Sample records for multiple turbo codes

  1. Identification and Classification of Orthogonal Frequency Division Multiple Access (OFDMA) Signals Used in Next Generation Wireless Systems

    DTIC Science & Technology

    2012-03-01

    advanced antenna systems AMC adaptive modulation and coding AWGN additive white Gaussian noise BPSK binary phase shift keying BS base station BTC ...QAM-16, and QAM-64, and coding types include convolutional coding (CC), convolutional turbo coding (CTC), block turbo coding ( BTC ), zero-terminating

  2. On the design of turbo codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.

  3. Preprocessor that Enables the Use of GridProTM Grids for Unsteady Reynolds-Averaged Navier-Stokes Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram

    2010-01-01

    A preprocessor for the Computational Fluid Dynamics (CFD) code TURBO has been developed and tested. The preprocessor converts grids produced by GridPro (Program Development Company (PDC)) into a format readable by TURBO and generates the necessary input files associated with the grid. The preprocessor also generates information that enables the user to decide how to allocate the computational load in a multiple block per processor scenario.

  4. Channel coding for underwater acoustic single-carrier CDMA communication system

    NASA Astrophysics Data System (ADS)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  5. Performance analysis of optical wireless communication system based on two-fold turbo code

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Huang, Dexiu; Yuan, Xiuhua

    2005-11-01

    Optical wireless communication (OWC) is beginning to emerge in the telecommunications market as a strategy to meet last-mile demand owing to its unique combination of features. Turbo codes have an impressive near Shannon-limit error correcting performance. Twofold turbo codes have been recently introduced as the least complex member of the multifold turbo code family. In this paper, at first, we present the mathematical model of signal and optical wireless channel with fading and bit error rate model with scintillation, then we provide a new turbo code method to use in OWC system, we can obtain a better BER curse of OWC system with twofold turbo code than with common turbo code.

  6. An Interactive Concatenated Turbo Coding System

    NASA Technical Reports Server (NTRS)

    Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  7. Performance Enhancement of MC-CDMA System through Novel Sensitive Bit Algorithm Aided Turbo Multi User Detection

    PubMed Central

    Kumaravel, Rasadurai; Narayanaswamy, Kumaratharan

    2015-01-01

    Multi carrier code division multiple access (MC-CDMA) system is a promising multi carrier modulation (MCM) technique for high data rate wireless communication over frequency selective fading channels. MC-CDMA system is a combination of code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM). The OFDM parts reduce multipath fading and inter symbol interference (ISI) and the CDMA part increases spectrum utilization. Advantages of this technique are its robustness in case of multipath propagation and improve security with the minimize ISI. Nevertheless, due to the loss of orthogonality at the receiver in a mobile environment, the multiple access interference (MAI) appears. The MAI is one of the factors that degrade the bit error rate (BER) performance of MC-CDMA system. The multiuser detection (MUD) and turbo coding are the two dominant techniques for enhancing the performance of the MC-CDMA systems in terms of BER as a solution of overcome to MAI effects. In this paper a low complexity iterative soft sensitive bits algorithm (SBA) aided logarithmic-Maximum a-Posteriori algorithm (Log MAP) based turbo MUD is proposed. Simulation results show that the proposed method provides better BER performance with low complexity decoding, by mitigating the detrimental effects of MAI. PMID:25714917

  8. Investigation of Near Shannon Limit Coding Schemes

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Kim, J.; Mo, Fan

    1999-01-01

    Turbo codes can deliver performance that is very close to the Shannon limit. This report investigates algorithms for convolutional turbo codes and block turbo codes. Both coding schemes can achieve performance near Shannon limit. The performance of the schemes is obtained using computer simulations. There are three sections in this report. First section is the introduction. The fundamental knowledge about coding, block coding and convolutional coding is discussed. In the second section, the basic concepts of convolutional turbo codes are introduced and the performance of turbo codes, especially high rate turbo codes, is provided from the simulation results. After introducing all the parameters that help turbo codes achieve such a good performance, it is concluded that output weight distribution should be the main consideration in designing turbo codes. Based on the output weight distribution, the performance bounds for turbo codes are given. Then, the relationships between the output weight distribution and the factors like generator polynomial, interleaver and puncturing pattern are examined. The criterion for the best selection of system components is provided. The puncturing pattern algorithm is discussed in detail. Different puncturing patterns are compared for each high rate. For most of the high rate codes, the puncturing pattern does not show any significant effect on the code performance if pseudo - random interleaver is used in the system. For some special rate codes with poor performance, an alternative puncturing algorithm is designed which restores their performance close to the Shannon limit. Finally, in section three, for iterative decoding of block codes, the method of building trellis for block codes, the structure of the iterative decoding system and the calculation of extrinsic values are discussed.

  9. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1995-01-01

    This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.

  10. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    2000-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  11. Application of Aeroelastic Solvers Based on Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    1998-01-01

    A pre-release version of the Navier-Stokes solver (TURBO) was obtained from MSU. Along with Dr. Milind Bakhle of the University of Toledo, subroutines for aeroelastic analysis were developed and added to the TURBO code to develop versions 1 and 2 of the TURBO-AE code. For specified mode shape, frequency and inter-blade phase angle the code calculates the work done by the fluid on the rotor for a prescribed sinusoidal motion. Positive work on the rotor indicates instability of the rotor. The version 1 of the code calculates the work for in-phase blade motions only. In version 2 of the code, the capability for analyzing all possible inter-blade phase angles, was added. The version 2 of TURBO-AE code was validated and delivered to NASA and the industry partners of the AST project. The capabilities and the features of the code are summarized in Refs. [1] & [2]. To release the version 2 of TURBO-AE, a workshop was organized at NASA Lewis, by Dr. Srivastava and Dr. M. A. Bakhle, both of the University of Toledo, in October of 1996 for the industry partners of NASA Lewis. The workshop provided the potential users of TURBO-AE, all the relevant information required in preparing the input data, executing the code, interpreting the results and bench marking the code on their computer systems. After the code was delivered to the industry partners, user support was also provided. A new version of the Navier-Stokes solver (TURBO) was later released by MSU. This version had significant changes and upgrades over the previous version. This new version was merged with the TURBO-AE code. Also, new boundary conditions for 3-D unsteady non-reflecting boundaries, were developed by researchers from UTRC, Ref. [3]. Time was spent on understanding, familiarizing, executing and implementing the new boundary conditions into the TURBO-AE code. Work was started on the phase lagged (time-shifted) boundary condition version (version 4) of the code. This will allow the users to calculate non-zero interblade phase angles using, only one blade passage for analysis.

  12. Two high-density recording methods with run-length limited turbo code for holographic data storage system

    NASA Astrophysics Data System (ADS)

    Nakamura, Yusuke; Hoshizawa, Taku

    2016-09-01

    Two methods for increasing the data capacity of a holographic data storage system (HDSS) were developed. The first method is called “run-length-limited (RLL) high-density recording”. An RLL modulation has the same effect as enlarging the pixel pitch; namely, it optically reduces the hologram size. Accordingly, the method doubles the raw-data recording density. The second method is called “RLL turbo signal processing”. The RLL turbo code consists of \\text{RLL}(1,∞ ) trellis modulation and an optimized convolutional code. The remarkable point of the developed turbo code is that it employs the RLL modulator and demodulator as parts of the error-correction process. The turbo code improves the capability of error correction more than a conventional LDPC code, even though interpixel interference is generated. These two methods will increase the data density 1.78-fold. Moreover, by simulation and experiment, a data density of 2.4 Tbit/in.2 is confirmed.

  13. Investigation of Different Constituent Encoders in a Turbo-code Scheme for Reduced Decoder Complexity

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.

    1998-01-01

    A large number of papers have been published attempting to give some analytical basis for the performance of Turbo-codes. It has been shown that performance improves with increased interleaver length. Also procedures have been given to pick the best constituent recursive systematic convolutional codes (RSCC's). However testing by computer simulation is still required to verify these results. This thesis begins by describing the encoding and decoding schemes used. Next simulation results on several memory 4 RSCC's are shown. It is found that the best BER performance at low E(sub b)/N(sub o) is not given by the RSCC's that were found using the analytic techniques given so far. Next the results are given from simulations using a smaller memory RSCC for one of the constituent encoders. Significant reduction in decoding complexity is obtained with minimal loss in performance. Simulation results are then given for a rate 1/3 Turbo-code with the result that this code performed as well as a rate 1/2 Turbo-code as measured by the distance from their respective Shannon limits. Finally the results of simulations where an inaccurate noise variance measurement was used are given. From this it was observed that Turbo-decoding is fairly stable with regard to noise variance measurement.

  14. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.

    1998-01-01

    It is well known that the BER performance of a parallel concatenated turbo-code improves roughly as 1/N, where N is the information block length. However, it has been observed by Benedetto and Montorsi that for most parallel concatenated turbo-codes, the FER performance does not improve monotonically with N. In this report, we study the FER of turbo-codes, and the effects of their concatenation with an outer code. Two methods of concatenation are investigated: across several frames and within each frame. Some asymmetric codes are shown to have excellent FER performance with an information block length of 16384. We also show that the proposed outer coding schemes can improve the BER performance as well by eliminating pathological frames generated by the iterative MAP decoding process.

  15. Error Control Techniques for Satellite and Space Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1996-01-01

    In this report, we present the results of our recent work on turbo coding in two formats. Appendix A includes the overheads of a talk that has been given at four different locations over the last eight months. This presentation has received much favorable comment from the research community and has resulted in the full-length paper included as Appendix B, 'A Distance Spectrum Interpretation of Turbo Codes'. Turbo codes use a parallel concatenation of rate 1/2 convolutional encoders combined with iterative maximum a posteriori probability (MAP) decoding to achieve a bit error rate (BER) of 10(exp -5) at a signal-to-noise ratio (SNR) of only 0.7 dB. The channel capacity for a rate 1/2 code with binary phase shift-keyed modulation on the AWGN (additive white Gaussian noise) channel is 0 dB, and thus the Turbo coding scheme comes within 0.7 DB of capacity at a BER of 10(exp -5).

  16. Application of TURBO-AE to Flutter Prediction: Aeroelastic Code Development

    NASA Technical Reports Server (NTRS)

    Hoyniak, Daniel; Simons, Todd A.; Stefko, George (Technical Monitor)

    2001-01-01

    The TURBO-AE program has been evaluated by comparing the obtained results to cascade rig data and to prediction made from various in-house programs. A high-speed fan cascade, a turbine cascade, a turbine cascade and a fan geometry that shower flutter in torsion mode were analyzed. The steady predictions for the high-speed fan cascade showed the TURBO-AE predictions to match in-house codes. However, the predictions did not match the measured blade surface data. Other researchers also reported similar disagreement with these data set. Unsteady runs for the fan configuration were not successful using TURBO-AE .

  17. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Cabral, Hermano A.; He, Jiali

    1997-01-01

    Bootstrap Hybrid Decoding (BHD) (Jelinek and Cocke, 1971) is a coding/decoding scheme that adds extra redundancy to a set of convolutionally encoded codewords and uses this redundancy to provide reliability information to a sequential decoder. Theoretical results indicate that bit error probability performance (BER) of BHD is close to that of Turbo-codes, without some of their drawbacks. In this report we study the use of the Multiple Stack Algorithm (MSA) (Chevillat and Costello, Jr., 1977) as the underlying sequential decoding algorithm in BHD, which makes possible an iterative version of BHD.

  18. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  19. Advanced Subsonic Technology (AST) Area of Interest (AOI) 6: Develop and Validate Aeroelastic Codes for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell

    1999-01-01

    AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined for use in aeroelastic code validation.

  20. Optimizations of a Hardware Decoder for Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon

    2007-01-01

    The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.

  1. Analysis of Optical CDMA Signal Transmission: Capacity Limits and Simulation Results

    NASA Astrophysics Data System (ADS)

    Garba, Aminata A.; Yim, Raymond M. H.; Bajcsy, Jan; Chen, Lawrence R.

    2005-12-01

    We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN) is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results for channel coded binary and[InlineEquation not available: see fulltext.]-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is the length of the spreading sequences) with good bit error rate system performance.

  2. Application of a Design Space Exploration Tool to Enhance Interleaver Generation

    DTIC Science & Technology

    2009-06-24

    2], originally dedicated to channel coding, are being currently reused in a large set of the whole digital communication systems (e.g. equalization... originally target interface synthesis, is shown to be also suited to the interleaver design space exploration. Our design flow can take as input...slice turbo codes,” in Proc. 3rd Int. Symp. Turbo Codes, Related Topics, Brest , 2003, pp. 343–346. [11] IEEE 802.15.3a, WPAN High Rate Alternative [12

  3. Design space exploration of high throughput finite field multipliers for channel coding on Xilinx FPGAs

    NASA Astrophysics Data System (ADS)

    de Schryver, C.; Weithoffer, S.; Wasenmüller, U.; Wehn, N.

    2012-09-01

    Channel coding is a standard technique in all wireless communication systems. In addition to the typically employed methods like convolutional coding, turbo coding or low density parity check (LDPC) coding, algebraic codes are used in many cases. For example, outer BCH coding is applied in the DVB-S2 standard for satellite TV broadcasting. A key operation for BCH and the related Reed-Solomon codes are multiplications in finite fields (Galois Fields), where extension fields of prime fields are used. A lot of architectures for multiplications in finite fields have been published over the last decades. This paper examines four different multiplier architectures in detail that offer the potential for very high throughputs. We investigate the implementation performance of these multipliers on FPGA technology in the context of channel coding. We study the efficiency of the multipliers with respect to area, frequency and throughput, as well as configurability and scalability. The implementation data of the fully verified circuits are provided for a Xilinx Virtex-4 device after place and route.

  4. Investigation of the Flow Physics Driving Stall-Side Flutter in Advanced Forward Swept Fan Designs

    NASA Technical Reports Server (NTRS)

    Sanders, Albert J.; Liu, Jong S.; Panovsky, Josef; Bakhle, Milind A.; Stefko, George; Srivastava, Rakesh

    2003-01-01

    Flutter-free operation of advanced transonic fan designs continues to be a challenging task for the designers of aircraft engines. In order to meet the demands of increased performance and lighter weight, these modern fan designs usually feature low-aspect ratio shroudless rotor blade designs that make the task of achieving adequate flutter margin even more challenging for the aeroelastician. This is especially true for advanced forward swept designs that encompass an entirely new design space compared to previous experience. Fortunately, advances in unsteady computational fluid dynamic (CFD) techniques over the past decade now provide an analysis capability that can be used to quantitatively assess the aeroelastic characteristics of these next generation fans during the design cycle. For aeroelastic applications, Mississippi State University and NASA Glenn Research Center have developed the CFD code TURBO-AE. This code is a time-accurate three-dimensional Euler/Navier-Stokes unsteady flow solver developed for axial-flow turbomachinery that can model multiple blade rows undergoing harmonic oscillations with arbitrary interblade phase angles, i.e., nodal diameter patterns. Details of the code can be found in Chen et al. (1993, 1994), Bakhle et al. (1997, 1998), and Srivastava et al. (1999). To assess aeroelastic stability, the work-per-cycle from TURBO-AE is converted to the critical damping ratio since this value is more physically meaningful, with both the unsteady normal pressure and viscous shear forces included in the work-per-cycle calculation. If the total damping (aerodynamic plus mechanical) is negative, then the blade is unstable since it extracts energy from the flow field over the vibration cycle. TURBO-AE is an integral part of an aeroelastic design system being developed at Honeywell Engines, Systems & Services for flutter and forced response predictions, with test cases from development rig and engine tests being used to validate its predictive capability. A recent experimental program (Sanders et al., 2002) was aimed at providing the necessary unsteady aerodynamic and vibratory response data needed to validate TURBO-AE for fan flutter predictions. A comparison of numerical TURBO-AE simulations with the benchmark flutter data is given in Sanders et al. (2003), with the data used to guide the validation of the code and define best practices for performing accurate unsteady simulations. The agreement between the analyses and the predictions was quite remarkable, demonstrating the ability of the analysis to accurately model the unsteady flow processes driving stall-side flutter.

  5. Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping

    2009-01-01

    Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.

  6. Parallel Unsteady Turbopump Simulations for Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William

    2000-01-01

    This paper reports the progress being made towards complete turbo-pump simulation capability for liquid rocket engines. Space Shuttle Main Engine (SSME) turbo-pump impeller is used as a test case for the performance evaluation of the MPI and hybrid MPI/Open-MP versions of the INS3D code. Then, a computational model of a turbo-pump has been developed for the shuttle upgrade program. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbo-pump, which contains 136 zones with 35 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from time-accurate simulations with moving boundary capability, and the performance of the parallel versions of the code will be presented in the final paper.

  7. Progress of High Efficiency Centrifugal Compressor Simulations Using TURBO

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Beach, Timothy A.

    2017-01-01

    Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was developed to generate a converged flow field in TURBO. This procedure initialized computations on a coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 pounds per square inch (101.35 kilopascals) down to 11.0 pounds per square inch (75.83 kilopascals), the inlet pressure of the component test. Off-design tip clearance was modeled in TURBO in two computations: one in which the blade tip geometry was trimmed by 12 mils (0.3048 millimeters), and another in which the hub flow path was moved to reflect a 12-mil axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two computations indicate non-negligible differences between the two modeling approaches.

  8. National Aerospace Leadership Initiative - Phase I

    DTIC Science & Technology

    2008-09-30

    Devised and validated CFD code for operation of a micro-channel heat exchanger. The work was published at the 2008 AIAA Annual Meeting and Exposition...and (3) preparation to implement this algorithm in TURBO. Heat Transfer Capability In the short and medium term, the following plan has been adopted...to provide heat transfer capability to the TURBO code: • Incorporation of a constant wall temperature boundary condition. This capability will be

  9. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  10. Evaluation of large girth LDPC codes for PMD compensation by turbo equalization.

    PubMed

    Minkov, Lyubomir L; Djordjevic, Ivan B; Xu, Lei; Wang, Ting; Kueppers, Franko

    2008-08-18

    Large-girth quasi-cyclic LDPC codes have been experimentally evaluated for use in PMD compensation by turbo equalization for a 10 Gb/s NRZ optical transmission system, and observing one sample per bit. Net effective coding gain improvement for girth-10, rate 0.906 code of length 11936 over maximum a posteriori probability (MAP) detector for differential group delay of 125 ps is 6.25 dB at BER of 10(-6). Girth-10 LDPC code of rate 0.8 outperforms the girth-10 code of rate 0.906 by 2.75 dB, and provides the net effective coding gain improvement of 9 dB at the same BER. It is experimentally determined that girth-10 LDPC codes of length around 15000 approach channel capacity limit within 1.25 dB.

  11. Signal-processing theory for the TurboRogue receiver

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1995-01-01

    Signal-processing theory for the TurboRogue receiver is presented. The signal form is traced from its formation at the GPS satellite, to the receiver antenna, and then through the various stages of the receiver, including extraction of phase and delay. The analysis treats the effects of ionosphere, troposphere, signal quantization, receiver components, and system noise, covering processing in both the 'code mode' when the P code is not encrypted and in the 'P-codeless mode' when the P code is encrypted. As a possible future improvement to the current analog front end, an example of a highly digital front end is analyzed.

  12. Soft-output decoding algorithms in iterative decoding of turbo codes

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.

    1996-01-01

    In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.

  13. Maximum likelihood decoding analysis of Accumulate-Repeat-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    Repeat-Accumulate (RA) codes are the simplest turbo-like codes that achieve good performance. However, they cannot compete with Turbo codes or low-density parity check codes (LDPC) as far as performance is concerned. The Accumulate Repeat Accumulate (ARA) codes, as a subclass of LDPC codes, are obtained by adding a pre-coder in front of RA codes with puncturing where an accumulator is chosen as a precoder. These codes not only are very simple, but also achieve excellent performance with iterative decoding. In this paper, the performance of these codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. The weight distribution of some simple ARA codes is obtained, and through existing tightest bounds we have shown the ML SNR threshold of ARA codes approaches very closely to the performance of random codes. We have shown that the use of precoder improves the SNR threshold but interleaving gain remains unchanged with respect to RA code with puncturing.

  14. Implementation of control point form of algebraic grid-generation technique

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Miller, David P.; Reno, Charles J.

    1991-01-01

    The control point form (CPF) provides explicit control of physical grid shape and grid spacing through the movement of the control points. The control point array, called a control net, is a space grid type arrangement of locations in physical space with an index for each direction. As an algebraic method CPF is efficient and works well with interactive computer graphics. A family of menu-driven, interactive grid-generation computer codes (TURBO) is being developed by using CPF. Key features of TurboI (a TURBO member) are discussed and typical results are presented. TurboI runs on any IRIS 4D series workstation.

  15. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  16. Theoretical and experimental studies of turbo product code with time diversity in free space optical communication.

    PubMed

    Han, Yaoqiang; Dang, Anhong; Ren, Yongxiong; Tang, Junxiong; Guo, Hong

    2010-12-20

    In free space optical communication (FSOC) systems, channel fading caused by atmospheric turbulence degrades the system performance seriously. However, channel coding combined with diversity techniques can be exploited to mitigate channel fading. In this paper, based on the experimental study of the channel fading effects, we propose to use turbo product code (TPC) as the channel coding scheme, which features good resistance to burst errors and no error floor. However, only channel coding cannot cope with burst errors caused by channel fading, interleaving is also used. We investigate the efficiency of interleaving for different interleaving depths, and then the optimum interleaving depth for TPC is also determined. Finally, an experimental study of TPC with interleaving is demonstrated, and we show that TPC with interleaving can significantly mitigate channel fading in FSOC systems.

  17. Optimal operation of turbo blowers serially connected using inlet vanes

    NASA Astrophysics Data System (ADS)

    Jang, Choon-Man

    2011-03-01

    Optimal operation of the turbo blowers having an inlet vane has been studied to understand the blowers' operating performance. To analyze three-dimensional flow field in the turbo blowers serially connected, general analysis code, CFX, is introduced in the present work. SST turbulence model is employed to estimate the eddy viscosity. Throughout the numerical analysis, it is found that the flow rates of the turbo blowers can be controlled at the vane angle between 90 (full open condition) degrees and 60 degrees effectively, because pressure loss rapidly increases below 60 degree of a vane angle. Efficiency also has almost the same values from 90 degrees to 60 degrees of a vane angle. It is noted that the distorted inlet velocity generated in the small vane angle makes performance deterioration of the turbo blowers due to the local leading edge separation and the following non-uniform blade loading.

  18. Turbo Trellis Coded Modulation With Iterative Decoding for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1997-01-01

    In this paper, analytical bounds on the performance of parallel concatenation of two codes, known as turbo codes, and serial concatenation of two codes over fading channels are obtained. Based on this analysis, design criteria for the selection of component trellis codes for MPSK modulation, and a suitable bit-by-bit iterative decoding structure are proposed. Examples are given for throughput of 2 bits/sec/Hz with 8PSK modulation. The parallel concatenation example uses two rate 4/5 8-state convolutional codes with two interleavers. The convolutional codes' outputs are then mapped to two 8PSK modulations. The serial concatenated code example uses an 8-state outer code with rate 4/5 and a 4-state inner trellis code with 5 inputs and 2 x 8PSK outputs per trellis branch. Based on the above mentioned design criteria for fading channels, a method to obtain he structure of the trellis code with maximum diversity is proposed. Simulation results are given for AWGN and an independent Rayleigh fading channel with perfect Channel State Information (CSI).

  19. Future capabilities for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Berner, J. B.; Bryant, S. H.; Andrews, K. S.

    2004-01-01

    This paper will look at three new capabilities that are in different stages of development. First, turbo decoding, which provides improved telemetry performance for data rates up to about 1 Mbps, will be discussed. Next, pseudo-noise ranging will be presented. Pseudo-noise ranging has several advantages over the current sequential ranging, anmely easier operations, improved performance, and the capability to be used in a regenerative implementation on a spacecraft. Finally, Low Density Parity Check decoding will be discussed. LDPC codes can provide performance that matches or slightly exceed turbo codes, but are designed for use in the 10 Mbps range.

  20. Object-oriented millisecond timers for the PC.

    PubMed

    Hamm, J P

    2001-11-01

    Object-oriented programming provides a useful structure for designing reusable code. Accurate millisecond timing is essential for many areas of research. With this in mind, this paper provides a Turbo Pascal unit containing an object-oriented millisecond timer. This approach allows for multiple timers to be running independently. The timers may also be set at different levels of temporal precision, such as 10(-3) (milliseconds) or 10(-5) sec. The object also is able to store the time of a flagged event for later examination without interrupting the ongoing timing operation.

  1. Information-reduced Carrier Synchronization of Iterative Decoded BPSK and QPSK using Soft Decision (Extrinsic) Feedback

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Valles, Esteban; Jones, Christopher

    2008-01-01

    This paper addresses the carrier-phase estimation problem under low SNR conditions as are typical of turbo- and LDPC-coded applications. In previous publications by the first author, closed-loop carrier synchronization schemes for error-correction coded BPSK and QPSK modulation were proposed that were based on feeding back hard data decisions at the input of the loop, the purpose being to remove the modulation prior to attempting to track the carrier phase as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. In this paper, we consider an alternative approach wherein the extrinsic soft information from the iterative decoder of turbo or LDPC codes is instead used as the feedback.

  2. Linearized Aeroelastic Solver Applied to the Flutter Prediction of Real Configurations

    NASA Technical Reports Server (NTRS)

    Reddy, Tondapu S.; Bakhle, Milind A.

    2004-01-01

    A fast-running unsteady aerodynamics code, LINFLUX, was previously developed for predicting turbomachinery flutter. This linearized code, based on a frequency domain method, models the effects of steady blade loading through a nonlinear steady flow field. The LINFLUX code, which is 6 to 7 times faster than the corresponding nonlinear time domain code, is suitable for use in the initial design phase. Earlier, this code was verified through application to a research fan, and it was shown that the predictions of work per cycle and flutter compared well with those from a nonlinear time-marching aeroelastic code, TURBO-AE. Now, the LINFLUX code has been applied to real configurations: fans developed under the Energy Efficient Engine (E-cubed) Program and the Quiet Aircraft Technology (QAT) project. The LINFLUX code starts with a steady nonlinear aerodynamic flow field and solves the unsteady linearized Euler equations to calculate the unsteady aerodynamic forces on the turbomachinery blades. First, a steady aerodynamic solution is computed for given operating conditions using the nonlinear unsteady aerodynamic code TURBO-AE. A blade vibration analysis is done to determine the frequencies and mode shapes of the vibrating blades, and an interface code is used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor is used to interpolate the mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh. Then, LINFLUX is used to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. Finally, a post-processor uses the unsteady pressures to calculate the generalized aerodynamic forces, eigenvalues, an esponse amplitudes. The eigenvalues determine the flutter frequency and damping. Results of flutter calculations from the LINFLUX code are presented for (1) the E-cubed fan developed under the E-cubed program and (2) the Quiet High Speed Fan (QHSF) developed under the Quiet Aircraft Technology project. The results are compared with those obtained from the TURBO-AE code. A graph of the work done per vibration cycle for the first vibration mode of the E-cubed fan is shown. It can be seen that the LINFLUX results show a very good comparison with TURBO-AE results over the entire range of interblade phase angle. The work done per vibration cycle for the first vibration mode of the QHSF fan is shown. Once again, the LINFLUX results compare very well with the results from the TURBOAE code.

  3. A Wideband Satcom Based Avionics Network with CDMA Uplink and TDM Downlink

    NASA Technical Reports Server (NTRS)

    Agrawal, D.; Johnson, B. S.; Madhow, U.; Ramchandran, K.; Chun, K. S.

    2000-01-01

    The purpose of this paper is to describe some key technical ideas behind our vision of a future satcom based digital communication network for avionics applications The key features of our design are as follows: (a) Packetized transmission to permit efficient use of system resources for multimedia traffic; (b) A time division multiplexed (TDM) satellite downlink whose physical layer is designed to operate the satellite link at maximum power efficiency. We show how powerful turbo codes (invented originally for linear modulation) can be used with nonlinear constant envelope modulation, thus permitting the satellite amplifier to operate in a power efficient nonlinear regime; (c) A code division multiple access (CDMA) satellite uplink, which permits efficient access to the satellite from multiple asynchronous users. Closed loop power control is difficult for bursty packetized traffic, especially given the large round trip delay to the satellite. We show how adaptive interference suppression techniques can be used to deal with the ensuing near-far problem; (d) Joint source-channel coding techniques are required both at the physical and the data transport layer to optimize the end-to-end performance. We describe a novel approach to multiple description image encoding at the data transport layer in this paper.

  4. Quiet High Speed Fan (QHSF) Flutter Calculations Using the TURBO Code

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Min, James B.; Mehmed, Oral

    2006-01-01

    A scale model of the NASA/Honeywell Engines Quiet High Speed Fan (QHSF) encountered flutter wind tunnel testing. This report documents aeroelastic calculations done for the QHSF scale model using the blade vibration capability of the TURBO code. Calculations at design speed were used to quantify the effect of numerical parameters on the aerodynamic damping predictions. This numerical study allowed the selection of appropriate values of these parameters, and also allowed an assessment of the variability in the calculated aerodynamic damping. Calculations were also done at 90 percent of design speed. The predicted trends in aerodynamic damping corresponded to those observed during testing.

  5. Error-Rate Bounds for Coded PPM on a Poisson Channel

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon

    2009-01-01

    Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.

  6. Investigations on the sensitivity of the computer code TURBO-2D

    NASA Astrophysics Data System (ADS)

    Amon, B.

    1994-12-01

    The two-dimensional computer model TURBO-2D for the calculation of two-phase flow was used to calculate the cold injection of fuel into a model chamber. Investigations of the influence of the input parameter on its sensitivity relative to the obtained results were made. In addition to that calculations were performed and compared using experimental injection pressure data and corresponding averaged injection parameter.

  7. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics: Proof-of-Concept Progress

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.

  8. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.; He, Jiali; White, Gregory S.

    1997-01-01

    Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving.

  9. Time-Dependent Simulation of Incompressible Flow in a Turbopump Using Overset Grid Approach

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    2001-01-01

    This paper reports the progress being made towards complete unsteady turbopump simulation capability by using overset grid systems. A computational model of a turbo-pump impeller is used as a test case for the performance evaluation of the MPI, hybrid MPI/Open-MP, and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Unsteady computations for a turbo-pump, which contains 114 zones with 34.3 Million grid points, are performed on Origin 2000 systems at NASA Ames Research Center. The approach taken for these simulations, and the performance of the parallel versions of the code are presented.

  10. Efficient Signal, Code, and Receiver Designs for MIMO Communication Systems

    DTIC Science & Technology

    2003-06-01

    167 5-31 Concatenation of a tilted-QAM inner code with an LDPC outer code with a two component iterative soft-decision decoder. . . . . . . . . 168 5...for AWGN channels has long been studied. There are well-known soft-decision codes like the turbo codes and LDPC codes that can approach capacity to...bits) low density parity check ( LDPC ) code 1. 2. The coded bits are randomly interleaved so that bits nearby go through different sub-channels, and are

  11. Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods

    NASA Technical Reports Server (NTRS)

    Eick, Chris D.; Liu, Jong-Shang

    1998-01-01

    AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated.

  12. User Manual for Beta Version of TURBO-GRD: A Software System for Interactive Two-Dimensional Boundary/ Field Grid Generation, Modification, and Refinement

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee

    1998-01-01

    TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.

  13. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  14. Dynamic configuration management of a multi-standard and multi-mode reconfigurable multi-ASIP architecture for turbo decoding

    NASA Astrophysics Data System (ADS)

    Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe

    2017-12-01

    The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.

  15. Preliminary Assessment of Turbomachinery Codes

    NASA Technical Reports Server (NTRS)

    Mazumder, Quamrul H.

    2007-01-01

    This report assesses different CFD codes developed and currently being used at Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be described separately in the following section with their current modeling capabilities, level of validation, pre/post processing, and future development and validation requirements. This report addresses only previously published and validations of the codes. However, the codes have been further developed to extend the capabilities of the codes.

  16. Fixed-point Design of the Lattice-reduction-aided Iterative Detection and Decoding Receiver for Coded MIMO Systems

    DTIC Science & Technology

    2011-01-01

    reliability, e.g., Turbo Codes [2] and Low Density Parity Check ( LDPC ) codes [3]. The challenge to apply both MIMO and ECC into wireless systems is on...REPORT Fixed-point Design of theLattice-reduction-aided Iterative Detection andDecoding Receiver for Coded MIMO Systems 14. ABSTRACT 16. SECURITY...illustrates the performance of coded LR aided detectors. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions

  17. Predicting Flutter and Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  18. High-Speed, Low-Cost Workstation for Computation-Intensive Statistics. Phase 1

    DTIC Science & Technology

    1990-06-20

    routine implementation and performance. 5 The two compiled versions given in the table were coded in an attempt to obtain an optimized compiled version...level statistics and linear algebra routines (BSAS and BLAS) that have been prototyped in this study. For each routine, both the C code ( Turbo C...OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited distribution 13. ABSTRACT (Maximum 200 words) High-performance and low-cost

  19. JP3D compressed-domain watermarking of volumetric medical data sets

    NASA Astrophysics Data System (ADS)

    Ouled Zaid, Azza; Makhloufi, Achraf; Olivier, Christian

    2010-01-01

    Increasing transmission of medical data across multiple user systems raises concerns for medical image watermarking. Additionaly, the use of volumetric images triggers the need for efficient compression techniques in picture archiving and communication systems (PACS), or telemedicine applications. This paper describes an hybrid data hiding/compression system, adapted to volumetric medical imaging. The central contribution is to integrate blind watermarking, based on turbo trellis-coded quantization (TCQ), to JP3D encoder. Results of our method applied to Magnetic Resonance (MR) and Computed Tomography (CT) medical images have shown that our watermarking scheme is robust to JP3D compression attacks and can provide relative high data embedding rate whereas keep a relative lower distortion.

  20. Variable Coded Modulation software simulation

    NASA Astrophysics Data System (ADS)

    Sielicki, Thomas A.; Hamkins, Jon; Thorsen, Denise

    This paper reports on the design and performance of a new Variable Coded Modulation (VCM) system. This VCM system comprises eight of NASA's recommended codes from the Consultative Committee for Space Data Systems (CCSDS) standards, including four turbo and four AR4JA/C2 low-density parity-check codes, together with six modulations types (BPSK, QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK). The signaling protocol for the transmission mode is based on a CCSDS recommendation. The coded modulation may be dynamically chosen, block to block, to optimize throughput.

  1. Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mehmed, Oral

    2003-01-01

    Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.

  2. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2011-09-30

    channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1

  3. Protograph-Based Raptor-Like Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Chen, Tsung-Yi; Wang, Jiadong; Wesel, Richard D.

    2014-01-01

    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of pointto- point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

  4. Hybrid concatenated codes and iterative decoding

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Pollara, Fabrizio (Inventor)

    2000-01-01

    Several improved turbo code apparatuses and methods. The invention encompasses several classes: (1) A data source is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each encoder outputs a code element which may be transmitted or stored. A parallel decoder provides the ability to decode the code elements to derive the original source information d without use of a received data signal corresponding to d. The output may be coupled to a multilevel trellis-coded modulator (TCM). (2) A data source d is applied to two or more encoders with an interleaver between the source and each of the second and subsequent encoders. Each of the encoders outputs a code element. In addition, the original data source d is output from the encoder. All of the output elements are coupled to a TCM. (3) At least two data sources are applied to two or more encoders with an interleaver between each source and each of the second and subsequent encoders. The output may be coupled to a TCM. (4) At least two data sources are applied to two or more encoders with at least two interleavers between each source and each of the second and subsequent encoders. (5) At least one data source is applied to one or more serially linked encoders through at least one interleaver. The output may be coupled to a TCM. The invention includes a novel way of terminating a turbo coder.

  5. Underwater Acoustic Propagation and Communications: A Coupled Research Program

    DTIC Science & Technology

    2015-06-15

    coding technique suitable for both SIMO and MIMO systems. 4. an adaptive OFDM modulation technique, whereby the transmitter acts in response to...timate based adaptation for SIMO and MIMO systems in a interactive turbo-equalization framework were developed and analyzed. MIMO and SISO

  6. A power-efficient communication system between brain-implantable devices and external computers.

    PubMed

    Yao, Ning; Lee, Heung-No; Chang, Cheng-Chun; Sclabassi, Robert J; Sun, Mingui

    2007-01-01

    In this paper, we propose a power efficient communication system for linking a brain-implantable device to an external system. For battery powered implantable devices, the processor and the transmitter power should be reduced in order to both conserve battery power and reduce the health risks associated with transmission. To accomplish this, a joint source-channel coding/decoding system is devised. Low-density generator matrix (LDGM) codes are used in our system due to their low encoding complexity. The power cost for signal processing within the implantable device is greatly reduced by avoiding explicit source encoding. Raw data which is highly correlated is transmitted. At the receiver, a Markov chain source correlation model is utilized to approximate and capture the correlation of raw data. A turbo iterative receiver algorithm is designed which connects the Markov chain source model to the LDGM decoder in a turbo-iterative way. Simulation results show that the proposed system can save up to 1 to 2.5 dB on transmission power.

  7. Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models

    NASA Astrophysics Data System (ADS)

    Ahmadian, Narjes; Khosravi, Alireza; Sarhadi, Pouria

    2017-08-01

    In this paper, a multiple model adaptive control (MMAC) method is proposed for a gas turbine engine. The model of a twin spool turbo-shaft engine driving a variable pitch propeller includes various operating points. Variations in fuel flow and propeller pitch inputs produce different operating conditions which force the controller to be adopted rapidly. Important operating points are three idle, cruise and full thrust cases for the entire flight envelope. A multi-input multi-output (MIMO) version of second level adaptation using multiple models is developed. Also, stability analysis using Lyapunov method is presented. The proposed method is compared with two conventional first level adaptation and model reference adaptive control techniques. Simulation results for JetCat SPT5 turbo-shaft engine demonstrate the performance and fidelity of the proposed method.

  8. Weight distributions for turbo codes using random and nonrandom permutations

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Divsalar, D.

    1995-01-01

    This article takes a preliminary look at the weight distributions achievable for turbo codes using random, nonrandom, and semirandom permutations. Due to the recursiveness of the encoders, it is important to distinguish between self-terminating and non-self-terminating input sequences. The non-self-terminating sequences have little effect on decoder performance, because they accumulate high encoded weight until they are artificially terminated at the end of the block. From probabilistic arguments based on selecting the permutations randomly, it is concluded that the self-terminating weight-2 data sequences are the most important consideration in the design of constituent codes; higher-weight self-terminating sequences have successively decreasing importance. Also, increasing the number of codes and, correspondingly, the number of permutations makes it more and more likely that the bad input sequences will be broken up by one or more of the permuters. It is possible to design nonrandom permutations that ensure that the minimum distance due to weight-2 input sequences grows roughly as the square root of (2N), where N is the block length. However, these nonrandom permutations amplify the bad effects of higher-weight inputs, and as a result they are inferior in performance to randomly selected permutations. But there are 'semirandom' permutations that perform nearly as well as the designed nonrandom permutations with respect to weight-2 input sequences and are not as susceptible to being foiled by higher-weight inputs.

  9. Optimized iterative decoding method for TPC coded CPM

    NASA Astrophysics Data System (ADS)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  10. A Fixed-Point Phase Lock Loop in a Software Defined Radio

    DTIC Science & Technology

    2002-09-01

    code from a simulation model. This feature will allow easy implementation on an FPGA as C can be easily converted to VHDL , the language required...this is equivalent to the MATLAB code implementation in Appendix A. The PD takes the input signal 40 and multiplies it by the in-phase and...stop to 60 mph in 3.1 seconds (the fastest production car ever built is the Porsche Carrera twin turbo which was tested at 0-60 mph in 3.1 seconds

  11. Time-Shifted Boundary Conditions Used for Navier-Stokes Aeroelastic Solver

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    1999-01-01

    Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.

  12. LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.

    2004-01-01

    This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.

  13. A Three-Dimensional Parallel Time-Accurate Turbopump Simulation Procedure Using Overset Grid System

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2002-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and nonuniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability are presented along with the performance of parallel versions of the code.

  14. Time-Dependent Simulations of Turbopump Flows

    NASA Technical Reports Server (NTRS)

    Kris, Cetin C.; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort will provide developers with information such as transient flow phenomena at start up, impact of non-uniform inflows, system vibration and impact on the structure. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Time-accuracy of the scheme has been evaluated with simple test cases. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  15. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  16. Non-binary LDPC-coded modulation for high-speed optical metro networks with backpropagation

    NASA Astrophysics Data System (ADS)

    Arabaci, Murat; Djordjevic, Ivan B.; Saunders, Ross; Marcoccia, Roberto M.

    2010-01-01

    To simultaneously mitigate the linear and nonlinear channel impairments in high-speed optical communications, we propose the use of non-binary low-density-parity-check-coded modulation in combination with a coarse backpropagation method. By employing backpropagation, we reduce the memory in the channel and in return obtain significant reductions in the complexity of the channel equalizer which is exponentially proportional to the channel memory. We then compensate for the remaining channel distortions using forward error correction based on non-binary LDPC codes. We propose non-binary-LDPC-coded modulation scheme because, compared to bit-interleaved binary-LDPC-coded modulation scheme employing turbo equalization, the proposed scheme lowers the computational complexity and latency of the overall system while providing impressively larger coding gains.

  17. A CCIR-based prediction model for Earth-Space propagation

    NASA Technical Reports Server (NTRS)

    Zhang, Zengjun; Smith, Ernest K.

    1991-01-01

    At present there is no single 'best way' to predict propagation impairments to an Earth-Space path. However, there is an internationally accepted way, namely that given in the most recent version of CCIR Report 564 of Study Group 5. This paper treats a computer code conforming as far as possible to Report 564. It was prepared for an IBM PS/2 using a 386 chip and for Macintosh SE or Mach II. It is designed to be easy to write and read, easy to modify, fast, have strong graphic capability, contain adequate functions, have dialog capability and windows capability. Computer languages considered included the following: (1) Turbo BASIC, (2) Turbo PASCAL, (3) FORTRAN, (4) SMALL TALK, (5) C++, (6) MS SPREADSHEET, (7) MS Excel-Macro, (8) SIMSCRIPT II.5, and (9) WINGZ.

  18. An automatic editing algorithm for GPS data

    NASA Technical Reports Server (NTRS)

    Blewitt, Geoffrey

    1990-01-01

    An algorithm has been developed to edit automatically Global Positioning System data such that outlier deletion, cycle slip identification, and correction are independent of clock instability, selective availability, receiver-satellite kinematics, and tropospheric conditions. This algorithm, called TurboEdit, operates on undifferenced, dual frequency carrier phase data, and requires the use of P code pseudorange data and a smoothly varying ionospheric electron content. TurboEdit was tested on the large data set from the CASA Uno experiment, which contained over 2500 cycle slips.Analyst intervention was required on 1 percent of the station-satellite passes, almost all of these problems being due to difficulties in extrapolating variations in the ionospheric delay. The algorithm is presently being adapted for real time data editing in the Rogue receiver for continuous monitoring applications.

  19. Serial turbo trellis coded modulation using a serially concatenated coder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Pollara, Fabrizio (Inventor)

    2010-01-01

    Serial concatenated trellis coded modulation (SCTCM) includes an outer coder, an interleaver, a recursive inner coder and a mapping element. The outer coder receives data to be coded and produces outer coded data. The interleaver permutes the outer coded data to produce interleaved data. The recursive inner coder codes the interleaved data to produce inner coded data. The mapping element maps the inner coded data to a symbol. The recursive inner coder has a structure which facilitates iterative decoding of the symbols at a decoder system. The recursive inner coder and the mapping element are selected to maximize the effective free Euclidean distance of a trellis coded modulator formed from the recursive inner coder and the mapping element. The decoder system includes a demodulation unit, an inner SISO (soft-input soft-output) decoder, a deinterleaver, an outer SISO decoder, and an interleaver.

  20. Optical LDPC decoders for beyond 100 Gbits/s optical transmission.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2009-05-01

    We present an optical low-density parity-check (LDPC) decoder suitable for implementation above 100 Gbits/s, which provides large coding gains when based on large-girth LDPC codes. We show that a basic building block, the probabilities multiplier circuit, can be implemented using a Mach-Zehnder interferometer, and we propose corresponding probabilistic-domain sum-product algorithm (SPA). We perform simulations of a fully parallel implementation employing girth-10 LDPC codes and proposed SPA. The girth-10 LDPC(24015,19212) code of the rate of 0.8 outperforms the BCH(128,113)xBCH(256,239) turbo-product code of the rate of 0.82 by 0.91 dB (for binary phase-shift keying at 100 Gbits/s and a bit error rate of 10(-9)), and provides a net effective coding gain of 10.09 dB.

  1. A Three Dimensional Parallel Time Accurate Turbopump Simulation Procedure Using Overset Grid Systems

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chan, William; Kwak, Dochan

    2001-01-01

    The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort provides developers with information such as transient flow phenomena at start up, and non-uniform inflows, and will eventually impact on system vibration and structures. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. CAD to solution auto-scripting capability is being developed for turbopump applications. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 3000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.

  2. Computer simulation of FT-NMR multiple pulse experiment

    NASA Astrophysics Data System (ADS)

    Allouche, A.; Pouzard, G.

    1989-04-01

    Using the product operator formalism in its real form, SIMULDENS expands the density matrix of a scalar coupled nuclear spin system and simulates analytically a large variety of FT-NMR multiple pulse experiments. The observable transverse magnetizations are stored and can be combined to represent signal accumulation. The programming language is VAX PASCAL, but a MacIntosh Turbo Pascal Version is also available.

  3. FPGA implementation of advanced FEC schemes for intelligent aggregation networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.

  4. A Constant Envelope OFDM Implementation on GNU Radio

    DTIC Science & Technology

    2015-02-02

    more advanced schemes like Decision Feedback Equalization or Turbo Equalization must be implemented to avoid the noise enhancement that all linear...block is coded in C++, and uses the phase unwrapping algorithm similar to MATLABs unwrap() function. To avoid false wraps propagating throughout the...outperform the real-time GNU radio implementation at higher SNR’s. While the unequalized experiment with the Matlab processor usually stayed within 5

  5. Center for Hybrid Communications and Networks

    DTIC Science & Technology

    2016-09-08

    Transmission loop experimental setup to study coded modulation and turbo equalization for metro and long-haul networks, 3) Experimental setup for...undertaking fundamental studies of QKD systems that use ( hyper -) entangled photon pairs or weak coherent states (WCS) as the quantum resources...onlinelibrary.wiley.com/doi/10.1002/047134608X.W8291/abstract] The real-time scope and AWG are also used in fiber-optics transmission loop experiment we

  6. Heart of the Hearth: Making the Popular Clean, Not the Clean Popular - Technology Research, Development, and Tools for Clean Biomass Cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gist, Ryan

    This technical report summarizes the work completed by BioLite in fulfilment of the US DOE EERE award. The work plan focused on three key objectives: developing an optimized combustion system that demonstrates high combustion efficiency and low PM 2.5 and CO emissions, integrate the system into popular stove phenotypes – side-fed rocket stove architecture like the BioLite HomeStove, and the Patsari chimney stove in Mexico such that they maintain their important phenotypical characteristics, independently evaluate quantitative fuel and emissions performance of the integrated ‘Turbo-Patsari’ in Mexican households. The project activities were organized into six major tasks: A. Develop, fabricate, andmore » test proof-of-concept prototypes B. Develop field prototypes, assess user feedback and field performance C. Define revised stove design for pre-production model, Identify manufacturing requirements and estimated cost to build, Conduct reliability, emissions, and performance testing of pre-production Turbo-Patsari D. Build pre-production Turbo-Patsari stove combustion cores E. Conduct pre-production field trials F. Summarize field trial results and evaluate Turbo-Patsari for potential volume production. A two-pronged approach was adopted for the above tasks. The first involved building a modular test platform that allowed parametric variation of multiple stove design parameters that directly affect its performance – heat output, thermal efficiency, and emissions. The second part of the approach comprised of building a surrogate Patsari based on GIRA’s specifications that could then be modified or retrofitted for optimum performance based on the learnings from the modular test platform. The following sections of the report will describe the findings of tests on these platform, the subsequent development, design, and installation of the Turbo-Patsari, and finally the in-home field trial.« less

  7. Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution

    NASA Astrophysics Data System (ADS)

    Wymeersch, Henk; Moeneclaey, Marc

    2005-12-01

    As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases, conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code properties, these problems can be avoided. In this contribution, we present several iterative maximum-likelihood (ML) algorithms for joint carrier phase estimation and ambiguity resolution. These algorithms operate on coded signals by accepting soft information from the MAP decoder. Issues of convergence and initialization are addressed in detail. Simulation results are presented for turbo codes, and are compared to performance results of conventional algorithms. Performance comparisons are carried out in terms of BER performance and mean square estimation error (MSEE). We show that the proposed algorithm reduces the MSEE and, more importantly, the BER degradation. Additionally, phase ambiguity resolution can be performed without resorting to a pilot sequence, thus improving the spectral efficiency.

  8. A CFD analysis of blade row interactions within a high-speed axial compressor

    NASA Astrophysics Data System (ADS)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  9. OPMILL - MICRO COMPUTER PROGRAMMING ENVIRONMENT FOR CNC MILLING MACHINES THREE AXIS EQUATION PLOTTING CAPABILITIES

    NASA Technical Reports Server (NTRS)

    Ray, R. B.

    1994-01-01

    OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.

  10. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and calculated the generalized aerodynamic forces, eigenvalues, and response amplitudes. The eigenvalues determine the flutter frequency and damping. As a test case, the flutter of a helical fan was calculated with LINFLUX and compared with calculations from TURBO-AE, a nonlinear time domain code, and from ASTROP2, a code based on linear unsteady aerodynamics.

  11. Numerical Simulation of Boundary Layer Ingesting (BLI) Inlet-Fan Interaction

    NASA Technical Reports Server (NTRS)

    Giuliani, James; Chen, Jen-Ping; Beach, Timothy; Bakhle, Milind

    2014-01-01

    Future civil transport designs may incorporate engine inlets integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlet ingests the lower momentum boundary layer flow. Previous studies have shown, however, that efficiency benefits of Boundary Layer Ingesting (BLI) ingestion are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This paper presents an effort to extend the modeling capabilities of an existing rotating turbomachinery unsteady analysis code to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations, such as the development of rotating stall and inlet distortion through compressor stages. This paper describes the first phase of an effort to extend the TURBO model to calculate the external and inlet flowfield upstream of fan so that accurate pressure distortions that result from BLI configurations can be computed and used to analyze fan aerodynamics and structural response. To validate the TURBO program modifications for the BLI flowfield, experimental test data obtained by NASA for a flushmounted S-duct with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Quantitative data is presented that indicates good predictive capability of the model in the upstream flow. A representative fan is attached to the inlet and results are presented for the coupled inlet/fan model. The impact on the total pressure distortion at the AIP after the fan is attached is examined.

  12. PCACE-Personal-Computer-Aided Cabling Engineering

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1987-01-01

    PCACE computer program developed to provide inexpensive, interactive system for learning and using engineering approach to interconnection systems. Basically database system that stores information as files of individual connectors and handles wiring information in circuit groups stored as records. Directly emulates typical manual engineering methods of handling data, thus making interface between user and program very natural. Apple version written in P-Code Pascal and IBM PC version of PCACE written in TURBO Pascal 3.0

  13. Advanced Aeroelastic Technologies for Turbomachinery Application

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Srivastava, Rakesh; Reddy, T. S. R.

    2004-01-01

    A summary of the work performed under the grant NCC-1068 is presented. More details can be found in the cited references. The summary is presented in two parts to represent two areas of research. In the first part, methods to analyze a high temperature ceramic guide vane subjected to cooling jets are presented, and in the second part, the effect of unsteady aerodynamic forces on aeroelastic stability as implemented into the turbo-REDUCE code are presented

  14. Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy.

    PubMed

    Lührs, Michael; Goebel, Rainer

    2017-10-01

    Turbo-Satori is a neurofeedback and brain-computer interface (BCI) toolbox for real-time functional near-infrared spectroscopy (fNIRS). It incorporates multiple pipelines from real-time preprocessing and analysis to neurofeedback and BCI applications. The toolbox is designed with a focus in usability, enabling a fast setup and execution of real-time experiments. Turbo-Satori uses an incremental recursive least-squares procedure for real-time general linear model calculation and support vector machine classifiers for advanced BCI applications. It communicates directly with common NIRx fNIRS hardware and was tested extensively ensuring that the calculations can be performed in real time without a significant change in calculation times for all sampling intervals during ongoing experiments of up to 6 h of recording. Enabling immediate access to advanced processing features also allows the use of this toolbox for students and nonexperts in the field of fNIRS data acquisition and processing. Flexible network interfaces allow third party stimulus applications to access the processed data and calculated statistics in real time so that this information can be easily incorporated in neurofeedback or BCI presentations.

  15. Analysis of Coupled Seals, Secondary and Powerstream Flow Fields in Aircraft and Aerospace Turbomachines

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Ho, Y. H.; Prezekwas, A. J.

    2005-01-01

    Higher power, high efficiency gas turbine engines require optimization of the seals and secondary flow systems as well as their impact on the powerstream. This work focuses on two aspects: 1. To apply the present day CFD tools (SCISEAL) to different real-life secondary flow applications from different original equipment manufacturers (OEM s) to provide feedback data and 2. Develop a computational methodology for coupled time-accurate simulation of the powerstream and secondary flow with emphasis on the interaction between the disk-cavity and rim seals flows with the powerstream (SCISEAL-MS-TURBO). One OEM simulation was of the Allison Engine Company T-56 turbine drum cavities including conjugate heat transfer with good agreement with data and provided design feedback information. Another was the GE aspirating seal where the 3-D CFD simulations played a major role in analysis and modification of that seal configuration. The second major objective, development of a coupled flow simulation capability was achieved by using two codes MS-TURBO for the powerstream and SCISEAL for the secondary flows with an interface coupling algorithm. The coupled code was tested against data from three differed configurations: 1. bladeless-rotor-stator-cavity turbine test rig, 2. UTRC high pressure turbine test rig, and, 3. the NASA Low-Speed-Air Compressor rig (LSAC) with results and limitations discussed herein.

  16. Garrett Electric Boosting Systems (EBS) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve Arnold; Craig Balis; Pierre Barthelet

    2005-03-31

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-Turbo{trademark} consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration is slightly better. It was shown that in order to make full use of additional capabilities of e-Turbo{trademark} wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-Turbo{trademark} designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-Turbo{trademark} are to be developed in a future project. There is concern about high power demands (even though momentary) of e-Turbo{trademark}. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-Turbo{trademark} designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-Turbo{trademark}. Designs and hardware combining IBT and e-Turbo{trademark} are to be developed in a future project. e-Turbo{trademark} provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-Turbo{trademark} performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less

  17. Analyses on the Performance and Interaction Between the Impeller and Casing in a Small-Size Turbo-Compressor

    NASA Astrophysics Data System (ADS)

    Kim, Youn-Jea; Kim, Dong-Won

    The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the turbo-compressor with circular and single volute casings from the inlet to a discharge nozzle. The optimum design for each element is important to develop the small-size turbo-compressor using alternative refrigerant as a working fluid. Typically, the rotating speed of the compressor is in the range of 40000-45000rpm because of the small size of an impeller diameter. A blade of an impeller has backswept two-dimensional shape due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside the entire impeller, the vaneless diffuser and the casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and time-averaged three-dimensional Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around the casing and pressure difference between the inlet and the outlet of the compressor are performed for the circular casing. The comparison of experimental and numerical results is conducted, and reasonable agreement is obtained.

  18. Aeroacoustic and Performance Simulations of a Test Scale Open Rotor

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.

    2013-01-01

    This paper explores a comparison between experimental data and numerical simulations of the historical baseline F31/A31 open rotor geometry. The experimental data were obtained at the NASA Glenn Research Center s Aeroacoustic facility and include performance and noise information for a variety of flow speeds (matching take-off and cruise). The numerical simulations provide both performance and aeroacoustic results using the NUMECA s Fine-Turbo analysis code. A non-linear harmonic method is used to capture the rotor/rotor interaction.

  19. Influence of rubbing on rotor dynamics, part 2

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    Rotor dynamic behavior depends considerably on how much the specific physical phenomena accompanying rotor rubbing against the stator is involved. The experimental results of rotor-to-stator rubbing contact are analyzed. The computer code is described for obtaining numerical calculations of rotor-to-stator rubbing system dynamic responses. Computer generated results are provided. The reduced dynamic data from High Pressure Fuel Turbo Pump (HPFTP) hot fire test are given. The results provide some significant conclusions. Information is provided on the electronic instrumentation used in the experimental testing.

  20. Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors

    DTIC Science & Technology

    2008-03-13

    the Doctoral Thesis Committee of the doctoral student. 3 3.0 Technical Background A strong incentive exists to reduce airfoil count in aircraft engine ...Advanced Turbine Engine ). A basic constraint on blade reduction is seen from the Euler turbine equation, which shows that, although a design can be carried...on the vane to rotor blade ratio of 8:11). Within the MSU Turbo code, specifying a small number of time steps requires more iteration at each time

  1. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  2. Electric Boosting System for Light Truck/SUV Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Steve; Balis, Craig; Barthelet, Pierre

    2005-06-22

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less

  3. Stability and performance of propulsion control systems with distributed control architectures and failures

    NASA Astrophysics Data System (ADS)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  4. The problem of the turbo-compressor

    NASA Technical Reports Server (NTRS)

    Devillers, Rene

    1920-01-01

    In terminating the study of the adaptation of the engine to the airplane, we will examine the problem of the turbo-compressor,the first realization of which dates from the war; this will form an addition to the indications already given on supercharging at various altitudes. This subject is of great importance for the application of the turbo-compressor worked by the exhaust gases. As a matter of fact, a compressor increasing the pressure in the admission manifold may be controlled by the engine shaft by means of multiplication gear or by a turbine operated by the exhaust gas. Assuming that the increase of pressure in the admission manifold is the same in both cases, the pressure in the exhaust manifold would be greater in the case in which the compressor is worked by the exhaust gas and there would result a certain reduction of engine power which we must be able to calculate. On the other hand , if the compressor is controlled by the engine shaft, a certain fraction of the excess power supplied is utilized for the rotation of the compressor. In order to compare the two systems, it is there-fore necessary to determine the value of the reduction of power due to back pressure when the turbine is employed.

  5. Orthogonal Pilot Channel Using Combination of FDMA and CDMA in Single-Carrier FDMA-Based Evolved UTRA Uplink

    NASA Astrophysics Data System (ADS)

    Kawamura, Teruo; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru

    In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i. e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding r of R=1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.

  6. Development of a turbine-compressor for 10 kW class neon turbo-Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, Masaki; Yoshida, Shigeru; Sano, Tomonobu; Ozaki, Shinsuke

    2014-01-01

    We are developing 10 kW class turbo-Brayton refrigerator whose working fluid is neon gas. Its high pressure value is 1 MPa and its low pressure value is 0.5 MPa. The refrigerator consists of two turbine-compressors and a heat exchanger. The turbine-compressor has a turbo-expander on one side of its shaft and a turbo-compressor on the other side of the shaft. Two turbo-compressors are connected in series and two turbo-expanders are set in parallel. So, all amount of neon gas is compressed by two stages and each half a mount of neon gas is expanded by one stage. Two turbinecompressors are the same machines and development cost and time are minimized. In this stage, we made one prototype turbine-compressor and installed it in a performance test facility. This paper shows details of the turbine-compressor and refrigerator cooling power simulation results.

  7. A high throughput architecture for a low complexity soft-output demapping algorithm

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  8. Numerical Methodology for Coupled Time-Accurate Simulations of Primary and Secondary Flowpaths in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    Detailed information of the flow-fields in the secondary flowpaths and their interaction with the primary flows in gas turbine engines is necessary for successful designs with optimized secondary flow streams. Present work is focused on the development of a simulation methodology for coupled time-accurate solutions of the two flowpaths. The secondary flowstream is treated using SCISEAL, an unstructured adaptive Cartesian grid code developed for secondary flows and seals, while the mainpath flow is solved using TURBO, a density based code with capability of resolving rotor-stator interaction in multi-stage machines. An interface is being tested that links the two codes at the rim seal to allow data exchange between the two codes for parallel, coupled execution. A description of the coupling methodology and the current status of the interface development is presented. Representative steady-state solutions of the secondary flow in the UTRC HP Rig disc cavity are also presented.

  9. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  10. An evaluation of Turbo Prolog with an emphasis on its application to the development of expert systems

    NASA Technical Reports Server (NTRS)

    Loftin, Richard B.

    1987-01-01

    Turbo Prolog is a recently available, compiled version of the programming language Prolog. Turbo Prolog is designed to provide not only a Prolog compiler, but also a program development environment for the IBM Personal Computer family. An evaluation of Turbo Prolog was made, comparing its features to other versions of Prolog and to the community of languages commonly used in artificial intelligence (AI) research and development. Three programs were employed to determine the execution speed of Turbo Prolog applied to various problems. The results of this evaluation demonstrated that Turbo Prolog can perform much better than many commonly employed AI languages for numerically intensive problems and can equal the speed of development languages such as OPS5+ and CLIPS, running on the IBM PC. Applications for which Turbo Prolog is best suited include those which (1) lend themselves naturally to backward-chaining approaches, (2) require extensive use of mathematics, (3) contain few rules, (4) seek to make use of the window/color graphics capabilities of the IBM PC, and (5) require linkage to programs in other languages to form a complete executable image.

  11. Turbo-generator control with variable valve actuation

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  12. The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features

    NASA Astrophysics Data System (ADS)

    Rybczyński, Józef

    2011-02-01

    This paper presents the results of computer simulation of bearing misalignment defects in a power turbogenerator. This malfunction is typical for great multi-rotor and multi-bearing rotating machines and very common in power turbo-sets. Necessary calculations were carried out by the computer code system MESWIR, developed and used at the IFFM in Gdansk for calculating dynamics of rotors supported on oil bearings. The results are presented in the form of a set of journal and bush trajectories of all turbo-set bearings. Our analysis focuses on the vibrational effects of displacing the two most vulnerable machine bearings in horizontal and vertical directions by the maximum acceptable range calculated with regard to bearing vibration criterion. This assumption required preliminary assessment of the maximum values for the permissible bearing dislocations. We show the relations between the attributes of the particular bearing trajectories and the bearing displacements in relation to their base design position. The shape and dimensions of bearing trajectories are interpreted based on the theory of hydrodynamic lubrication of oil bearings. It was shown that the relative journal trajectories and absolute bush trajectories carry much important information about the dynamic state of the machine, indicating also the way in which bearings are loaded. Therefore, trajectories can be a source of information about the position and direction of bearing misalignments. This article indicates the potential of using trajectory patterns for diagnosing misalignment defects in rotating machines and suggests including sets of trajectory patterns to the knowledge base of a machine diagnostic system.

  13. Incompressible Navier-Stokes Solvers in Primative Variables and their Applications to Steady and Unsteady Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Rogers, Stuart E.

    2002-01-01

    This paper reviews recent progress made in incompressible Navier-Stokes simulation procedures and their application to problems of engineering interest. Discussions are focused on the methods designed for complex geometry applications in three dimensions, and thus are limited to primitive variable formulation. A summary of efforts in flow solver development is given followed by numerical studies of a few example problems of current interest. Both steady and unsteady solution algorithms and their salient features are discussed. Solvers discussed here are based on a structured-grid approach using either a finite -difference or a finite-volume frame work. As a grand-challenge application of these solvers, an unsteady turbopump flow simulation procedure has been developed which utilizes high performance computing platforms. In the paper, the progress toward the complete simulation capability of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of two parallel computing algorithms that have been implemented in the INS3D code. The relative motion of the grid systems for the rotorstator interaction was obtained using overact grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on SCSI Origin 3000 systems at NASA Ames Research Center. The same procedure has been extended to the development of NASA-DeBakey Ventricular Assist Device (VAD) that is based on an axial blood pump. Computational, and clinical analysis of this device are presented.

  14. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust driven turbo-superchargers. 25.1127 Section 25.1127 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  15. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust driven turbo-superchargers. 25.1127 Section 25.1127 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  16. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes... flight or takeoff a nonturbine or turbo-propeller-powered airplane unless, considering the wind and other...

  17. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes... flight or takeoff a nonturbine or turbo-propeller-powered airplane unless, considering the wind and other...

  18. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes... flight or takeoff a nonturbine or turbo-propeller-powered airplane unless, considering the wind and other...

  19. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...

  20. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...

  1. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...

  2. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag...

  3. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag...

  4. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes...

  5. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes...

  6. Pico-coulomb charge measured at BELLA to percent-level precision using a Turbo-ICT

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Mittelberger, D. E.; Gonsalves, A. J.; Daniels, J.; Mao, H.-S.; Stulle, F.; Bergoz, J.; Leemans, W. P.

    2016-03-01

    Precise diagnostics of picocoulomb level particle bunches produced by laser plasma accelerators (LPAs) can be a significant challenge. Without proper care, the small signals associated with such bunches can be dominated by a background generated by laser, target, laser-plasma interaction and particle induced radiation. In this paper, we report on first charge measurements using the newly developed Turbo-ICT for LPAs. We outline the Turbo-ICT working principle, which allows precise sub-picocoulomb measurements even in the presence of significant background signals. A comparison of the Turbo-ICT, a conventional integrating current transformer (ICT) and a scintillating screen (Lanex) was carried out at the Berkeley Lab Laser Accelerator. Results show that the Turbo-ICT can measure sub-picocoulomb charge accurately and has significantly improved noise immunity compared to the ICT.

  7. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.

    2017-01-01

    There a few NASA funded electric and hybrid electric projects from different NASA Centers, including the NASA Armstrong Flight Research Center (AFRC) (Edwards, California). Each project identifies a specific technology gap that is currently inhibiting the growth and proliferation of relevant technologies in commercial aviation. This paper describes the design and development of a turbo-electric distributed propulsion (TeDP) hardware-in-the-loop (HIL) simulation bench, which is a test bed for discovering turbo-electric control, distributed electric control, power management control, and integration competencies while providing risk mitigation for future turbo-electric flying demonstrators.

  8. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors and turbines.

  9. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.

  10. TurboBrayton Cryocooler: A Flight Worthy and Promising Future

    NASA Technical Reports Server (NTRS)

    Gibbon, Judith A.; Swift, Walt L.; Zagarola, Mark V.; DiPirro, Mike; Whitehouse, Paul

    1999-01-01

    A new development in cryocooler technology, a reverse TurboBrayton cycle cryocooler, developed by Creare, Inc. of Hanover, NH, has now been flight tested. This cooler provides high reliability and long life. With no linear moving components common in current flight cryocoolers, the TurboBrayton cooler requires no active control systems to provide a vibration-free signature. The cooler provides first stage cooling for advanced cryogenic systems and serves as a direct replacement for stored cryogen systems with a longer lifetime. Following a successful flight on STS-95, a TurboBrayton cryocooler will be flown on Hubble Space Telescope (HST) in 2000 to provide renewed refrigeration capability for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The TurboBrayton cycle cooler is a promising technology already being considered for additional flight programs such as Next Generation Space Telescope (NGST) and Constellation X. These future missions require an advanced generation of the cooler that is currently under development to provide cooling at 10K and less. This paper presents an overview of the current generation cooler with recent flight test results and details the current plans and development progress on the next generation TurboBrayton technology for future missions.

  11. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    PubMed

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.

  12. Computer simulation of space charge

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Chung, W. K.; Mak, S. S.

    1991-05-01

    Using the particle-mesh (PM) method, a one-dimensional simulation of the well-known Langmuir-Child's law is performed on an INTEL 80386-based personal computer system. The program is coded in turbo basic (trademark of Borland International, Inc.). The numerical results obtained were in excellent agreement with theoretical predictions and the computational time required is quite modest. This simulation exercise demonstrates that some simple computer simulation using particles may be implemented successfully on PC's that are available today, and hopefully this will provide the necessary incentives for newcomers to the field who wish to acquire a flavor of the elementary aspects of the practice.

  13. A Long Stress-Responsive Non-Coding Transcript (NiT 5) and Its Role in the Development of Breast Cancer

    DTIC Science & Technology

    2011-07-01

    is incubated with dATP, dUTP, dGTP and labeled [32P]-dCTP and SP6 or T7 phage RNA polymerase enzyme at 37 degrees for 1 hour, TURBO DNASE is added...identify and confirm the directionality of this transcript, we cloned the LSINCT5 transcript sequence into a directional dual promoter (SP6/ T7 ...colonies were picked from the trans- formation and sequenced for validation of integrated LSINCT5. Ambion Maxiscript SP6/ T7 kit (AM1322) was used to create

  14. Information Theory, Inference and Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Mackay, David J. C.

    2003-10-01

    Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

  15. Life and Reliability Characteristics of TurboBrayton Coolers

    NASA Technical Reports Server (NTRS)

    Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.

  16. Optimization design of turbo-expander gas bearing for a 500W helium refrigerator

    NASA Astrophysics Data System (ADS)

    Li, S. S.; Fu, B.; Y Zhang, Q.

    2017-12-01

    Turbo-expander is the core machinery of the helium refrigerator. Bearing as the supporting element is the core technology to impact the design of turbo-expander. The perfect design and performance study for the gas bearing are essential to ensure the stability of turbo-expander. In this paper, numerical simulation is used to analyze the performance of gas bearing for a 500W helium refrigerator turbine, and the optimization design of the gas bearing has been completed. And the results of the gas bearing optimization have a guiding role in the processing technology. Finally, the turbine experiments verify that the gas bearing has good performance, and ensure the stable operation of the turbine.

  17. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  18. A NASA Approach to Safety Considerations for Electric Propulsion Aircraft Testbeds

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Sessions, Alaric M.; Burkhardt, Phillip A.; Ehmann, David W.

    2017-01-01

    Electric, hybrid-electric, and turbo-electric distributed propulsion technologies and concepts are beginning to gain traction in the aircraft design community, as they can provide improvements in operating costs, noise, fuel consumption, and emissions compared to conventional internal combustion or Brayton-cycle powered vehicles. NASA is building multiple demonstrators and testbeds to buy down airworthiness and flight safety risks for these new technologies, including X-57 Maxwell, HEIST, Airvolt, and NEAT.

  19. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    NASA Astrophysics Data System (ADS)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.

    2014-01-01

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  20. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Xiong, L. Y.; Peng, N.

    2014-01-29

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemensmore » S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.« less

  1. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    PubMed

    Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M

    2014-01-01

    3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P < .0001), confirming the accuracy of the ADC measurement with the diffusion-sensitized driven-equilibrium sequence. The ADCs in the normal pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P < .01). We demonstrated that diffusion-sensitized driven-equilibrium turbo field echo is feasible in assessing ADC in the pituitary gland.

  2. Evaluation of safety effect of turbo-roundabout lane dividers using floating car data and video observation.

    PubMed

    Kieć, Mariusz; Ambros, Jiří; Bąk, Radosław; Gogolín, Ondřej

    2018-06-01

    Roundabouts are one of the safest types of intersections. However, the needs to meet the requirements of operation, capacity, traffic organization and surrounding development lead to a variety of design solutions. One of such alternatives are turbo-roundabouts, which simplify drivers' decision making, limit lane changing in the roundabout, and induce low driving speed thanks to raised lane dividers. However, in spite of their generally positive reception, the safety impact of turbo-roundabouts has not been sufficiently studied. Given the low number of existing turbo-roundabouts and the statistical rarity of accident occurrence, the prevalent previously conducted studies applied only simple before-after designs or relied on traffic conflicts in micro-simulations. Nevertheless, the presence of raised lane dividers is acknowledged as an important feature of well performing and safe turbo-roundabouts. Following the previous Polish studies, the primary objective of the present study was assessment of influence of presence of lane dividers on road safety and developing a reliable and valid surrogate safety measure based on field data, which will circumvent the limitations of accident data or micro-simulations. The secondary objective was using the developed surrogate safety measure to assess and compare the safety levels of Polish turbo-roundabout samples with and without raised lane dividers. The surrogate safety measure was based on speed and lane behaviour. Speed was obtained from video observations and floating car data, which enabled the construction of representative speed profiles. Lane behaviour data was gathered from video observations. The collection of the data allowed for a relative validation of the method by comparing the safety performance of turbo-roundabouts with and without raised lane dividers. In the end, the surrogate measure was applied for evaluation of safety levels and enhancement of the existing safety performance functions, which combine traffic volumes, and speeds as a function of radii). The final models may help quantify the safety impact of different turbo-roundabout solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Subsonic Performance of Ejector Systems

    NASA Astrophysics Data System (ADS)

    Weil, Samuel

    Combined cycle engines combining scramjets with turbo jets or rockets can provide efficient hypersonic flight. Ejectors have the potential to increase the thrust and efficiency of combined cycle engines near static conditions. A computer code was developed to support the design of a small-scale, turbine-based combined cycle demonstrator with an ejector, built around a commercially available turbojet engine. This code was used to analyze the performance of an ejector system built around a micro-turbojet. With the use of a simple ejector, net thrust increases as large as 20% over the base engine were predicted. Additionally the specific fuel consumption was lowered by 10%. Increasing the secondary to primary area ratio of the ejector lead to significant improvements in static thrust, specific fuel consumption (SFC), and propulsive efficiency. Further ejector performance improvements can be achieved by using a diffuser. Ejector performance drops off rapidly with increasing Mach number. The ejector has lower thrust and higher SFC than the turbojet core at Mach numbers above 0.2. When the nozzle chokes a significant drop in ejector performance is seen. When a diffuser is used, higher Mach numbers lead to choking in the mixer and a shock in the nozzle causing a significant decrease in ejector performance. Evaluation of different turbo jets shows that ejector performance depends significantly on the properties of the turbojet. Static thrust and SFC improvements can be achieved with increasing ejector area for all engines, but size of increase and change in performance at higher Mach numbers depend heavily on the turbojet. The use of an ejector in a turbine based combined cycle configuration also increases performance at static conditions with a thrust increase of 5% and SFC decrease of 5% for the tested configuration.

  4. Effect of Detonation through a Turbine Stage

    NASA Technical Reports Server (NTRS)

    Ellis, Matthew T.

    2004-01-01

    Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.

  5. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-02-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  6. Transmission over UWB channels with OFDM system using LDPC coding

    NASA Astrophysics Data System (ADS)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  7. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Technical Reports Server (NTRS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-01-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  8. Correlation of the turbo-MP RIA with ImmunoCAP FEIA for determination of food allergen-specific immunoglobulin E.

    PubMed

    Kontis, Kris J; Valcour, Andre; Patel, Ashok; Chen, Andy; Wang, Jan; Chow, Julia; Nayak, Narayan

    2006-01-01

    It has been reported that in vitro measurement of food-specific IgE can be used to accurately predict food allergy and reduce the risk associated with double-blinded placebo-controlled food challenges (DBPCFC). Our objective was to assess the performance characteristics of the Hycor Turbo-MP quantitative radioimmunoassay for food-specific IgE and to determine this method's comparability to another assay, the Pharmacia ImmunoCAP fluorescence enzyme immunoassay (FEIA). The dynamic range of the Turbo-MP assay is 0.05 to 100 IU/ml, compared to 0.35 to 100 IU/ml for the FEIA. Performance characteristics of the Turbo-MP assay (ie, reproducibility of the calibration curve, within-run precision, total precision, parallelism, and linearity) were determined using samples from the Hycor serum bank. The precision (CV) of IgE calibrator replicates was <10%. The total precision (CV) of the Turbo-MP assay ranged from 8.8% to 18.4% for specific IgE concentrations between 0.28 to 31.4 IU/ml. Testing of serial dilutions of sera with IgE specificities for egg white, cow's milk, codfish, wheat, peanut, and soybean showed that the assay is linear over the entire dynamic range. Serial dilution data (slopes of 1.01 to 1.10) showed parallelism to serial dilutions of the IgE calibrator (slope of 0.96). The Turbo-MP and FEIA methods were both used for quantitative assays of food-specific IgE in 457 serum samples obtained from a clinical reference laboratory. Comparison of specific IgE results by the Turbo-MP and FEIA methods for 6 major food allergens exhibited a slope of 0.99 (0.92 to 1.03) with a correlation coefficient of 0.81.

  9. Turbo-SMT: Parallel Coupled Sparse Matrix-Tensor Factorizations and Applications

    PubMed Central

    Papalexakis, Evangelos E.; Faloutsos, Christos; Mitchell, Tom M.; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D.; Murphy, Brian

    2016-01-01

    How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ’edible’, ’fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we enhance any CMTF solver, so that it can operate on potentially very large datasets that may not fit in main memory? We introduce Turbo-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, produces sparse and interpretable solutions, and parallelizes any CMTF algorithm, producing sparse and interpretable solutions (up to 65 fold). Additionally, we improve upon ALS, the work-horse algorithm for CMTF, with respect to efficiency and robustness to missing values. We apply Turbo-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Turbo-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. Finally, we demonstrate the generality of Turbo-SMT, by applying it on a Facebook dataset (users, ’friends’, wall-postings); there, Turbo-SMT spots spammer-like anomalies. PMID:27672406

  10. Visions of the Future: Hybrid Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  11. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    NASA Astrophysics Data System (ADS)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  12. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    NASA Technical Reports Server (NTRS)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  13. FPGA implementation of low complexity LDPC iterative decoder

    NASA Astrophysics Data System (ADS)

    Verma, Shivani; Sharma, Sanjay

    2016-07-01

    Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.

  14. Interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Eiseman, Peter R.; Reno, Charles

    1988-01-01

    The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids for turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.

  15. Interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Reno, Charles; Eiseman, Peter R.

    1988-01-01

    The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids of turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.

  16. The TurboLAN project. Phase 1: Protocol choices for high speed local area networks. Phase 2: TurboLAN Intelligent Network Adapter Card, (TINAC) architecture

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The hardware and the software architecture of the TurboLAN Intelligent Network Adapter Card (TINAC) are described. A high level as well as detailed treatment of the workings of various components of the TINAC are presented. The TINAC is divided into the following four major functional units: (1) the network access unit (NAU); (2) the buffer management unit; (3) the host interface unit; and (4) the node processor unit.

  17. Fire Resistant Fuel for Military Compression Ignition Engines

    DTIC Science & Technology

    2013-12-04

    Turbo Diesel Maximum Power Output Figure 5. 6.5L Turbo Diesel Maximum Torque Output 40 60 80 100 120 140 160 180 1000 1200 1400 1600 1800 2000 2200...H2O & 250ppm) JP8-FRF AMA (5% H2O & 250ppm) UNCLASSIFIED 9 UNCLASSIFIED Figure 6. 6.5L Turbo Diesel Brake Specific Fuel Consumption From...mid-1980s, fire-resistant diesel fuel that self extinguished when ignited by an explosive projectile was developed. Chemically, this fire resistant

  18. Value of a single-shot turbo spin-echo pulse sequence for assessing the architecture of the subarachnoid space and the constitutive nature of cerebrospinal fluid.

    PubMed

    Pease, Anthony; Sullivan, Stacey; Olby, Natasha; Galano, Heather; Cerda-Gonzalez, Sophia; Robertson, Ian D; Gavin, Patrick; Thrall, Donald

    2006-01-01

    Three case history reports are presented to illustrate the value of the single-shot turbo spin-echo pulse sequence for assessment of the subarachnoid space. The use of the single-shot turbo spin-echo pulse sequence, which is a heavily T2-weighted sequence, allows for a rapid, noninvasive evaluation of the subarachnoid space by using the high signal from cerebrospinal fluid. This sequence can be completed in seconds rather than the several minutes required for a T2-fast spin-echo sequence. Unlike the standard T2-fast spin-echo sequence, a single-shot turbo spin-echo pulse sequence also provides qualitative information about the protein and the cellular content of the cerebrospinal fluid, such as in patients with inflammatory debris or hemorrhage in the cerebrospinal fluid. Although the resolution of the single-shot turbo spin-echo pulse sequence images is relatively poor compared with more conventional sequences, the qualitative information about the subarachnoid space and cerebrospinal fluid and the rapid acquisition time, make it a useful sequence to include in standard protocols of spinal magnetic resonance imaging.

  19. Upgrade and Extension of the Data Acquisition System for Propulsion and Gas Dynamic Laboratories

    DTIC Science & Technology

    1992-06-01

    Program: TURBO4 ............... 165 Figure D7 TPL Program: SCAN TEMP .... ........... .. 169 Figure DS TPL Program: TURBO -MENU . . .......... 170...User 1 Cape Command TURBO CGMPRI3 DESIGN UPI4753A WORK BACKUP PROGRAM EIT CKARGER LAB CAT DIR LISTINGS MENU * Figure 31 HP9000 Initial CRT Screen... diselS -Data filelSa":. 700,0,1" 140 Data disc2$-Data_file2S&" :.700,0,1" 150 ASSIGN UVatapat1l TO Data discl$ 160 ASSIGN IDatapatb2 TO Data diac2$ 170

  20. Development of Intake Swirl Generators for Turbo Jet Engine Testing

    DTIC Science & Technology

    1987-03-01

    As a test object a Larxac 04 turbofan engine was chosen which is used as propulsion in the Alpha Jet aircraft . This twospool engine features a two...a__ OPI: !’fIC-TID N .18.1 DEVELOPMENT OF NAR 8WZRL GENERATORS FOR TURBO JET ENGINE TU TING by H.P. Gensmlor*, W. Meyer**, L. Fottner*** Dipl.-Ing...at the Universitit der Bundeswehr MUnchen. The test facility is designed for turbo jet engines up to an maximum thrust of 30kN and a maximum mass

  1. Turbo-Proton Echo Planar Spectroscopic Imaging (t-PEPSI) MR technique in the detection of diffuse axonal damage in brain injury. Comparison with Gradient-Recalled Echo (GRE) sequence.

    PubMed

    Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A

    2005-01-01

    Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, p<0.003), while no significant differences were found for the other brain regions. The SI CR was significantly better (i.e. lower) for the turbo-PEPSI than for the GRE sequence (p<0.00001). Owing to its very short scan time and high sensitivity to the haemorrhage foci, the turbo-PEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.

  2. Turbo marketing through time compression.

    PubMed

    Kotler, P; Stonich, P J

    1991-01-01

    A host of advantages will flow to companies that learn to make and deliver goods and services faster than their competitors. However, four key questions must be answered to determine if a turbo marketing approach is suitable for your company.

  3. Turbo fluid machinery and diffusers

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.

  4. Aerodynamic seal assemblies for turbo-machinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  5. 77 FR 64581 - Petition for Exemption; Summary of Petition Received

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... operate their turbo-jet powered Comp-Let TST-14 glider without completing within the preceding 12 calendar..., complete a pilot-in-command proficiency check in the turbo-jet powered Comp-Let TST-14 glider. [FR Doc...

  6. Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.

    PubMed

    Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M

    2017-11-01

    Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.

  7. First experiences with an accelerated CMV antigenemia test: CMV Brite Turbo assay.

    PubMed

    Visser, C E; van Zeijl, C J; de Klerk, E P; Schillizi, B M; Beersma, M F; Kroes, A C

    2000-06-01

    Cytomegalovirus disease is still a major problem in immunocompromised patients, such as bone marrow or kidney transplantation patients. The detection of viral antigen in leukocytes (antigenemia) has proven to be a clinically relevant marker of CMV activity and has found widespread application. Because most existing assays are rather time-consuming and laborious, an accelerated version (Brite Turbo) of an existing method (Brite) has been developed. The major modification is in the direct lysis of erythrocytes instead of separation by sedimentation. In this study the Brite Turbo method has been compared with the conventional Brite method to detect CMV antigen pp65 in peripheral blood leukocytes of 107 consecutive immunocompromised patients. Both tests produced similar results. Discrepancies were limited to the lowest positive range and sensitivity and specificity were comparable for both tests. Two major advantages of the Brite Turbo method could be observed in comparison to the original method: assay-time was reduced by more than 50% and only 2 ml of blood was required. An additional advantage was the higher number of positive nuclei in the Brite Turbo method attributable to the increased number of granulocytes in the assay. Early detection of CMV infection or reactivation has become faster and easier with this modified assay.

  8. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    PubMed Central

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645

  9. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    PubMed

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  10. 3D single point imaging with compressed sensing provides high temporal resolution R 2* mapping for in vivo preclinical applications.

    PubMed

    Rioux, James A; Beyea, Steven D; Bowen, Chris V

    2017-02-01

    Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging. TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2 * systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo. An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2 * mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h. Accelerated TurboSPI enables preclinical R 2 * mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.

  11. Toward enhancing the distributed video coder under a multiview video codec framework

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chieh; Chen, Jiann-Jone; Tsai, Yao-Hong; Chen, Chin-Hua

    2016-11-01

    The advance of video coding technology enables multiview video (MVV) or three-dimensional television (3-D TV) display for users with or without glasses. For mobile devices or wireless applications, a distributed video coder (DVC) can be utilized to shift the encoder complexity to decoder under the MVV coding framework, denoted as multiview distributed video coding (MDVC). We proposed to exploit both inter- and intraview video correlations to enhance side information (SI) and improve the MDVC performance: (1) based on the multiview motion estimation (MVME) framework, a categorized block matching prediction with fidelity weights (COMPETE) was proposed to yield a high quality SI frame for better DVC reconstructed images. (2) The block transform coefficient properties, i.e., DCs and ACs, were exploited to design the priority rate control for the turbo code, such that the DVC decoding can be carried out with fewest parity bits. In comparison, the proposed COMPETE method demonstrated lower time complexity, while presenting better reconstructed video quality. Simulations show that the proposed COMPETE can reduce the time complexity of MVME to 1.29 to 2.56 times smaller, as compared to previous hybrid MVME methods, while the image peak signal to noise ratios (PSNRs) of a decoded video can be improved 0.2 to 3.5 dB, as compared to H.264/AVC intracoding.

  12. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  13. Security Assessment Of A Turbo-Gas Power Plant

    NASA Astrophysics Data System (ADS)

    Masera, Marcelo; Fovino, Igor Nai; Leszczyna, Rafal

    Critical infrastructures are exposed to new threats due to the large number of vulnerabilities and architectural weaknesses introduced by the extensive use of information and communication technologies. This paper presents the results of an exhaustive security assessment for a turbo-gas power plant.

  14. Turtlegraphics: A Comparison of Logo and Turbo Pascal.

    ERIC Educational Resources Information Center

    VanLengen, Craig A.

    1989-01-01

    The integrated compiler of the Turbo Pascal environment allows the execution of a completed program independent of the developed environment and with greater execution speed, in comparison with LOGO. Conversion table of turtle-graphic commands for the two languages is presented. (Author/YP)

  15. Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey

    NASA Astrophysics Data System (ADS)

    Guillemot, Christine; Siohan, Pierre

    2005-12-01

    Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.

  16. Influence of Shock Wave on the Flutter Behavior of Fan Blades Investigated

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh; Bakhle, Milind A.; Stefko, George L.

    2003-01-01

    Modern fan designs have blades with forward sweep; a lean, thin cross section; and a wide chord to improve performance and reduce noise. These geometric features coupled with the presence of a shock wave can lead to flutter instability. Flutter is a self-excited dynamic instability arising because of fluid-structure interaction, which causes the energy from the surrounding fluid to be extracted by the vibrating structure. An in-flight occurrence of flutter could be catastrophic and is a significant design issue for rotor blades in gas turbines. Understanding the flutter behavior and the influence of flow features on flutter will lead to a better and safer design. An aeroelastic analysis code, TURBO, has been developed and validated for flutter calculations at the NASA Glenn Research Center. The code has been used to understand the occurrence of flutter in a forward-swept fan design. The forward-swept fan, which consists of 22 inserted blades, encountered flutter during wind tunnel tests at part speed conditions.

  17. Cochran Q test with Turbo BASIC.

    PubMed

    Seuc, A H

    1995-01-01

    A microcomputer program written in Turbo BASIC for the sequential application of the Cochran Q test is given. A clinical application where the test is used in order to explore the structure of the agreement between observers is also presented. A program listing is available on request.

  18. TurboTech Technical Evaluation Automated System

    NASA Technical Reports Server (NTRS)

    Tiffany, Dorothy J.

    2009-01-01

    TurboTech software is a Web-based process that simplifies and semiautomates technical evaluation of NASA proposals for Contracting Officer's Technical Representatives (COTRs). At the time of this reporting, there have been no set standards or systems for training new COTRs in technical evaluations. This new process provides boilerplate text in response to interview style questions. This text is collected into a Microsoft Word document that can then be further edited to conform to specific cases. By providing technical language and a structured format, TurboTech allows the COTRs to concentrate more on the actual evaluation, and less on deciding what language would be most appropriate. Since the actual word choice is one of the more time-consuming parts of a COTRs job, this process should allow for an increase in quantity of proposals evaluated. TurboTech is applicable to composing technical evaluations of contractor proposals, task and delivery orders, change order modifications, requests for proposals, new work modifications, task assignments, as well as any changes to existing contracts.

  19. Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.

    PubMed

    Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P

    2013-08-01

    Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized. © 2012 Wiley Periodicals, Inc.

  20. Effect of TurboSwirl Structure on an Uphill Teeming Ingot Casting Process

    NASA Astrophysics Data System (ADS)

    Bai, Haitong; Ersson, Mikael; Jönsson, Pär

    2015-12-01

    To produce high-quality ingot cast steel with a better surface quality, it would be beneficial for the uphill teeming process if a much more stable flow pattern could be achieved in the runners. Several techniques have been utilized in the industry to try to obtain a stable flow of liquid steel, such as a swirling flow. Some research has indicated that a swirl blade inserted in the horizontal and vertical runners, or some other additional devices and physics could generate a swirling flow in order to give a lower hump height, avoid mold flux entrapment, and improve the quality of the ingot products, and a new swirling flow generation component, TurboSwirl, was introduced to improve the flow pattern. It has recently been demonstrated that the TurboSwirl method can effectively reduce the risk of mold flux entrapment, lower the maximum wall shear stress, and decrease velocity fluctuations. The TurboSwirl is built at the elbow of the runners as a connection between the horizontal and vertical runners. It is located near the mold and it generates a tangential flow that can be used with a divergent nozzle in order to decrease the axial velocity of the vertical flow into the mold. This stabilizes flow before the fluid enters the mold. However, high wall shear stresses develop at the walls due to the fierce rotation in the TurboSwirl. In order to achieve a calmer flow and to protect the refractory wall, some structural improvements have been made. It was found that by changing the flaring angle of the divergent nozzle, it was possible to lower the axial velocity and wall shear stress. Moreover, when the vertical runner and the divergent nozzle were not placed at the center of the TurboSwirl, quite different flow patterns could be obtained to meet to different requirements. In addition, the swirl numbers of all the cases mentioned above were calculated to ensure that the swirling flow was strong enough to generate a swirling flow of the liquid steel in the TurboSwirl.

  1. Quantification of glomerular filtration rate by measurement of gadobutrol clearance from the extracellular fluid volume: comparison of a TurboFLASH and a TrueFISP approach

    NASA Astrophysics Data System (ADS)

    Boss, Andreas; Martirosian, Petros; Artunc, Ferruh; Risler, Teut; Claussen, Claus D.; Schlemmer, Heinz-Peter; Schick, Fritz

    2007-03-01

    Purpose: As the MR contrast-medium gadobutrol is completely eliminated via glomerular filtration, the glomerular filtration rate (GFR) can be quantified after bolus-injection of gadobutrol and complete mixing in the extracellular fluid volume (ECFV) by measuring the signal decrease within the liver parenchyma. Two different navigator-gated single-shot saturation-recovery sequences have been tested for suitability of GFR quantification: a TurboFLASH and a TrueFISP readout technique. Materials and Methods: Ten healthy volunteers (mean age 26.1+/-3.6) were equally devided in two subgroups. After bolus-injection of 0.05 mmol/kg gadobutrol, coronal single-slice images of the liver were recorded every 4-5 seconds during free breathing using either the TurboFLASH or the TrueFISP technique. Time-intensity curves were determined from manually drawn regions-of-interest over the liver parenchyma. Both sequences were subsequently evaluated regarding signal to noise ratio (SNR) and the behaviour of signal intensity curves. The calculated GFR values were compared to an iopromide clearance gold standard. Results: The TrueFISP sequence exhibited a 3.4-fold higher SNR as compared to the TurboFLASH sequence and markedly lower variability of the recorded time-intensity curves. The calculated mean GFR values were 107.0+/-16.1 ml/min/1.73m2 (iopromide: 92.1+/-14.5 ml/min/1.73m2) for the TrueFISP technique and 125.6+/-24.1 ml/min/1.73m2 (iopromide: 97.7+/-6.3 ml/min/1.73m2) for the TurboFLASH approach. The mean paired differences with TrueFISP was lower (15.0 ml/min/1.73m2) than in the TurboFLASH method (27.9 ml/min/1.73m2). Conclusion: The global GFR can be quantified via measurement of gadobutrol clearance from the ECFV. A saturation-recovery TrueFISP sequence allows for more reliable GFR quantification as a saturation recovery TurboFLASH technique.

  2. Unsteady Turbopump Flow Simulations

    NASA Technical Reports Server (NTRS)

    Centin, Kiris C.; Kwak, Dochan

    2001-01-01

    The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.

  3. AMPS/PC - AUTOMATIC MANUFACTURING PROGRAMMING SYSTEM

    NASA Technical Reports Server (NTRS)

    Schroer, B. J.

    1994-01-01

    The AMPS/PC system is a simulation tool designed to aid the user in defining the specifications of a manufacturing environment and then automatically writing code for the target simulation language, GPSS/PC. The domain of problems that AMPS/PC can simulate are manufacturing assembly lines with subassembly lines and manufacturing cells. The user defines the problem domain by responding to the questions from the interface program. Based on the responses, the interface program creates an internal problem specification file. This file includes the manufacturing process network flow and the attributes for all stations, cells, and stock points. AMPS then uses the problem specification file as input for the automatic code generator program to produce a simulation program in the target language GPSS. The output of the generator program is the source code of the corresponding GPSS/PC simulation program. The system runs entirely on an IBM PC running PC DOS Version 2.0 or higher and is written in Turbo Pascal Version 4 requiring 640K memory and one 360K disk drive. To execute the GPSS program, the PC must have resident the GPSS/PC System Version 2.0 from Minuteman Software. The AMPS/PC program was developed in 1988.

  4. A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

    NASA Technical Reports Server (NTRS)

    Montgomery, Matthew D.; Verdon, Joseph M.

    1997-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.

  5. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flexibility between exhaust conduits and the turbine. (b) There must be provisions for lubricating the turbine and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger control system malfunctions, the turbine speed may not exceed its maximum allowable value. Except for the...

  6. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flexibility between exhaust conduits and the turbine. (b) There must be provisions for lubricating the turbine and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger control system malfunctions, the turbine speed may not exceed its maximum allowable value. Except for the...

  7. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flexibility between exhaust conduits and the turbine. (b) There must be provisions for lubricating the turbine and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger control system malfunctions, the turbine speed may not exceed its maximum allowable value. Except for the...

  8. Cryocoolers for Space

    NASA Technical Reports Server (NTRS)

    Castles, Stephen

    2000-01-01

    This paper presents Cryocoolers for Space in viewgraph form. The topics include: 1) U.S. Cryocoolers for 4 to 6 Kelvin; 2) Turbo Brayton Cryocooler-Features; 3) HST/NICMOS (Hubble Space Telescope/Near Infrared Camera and Multiobject Spectrometer) 75 Kelvin Cryocooler; 4) Turbo-Brayton Cryocooler-NGST Design; and 5) Two-stage Sorption J-T Cryocooler.

  9. Adaptive software-defined coded modulation for ultra-high-speed optical transport

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Zhang, Yequn

    2013-10-01

    In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.

  10. Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow

    NASA Astrophysics Data System (ADS)

    Giuliani, James Edward

    Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion. Total pressure profiles at various axial locations are computed to identify the overall distortion pattern, how the distortion evolves through the blade passages and mixes out downstream of the blades, and where any critical performance concerns might be. Stall cells are identified that are stationary in the absolute frame and are fixed to the inlet distortion. Flow paths around the blades are examined to study the stall mechanism. Rather than a static airfoil stall, it is observed that the non-uniform pressure loading promotes a three-dimensional dynamic stall. The stall occurs at a point of rapid incidence angle oscillation, observed when a blade passes through the distortion, and re-attaches when the blade leaves the distortion.

  11. Development of turbocharger for improving passenger car acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tsuyoshi; Koike, Takaaki; Furukawa, Hiromu

    1996-09-01

    Recently, passenger cars require better acceleration from low engine speed including starting-up in order to decrease the amount of particulate matter (PM) of diesel engines or to improve the driver`s feeling. However, turbocharged cars generally have worse response than the non turbo cars because it takes a few seconds to get the turbocharger rotate up to high speed, usually called Turbo-lag. In order to solve this, various technologies have been developed for a turbocharger itself as well as for charging system such as the sequential system. Here in this paper, the authors focus on the development of the following turbochargermore » technology to reduce Turbo-lag and to achieve better transient response.« less

  12. Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200×

    PubMed Central

    Papalexakis, Evangelos E.; Faloutsos, Christos; Mitchell, Tom M.; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D.; Murphy, Brian

    2015-01-01

    How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ‘edible’, ‘fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we accelerate any CMTF solver, so that it runs within a few minutes instead of tens of hours to a day, while maintaining good accuracy? We introduce TURBO-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, by up to 200×, along with an up to 65 fold increase in sparsity, with comparable accuracy to the baseline. We apply TURBO-SMT to BRAINQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. TURBO-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. PMID:26473087

  13. Application of a lower-upper implicit scheme and an interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Soh, Woo-Yung; Yoon, Seokkwan

    1989-01-01

    A finite-volume lower-upper (LU) implicit scheme is used to simulate an inviscid flow in a tubine cascade. This approximate factorization scheme requires only the inversion of sparse lower and upper triangular matrices, which can be done efficiently without extensive storage. As an implicit scheme it allows a large time step to reach the steady state. An interactive grid generation program (TURBO), which is being developed, is used to generate grids. This program uses the control point form of algebraic grid generation which uses a sparse collection of control points from which the shape and position of coordinate curves can be adjusted. A distinct advantage of TURBO compared with other grid generation programs is that it allows the easy change of local mesh structure without affecting the grid outside the domain of independence. Sample grids are generated by TURBO for a compressor rotor blade and a turbine cascade. The turbine cascade flow is simulated by using the LU implicit scheme on the grid generated by TURBO.

  14. The Case for Distributed Engine Control in Turbo-Shaft Engine Systems

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.

    2009-01-01

    The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.

  15. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI

    PubMed Central

    Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.

    2009-01-01

    Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FLASH = fast low-angle shot; GM = gray matter; MPRAGE = magnetization-prepared rapid gradient echo; MR = magnetic resonance; MS = multiple sclerosis; NACGM = normal-appearing cortical gray matter; RF = radiofrequency; ROI = region of interest; RRMS = relapsing–remitting multiple sclerosis; SNR = signal-to-noise ratio; SPMS = secondary progressive multiple sclerosis; TA = time of acquisition; TE = echo time; TR = repetition time; TSE = turbo spin-echo; WM = white matter. PMID:19641168

  16. Big6 Turbotools and Synthesis

    ERIC Educational Resources Information Center

    Tooley, Melinda

    2005-01-01

    The different tools that are helpful during the Synthesis stage, their role in boosting students abilities in Synthesis and the way in which it can be customized to meet the needs of each group of students are discussed. Big6 TurboTools offers several tools to help complete the task. In Synthesis stage, these same tools along with Turbo Report and…

  17. Using VirtualGL/TurboVNC Software on the Peregrine System |

    Science.gov Websites

    High-Performance Computing | NREL VirtualGL/TurboVNC Software on the Peregrine System Using , allowing users to access and share large-memory visualization nodes with high-end graphics processing units may be better than just using X11 forwarding when connecting from a remote site with low bandwidth and

  18. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a turbo... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered...

  19. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a turbo... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered...

  20. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered...

  1. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered...

  2. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered...

  3. Three-month validation of a turbuhaler electronic monitoring device: implications for asthma clinical trial use.

    PubMed

    Pilcher, Janine; Shirtcliffe, Philippa; Patel, Mitesh; McKinstry, Steve; Cripps, Terrianne; Weatherall, Mark; Beasley, Richard

    2015-01-01

    Electronic monitoring of inhaled asthma therapy is suggested as the 'gold standard' for measuring patterns of medication use in clinical trials. The SmartTurbo (Adherium (NZ) Ltd, Auckland, New Zealand) is an electronic monitor for use with a turbuhaler device (AstraZeneca, UK). The aim of this study was to determine the accuracy of the SmartTurbo in recording Symbicort actuations over a 12-week period of use. Twenty SmartTurbo monitors were attached to the base of 20 Symbicort turbuhalers. Bench testing in a research facility was undertaken on days 0, 5, 6, 7, 8, 9, 14, 21, 28, 56 and 84. Patterns of 'low-use' (2 sets of 2 actuations on the same day) and 'high-use' (2 sets of 8 actuations on the same day) were performed. The date and time of actuations were recorded in a paper diary and compared with data uploaded from the SmartTurbo monitors. 2800 actuations were performed. Monitor sensitivity was 99.9% with a lower 97.5% confidence bound of 99.6%. The positive predictive value was 99.9% with a 97.5% lower confidence bound of 99.7%. Accuracy was not affected by whether the pattern of inhaler use was low or high, or whether there was a delay in uploading the actuation data. The SmartTurbo monitor is highly accurate in recording and retaining electronic data in this 12-week bench study. It can be recommended for use in clinical trial settings, in which quality control systems are incorporated into study protocols to ensure accurate data acquisition.

  4. Engineering & Performance of DuoTurbo: Microturbine with Counter-Rotating Runners

    NASA Astrophysics Data System (ADS)

    Biner, D.; Hasmatuchi, V.; Violante, D.; Richard, S.; Chevailler, S.; Andolfatto, L.; Avellan, F.; Münch, C.

    2016-11-01

    Considering the nuclear phase-out strategy of several European countries and the future tendency to promote renewable energies, the exploitation of small hydropower sites (<10 MW) becomes increasingly important. In this framework DuoTurbo Turbine, a new DuoTurbo-microturbine prototype for drinking water networks has been jointly developed by the HES-SO Valais//Wallis, the EPFL-Laboratory for Hydraulic Machines and industrial partners. The modular in-line “plug & play” technology requires low investment, reaching economic feasibility with an available power between 5 kW and 25 kW. One stage of the microturbine consists of two axial counter-rotating runners that form a compact independent unit. Each runner of the turbine holds its own rim generator, the DuoTurbo-configuration involving that each hydraulic runner is integral with each electrical rotor. The possibility of stacking several stages in series enables covering quite a wide range of hydraulic power and, thus, recovering a maximum of energy dissipated in release valves of water supply systems. The present work introduces the global concept of the implemented prototype of the DuoTurbo-microturbine, to target a maximal injected power of 5 kW for a discharge of 9 l/s and a head of 24.5 m per stage. The main features of the hydraulic, the mechanical, the electrical and the electronic design are presented. The hydraulic performance is, then, assessed using CFD simulations for the expected operating range. Finally, the performance measurements of the single-stage prototype installed in the hydraulic test rig of the HES-SO Valais//Wallis are presented.

  5. Fan/Ram Duct Program

    DTIC Science & Technology

    1973-10-01

    turbofan engine shutoff scheme, the ram duct flow conditions, and the Ian duct shutoff vane area transi- tion schedule. This loss will be...airflow. The performance of the turbofan is neglected until the main engine burner is ignited. At that time it is assumed that the turbo - fan...B. Transient Operation . . .. TRANSIENT TRANSITION TEST CASES A. Turbofan to Ramjet B. Ramjet to Turbo fan CONCLUSIONS AND RECOMMENDATIONS

  6. LTE-Enhanced Cognitive Radio Network Testbed (LTE-CORNET)

    DTIC Science & Technology

    2016-11-01

    4 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel...Turbo, HT , 15M, 140W) Intel Core i7-3770 (3.4 GHz Quad Core, 77W) Dual Intel Xeon E5-2695 v4 (18C, 2.1GHz, 3.3GHz Turbo, 2400MHz, 45MB, 120W

  7. Submersible Aircraft Concept Design Study

    DTIC Science & Technology

    2010-08-01

    capable of submerging at the expense of in-air efficiency; 2. creating a low density submersible requiring dynamic lift to stay submerged at the...density solution would require some additional submergence force. Whilst dynamic lift underwater could be easily achieved by the already present...turbo-prop characteristics for the submersible aircraft concept. Turbo-props are typically specified in terms of shaft horse power ( shp ) rather than

  8. GENPLOT: A formula-based Pascal program for data manipulation and plotting

    NASA Astrophysics Data System (ADS)

    Kramer, Matthew J.

    Geochemical processes involving alteration, differentiation, fractionation, or migration of elements may be elucidated by a number of discrimination or variation diagrams (e.g., AFM, Harker, Pearce, and many others). The construction of these diagrams involves arithmetic combination of selective elements (involving major, minor, or trace elements). GENPLOT utilizes a formula-based algorithm (an expression parser) which enables the program to manipulate multiparameter databases and plot XY, ternary, tetrahedron, and REE type plots without needing to change either the source code or rearranging databases. Formulae may be any quadratic expression whose variables are the column headings of the data matrix. A full-screen editor with limited equations and arithmetic functions (spreadsheet) has been incorporated into the program to aid data entry and editing. Data are stored as ASCII files to facilitate interchange of data between other programs and computers. GENPLOT was developed in Turbo Pascal for the IBM and compatible computers but also is available in Apple Pascal for the Apple Ile and Ill. Because the source code is too extensive to list here (about 5200 lines of Pascal code), the expression parsing routine, which is central to GENPLOT's flexibility is incorporated into a smaller demonstration program named SOLVE. The following paper includes a discussion on how the expression parser works and a detailed description of GENPLOT's capabilities.

  9. Unsteady Aero Computation of a 1 1/2 Stage Large Scale Rotating Turbine

    NASA Technical Reports Server (NTRS)

    To, Wai-Ming

    2012-01-01

    This report is the documentation of the work performed for the Subsonic Rotary Wing Project under the NASA s Fundamental Aeronautics Program. It was funded through Task Number NNC10E420T under GESS-2 Contract NNC06BA07B in the period of 10/1/2010 to 8/31/2011. The objective of the task is to provide support for the development of variable speed power turbine technology through application of computational fluid dynamics analyses. This includes work elements in mesh generation, multistage URANS simulations, and post-processing of the simulation results for comparison with the experimental data. The unsteady CFD calculations were performed with the TURBO code running in multistage single passage (phase lag) mode. Meshes for the blade rows were generated with the NASA developed TCGRID code. The CFD performance is assessed and improvements are recommended for future research in this area. For that, the United Technologies Research Center's 1 1/2 stage Large Scale Rotating Turbine was selected to be the candidate engine configuration for this computational effort because of the completeness and availability of the data.

  10. [Artificial heart--turbo type blood pump for long-term use].

    PubMed

    Akamatsu, Teruaki

    2003-05-01

    Shortage of donor heart for transplantation necessitates long-term artificial assist heart. Turbo-pump is smaller, simpler and cheaper than the pulsatile displacement type pump, but the turbo-pump has defect of thrombus formation at the shaft seal. Our centrifugal pump with magnetically suspended impellers overcomes this defect and is ready for clinical trials now. The structures and functions are described and are compared with the other newly-developed pump of the same kinds with us. And also the pumps of centrifugal type and axial-type, of which impellers are supported by pivots, are reviewed briefly from the stand point for long-term use. Other pumps are referred too: pumps with hydrodynamic bearing and a pump with the shaft seal which is washed and cooled by saline solution.

  11. COSTMODL - AN AUTOMATED SOFTWARE DEVELOPMENT COST ESTIMATION TOOL

    NASA Technical Reports Server (NTRS)

    Roush, G. B.

    1994-01-01

    The cost of developing computer software consumes an increasing portion of many organizations' budgets. As this trend continues, the capability to estimate the effort and schedule required to develop a candidate software product becomes increasingly important. COSTMODL is an automated software development estimation tool which fulfills this need. Assimilating COSTMODL to any organization's particular environment can yield significant reduction in the risk of cost overruns and failed projects. This user-customization capability is unmatched by any other available estimation tool. COSTMODL accepts a description of a software product to be developed and computes estimates of the effort required to produce it, the calendar schedule required, and the distribution of effort and staffing as a function of the defined set of development life-cycle phases. This is accomplished by the five cost estimation algorithms incorporated into COSTMODL: the NASA-developed KISS model; the Basic, Intermediate, and Ada COCOMO models; and the Incremental Development model. This choice affords the user the ability to handle project complexities ranging from small, relatively simple projects to very large projects. Unique to COSTMODL is the ability to redefine the life-cycle phases of development and the capability to display a graphic representation of the optimum organizational structure required to develop the subject project, along with required staffing levels and skills. The program is menu-driven and mouse sensitive with an extensive context-sensitive help system that makes it possible for a new user to easily install and operate the program and to learn the fundamentals of cost estimation without having prior training or separate documentation. The implementation of these functions, along with the customization feature, into one program makes COSTMODL unique within the industry. COSTMODL was written for IBM PC compatibles, and it requires Turbo Pascal 5.0 or later and Turbo Professional 5.0 for recompilation. An executable is provided on the distribution diskettes. COSTMODL requires 512K RAM. The standard distribution medium for COSTMODL is three 5.25 inch 360K MS-DOS format diskettes. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. COSTMODL was developed in 1991. IBM PC is a registered trademark of International Business Machines. Borland and Turbo Pascal are registered trademarks of Borland International, Inc. Turbo Professional is a trademark of TurboPower Software. MS-DOS is a registered trademark of Microsoft Corporation. Turbo Professional is a trademark of TurboPower Software.

  12. A CFD Case Study of a Fan Stage with Split Flow Path Subject to Total Pressure Distortion Inflow

    NASA Technical Reports Server (NTRS)

    To, Wai-Ming

    2017-01-01

    This report is the documentation of the work performed under the Hypersonic Project of the NASA's Fundamental Aeronautics Program. It was funded through Task Number NNC10E444T under GESS-2 Contract NNC06BA07B. The objective of the task is to develop advanced computational tools for the simulation of multi-stage turbomachinery in support of aeropropulsion. This includes work elements in extending the TURBO code and validating the multi-stage URANS (Unsteady Reynolds Averaged Navier Stokes) simulation results with the experimental data. The unsteady CFD (Computation Fluid Dynamics) calculations were performed in full wheel mode with and without screen generated total pressure distortion at the computational inflow boundary, as well as in single passage phase lag mode for uniform inflow. The experimental data were provided by NASA from the single stage RTA (Revolutionary Turbine Accelerator) fan test program.Significant non-uniform flow condition at the fan-face of the aeropropulsion system is frequentlyencountered in many of the advanced aerospace vehicles. These propulsion systems can be eithera podded or an embedded design employed in HWB (Hybrid Wing Body) airframe concept. It isalso a topic of interest in military applications, in which advanced air vehicles have already deployedsome form of embedded propulsion systems in their design because of the requirementsof compact and low observable inlets. Even in the conventional airframe/engine design, the fancould operate under such condition when the air vehicle is undergoing rapid maneuvering action.It is believed that a better understanding of the fan’s aerodynamic and aeromechanical responseto this type of operating condition or off design operation would be beneficial to designing distortiontolerant blades for improved engine operability.The objective for this research is to assess the capability of turbomachinery code as an analysistool in understanding the effects and evaluating the impact of flow distortion on the aerodynamicand aeromechanical performance of the fan in advanced propulsion systems. Results from thetesting of an advanced fan stage released by NASA are available and will be used here for CFDcode validation. The experiment was performed at NASA’s high speed compressor facility aspart of the RTA (Revolutionary Turbine Accelerator) demonstration project, a joint effort ofNASA Glenn Research Center and GE Aircraft Engines in developing an advanced Mach 4TBCC (Turbine Based Combined Cycle) turbofan/ramjet engine for access to space. Part of thetest was to assess the aerodynamic performance and operability of the fan stage under nonuniforminflow condition. Various flow distortion patterns were created at the fan-face by manipulatingsets of screens placed upstream of the wind tunnel. Measurements at the fan-face willprovide the necessary distortion flow information as the inflow boundary condition for the CFDin a full wheel simulation. Therefore the purpose of this work is to demonstrate the NASA supportedmulti-stage turbomachinery code, TURBO [1-5], in the aerodynamic performance analysisof a modern fan design operating under off design condition, and in particular to validate theCFD results with the RTA fan test data.A brief description of the RTA fan rig configuration is given in the next section, explaining onhow flow distortion were measured in the test and constructed for the CFD at the fan-face. It isfollowed by a section summarizing previous CFD work performed at NASA relevant to the currentfan configuration. A short description of the TURBO code is given next, followed by detailsin the computational model of the fan rig, the required computing resources, and the numericalprocedure for the simulations. The CFD results are presented in the discussion section and finallyconcluding remarks are summarized.

  13. NASA Electric Propulsion System Studies

    NASA Technical Reports Server (NTRS)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  14. Scaling Study of Wave Rotor Turbo-normalization of a Small Internal Combustion Engine

    DTIC Science & Technology

    2012-09-01

    14 Figure 6: Acceleration response of turbocharger versus Comprex...for increased engine performance. Turbo-normalization can be accomplished through the addition of a turbocharger , supercharger, or a pressure wave... turbocharger over the same test regime (12). The Comprex® was first used on a passenger car in 1978 on an Opel 2.1 liter diesel engine (13). In 1987

  15. Improvement of the Performance of a Turbo-Ramjet Engine for UAV and Missile Applications

    DTIC Science & Technology

    2003-12-01

    Improvement of the Performance of a Turbo-Ramjet Engine for UAV and Missile Applications 5. FUNDING NUMBERS 6. AUTHOR ( S ) Dimitrios...Krikellas 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT...NUMBER 9. SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11

  16. The Effect of Classic and Web Based Educational Application, Applied for Turbo Pascal Lesson, on Student Success Level

    ERIC Educational Resources Information Center

    Bintas, Jale; Barut, Asim

    2008-01-01

    The aim of research is to compare difference between tenth class students and determine their level of success about classic and web based educational applications of Turbo Pascal lesson. This research was applied to 10 A and 10 TLB students of Izmir Karsikaya Anatolian Technical and industrial high school computer department in second term of…

  17. Pressure actuated film riding seals for turbo machinery

    DOEpatents

    Bidkar, Rahul Anil; Thatte, Azam Mihir; Gibson, Nathan Evan McCurdy; Giametta, Andrew Paul

    2015-08-25

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the sealing device segments includes a stator interface element, a shoe plate having an extended portion having one or more labyrinth teeth facing the rotor and a load bearing portion, wherein the shoe plate is configured to generate an aerodynamic force between the shoe plate and the rotor. The sealing device segment further includes a secondary seal configured to be in contact with the stator interface element at a radially outer end and configured to be in contact with an elevated nose section of the extended portion of the shoe plate on a radially inner end; and multiple flexible elements attached to the shoe plate and to the stator interface element.

  18. Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.; Havey, C. T.; Klamka, A.; Mcneil, C. L.; Paige, M. A.

    1986-01-01

    Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery.

  19. Three-month validation of a turbuhaler electronic monitoring device: implications for asthma clinical trial use

    PubMed Central

    Pilcher, Janine; Shirtcliffe, Philippa; Patel, Mitesh; McKinstry, Steve; Cripps, Terrianne; Weatherall, Mark; Beasley, Richard

    2015-01-01

    Background Electronic monitoring of inhaled asthma therapy is suggested as the ‘gold standard’ for measuring patterns of medication use in clinical trials. The SmartTurbo (Adherium (NZ) Ltd, Auckland, New Zealand) is an electronic monitor for use with a turbuhaler device (AstraZeneca, UK). The aim of this study was to determine the accuracy of the SmartTurbo in recording Symbicort actuations over a 12-week period of use. Methods Twenty SmartTurbo monitors were attached to the base of 20 Symbicort turbuhalers. Bench testing in a research facility was undertaken on days 0, 5, 6, 7, 8, 9, 14, 21, 28, 56 and 84. Patterns of ‘low-use’ (2 sets of 2 actuations on the same day) and ‘high-use’ (2 sets of 8 actuations on the same day) were performed. The date and time of actuations were recorded in a paper diary and compared with data uploaded from the SmartTurbo monitors. Results 2800 actuations were performed. Monitor sensitivity was 99.9% with a lower 97.5% confidence bound of 99.6%. The positive predictive value was 99.9% with a 97.5% lower confidence bound of 99.7%. Accuracy was not affected by whether the pattern of inhaler use was low or high, or whether there was a delay in uploading the actuation data. Conclusions The SmartTurbo monitor is highly accurate in recording and retaining electronic data in this 12-week bench study. It can be recommended for use in clinical trial settings, in which quality control systems are incorporated into study protocols to ensure accurate data acquisition. PMID:26629345

  20. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  1. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  2. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  3. Performance of turbo high-pitch dual-source CT for coronary CT angiography: first ex vivo and patient experience.

    PubMed

    Morsbach, Fabian; Gordic, Sonja; Desbiolles, Lotus; Husarik, Daniela; Frauenfelder, Thomas; Schmidt, Bernhard; Allmendinger, Thomas; Wildermuth, Simon; Alkadhi, Hatem; Leschka, Sebastian

    2014-08-01

    To evaluate image quality, maximal heart rate allowing for diagnostic imaging, and radiation dose of turbo high-pitch dual-source coronary computed tomographic angiography (CCTA). First, a cardiac motion phantom simulating heart rates (HRs) from 60-90 bpm in 5-bpm steps was examined on a third-generation dual-source 192-slice CT (prospective ECG-triggering, pitch 3.2; rotation time, 250 ms). Subjective image quality regarding the presence of motion artefacts was interpreted by two readers on a four-point scale (1, excellent; 4, non-diagnostic). Objective image quality was assessed by calculating distortion vectors. Thereafter, 20 consecutive patients (median, 50 years) undergoing clinically indicated CCTA were included. In the phantom study, image quality was rated diagnostic up to the HR75 bpm, with object distortion being 1 mm or less. Distortion increased above 1 mm at HR of 80-90 bpm. Patients had a mean HR of 66 bpm (47-78 bpm). Coronary segments were of diagnostic image quality for all patients with HR up to 73 bpm. Average effective radiation dose in patients was 0.6 ± 0.3 mSv. Our combined phantom and patient study indicates that CCTA with turbo high-pitch third-generation dual-source 192-slice CT can be performed at HR up to 75 bpm while maintaining diagnostic image quality, being associated with an average radiation dose of 0.6 mSv. • CCTA is feasible with the turbo high-pitch mode. • Turbo high-pitch CCTA provides diagnostic image quality up to 73 bpm. • The radiation dose of high-pitch CCTA is 0.6 mSv on average.

  4. Evaluation of Image Quality in Three-dimensional Fat-suppressed T1-weighted Images with Fast Acquisition Mode for Upper Abdomen.

    PubMed

    Saito, Shigeyoshi; Tanaka, Keiko; Tarewaki, Hiroyuki; Koyama, Yoshihiro; Hashido, Takashi

    2016-01-01

    We compared the uniformity of fat-suppression and image quality using three-dimensional fat-suppressed T 1 -weighted gradient-echo sequences that are liver acquisition with volume acceleration (LAVA) and Turbo-LAVA at 3.0T-MRI. The subjects were seven patients with liver disease (mean age, 66.7±8.2 years). The axial slices of two LAVA sequences were used for the comparison of the uniformity of fat-suppression and image quality at a region-of-interest (ROI) of the liver dome, the porta, and the renal hilum. To yield a quantitative measurement of the uniformity of fat suppression, the percentage standard deviation (%SD) was calculated by comparing two sequences. For image signal to noise ratio (SNR), the contrast between the liver and fat (C liver-fat ), and the liver and muscle (C liver-muscle ), the other ROIs were placed in the superficial fat, liver, spleen, pancreas, and muscle. The %SD in Turbo-LAVA (28.1±16.8%) was lower than that in LAVA (41.5±13.4%). The SNRs in Turbo-LAVA (17.8±4.1 [liver], 12.5±3.0 [pancreas], 14.7±1.6 [spleen], 8.2±3.5 [fat]) were lower than those in LAVA (20.9±6.1 [liver], 16.8±4.1 [pancreas], 17.4±2.4 [spleen], 12.0±4.5 [fat]). While, the C liver-fat in the Turbo-LAVA (0.72±0.06) was significantly higher than that in LAVA (0.59±0.07). Turbo-LAVA sequence offers superior and more homogenous fat-suppression in comparison to LAVA sequence.

  5. Structural design and analysis of a Mach zero to five turbo-ramjet system

    NASA Technical Reports Server (NTRS)

    Spoth, Kevin A.; Moses, Paul L.

    1993-01-01

    The paper discusses the structural design and analysis of a Mach zero to five turbo-ramjet propulsion system for a Mach five waverider-derived cruise vehicle. The level of analysis detail necessary for a credible conceptual design is shown. The results of a finite-element failure mode sizing analysis for the engine primary structure is presented. The importance of engine/airframe integration is also discussed.

  6. Liquid chromatography-electrospray mass spectrometry of beta-carotene and xanthophylls. Validation of the analytical method.

    PubMed

    Careri, M; Elviri, L; Mangia, A

    1999-08-27

    The investigation of beta-carotene and the xanthophylls beta-cryptoxanthin, lutein, zeaxanthin, canthaxanthin and astaxanthin using reversed-phase liquid chromatography-electrospray mass spectrometry interfaced with TurboIonspray (LC-TurboISP-MS) is described. Two narrow-bore C18 columns connected in series and an isocratic solvent system containing acetonitrile-methanol (0.1 M ammonium acetate)-dichloromethane at a flow-rate of 300 microl/min (without splitting) were used. Operating in the positive-ion mode over m/z 500-650, the effects on the formation of the molecular ion species or adduct ions and the MS detector response were investigated for carotenoids, varying the orifice plate voltage, the ring voltage and the ISP voltage. Both conventional ISP and TurboISP were performed; using the TurboISP-MS system, ionization efficiency increased with respect to ISP-MS, particularly at the highest temperature (500 degrees C). Good results were particularly obtained for beta-carotene, which was detectable at the low ng level, without the use of solution-phase oxidants. Using LC columns and acquiring in single-ion monitoring mode, detection limits were estimated to be in the 0.1-1 ng range; dynamic range was established between one- and two-orders of magnitude. Better sensitivity under positive-ion than negative-ion conditions was demonstrated.

  7. Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem

    NASA Astrophysics Data System (ADS)

    Lai, Tianwei; Fu, Bao; Chen, Shuangtao; Zhang, Qiyong; Hou, Yu

    2017-02-01

    The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust bearing. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.

  8. Communications and information research: Improved space link performance via concatenated forward error correction coding

    NASA Technical Reports Server (NTRS)

    Rao, T. R. N.; Seetharaman, G.; Feng, G. L.

    1996-01-01

    With the development of new advanced instruments for remote sensing applications, sensor data will be generated at a rate that not only requires increased onboard processing and storage capability, but imposes demands on the space to ground communication link and ground data management-communication system. Data compression and error control codes provide viable means to alleviate these demands. Two types of data compression have been studied by many researchers in the area of information theory: a lossless technique that guarantees full reconstruction of the data, and a lossy technique which generally gives higher data compaction ratio but incurs some distortion in the reconstructed data. To satisfy the many science disciplines which NASA supports, lossless data compression becomes a primary focus for the technology development. While transmitting the data obtained by any lossless data compression, it is very important to use some error-control code. For a long time, convolutional codes have been widely used in satellite telecommunications. To more efficiently transform the data obtained by the Rice algorithm, it is required to meet the a posteriori probability (APP) for each decoded bit. A relevant algorithm for this purpose has been proposed which minimizes the bit error probability in the decoding linear block and convolutional codes and meets the APP for each decoded bit. However, recent results on iterative decoding of 'Turbo codes', turn conventional wisdom on its head and suggest fundamentally new techniques. During the past several months of this research, the following approaches have been developed: (1) a new lossless data compression algorithm, which is much better than the extended Rice algorithm for various types of sensor data, (2) a new approach to determine the generalized Hamming weights of the algebraic-geometric codes defined by a large class of curves in high-dimensional spaces, (3) some efficient improved geometric Goppa codes for disk memory systems and high-speed mass memory systems, and (4) a tree based approach for data compression using dynamic programming.

  9. Reliability and throughput issues for optical wireless and RF wireless systems

    NASA Astrophysics Data System (ADS)

    Yu, Meng

    The fast development of wireless communication technologies has two main trends. On one hand, in point-to-point communications, the demand for higher throughput called for the emergence of wireless broadband techniques including optical wireless (OW). One the other hand, wireless networks are becoming pervasive. New application of wireless networks ask for more flexible system infrastructures beyond the point-to-point prototype to achieve better performance. This dissertation investigates two topics on the reliability and throughput issues of new wireless technologies. The first topic is to study the capacity, and practical forward error control strategies for OW systems. We investigate the performance of OW systems under weak atmospheric turbulence. We first investigate the capacity and power allocation for multi-laser and multi-detector systems. Our results show that uniform power allocation is a practically optimal solution for paralleled channels. We also investigate the performance of Reed Solomon (RS) codes and turbo codes for OW systems. We present RS codes as good candidates for OW systems. The second topic targets user cooperation in wireless networks. We evaluate the relative merits of amplify-forward (AF) and decode-forward (DF) in practical scenarios. Both analysis and simulations show that the overall system performance is critically affected by the quality of the inter-user channel. Following this result, we investigate two schemes to improve the overall system performance. We first investigate the impact of the relay location on the overall system performance and determine the optimal location of relay. A best-selective single-relay 1 system is proposed and evaluated. Through the analysis of the average capacity and outage, we show that a small candidate pool of 3 to 5 relays suffices to reap most of the "geometric" gain available to a selective system. Second, we propose a new user cooperation scheme to provide an effective better inter-user channel. Most user cooperation protocols work in a time sharing manner, where a node forwards others' messages and sends its own message at different sections within a provisioned time slot. In the proposed scheme the two messages are encoded together in a single codework using network coding and transmitted in the given time slot. We also propose a general multiple-user cooperation framework. Under this framework, we show that network coding can achieve better diversity and provide effective better inter-user channels than time sharing. The last part of the dissertation focuses on multi-relay packet transmission. We propose an adaptive and distributive coding scheme for the relay nodes to adaptively cooperate and forward messages. The adaptive scheme shows performance gain over fixed schemes. Then we shift our viewpoint and represent the network as part of encoders and part of decoders.

  10. Sustained Release Oral Nanoformulated Green Tea for Prostate Cancer Prevention

    DTIC Science & Technology

    2012-05-01

    31.25 ng/ml. The calibration samples were measured twice. The HPLC was a Shimadzu Prominence LC system containing a CBM-20A system controller...MDS SCIEX Ontario, Canada) equipped with a Turbo V Source and Turbo Ion Spray was coupled to the HPLC . The mass spectrometer was operated in...treated mice were subjected to HPLC and GC mass spectrometry for analysis of pharmacokinetic distribution of EGCG and bioavailability. Though we have

  11. Design and Testing of a Combustor for a Turbo-Ramjet Engine for UAV and Missile Applications

    DTIC Science & Technology

    2003-03-01

    CA, September 1999. 6. Al- Namani , S . M., Development of Shrouded Turbojet to Form a Turboramjet for Future Missile Applications, Master’s Thesis...Turbo- ramjet Engine for UAV and Missile Applications 6. AUTHOR( S ) Ross H. Piper III 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME( S

  12. Multi-faults decoupling on turbo-expander using differential-based ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Hongguang; Li, Ming; Li, Cheng; Li, Fucai; Meng, Guang

    2017-09-01

    This paper dedicates on the multi-faults decoupling of turbo-expander rotor system using Differential-based Ensemble Empirical Mode Decomposition (DEEMD). DEEMD is an improved version of DEMD to resolve the imperfection of mode mixing. The nonlinear behaviors of the turbo-expander considering temperature gradient with crack, rub-impact and pedestal looseness faults are investigated respectively, so that the baseline for the multi-faults decoupling can be established. DEEMD is then utilized on the vibration signals of the rotor system with coupling faults acquired by numerical simulation, and the results indicate that DEEMD can successfully decouple the coupling faults, which is more efficient than EEMD. DEEMD is also applied on the vibration signal of the misalignment coupling with rub-impact fault obtained during the adjustment of the experimental system. The conclusion shows that DEEMD can decompose the practical multi-faults signal and the industrial prospect of DEEMD is verified as well.

  13. Operational safety assessment of turbo generators with wavelet Rényi entropy from sensor-dependent vibration signals.

    PubMed

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-04-16

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals' wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance.

  14. Future GOES-R global ground receivers

    NASA Astrophysics Data System (ADS)

    Dafesh, P. A.; Grayver, E.

    2006-08-01

    The Aerospace Corporation has developed an end-to-end testbed to demonstrate a wide range of modern modulation and coding alternatives for future broadcast by the GOES-R Global Rebroadcast (GRB) system. In particular, this paper describes the development of a compact, low cost, flexible GRB digital receiver that was designed, implemented, fabricated, and tested as part of the development. This receiver demonstrates a 10-fold increase in data rate compared to the rate achievable by the current GOES generation, without a major impact on either cost or size. The digital receiver is integrated on a single PCI card with an FPGA device, and analog-to-digital converters. It supports a wide range of modulations (including 8-PSK and 16-QAM) and turbo coding. With appropriate FPGA firmware and software changes, it can also be configured to receive the current (legacy) GOES signals. The receiver has been validated by sending large image files over a high-fidelity satellite channel emulator, including a space-qualified power amplifier and a white noise source. The receiver is a key component of a future GOES-R weather receiver system (also called user terminal) that includes the antenna, low-noise amplifier, downconverter, filters, digital receiver, and receiver system software. This work describes this receiver proof of concept and its application to providing a very credible estimate of the impact of using modern modulation and coding techniques in the future GOES-R system.

  15. Hardware Implementation of Serially Concatenated PPM Decoder

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon; Barsoum, Maged; Cheng, Michael; Nakashima, Michael

    2009-01-01

    A prototype decoder for a serially concatenated pulse position modulation (SCPPM) code has been implemented in a field-programmable gate array (FPGA). At the time of this reporting, this is the first known hardware SCPPM decoder. The SCPPM coding scheme, conceived for free-space optical communications with both deep-space and terrestrial applications in mind, is an improvement of several dB over the conventional Reed-Solomon PPM scheme. The design of the FPGA SCPPM decoder is based on a turbo decoding algorithm that requires relatively low computational complexity while delivering error-rate performance within approximately 1 dB of channel capacity. The SCPPM encoder consists of an outer convolutional encoder, an interleaver, an accumulator, and an inner modulation encoder (more precisely, a mapping of bits to PPM symbols). Each code is describable by a trellis (a finite directed graph). The SCPPM decoder consists of an inner soft-in-soft-out (SISO) module, a de-interleaver, an outer SISO module, and an interleaver connected in a loop (see figure). Each SISO module applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm to compute a-posteriori bit log-likelihood ratios (LLRs) from apriori LLRs by traversing the code trellis in forward and backward directions. The SISO modules iteratively refine the LLRs by passing the estimates between one another much like the working of a turbine engine. Extrinsic information (the difference between the a-posteriori and a-priori LLRs) is exchanged rather than the a-posteriori LLRs to minimize undesired feedback. All computations are performed in the logarithmic domain, wherein multiplications are translated into additions, thereby reducing complexity and sensitivity to fixed-point implementation roundoff errors. To lower the required memory for storing channel likelihood data and the amounts of data transfer between the decoder and the receiver, one can discard the majority of channel likelihoods, using only the remainder in operation of the decoder. This is accomplished in the receiver by transmitting only a subset consisting of the likelihoods that correspond to time slots containing the largest numbers of observed photons during each PPM symbol period. The assumed number of observed photons in the remaining time slots is set to the mean of a noise slot. In low background noise, the selection of a small subset in this manner results in only negligible loss. Other features of the decoder design to reduce complexity and increase speed include (1) quantization of metrics in an efficient procedure chosen to incur no more than a small performance loss and (2) the use of the max-star function that allows sum of exponentials to be computed by simple operations that involve only an addition, a subtraction, and a table lookup. Another prominent feature of the design is a provision for access to interleaver and de-interleaver memory in a single clock cycle, eliminating the multiple clock-cycle latency characteristic of prior interleaver and de-interleaver designs.

  16. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  17. NASA Tech Briefs, January 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.

  18. Development of elements of the condition monitoring system of turbo generators of thermal power stations and nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.

    2017-08-01

    The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing housings. The procedure for calculating misalignments of turbo generator shaft line supports is set out.

  19. The GBT Dynamic Scheduling System: Powered by the Web

    NASA Astrophysics Data System (ADS)

    Marganian, P.; Clark, M.; McCarty, M.; Sessoms, E.; Shelton, A.

    2009-09-01

    The web technologies utilized for the Robert C. Byrd Green Bank Telescope's (GBT) new Dynamic Scheduling System are discussed, focusing on languages, frameworks, and tools. We use a popular Python web framework, TurboGears, to take advantage of the extensive web services the system provides. TurboGears is a model-view-controller framework, which aggregates SQLAlchemy, Genshi, and CherryPy respectively. On top of this framework, Javascript (Prototype, script.aculo.us, and JQuery) and cascading style sheets (Blueprint) are used for desktop-quality web pages.

  20. Small, high-speed bearing technology for cryogenic turbo-pumps

    NASA Technical Reports Server (NTRS)

    Winn, L. W.; Eusepi, M. W.; Smalley, A. J.

    1974-01-01

    The design of 20-mm bore ball bearings is described for cryogenic turbo-machinery applications, operating up to speeds of 120,000 rpm. A special section is included on the design of hybrid bearings. Each hybrid bearing is composed of a ball bearing in series with a conventional pressurized fluid-film journal bearing. Full details are presented on the design of a test vehicle which possesses the capability of testing the above named bearings within the given speed range under externally applied radial and axial loads.

  1. Multiple Trellis Coded Modulation (MTCM): An MSAT-X report

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.

    1986-01-01

    Conventional trellis coding outputs one channel symbol per trellis branch. The notion of multiple trellis coding is introduced wherein more than one channel symbol per trellis branch is transmitted. It is shown that the combination of multiple trellis coding with M-ary modulation yields a performance gain with symmetric signal set comparable to that previously achieved only with signal constellation asymmetry. The advantage of multiple trellis coding over the conventional trellis coded asymmetric modulation technique is that the potential for code catastrophe associated with the latter has been eliminated with no additional cost in complexity (as measured by the number of states in the trellis diagram).

  2. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  3. Operational Safety Assessment of Turbo Generators with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals

    PubMed Central

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-01-01

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934

  4. A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows

    NASA Technical Reports Server (NTRS)

    Chuang, H. Andrew; Verdon, Joseph M.

    1998-01-01

    The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.

  5. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta1

    PubMed Central

    Jordon-Thaden, Ingrid E.; Chanderbali, Andre S.; Gitzendanner, Matthew A.; Soltis, Douglas E.

    2015-01-01

    Premise of the study: Here we present a series of protocols for RNA extraction across a diverse array of plants; we focus on woody, aromatic, aquatic, and other chemically complex taxa. Methods and Results: Ninety-one taxa were subjected to RNA extraction with three methods presented here: (1) TRIzol/TURBO DNA-free kits using the manufacturer’s protocol with the addition of sarkosyl; (2) a combination method using cetyltrimethylammonium bromide (CTAB) and TRIzol/sarkosyl/TURBO DNA-free; and (3) a combination of CTAB and QIAGEN RNeasy Plant Mini Kit. Bench-ready protocols are given. Conclusions: After an iterative process of working with chemically complex taxa, we conclude that the use of TRIzol supplemented with sarkosyl and the TURBO DNA-free kit is an effective, efficient, and robust method for obtaining RNA from 100 mg of leaf tissue of land plant species (Embryophyta) examined. Our protocols can be used to provide RNA of suitable stability, quantity, and quality for transcriptome sequencing. PMID:25995975

  6. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan

    2015-12-01

    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  7. CFD Study of Turbo-Ramjet Interactions in Hypersonic Airbreathing Propulsion System

    NASA Technical Reports Server (NTRS)

    Chang, Ing; Hunter, Louis G.

    1996-01-01

    Advanced airbreathing propulsion systems used in Mach 4-6 mission scenarios, usually involve turbo-ramjet configurations. As the engines transition from turbojet to ramjet, there is an operational envelope where both engines operate simultaneously. In the first phase of our study, an over/under nozzle configuration was analyzed. The two plumes from the turbojet and ramjet interact at the end of a common 2-D cowl, where they both reach an approximate Mach 3.0 condition and then jointly expand to Mach 3.6 at the common nozzle exit plane. For the problem analyzed, the turbojet engine operates at a higher nozzle pressure ratio than the ramjet, causes the turbojet plume overpowers the ramjet plume, deflecting it approximately 12 degrees downward and in turn the turbojet plume is deflected 6 degrees upward. In the process, shocks were formed at the deflections and a shear layer formed at the confluence of the two jets. This particular case was experimentally tested and the data were used to compare with a computational fluid dynamics (CFD) study using the PARC2D code. The CFD results were in good agreement with both static pressure distributions on the cowl separator and on nozzle walls. The thrust coefficients were also in reasonable agreement. In addition, inviscid relationships were developed around the confluence point, where the two exhaust jets meet, and these results compared favorably with the CFD results. In the second phase of our study, a 3-D CFD solution was generated to compare with the 2-D solution. The major difference between the 2-D and 3-D solutions was the interaction of the shock waves, generated by the plume interactions, on the sidewall. When a shock wave interacts with a sidewall and sidewall boundary layer, it is called a glancing shock sidewall interaction. These interactions entrain boundary layer flow down the shockline into a vortical flow pattern. The 3-D plots show the streamlines being entrained down the shockline. The pressure of the flow also decreases slightly as the sidewall is approached. Other difference between the 2-D and 3-D solutions were a lowering of the nozzle thrust coefficient value from 0.9850 (2-D) to 0.9807 (3-D), where the experimental value was 0.9790. In the third phase of our study, a different turbo-ramjet configuration was analyzed. The confluence of a supersonic turbojet and a subsonic ramjet in the turbine based combined-cycle (TBCC) propulsion system was studied by a 2-D CFD code. In the analysis, Mach 1.4 primary turbojet was mixed with the subsonic ramjet secondary flow in an ejector mode operation. Reasonable agreements were obtained with the supplied I-D TBCC solutions. For low downstream backpressure, the Fabri choke condition (Break-Point condition) was observed in the secondary flow within mixing zone. For sufficient high downstream backpressure, the Fabri choke no longer exist, the ramjet flow was reduced and the ejector flow became backpressure dependent. Highly non-uniform flow at ejector exit were observed, indicated that for smooth downstream combustion, the mixing of the two streams probably required some physical devices.

  8. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    NASA Astrophysics Data System (ADS)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  9. NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, Laurence H.; Gordon, Sanford

    1988-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  10. Nozzle Numerical Analysis Of The Scimitar Engine

    NASA Astrophysics Data System (ADS)

    Battista, F.; Marini, M.; Cutrone, L.

    2011-05-01

    This work describes part of the activities on the LAPCAT-II A2 vehicle, in which starting from the available conceptual vehicle design and the related pre- cooled turbo-ramjet engine called SCIMITAR, well- thought assumptions made for performance figures of different components during the iteration process within LAPCAT-I will be assessed in more detail. In this paper it is presented a numerical analysis aimed at the design optimization of the nozzle contour of the LAPCAT A2 SCIMITAR engine designed by Reaction Engines Ltd. (REL) (see Figure 1). In particular, nozzle shape optimization process is presented for cruise conditions. All the computations have been carried out by using the CIRA C3NS code in non equilibrium conditions. The effect of considering detailed or reduced chemical kinetic schemes has been analyzed with a particular focus on the production of pollutants. An analysis of engine performance parameters, such as thrust and combustion efficiency has been carried out.

  11. CFD Aided Design and Production of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.

  12. NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Gordon, S.

    1989-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  13. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  14. Optimal bit allocation for hybrid scalable/multiple-description video transmission over wireless channels

    NASA Astrophysics Data System (ADS)

    Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.

    2006-01-01

    In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.

  15. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    PubMed

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  16. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-01

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  17. Demonstration of a high-capacity turboalternator for a 20 K, 20 W space-borne Brayton cryocooler

    NASA Astrophysics Data System (ADS)

    Zagarola, M.; Cragin, K.; Deserranno, D.

    2014-01-01

    NASA is considering multiple missions involving long-term cryogenic propellant storage in space. Liquid hydrogen and oxygen are the typical cryogens as they provide the highest specific impulse of practical chemical propellants. Storage temperatures are nominally 20 K for liquid hydrogen and 90 K for liquid oxygen. Heat loads greater than 10 W at 20 K are predicted for hydrogen storage. Current space cryocoolers have been developed for sensor cooling with refrigeration capacities less than 1 W at 20 K. In 2011, Creare Inc. demonstrated an ultra-low-capacity turboalternator for use in a turbo-Brayton cryocooler. The turboalternator produced up to 5 W of turbine refrigeration at 20 K; equivalent to approximately 3 W of net cryocooler refrigeration. This turboalternator obtained unprecedented operating speeds and efficiencies at low temperatures benefitting from new rotor design and fabrication techniques, and new bearing fabrication techniques. More recently, Creare applied these design and fabrication techniques to a larger and higher capacity 20 K turboalternator. The turboalternator was tested in a high-capacity, low temperature test facility at Creare and demonstrated up to 42 W of turbine refrigeration at 20 K; equivalent to approximately 30 W of net cryocooler refrigeration. The net turbine efficiency was the highest achieved to date at Creare for a space-borne turboalternator. This demonstration was the first step in the development of a high-capacity turbo-Brayton cryocooler for liquid hydrogen storage. In this paper, we will review the design, development and testing of the turboalternator.

  18. Validating the performance of correlated fission multiplicity implementation in radiation transport codes with subcritical neutron multiplication benchmark experiments

    DOE PAGES

    Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...

    2018-06-14

    Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less

  19. Validating the performance of correlated fission multiplicity implementation in radiation transport codes with subcritical neutron multiplication benchmark experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson

    Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less

  20. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.

  1. Turbo FRMAC 2016 v. 7.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Gregory J.; Whitener, Dustin Heath; Folz, Wesley

    2017-05-27

    The Turbo FRMAC (TF) software program is the software implementation of the science and methodologies utilized in the Federal Radiological Monitoring and Assessment Center (FRMAC). The software automates the calculations described in volumes 1 of "The Federal Manual for Assessing Environmental Data during a Radiological Emergency" (2015 version). In the event of the intentional or accidental release of radioactive material, the software is used to guide and govern the response of the Federal, State, Local, and Tribal governments. The manual, upon which the software is based, is unclassified and freely available on the Internet.

  2. Adaptation of a Turbine Test Facility to High-Temperature Research (Adaptation d’un banc de Turbine aux Recherches pour les Hautes Temperatures,

    DTIC Science & Technology

    1980-12-19

    Des hautes temperatures devant turbine sur turborgacteur et turbines A gaz. (High turbine inlet temperatures in turbo - jet engines and gas turbines ... turbo - jet engines .) Revue Gn(rale de Thermique, No. 166, October 1975 15 D. Arnal Etude exprimentale et thgorique de la transition de la couche J.C...r AD-AIOl 374 ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUBH (ENGLAND) F/B 10/1 ADAPTATION OF A TURBINE TEST FACILITY TO HIGH-TEMPERATURE RESEA--ETC(U) DEC

  3. Turbo FRMAC 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John; Gallagher, Linda; Gonzales, Alejandro

    The Turbo FRMAC (TF) software program is the software implementation of the science and methodologies utilized in the Federal Radiological Monitoring and Assessment Center (FRMAC). The software automates the calculations described in volumes 1 of "The Federal Manual for Assessing Environmental Data during a Radiological Emergency" (2015 version). In the event of the intentional or accidental release of radioactive material, the software is used to guide and govern the response of the Federal, State, Local, and Tribal governments. The manual, upon which the software is based, is unclassified and freely available on the Internet.

  4. Turbo FRMAC 2016 Version 7.1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John; Gallagher, Linda K.; Madrid, Gregory J.

    2016-08-01

    The Turbo FRMAC (TF) software program is the software implementation of the science and methodologies utilized in the Federal Radiological Monitoring and Assessment Center (FRMAC). The software automates the calculations described in volumes 1 of "The Federal Manual for Assessing Environmental Data during a Radiological Emergency" (2015 version). In the event of the intentional or accidental release of radioactive material, the software is used to guide and govern the response of the Federal, State, Local, and Tribal governments. The manual, upon which the software is based, is unclassified and freely available on the Internet.

  5. Turbo FRMAC 2016 v. 7.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrid, Gregory J.; Whitener, Dustin Heath; Folz, Wesley

    2017-02-27

    The Turbo FRMAC (TF) software program is the software implementation of the science and methodologies utilized in the Federal Radiological Monitoring and Assessment Center (FRMAC). The software automates the calculations described in volumes 1 of "The Federal Manual for Assessing Environmental Data during a Radiological Emergency" (2015 version). In the event of the intentional or accidental release of radioactive material, the software is used to guide and govern the response of the Federal, State, Local, and Tribal governments. The manual, upon which the software is based, is unclassified and freely available on the Internet.

  6. Reduced-Order Blade Mistuning Analysis Techniques Developed for the Robust Design of Engine Rotors

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2004-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo-Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using eigenfrequency curve veerings to identify "danger zones" in the operating conditions--ranges of rotational speeds and engine orders in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued. Several methods will be investigated, including the use of intentional mistuning patterns to mitigate the harmful effects of random mistuning, and the modification of disk stiffness to avoid reaching critical values of interblade coupling in the desired operating range. Recent research progress is summarized in the following paragraphs. First, significant progress was made in the development of the component mode mistuning (CMM) and static mode compensation (SMC) methods for reduced-order modeling of mistuned bladed disks (see the following figure). The CMM method has been formalized and extended to allow a general treatment of mistuning. In addition, CMM allows individual mode mistuning, which accounts for the realistic effects of local variations in blade properties that lead to different mistuning values for different mode types (e.g., mistuning of the first torsion mode versus the second flexural mode). The accuracy and efficiency of the CMM method and the corresponding Turbo-Reduce code were validated for an example finite element model of a bladed disk.

  7. Hearing the voices of service user researchers in collaborative qualitative data analysis: the case for multiple coding.

    PubMed

    Sweeney, Angela; Greenwood, Kathryn E; Williams, Sally; Wykes, Til; Rose, Diana S

    2013-12-01

    Health research is frequently conducted in multi-disciplinary teams, with these teams increasingly including service user researchers. Whilst it is common for service user researchers to be involved in data collection--most typically interviewing other service users--it is less common for service user researchers to be involved in data analysis and interpretation. This means that a unique and significant perspective on the data is absent. This study aims to use an empirical report of a study on Cognitive Behavioural Therapy for psychosis (CBTp) to demonstrate the value of multiple coding in enabling service users voices to be heard in team-based qualitative data analysis. The CBTp study employed multiple coding to analyse service users' discussions of CBT for psychosis (CBTp) from the perspectives of a service user researcher, clinical researcher and psychology assistant. Multiple coding was selected to enable multiple perspectives to analyse and interpret data, to understand and explore differences and to build multi-disciplinary consensus. Multiple coding enabled the team to understand where our views were commensurate and incommensurate and to discuss and debate differences. Through the process of multiple coding, we were able to build strong consensus about the data from multiple perspectives, including that of the service user researcher. Multiple coding is an important method for understanding and exploring multiple perspectives on data and building team consensus. This can be contrasted with inter-rater reliability which is only appropriate in limited circumstances. We conclude that multiple coding is an appropriate and important means of hearing service users' voices in qualitative data analysis. © 2012 John Wiley & Sons Ltd.

  8. An Active Broad Area Cooling Model of a Cryogenic Propellant Tank with a Single Stage Reverse Turbo-Brayton Cycle Cryocooler

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Tomsik, Thomas M.

    2011-01-01

    As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.

  9. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    PubMed

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Evaluation of takayasu arteritis with delayed contrast-enhanced MR imaging by a free-breathing 3D IR turbo FLASH.

    PubMed

    Liu, Min; Liu, Weifang; Li, Haoyuan; Shu, Xiaoming; Tao, Xincao; Zhai, Zhenguo

    2017-12-01

    The primary aim of our case-control study was to observe delayed contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with Takayasu arteritis (TA) in comparison with magnetic resonance angiography (MRA). Twenty-seven patients including 15 with active TA and 12 with stable TA who underwent both aortic MRA and DCE-MRI were included. A total of 27 sex- and age-matched healthy volunteers were enrolled as the control group. MRA were obtained with T1WI-volume-interpolated breath-hold examination sequence or fast low-angle shot (FLASH) sequence. DCE-MRI was acquired with a free-breathing three-dimensional inversion recovery Turbo fast low-angle shot (3D IR Turbo FLASH). Neither stenosis nor delayed enhancement of arterial wall was shown in the control group. In patients with stable TA, arterial stenosis was observed on MRA. On DCE-MR, delayed enhancement of arterial walls could be observed in the active TA group but not in the stable TA group or the control group. Stenotic arteries on MRA were comparable in the active TA and stable TA (χ = 2.70, P = .259); however, delayed enhancement of arterial walls in the active-TA group were more than those in the stable group (χ = 27.00, P < .001). Our results suggest that DCE-MRI with the free-breathing 3D IR Turbo FLASH sequence could assess TA and delayed enhancement on DCE-MRI is one characteristics of the active TA. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  11. Simultaneous screening for 238 drugs in blood by liquid chromatography-ion spray tandem mass spectrometry with multiple-reaction monitoring.

    PubMed

    Gergov, M; Ojanperä, I; Vuori, E

    2003-09-25

    A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method is presented for the qualitative screening for 238 drugs in blood samples, which is considerably more than in previous methods. After a two-step liquid-liquid extraction and C(18) chromatography, the compounds were introduced into a triple quadrupole mass spectrometer equipped with a turbo ion spray ion source operating in the positive ionization mode. Identification was based on the compound's absolute retention time, protonated molecular ion, and one representative fragment ion obtained by multiple reaction monitoring (MRM) at an individually selected collision energy of 20, 35, or 50 eV. The limit of detection (LOD) for the majority of the compounds (80%) was < or = 0.05 mg/l, ranging from 0.002 mg/l (e.g., antihistamines) to 5 mg/l (acidic compounds), and for malathion it was 10 mg/l. The LOD values were sufficiently low to allow the majority of compounds to be detected at therapeutic concentrations in the blood.

  12. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  13. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  14. The experimental behavior of spinning pretwisted laminated composite plates

    NASA Technical Reports Server (NTRS)

    Kosmatka, John B.; Lapid, Alex J.

    1993-01-01

    The purpose of the research is to gain an understanding of the material and geometric couplings present in advanced composite turbo-propellers. Twelve pre-twisted laminated composite plates are tested. Three different ply lay-ups (2 symmetric and 1 asymmetric) and four different geometries (flat and 30x pre-twist about the mid-chord, quarter-chord, and leading edge) distinguish each plate from one another. Four rotating and non-rotating tests are employed to isolate the material and geometric couplings of an advanced turbo propeller. The first series of tests consist of non-rotating static displacement, strain, and vibrations. These tests examine the effects of ply lay-up and geometry. The second series of tests consist of rotating displacement, strain, and vibrations with various pitch and sweep settings. These tests utilize the Dynamic Spin Rig Facility at the NASA Lewis Research Center. The rig allows the spin testing of the plates in a near vacuum environment. The tests examine how the material and plate geometry interact with the pitch and sweep geometry of an advanced turbo-propeller.

  15. New Turbo Compound Systems in Automotive Industry for Internal Combustion Engine to Recover Energy

    NASA Astrophysics Data System (ADS)

    Chiriac, R.; Chiru, A.; Condrea, O.

    2017-10-01

    The large amount of heat is scattered in the internal combustion engine through exhaust gas, coolant, convective and radiant heat transfer. Of all these residual heat sources, exhaust gases have the potential to recover using various modern heat recovery techniques. Waste heat recovery from an engine could directly reduce fuel consumption, increase available electrical power and improve overall system efficiency and if it would be used a turbochargers that can also produce energy. This solution is called turbo aggregation and has other ways to develop it in other areas of research like the electrical field. [1-3

  16. Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.

  17. High Performance Computing and Visualization Infrastructure for Simultaneous Parallel Computing and Parallel Visualization Research

    DTIC Science & Technology

    2016-11-09

    Total Number: Sub Contractors (DD882) Names of Personnel receiving masters degrees Names of personnel receiving PHDs Names of other research staff...Broadcom 5720 QP 1Gb Network Daughter Card (2) Intel Xeon E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT , 12C/24T (120W...Broadcom 5720 QP 1Gb Network Daughter Card (2) Intel Xeon E5-2680 v3 2.5GHz, 30M Cache, 9.60GT/s QPI, Turbo, HT , 12C/24T (120W

  18. T1-weighted brain imaging with a 32-channel coil at 3T using TurboFLASH BLADE compared with standard cartesian k-space sampling.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Williams, Kenneth D; Stemmer, Alto; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-03-01

    Motion artifacts often markedly degrade image quality in clinical scans. The BLADE technique offers an alternative k-space sampling scheme reducing the effect of patient related motion on image quality. The purpose of this study is the comparison of imaging artifacts, signal-to-noise (SNR), and contrast-to-noise ratio (CNR) of a new turboFLASH BLADE k-space trajectory with the standard Cartesian k-space sampling for brain imaging, using a 32-channel coil at 3T. The results from 32 patients included after informed consent are reported. This study was performed with a 32-channel head coil on a 3T scanner. Sagittal and axial T1-weighted FLASH sequences (TR/TE 250/2.46 milliseconds, flip angle 70-degree), acquired with Cartesian k-space sampling and T1-weighted turboFLASH sequences (TR/TE/TIsag/TIax 3200/2.77/1144/1056 milliseconds, flip angle 20-degree), using PROPELLER (BLADE) k-space trajectory, were compared. SNR and CNR were evaluated using a paired student t test. The frequency of motion artifacts was assessed in a blinded read. To analyze the differences between both techniques a McNemar test was performed. A P value <0.05 was considered statistically significant. From the blinded read, the overall preference in terms of diagnostic image quality was statistically significant in favor of the BLADE turboFLASH data sets, compared with standard FLASH for both sagittal (P < 0.0001) and axial (P < 0.0001) planes. The frequency of motion artifacts from the scalp was higher for standard FLASH sequences than for BLADE sequences on both axial (47%, P < 0.0003) and sagittal (69%, P < 0.0001) planes. BLADE was preferred in 100% (sagittal plane) and 80% (axial plane) of in-patient data sets and in 68% (sagittal plane) and 73% (axial plane) of out-patient data sets.The BLADE T1 scan did have lower SNRmean (BLADEax 179 +/- 98, Cartesianax 475 +/- 145, BLADEsag 171 +/- 51, and Cartesiansag 697 +/- 129) with P values indicating accordingly a statistically significant difference (Pax <0.0001, Psag < 0.0001), because of the fundamental difference in imaging approach (FLASH vs. turboFLASH). Differences for CNR were also statistically significant, independent of imaging plane (Pax = 0.001, Psag = 0.02). Results demonstrate that turboFLASH BLADE is applicable at 3T with a 32-channel head coil for T1-weighted imaging, with reduced ghost artifacts. This approach offers the first truly clinically applicable T1-weighted BLADE technique for brain imaging at 3T, with consistent excellent image quality.

  19. Multiple description distributed image coding with side information for mobile wireless transmission

    NASA Astrophysics Data System (ADS)

    Wu, Min; Song, Daewon; Chen, Chang Wen

    2005-03-01

    Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.

  20. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    PubMed

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  1. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    PubMed Central

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  2. Hamming and Accumulator Codes Concatenated with MPSK or QAM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel

    2009-01-01

    In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.

  3. Developments in TurboBrayton Technology for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Swift, W. L.; Zagarola, M. V.; Nellis, G. F.; McCormick, J. A.; Gibbon, Judy

    1999-01-01

    A single stage reverse Brayton cryocooler using miniature high-speed turbomachines recently completed a successful space shuttle test flight demonstrating its capabilities for use in cooling the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The NICMOS CryoCooler (NCC) is designed for a cooling load of about 8 W at 65 K, and comprises a closed loop cryocooler coupled to an independent cryogenic circulating loop. Future space applications involve instruments that will require 5 mW to 200 mW of cooling at temperatures between 4 K and 10 K. This paper discusses the extension of Turbo-Brayton technology to meet these requirements.

  4. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  5. Noise suppressor for turbo fan jet engines

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y. (Inventor)

    1983-01-01

    A noise suppressor is disclosed for installation on the discharge or aft end of a turbo fan engine. Within the suppressor are fixed annular airfoils which are positioned to reduce the relative velocity between the high temperature fast moving jet exhaust and the low temperature slow moving air surrounding it. Within the suppressor nacelle is an exhaust jet nozzle which constrains the shape of the jet exhaust to a substantially uniform elongate shape irrespective of the power setting of the engine. Fixed ring airfoils within the suppressor nacelle therefore have the same salutary effects irrespective of the power setting at which the engine is operated.

  6. Pulsed arterial spin labeling using TurboFLASH with suppression of intravascular signal.

    PubMed

    Pell, Gaby S; Lewis, David P; Branch, Craig A

    2003-02-01

    Accurate quantification of perfusion with the ADC techniques requires the suppression of the majority of the intravascular signal. This is normally achieved with the use of diffusion gradients. The TurboFLASH sequence with its ultrashort repetition times is not readily amenable to this scheme. This report demonstrates the implementation of a modified TurboFLASH sequence for FAIR imaging. Intravascular suppression is achieved with a modified preparation period that includes a driven equilibrium Fourier transform (DEFT) combination of 90 degrees-180 degrees-90 degrees hard RF pulses subsequent to the inversion delay. These pulses rotate the perfusion-prepared magnetization into the transverse plane where it can experience the suitably placed diffusion gradients before being returned to the longitudinal direction by the second 90 degrees pulse. A value of b = 20-30 s/mm(2) was thereby found to suppress the majority of the intravascular signal. For single-slice perfusion imaging, quantification is only slightly modified. The technique can be readily extended to multislice acquisition if the evolving flow signal after the DEFT preparation is considered. An advantage of the modified preparation scheme is evident in the multislice FAIR images by the preservation of the sign of the magnetization difference. Copyright 2003 Wiley-Liss, Inc.

  7. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  8. X-PROP: a fast and robust diffusion-weighted propeller technique.

    PubMed

    Li, Zhiqiang; Pipe, James G; Lee, Chu-Yu; Debbins, Josef P; Karis, John P; Huo, Donglai

    2011-08-01

    Diffusion-weighted imaging (DWI) has shown great benefits in clinical MR exams. However, current DWI techniques have shortcomings of sensitivity to distortion or long scan times or combinations of the two. Diffusion-weighted echo-planar imaging (EPI) is fast but suffers from severe geometric distortion. Periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging (PROPELLER DWI) is free of geometric distortion, but the scan time is usually long and imposes high Specific Absorption Rate (SAR) especially at high fields. TurboPROP was proposed to accelerate the scan by combining signal from gradient echoes, but the off-resonance artifacts from gradient echoes can still degrade the image quality. In this study, a new method called X-PROP is presented. Similar to TurboPROP, it uses gradient echoes to reduce the scan time. By separating the gradient and spin echoes into individual blades and removing the off-resonance phase, the off-resonance artifacts in X-PROP are minimized. Special reconstruction processes are applied on these blades to correct for the motion artifacts. In vivo results show its advantages over EPI, PROPELLER DWI, and TurboPROP techniques. Copyright © 2011 Wiley-Liss, Inc.

  9. Turbo-Brayton cryocooler technology for low-temperature space applications

    NASA Astrophysics Data System (ADS)

    Zagarola, Mark V.; Breedlove, Jeffrey F.; McCormick, John A.; Swift, Walter L.

    2003-03-01

    High performance, low temperature cryocoolers are being developed for future space-borne telescopes and instruments. To meet mission objectives, these coolers must be compact, lightweight, have low input power, operate reliably for 5-10 years, and produce no disturbances that would affect the pointing accuracy of the instruments. This paper describes progress in the development of turbo-Brayton cryocoolers addressing cooling in the 5 K to 20 K temperature range for loads of up to 300 mW. The key components for these cryocoolers are the miniature, high-speed turbomachines and the high performance recuperative heat exchangers. The turbomachines use gas-bearings to support the low mass, high speed rotors, resulting in negligible vibration and long life. Precision fabrication techniques are used to produce the necessary micro-scale geometric features that provide for high cycle efficiencies at these reduced sizes. Turbo-Brayton cryocoolers for higher temperatures and loads have been successfully developed for space applications. For efficient operation at low temperatures and capacities, advances in the core technologies have been pursued. Performance test results of a new, low poer compressor will be presented, and early cryogenic test results on a low temperature expansion turbine will be discussed. Projections for several low temperature cooler configurations are summarized.

  10. [MRI of focal liver lesions using a 1.5 turbo-spin-echo technique compared with spin-echo technique].

    PubMed

    Steiner, S; Vogl, T J; Fischer, P; Steger, W; Neuhaus, P; Keck, H

    1995-08-01

    The aim of our study was to evaluate a T2-weighted turbo-spinecho sequence in comparison to a T2-weighted spinecho sequence in imaging focal liver lesions. In our study 35 patients with suspected focal liver lesions were examined. Standardised imaging protocol included a conventional T2-weighted SE sequence (TR/TE = 2000/90/45, acquisition time = 10.20) as well as a T2-weighted TSE sequence (TR/TE = 4700/90, acquisition time = 6.33). Calculation of S/N and C/N ratio as a basis of quantitative evaluation was done using standard methods. A diagnostic score was implemented to enable qualitative assessment. In 7% (n = 2) the TSE sequence enabled detection of further liver lesions showing a size of less than 1 cm in diameter. Comparing anatomical details the TSE sequence was superior. S/N and C/N ratio of anatomic and pathologic structures of the TSE sequence were higher compared to results of the SE sequence. Our results indicate that the T2-weighted turbo-spinecho sequence is well appropriate for imaging focal liver lesions, and leads to reduction of imaging time.

  11. Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.

  12. Current Issues in Unsteady Turbomachinery Flows (Images)

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis

    2004-01-01

    Among the numerous causes for unsteadiness in turbo machinery flows are turbulence and flow environment, wakes from stationary and rotating vanes, boundary layer separation, boundary layer/shear layer instabilities, presence of shock waves and deliberate unsteadiness for flow control purposes. These unsteady phenomena may lead to flow-structure interactions such as flutter and forced vibration as well as system instabilities such as stall and surge. A major issue of unsteadiness relates to the fact that a fundamental understanding of unsteady flow physics is lacking and requires continued attention. Accurate simulations and sufficient high fidelity experimental data are not available. The Glenn Research Center plan for Engine Component Flow Physics Modeling is part of the NASA 21st Century Aircraft Program. The main components of the plan include Low Pressure Turbine National Combustor Code. The goals, technical output and benefits/impacts of each element are described in the presentation. The specific areas selected for discussion in this presentation are blade wake interactions, flow control, and combustor exit turbulence and modeling.

  13. The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane; Turner, Mark G.

    2007-01-01

    A Constant Volume Combustion Cycle Engine concept consisting of a Pulse Detonation Combustor (PDC) followed by a conventional axial turbine was simulated numerically to determine the attenuation and reflection of a notional PDC pulse by the turbine. The multi-stage, time-accurate, turbomachinery solver TURBO was used to perform the calculation. The solution domain consisted of one notional detonation tube coupled to 5 vane passages and 8 rotor passages representing 1/8th of the annulus. The detonation tube was implemented as an initial value problem with the thermodynamic state of the tube contents, when the detonation wave is about to exit, provided by a 1D code. Pressure time history data from the numerical simulation was compared to experimental data from a similar configuration to verify that the simulation is giving reasonable results. Analysis of the pressure data showed a spectrally averaged attenuation of about 15 dB across the turbine stage. An evaluation of turbine performance is also presented.

  14. High Efficiency Nuclear Power Plants using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITS of 950 K and 1200 K are presented. Power plant performance data were obtained for TITS ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo -generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  15. A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph

    PubMed Central

    Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.

    2016-01-01

    We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference. PMID:27857179

  16. A Review on Spectral Amplitude Coding Optical Code Division Multiple Access

    NASA Astrophysics Data System (ADS)

    Kaur, Navpreet; Goyal, Rakesh; Rani, Monika

    2017-06-01

    This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.

  17. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    NASA Astrophysics Data System (ADS)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  18. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  19. Supercomputing Aspects for Simulating Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kris, Cetin C.

    2000-01-01

    The primary objective of this research is to support the design of liquid rocket systems for the Advanced Space Transportation System. Since the space launch systems in the near future are likely to rely on liquid rocket engines, increasing the efficiency and reliability of the engine components is an important task. One of the major problems in the liquid rocket engine is to understand fluid dynamics of fuel and oxidizer flows from the fuel tank to plume. Understanding the flow through the entire turbo-pump geometry through numerical simulation will be of significant value toward design. One of the milestones of this effort is to develop, apply and demonstrate the capability and accuracy of 3D CFD methods as efficient design analysis tools on high performance computer platforms. The development of the Message Passage Interface (MPI) and Multi Level Parallel (MLP) versions of the INS3D code is currently underway. The serial version of INS3D code is a multidimensional incompressible Navier-Stokes solver based on overset grid technology, INS3D-MPI is based on the explicit massage-passing interface across processors and is primarily suited for distributed memory systems. INS3D-MLP is based on multi-level parallel method and is suitable for distributed-shared memory systems. For the entire turbo-pump simulations, moving boundary capability and efficient time-accurate integration methods are built in the flow solver, To handle the geometric complexity and moving boundary problems, an overset grid scheme is incorporated with the solver so that new connectivity data will be obtained at each time step. The Chimera overlapped grid scheme allows subdomains move relative to each other, and provides a great flexibility when the boundary movement creates large displacements. Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two methods is compared by obtaining unsteady solutions for the evolution of twin vortices behind a flat plate. Calculated results are compared with experimental and other numerical results. For an unsteady flow, which requires small physical time step, the pressure projection method was found to be computationally efficient since it does not require any subiteration procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy the incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in present computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.

  20. Electric Turbo Pump

    NASA Technical Reports Server (NTRS)

    Steckler, Jessica

    2017-01-01

    NASA is working in junction with another company on the Electric Turbo Pump. Analysis of the impeller, including the blades, volute housing, and associated components, will take place in ANSYS. Contours of the deformed and stress were recorded to assess the parts. Campbell diagrams will be considered as mentioned to find the operating regions of the impeller and volute housing, more specifically what speed is ideal to ensure that the impeller does not begin to vibrate at a frequency that will break it. More than one material will be examined as per request by the designer to determine which material is more cost efficient, easy to machine, and can withstand the stress values that will be placed on it.

  1. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  2. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  3. Coding and decoding for code division multiple user communication systems

    NASA Technical Reports Server (NTRS)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  4. Categorical Variables in Multiple Regression: Some Cautions.

    ERIC Educational Resources Information Center

    O'Grady, Kevin E.; Medoff, Deborah R.

    1988-01-01

    Limitations of dummy coding and nonsense coding as methods of coding categorical variables for use as predictors in multiple regression analysis are discussed. The combination of these approaches often yields estimates and tests of significance that are not intended by researchers for inclusion in their models. (SLD)

  5. A novel all-optical label processing for OPS networks based on multiple OOC sequences from multiple-groups OOC

    NASA Astrophysics Data System (ADS)

    Qiu, Kun; Zhang, Chongfu; Ling, Yun; Wang, Yibo

    2007-11-01

    This paper proposes an all-optical label processing scheme using multiple optical orthogonal codes sequences (MOOCS) for optical packet switching (OPS) (MOOCS-OPS) networks, for the first time to the best of our knowledge. In this scheme, the multiple optical orthogonal codes (MOOC) from multiple-groups optical orthogonal codes (MGOOC) are permuted and combined to obtain the MOOCS for the optical labels, which are used to effectively enlarge the capacity of available optical codes for optical labels. The optical label processing (OLP) schemes are reviewed and analyzed, the principles of MOOCS-based optical labels for OPS networks are given, and analyzed, then the MOOCS-OPS topology and the key realization units of the MOOCS-based optical label packets are studied in detail, respectively. The performances of this novel all-optical label processing technology are analyzed, the corresponding simulation is performed. These analysis and results show that the proposed scheme can overcome the lack of available optical orthogonal codes (OOC)-based optical labels due to the limited number of single OOC for optical label with the short code length, and indicate that the MOOCS-OPS scheme is feasible.

  6. Advanced Developments for Low Temperature Turbo-Brayton Cryocoolers

    NASA Technical Reports Server (NTRS)

    Nellis, G. F.; McCormick, J. A.; Sixsmith, H.; Zagarola, M. V.; Swift, W. L.; Gibbon, J. A.; Reilly, J. P.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Turbo-Brayton cryocooler technology that has been space qualified and demonstrated on the NICMOS cryocooler is being adapted for applications with lower cooling loads at lower telqoeratures. The applications include sensor cooling for space platforms and telescopes at temperatures between 4 K and 35 K, where long life and reliable, vibration-free operation are important. This paper presents recent advances in the miniaturization of components that are critical to these systems. Key issues addressed in adapting the NICMOS cryocooler technology to lower temperatures involve reducing parasitic losses when scaling to smaller size machines. Recent advances include the successful design and testing of a small, permanent magnet driven compressor that operates at up to 10,000 rev/sec and the successful demonstration of self acting gas bearings supporting a I mm. diameter shaft. The compressor is important for cryocoolers with input powers between 50 W and 100 W. The miniature shaft and bearing system has applications in compressors and turbines at temperatures from 300 K to 6 K. These two technology milestones are fundamental to achieving exceptional thermodynamic performance from the turboBrayton system in low temperature systems. The paper discusses the development of these components and test results, and presents the implications of their performance on cryocooler systems.

  7. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    PubMed

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  8. Initial Test Results from a 6 K-10 K Turbo-Brayton Cryocooler for Space Applications

    NASA Astrophysics Data System (ADS)

    Swift, W. L.; Zagarola, M. V.; Breedlove, J. J.; McCormick, J. A.; Sixsmith, H.

    2004-06-01

    In March 2002, a single-stage turbo-Brayton cryocooler was installed on the Hubble Space Telescope (HST) to re-establish cooling to the detectors in the Near Infrared Camera and Multi-Object Spectrograph (NICMOS). The system has maintained the detectors at their operating temperature near 77 K since that time. Future NASA space missions require comparable low-vibration cooling for periods of five to ten years in the 6 K-10 K temperature range. Creare is extending the NICMOS cryocooler technology to meet these lower temperatures. The primary activities address the need for smaller turbomachines. Two helium compressors for a 6 K turbo-Brayton cycle have been developed and tested in a cryogenic test facility. They have met performance goals at design speeds of about 9,500 rev/s. A miniature, dual-temperature high specific speed turboalternator has been installed in this test facility and has been used to obtain extended operational life data during low temperature cryogenic tests. A smaller, low specific speed turboalternator using advanced gas bearings is under development to replace the original dual-temperature design. This machine should provide improvements in the thermodynamic performance of the cycle. This paper presents life test results for the low temperature system and discusses the development of the smaller turboalternator.

  9. Improved diagnosis of common bile duct stone with single-shot balanced turbo field-echo sequence in MRCP.

    PubMed

    Noda, Yoshifumi; Goshima, Satoshi; Kojima, Toshihisa; Kawaguchi, Shimpei; Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki; Bae, Kyongtae T

    2017-04-01

    To evaluate the value of adding single-shot balanced turbo field-echo (b-TFE) sequence to conventional magnetic resonance cholangiopancreatography (MRCP) for the detection of common bile duct (CBD) stone. One hundred thirty-seven consecutive patients with suspected CBD stone underwent MRCP including single-shot b-TFE sequence. Twenty-five patients were confirmed with CBD stone by endoscopic retrograde cholangiopancreatography or ultrasonography. Two radiologists reviewed two image protocols: protocol A (conventional MRCP protocol: unenhanced T1-, T2-, and respiratory-triggered three-dimensional fat-suppressed single-shot turbo spin-echo MRCP sequence) and protocol B (protocol A plus single-shot b-TFE sequence). The sensitivity, specificity, positive (PPV) and negative predictive value (NPV), and area under the receiver-operating-characteristic (ROC) curve (AUC) for the detection of CBD stone were compared. The sensitivity (72%) and NPV (94%) were the same between the two protocols. However, protocol B was greater in the specificity (99%) and PPV (94%) than protocol A (92% and 67%, respectively) (P = 0.0078 and 0.031, respectively). The AUC was significantly greater for protocol B (0.93) than for protocol A (0.86) (P = 0.026). Inclusion of single-shot b-TFE sequence to conventional MRCP significantly improved the specificity and PPV for the detection of CBD stone.

  10. Large-Signal Code TESLA: Current Status and Recent Development

    DTIC Science & Technology

    2008-04-01

    K.Eppley, J.J.Petillo, “ High - power four cavity S - band multiple- beam klystron design”, IEEE Trans. Plasma Sci. , vol. 32, pp. 1119-1135, June 2004. 4...advances in the development of the large-signal code TESLA, mainly used for the modeling of high - power single- beam and multiple-beam klystron ...amplifiers. Keywords: large-signal code; multiple-beam klystrons ; serial and parallel versions. Introduction The optimization and design of new high power

  11. Development of the Average Likelihood Function for Code Division Multiple Access (CDMA) Using BPSK and QPSK Symbols

    DTIC Science & Technology

    2015-01-01

    This research has the purpose to establish a foundation for new classification and estimation of CDMA signals. Keywords: DS / CDMA signals, BPSK, QPSK...DEVELOPMENT OF THE AVERAGE LIKELIHOOD FUNCTION FOR CODE DIVISION MULTIPLE ACCESS ( CDMA ) USING BPSK AND QPSK SYMBOLS JANUARY 2015...To) OCT 2013 – OCT 2014 4. TITLE AND SUBTITLE DEVELOPMENT OF THE AVERAGE LIKELIHOOD FUNCTION FOR CODE DIVISION MULTIPLE ACCESS ( CDMA ) USING BPSK

  12. Performance Assessment of Two GPS Receivers on Space Shuttle

    NASA Technical Reports Server (NTRS)

    Schroeder, Christine A.; Schutz, Bob E.

    1996-01-01

    Space Shuttle STS-69 was launched on September 7, 1995, carrying the Wake Shield Facility (WSF-02) among its payloads. The mission included two GPS receivers: a Collins 3M receiver onboard the Endeavour and an Osborne flight TurboRogue, known as the TurboStar, onboard the WSF-02. Two of the WSF-02 GPS Experiment objectives were to: (1) assess the ability to use GPS in a relative satellite positioning mode using the receivers on Endeavour and WSF-02; and (2) assess the performance of the receivers to support high precision orbit determination at the 400 km altitude. Three ground tests of the receivers were conducted in order to characterize the respective receivers. The analysis of the tests utilized the Double Differencing technique. A similar test in orbit was conducted during STS-69 while the WSF-02 was held by the Endeavour robot arm for a one hour period. In these tests, biases were observed in the double difference pseudorange measurements, implying that biases up to 140 m exist which do not cancel in double differencing. These biases appear to exist in the Collins receiver, but their effect can be mitigated by including measurement bias parameters to accommodate them in an estimation process. An additional test was conducted in which the orbit of the combined Endeavour/WSF-02 was determined independently with each receiver. These one hour arcs were based on forming double differences with 13 TurboRogue receivers in the global IGS network and estimating pseudorange biases for the Collins. Various analyses suggest the TurboStar overall orbit accuracy is about one to two meters for this period, based on double differenced phase residuals of 34 cm. These residuals indicate the level of unmodeled forces on Endeavour produced by gravitational and nongravitational effects. The rms differences between the two independently determined orbits are better than 10 meters, thereby demonstrating the accuracy of the Collins-determined orbit at this level as well as the accuracy of the relative positioning using these two receivers.

  13. Application of Six Sigma Model to Evaluate the Analytical Quality of Four HbA1c Analyzers.

    PubMed

    Maesa, Jos Eacute M; Fern Aacute Ndez-Riejos, Patricia; S Aacute Nchez-Mora, Catalina; Toro-Crespo, Mar Iacute A De; Gonz Aacute Lez-Rodriguez, Concepci Oacute N

    2017-01-01

    The Six Sigma Model is a global quality management system applicable to the determination of glycated hemoglobin (HbA1c). In addition, this model can ensure the three characteristics influencing the patient risk: the correct performance of the analytical method with low inaccuracy and bias, the quality control strategy used by the laboratory, and the necessary quality of the analyte. The aim of this study is to use the Six Sigma Model for evaluating quality criteria in the determination of glycated hemoglobin HbA1c and its application to assess four different HbA1c analyzers. Four HbA1c analyzers were evaluated: HA-8180V®, D-100®, G8®, and Variant II Turbo®. For 20 consecutive days, two levels of quality control (high and low) provided by the manufacturers were measured in each of the instruments. Imprecision (CV), bias, and Sigma values (σ) were calculated with the data obtained and a method decision chart was developed considering a range of quality requirements (allowable total error, TEa). For a TEa = 3%, HA-8180V = 1.54 σ, D-100 = 1.63 σ, G8 = 2.20 σ, and Variant II Turbo = -0.08 σ. For a TEa = 4%, HA-8180V = 2.34 σ, D-100 = 2.32 σ, G8 = 3.74 σ, and Variant II Turbo = 0.16 σ. For a TEa = 10%, HA8180V = 7.12 σ, D-100 = 6.46 σ, G8 = 13.0 σ, and Variant II Turbo = 1.56 σ. Applying the Stockholm consensus and its subsequent Milan review to the results: the maximum level in quality requirements for HbA1c is an allowable total error (TEa) = 3%, G8 is located in region 2 σ (2.20), which is a poor result, and HA-8180V and D-100 are both in region 1 σ (1.54 and 1.63, respectively), which is an unacceptable analytical performance.

  14. Dynamic half Fourier acquisition, single shot turbo spin-echo magnetic resonance imaging for evaluating the female pelvis.

    PubMed

    Gousse, A E; Barbaric, Z L; Safir, M H; Madjar, S; Marumoto, A K; Raz, S

    2000-11-01

    We assessed the merit of dynamic half Fourier acquisition, single shot turbo spin-echo sequence T2-weighted magnetic resonance imaging (MRI) for evaluating pelvic organ prolapse and all other female pelvic pathology by prospectively correlating clinical with imaging findings. From September 1997 to April 1998, 100 consecutive women 23 to 88 years old with (65) and without (35) pelvic organ prolapse underwent half Fourier acquisition, single shot turbo spin-echo sequence dynamic pelvic T2-weighted MRI at our institution using a 1.5 Tesla magnet with phased array coils. Mid sagittal and parasagittal views with the patient supine, relaxed and straining were obtained using no pre-examination preparation or instrumentation. We evaluated the anterior vaginal wall, bladder, urethra, posterior vaginal wall, rectum, pelvic floor musculature, perineum, uterus, vaginal cuff, ovaries, ureters and intraperitoneal organs for all pathological conditions, including pelvic prolapse. Patients underwent a prospective physical examination performed by a female urologist, and an experienced radiologist blinded to pre-imaging clinical findings interpreted all studies. Physical examination, MRI and intraoperative findings were statistically correlated. Total image acquisition time was 2.5 minutes, room time 10 minutes and cost American $540. Half Fourier acquisition, single shot turbo spin-echo T2-weighted MRI revealed pathological entities other than pelvic prolapse in 55 cases, including uterine fibroids in 11, ovarian cysts in 9, bilateral ureteronephrosis in 3, nabothian cyst in 7, Bartholin's gland cyst in 4, urethral diverticulum in 3, polytetrafluoroethylene graft abscess in 3, bladder diverticulum in 2, sacral spinal abnormalities in 2, bladder tumor in 1, sigmoid diverticulosis in 1 and other in 9. Intraoperative findings were considered the gold standard against which physical examination and MRI were compared. Using these criteria the sensitivity, specificity and positive predictive value of MRI were 100%, 83% and 97% for cystocele; 100%, 75% and 94% for urethrocele; 100%, 54% and 33% for vaginal vault prolapse; 83%, 100% and 100% for uterine prolapse; 87%, 80% and 91% for enterocele; and 76%, 50% and 96% for rectocele. Dynamic half Fourier acquisition, single shot turbo spin-echo MRI appears to be an important adjunct in the comprehensive evaluation of the female pelvis. Except for rectocele, pelvic floor prolapse is accurately staged and pelvic organ pathology reliably detected. The technique is rapid, noninvasive and cost-effective, and it allows the clinician to visualize the whole pelvis using a single dynamic study that provides superb anatomical detail.

  15. Identification of limit cycles in multi-nonlinearity, multiple path systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Barron, O. L.

    1979-01-01

    A method of analysis which identifies limit cycles in autonomous systems with multiple nonlinearities and multiple forward paths is presented. The FORTRAN code for implementing the Harmonic Balance Algorithm is reported. The FORTRAN code is used to identify limit cycles in multiple path and nonlinearity systems while retaining the effects of several harmonic components.

  16. Field Experiments on Real-Time 1-Gbps High-Speed Packet Transmission in MIMO-OFDM Broadband Packet Radio Access

    NASA Astrophysics Data System (ADS)

    Taoka, Hidekazu; Higuchi, Kenichi; Sawahashi, Mamoru

    This paper presents experimental results in real propagation channel environments of real-time 1-Gbps packet transmission using antenna-dependent adaptive modulation and channel coding (AMC) with 4-by-4 MIMO multiplexing in the downlink Orthogonal Frequency Division Multiplexing (OFDM) radio access. In the experiment, Maximum Likelihood Detection employing QR decomposition and the M-algorithm (QRM-MLD) with adaptive selection of the surviving symbol replica candidates (ASESS) is employed to achieve such a high data rate at a lower received signal-to-interference plus background noise power ratio (SINR). The field experiments, which are conducted at the average moving speed of 30km/h, show that real-time packet transmission of greater than 1Gbps in a 100-MHz channel bandwidth (i.e., 10bits/second/Hz) is achieved at the average received SINR of approximately 13.5dB using 16QAM modulation and turbo coding with the coding rate of 8/9. Furthermore, we show that the measured throughput of greater than 1Gbps is achieved at the probability of approximately 98% in a measurement course, where the maximum distance from the cell site was approximately 300m with the respective transmitter and receiver antenna separation of 1.5m and 40cm with the total transmission power of 10W. The results also clarify that the minimum required receiver antenna spacing is approximately 10cm (1.5 carrier wave length) to suppress the loss in the required received SINR at 1-Gbps throughput to within 1dB compared to that assuming the fading correlation between antennas of zero both under non-line-of-sight (NLOS) and line-of-sight (LOS) conditions.

  17. Users manual for program NYQUIST: Liquid rocket nyquist plots developed for use on a PC computer

    NASA Astrophysics Data System (ADS)

    Armstrong, Wilbur C.

    1992-06-01

    The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the NYQUIST code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, and the splitting of a pipe into unequal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines. The code is too large to compile as one program using Microsoft FORTRAN 5; therefore, the code was broken into two segments: NYQUIST1.FOR and NYQUIST2.FOR. These are compiled separately and then linked together. The final run code is not too large (approximately equals 344,000 bytes).

  18. Users manual for program NYQUIST: Liquid rocket nyquist plots developed for use on a PC computer

    NASA Technical Reports Server (NTRS)

    Armstrong, Wilbur C.

    1992-01-01

    The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the NYQUIST code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, and the splitting of a pipe into unequal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines. The code is too large to compile as one program using Microsoft FORTRAN 5; therefore, the code was broken into two segments: NYQUIST1.FOR and NYQUIST2.FOR. These are compiled separately and then linked together. The final run code is not too large (approximately equals 344,000 bytes).

  19. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  20. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    NASA Astrophysics Data System (ADS)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  1. Strength analysis of an aircraft turbo-compressor engine turbine disc

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2017-09-01

    This article deals with a strength analysis of a gas turbine rotor disc of the concrete type of an aircraft turbo-compressor engine (ATCE). The introductory part is dedicated to a basic description of the given engine, including the main technical parameters entering the calculation. The calculation is carried out by the finite difference method. This method allows to determine the tension of a generally shaped disc, which is affected by centrifugal forces of its weight, external load and heat stress caused by the difference of thermal gradients along the disc radius. The result of calculations are dependencies of the most important parameters, such as the reduced stress, radial stress, or the safety coefficient along the disc radius.

  2. Coherent direct sequence optical code multiple access encoding-decoding efficiency versus wavelength detuning.

    PubMed

    Pastor, D; Amaya, W; García-Olcina, R; Sales, S

    2007-07-01

    We present a simple theoretical model of and the experimental verification for vanishing of the autocorrelation peak due to wavelength detuning on the coding-decoding process of coherent direct sequence optical code multiple access systems based on a superstructured fiber Bragg grating. Moreover, the detuning vanishing effect has been explored to take advantage of this effect and to provide an additional degree of multiplexing and/or optical code tuning.

  3. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun

    2008-05-01

    This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.

  4. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  5. Utilizing Spectrum Efficiently (USE)

    DTIC Science & Technology

    2011-02-28

    18 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and...numerical results. 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency In [60] multiple...supported at a given signal-to-interference ratio in asynchronous direct-sequence code-division multiple-access ( DS - CDMA ) sys- tems was examined. It was

  6. A novel multiple description scalable coding scheme for mobile wireless video transmission

    NASA Astrophysics Data System (ADS)

    Zheng, Haifeng; Yu, Lun; Chen, Chang Wen

    2005-03-01

    We proposed in this paper a novel multiple description scalable coding (MDSC) scheme based on in-band motion compensation temporal filtering (IBMCTF) technique in order to achieve high video coding performance and robust video transmission. The input video sequence is first split into equal-sized groups of frames (GOFs). Within a GOF, each frame is hierarchically decomposed by discrete wavelet transform. Since there is a direct relationship between wavelet coefficients and what they represent in the image content after wavelet decomposition, we are able to reorganize the spatial orientation trees to generate multiple bit-streams and employed SPIHT algorithm to achieve high coding efficiency. We have shown that multiple bit-stream transmission is very effective in combating error propagation in both Internet video streaming and mobile wireless video. Furthermore, we adopt the IBMCTF scheme to remove the redundancy for inter-frames along the temporal direction using motion compensated temporal filtering, thus high coding performance and flexible scalability can be provided in this scheme. In order to make compressed video resilient to channel error and to guarantee robust video transmission over mobile wireless channels, we add redundancy to each bit-stream and apply error concealment strategy for lost motion vectors. Unlike traditional multiple description schemes, the integration of these techniques enable us to generate more than two bit-streams that may be more appropriate for multiple antenna transmission of compressed video. Simulate results on standard video sequences have shown that the proposed scheme provides flexible tradeoff between coding efficiency and error resilience.

  7. Trellis coding techniques for mobile communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.; Jedrey, T.

    1988-01-01

    A criterion for designing optimum trellis codes to be used over fading channels is given. A technique is shown for reducing certain multiple trellis codes, optimally designed for the fading channel, to conventional (i.e., multiplicity one) trellis codes. The computational cutoff rate R0 is evaluated for MPSK transmitted over fading channels. Examples of trellis codes optimally designed for the Rayleigh fading channel are given and compared with respect to R0. Two types of modulation/demodulation techniques are considered, namely coherent (using pilot tone-aided carrier recovery) and differentially coherent with Doppler frequency correction. Simulation results are given for end-to-end performance of two trellis-coded systems.

  8. Influence of clamping plate permeability and metal screen structures on three-dimensional magnetic field and eddy current loss in end region of a turbo-generator by numerical analysis

    NASA Astrophysics Data System (ADS)

    Likun, Wang; Weili, Li; Yi, Xue; Chunwei, Guan

    2013-11-01

    A significant problem of turbogenerators on complex end structures is overheating of local parts caused by end losses in the end region. Therefore, it is important to investigate the 3-D magnetic field and eddy current loss in the end. In end region of operating large turbogenerator at thermal power plants, magnetic leakage field distribution is complex. In this paper, a 3-D mathematical model used for the calculation of the electromagnetic field in the end region of large turbo-generators is given. The influence of spatial locations of end structures, the actual shape and material of end windings, clamping plate, and copper screen are considered. Adopting the time-step finite element (FE) method and taking the nonlinear characteristics of the core into consideration, a 3-D transient magnetic field is calculated. The objective of this paper is to investigate the influence of clamping plate permeability and metal screen structures on 3-D electromagnetic field distribution and eddy current loss in end region of a turbo-generator. To reduce the temperature of copper screen, a hollow metal screen is proposed. The eddy current loss, which is gained from the 3D transient magnetic field, is used as heat source for the thermal field of end region. The calculated temperatures are compared with test data.

  9. Developments in Turbo-Brayton Power Converters

    NASA Astrophysics Data System (ADS)

    Zagarola, Mark V.; Crowley, Christopher J.; Swift, Walter L.

    2003-01-01

    Design studies show that a Brayton cycle power unit is an extremely attractive option for thermal-to-electric power conversion on long-duration, space missions. At low power levels (50 to 100 We), a Brayton system should achieve a conversion efficiency between 20% and 40% depending on the radiative heat sink temperature. The expected mass of the converter for these power levels is about 3 kg. The mass of the complete system consisting of the converter, the electronics, a radiator, and a single general purpose heat source should be about 6 kg. The system is modular and the technology is readily scalable to higher power levels (to greater than 10 kWe) where conversion efficiencies of between 28% and 45% are expected, the exact value depending on sink temperature and power level. During a recently completed project, key physical features of the converter were determined, and key operating characteristics were demonstrated for a system of this size. The key technologies in these converters are derived from those which have been developed and successfully implemented in miniature turbo-Brayton cryogenic refrigerators for space applications. These refrigerators and their components have been demonstrated to meet rigorous requirements for vibration emittance and susceptibility, acoustic susceptibility, electromagnetic interference and susceptibility, environmental cycling, and endurance. Our progress in extending the underlying turbo-Brayton cryocooler technologies to thermal-to-electric power converters is the subject of this paper.

  10. Magnetic resonance imaging of pulmonary infection in immunocompromised children: comparison with multidetector computed tomography.

    PubMed

    Ozcan, H Nursun; Gormez, Ayşegul; Ozsurekci, Yasemin; Karakaya, Jale; Oguz, Berna; Unal, Sule; Cetin, Mualla; Ceyhan, Mehmet; Haliloglu, Mithat

    2017-02-01

    Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising.

  11. The Voith Turbo Fin (VTF) A New System To Improve The Performance Of Escort Tractor Voith Tugs

    NASA Astrophysics Data System (ADS)

    Iglesias Baniela, Santiago; García Melón, Enrique

    The geometry of the skeg in the Escort Tractor Voith tugs is the result of a series of intense investigations in the forms of the tug and its fins, oriented to get a significant improvement in the forces on the towing line when the indirect method is used in the escort towing. For that, and with the aim of getting the best behaviour of this fin, a variety of options have been investigated for years, evaluating its merits in terms of lift force and complexity to reach the present designs, which are adapted to the functions which the tug is destined to carry out. With the object of optimizing the lift force in the skeg when the indirect method is used in the escort towing, and after long investigations, the Voith Turbo Marine has incorporated a rotating cylinder at the leading edge to its design in escort towing for the first time at the beginning of 2005. The leading edge is the part over which the water flow first falls upon in normal escort operation conditions, calling this new development Voith Turbo Fin (VTF) to the system as a whole (skeg and rotating cylinder). This fin is analyzed in this article especially with regard to its basis, ways of operation and efficiency of the novel joining rotating cylinder.

  12. Semiautomated determination of neonicotinoids and characteristic metabolite in urine samples using TurboFlow™ coupled to ultra high performance liquid chromatography coupled to Orbitrap analyzer.

    PubMed

    López-García, Marina; Romero-González, Roberto; Lacasaña, Marina; Garrido Frenich, Antonia

    2017-11-30

    A semiautomated method based on ultra-high performance liquid chromatography (UHPLC) coupled to Orbitrap high resolution mass spectrometry has been developed for the determination of neonicotinoids (imidacloprid, acetamiprid, clothianidin, dinotefuran, nitenpyram, thiacloprid and thiamethoxam) and the metabolite acetamiprid-n-desmethyl in urine samples. Two automated methods were tested (solid-phase extraction "SPE" and turbulent flow chromatography "TurboFlow™"), obtaining the best results when TurboFlow™ was applied. The total analysis time for the developed method was 14min. The optimized method was validated, obtaining suitable results for all validation parameters. Recoveries ranged from 78% to 116% meanwhile repeatability and reproducibility were evaluated obtaining values lower than 10% and 20% respectively (except for dinotefuran and nitenpyram at 0.2μgL -1 ). The limit of quantification (LOQ) for all compounds was established at 0.2μgL -1 . The proposed analytical methodology was applied to analyze the target compounds in thirty six urine samples from pregnant women living in agricultural areas of Almería (Spain). Imidacloprid, acetamiprid and acetamiprid-n-desmethyl were detected in some of the samples at concentrations ranging from 0.23 to 1.57μgL -1 . Furthermore, dinotefuran was identified in two samples at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Blade Row Interaction Effects on the Performance of a Moderately Loaded NASA Transonic Compressor Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; To, Wai-Ming; Chen, Jen-Ping

    2003-01-01

    Blade row interaction effects on loss generation in compressors have received increased attention as compressor work-per-stage and blade loading have increased. Two dimensional Laser Doppler Velocimeter measurements of the velocity field in a NASA transonic compressor stage show the magnitude of interactions in the velocity field at the peak efficiency and near stall operating conditions. The experimental data are presented along with an assessment of the velocity field interactions. In the present study the experimental data are used to confirm the fidelity of a three-dimensional, time-accurate, Navier Stokes calculation of the stage using the MSU-TURBO code at the peak efficiency and near stall operating conditions. The simulations are used to quantify the loss generation associated with interaction phenomena. At the design point the stator pressure field has minimal effect on the rotor performance. The rotor wakes do have an impact on loss production in the stator passage at both operating conditions. A method for determining the potential importance of blade row interactions on performance is presented.

  14. ASA24 enables multiple automatically coded self-administered 24-hour recalls and food records

    Cancer.gov

    A freely available web-based tool for epidemiologic, interventional, behavioral, or clinical research from NCI that enables multiple automatically coded self-administered 24-hour recalls and food records.

  15. Numerical Simulation of Complex Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chernobrovkin, A. A.; Lakshiminarayana, B.

    1999-01-01

    An unsteady, multiblock, Reynolds Averaged Navier Stokes solver based on Runge-Kutta scheme and Pseudo-time step for turbo-machinery applications was developed. The code was validated and assessed against analytical and experimental data. It was used to study a variety of physical mechanisms of unsteady, three-dimensional, turbulent, transitional, and cooling flows in compressors and turbines. Flow over a cylinder has been used to study effects of numerical aspects on accuracy of prediction of wake decay and transition, and to modify K-epsilon models. The following simulations have been performed: (a) Unsteady flow in a compressor cascade: Three low Reynolds number turbulence models have been assessed and data compared with Euler/boundary layer predictions. Major flow features associated with wake induced transition were predicted and studied; (b) Nozzle wake-rotor interaction in a turbine: Results compared to LDV data in design and off-design conditions, and cause and effect of unsteady flow in turbine rotors were analyzed; (c) Flow in the low-pressure turbine: Assessed capability of the code to predict transitional, attached and separated flows at a wide range of low Reynolds numbers and inlet freestream turbulence intensity. Several turbulence and transition models have been employed and comparisons made to experiments; (d) leading edge film cooling at compound angle: Comparisons were made with experiments, and the flow physics of the associated vortical structures were studied; and (e) Tip leakage flow in a turbine. The physics of the secondary flow in a rotor was studied and sources of loss identified.

  16. Multiprocessing on supercomputers for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Mehta, Unmeel B.

    1990-01-01

    Very little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPs or more) in computational aerodynamics to significantly improve turnaround time. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, the improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) through multi-tasking is applied via a strategy which requires relatively minor modifications to an existing code for a single processor. Essentially, this approach maps the available memory to multiple processors, exploiting the C-FORTRAN-Unix interface. The existing single processor code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor. As a demonstration of this approach, a Multiple Processor Multiple Grid (MPMG) code is developed. It is capable of using nine processors, and can be easily extended to a larger number of processors. This code solves the three-dimensional, Reynolds averaged, thin-layer and slender-layer Navier-Stokes equations with an implicit, approximately factored and diagonalized method. The solver is applied to generic oblique-wing aircraft problem on a four processor Cray-2 computer. A tricubic interpolation scheme is developed to increase the accuracy of coupling of overlapped grids. For the oblique-wing aircraft problem, a speedup of two in elapsed (turnaround) time is observed in a saturated time-sharing environment.

  17. 40 CFR 1065.510 - Engine mapping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Configure any auxiliary work inputs and outputs such as hybrid, turbo-compounding, or thermoelectric systems... intended primarily for propulsion of a vehicle with an automatic transmission where that engine is subject...

  18. Quantitative characterization of optic nerve atrophy in patients with multiple sclerosis

    PubMed Central

    Smith, Alex K; Lyttle, Bailey; Box, Bailey; Landman, Bennett A; Bagnato, Francesca; Pawate, Siddharama; Smith, Seth A

    2017-01-01

    Background Optic neuritis (ON) is one of the most common presentations of multiple sclerosis (MS). Magnetic resonance imaging (MRI) of the optic nerves is challenging because of retrobulbar motion, orbital fat and susceptibility artifacts from maxillary sinuses; therefore, axonal loss is investigated with the surrogate measure of a single heuristically defined point along the nerve as opposed to volumetric investigation. Objective The objective of this paper is to derive optic nerve volumetrics along the entire nerve length in patients with MS and healthy controls in vivo using high-resolution, clinically viable MRI. Methods An advanced, isotropic T2-weighted turbo spin echo MRI was applied to 29 MS patients with (14 patients ON+) or without (15 patients ON–) history of ON and 42 healthy volunteers. An automated tool was used to estimate and compare whole optic nerve and surrounding cerebrospinal fluid radii along the length of the nerve. Results and conclusion Only ON+ MS patients had a significantly reduced optic nerve radius compared to healthy controls in the central segment of the optic nerve. Using clinically available MRI methods, we show and quantify ON volume loss for the first time in MS patients. PMID:28932410

  19. High Specific Stiffness Shafts and Advanced Bearing Coatings for Gas Turbine Engines Final Report CRADA No. TC-1089-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbee, Troy; Chin, Herbert

    At the time of the CRADA, the largest in-service gas-turbine aircraft engines strove for increased thrust and power density to meet the requirements for take-off thrust, given the increase in take-off gross weight (TOGW) associated with longer range transport requirements. The trend in modem turbo shaft engines was toward turbine shafts with higher and higher length-to-diameter ratios, which reduced the shaft critical speed. Using co nventional shaft materials, this lead to shafts that needed to operate near or above sensitive shaft bending critical speeds, therefore requiring multiple bearings and/ or multiple squeeze-film dampers to control the dynamic response. Using newmore » materials and d esign concepts this project demonstrated the use of new shaft materials which could provide increased shaft speed range above existing maximum engine speeds without encountering a critic al speed event and high vector deflections. This increased main shaft speed also resulted in decreased bearing life associated with lower heat dissipation and higher centrifugal forces. Thus, a limited effort was devoted to feasibility of higher performance bearing coatings to mitigate the speed effects.« less

  20. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  1. A novel construction method of QC-LDPC codes based on the subgroup of the finite field multiplicative group for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Zhou, Guang-xiang; Gao, Wen-chun; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-01-01

    According to the requirements of the increasing development for optical transmission systems, a novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth properties and more flexible adjustment for the code length and code rate. The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate ( BER) of 10-7. Therefore, the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.

  2. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    NASA Astrophysics Data System (ADS)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous aggregates and the hydrated matrix. The results demonstrate that water is both added and removed from the aggregates, depending upon the physical conditions. The images also appear to show an influx of cement products into cracks in the solid aggregate. (Abstract shortened by UMI.)

  3. The value of non-echo planar HASTE diffusion-weighted MR imaging in the detection, localisation and prediction of extent of postoperative cholesteatoma.

    PubMed

    Khemani, S; Lingam, R K; Kalan, A; Singh, A

    2011-08-01

    To evaluate the diagnostic performance of half-Fourier-acquisition single-shot turbo-spin-echo (HASTE) diffusion-weighted magnetic resonance imaging in the detection, localisation and prediction of extent of cholesteatoma following canal wall up mastoid surgery. Prospective blinded observational study. University affiliated teaching hospital. Forty-eight patients undergoing second-look surgery after previous canal wall up mastoid surgery for primary acquired cholesteatoma. All patients underwent non-echo planar HASTE diffusion-weighted imaging prior to being offered 'second-look' surgery. Radiological findings were correlated with second-look intra-operative findings in 38 cases with regard to presence, location and maximum dimensions of cholesteatoma. Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging accurately predicted the presence of cholesteatoma in 23 of 28 cases, and it correctly excluded in nine of 10 cases. Five false negatives were caused by keratin pearls of <2 mm and in one case 5 mm. Overall sensitivity and specificity for detection of cholesteatoma were 82% (95% confidence interval [CI] 62-94%) and 90% (CI 55-100%), respectively. Positive predictive value and negative predictive value were 96% (CI 79-100%) and 64% (CI 35-87%), respectively. Overall accuracy for detection of cholesteatoma was 84% (CI 69-94%). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging has good performance in localising cholesteatoma to a number of anatomical sub-sites within the middle ear and mastoid (sensitivity ranging from 75% to 88% and specificity ranging from 94% to 100%). There was no statistically significant difference in the size of cholesteatoma detected radiologically and that found during surgery (paired t-test, P = 0.16). However, analysis of size agreement suggests possible radiological underestimation of size when using HASTE diffusion-weighted imaging (mean difference -0.6 mm, CI -5.3 to 4.6 mm). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging performs reasonably well in predicting the presence and location of postoperative cholesteatoma but may miss small foci of disease and may underestimate the true size of cholesteatoma. © 2011 Blackwell Publishing Ltd.

  4. Empirical study of classification process for two-stage turbo air classifier in series

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Liu, Jiaxiang; Li, Gang

    2013-05-01

    The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the "fish-hook" effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the "fish-hook" effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.

  5. Fuel burn modeling of turboprop aircraft.

    DOT National Transportation Integrated Search

    2011-08-01

    This report documents work done to enhance turbo-propeller aircraft fuel consumption modeling in the Federal Aviation Administrations Aviation Environmental Design Tool (AEDT). Fuel consumption and flight performance data were collected from aircr...

  6. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the turbine inlet to include that contribution to turbine noise. We shall present preliminary analysis of the results obtained so far in order to assess the validity of such an approach and to seek feedback on improving the approach. This work addresses both Area 1 (Turbine Tone Noise) and Area 5 (Influence of the Turbine on Combustor Noise) topics.

  7. Incorporation of coupled nonequilibrium chemistry into a two-dimensional nozzle code (SEAGULL)

    NASA Technical Reports Server (NTRS)

    Ratliff, A. W.

    1979-01-01

    A two-dimensional multiple shock nozzle code (SEAGULL) was extended to include the effects of finite rate chemistry. The basic code that treats multiple shocks and contact surfaces was fully coupled with a generalized finite rate chemistry and vibrational energy exchange package. The modified code retains all of the original SEAGULL features plus the capability to treat chemical and vibrational nonequilibrium reactions. Any chemical and/or vibrational energy exchange mechanism can be handled as long as thermodynamic data and rate constants are available for all participating species.

  8. Multiprocessing on supercomputers for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Mehta, Unmeel B.

    1991-01-01

    Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) is applied through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.

  9. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  10. A Multiple Sphere T-Matrix Fortran Code for Use on Parallel Computer Clusters

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Mishchenko, M. I.

    2011-01-01

    A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and absorption properties of multiple sphere clusters is described. The code can calculate the efficiency factors and scattering matrix elements of the cluster for either fixed or random orientation with respect to the incident beam and for plane wave or localized- approximation Gaussian incident fields. In addition, the code can calculate maps of the electric field both interior and exterior to the spheres.The code is written with message passing interface instructions to enable the use on distributed memory compute clusters, and for such platforms the code can make feasible the calculation of absorption, scattering, and general EM characteristics of systems containing several thousand spheres.

  11. U.S. Army Technology Collaboration Briefing

    DTIC Science & Technology

    2012-09-11

    engine boosting ( turbo chargers and super chargers), homogeneous charged compression, direct injection, etc. • Advanced light-weight materials...mitigation, recycling, and supply chain development. • Alternative fuels including biofuels, hydrogen, electricity, diesel , etc. • Vehicle

  12. The Evidence of Imposex in Turbo sp. from Ujungpiring Waters of Jepara

    NASA Astrophysics Data System (ADS)

    Nuraini, RAT; Hartati, R.; Endrawati, H.; Widianingsih; Rachma, MJ; Mahendrajaya, RT

    2018-02-01

    Imposex is an endocrine disruption syndrome, in which females of marine gastropods develop sexual characteristics of males (penis and/or vas deferens). This syndrome is caused by tributyltin (TBT) or triphenyltin (TPT), toxic organotin compounds found in naval paints used as antifouling system in boats and artificial structures. The main objective of this study was to assess the incidence and severity of imposex in Turbosp.A hundred individus of Turbo sp was collected from Ujung Piring waters of Jepara, and observed for their sex and imposex. The results showed that the ratio male and female was 1.13 : 1, and the frequency of imposex females was 64.58%. The relative penis size were longer in imposex female than in male. The possibility of pollution was clearly shown from high evidence of imposex female.

  13. The Turbo-Fuel-Cell 1.0 - family concept

    NASA Astrophysics Data System (ADS)

    Berg, H. P.; Himmelberg, A.; Lehmann, M.; Dückershoff, R.; Neumann, M.

    2018-01-01

    The “Turbo-Fuel-Cell-Technology” has been described as a MGT-SOFC hybrid system consisting of a recuperated micro gas turbine (MGT) process with an embedded solid oxide fuel cell (SOFC) subsystem. SOFC stacks are connected to “SOFC stack grapes” and are equipped with the so called HEXAR-Module. This module is composed of a high-temperature heat exchanger (HEX), an afterburner (A) and a steam reformer (R). The MGT-concept is based on a generator driven directly by the turbomachine and a recuperator, which returns the exhaust heat to the pressurized compressor outlet air. This provides the necessary base for a highly effective, pure MGT process and the “MGT-SOFC-high-efficiency process”. This paper describes the concept and the thermodynamic background of a highly effective and compact design of the “Turbo-Fuel-Cell 1.0-Family” in the electrical performance class from 100 to 500 kW. The technological state of the system is shown and a rating of the system with comparative parameters is discussed. It becomes visible that all necessary basic technologies should be available and that the technology (for stationary applications) can have the “entry into services (E.I.S.)” in the next 10 years. The MGT-SOFC performance map under different operation conditions is discussed. This article also provides an overview of the research on MGT-SOFC-Systems and the scenario of an energy supply network and a mobile energy conversion of the future introduction.

  14. Determination of fusarium mycotoxins in wheat, maize and animal feed using on-line clean-up with high resolution mass spectrometry.

    PubMed

    Ates, E; Mittendorf, K; Stroka, J; Senyuva, H

    2013-01-01

    An automated method involving on-line clean-up and analytical separation in a single run using TurboFlow™ reversed phase liquid chromatography coupled to a high resolution mass spectrometer has been developed for the simultaneous determination of deoxynivalenol, T2 toxin, HT2 toxin, zearalenone and fumonisins B1 and B2 in maize, wheat and animal feed. Detection was performed in full scan mode at a resolution of R = 100,000 full width at half maximum with high energy collision cell dissociation for the determination of fragment ions with a mass accuracy below 5 ppm. The extract from homogenised samples, after blending with a 0.1% aqueous mixture of 0.1% formic acid/acetonitrile (43:57) for 45 min, was injected directly onto the TurboFlow™ (TLX) column for automated on-line clean-up followed by analytical separation and accurate mass detection. The TurboFlow™ column enabled specific binding of target mycotoxins, whereas higher molecular weight compounds, like fats, proteins and other interferences with different chemical properties, were removed to waste. Single laboratory method validation was performed by spiking blank materials with mycotoxin standards. The recovery and repeatability was determined by spiking at three concentration levels (50, 100 and 200% of legislative limits) with six replicates. Average recovery, relative standard deviation and intermediate precision values were 71 to 120%, 1 to 19% and 4 to 19%, respectively. The method accuracy was confirmed with certified reference materials and participation in proficiency testing.

  15. Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia

    PubMed Central

    Blair, Silvia; Akinyi Okoth, Sheila; Udhayakumar, Venkatachalam; Marcet, Paula L.; Escalante, Ananias A.; Alexander, Neal; Rojas, Carlos

    2016-01-01

    Plasmodium vivax recurrences help maintain malaria transmission. They are caused by recrudescence, reinfection, or relapse, which are not easily differentiated. A longitudinal observational study took place in Turbo municipality, Colombia. Participants with uncomplicated P. vivax infection received supervised treatment concomitantly with 25 mg/kg chloroquine and 0.25 mg/kg/day primaquine for 14 days. Incidence of recurrence was assessed over 180 days. Samples were genotyped, and origins of recurrences were established. A total of 134 participants were enrolled between February 2012 and July 2013, and 87 were followed for 180 days, during which 29 recurrences were detected. The cumulative incidence of first recurrence was 24.1% (21/87) (95% confidence interval [CI], 14.6 to 33.7%), and 86% (18/21) of these events occurred between days 51 and 110. High genetic diversity of P. vivax strains was found, and 12.5% (16/128) of the infections were polyclonal. Among detected recurrences, 93.1% (27/29) of strains were genotyped as genetically identical to the strain from the previous infection episode, and 65.5% (19/29) of infections were classified as relapses. Our results indicate that there is a high incidence of P. vivax malaria recurrence after treatment in Turbo municipality, Colombia, and that a large majority of these episodes are likely relapses from the previous infection. We attribute this to the primaquine regimen currently used in Colombia, which may be insufficient to eliminate hypnozoites. PMID:27185794

  16. The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced "Turbo" Ferric Chelate Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and Isolated Plasma Membrane Fractions in Sugar Beet).

    PubMed Central

    Susin, S.; Abadia, A.; Gonzalez-Reyes, J. A.; Lucena, J. J.; Abadia, J.

    1996-01-01

    The characteristics of the Fe reduction mechanisms induced by Fe deficiency have been studied in intact plants of Beta vulgaris and in purified plasma membrane vesicles from the same plants. In Fe-deficient plants the in vivo Fe(III)-ethylenediaminetetraacetic complex [Fe(III)-EDTA] reductase activity increased over the control values 10 to 20 times when assayed at a pH of 6.0 or below ("turbo" reductase) but increased only 2 to 4 times when assayed at a pH of 6.5 or above. The Fe(III)-EDTA reductase activity of root plasma membrane preparations increased 2 and 3.5 times over the controls, irrespective of the assay pH. The Km for Fe(III)-EDTA of the in vivo ferric chelate reductase in Fe-deficient plants was approximately 510 and 240 [mu]M in the pH ranges 4.5 to 6.0 and 6.5 to 8.0, respectively. The Km for Fe(III)-EDTA of the ferric chelate reductase in intact control plants and in plasma membrane preparations isolated from Fe-deficient and control plants was approximately 200 to 240 [mu]M. Therefore, the turbo ferric chelate reductase activity of Fe-deficient plants at low pH appears to be different from the constitutive ferric chelate reductase. PMID:12226175

  17. Optimal control design of turbo spin‐echo sequences with applications to parallel‐transmit systems

    PubMed Central

    Hoogduin, Hans; Hajnal, Joseph V.; van den Berg, Cornelis A. T.; Luijten, Peter R.; Malik, Shaihan J.

    2016-01-01

    Purpose The design of turbo spin‐echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient‐specific sequences online. Theory and Methods The extended phase graph formalism is employed to model the signal evolution. The design problem is cast as an optimal control problem and an efficient numerical procedure for its solution is given. The numerical and experimental tests address standard multiecho sequences and pTx configurations. Results Standard, analytically derived flip angle trains are recovered by the numerical optimal control approach. New sequences are designed where constraints on radiofrequency total and peak power are included. In the case of parallel transmit application, the method is able to calculate the optimal echo train for two‐dimensional and three‐dimensional turbo spin echo sequences in the order of 10 s with a single central processing unit (CPU) implementation. The image contrast is maintained through the whole field of view despite inhomogeneities of the radiofrequency fields. Conclusion The optimal control design sheds new light on the sequence design process and makes it possible to design sequences in an online, patient‐specific fashion. Magn Reson Med 77:361–373, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26800383

  18. The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced "Turbo" Ferric Chelate Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and Isolated Plasma Membrane Fractions in Sugar Beet).

    PubMed

    Susin, S.; Abadia, A.; Gonzalez-Reyes, J. A.; Lucena, J. J.; Abadia, J.

    1996-01-01

    The characteristics of the Fe reduction mechanisms induced by Fe deficiency have been studied in intact plants of Beta vulgaris and in purified plasma membrane vesicles from the same plants. In Fe-deficient plants the in vivo Fe(III)-ethylenediaminetetraacetic complex [Fe(III)-EDTA] reductase activity increased over the control values 10 to 20 times when assayed at a pH of 6.0 or below ("turbo" reductase) but increased only 2 to 4 times when assayed at a pH of 6.5 or above. The Fe(III)-EDTA reductase activity of root plasma membrane preparations increased 2 and 3.5 times over the controls, irrespective of the assay pH. The Km for Fe(III)-EDTA of the in vivo ferric chelate reductase in Fe-deficient plants was approximately 510 and 240 [mu]M in the pH ranges 4.5 to 6.0 and 6.5 to 8.0, respectively. The Km for Fe(III)-EDTA of the ferric chelate reductase in intact control plants and in plasma membrane preparations isolated from Fe-deficient and control plants was approximately 200 to 240 [mu]M. Therefore, the turbo ferric chelate reductase activity of Fe-deficient plants at low pH appears to be different from the constitutive ferric chelate reductase.

  19. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    NASA Technical Reports Server (NTRS)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  20. Automated registration of multispectral MR vessel wall images of the carotid artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purposemore » of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and moving image after registration. Results: The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available. Conclusions: An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images.« less

  1. Frequency Hopping, Multiple Frequency-Shift Keying, Coding, and Optimal Partial-Band Jamming.

    DTIC Science & Technology

    1982-08-01

    receivers appropriate for these two strategies. Each receiver is noncoherent (a coherent receiver is generally impractical) and implements hard...Advances in Coding and Modulation for Noncoherent Channels Affected by Fading, Partial Band, and Multiple- . Access Interference, in A. J. Viterbi...Modulation for Noncoherent Channels Affected by Fading, Partial Band, and Multiple-Access interference, in A. J. Viterbi, ed., Advances in Coumunication

  2. RD Optimized, Adaptive, Error-Resilient Transmission of MJPEG2000-Coded Video over Multiple Time-Varying Channels

    NASA Astrophysics Data System (ADS)

    Bezan, Scott; Shirani, Shahram

    2006-12-01

    To reliably transmit video over error-prone channels, the data should be both source and channel coded. When multiple channels are available for transmission, the problem extends to that of partitioning the data across these channels. The condition of transmission channels, however, varies with time. Therefore, the error protection added to the data at one instant of time may not be optimal at the next. In this paper, we propose a method for adaptively adding error correction code in a rate-distortion (RD) optimized manner using rate-compatible punctured convolutional codes to an MJPEG2000 constant rate-coded frame of video. We perform an analysis on the rate-distortion tradeoff of each of the coding units (tiles and packets) in each frame and adapt the error correction code assigned to the unit taking into account the bandwidth and error characteristics of the channels. This method is applied to both single and multiple time-varying channel environments. We compare our method with a basic protection method in which data is either not transmitted, transmitted with no protection, or transmitted with a fixed amount of protection. Simulation results show promising performance for our proposed method.

  3. An Efficient Method for Verifying Gyrokinetic Microstability Codes

    NASA Astrophysics Data System (ADS)

    Bravenec, R.; Candy, J.; Dorland, W.; Holland, C.

    2009-11-01

    Benchmarks for gyrokinetic microstability codes can be developed through successful ``apples-to-apples'' comparisons among them. Unlike previous efforts, we perform the comparisons for actual discharges, rendering the verification efforts relevant to existing experiments and future devices (ITER). The process requires i) assembling the experimental analyses at multiple times, radii, discharges, and devices, ii) creating the input files ensuring that the input parameters are faithfully translated code-to-code, iii) running the codes, and iv) comparing the results, all in an organized fashion. The purpose of this work is to automate this process as much as possible: At present, a python routine is used to generate and organize GYRO input files from TRANSP or ONETWO analyses. Another routine translates the GYRO input files into GS2 input files. (Translation software for other codes has not yet been written.) Other python codes submit the multiple GYRO and GS2 jobs, organize the results, and collect them into a table suitable for plotting. (These separate python routines could easily be consolidated.) An example of the process -- a linear comparison between GYRO and GS2 for a DIII-D discharge at multiple radii -- will be presented.

  4. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  5. Concentrating Solar Power Projects - Enerstar | Concentrating Solar Power |

    Science.gov Websites

    Capacity (Net): 50.0 MW Turbine Manufacturer: Man-Turbo Turbine Description: 3 extractions Output Type : Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: Wet cooling Cooling Method Description

  6. An Expert System for Identification of Minerals in Thin Section.

    ERIC Educational Resources Information Center

    Donahoe, James Louis; And Others

    1989-01-01

    Discusses a computer database which includes optical properties of 142 minerals. Uses fuzzy logic to identify minerals from incomplete and imprecise information. Written in Turbo PASCAL for MS-DOS with 128K. (MVL)

  7. A novel QC-LDPC code based on the finite field multiplicative group for optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Xu, Liang; Tong, Qing-zhen

    2013-09-01

    A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the finite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). At the bit error rate (BER) of 10-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more suitable for optical communication systems.

  8. The Reed-Solomon encoders: Conventional versus Berlekamp's architecture

    NASA Technical Reports Server (NTRS)

    Perlman, M.; Lee, J. J.

    1982-01-01

    Concatenated coding was adopted for interplanetary space missions. Concatenated coding was employed with a convolutional inner code and a Reed-Solomon (RS) outer code for spacecraft telemetry. Conventional RS encoders are compared with those that incorporate two architectural features which approximately halve the number of multiplications of a set of fixed arguments by any RS codeword symbol. The fixed arguments and the RS symbols are taken from a nonbinary finite field. Each set of multiplications is bit-serially performed and completed during one (bit-serial) symbol shift. All firmware employed by conventional RS encoders is eliminated.

  9. Power optimization of wireless media systems with space-time block codes.

    PubMed

    Yousefi'zadeh, Homayoun; Jafarkhani, Hamid; Moshfeghi, Mehran

    2004-07-01

    We present analytical and numerical solutions to the problem of power control in wireless media systems with multiple antennas. We formulate a set of optimization problems aimed at minimizing total power consumption of wireless media systems subject to a given level of QoS and an available bit rate. Our formulation takes into consideration the power consumption related to source coding, channel coding, and transmission of multiple-transmit antennas. In our study, we consider Gauss-Markov and video source models, Rayleigh fading channels along with the Bernoulli/Gilbert-Elliott loss models, and space-time block codes.

  10. A Crack Growth Evaluation Method for Interacting Multiple Cracks

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.

  11. Improved double-multiple streamtube model for the Darrieus-type vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berg, D. E.

    Double streamtube codes model the curved blade (Darrieus-type) vertical axis wind turbine (VAWT) as a double actuator fish arrangement (one half) and use conservation of momentum principles to determine the forces acting on the turbine blades and the turbine performance. Sandia National Laboratories developed a double multiple streamtube model for the VAWT which incorporates the effects of the incident wind boundary layer, nonuniform velocity between the upwind and downwind sections of the rotor, dynamic stall effects and local blade Reynolds number variations. The theory underlying this VAWT model is described, as well as the code capabilities. Code results are compared with experimental data from two VAWT's and with the results from another double multiple streamtube and a vortex filament code. The effects of neglecting dynamic stall and horizontal wind velocity distribution are also illustrated.

  12. Multi-processing on supercomputers for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Mehta, Unmeel B.

    1990-01-01

    The MIMD concept is applied, through multitasking, with relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-FORTRAN-Unix interface. An existing single processor algorithm is mapped without the need for developing a new algorithm. The procedure of designing a code utilizing this approach is automated with the Unix stream editor. A Multiple Processor Multiple Grid (MPMG) code is developed as a demonstration of this approach. This code solves the three-dimensional, Reynolds-averaged, thin-layer and slender-layer Navier-Stokes equations with an implicit, approximately factored and diagonalized method. This solver is applied to a generic, oblique-wing aircraft problem on a four-processor computer using one process for data management and nonparallel computations and three processes for pseudotime advance on three different grid systems.

  13. Trellis Coding of Non-coherent Multiple Symbol Full Response M-ary CPFSK with Modulation Index 1/M

    NASA Technical Reports Server (NTRS)

    Lee, H.; Divsalar, D.; Weber, C.

    1994-01-01

    This paper introduces a trellis coded modulation (TCM) scheme for non-coherent multiple full response M-ary CPFSK with modulation index 1/M. A proper branch metric for the trellis decoder is obtained by employing a simple approximation of the modified Bessel function for large signal to noise ratio (SNR). Pairwise error probability of coded sequences is evaluated by applying a linear approximation to the Rician random variable.

  14. System for Processing Coded OFDM Under Doppler and Fading

    NASA Technical Reports Server (NTRS)

    Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee

    2005-01-01

    An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure) that would afford frequency diversity for reducing the adverse effects of multipath fading. By using parallel concatenated convolutional codes (also known as Turbo codes) across the dual-channel and advanced OFDM signal processing within each channel, the proposed system is intended to achieve at least an order of magnitude improvement in received signal-to-noise ratio under adverse channel effects while preserving spectral efficiency.

  15. CFD simulation of coaxial injectors

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial injectors. The following sections will discuss the physical aspects of injectors, the CFD code employed, and preliminary results of a simulation of a single coaxial injector for which experimental data is available. It is hoped that this work will lay the foundation for the development of a unique and useful tool to support the SSME program.

  16. Salient features of MACA and CMACA systems and their applications

    NASA Astrophysics Data System (ADS)

    Ratnam, C.; Goud, S. L.; Rao, V. Lakshmana

    2007-09-01

    The Fourier Analytical Investigation results of the Performance of the Multiple Annuli Coded Aperture (MACA) and Complementary Multiple Annuli Coded Aperture Systems (CMACA) are summarised and the probable application of these systems in Astronomy, High energy radiation Imaging, optical filters, and in the field of metallurgy, are suggested.

  17. Turbo test rig with hydroinertia air bearings for a palmtop gas turbine

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Isomura, Kousuke; Togo, Shin-ichi; Esashi, Masayoshi

    2004-11-01

    This paper describes a turbo test rig to test the compressor of a palmtop gas turbine generator at low temperature (<100 °C). Impellers are 10 mm in diameter and have three-dimensional blades machined using a five-axis NC milling machine. Hydroinertia bearings are employed in both radial and axial directions. The performance of the compressor was measured at 50% (435 000 rpm) and 60% (530 000 rpm) of the rated rotational speed (870 000 rpm) by driving a turbine using compressed air at room temperature. The measured pressure ratio is lower than the predicted value. This could be mainly because impeller tip clearance was larger than the designed value. The measured adiabatic efficiency is unrealistically high due to heat dissipation from compressed air. During acceleration toward the rated rotational speed, a shaft crashed to the bearing at 566 000 rpm due to whirl. At that time, the whirl ratio was 8.

  18. A study of the effects of disk flexibility on the rotordynamics of the space shuttle main engine turbo-pumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1989-01-01

    Rotor dynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that is may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbo-pumps. Finite element analyses have been performed for a simplified free-free flexible disk rotor model and the modes and frequencies compared to those of a rigid disk model. The simple model was then extended to a more sophisticated HPTOP rotor model and similar results were observed. Equations were developed that are suitable for modifying the current rotordynamical analysis program to account for disk flexibility. Some conclusions are drawn from the results of this work as to the importance of disk flexibility on the HPTOP rotordynamics and some recommendations are given for follow-up research in this area.

  19. Long-Term Cryogenic Propellant Storage on Mars with Hercules Propellant Storage Facility

    NASA Technical Reports Server (NTRS)

    Liu, Gavin

    2017-01-01

    This report details the process and results of roughly sizing the steady state, zero boil-off thermal and power parameters of the Hercules Propellant Storage Facility. For power analysis, isothermal and isobaric common bulkhead tank scenarios are considered. An estimated minimum power requirement of 8.3 kW for the Reverse Turbo-Brayton Cryocooler is calculated. Heat rejection concerns in soft vacuum Mars atmosphere are noted and potential solutions are proposed. Choice of coolant for liquid propellant conditioning and issues with current proposed cryocooler cycle are addressed; recommendations are made, e.g. adding a Joule-Thomson expansion valve after the Reverse Turbo-Brayton turbine in order to have two-phase, isothermal heat exchange through the Broad Area Cooling system. Issues with cross-country transfer lines from propellant storage to flight vehicle are briefly discussed: traditional vacuum jacketed lines are implausible, and Mars insulation needs to be developed.

  20. Support vector machines-based fault diagnosis for turbo-pump rotor

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng-Fa; Chu, Fu-Lei

    2006-05-01

    Most artificial intelligence methods used in fault diagnosis are based on empirical risk minimisation principle and have poor generalisation when fault samples are few. Support vector machines (SVM) is a new general machine-learning tool based on structural risk minimisation principle that exhibits good generalisation even when fault samples are few. Fault diagnosis based on SVM is discussed. Since basic SVM is originally designed for two-class classification, while most of fault diagnosis problems are multi-class cases, a new multi-class classification of SVM named 'one to others' algorithm is presented to solve the multi-class recognition problems. It is a binary tree classifier composed of several two-class classifiers organised by fault priority, which is simple, and has little repeated training amount, and the rate of training and recognition is expedited. The effectiveness of the method is verified by the application to the fault diagnosis for turbo pump rotor.

  1. The NASA Spacecraft Transponding Modem

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.

    2000-01-01

    A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the capability of increasing the ground received ranging SNR by up to 30 dB. Two different avionics interfaces to the command/data subsystem's data bus are provided: a MIL STD 1553B bus or an industry standard PCI interface. Digital interfaces provide the capability to control antenna selection (e.g., switching between high gain and low gain antennas) and antenna pointing (for future steered Ka-band antennas).

  2. Multiple-Symbol Noncoherent Decoding of Uncoded and Convolutionally Codes Continous Phase Modulation

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Raphaeli, D.

    2000-01-01

    Recently, a method for combined noncoherent detection and decoding of trellis-codes (noncoherent coded modulation) has been proposed, which can practically approach the performance of coherent detection.

  3. Cascade Analysis of a Floating Wind Turbine Rotor

    NASA Astrophysics Data System (ADS)

    Eliassen, Lene; Jakobsen, Jasna B.; Knauer, Andreas; Nielsen, Finn Gunnar

    2014-12-01

    Mounting a wind turbine on a floating foundation introduces more complexity to the aerodynamic loading. The floater motion contains a wide range of frequencies. To study some of the basic dynamic load effect on the blades due to these motions, a two-dimensional cascade approach, combined with a potential vortex method, is used. This is an alternative method to study the aeroelastic behavior of wind turbines that is different from the traditional blade element momentum method. The analysis tool demands little computational power relative to a full three dimensional vortex method, and can handle unsteady flows. When using the cascade plane, a "cut" is made at a section of the wind turbine blade. The flow is viewed parallel to the blade axis at this cut. The cascade model is commonly used for analysis of turbo machineries. Due to the simplicity of the code it requires little computational resources, however it has limitations in its validity. It can only handle two-dimensional potential flow, i.e. including neither three-dimensional effects, such as the tip loss effect, nor boundary layers and stall effects are modeled. The computational tool can however be valuable in the overall analysis of floating wind turbines, and evaluation of the rotor control system. A check of the validity of the vortex panel code using an airfoil profile is performed, comparing the variation of the lift force, to the theoretically derived Wagner function. To analyse the floating wind turbine, a floating structure with hub height 90 m is chosen. An axial motion of the rotor is considered.

  4. A three-dimensional code for muon propagation through the rock: MUSIC

    NASA Astrophysics Data System (ADS)

    Antonioli, P.; Ghetti, C.; Korolkova, E. V.; Kudryavtsev, V. A.; Sartorelli, G.

    1997-10-01

    We present a new three-dimensional Monte-Carlo code MUSIC (MUon SImulation Code) for muon propagation through the rock. All processes of muon interaction with matter with high energy loss (including the knock-on electron production) are treated as stochastic processes. The angular deviation and lateral displacement of muons due to multiple scattering, as well as bremsstrahlung, pair production and inelastic scattering are taken into account. The code has been applied to obtain the energy distribution and angular and lateral deviations of single muons at different depths underground. The muon multiplicity distributions obtained with MUSIC and CORSIKA (Extensive Air Shower simulation code) are also presented. We discuss the systematic uncertainties of the results due to different muon bremsstrahlung cross-sections.

  5. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    NASA Astrophysics Data System (ADS)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  6. On the performance of a code division multiple access scheme with transmit/receive conflicts

    NASA Astrophysics Data System (ADS)

    Silvester, J. A.

    One of the benefits of spread spectrum is that by assigning each user a different orthogonal signal set, multiple transmissions can occur simultaneously. This possibility is utilized in new access schemes called Code Division Multiple Access (CDMA). The present investigation is concerned with a particular CDMA implementation in which the transmit times for each symbol are exactly determined in a distributed manner such that both sender and receiver know them. In connection with a decision whether to transmit or receive, the loss of a symbol in one of the channels results. The system employs thus a coding technique which permits correct decoding of a codeword even if some constituent symbols are missing or in error. The technique used is Reed Solomon coding. The performance of this system is analyzed, and attention is given to the optimum strategy which should be used in deciding whether to receive or transmit.

  7. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  8. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    PubMed

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  9. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less

  10. PSSC Turbo Ring Flinger

    NASA Astrophysics Data System (ADS)

    McAlexander, Aaron

    2005-12-01

    This is a description of an inexpensive version of the Thompson's jumping ring demonstration apparatus, which provides for a spectacular demonstration of Lenz's law. The device has the additional capability of being used to demonstrate the opposing nature of inductive and capacitive reactance.

  11. Using Avizo Software on the Peregrine System | High-Performance Computing |

    Science.gov Websites

    be run remotely from the Peregrine visualization node. First, launch a TurboVNC remote desktop. Then from a terminal in that remote desktop: % module load avizo % vglrun avizo Running Locally Avizo can

  12. Multiple Codes, Multiple Impressions: An Analysis of Doctor-Client Encounters in Nigeria

    ERIC Educational Resources Information Center

    Odebunmi, Akin

    2013-01-01

    Existing studies on doctor-client interactions have largely focused on monolingual encounters and the interactional effects and functions of the languages used in the communication between doctors and their clients. They have neither, to a large extent, examined the several codes employed in single encounters and their pragmatic roles nor given…

  13. Signal Detection and Frame Synchronization of Multiple Wireless Networking Waveforms

    DTIC Science & Technology

    2007-09-01

    punctured to obtain coding rates of 2 3 and 3 4 . Convolutional forward error correction coding is used to detect and correct bit...likely to be isolated and be correctable by the convolutional decoder. 44 Data rate (Mbps) Modulation Coding Rate Coded bits per subcarrier...binary convolutional code . A shortened Reed-Solomon technique is employed first. The code is shortened depending upon the data

  14. NASA Tech Briefs, March 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Scheme for Entering Binary Data Into a Quantum Computer; Encryption for Remote Control via Internet or Intranet; Coupled Receiver/Decoders for Low-Rate Turbo Codes; Processing GPS Occultation Data To Characterize Atmosphere; Displacing Unpredictable Nulls in Antenna Radiation Patterns; Integrated Pointing and Signal Detector for Optical Receiver; Adaptive Thresholding and Parameter Estimation for PPM; Data-Driven Software Framework for Web-Based ISS Telescience; Software for Secondary-School Learning About Robotics; Fuzzy Logic Engine; Telephone-Directory Program; Simulating a Direction-Finder Search for an ELT; Formulating Precursors for Coating Metals and Ceramics; Making Macroscopic Assemblies of Aligned Carbon Nanotubes; Ball Bearings Equipped for In Situ Lubrication on Demand; Synthetic Bursae for Robots; Robot Forearm and Dexterous Hand; Making a Metal-Lined Composite-Overwrapped Pressure Vessel; Ex Vivo Growth of Bioengineered Ligaments and Other Tissues; Stroboscopic Goggles for Reduction of Motion Sickness; Articulating Support for Horizontal Resistive Exercise; Modified Penning-Malmberg Trap for Storing Antiprotons; Tumbleweed Rovers; Two-Photon Fluorescence Microscope for Microgravity Research; Biased Randomized Algorithm for Fast Model-Based Diagnosis; Fast Algorithms for Model-Based Diagnosis; Simulations of Evaporating Multicomponent Fuel Drops; Formation Flying of Tethered and Nontethered Spacecraft; and Two Methods for Efficient Solution of the Hitting- Set Problem.

  15. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  16. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.

    PubMed

    Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A

    2016-06-01

    Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Performance Analysis of Hybrid ARQ Protocols in a Slotted Code Division Multiple-Access Network

    DTIC Science & Technology

    1989-08-01

    Convolutional Codes . in Proc Int. Conf. Commun., 21.4.1-21.4.5, 1987. [27] J. Hagenauer. Rate Compatible Punctured Convolutional Codes . in Proc Int. Conf...achieved by using a low rate (r = 0.5), high constraint length (e.g., 32) punctured convolutional code . Code puncturing provides for a variable rate code ...investigated the use of convolutional codes in Type II Hybrid ARQ protocols. The error

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viktor K. Decyk

    The UCLA work on this grant was to design and help implement an object-oriented version of the GTC code, which is written in Fortran90. The GTC code is the main global gyrokinetic code used in this project, and over the years multiple, incompatible versions have evolved. The reason for this effort is to allow multiple authors to work together on GTC and to simplify future enhancements to GTC. The effort was designed to proceed incrementally. Initially, an upper layer of classes (derived types and methods) was implemented which called the original GTC code 'under the hood.' The derived types pointedmore » to data in the original GTC code, and the methods called the original GTC subroutines. The original GTC code was modified only very slightly. This allowed one to define (and refine) a set of classes which described the important features of the GTC code in a new, more abstract way, with a minimum of implementation. Furthermore, classes could be added one at a time, and at the end of the each day, the code continued to work correctly. This work was done in close collaboration with Y. Nishimura from UC Irvine and Stefan Ethier from PPPL. Ten classes were ultimately defined and implemented: gyrokinetic and drift kinetic particles, scalar and vector fields, a mesh, jacobian, FLR, equilibrium, interpolation, and particles species descriptors. In the second state of this development, some of the scaffolding was removed. The constructors in the class objects now allocated the data and the array data in the original GTC code was removed. This isolated the components and now allowed multiple instantiations of the objects to be created, in particular, multiple ion species. Again, the work was done incrementally, one class at a time, so that the code was always working properly. This work was done in close collaboration with Y. Nishimura and W. Zhang from UC Irvine and Stefan Ethier from PPPL. The third stage of this work was to integrate the capabilities of the various versions of the GTC code into one flexible and extensible version. To do this, we developed a methodology to implement Design Patterns in Fortran90. Design Patterns are abstract solutions to generic programming problems, which allow one to handle increased complexity. This work was done in collaboration with Henry Gardner, a computer scientist (and former plasma physicist) from the Australian National University. As an example, the Strategy Pattern is being used in GTC to support multiple solvers. This new code is currently being used in the study of energetic particles. A document describing the evolution of the GTC code to this new object-oriented version is available to users of GTC.« less

  19. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  20. The dependence of frequency distributions on multiple meanings of words, codes and signs

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyong; Minnhagen, Petter

    2018-01-01

    The dependence of the frequency distributions due to multiple meanings of words in a text is investigated by deleting letters. By coding the words with fewer letters the number of meanings per coded word increases. This increase is measured and used as an input in a predictive theory. For a text written in English, the word-frequency distribution is broad and fat-tailed, whereas if the words are only represented by their first letter the distribution becomes exponential. Both distribution are well predicted by the theory, as is the whole sequence obtained by consecutively representing the words by the first L = 6 , 5 , 4 , 3 , 2 , 1 letters. Comparisons of texts written by Chinese characters and the same texts written by letter-codes are made and the similarity of the corresponding frequency-distributions are interpreted as a consequence of the multiple meanings of Chinese characters. This further implies that the difference of the shape for word-frequencies for an English text written by letters and a Chinese text written by Chinese characters is due to the coding and not to the language per se.

  1. Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system

    NASA Astrophysics Data System (ADS)

    Azura, M. S. A.; Rashidi, C. B. M.; Aljunid, S. A.; Endut, R.; Ali, N.

    2017-11-01

    This paper presents a realization of Wavelength/Time (W/T) Two-Dimensional Modified Double Weight (2-D MDW) code for Optical Code Division Multiple Access (OCDMA) system based on Spectral Amplitude Coding (SAC) approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN) and minimizing the Multiple Access Interference (MAI) noises. At the permissible BER 10-9, the 2-D MDW (APD) had shown minimum effective received power (Psr) = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN) only received -61 dBm. The results show that 2-D MDW (APD) has better performance in achieving same BER with longer optical fiber length and with less received power (Psr). Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.

  2. Hazardous Waste Cleanup: Curtiss-Wright in Kearny, New Jersey

    EPA Pesticide Factsheets

    The site is located in Phillipsburg, New Jersey and was operated by Ingersoll Rand Company. Ingersoll Rand began facility construction in 1903 and produced products such as pumps, turbo equipment, air and gas compressors, rock drills, and mining equipment.

  3. Joint Logistics Commanders’ Workshop on Post Deployment Software Support (PDSS) for Mission-Critical Computer Software. Volume 2. Workshop Proceedings.

    DTIC Science & Technology

    1984-06-01

    exist for the same item, as opposed to separate budget and fund codes for separate but related items. Multiple pro- cedures and fund codes can oe used...funds. If some funds are marked for multiple years and others must be obligated or outlaid witnin one year, contracting for PDSS tasks must be partitioned...Experience: PDSS requires both varied experience factors in multiple dis- ciplines and the sustaining of a critical mass of experience factors and

  4. The multidimensional Self-Adaptive Grid code, SAGE, version 2

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1995-01-01

    This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.

  5. Multitasking for flows about multiple body configurations using the chimera grid scheme

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.; Morgan, R. L.

    1987-01-01

    The multitasking of a finite-difference scheme using multiple overset meshes is described. In this chimera, or multiple overset mesh approach, a multiple body configuration is mapped using a major grid about the main component of the configuration, with minor overset meshes used to map each additional component. This type of code is well suited to multitasking. Both steady and unsteady two dimensional computations are run on parallel processors on a CRAY-X/MP 48, usually with one mesh per processor. Flow field results are compared with single processor results to demonstrate the feasibility of running multiple mesh codes on parallel processors and to show the increase in efficiency.

  6. Multiple grid problems on concurrent-processing computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.

    1986-01-01

    Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.

  7. A Data Parallel Multizone Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1995-01-01

    We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.

  8. Thrust Vectoring Nozzle for Modern Military Aircraft

    DTIC Science & Technology

    2000-05-11

    Thrust Vectoring Nozzle for Modern Military Aircraft Daniel Ikaza Industria de Turbo Propulsores S.A. (ITP) Parque Tecnol6gico, edificio 300 48170...programme has only been possible with the contribution of partners and organizations, namely: Spanish Ministries of Industry and Defence, with

  9. Safe, Multiphase Bounds Check Elimination in Java

    DTIC Science & Technology

    2010-01-28

    production of mobile code from source code, JIT compilation in the virtual ma- chine, and application code execution. The code producer uses...invariants, and inequality constraint analysis) to identify and prove redundancy of bounds checks. During class-loading and JIT compilation, the virtual...unoptimized code if the speculated invariants do not hold. The combined effect of the multiple phases is to shift the effort as- sociated with bounds

  10. Probability Quantization for Multiplication-Free Binary Arithmetic Coding

    NASA Technical Reports Server (NTRS)

    Cheung, K. -M.

    1995-01-01

    A method has been developed to improve on Witten's binary arithmetic coding procedure of tracking a high value and a low value. The new method approximates the probability of the less probable symbol, which improves the worst-case coding efficiency.

  11. Quantized phase coding and connected region labeling for absolute phase retrieval.

    PubMed

    Chen, Xiangcheng; Wang, Yuwei; Wang, Yajun; Ma, Mengchao; Zeng, Chunnian

    2016-12-12

    This paper proposes an absolute phase retrieval method for complex object measurement based on quantized phase-coding and connected region labeling. A specific code sequence is embedded into quantized phase of three coded fringes. Connected regions of different codes are labeled and assigned with 3-digit-codes combining the current period and its neighbors. Wrapped phase, more than 36 periods, can be restored with reference to the code sequence. Experimental results verify the capability of the proposed method to measure multiple isolated objects.

  12. Protecting quantum memories using coherent parity check codes

    NASA Astrophysics Data System (ADS)

    Roffe, Joschka; Headley, David; Chancellor, Nicholas; Horsman, Dominic; Kendon, Viv

    2018-07-01

    Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity checks, supplemented by cross-checks to fix the code distance. In this paper, we provide a detailed introduction to CPC codes using conventional quantum circuit notation. We demonstrate the implementation of a CPC code on real hardware, by designing a [[4, 2, 2

  13. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    PubMed

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value < 0.05, Fold change > 1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Preoperative detection of malignant liver tumors: Comparison of 3D-T2-weighted sequences with T2-weighted turbo spin-echo and single shot T2 at 1.5 T.

    PubMed

    Barat, Maxime; Soyer, Philippe; Dautry, Raphael; Pocard, Marc; Lo-Dico, Rea; Najah, Haythem; Eveno, Clarisse; Cassinotto, Christophe; Dohan, Anthony

    2018-03-01

    To assess the performances of three-dimensional (3D)-T2-weighted sequences compared to standard T2-weighted turbo spin echo (T2-TSE), T2-half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE), diffusion weighted imaging (DWI) and 3D-T1-weighted VIBE sequences in the preoperative detection of malignant liver tumors. From 2012 to 2015, all patients of our institution undergoing magnetic resonance imaging (MRI) examination for suspected malignant liver tumors were prospectively included. Patients had contrast-enhanced 3D-T1-weighted, DWI, 3D-T2-SPACE, T2-HASTE and T2-TSE sequences. Imaging findings were compared with those obtained at follow-up, surgery and histopathological analysis. Sensitivities for the detection of malignant liver tumors were compared for each sequence using McNemar test. A subgroup analysis was conducted for HCCs. Image artifacts were analyzed and compared using Wilcoxon paired signed rank-test. Thirty-three patients were included: 13 patients had 40 hepatocellular carcinomas (HCC) and 20 had 54 liver metastases. 3D-T2-weighted sequences had a higher sensitivity than T2-weighted TSE sequences for the detection of malignant liver tumors (79.8% versus 68.1%; P < 0.001). The difference did not reach significance for HCC. T1-weighted VIBE and DWI had a higher sensitivity than T2-weighted sequences. 3D-T2-weighted-SPACE sequences showed significantly less artifacts than T2-weitghted TSE. 3D-T2-weighted sequences show very promising performances for the detection of liver malignant tumors compared to T2-weighted TSE sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A Lagrangian parcel based mixing plane method for calculating water based mixed phase particle flows in turbo-machinery

    NASA Astrophysics Data System (ADS)

    Bidwell, Colin S.

    2015-05-01

    A method for calculating particle transport through turbo-machinery using the mixing plane analogy was developed and used to analyze the energy efficient engine . This method allows the prediction of temperature and phase change of water based particles along their path and the impingement efficiency and particle impact property data on various components in the engine. This methodology was incorporated into the LEWICE3D V3.5 software. The method was used to predict particle transport in the low pressure compressor of the . The was developed by NASA and GE in the early 1980s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The flow field was calculated using the NASA Glenn ADPAC turbo-machinery flow solver. Computations were performed for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20 and 100 microns and a free stream particle concentration of . The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting with a maximum average melting fraction of 0.18. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22.6 %).

  16. Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer.

    PubMed

    Arias, María Elena; Sánchez-Villalba, Esther; Delgado, Andrea; Felmer, Ricardo

    2017-02-01

    Sperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.

  17. Diffusion-prepared stimulated-echo turbo spin echo (DPsti-TSE): An eddy current-insensitive sequence for three-dimensional high-resolution and undistorted diffusion-weighted imaging.

    PubMed

    Zhang, Qinwei; Coolen, Bram F; Versluis, Maarten J; Strijkers, Gustav J; Nederveen, Aart J

    2017-07-01

    In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10 -3 versus (1.60 ± 0.02) × 10 -3  mm 2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10 -3  mm 2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches. Copyright © 2017 John Wiley & Sons, Ltd.

  18. A fast screening protocol for carotid plaques imaging using 3D multi-contrast MRI without contrast agent.

    PubMed

    Zhang, Na; Zhang, Lei; Yang, Qi; Pei, Anqi; Tong, Xiaoxin; Chung, Yiu-Cho; Liu, Xin

    2017-06-01

    To implement a fast (~15min) MRI protocol for carotid plaque screening using 3D multi-contrast MRI sequences without contrast agent on a 3Tesla MRI scanner. 7 healthy volunteers and 25 patients with clinically confirmed transient ischemic attack or suspected cerebrovascular ischemia were included in this study. The proposed protocol, including 3D T1-weighted and T2-weighted SPACE (variable-flip-angle 3D turbo spin echo), and T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) was performed first and was followed by 2D T1-weighted and T2-weighted turbo spin echo, and post-contrast T1-weighted SPACE sequences. Image quality, number of plaques, and vessel wall thicknesses measured at the intersection of the plaques were evaluated and compared between sequences. Average examination time of the proposed protocol was 14.6min. The average image quality scores of 3D T1-weighted, T2-weighted SPACE, and T1-weighted magnetization prepared rapid acquisition gradient echo were 3.69, 3.75, and 3.48, respectively. There was no significant difference in detecting the number of plaques and vulnerable plaques using pre-contrast 3D images with or without post-contrast T1-weighted SPACE. The 3D SPACE and 2D turbo spin echo sequences had excellent agreement (R=0.96 for T1-weighted and 0.98 for T2-weighted, p<0.001) regarding vessel wall thickness measurements. The proposed protocol demonstrated the feasibility of attaining carotid plaque screening within a 15-minute scan, which provided sufficient anatomical coverage and critical diagnostic information. This protocol offers the potential for rapid and reliable screening for carotid plaques without contrast agent. Copyright © 2016. Published by Elsevier Inc.

  19. Multiple Access Schemes for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie; Hamkins, Jon; Stocklin, Frank J.

    2010-01-01

    Two years ago, the NASA Coding, Modulation, and Link Protocol (CMLP) study was completed. The study, led by the authors of this paper, recommended codes, modulation schemes, and desired attributes of link protocols for all space communication links in NASA's future space architecture. Portions of the NASA CMLP team were reassembled to resolve one open issue: the use of multiple access (MA) communication from the lunar surface. The CMLP-MA team analyzed and simulated two candidate multiple access schemes that were identified in the original CMLP study: Code Division MA (CDMA) and Frequency Division MA (FDMA) based on a bandwidth-efficient Continuous Phase Modulation (CPM) with a superimposed Pseudo-Noise (PN) ranging signal (CPM/PN). This paper summarizes the results of the analysis and simulation of the CMLP-MA study and describes the final recommendations.

  20. Study of the mapping of Navier-Stokes algorithms onto multiple-instruction/multiple-data-stream computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.; Stevens, K.

    1984-01-01

    Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.

  1. Mixed refrigerant cycle with neon, hydrogen, and helium for cooling sc power transmission lines

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Dittmar, N.; Haberstroh, Ch; Quack, H.

    2017-02-01

    The use of superconductors in very long power transmission lines requires a reliable and effective cooling. Since the use of cryocoolers does not appear feasible for very long distances, a cryogenic refrigeration cycle needs to be developed. For cooling superconducting cables based on MgB2 (T c = 39 K), liquid hydrogen (LH2) is the obvious cooling agent. For recooling LH2, one would need a refrigeration cycle providing temperatures at around 20 K. For this purpose, one could propose the use of a helium refrigeration cycle. But the very low molecular weight of helium restricts the use of turbo compressors, which limits the overall efficiency. In order to increase the molecular weight of the refrigerant a mixture of cryogens could be used, allowing the use of a turbo compressor. Temperatures below the triple point of neon are achieved by phase separation. This paper presents a possible layout of a refrigeration cycle utilizing a three component mixture of neon, hydrogen, and helium.

  2. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    NASA Technical Reports Server (NTRS)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  3. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  4. A Mechanical Cryogenic Cooler for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.

  5. Turbo Pump Fed Micro-Rocket Engine

    NASA Astrophysics Data System (ADS)

    Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.

    2004-10-01

    Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.

  6. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data.

  7. Reduction of respiratory ghosting motion artifacts in conventional two-dimensional multi-slice Cartesian turbo spin-echo: which k-space filling order is the best?

    PubMed

    Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi

    2018-06-01

    The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.

  8. Analysis of hybrid subcarrier multiplexing of OCDMA based on single photodiode detection

    NASA Astrophysics Data System (ADS)

    Ahmad, N. A. A.; Junita, M. N.; Aljunid, S. A.; Rashidi, C. B. M.; Endut, R.

    2017-11-01

    This paper analyzes the performance of subcarrier multiplexing (SCM) of spectral amplitude coding optical code multiple access (SAC-OCDMA) by applying Recursive Combinatorial (RC) code based on single photodiode detection (SPD). SPD is used in the receiver part to reduce the effect of multiple access interference (MAI) which contributes as a dominant noise in incoherent SAC-OCDMA systems. Results indicate that the SCM OCDMA network performance could be improved by using lower data rates and higher number of weight. Total number of users can also be enhanced by adding lower data rates and higher number of subcarriers.

  9. CMCpy: Genetic Code-Message Coevolution Models in Python

    PubMed Central

    Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.

    2013-01-01

    Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367

  10. Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.

    2008-01-01

    To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.

  11. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  12. Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.

    2005-01-01

    High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.

  13. Concept and performance study of turbocharged solid propellant ramjet

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Liu, Kai; Liu, Yang; Liu, Shichang

    2018-06-01

    This study proposes a turbocharged solid propellant ramjet (TSPR) propulsion system that integrates a turbocharged system consisting of a solid propellant (SP) air turbo rocket (ATR) and the fuel-rich gas generator of a solid propellant ramjet (SPR). First, a suitable propellant scheme was determined for the TSPR. A solid hydrocarbon propellant is used to generate gas for driving the turbine, and a boron-based fuel-rich propellant is used to provide fuel-rich gas to the afterburner. An appropriate TSPR structure was also determined. The TSPR's thermodynamic cycle was analysed to prove its theoretical feasibility. The results showed that the TSPR's specific cycle power was larger than those of SP-ATR and SPR and thermal efficiency was slightly less than that of SP-ATR. Overall, TSPR showed optimal performance in a wide flight envelope. The specific impulses and specific thrusts of TSPR, SP-ATR, and SPR in the flight envelope were calculated and compared. TSPR's flight envelope roughly overlapped that of SP-ATR, its specific impulse was larger than that of SP-ATR, and its specific thrust was larger than those of SP-ATR and SPR. Attempts to improve the TSPR off-design performance prompted our proposal of a control plan for off-design codes in which both the turbocharger corrected speed and combustor excess gas coefficient are kept constant. An off-design performance model was established by analysing the TSPR working process. We concluded that TSPR with a constant corrected speed had wider flight envelope, higher thrust, and higher specific impulse than TSPR with a constant physical speed determined by calculating the performance of off-design TSPR codes under different control plans. The results of this study can provide a reference for further studies on TSPRs.

  14. Adaptive Transmission and Channel Modeling for Frequency Hopping Communications

    DTIC Science & Technology

    2009-09-21

    proposed adaptive transmission method has much greater system capacity than conventional non-adaptive MC direct- sequence ( DS )- CDMA system. • We...several mobile radio systems. First, a new improved allocation algorithm was proposed for multicarrier code-division multiple access (MC- CDMA ) system...Multicarrier code-division multiple access (MC- CDMA ) system with adaptive frequency hopping (AFH) has attracted attention of researchers due to its

  15. Developing an Array Binary Code Assessment Rubric for Multiple- Choice Questions Using Item Arrays and Binary-Coded Responses

    ERIC Educational Resources Information Center

    Haro, Elizabeth K.; Haro, Luis S.

    2014-01-01

    The multiple-choice question (MCQ) is the foundation of knowledge assessment in K-12, higher education, and standardized entrance exams (including the GRE, MCAT, and DAT). However, standard MCQ exams are limited with respect to the types of questions that can be asked when there are only five choices. MCQs offering additional choices more…

  16. Adaptive Precoded MIMO for LTE Wireless Communication

    NASA Astrophysics Data System (ADS)

    Nabilla, A. F.; Tiong, T. C.

    2015-04-01

    Long-Term Evolution (LTE) and Long Term Evolution-Advanced (ATE-A) have provided a major step forward in mobile communication capability. The objectives to be achieved are high peak data rates in high spectrum bandwidth and high spectral efficiencies. Technically, pre-coding means that multiple data streams are emitted from the transmit antenna with independent and appropriate weightings such that the link throughput is maximized at the receiver output thus increasing or equalizing the received signal to interference and noise (SINR) across the multiple receiver terminals. However, it is not reliable enough to fully utilize the information transfer rate to fit the condition of channel according to the bandwidth size. Thus, adaptive pre-coding is proposed. It applies pre-coding matrix indicator (PMI) channel state making it possible to change the pre-coding codebook accordingly thus improving the data rate higher than fixed pre-coding.

  17. What to do with a Dead Research Code

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2016-01-01

    The project has ended -- should all of the computer codes that enabled the project be deleted? No. Like research papers, research codes typically carry valuable information past project end dates. Several possible end states to the life of research codes are reviewed. Historically, codes are typically left dormant on an increasingly obscure local disk directory until forgotten. These codes will likely become any or all of: lost, impossible to compile and run, difficult to decipher, and likely deleted when the code's proprietor moves on or dies. It is argued here, though, that it would be better for both code authors and astronomy generally if project codes were archived after use in some way. Archiving is advantageous for code authors because archived codes might increase the author's ADS citable publications, while astronomy as a science gains transparency and reproducibility. Paper-specific codes should be included in the publication of the journal papers they support, just like figures and tables. General codes that support multiple papers, possibly written by multiple authors, including their supporting websites, should be registered with a code registry such as the Astrophysics Source Code Library (ASCL). Codes developed on GitHub can be archived with a third party service such as, currently, BackHub. An important code version might be uploaded to a web archiving service like, currently, Zenodo or Figshare, so that this version receives a Digital Object Identifier (DOI), enabling it to found at a stable address into the future. Similar archiving services that are not DOI-dependent include perma.cc and the Internet Archive Wayback Machine at archive.org. Perhaps most simply, copies of important codes with lasting value might be kept on a cloud service like, for example, Google Drive, while activating Google's Inactive Account Manager.

  18. Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication

    NASA Astrophysics Data System (ADS)

    Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui

    2016-09-01

    In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.

  19. Using National Drug Codes and drug knowledge bases to organize prescription records from multiple sources.

    PubMed

    Simonaitis, Linas; McDonald, Clement J

    2009-10-01

    The utility of National Drug Codes (NDCs) and drug knowledge bases (DKBs) in the organization of prescription records from multiple sources was studied. The master files of most pharmacy systems include NDCs and local codes to identify the products they dispense. We obtained a large sample of prescription records from seven different sources. These records carried a national product code or a local code that could be translated into a national product code via their formulary master. We obtained mapping tables from five DKBs. We measured the degree to which the DKB mapping tables covered the national product codes carried in or associated with the sample of prescription records. Considering the total prescription volume, DKBs covered 93.0-99.8% of the product codes from three outpatient sources and 77.4-97.0% of the product codes from four inpatient sources. Among the in-patient sources, invented codes explained 36-94% of the noncoverage. Outpatient pharmacy sources rarely invented codes, which comprised only 0.11-0.21% of their total prescription volume, compared with inpatient pharmacy sources for which invented codes comprised 1.7-7.4% of their prescription volume. The distribution of prescribed products was highly skewed, with 1.4-4.4% of codes accounting for 50% of the message volume and 10.7-34.5% accounting for 90% of the message volume. DKBs cover the product codes used by outpatient sources sufficiently well to permit automatic mapping. Changes in policies and standards could increase coverage of product codes used by inpatient sources.

  20. Rescue of TET2 Haploinsufficiency in Myelodysplastic Syndrome Patients Using Turbo Cosubstrate

    DTIC Science & Technology

    2016-07-01

    prevalent in a number of myeloid malignancies such as MDS- myeloproliferative neoplasms (MDS-MPN) and acute myeloid leukemia derived from MDS and MDS-MPN...Myelodysplastic syndromes (MDS), MDS- myeloproliferative neoplasms (MDS-MPN), Acute myeloid leukemia (AML), 5-methylcytosine (5mC), Mutation

  1. 57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  2. 56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  3. Acronymolpus, a new genus of Eumolpinae, endemic to New Caledonia (Coleoptera, Chrysomelidae).

    PubMed

    Samuelson, G Allan

    2015-01-01

    The genus Acronymolpus is proposed as new. It is represented by four new species, all of which are endemic to New Caledonia. Proposed are: Acronymolpus joliveti sp. n. (type species), Acronymolpus gressitti sp. n., Acronymolpus meteorus sp. n., and Acronymolpus turbo sp. n.

  4. Turboexpander recovers energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moruzzi, L.; Righi, E.

    1989-10-01

    Turboexpanding natural gas in a decompression plant is a useful means to recover energy. Italy's natural gas transmission system uses this method in which gas is expanded through a turbine to recover the mechanical energy, rather than dissipate it as friction. The turbo expanding system is illustrated and thermodynamic aspects are discussed.

  5. Distributed magnetic field positioning system using code division multiple access

    NASA Technical Reports Server (NTRS)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  6. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    NASA Astrophysics Data System (ADS)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  7. Distributed reservation-based code division multiple access

    NASA Astrophysics Data System (ADS)

    Wieselthier, J. E.; Ephremides, A.

    1984-11-01

    The use of spread spectrum signaling, motivated primarily by its antijamming capabilities in military applications, leads naturally to the use of Code Division Multiple Access (CDMA) techniques that permit the successful simultaneous transmission by a number of users over a wideband channel. In this paper we address some of the major issues that are associated with the design of multiple access protocols for spread spectrum networks. We then propose, analyze, and evaluate a distributed reservation-based multiple access protocol that does in fact exploit CDMA properties. Especially significant is the fact that no acknowledgment or feedback information from the destination is required (thus facilitating communication with a radio-silent mode), nor is any form of coordination among the users necessary.

  8. Mobile Code: The Future of the Internet

    DTIC Science & Technology

    1999-01-01

    code ( mobile agents) to multiple proxies or servers " Customization " (e.g., re-formatting, filtering, metasearch) Information overload Diversified... Mobile code is necessary, rather than client-side code, since many customization features (such as information monitoring) do not work if the...economic foundation for Web sites, many Web sites earn money solely from advertisements . If these sites allow mobile agents to easily access the content

  9. 14 CFR 36.1 - Applicability and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes except those airplanes that are designed for “agricultural aircraft operations” (as defined in... had any flight time before— (i) December 1, 1973, for airplanes with maximum weights greater than 75,000 pounds, except for airplanes that are powered by Pratt & Whitney Turbo Wasp JT3D series engines...

  10. 14 CFR 36.1 - Applicability and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes except those airplanes that are designed for “agricultural aircraft operations” (as defined in... time before— (i) December 1, 1973, for airplanes with maximum weights greater than 75,000 pounds, except for airplanes that are powered by Pratt & Whitney Turbo Wasp JT3D series engines; (ii) December 31...

  11. Guidelines for Software Engineering Education Version 1.0

    DTIC Science & Technology

    1999-11-01

    Turbo Pascal and Software Design. Sudbury, Massachusetts: Jones and Bartlett, 1997. " Deitel, Harvey M. & Deitel, Paul J. C++: How to Program . Upper...Saddle River, New Jersey: Prentice-Hall, 1997. " Deitel, Harvey M. & Deitel, Paul J. Java: How to Program . Upper Saddle River, New Jersey: Prentice-Hall

  12. Space Transportation Technology Workshop: Propulsion Research and Technology

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  13. 14 CFR 36.1 - Applicability and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes except those airplanes that are designed for “agricultural aircraft operations” (as defined in... time before— (i) December 1, 1973, for airplanes with maximum weights greater than 75,000 pounds, except for airplanes that are powered by Pratt & Whitney Turbo Wasp JT3D series engines; (ii) December 31...

  14. 14 CFR 36.1 - Applicability and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes except those airplanes that are designed for “agricultural aircraft operations” (as defined in... time before— (i) December 1, 1973, for airplanes with maximum weights greater than 75,000 pounds, except for airplanes that are powered by Pratt & Whitney Turbo Wasp JT3D series engines; (ii) December 31...

  15. 14 CFR 36.1 - Applicability and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes except those airplanes that are designed for “agricultural aircraft operations” (as defined in... time before— (i) December 1, 1973, for airplanes with maximum weights greater than 75,000 pounds, except for airplanes that are powered by Pratt & Whitney Turbo Wasp JT3D series engines; (ii) December 31...

  16. Rescue of TET2 Haploinsufficiency in Myelodysplastic Syndrome Patients Using Turbo Cosubstrate

    DTIC Science & Technology

    2015-07-01

    myeloproliferative neoplasms (MDS-MPN) and acute myeloid leukemia derived from MDS and MDS-MPN (sAML). One of the fundamental causes of these diseases is the...the activity of TET2 can be modified using 2-oxoglutarate analogs. 2. KEYWORDS: Myelodysplastic syndromes (MDS), MDS- myeloproliferative neoplasms (MDS

  17. 6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES ARE THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  18. Replicating the AC-130’s Urban Close Air Support Capabilities Around the Clock

    DTIC Science & Technology

    2006-12-15

    Each employs four Allison T56 -15 turbo-prop engines, dual-wheel construction, steerable nose gear, two tandem-mounted main retractable landing gear...Primary Function: Close air support, air interdiction and force protection Builder: Lockheed/Boeing Corp. Power Plant: Four Allison T56 -A-15

  19. Progress in industrial holography in France

    NASA Astrophysics Data System (ADS)

    Smigielski, Paul

    1992-01-01

    Industrial applications of holography in France are briefly reviewed. Particular attention is given to nondestructive testing of helicopter blades at Aerospatiale Central Laboratory, the use of holography at Renault for car-engine vibration study, vibration characterization of turbo-jet engine components at SNECMA, and vibration analysis of plates in an industrial hemodynamic tunnel.

  20. THE STAL DOUBLE-ROTATION RADIAL FLOW STEAM TURBO-GENERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-06-01

    The principles of operation, constructional features and the advantages that are claimed for the doublerotation radial flow type over the axial flow type are described, as well as its developments to meet both the requirements of very large outputs and the special needs of nuclear power stations. (auth)

  1. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    PubMed

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  2. High Order Modulation Protograph Codes

    NASA Technical Reports Server (NTRS)

    Nguyen, Thuy V. (Inventor); Nosratinia, Aria (Inventor); Divsalar, Dariush (Inventor)

    2014-01-01

    Digital communication coding methods for designing protograph-based bit-interleaved code modulation that is general and applies to any modulation. The general coding framework can support not only multiple rates but also adaptive modulation. The method is a two stage lifting approach. In the first stage, an original protograph is lifted to a slightly larger intermediate protograph. The intermediate protograph is then lifted via a circulant matrix to the expected codeword length to form a protograph-based low-density parity-check code.

  3. Single-shot secure quantum network coding on butterfly network with free public communication

    NASA Astrophysics Data System (ADS)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  4. COME: a robust coding potential calculation tool for lncRNA identification and characterization based on multiple features.

    PubMed

    Hu, Long; Xu, Zhiyu; Hu, Boqin; Lu, Zhi John

    2017-01-09

    Recent genomic studies suggest that novel long non-coding RNAs (lncRNAs) are specifically expressed and far outnumber annotated lncRNA sequences. To identify and characterize novel lncRNAs in RNA sequencing data from new samples, we have developed COME, a coding potential calculation tool based on multiple features. It integrates multiple sequence-derived and experiment-based features using a decompose-compose method, which makes it more accurate and robust than other well-known tools. We also showed that COME was able to substantially improve the consistency of predication results from other coding potential calculators. Moreover, COME annotates and characterizes each predicted lncRNA transcript with multiple lines of supporting evidence, which are not provided by other tools. Remarkably, we found that one subgroup of lncRNAs classified by such supporting features (i.e. conserved local RNA secondary structure) was highly enriched in a well-validated database (lncRNAdb). We further found that the conserved structural domains on lncRNAs had better chance than other RNA regions to interact with RNA binding proteins, based on the recent eCLIP-seq data in human, indicating their potential regulatory roles. Overall, we present COME as an accurate, robust and multiple-feature supported method for the identification and characterization of novel lncRNAs. The software implementation is available at https://github.com/lulab/COME. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. LIBVERSIONINGCOMPILER: An easy-to-use library for dynamic generation and invocation of multiple code versions

    NASA Astrophysics Data System (ADS)

    Cherubin, S.; Agosta, G.

    2018-01-01

    We present LIBVERSIONINGCOMPILER, a C++ library designed to support the dynamic generation of multiple versions of the same compute kernel in a HPC scenario. It can be used to provide continuous optimization, code specialization based on the input data or on workload changes, or otherwise to dynamically adjust the application, without the burden of a full dynamic compiler. The library supports multiple underlying compilers but specifically targets the LLVM framework. We also provide examples of use, showing the overhead of the library, and providing guidelines for its efficient use.

  6. Quantum internet using code division multiple access

    PubMed Central

    Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  7. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  8. 3D measurement using combined Gray code and dual-frequency phase-shifting approach

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin

    2018-04-01

    The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.

  9. Perceptions of Usefulness: Using the Holland Code Theory, Multiple Intelligences Theory, and Role Model Identification to Determine a Career Niche in the Fashion Industry for First-Quarter Fashion Students

    ERIC Educational Resources Information Center

    Green, Crystal D.

    2010-01-01

    This action research study investigated the perceptions that student participants had on the development of a career exploration model and a career exploration project. The Holland code theory was the primary assessment used for this research study, in addition to the Multiple Intelligences theory and the identification of a role model for the…

  10. The VLSI design of a Reed-Solomon encoder using Berlekamps bit-serial multiplier algorithm

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Deutsch, L. J.; Reed, I. S.; Hsu, I. S.; Wang, K.; Yeh, C. S.

    1982-01-01

    Realization of a bit-serial multiplication algorithm for the encoding of Reed-Solomon (RS) codes on a single VLSI chip using NMOS technology is demonstrated to be feasible. A dual basis (255, 223) over a Galois field is used. The conventional RS encoder for long codes ofter requires look-up tables to perform the multiplication of two field elements. Berlekamp's algorithm requires only shifting and exclusive-OR operations.

  11. Non-Linear Seismic Velocity Estimation from Multiple Waveform Functionals and Formal Assessment of Constraints

    DTIC Science & Technology

    2011-09-01

    tectonically active regions such as the Middle East. For example, we previously applied the code to determine the crust and upper mantle structure...Objective Optimization (MOO) for Multiple Datasets The primary goal of our current project is to develop a tool for estimating crustal structure that...be used to obtain crustal velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code has been

  12. Optimal decoding in fading channels - A combined envelope, multiple differential and coherent detection approach

    NASA Astrophysics Data System (ADS)

    Makrakis, Dimitrios; Mathiopoulos, P. Takis

    A maximum likelihood sequential decoder for the reception of digitally modulated signals with single or multiamplitude constellations transmitted over a multiplicative, nonselective fading channel is derived. It is shown that its structure consists of a combination of envelope, multiple differential, and coherent detectors. The outputs of each of these detectors are jointly processed by means of an algorithm. This algorithm is presented in a recursive form. The derivation of the new receiver is general enough to accommodate uncoded as well as coded (e.g., trellis-coded) schemes. Performance evaluation results for a reduced-complexity trellis-coded QPSK system have demonstrated that the proposed receiver dramatically reduces the error floors caused by fading. At Eb/N0 = 20 dB the new receiver structure results in bit-error-rate reductions of more than three orders of magnitude compared to a conventional Viterbi receiver, while being reasonably simple to implement.

  13. Multiple sclerosis lesion segmentation using dictionary learning and sparse coding.

    PubMed

    Weiss, Nick; Rueckert, Daniel; Rao, Anil

    2013-01-01

    The segmentation of lesions in the brain during the development of Multiple Sclerosis is part of the diagnostic assessment for this disease and gives information on its current severity. This laborious process is still carried out in a manual or semiautomatic fashion by clinicians because published automatic approaches have not been universal enough to be widely employed in clinical practice. Thus Multiple Sclerosis lesion segmentation remains an open problem. In this paper we present a new unsupervised approach addressing this problem with dictionary learning and sparse coding methods. We show its general applicability to the problem of lesion segmentation by evaluating our approach on synthetic and clinical image data and comparing it to state-of-the-art methods. Furthermore the potential of using dictionary learning and sparse coding for such segmentation tasks is investigated and various possibilities for further experiments are discussed.

  14. Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues

    NASA Astrophysics Data System (ADS)

    Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.

    Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.

  15. The effect of multiple internal representations on context-rich instruction

    NASA Astrophysics Data System (ADS)

    Lasry, Nathaniel; Aulls, Mark W.

    2007-11-01

    We discuss n-coding, a theoretical model of multiple internal mental representations. The n-coding construct is developed from a review of cognitive and imaging data that demonstrates the independence of information processed along different modalities such as verbal, visual, kinesthetic, logico-mathematic, and social modalities. A study testing the effectiveness of the n-coding construct in classrooms is presented. Four sections differing in the level of n-coding opportunities were compared. Besides a traditional-instruction section used as a control group, each of the remaining three sections were given context-rich problems, which differed by the level of n-coding opportunities designed into their laboratory environment. To measure the effectiveness of the construct, problem-solving skills were assessed as conceptual learning using the force concept inventory. We also developed several new measures that take students' confidence in concepts into account. Our results show that the n-coding construct is useful in designing context-rich environments and can be used to increase learning gains in problem solving, conceptual knowledge, and concept confidence. Specifically, when using props in designing context-rich problems, we find n-coding to be a useful construct in guiding which additional dimensions need to be attended to.

  16. Full core analysis of IRIS reactor by using MCNPX.

    PubMed

    Amin, E A; Bashter, I I; Hassan, Nabil M; Mustafa, S S

    2016-07-01

    This paper describes neutronic analysis for fresh fuelled IRIS (International Reactor Innovative and Secure) reactor by MCNPX code. The analysis included criticality calculations, radial power and axial power distribution, nuclear peaking factor and axial offset percent at the beginning of fuel cycle. The effective multiplication factor obtained by MCNPX code is compared with previous calculations by HELIOS/NESTLE, CASMO/SIMULATE, modified CORD-2 nodal calculations and SAS2H/KENO-V code systems. It is found that k-eff value obtained by MCNPX is closer to CORD-2 value. The radial and axial powers are compared with other published results carried out using SAS2H/KENO-V code. Moreover, the WIMS-D5 code is used for studying the effect of enriched boron in form of ZrB2 on the effective multiplication factor (K-eff) of the fuel pin. In this part of calculation, K-eff is calculated at different concentrations of Boron-10 in mg/cm at different stages of burnup of unit cell. The results of this part are compared with published results performed by HELIOS code. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Buzz-saw noise : propagation of shock waves in aero-engine inlet ducts

    NASA Astrophysics Data System (ADS)

    Fernando, Rasika; Marchiano, Régis; Coulouvrat, François; Druon, Yann

    2008-06-01

    For supersonic flows relative to turbo-engine fan blades, measured acoustic spectra near the inlet present tones at fan blade passing frequency (BPF), engine shaft rotation frequency, or Engine Order (EO), and their respective harmonics. The latter are responsible for the Buzz-saw noise and are thus referred to as "Buzz-saw" or "multiple pure" tones. This work first attempts to reformulate McAlpine and Fisher's frequency domain model (2001) for the propagation of a unidimensional sawtooth waveform spiralling inside a hard-walled cylindrical duct in the presence of a uniform flow. The non-dissipative Burgers equation is solved using a shock fitting method, and modal attenuation and dispersion are added using a split-step computational method. In practice, shocks do not only occur at blade tips but on a significant portion of the blade span. The plane wave hypothesis being no longer valid, a new three dimensional model is required. This model is based on the computation of the axially varying amplitudes of the modal solutions, in order to take into account the nonlinear modal interactions.

  18. Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer vision techniques and data mining.

    PubMed

    Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad

    2017-07-01

    Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Assessing hemispheric specialization for processing arithmetic skills in adults: A functional transcranial doppler ultrasonography (fTCD) study.

    PubMed

    Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M

    2017-05-01

    A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  1. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  2. Adaptive partially hidden Markov models with application to bilevel image coding.

    PubMed

    Forchhammer, S; Rasmussen, T S

    1999-01-01

    Partially hidden Markov models (PHMMs) have previously been introduced. The transition and emission/output probabilities from hidden states, as known from the HMMs, are conditioned on the past. This way, the HMM may be applied to images introducing the dependencies of the second dimension by conditioning. In this paper, the PHMM is extended to multiple sequences with a multiple token version and adaptive versions of PHMM coding are presented. The different versions of the PHMM are applied to lossless bilevel image coding. To reduce and optimize the model cost and size, the contexts are organized in trees and effective quantization of the parameters is introduced. The new coding methods achieve results that are better than the JBIG standard on selected test images, although at the cost of increased complexity. By the minimum description length principle, the methods presented for optimizing the code length may apply as guidance for training (P)HMMs for, e.g., segmentation or recognition purposes. Thereby, the PHMM models provide a new approach to image modeling.

  3. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.

  4. Color coded multiple access scheme for bidirectional multiuser visible light communications in smart home technologies

    NASA Astrophysics Data System (ADS)

    Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon-Ho

    2015-10-01

    In optical wireless communications, multiple channel transmission is an attractive solution to enhancing capacity and system performance. A new modulation scheme called color coded multiple access (CCMA) for bidirectional multiuser visible light communications (VLC) is presented for smart home applications. The proposed scheme uses red, green and blue (RGB) light emitting diodes (LED) for downlink and phosphor based white LED (P-LED) for uplink to establish a bidirectional VLC and also employs orthogonal codes to support multiple users and devices. The downlink transmission for data user devices and smart home devices is provided using red and green colors from the RGB LEDs, respectively, while uplink transmission from both types of devices is performed using the blue color from P-LEDs. Simulations are conducted to verify the performance of the proposed scheme. It is found that the proposed bidirectional multiuser scheme is efficient in terms of data rate and performance. In addition, since the proposed scheme uses RGB signals for downlink data transmission, it provides flicker-free illumination that would lend itself to multiuser VLC system for smart home applications.

  5. Pairwise-Comparison Software

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.

    1995-01-01

    Pairwise comparison (PWC) is computer program that collects data for psychometric scaling techniques now used in cognitive research. It applies technique of pairwise comparisons, which is one of many techniques commonly used to acquire the data necessary for analyses. PWC administers task, collects data from test subject, and formats data for analysis. Written in Turbo Pascal v6.0.

  6. Selecting a Relational Database Management System for Library Automation Systems.

    ERIC Educational Resources Information Center

    Shekhel, Alex; O'Brien, Mike

    1989-01-01

    Describes the evaluation of four relational database management systems (RDBMSs) (Informix Turbo, Oracle 6.0 TPS, Unify 2000 and Relational Technology's Ingres 5.0) to determine which is best suited for library automation. The evaluation criteria used to develop a benchmark specifically designed to test RDBMSs for libraries are discussed. (CLB)

  7. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART III CANDIDATE MATERIALS ORBITAL EVALUATION.

    DTIC Science & Technology

    by the solar-collector industry for use in the ASTEC Program, and to test the degrading effects of various segregated and combined elements of the...elements which may be causative to material surface degradation can be determined. The ASTEC scientific space experiment was developed and qualified, and

  8. Dr. Sanger's Apprentice: A Computer-Aided Instruction to Protein Sequencing.

    ERIC Educational Resources Information Center

    Schmidt, Thomas G.; Place, Allen R.

    1985-01-01

    Modeled after the program "Mastermind," this program teaches students the art of protein sequencing. The program (written in Turbo Pascal for the IBM PC, requiring 128K, a graphics adapter, and an 8070 mathematics coprocessor) generates a polypeptide whose sequence and length can be user-defined (for practice) or computer-generated (for…

  9. NOAA Photo Library - Meet the Photographers/Sean Linehan

    Science.gov Websites

    National Geodetic Survey. He has flown mostly aboard the NOAA Citation jet aircraft using Leica Wild RC-30 aboard NOAA's Honeywell Turbo Commander used in producing airport obstruction charting information for the Federal Aviation Administration. A native of Boston, Massachusetts, Sean's interest in the ocean

  10. STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.

    DTIC Science & Technology

    VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE

  11. The Development of a Small High Speed Steam Microturbine Generator System

    NASA Astrophysics Data System (ADS)

    Alford, Adrian; Nichol, Philip; Frisby, Ben

    2015-08-01

    The efficient use of energy is paramount in every kind of business today. Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. This can be accomplished using steam turbines driving alternators on large scale systems. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This gave rise to a number of challenges which are described with the solutions adopted. The challenges included aerodynamic design of high efficiency impellers, sealing of a high speed shaft, thrust control and material selection to avoid steam erosion. The machine was packaged with a sophisticated control system to allow connection to the electricity grid. Some of the challenges in packaging the machine are also described. The Spirax Sarco TurboPower has now concluded performance and initial endurance tests which are described with a summary of the results.

  12. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  13. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, T. R.; Mayer, R.

    2012-05-04

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supplymore » of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.« less

  14. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    NASA Astrophysics Data System (ADS)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  15. Purification and IgE-binding epitopes of a major allergen in the gastropod Turbo cornutus.

    PubMed

    Ishikawa, M; Ishida, M; Shimakura, K; Nagashima, Y; Shiomi, K

    1998-07-01

    The major allergen (Tur c 1) in the muscle of the gastropod, Turbo cornutus, was isolated by Sephacryl S-300, Mono Q HR 5/5 and TSKgel Phenyl-5PW RP column chromatography. ELISA showed Tur c 1 to react strongly with sera from three individuals sensitive to both mollusks and crustaceans. SDS-PAGE showed Tur c 1 to produce a major band corresponding to a molecular mass of 35 kDa under the reduced condition. Its amino acid composition was characterized by the abundance of Glx, followed by Leu, Ala and Lys in decreasing abundance, and the absence of Trp. In addition to these properties, the determined partial amino acid sequence identified Tur c 1 to be a tropomyosin, as in the case of the known mollusk and crustacean allergens. However, the results of competitive ELISA inhibition experiments suggest that Tur c 1 has an IgE-binding epitope in the C-terminal region which is dissimilar to those proposed for Cra g 1 (the oyster Crassostrea gigas allergen) and Pen i 1 (the shrimp Penaeus indicus allergen).

  16. An automated online turboflow cleanup LC/MS/MS method for the determination of 11 plasticizers in beverages and milk.

    PubMed

    Ates, Ebru; Mittendorf, Klaus; Senyuva, Hamide

    2013-01-01

    An automated sample preparation technique involving cleanup and analytical separation in a single operation using an online coupled TurboFlow (RP-LC system) is reported. This method eliminates time-consuming sample preparation steps that can be potential sources for cross-contamination in the analysis of plasticizers. Using TurboFlow chromatography, liquid samples were injected directly into the automated system without previous extraction or cleanup. Special cleanup columns enabled specific binding of target compounds; higher MW compounds, i.e., fats and proteins, and other matrix interferences with different chemical properties were removed to waste, prior to LC/MS/MS. Systematic stepwise method development using this new technology in the food safety area is described. Selection of optimum columns and mobile phases for loading onto the cleanup column followed by transfer onto the analytical column and MS detection are critical method parameters. The method was optimized for the assay of 10 phthalates (dimethyl, diethyl, dipropyl, butyl benzyl, diisobutyl, dicyclohexyl, dihexyl, diethylhexyl, diisononyl, and diisododecyl) and one adipate (diethylhexyl) in beverages and milk.

  17. The PMC-Turbo Balloon Mission to Study Gravity Waves and Turbulence through High-Resolution Imaging of Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Williams, B. P.; Kjellstrand, B.; Jones, G.; Reimuller, J. D.; Fritts, D. C.; Miller, A.; Geach, C.; Limon, M.; Hanany, S.; Kaifler, B.; Wang, L.; Taylor, M. J.

    2017-12-01

    PMC-Turbo is a NASA long-duration, high-altitude balloon mission that will deploy 7 high-resolution cameras to image polar mesospheric clouds (PMC) and measure gravity wave breakdown and turbulence. The mission has been enhanced by the addition of the DLR Balloon Lidar Experiment (BOLIDE) and an OH imager from Utah State University. This instrument suite will provide high horizontal and vertical resolution of the wave-modified PMC structure along a several thousand kilometer flight track. We have requested a flight from Kiruna, Sweden to Canada in June 2017 or McMurdo Base, Antarctica in Dec 2017. Three of the PMC camera systems were deployed on an aircraft and two tomographic ground sites for the High Level campaign in Canada in June/July 2017. On several nights the cameras observed PMC's with strong gravity wave breaking signatures. One PMC camera will piggyback on the Super Tiger mission scheduled to be launched in Dec 2017 from McMurdo, so we will obtain PMC images and wave/turbulence data from both the northern and southern hemispheres.

  18. Exploring Hill Ciphers with Graphing Calculators.

    ERIC Educational Resources Information Center

    St. John, Dennis

    1998-01-01

    Explains how to code and decode messages using Hill ciphers which combine matrix multiplication and modular arithmetic. Discusses how a graphing calculator can facilitate the matrix and modular arithmetic used in the coding and decoding procedures. (ASK)

  19. Analysis Code - Data Analysis in 'Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications' (LMSMIPNFA) v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R

    R code that performs the analysis of a data set presented in the paper ‘Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications’ by Lewis, J., Zhang, A., Anderson-Cook, C. It provides functions for doing inverse predictions in this setting using several different statistical methods. The data set is a publicly available data set from a historical Plutonium production experiment.

  20. Optimum Cyclic Redundancy Codes for Noisy Channels

    NASA Technical Reports Server (NTRS)

    Posner, E. C.; Merkey, P.

    1986-01-01

    Capabilities and limitations of cyclic redundancy codes (CRC's) for detecting transmission errors in data sent over relatively noisy channels (e.g., voice-grade telephone lines or very-high-density storage media) discussed in 16-page report. Due to prevalent use of bytes in multiples of 8 bits data transmission, report primarily concerned with cases in which both block length and number of redundant bits (check bits for use in error detection) included in each block are multiples of 8 bits.

Top