been available to the butterfly community for several years, the current protocol has been optimized for the larger and more fragile pupal wings.

  3. An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.

    PubMed

    Magen, Hagit

    2017-03-01

    Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.

  4. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.

    PubMed

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro

    2016-07-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.

  5. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots

    PubMed Central

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro

    2016-01-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684

  6. Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.

    PubMed

    Szaflarski, Jerzy P; Gloss, David; Binder, Jeffrey R; Gaillard, William D; Golby, Alexandra J; Holland, Scott K; Ojemann, Jeffrey; Spencer, David C; Swanson, Sara J; French, Jacqueline A; Theodore, William H

    2017-01-24

    To assess the diagnostic accuracy and prognostic value of functional MRI (fMRI) in determining lateralization and predicting postsurgical language and memory outcomes. An 11-member panel evaluated and rated available evidence according to the 2004 American Academy of Neurology process. At least 2 panelists reviewed the full text of 172 articles and selected 37 for data extraction. Case reports, reports with <15 cases, meta-analyses, and editorials were excluded. The use of fMRI may be considered an option for lateralizing language functions in place of intracarotid amobarbital procedure (IAP) in patients with medial temporal lobe epilepsy (MTLE; Level C), temporal epilepsy in general (Level C), or extratemporal epilepsy (Level C). For patients with temporal neocortical epilepsy or temporal tumors, the evidence is insufficient (Level U). fMRI may be considered to predict postsurgical language deficits after anterior temporal lobe resection (Level C). The use of fMRI may be considered for lateralizing memory functions in place of IAP in patients with MTLE (Level C) but is of unclear utility in other epilepsy types (Level U). fMRI of verbal memory or language encoding should be considered for predicting verbal memory outcome (Level B). fMRI using nonverbal memory encoding may be considered for predicting visuospatial memory outcomes (Level C). Presurgical fMRI could be an adequate alternative to IAP memory testing for predicting verbal memory outcome (Level C). Clinicians should carefully advise patients of the risks and benefits of fMRI vs IAP during discussions concerning choice of specific modality in each case. © 2017 American Academy of Neurology.

  7. 76 FR 66734 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... for Scientific Review Special Emphasis Panel, Member Conflict: Brain Diseases--Multiple Sclerosis, Amyotrophic Lateral Sclerosis, Frontal Temporal Dementia. Date: November 17, 2011. Time: 1 p.m. to 3 p.m...

  8. Action recognition via cumulative histogram of multiple features

    NASA Astrophysics Data System (ADS)

    Yan, Xunshi; Luo, Yupin

    2011-01-01

    Spatial-temporal interest points (STIPs) are popular in human action recognition. However, they suffer from difficulties in determining size of codebook and losing much information during forming histograms. In this paper, spatial-temporal interest regions (STIRs) are proposed, which are based on STIPs and are capable of marking the locations of the most ``shining'' human body parts. In order to represent human actions, the proposed approach takes great advantages of multiple features, including STIRs, pyramid histogram of oriented gradients and pyramid histogram of oriented optical flows. To achieve this, cumulative histogram is used to integrate dynamic information in sequences and to form feature vectors. Furthermore, the widely used nearest neighbor and AdaBoost methods are employed as classification algorithms. Experiments on public datasets KTH, Weizmann and UCF sports show that the proposed approach achieves effective and robust results.

  9. Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1 - xAs multiple-quantum-well semiconductor

    NASA Astrophysics Data System (ADS)

    Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei

    2017-11-01

    We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.

  10. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  11. Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.

    PubMed

    Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy

    2016-07-01

    As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.

  12. Operational Interoperable Web Coverage Service for Earth Observing Satellite Data: Issues and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Yang, W.; Min, M.; Bai, Y.; Lynnes, C.; Holloway, D.; Enloe, Y.; di, L.

    2008-12-01

    In the past few years, there have been growing interests, among major earth observing satellite (EOS) data providers, in serving data through the interoperable Web Coverage Service (WCS) interface protocol, developed by the Open Geospatial Consortium (OGC). The interface protocol defined in WCS specifications allows client software to make customized requests of multi-dimensional EOS data, including spatial and temporal subsetting, resampling and interpolation, and coordinate reference system (CRS) transformation. A WCS server describes an offered coverage, i.e., a data product, through a response to a client's DescribeCoverage request. The description includes the offered coverage's spatial/temporal extents and resolutions, supported CRSs, supported interpolation methods, and supported encoding formats. Based on such information, a client can request the entire or a subset of coverage in any spatial/temporal resolutions and in any one of the supported CRSs, formats, and interpolation methods. When implementing a WCS server, a data provider has different approaches to present its data holdings to clients. One of the most straightforward, and commonly used, approaches is to offer individual physical data files as separate coverages. Such implementation, however, will result in too many offered coverages for large data holdings and it also cannot fully present the relationship among different, but spatially and/or temporally associated, data files. It is desirable to disconnect offered coverages from physical data files so that the former is more coherent, especially in spatial and temporal domains. Therefore, some servers offer one single coverage for a set of spatially coregistered time series data files such as a daily global precipitation coverage linked to many global single- day precipitation files; others offer one single coverage for multiple temporally coregistered files together forming a large spatial extent. In either case, a server needs to assemble an output coverage real-time by combining potentially large number of physical files, which can be operationally difficult. The task becomes more challenging if an offered coverage involves spatially and temporally un-registered physical files. In this presentation, we will discuss issues and lessons learned in providing NASA's AIRS Level 2 atmospheric products, which are in satellite swath CRS and in 6-minute segment granule files, as virtual global coverages. We"ll discuss the WCS server's on- the-fly georectification, mosaicking, quality screening, performance, and scalability.

  13. Mapping child maltreatment risk: a 12-year spatio-temporal analysis of neighborhood influences.

    PubMed

    Gracia, Enrique; López-Quílez, Antonio; Marco, Miriam; Lila, Marisol

    2017-10-18

    'Place' matters in understanding prevalence variations and inequalities in child maltreatment risk. However, most studies examining ecological variations in child maltreatment risk fail to take into account the implications of the spatial and temporal dimensions of neighborhoods. In this study, we conduct a high-resolution small-area study to analyze the influence of neighborhood characteristics on the spatio-temporal epidemiology of child maltreatment risk. We conducted a 12-year (2004-2015) small-area Bayesian spatio-temporal epidemiological study with all families with child maltreatment protection measures in the city of Valencia, Spain. As neighborhood units, we used 552 census block groups. Cases were geocoded using the family address. Neighborhood-level characteristics analyzed included three indicators of neighborhood disadvantage-neighborhood economic status, neighborhood education level, and levels of policing activity-, immigrant concentration, and residential instability. Bayesian spatio-temporal modelling and disease mapping methods were used to provide area-specific risk estimations. Results from a spatio-temporal autoregressive model showed that neighborhoods with low levels of economic and educational status, with high levels of policing activity, and high immigrant concentration had higher levels of substantiated child maltreatment risk. Disease mapping methods were used to analyze areas of excess risk. Results showed chronic spatial patterns of high child maltreatment risk during the years analyzed, as well as stability over time in areas of low risk. Areas with increased or decreased child maltreatment risk over the years were also observed. A spatio-temporal epidemiological approach to study the geographical patterns, trends over time, and the contextual determinants of child maltreatment risk can provide a useful method to inform policy and action. This method can offer a more accurate description of the problem, and help to inform more localized prevention and intervention strategies. This new approach can also contribute to an improved epidemiological surveillance system to detect ecological variations in risk, and to assess the effectiveness of the initiatives to reduce this risk.

  14. Relative sea-level changes and crustal movements in Britain and Ireland since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Shennan, Ian; Bradley, Sarah L.; Edwards, Robin

    2018-05-01

    The new sea-level database for Britain and Ireland contains >2100 data points from 86 regions and records relative sea-level (RSL) changes over the last 20 ka and across elevations ranging from ∼+40 to -55 m. It reveals radically different patterns of RSL as we move from regions near the centre of the Celtic ice sheet at the last glacial maximum to regions near and beyond the ice limits. Validated sea-level index points and limiting data show good agreement with the broad patterns of RSL change predicted by current glacial isostatic adjustment (GIA) models. The index points show no consistent pattern of synchronous coastal advance and retreat across different regions, ∼100-500 km scale, indicating that within-estuary processes, rather than decimetre- and centennial-scale oscillations in sea level, produce major controls on the temporal pattern of horizontal shifts in coastal sedimentary environments. Comparisons between the database and GIA model predictions for multiple regions provide potentially powerful constraints on various characteristics of global GIA models, including the magnitude of MWP1A, the final deglaciation of the Laurentide ice sheet and the continued melting of Antarctica after 7 ka BP.

  15. Temporal Characteristics of Electron Flux Events at Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Larsen, B.; Henderson, M. G.

    2017-12-01

    Geosynchronous satellites such as the LANL-GEO fleet are exposed to hazardous conditions when they encounter regions of hot, intense plasma such as that from the plasma sheet. These conditions can lead to the build-up of charge on the surface of a spacecraft, with undesired, and often dangerous, side effects. Observation of electron flux levels at geosynchronous orbit (GEO) with multiple satellites provides a unique view of plasma sheet access to that region. Flux "events", or periods when fluxes are elevated continuously above the LANL-GEO spacecraft charging threshold, can be characterized by duration in two dimensions: a spatial dimension of local time, describing the duration of an event from the perspective of a single spacecraft, and a temporal dimension describing the duration in time in which high energy plasma sheet particles have access to geosynchronous orbit. We examine the statistical properties of the temporal duration of 8 keV electron flux events at geosynchronous orbit over a twelve-year period. These results, coupled with the spatial duration characteristics, provide the key information needed to formulate a statistical model for forecasting the electron flux conditions at GEO that are correlated with LANL-GEO surface charging. Forecasting models are an essential component to understanding space weather and mitigating the dangers of surface charging on our satellites. We also examine the correlation of flux event durations with solar wind parameters and geomagnetic indices, identifying the data needed to improve upon a statistical forecasting model

  16. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906–1909: evaluating local clustering with the Gi* statistic

    PubMed Central

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-01-01

    Background To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May – 31 October 1906 – 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. Results The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. Conclusion The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century. PMID:16566830

  17. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906-1909: evaluating local clustering with the Gi* statistic.

    PubMed

    Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew

    2006-03-27

    To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May - 31 October 1906 - 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century.

  18. Effect of transmission intensity on hotspots and micro-epidemiology of malaria in sub-Saharan Africa.

    PubMed

    Mogeni, Polycarp; Omedo, Irene; Nyundo, Christopher; Kamau, Alice; Noor, Abdisalan; Bejon, Philip

    2017-06-30

    Malaria transmission intensity is heterogeneous, complicating the implementation of malaria control interventions. We provide a description of the spatial micro-epidemiology of symptomatic malaria and asymptomatic parasitaemia in multiple sites. We assembled data from 19 studies conducted between 1996 and 2015 in seven countries of sub-Saharan Africa with homestead-level geospatial data. Data from each site were used to quantify spatial autocorrelation and examine the temporal stability of hotspots. Parameters from these analyses were examined to identify trends over varying transmission intensity. Significant hotspots of malaria transmission were observed in most years and sites. The risk ratios of malaria within hotspots were highest at low malaria positive fractions (MPFs) and decreased with increasing MPF (p < 0.001). However, statistical significance of hotspots was lowest at extremely low and extremely high MPFs, with a peak in statistical significance at an MPF of ~0.3. In four sites with longitudinal data we noted temporal instability and variable negative correlations between MPF and average age of symptomatic malaria across all sites, suggesting varying degrees of temporal stability. We observed geographical micro-variation in malaria transmission at sites with a variety of transmission intensities across sub-Saharan Africa. Hotspots are marked at lower transmission intensity, but it becomes difficult to show statistical significance when cases are sparse at very low transmission intensity. Given the predictability with which hotspots occur as transmission intensity falls, malaria control programmes should have a low threshold for responding to apparent clustering of cases.

  19. Assessing mental stress from the photoplethysmogram: a numerical study

    PubMed Central

    Charlton, Peter H; Celka, Patrick; Farukh, Bushra; Chowienczyk, Phil; Alastruey, Jordi

    2018-01-01

    Abstract Objective: Mental stress is detrimental to cardiovascular health, being a risk factor for coronary heart disease and a trigger for cardiac events. However, it is not currently routinely assessed. The aim of this study was to identify features of the photoplethysmogram (PPG) pulse wave which are indicative of mental stress. Approach: A numerical model of pulse wave propagation was used to simulate blood pressure signals, from which simulated PPG pulse waves were estimated using a transfer function. Pulse waves were simulated at six levels of stress by changing the model input parameters both simultaneously and individually, in accordance with haemodynamic changes associated with stress. Thirty-two feature measurements were extracted from pulse waves at three measurement sites: the brachial, radial and temporal arteries. Features which changed significantly with stress were identified using the Mann–Kendall monotonic trend test. Main results: Seventeen features exhibited significant trends with stress in measurements from at least one site. Three features showed significant trends at all three sites: the time from pulse onset to peak, the time from the dicrotic notch to pulse end, and the pulse rate. More features showed significant trends at the radial artery (15) than the brachial (8) or temporal (7) arteries. Most features were influenced by multiple input parameters. Significance: The features identified in this study could be used to monitor stress in healthcare and consumer devices. Measurements at the radial artery may provide superior performance than the brachial or temporal arteries. In vivo studies are required to confirm these observations. PMID:29658894

  20. Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.

    1984-01-01

    A pulsed CO2 lidar was used to study statistical properties of signal returns from various rough surfaces at distances near 2 km. These included natural in situ topographic materials as well as man-made hard targets. Three lidar configurations were used: heterodyne detection with single temporal mode transmitter pulses, and direct detection with single and multiple temporal mode pulses. The significant differences in signal return statistics, due largely to speckle effects, are discussed.

Top